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A B S T R A C T

We investigate how high-frequency trading (HFT) in equity markets affects options market liquidity. We find
that increased aggressive HFT activity in the stock market leads to wider bid–ask spreads in the options
market through two main channels. First, options market makers’ quotes are exposed to sniping risk from
HFTs exploiting put–call parity violations. Second, informed trading in the options market further amplifies
the impact of HFT in equity markets on the liquidity of options by simultaneously increasing the options
bid–ask spread and intensifying aggressive HFT activity in the underlying market.
1. Introduction

High-frequency trading (HFT) has significantly altered the func-
tioning of electronic markets.1 The extensive literature examining the
implications of HFT mainly focuses on the market quality effects of HFT
within individual markets as opposed to across assets.2 We attempt to
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1 Throughout this paper, we use the phrase ‘‘high-frequency trading’’ or ‘‘HFT’’ to refer to HFT activity in the stock market unless we explicitly indicate
otherwise. The acronym HFT is used interchangeably to refer to high-frequency traders and high-frequency trading.

2 Hendershott et al. (2011), Brogaard et al. (2015), Van Kervel and Menkveld (2019) and Hagströmer and Nordén (2013) examine the effects on stock market
liquidity; Kirilenko et al. (2017) and Lee (2015) investigate the impact in the futures market; Chaboud et al. (2014) and Jiang et al. (2014) focus on FX and
fixed-income securities markets respectively.

fill this gap by examining the impact of HFT in the stock market on
options market liquidity. Our results are relevant given the significant
growth in the options market volume in recent years. For instance,
between 1996 and 2022, options market volume in the U.S. grew at
an annualized compound rate of 15%, outpacing the 10% growth rate
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Fig. 1. The evolution of trading volume in the U.S. equity and options market. This figure reports the evolution of trading volume in the U.S. equity and options markets.
The gray (dark) bar corresponds to the number of shares (contracts) traded in U.S. equity (options) markets. The sample contains all stocks traded between January 1, 1996 and
December 31, 2022 on the U.S. exchanges. The data is obtained from CRSP and OptionMetrics.
observed for the stock trading volume (see Fig. 1).
We investigate whether HFT in stocks impacts the liquidity of

options written on those stocks in the U.S. and whether any potential
impact differs across liquidity-supplying and liquidity-consuming HFT
strategies. We find that HFT activity in the equity markets is associated
with a decline in market liquidity – as indicated by an increase in bid–
ask spreads – in the options markets. A one-standard-deviation increase
in HFT activity in stock markets is associated with a 3.5% higher
proportional bid–ask spread in options markets. For a trade of 1000
contracts, our results imply that trading costs increase from USD 85.91
to USD 88.92.3 To provide a sense of the economic scale of this effect,
the volume of stock options trading in the U.S. reached 10.1 billion
contracts in 2023,4 resulting in an estimated total increment in trading
costs of approximately USD 30.4 million. This association is exclusively
driven by aggressive HFT strategies and not by liquidity-supplying HFT
strategies.

We propose two channels to explain the adverse effects of liquidity-
demanding HFTs on options market quality. First, our results are con-
sistent with option market makers’ quotes being exposed to sniping
risk originating from latency races involving arbitrageurs who seek to
profit from trading against stale quotes – we call this explanation the
latency arbitrage channel. Budish et al. (2015), Foucault et al. (2017)
and Shkilko and Sokolov (2020) find that fast HFTs with access to
speed-enhancing technology can leverage their relative speed advan-
tage to respond more quickly to new information and/or temporary
liquidity shocks and profitably exploit arbitrage opportunities. This
phenomenon, referred to as ‘‘latency’’ arbitrage opportunities in the
relevant literature (e.g., Aquilina et al. (2022), imposes adverse selec-
tion costs on market makers to the extent these arbitrage opportunities
originate due to arrival of new information.

To test the latency arbitrage channel, we employ cross-sectional
analysis and compute the frequency of profitably exploitable put–call
parity violations. Our primary hypothesis posits that if options market
makers do in fact increase the bid–ask spread in response to cross-
market latency arbitrage by HFTs, then the resulting increase in options

3 Section 3 provides the calculations for these numbers.
4 https://www.theocc.com/market-data/market-data-reports/volume-and-

open-interest/volume-by-exchange.
2

bid–ask spread should be higher for stocks with a higher frequency of
profitable put–call parity violations. We adopt the approach employed
by Muravyev et al. (2013) and compare the option-implied stock price
(derived from the put–call parity relationship) with the actual stock
price. We find that the impact of liquidity-consuming HFT flow on the
options bid–ask spread is more pronounced for stocks that exhibit high
levels of profitable put–call parity violations.

We also explore a second channel for the positive association be-
tween liquidity-demanding HFT in the stock markets and options bid–
ask spreads. It is well established that the implicit leverage in options
markets makes them very attractive to informed traders (e.g., Easley
et al. (1998) and Augustin and Subrahmanyam (2020)). With informed
traders in the options market, options market makers widen the bid–ask
spread to protect against adverse selection (e.g., Easley et al. (1998)).
Simultaneously, informed trading activities may create temporary devi-
ations from put–call parity, allowing aggressive HFTs to intensify their
activities in the stock markets to exploit slower traders. If this is the
case, informed trading in the options market may amplify the positive
impact of HFT in equity markets on the options bid–ask spreads. We
call this explanation the informed trading channel.

To examine the informed trading channel, we use a unique ex-
ogenous shock to informed trading, as employed in Bondarenko and
Muravyev (2022): the arrest of Raj Rajaratnam on October 16, 2009.
We use the put–call ratio measure calculated from CBOE’s open-close
options data to proxy for informed trading (Pan and Poteshman, 2006).
Our analysis shows that the informed trading channel does indeed play
a role in explaining the effects of liquidity-consuming HFTs on the bid–
ask spread of options. Economically, we find that informed trading in
the options market intensifies the overall effects of HFT in the stock
market on the options bid–ask spread by roughly 50%.

While we obtain the above results after controlling for option and
stock market factors that are commonly known to influence option
market spreads (e.g., options volume and price, option implied volatil-
ity, option Greeks, stock liquidity, and realized stock volatility), we
acknowledge that the relationship between HFT activity and options
market liquidity is likely to be endogenous. This endogeneity may arise
because both variables could be jointly influenced by other potentially
unobservable factors stemming from the cross-market relationship be-
tween options and stock markets (as in Biais and Foucault (2014)), or

https://www.theocc.com/market-data/market-data-reports/volume-and-open-interest/volume-by-exchange
https://www.theocc.com/market-data/market-data-reports/volume-and-open-interest/volume-by-exchange
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because the causal link between the two variables goes in the opposite
direction (as in Breen et al. (2002)).

To address these endogeneity concerns, we employ the two-stage
least squares (2SLS) approach where we use the introduction of flash
orders by NASDAQ as an exogenous shock to HFT activity in the
stock market. This order type grants market participants the ability to
expose their unexecuted marketable orders for an additional 500 ms in
the NASDAQ limit order book before eventually routing them to the
general marketplace. As only low latency firms are able to monitor
order books at such high frequencies and react to the presence of flash
orders (Skjeltorp et al., 2016; Harris and Namvar, 2016), our choice of
instrument fulfills both criteria for a good instrument: it has a strong
correlation with HFT activity in the stock market; and it only affects
option market liquidity through its impact on HFT activity in the stock
market. The 2SLS estimations confirm the main results. An increase
in aggressive HFT activity leads to an increase in quoted spreads in
the options markets. Furthermore, the positive relationship between
(aggressive) HFT activity and option spreads is stronger for stocks with
a high number of profitably exploitable put–call parity violations.5

Our primary analysis relies on the NASDAQ HFT data and the
ptions transactions data obtained from the Options Price Reporting
uthority (OPRA), which is limited to one year (2009) and 103 stocks.
o test the external validity of our results, we complement our pri-
ary analysis by examining the correlation between HFT activity and

ptions liquidity using a larger dataset spanning from 2012 to 2019.
his analysis, detailed in the Internet Appendix Section C, uses data
rom the Securities and Exchange Commission’s Market Information
ata Analytics System (MIDAS) database and OptionMetrics. While this
nalysis does not provide the same granularity as our main analysis
nd cannot establish a causal relationship, it consistently shows that
he increased total HFT activity in equity markets is associated with a
ignificant decline in options liquidity. Furthermore, both the latency
rbitrage and informed trading channels contribute to explaining the
ositive correlation between HFT activity in the equity market and the
id–ask spread in the options market.

.1. Related literature and contribution

Our study contributes to understanding the impact of HFTs on the
nterplay between stock and options market microstructure dynamics.

e present evidence on the direct effect of various HFT strategies in
quity markets on the options bid–ask spread, and, to the best of our
nowledge, our study is the first to address this critical issue.

Studies examining the impact of underlying market liquidity on
ption liquidity mainly focus on how stock liquidity affects the hedging
osts of option market makers. Cho and Engle (1999), Kaul et al.
2004), and Wu et al. (2014) argue that market frictions and imperfec-
ions prohibit option market makers from building a perfectly-hedged
elta-neutral portfolio, thus necessitating them to seek compensation
or the transaction costs and the risks associated with an imperfectly
edged position in the options market. Engle and Neri (2010) and Kaul
t al. (2004) establish that the option delta, gamma, and vega affect the
edging capability of option market makers. Boyle and Vorst (1992)
nd Cho and Engle (1999) in turn demonstrate that the bid–ask spread
n the stock market affects the hedging costs of option market makers.

In a closely related study, Mishra et al. (2012) explore the impact of
utomation on options markets, using high-frequency OPRA data and
inding that automation leads to reduced bid–ask spreads and increased

5 While the introduction of flash orders by NASDAQ serves as a useful
nstrument to mitigate endogeneity concerns, fully addressing these concerns
emains challenging in our context. This is largely due to the intrinsic
onnection between options contracts and their underlying stocks in the
quity market, a common issue in the literature on stock and options market
3

ynamics.
liquidity in options markets. Kapadia and Linn (2020) use the August
2012 glitch in Knight Capital’s trading platform as an exogenous event
to demonstrate that liquidity-related uncertainty in equity markets
adversely affects option bid–ask spreads.

Our paper distinguishes itself from the aforementioned studies by
focusing on investigating the cross-market arbitrage dynamics between
the options and equity markets. We demonstrate that, even after con-
trolling for all variables proposed in previous studies that could influ-
ence the hedging costs of option market makers, high-frequency cross-
market latency arbitrage forces between options and equity markets
significantly impact options market liquidity.

Our study is also related to the literature on informed trading in
the options market, a topic reviewed by Augustin and Subrahmanyam
(2020). Easley et al. (1998) develop a model where informed traders
choose between stock and options markets based on the relative trans-
action costs in the markets and the ‘‘bang-for-buck’’ afforded by the
options market due to its inherent leverage. The authors conclude that,
depending on the relative transaction costs in the two markets, there
can be a separating equilibrium where informed traders only trade
in the stock market or a pooling equilibrium where informed traders
trade in both markets. Empirical research focusing on informed trading
in these two markets largely validates the theoretical predictions of
the model. For instance, Cao et al. (2005) find evidence of informed
trading in options before takeovers. Hu (2014) provides evidence of an
information channel by demonstrating that the options market-makers’
initial delta hedging strategy is reflected in stock prices. Pan and
Poteshman (2006), Ni et al. (2008), Cremers and Weinbaum (2010),
Ge et al. (2016) and Collin-Dufresne et al. (2021) further document
the role of options markets in the price discovery process.

In this context, our work aligns closely with Bondarenko and Mu-
ravyev (2022), who employ a unique exogenous shock – the arrest of
a trader engaged in insider trading – to investigate informed trading in
the options market. Their findings suggest that options volume predicts
future stock returns due to its information content before the arrest but
not afterwards. Building on this experiment, our results also suggest
that options market makers widen the bid–ask spread in the presence of
informed trading before the arrest. Importantly, our study extends this
line of inquiry by highlighting the potential role of HFTs in transmitting
information between the options and stock markets.

Finally, our study contributes to the existing literature on HFT,
focusing on speed differentials across traders, sniping, and latency
arbitrage. On the one hand, Brogaard et al. (2015) and Ait-Sahalia and
Sağlam (2024) show that access to speed-enhancing technology allows
market makers to reprice their quotes and better manage adverse selec-
tion risk, thereby improving spreads. On the other hand, Budish et al.
(2015), Foucault et al. (2017), and Shkilko and Sokolov (2020) provide
evidence of (toxic) latency arbitrage opportunities that emerge due to
asynchronous adjustments in prices across two (or more) markets upon
the arrival of new information. According to Aquilina et al. (2022),
the use of latency arbitrage strategies increases trading costs and leads
to annual losses of around $5 billion in global equity markets, and
Baron et al. (2019) find that HFTs obtain significant profits from these
latency arbitrage opportunities. Menkveld and Zoican (2017) show that
which of the above two effects dominates depends on a security’s news-
to-liquidity-trader ratio. In options markets, due to exchange-imposed
caps on the number of quote updates, and fines on traders with high
message-to-transaction ratios (Muravyev and Pearson, 2020), market
makers are particularly vulnerable to sniping risk – an aspect that is
consistent with our findings.

Roadmap: The remainder of this paper is organized as follows:
Section 2 describes the data; Section 3 presents the estimation results
for the main tests and two proposed channels using the OLS setting
with fixed effects; Section 4 presents the results for the 2SLS IV ap-
proach; and Section 5 concludes. All additional tests mentioned but not

included in this paper are available in the Internet Appendix.
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2. Data and variables

2.1. Data sources

The primary datasets employed in this study are the NASDAQ HFT
data, comprising transactions for 120 randomly selected NASDAQ and
NYSE-listed stocks for 2009, and the transaction-level options data ob-
tained from the Options Price Reporting Authority (OPRA). Individual
trades in the NASDAQ HFT data have been disaggregated by NASDAQ
into those initiated by HFTs and non-HFTs.6 The NASDAQ HFT data
also includes variables such as date, time (in milliseconds), trading
volume, price, buy–sell indicator, and the liquidity nature of the two
sides of each trade. The nature of the liquidity has been classified as
HH, HN, NH, and NN, denoting trades where both liquidity-providers
and -takers are HFTs, where an HFT demands liquidity from a non-
HFT, where a non-HFT demands liquidity from an HFT, and where
two non-HFTs demand and supply liquidity respectively. The total HFT
volume has been defined as the sum of HH, HN, and NH, in line with
Brogaard et al. (2014). The total trading volume is about 44,800 million
shares, of which HFTs account for 31,968 million shares or 71.30%
of all trades. The total value of HFT-initiated trades amounts to 1381
billion USD.

We merge the NASDAQ HFT data with the transaction-level op-
tions data obtained from OPRA. Although the NASDAQ HFT data
covers transactions for 120 stocks, we are only able to match options
transactions with the NASDAQ HFT dataset for 103 stocks due to
inconsistencies in ticker symbols across the two datasets. We employ
the OPRA data for two purposes: (i) to compute the primary measure
of trading cost for the options market, specifically the proportional
quoted bid–ask spread; and (ii) to estimate the violations of put–call
parity. The initial OPRA dataset comprises 19,143,237 transactions. We
follow the existing literature and exclude long-term options, i.e., those
with maturities greater than 180 days. This allows us to focus on the
most actively traded options contracts (e.g., Brenner et al. (2001) and
Christoffersen et al. (2017)).

We supplement these two datasets with the open-close options data
obtained from CBOE, the NBBO quotes from the Trade and Quote
(TAQ), the five-minute intraday stock price data obtained from Re-
finitiv Tick History, end-of-day option bid and ask prices, trading
volumes, Greeks, and implied volatilities7 from OptionMetrics, put–call
implied volatility spreads from Option Suite by Wharton Research Data
Services (WRDS), additional HFT measures obtained from the Securities
and Exchange Commission’s (SEC) Market Information Data Analytics
System (MIDAS) dataset, daily ask, bid, trading prices, dividend yield
from the Center for Research in Securities Prices (CRSP) dataset, and
the daily yield curve from the U.S. Department of Treasury.

2.2. Variable construction

Following the approach of Brogaard et al. (2014), we calculate
HFTs’ liquidity-demanding trades (𝑆𝐻𝐹𝑇𝐷

𝑖,𝑑) and liquidity-supplying
trades (𝑆𝐻𝐹𝑇 𝑆

𝑖,𝑑) using data from the NASDAQ HFT dataset. 𝑆𝐻𝐹𝑇𝐷
𝑖,𝑑

(𝑆𝐻𝐹𝑇 𝑆
𝑖,𝑑) is computed as the sum of HH and HN (HH and NH) for each

stock 𝑖 and day 𝑑. To obtain a measure of total HFT trading volume,
we compute 𝑆𝐻𝐹𝑇𝐴𝑙𝑙

𝑖,𝑑 as the sum of HH, HN, and NH. To ensure
that our results are not driven by trading volume attributable to non-
high-frequency traders (non-HFTs), we control for non-HFTs’ liquidity-
demanding (𝑆𝑁𝐻𝐹𝑇𝐷

𝑖,𝑑) and liquidity-supplying (𝑆𝑁𝐻𝐹𝑇 𝑆
𝑖,𝑑) trading

volume in the regression when we use 𝑆𝐻𝐹𝑇𝐷
𝑖,𝑑 and 𝑆𝐻𝐹𝑇 𝑆

𝑖,𝑑 as
our key explanatory variables (Brogaard et al., 2014). 𝑆𝑁𝐻𝐹𝑇𝐷

𝑖,𝑑
(𝑆𝑁𝐻𝐹𝑇 𝑆

𝑖,𝑑) is calculated as the sum of NN and NH (NN and HN).

6 Brogaard et al. (2014) provide full details of the disaggregation.
7 Greeks and implied volatilities are computed using a binomial tree with
constant interest rate.
4

Our options market trading cost measure is the proportional bid–
ask spread (𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑), which is computed using the transaction-level
OPRA dataset. We compute 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 as the volume-weighted aver-
age of the transaction-level proportional bid–ask spread, calculated as
the difference between the ask and bid prices divided by the midprice
(i.e., the average of ask and bid prices) for each transaction.

In addition to the aforementioned key variables, our study incor-
porates several control variables to account for the dynamics of both
stock and options markets. We include options volume (𝑂𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑑),
implied volatility (𝑂𝑖𝑚𝑝𝑙𝑖𝑒𝑑𝑖,𝑑), inverse option price (𝑂𝑖𝑛𝑝𝑖,𝑑), absolute
option delta (|

|

𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑑 ||), option vega (𝑂𝑣𝑒𝑔𝑎𝑖,𝑑), and option gamma
(𝑂𝑔𝑎𝑚𝑚𝑎𝑖,𝑑) as our options market control variables. The 𝑂𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑑
is the natural logarithm of the daily trading volume (contracts) for
each stock 𝑖 and day 𝑑. We compute the daily 𝑂𝑖𝑚𝑝𝑙𝑖𝑒𝑑𝑖,𝑑 , |

|

𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑑 ||,
𝑂𝑣𝑒𝑔𝑎𝑖,𝑑 , and 𝑂𝑔𝑎𝑚𝑚𝑎𝑖,𝑑 as the volume-weighted averages of all implied
volatilities, absolute deltas, vegas, and gammas across all strike prices
and maturities for stock 𝑖 and day 𝑑. We use the absolute value of delta
as call and put options and have different signs for deltas, i.e., a call
option delta is positive, while delta is negative for put options.

In order to control for the influence of stock market activity, we
employ two variables: stock proportional quoted spread (𝑆𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑)
and realized volatility (𝑆𝑉 𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑑). 𝑆𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 is computed as the
difference between the best-ask and bid prices for stock 𝑖 and day 𝑑, di-
vided by the midprice of the two prices on the same day. 𝑆𝑉 𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑑
is the daily (𝑑) standard deviation of five-minute returns for stock 𝑖.
Incorporating these control variables allows us to capture the dynamics
of the options and stock markets and mitigate the potential confounding
effects of unobserved variables on our main results.

To test the latency arbitrage channel, we compute the option’s
implied stock price by using the OPRA data, and compare it with the
contemporaneous stock price. If the discrepancy between the option’s
implied stock price and the actual stock price allows investors to
generate a profit, we flag this discrepancy as a profitable arbitrage
opportunity. Our put–call parity violations variable, 𝑁𝑝𝑣𝑖,𝑑 , is then
computed as the total number of profitable put–call parity violations for
each stock 𝑖 and day 𝑑. The computations are comprehensively detailed
n Section 3.2.1.

To measure informed trading in the options market, we adopt a
odified version of the put–call ratio metric introduced by Pan and
oteshman (2006). Our informed trading measure, denoted as 𝐼𝑛𝑠𝑖,𝑑 ,

is computed as the absolute value of the difference between the put–
call ratio and 0.5. The put–call ratio itself is computed as the ratio of
open-buy put volume to the sum of open-buy put and open-buy call
volumes. The underlying rationale driving the selection of this metric
is expounded upon in Section 3.3.1.

Finally, we use the SEC’s MIDAS data to confirm the robustness of
our results; we refer to this as the ‘‘MIDAS sample’’. We detail the main
variables employed in this test, the sources from which these variables
are obtained, and the results of this test in Internet Appendix Section
C.

Table 1 provides an overview of all the main (Panel A) and supple-
mentary (Panel B) variables and their computation methods.

2.3. Descriptive statistics

Table 2 shows the descriptive statistics for the main sample, which
comprises the intersection between the NASDAQ HFT and OPRA
datasets. Panel A includes the main model variables, where the sample
encompasses 103 stocks and their corresponding listed options. Panel
B includes supplementary variables. We winsorize all variables at the
1st and 99th percentile values to mitigate the influence of outliers.

The daily average trading volume of HFTs, as measured by the
stock-day average of 𝑆𝐻𝐹𝑇𝐴𝑙𝑙

𝑖,𝑑 is 1.36 million. This suggests that
HFTs typically serve as counterparties for a substantial number of
shares traded on a given day. HFTs are also net suppliers of liquid-

𝐷 𝑆
ity, as evidenced by their stock-day average 𝑆𝐻𝐹𝑇 𝑖,𝑑 and 𝑆𝐻𝐹𝑇 𝑖,𝑑
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Table 1
Definitions of variables.

Panel A: Main model variables

Variable Description Data source

𝑆𝐻𝐹𝑇 𝐴𝑙𝑙
𝑖,𝑑 (000,000s) Measure of total HFT trading volume for firm 𝑖 and day 𝑑 computed as the total number of shares traded by all HFTs. NASDAQ

𝑆𝐻𝐹𝑇 𝑆
𝑖,𝑑 (000,000s) Measure of liquidity-supplying HFT trading volume for firm 𝑖 and day 𝑑 computed as the total number of shares traded by

liquidity-supplying HFTs.
NASDAQ

𝑆𝐻𝐹𝑇𝐷
𝑖,𝑑 (000,000s) Measure of liquidity-demanding HFT trading volume for firm 𝑖 and day 𝑑 computed as the total number of shares traded

by liquidity-demanding HFTs.
NASDAQ

𝑆𝑁𝐻𝐹𝑇 𝑆
𝑖,𝑑 (000,000s) Measure of liquidity-supplying non-HFT trading volume for firm 𝑖 and day 𝑑 computed as the total number of shares

traded by liquidity-supplying non-HFTs.
NASDAQ

𝑆𝑁𝐻𝐹𝑇𝐷
𝑖,𝑑 (000,000s) Measure of liquidity-demanding non-HFT trading volume for firm 𝑖 and day 𝑑 computed as the total number of shares

traded by liquidity-demanding non-HFTs.
NASDAQ

𝑆𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 (%) Relative quoted spread firm 𝑖 in day 𝑑 computed as the difference between the best-ask and bid prices for stock 𝑖 and day
𝑑, divided by the midpoint of the two prices on the same day.

CRSP

𝑆𝑉 𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑑 Volatility measure for firm 𝑖 in day 𝑑 is computed as the daily standard deviation of five-minute returns. Refinitiv

𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 (%) Option market proportional spread for stock 𝑖 and day 𝑑 computed as the volume-weighted average of the proportional
spread (the difference between the best-ask and bid prices divided by the midpoint of the ask and bid prices).

OPRA

𝑂𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑑 Option volume for stock 𝑖 and day 𝑑 computed as the natural logarithm of the daily trading volume (contracts). OptionMetrics

𝑂𝑖𝑚𝑝𝑙𝑖𝑒𝑑𝑖,𝑑 Option-implied volatility for stock 𝑖 and day 𝑑 computed as the volume-weighted average of the implied volatility
provided by OptionMetrics.

OptionMetrics

|

|

𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑑 || Absolute option delta for stock 𝑖 and day 𝑑 computed as the volume-weighted average of the absolute value of delta
provided by OptionMetrics.

OptionMetrics

𝑂𝑔𝑎𝑚𝑚𝑎𝑖,𝑑 Option gamma for stock 𝑖 and day 𝑑 computed as the volume-weighted average of gamma provided by OptionMetrics. OptionMetrics
𝑂𝑣𝑒𝑔𝑎𝑖,𝑑 Option vega for stock 𝑖 and day 𝑑 computed as the volume-weighted average of vega provided by OptionMetrics. OptionMetrics
𝑂𝑖𝑛𝑝𝑖,𝑑 Inverse option price firm 𝑖 in day 𝑑 computed as the one divided by the option midprice. OPRA

𝑁𝑝𝑣𝑖,𝑑 The number of profitable put–call parity violations for each stock 𝑖 and day 𝑑. The put–call parity identification method is
described in Section 3.2.1.

OPRA

𝐼𝑛𝑠𝑖,𝑑 The informed trading measure for each stock 𝑖 and day 𝑑 computed as the absolute difference between the put–call ratio
and 0.5. The put–call ratio itself is computed by dividing the open-buy put volume by the sum of open-buy put and call
volumes.

CBOE

Panel B: Supplementary variables

𝑄𝑇 𝑖,𝑑 Quote-to-trade ratio for stock 𝑖 and day 𝑑 computed as the sum of order volume for all order messages divided by the
sum of trade volume for all trades that are not against hidden orders.

MIDAS

𝐼𝑣𝑠𝑖,𝑑 Absolute value of the put–call implied volatility spread for each stock 𝑖 and day 𝑑. OptionMetrics

𝑂𝑖𝑛𝑠𝑖,𝑑 The informed trading measure for each stock 𝑖 and day 𝑑 computed as the standard deviation of the minute-to-minute
percentage changes in the put–call ratio. The minute-to-minute put–call ratio is calculated by dividing the buy-put volume
by the sum of buy-put and buy-call volumes for each minute.

OPRA

𝑀𝑖𝑛𝑠𝑖,𝑑 The informed trading measure for each stock 𝑖 and day 𝑑 computed as the absolute difference between the put–call ratio
and 0.5. The put–call ratio itself is computed by dividing total put volume by the sum of total put and call volumes.

OptionMetrics

This table reports the notation, description, and source of variables. The units of the variables are in parentheses following the variable names.
of 0.77 million and 0.93 million shares respectively. The average
spread between ask and bid prices in stock markets, as measured by
𝑆𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 , is 0.12%, lower than the average options market bid–ask
spread (𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑) by a factor of approximately 177; the average
𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 is 21.24%.

The mean value of 𝑂𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑑 is 6.80, indicating that the average
number of option contracts traded each firm and day is 897. The
mean and median values of 𝑂𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑑 , 𝑂𝑖𝑚𝑝𝑙𝑖𝑒𝑑𝑖,𝑑 , |

|

𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑑 ||, and
𝑂𝑔𝑎𝑚𝑚𝑎𝑖,𝑑 are close to each other. This suggests that these variables
have a relatively symmetrical data distribution. On the other hand,
the mean value of 𝑂𝑣𝑒𝑔𝑎𝑖,𝑑 is 4.91, and the median is 3.76, indicating
that the distribution of 𝑂𝑣𝑒𝑔𝑎𝑖,𝑑 is right-skewed. The variable 𝑁𝑝𝑣𝑖,𝑑
has a mean of 4.49 and a large standard deviation of 11.83; thus,
there is significant variation in the number of profitable put–call parity
violations across firms. For 𝐼𝑛𝑠𝑖,𝑑 , the mean and median values are 0.25
and 0.24 respectively.

Table IA.1 in the Internet Appendix presents the correlation be-
tween 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 and the control variables used in the analysis,
providing insights into the magnitude and direction of these asso-
ciations. The associations between the control variables and options
spreads are statistically significant and generally align with the existing
5

literature.
3. Baseline results

3.1. The impact of HFT on option spread

We begin our analysis by testing the impact of total HFT activity on
the options market bid–ask spread and estimating the following model:

𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 = 𝛼𝑖 + 𝛽𝑑 + 𝛾1𝑆𝐻𝐹𝑇𝐴𝑙𝑙
𝑖,𝑑 +

8
∑

𝑘=1
𝛿𝑘𝐶𝑘,𝑖,𝑑 + 𝜀𝑖,𝑑 (1)

where 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 is the proportional option bid–ask spread, 𝑆𝐻𝐹𝑇𝐴𝑙𝑙
𝑖,𝑑

is the measure of HFTs’ total activities, and 𝛼𝑖 and 𝛽𝑑 are stock
and time (day) fixed effects. The 𝐶𝑘,𝑖,𝑑 is a set of 𝑘 control vari-
ables, including variables from both the options and underlying mar-
kets. The options market variables are 𝑂𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑑 , 𝑂𝑖𝑚𝑝𝑙𝑖𝑒𝑑𝑖,𝑑 , 𝑂𝑖𝑛𝑝𝑖,𝑑 ,
|

|

𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑑 ||, 𝑂𝑔𝑎𝑚𝑚𝑎𝑖,𝑑 , and 𝑂𝑣𝑒𝑔𝑎𝑖,𝑑 , and the stock market variables
are 𝑆𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 , and 𝑆𝑉 𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑑 . All these variables are defined in
Table 1.

The estimation results of Eq. (1) are reported in column (i) of Ta-
ble 3. Standard errors are double clustered by firm and day. To facilitate
better economic interpretation, we standardize all variables, as sug-
gested by Foucault and Fresard (2014). We find a positive relationship

𝐴𝑙𝑙
between 𝑆𝐻𝐹𝑇 𝑖,𝑑 and 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 , with statistical significance at the
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Table 2
Summary statistics.

Panel A: Main model variables

Mean Median Std. dev. N

𝑆𝐻𝐹𝑇 𝐴𝑙𝑙
𝑖,𝑑 (000,000s) 1.36 0.20 2.81 20,639

𝑆𝐻𝐹𝑇 𝑆
𝑖,𝑑 (000,000s) 0.93 0.10 2.11 20,639

𝑆𝐻𝐹𝑇𝐷
𝑖,𝑑 (000,000s) 0.77 0.14 1.48 20,639

𝑆𝑁𝐻𝐹𝑇 𝑆
𝑖,𝑑 (000,000s) 0.98 0.27 1.67 20,639

𝑆𝑁𝐻𝐹𝑇𝐷
𝑖,𝑑 (000,000s) 1.13 0.23 2.27 20,639

𝑆𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 (%) 0.12 0.08 0.12 20,639
𝑆𝑉 𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑑 0.003 0.003 0.002 20,639
𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 (%) 21.24 13.09 24.77 20,639
𝑂𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑑 6.80 6.80 3.16 20,639
𝑂𝑖𝑚𝑝𝑙𝑖𝑒𝑑𝑖,𝑑 0.54 0.48 0.23 20,639
|

|

𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑑 || 0.52 0.52 0.13 20,639
𝑂𝑔𝑎𝑚𝑚𝑎𝑖,𝑑 0.10 0.08 0.06 20,639
𝑂𝑣𝑒𝑔𝑎𝑖,𝑑 4.91 3.76 4.08 20,639
𝑂𝑖𝑛𝑝𝑖,𝑑 1.27 0.91 1.22 20,639
𝑁𝑝𝑣𝑖,𝑑 4.49 0.00 11.83 8344
𝐼𝑛𝑠𝑖,𝑑 0.25 0.24 0.20 4892

Panel B: Supplementary variables

𝑄𝑇 𝑖,𝑑 42.07 33.73 29.43 1,862,924
𝐼𝑣𝑠𝑖,𝑑 0.04 0.02 0.06 1,862,924
𝑂𝑖𝑛𝑠𝑖,𝑑 0.22 0.01 0.94 18,994
𝑀𝑖𝑛𝑠𝑖,𝑑 0.46 0.25 0.76 1,862,924

This table reports the summary statistics (mean, median, and standard deviation) of the
variables across all firms/stocks. The units of variables are in parentheses following the
variable names in the first column, and the number of firm-day observations for each
variable is in the last column. For detailed definitions of variables refer to Table 1.

Table 3
The impact of HFT activities on option spread – OLS.

𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑
(i) (ii) (iii)

𝑆𝐻𝐹𝑇 𝐴𝑙𝑙
𝑖,𝑑 0.03***

(2.66)

𝑆𝐻𝐹𝑇 𝑆
𝑖,𝑑 0.01

(0.73)

𝑆𝐻𝐹𝑇𝐷
𝑖,𝑑 0.03***

(3.11)

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠 Yes Yes Yes
Stock fixed effect Yes Yes Yes
Time fixed effect Yes Yes Yes
N obs. 20,639 20,639 20,639
𝑅2 0.38 0.38 0.38

This table reports the results of estimating the impact of HFT in equity markets on the
options bid–ask spread using the following models:
𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 = 𝛼𝑖 + 𝛽𝑑 + 𝛾1𝑆𝐻𝐹𝑇 𝐴𝑙𝑙

𝑖,𝑑 +
∑8

𝑘=1 𝛿𝑘𝐶𝑘,𝑖,𝑑 + 𝜀𝑖,𝑑
𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 = 𝛼𝑖 + 𝛽𝑑 + 𝛾1𝑆𝐻𝐹𝑇 𝑆

𝑖,𝑑 +
∑9

𝑘=1 𝛿𝑘𝐶𝑘,𝑖,𝑑 + 𝜀𝑖,𝑑
𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 = 𝛼𝑖 + 𝛽𝑑 + 𝛾1𝑆𝐻𝐹𝑇𝐷

𝑖,𝑑 +
∑9

𝑘=1 𝛿𝑘𝐶𝑘,𝑖,𝑑 + 𝜀𝑖,𝑑
where 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 is the proportional option bid–ask spread, 𝑆𝐻𝐹𝑇 𝐴𝑙𝑙

𝑖,𝑑 is the measure
of HFTs’ total activities, 𝑆𝐻𝐹𝑇 𝑆

𝑖,𝑑 is the measure of HFTs’ liquidity-supplying activities,
and 𝑆𝐻𝐹𝑇𝐷

𝑖,𝑑 is the measure of HFTs’ liquidity-demanding activities. 𝐶𝑘,𝑖,𝑑 is a set of
𝑘 control variables, including variables from both the options and underlying markets.
The options market variables are 𝑂𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑑 , 𝑂𝑖𝑚𝑝𝑙𝑖𝑒𝑑𝑖,𝑑 , 𝑂𝑖𝑛𝑝𝑖,𝑑 , |

|

𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑑 ||, 𝑂𝑔𝑎𝑚𝑚𝑎𝑖,𝑑 ,
and 𝑂𝑣𝑒𝑔𝑎𝑖,𝑑 , and the stock market variables are 𝑆𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 , and 𝑆𝑉 𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑑 .
In addition to these variables, we also control for non-HFTs’ liquidity-demanding
(𝑆𝑁𝐻𝐹𝑇𝐷

𝑖,𝑑 ) and liquidity-supplying (𝑆𝑁𝐻𝐹𝑇 𝑆
𝑖,𝑑 ) trading activities when we use

𝑆𝐻𝐹𝑇𝐷
𝑖,𝑑 and 𝑆𝐻𝐹𝑇 𝑆

𝑖,𝑑 respectively. All models include both firm and day fixed
effects (𝛼𝑖 and 𝛽𝑑 respectively). The standard errors used to compute the t-statistics (in
brackets) are double clustered by firm and day. *, **, and *** denote the significance
at 10%, 5%, and 1% respectively. For detailed definitions of variables refer to Table 1.

1% level and a t-statistic of 2.66. This suggests that HFT in equity
markets has a detrimental impact on the liquidity of options markets.
The magnitude of the impact is also economically important, with a
one-standard-deviation increase in 𝑆𝐻𝐹𝑇𝐴𝑙𝑙

𝑖,𝑑 corresponding to a 3.5%
higher 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 .8 To understand the economic significance of the

8 All the variables are standardized in the regression. Therefore, we calcu-
ate the economic impact by multiplying the estimated coefficient of 𝑆𝐻𝐹𝑇 𝐴𝑙𝑙
6

𝑖,𝑑 o
.5% increment in 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 , consider a trade of 1000 contracts. As
he average price for a contract is USD 0.79 in our sample, the average
ffective dollar spread is about USD 0.17 (0.2124*0.79). Given that the
ost of trading is half of the dollar effective spread, the average total
rading cost for 1000 contracts is USD 85.91 (1000*0.17*0.5). A 3.5%
ncrement in 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 is associated with the trading cost for 1000
ontracts rising to around USD 88.92.9 To provide a sense of the total

economic scale of this increment, the volume of stock options trading
in the U.S. reached 10.1 billion contracts in 2023,10 resulting in an
estimated total increment in trading costs of approximately USD 30.4
million.

Next, we investigate the underlying mechanism of the positive
association between total HFT activities and the option bid–ask spread.
As suppliers of immediacy, market makers are exposed to adverse
selection, inventory holding, and order-processing costs. Research in
microstructure has examined these costs while focusing on equity mar-
kets. Models of asymmetric information, such as Kyle (1985), Glosten
and Milgrom (1985) and Easley and O’Hara (1987) argue that mar-
ket makers recover the losses incurred from trading against better-
informed counterparties by charging a bid–ask spread. Similarly, mod-
els of inventory-holding costs, such as Stoll (1978) and Ho and Stoll
(1980) suggest that the bid–ask spread compensates risk-averse market
makers for losses incurred due to suboptimal inventory positions, even
in the absence of asymmetric information. Order-processing costs typi-
cally include variable costs such as trading and clearing fees and fixed
costs such as exchange membership fees, IT costs, and administrative
costs.

Battalio and Schultz (2011) posit that option market makers’ expo-
sure to adverse selection and inventory risks is typically greater. First,
option market makers’ inventory positions may be highly volatile due
to implicit leverage in options contracts and uncertainty surrounding
stock return volatility (Jameson and Wilhelm, 1992). Second, the op-
tion market makers have limited control over their inventory positions
due to option market dynamics. For example, traders are more inclined
to write call options than to purchase them, while they use buy and
sell orders relatively evenly in equity markets (e.g., Lakonishok et al.
(2007)). As a result, options market makers hedge their inventories by
taking an offsetting position in the underlying cash market (e.g., Black
and Scholes (1973)).

In a discrete-time setting, the hedging costs of option market makers
entail two components: the cost of setting up and liquidating the
initial delta-neutral position; and the cost of continuously rebalancing
the portfolio to maintain a delta-neutral position (e.g., Jameson and
Wilhelm (1992)). In Black and Scholes (1973) model, it is assumed
that equity markets are frictionless and without imperfections, allowing
options market makers to perfectly hedge their exposures. However,
in a real-world context, they can only partially hedge their positions,
leading to imperfect hedging. Consequently, Boyle and Vorst (1992)
and Cho and Engle (1999) demonstrate that equity market frictions
such as the bid–ask spread force options market makers to require
compensation for the transaction costs and the risks associated with
imperfectly hedging their exposure (e.g., Kaul et al. (2004) and Wu
et al. (2014)). This connection between the equity and options markets
is commonly referred to as the hedging channel in the literature.

Based on the literature discussed above, the most prominent equity
market factor influencing the cost of options market makers’ hedging is
the bid–ask spread in the equity market (e.g., Boyle and Vorst (1992),
Cho and Engle (1999) and Engle and Neri (2010)). The implication

with the standard deviation of 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 and divide it by the mean of
𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 .

9 For comparison, Brogaard et al. (2015) and Shkilko and Sokolov (2020)
eport a 2% and 2.6% change in effective spreads due to HFT activity.
10 https://www.theocc.com/market-data/market-data-reports/volume-and-

pen-interest/volume-by-exchange.

https://www.theocc.com/market-data/market-data-reports/volume-and-open-interest/volume-by-exchange
https://www.theocc.com/market-data/market-data-reports/volume-and-open-interest/volume-by-exchange
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of this for our study is that HFT activity in the stock market likely
affects option market makers’ hedging costs through its effect on the
bid–ask spread in the stock market. On the one hand, HFTs that provide
liquidity in the stock market leverage their speed advantage to miti-
gate adverse selection and inventory-holding risks, thereby increasing
liquidity provision (e.g., Hendershott et al. (2011) and Brogaard et al.
(2015)). On the other hand, liquidity-consuming HFTs may pick off
slower traders and impose adverse selection costs on liquidity providers
(e.g., Foucault et al. (2017) and Shkilko and Sokolov (2020)). The
resulting impact on the bid–ask spread may be either positive or
negative for the hedging costs of option market makers, depending on
the underlying strategy pursued by HFT firms.

To test the significance of the hedging channel in explaining our
findings, we employ a set of models to separately explore the effects of
HFT strategies that demand or supply liquidity on the bid–ask spread
of options. The models used for this analysis are as follows:

𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 = 𝛼𝑖 + 𝛽𝑑 + 𝛾1𝑆𝐻𝐹𝑇 𝑆
𝑖,𝑑 +

9
∑

𝑘=1
𝛿𝑘𝐶𝑘,𝑖,𝑑 + 𝜀𝑖,𝑑 (2)

𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 = 𝛼𝑖 + 𝛽𝑑 + 𝛾1𝑆𝐻𝐹𝑇𝐷
𝑖,𝑑 +

9
∑

𝑘=1
𝛿𝑘𝐶𝑘,𝑖,𝑑 + 𝜀𝑖,𝑑 (3)

where 𝑆𝐻𝐹𝑇 𝑆
𝑖,𝑑 and 𝑆𝐻𝐹𝑇𝐷

𝑖,𝑑 are the measures of liquidity-supplying
and liquidity-demanding HFTs’ activities respectively. The empirical
specifications of Eqs. (2) and (3) are akin to that of Eq. (1). The only
deviation lies in our adoption of the approach followed by Brogaard
et al. (2014), where we introduce the liquidity supplying (in Eq. (2))
and demanding (in Eq. (3)) activities of non-HFTs as an additional
control variable.

The findings are reported in columns (ii) and (iii) of Table 3.
𝑆𝐻𝐹𝑇𝐷

𝑖,𝑑 exhibits a positive and statistically significant relationship
with 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 . To provide a sense of the economic significance of
this effect, we note that a one-standard-deviation increase in 𝑆𝐻𝐹𝑇𝐷

𝑖,𝑑
relates to a 3.5% increment in 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 . Nevertheless, we observe no
statistically significant correlation between HFTs’ liquidity-supplying
trading activity (𝑆𝐻𝐹𝑇 𝑆

𝑖,𝑑) and the bid–ask spread of options.
At first glance, the non-significant association between 𝑆𝐻𝐹𝑇 𝑆

𝑖,𝑑
and 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 is perplexing. However, this finding is not unexpected
as our empirical specifications control for all plausible determinants of
the hedging channel. The literature suggests that the most significant
equity market determinants of the options bid–ask spread are the equity
bid–ask spread (e.g., Boyle and Vorst (1992)) and the volatility of
the underlying asset (Engle and Neri, 2010). Both these variables are
included in Eqs. (2) and (3). Therefore, the lack of a significant relation-
ship between 𝑆𝐻𝐹𝑇 𝑆

𝑖,𝑑 and 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 is unsurprising. Nonetheless,
this explanation raises a very important and interesting question about
why HFTs’ liquidity-demanding activities are still significantly associ-
ated with the bid–ask spread in options markets. We propose two new
channels – the latency arbitrage and informed trading channels – in the
next two sub-sections to answer this question.

3.2. The latency arbitrage channel

The payoffs of a stock and its listed European option contracts are
correlated through put–call parity. This parity condition dictates that
a portfolio comprising a short put option and a long call option with
identical strike prices and maturity dates generates equivalent returns
to a forward contract with the same maturity and forward price equal to
the option strike price. Failure to satisfy this parity relationship results
in a violation of the law of one price, thereby creating an arbitrage
opportunity between the stock and option markets. Empirical evidence
from the options market microstructure literature, such as Ofek et al.
(2004) and Muravyev et al. (2013), confirms the existence of profitable
arbitrage opportunities that stem from put–call parity violations.

A dominant trading strategy used by HFTs is latency arbitrage
7

(cross-market or single-market), where HFTs use their relative speed
advantage to quickly respond to new information and/or temporary
liquidity shocks and execute trades against stale quotes before slower
market participants can revise their prices.11 Budish et al. (2015)
demonstrate that these latency arbitrage opportunities are flaws in
market design, leading to increased trading costs.

Foucault et al. (2017) show that when cross-market latency ar-
bitrage opportunities are ‘‘toxic’’,12 liquidity-consuming HFTs’ trad-
ing adversely affects liquidity in the market that is slower to adjust
(e.g., Rzayev et al. (2023)). Similarly, Shkilko and Sokolov (2020)
find that when price changes in futures markets generate arbitrage
opportunities between futures and equity markets, liquidity-consuming
HFTs exploit their microwave connections to pick off stale quotes,
thereby increasing adverse selection risk in equity markets. Baron
et al. (2019) further demonstrate that liquidity-demanding HFTs ac-
tively exploit latency arbitrage opportunities and obtain significant
profits (e.g., Boehmer et al. (2018)). This finding is consistent with
the evidence provided by Aquilina et al. (2022), who document that
aggressive HFTs conduct the majority of trading activity in latency
arbitrage races.

This discussion implies that liquidity-consuming HFTs engaging
in cross-market latency arbitrage strategies may exploit violations of
the put–call parity relationship by sniping stale quotes in the options
market. Options market makers are particularly exposed to such toxic
arbitrage losses due to the exchange-imposed caps on the number of
quote updates and fines on traders with higher messages-to-transactions
ratios (see Muravyev and Pearson (2020)). These restrictions may
significantly constrain option market makers’ capacity to revise their
quotes in response to the cross-market trading activity of liquidity-
consuming HFTs, thereby necessitating a compensatory mechanism. We
call this channel the latency arbitrage channel.

If this mechanism plays a role, then the relationship between
liquidity-consuming HFT activities and options bid–ask spread should
be more prevalent when there are more profitable put–call parity
violations. We follow a three-step procedure to test this. First, we
identify the profitable put–call parity violations between equity and
options markets. Second, for each day, we allocate stocks to the
𝐻𝑖𝑔ℎ group if the realization of the number of profitable arbitrage
opportunities for that stock is above the median number of profitable
arbitrage opportunities across all stocks. In the third step, we estimate
our baseline regression by interacting the 𝐻𝑖𝑔ℎ variable with our HFT
measures. Our expectation is that the impact of liquidity-consuming
HFTs on the options bid–ask spread will be more pronounced in the
𝐻𝑖𝑔ℎ group.

3.2.1. Identifying profitable (high frequency) put–call parity violations
To identify profitable put–call parity violations, we adopt the

methodology proposed in Muravyev et al. (2013). This approach in-
volves comparing the option-implied stock prices with the actual stock
prices. We first extract second-level stock NBBO quotes from the TAQ
database and match them to call and put option transaction prices
obtained from the OPRA at the same second-level time. The implied

11 We use the term ‘‘relative speed’’ in the same sense as Foucault et al.
(2017)) and Baron et al. (2019). These studies demonstrate that increasing ab-
solute speed in financial markets does not provide high-frequency arbitrageurs
with any advantage. For example, if financial markets adopt new technology
that uniformly increases order submission speed for all participants, including
slow dealers and fast arbitrageurs, then arbitrageurs do not gain any advantage
over slower dealers. However, if the speed of fast arbitrageurs increases rela-
tive to slower traders, then fast arbitrageurs can adversely select slower traders
due to their higher speed, even if the information is made public to everyone
simultaneously. Consequently, a relative speed advantage is necessary for
latency arbitrage to occur.

12 Arbitrage opportunities are deemed ‘‘toxic’’ when they result from asyn-
chronous adjustments in the price of related assets due to the arrival of new
information.
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stock price 𝑆∗ based on the put–call parity equation for dividend-
aying European options is given by the following equation: 𝑆∗ =

𝐶+𝑋𝑒−(𝑟−𝑞)𝑇−𝑃 , where 𝑆∗ is the option implied stock price, 𝐶 (𝑃 ) is the
all (put) price, 𝑟 is the risk-free annual rate, 𝑞 is the annual dividend
ield, 𝑇 is the time to maturity in years, and 𝑋 is the strike price. The
aily yield curve from the US Department of Treasury is used to obtain
he annualized risk-free rates for various maturities such as 30 days,
0 days, 180 days, and 1 year. For options that expire between 30 and
0 days, we use linear interpolation to calculate the respective risk-free
ates. For options with less than 30 days maturities, we use a 30-day
isk-free rate. The expiration is calculated based on the time difference
etween the transaction time and the maturity date at 16:15:00 PM EST
nd expressed in years using 365 calendar days. The yearly dividend
ield is generated by using the difference between 𝑟𝑒𝑡 and 𝑟𝑒𝑡𝑥 variables
rom CRSP. The most recent dividend yield is matched to each option.

If the implied stock price is within the bid–ask bound of the stock
rice, there is no arbitrage opportunity. However, there are arbitrage
pportunities when the implied stock price is either above the ask or
elow the bid price of the stock. The arbitrage gap should also be
arge enough to cover transaction costs (the bid–ask spread). The first
rbitrage case is when the option implied stock price is less than the
urrent stock price at the bid. In this case, an investor can build a long
osition in the portfolio of options and the risk-free bond and a short
osition in the stock to make an arbitrage profit. With transaction costs,
his would mean an investor can long a position by buying a call option
t the ask, buying the risk-free bond, and selling the put option at the
id. When the implied stock price is larger than the current stock price
t the ask, an investor can short the options portfolio and buy the stock
o gain arbitrage profit. With transaction costs, investors go short by
elling a call option at the bid, selling the risk-free bond, and buying a
ut option at the ask.

These long and short positions in 𝑆∗ can be presented using the
ut–call parity relationship: 𝑆∗𝐴𝑠𝑘 = 𝐵𝑢𝑦(𝐶𝐴𝑠𝑘) + 𝐵𝑢𝑦(𝑋) + 𝑆𝑒𝑙𝑙(𝑃𝐵𝑖𝑑 ),
nd 𝑆∗𝐵𝑖𝑑 = 𝑆𝑒𝑙𝑙(𝐶𝐵𝑖𝑑 ) + 𝑆𝑒𝑙𝑙(𝑋) + 𝐵𝑢𝑦(𝑃𝐴𝑠𝑘). If the underlying stock
uotes at the same time as the options quotes are 𝑆𝐵𝑖𝑑 and 𝑆𝐴𝑠𝑘, then

arbitrage opportunities arise if the following price differentials exist in
the market: 𝑆𝐵𝑖𝑑 > 𝑆∗𝐴𝑠𝑘 or 𝑆∗𝐵𝑖𝑑 > 𝑆𝐴𝑠𝑘. It is important to note that
we are interested in identifying profitable put–call parity violations. For
his, we apply the criteria described in Muravyev et al. (2013):

𝐵𝑖𝑑 − 𝑆∗𝐴𝑠𝑘 ≥ $0.02 and 𝑆𝐵𝑖𝑑 − 𝑆∗𝐴𝑠𝑘

𝑆𝐵𝑖𝑑 ≥ 0.05% (4)

𝑆∗𝐵𝑖𝑑 − 𝑆𝐴𝑠𝑘 ≥ $0.02 and 𝑆∗𝐵𝑖𝑑 − 𝑆𝐴𝑠𝑘

𝑆𝐴𝑠𝑘 ≥ 0.05% (5)

We use the violations described in Eqs. (4) and (5) to identify
rbitrage opportunities in the options and stock markets. Based on this,
e calculate our key arbitrage variable – the number of profitable put–

all parity violations (𝑁𝑝𝑣𝑖,𝑑) – for each stock and day. The descriptive
tatistics provided in Table 2 show that, on average, our sample has
.49 profitable arbitrage put–call parity violations with a standard de-
iation of 11.83. Moreover, the median value for 𝑁𝑝𝑣𝑖,𝑑 is 0, implying

that there are many stock-day observations with no profitable put–call
parity deviations.

3.2.2. Testing the latency arbitrage channel
We test the latency arbitrage channel by conducting a cross-

sectional analysis. Our hypothesis posits that the impact of HFTs on the
options bid–ask spread is amplified when there are a greater number of
profitable arbitrage opportunities. On each day, we allocate stocks to
the 𝐻𝑖𝑔ℎ group depending on the number of profitable put–call parity
violations. For each day, the stock is allocated to the 𝐻𝑖𝑔ℎ group if
its 𝑁𝑝𝑣𝑖,𝑑 value is above the median number of profitable put–call
parity violations for all stocks. We then re-estimate Eqs. (1) and (3)
by introducing interactions between their respective HFT proxies and
8

the 𝐻𝑖𝑔ℎ group:
Table 4
Testing the latency arbitrage channel – OLS.

𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑
(i) (ii)

𝑆𝐻𝐹𝑇 𝐴𝑙𝑙
𝑖,𝑑 −0.06*

(−1.89)

𝑆𝐻𝐹𝑇𝐷
𝑖,𝑑 −0.05

(−1.40)

𝐻𝑖𝑔ℎ𝑖,𝑑 −0.05***
(−4.43)

−0.06***
(−4.45)

𝑆𝐻𝐹𝑇 𝐴𝑙𝑙
𝑖,𝑑 𝐻𝑖𝑔ℎ𝑖,𝑑 0.06***

(3.67)

𝑆𝐻𝐹𝑇𝐷
𝑖,𝑑𝐻𝑖𝑔ℎ𝑖,𝑑 0.07***

(3.59)

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠 Yes Yes
Stock fixed effect Yes Yes
Time fixed effect Yes Yes
N obs. 8344 8344
𝑅2 0.28 0.28

This table reports the results of testing the latency arbitrage channel using the following
models:
𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 = 𝛼𝑖 + 𝛽𝑑 + 𝛾1𝑆𝐻𝐹𝑇 𝐴𝑙𝑙

𝑖,𝑑 + 𝛾2𝐻𝑖𝑔ℎ𝑖,𝑑 + 𝛾3𝑆𝐻𝐹𝑇 𝐴𝑙𝑙
𝑖,𝑑 𝐻𝑖𝑔ℎ𝑖,𝑑 +

∑8
𝑘=1 𝛿𝑘𝐶𝑘,𝑖,𝑑 + 𝜀𝑖,𝑑

𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 = 𝛼𝑖 + 𝛽𝑑 + 𝛾1𝑆𝐻𝐹𝑇𝐷
𝑖,𝑑 + 𝛾2𝐻𝑖𝑔ℎ𝑖,𝑑 + 𝛾3𝑆𝐻𝐹𝑇𝐷

𝑖,𝑑𝐻𝑖𝑔ℎ𝑖,𝑑
∑9

𝑘=1 𝛿𝑘𝐶𝑘,𝑖,𝑑 + 𝜀𝑖,𝑑
where 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 is the proportional option bid–ask spread, 𝑆𝐻𝐹𝑇 𝐴𝑙𝑙

𝑖,𝑑 is the measure
of HFTs’ total activities and 𝑆𝐻𝐹𝑇𝐷

𝑖,𝑑 is the measure of HFTs’ liquidity-demanding
activities. 𝐻𝑖𝑔ℎ𝑖,𝑑 is a dummy variable equal to one in day 𝑑 if its 𝑁𝑝𝑣𝑖,𝑑 (the number
of put–call parity violations) value is above the median number of profitable put–
call parity violations for all stocks. 𝐶𝑘,𝑖,𝑑 is a set of 𝑘 control variables, including
variables from both the options and underlying markets. The options market variables
are 𝑂𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑑 , 𝑂𝑖𝑚𝑝𝑙𝑖𝑒𝑑𝑖,𝑑 , 𝑂𝑖𝑛𝑝𝑖,𝑑 , |

|

𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑑 ||, 𝑂𝑔𝑎𝑚𝑚𝑎𝑖,𝑑 , and 𝑂𝑣𝑒𝑔𝑎𝑖,𝑑 , and the stock
market variables are 𝑆𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 , and 𝑆𝑉 𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑑 . In addition to these variables, we
also control for non-HFTs’ liquidity-demanding activities (𝑆𝑁𝐻𝐹𝑇𝐷

𝑖,𝑑 ) when we use
𝑆𝐻𝐹𝑇𝐷

𝑖,𝑑 . All models include both firm and day fixed effects (𝛼𝑖 and 𝛽𝑑 respectively).
The standard errors used to compute the t-statistics (in brackets) are double clustered by
firm and day. *, **, and *** denote the significance at 10%, 5%, and 1% respectively.
For detailed definitions of variables refer to Table 1.

𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 = 𝛼𝑖 + 𝛽𝑑 + 𝛾1𝑆𝐻𝐹𝑇𝐴𝑙𝑙
𝑖,𝑑 +𝛾2𝐻𝑖𝑔ℎ𝑖,𝑑

+𝛾3𝑆𝐻𝐹𝑇𝐴𝑙𝑙
𝑖,𝑑 𝐻𝑖𝑔ℎ𝑖,𝑑 +

8
∑

𝑘=1
𝛿𝑘𝐶𝑘,𝑖,𝑑

+𝜀𝑖,𝑑

(6)

𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 = 𝛼𝑖 + 𝛽𝑑 + 𝛾1𝑆𝐻𝐹𝑇𝐷
𝑖,𝑑+𝛾2𝐻𝑖𝑔ℎ𝑖,𝑑

+𝛾3𝑆𝐻𝐹𝑇𝐷
𝑖,𝑑𝐻𝑖𝑔ℎ𝑖,𝑑

9
∑

𝑘=1
𝛿𝑘𝐶𝑘,𝑖,𝑑

+𝜀𝑖,𝑑

(7)

where 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 is the proportional option bid–ask spread, 𝑆𝐻𝐹𝑇𝐴𝑙𝑙
𝑖,𝑑

is the measure of HFTs’ total activities and 𝑆𝐻𝐹𝑇𝐷
𝑖,𝑑 is the measure

of HFTs’ liquidity-demanding activities. 𝐻𝑖𝑔ℎ𝑖,𝑑 is a dummy variable
equal to one when there is a higher number of profitable put–call
parity violations. 𝐶𝑘,𝑖,𝑑 is a set of 𝑘 control variables, including variables
from both the options and underlying markets. The options market
variables are 𝑂𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑑 , 𝑂𝑖𝑚𝑝𝑙𝑖𝑒𝑑𝑖,𝑑 , 𝑂𝑖𝑛𝑝𝑖,𝑑 , |

|

𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑑 ||, 𝑂𝑔𝑎𝑚𝑚𝑎𝑖,𝑑 ,
and 𝑂𝑣𝑒𝑔𝑎𝑖,𝑑 , and the stock market variables are 𝑆𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 , and
𝑆𝑉 𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑑 . All these variables are defined in Table 1.

The results are presented in Table 4. We find that the positive
association between HFT and option spread shifts to the interaction
variable. The coefficients of 𝑆𝐻𝐹𝑇𝐴𝑙𝑙

𝑖,𝑑 and 𝑆𝐻𝐹𝑇𝐷
𝑖,𝑑 are no longer

positively related to the options bid–ask spread; however, the coef-
ficients for 𝑆𝐻𝐹𝑇𝐴𝑙𝑙

𝑖,𝑑 𝐻𝑖𝑔ℎ𝑖,𝑑 and 𝑆𝐻𝐹𝑇𝐷
𝑖,𝑑𝐻𝑖𝑔ℎ𝑖,𝑑 are positive and

statistically significant. This result indicates that the proposed latency
arbitrage channel can indeed explain the association between HFT in
stock markets and options bid–ask spread. Nevertheless, as elaborated
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in the next sub-section, the latency arbitrage channel is not the sole
factor contributing to this relationship.

3.3. The informed trading channel

Our results so far show that HFT in the stock market is associated
with an increase in the bid–ask spread in the options market. We
also relate our findings to the latency arbitrage channel, suggesting
that liquidity-consuming HFTs increase bid–ask spread in the options
market by exploiting cross-market arbitrage opportunities between eq-
uity and options markets. We employ put–call parity violations as a
means of testing the latency arbitrage channel and find corroborating
evidence. In this section, we explore the second non-mutually exclusive
channel to explain our findings.13

The existing body of literature underscores the attractiveness of
ptions markets to informed traders, primarily due to two key fac-
ors: the substantial leverage they offer and the absence of shorting
onstraints (e.g., Easley et al. (1998), Ge et al. (2016), Augustin and
ubrahmanyam (2020) and Bondarenko and Muravyev (2022)). While
ptions market makers often widen the bid–ask spread to compensate
or the risk associated with trading against informed agents (e.g., Easley
t al. (1998) and Kaul et al. (2004)), informed traders may still choose
o execute transactions within the options market if the information
hey possess is sufficiently profitable.

The transactions initiated by informed traders themselves could
rguably lead to temporary deviations from the put–call parity. For
xample, consider a scenario where an informed trader purchases a
all option due to positive information about a particular stock. In
esponse, the market maker may adjust the price of the call option as
ell as the bid–ask spread associated with it. However, if the price of

he put option (with the same strike price and time to maturity) remains
nchanged, the implied stock price derived from option prices could be
igher than the actual stock price observed in the stock market.

This increase in put–call parity violations could potentially serve
s an arbitrage signal for liquidity-consuming HFTs, enabling them to
xploit slower traders in the stock market. If this hypothesis holds true,
t has two implications for the focus of our study. First, it suggests
hat HFTs play a role in transmitting information between the options
nd stock markets. Second, informed trading in the options market
ay heighten the association between liquidity-consuming HFTs in the

tock market and the bid–ask spread in the options market. We call this
xplanation the informed trading channel.

.3.1. Testing the informed trading channel
To explore the informed trading channel, we undertake three tests

s follows. In the first test, our aim is to assess the influence of informed
rading within the options market on the options bid–ask spread. In the
econd test, the correlation between informed trading activities in the
ptions market and HFT in the stock market is investigated. Finally, we
erify whether the positive effect of liquidity-consuming HFTs in the
tock markets on the options bid–ask spread remains significant after
ccounting for the presence of the informed trading channel.

Empirically conducting the three aforementioned tests presents a
hallenge, primarily due to the difficulty of observing investors’ in-
ormation sets – a limitation shared with other studies examining the
mpacts of informed trading on market quality. Ideally, the most robust
pproach would involve leveraging an exogenous shock that directly
nfluences the trading activities of informed investors to conduct such
ests. However, such shocks are infrequent and not easily available. For-
unately, our sample covering 2009 did witness one such unique shock,
roviding us with an opportunity to explore the informed trading
hannel.

13 Our thanks to an anonymous referee for this suggestion.
9

Using the put–call ratio measure developed by Pan and Poteshman
(2006) and Bondarenko and Muravyev (2022) find a strong predictive
relationship between options trading volume and future stock returns
before October 2009. However, this predictive power disappears be-
yond that point. Bondarenko and Muravyev (2022) analyze the reasons
for this shift, ultimately attributing it to a significant event – the
arrest of Raj Rajaratnam, an investor charged with insider trading on
October 16, 2009. Building on their work, we also employ the arrest of
Raj Rajaratnam as an exogenous shock that disrupts informed trading
dynamics.14 Our objective is to investigate the effects of informed
trading in the options market on both the options bid–ask spread and
the activities of HFTs in the stock market, both before and after this
event. To do so, we estimate the following regression model:

𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 = 𝛼𝑖 + 𝛾1𝐼𝑛𝑠𝑖,𝑑−1+𝛾2𝐸𝑣𝑒𝑛𝑡𝑖,𝑑

+𝛾3𝐼𝑛𝑠𝑖,𝑑−1𝐸𝑣𝑒𝑛𝑡𝑖,𝑑 +
8
∑

𝑘=1
𝛿𝑘𝐶𝑘,𝑖,𝑑 + 𝜀𝑖,𝑑

(8)

𝑆𝐻𝐹𝑇 𝑖,𝑑 = 𝛼𝑖 + 𝛾1𝐼𝑛𝑠𝑖,𝑑−1+𝛾2𝐸𝑣𝑒𝑛𝑡𝑖,𝑑

+𝛾3𝐼𝑛𝑠𝑖,𝑑−1𝐸𝑣𝑒𝑛𝑡𝑖,𝑑 +
8
∑

𝑘=1
𝛿𝑘𝐶𝑘,𝑖,𝑑 + 𝜀𝑖,𝑑

(9)

where 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 is the proportional option bid–ask spread, 𝑆𝐻𝐹𝑇 𝑖,𝑑
is one of two HFT measures (𝑆𝐻𝐹𝑇 𝑆

𝑖,𝑑 and 𝑆𝐻𝐹𝑇𝐷
𝑖,𝑑), and 𝐼𝑛𝑠𝑖,𝑑 is

the measure of informed trading discussed below. 𝐸𝑣𝑒𝑛𝑡𝑖,𝑑 is a dummy
variable equal to one before October 16, 2009 (Rajaratnam’s arrest). To
have a clean setting, we exclude five trading days before the event. We
also include the same control variables as those employed in the main
analyses. We only include stock fixed effects because 𝐸𝑣𝑒𝑛𝑡𝑖,𝑑 does not
have a time variation across stocks.

𝐼𝑛𝑠𝑖,𝑑 is calculated using the following equation:

𝐼𝑛𝑠 = |

𝑂𝐵𝑃𝑉
(𝑂𝐵𝑃𝑉 + 𝑂𝐵𝐶𝑉 )

− 0.5| (10)

here 𝑂𝐵𝑃𝑉 represents the open-buy put volume, and 𝑂𝐵𝐶𝑉 repre-
ents the open-buy call volume obtained from CBOE.15 As seen, the first
art of the right-hand side of this equation is the original put–call ratio,
efined in Pan and Poteshman (2006).

We slightly modify this original put–call ratio because both an
ncrease and a decline in the put–call ratio indicate informed trading
ctivity. The original ratio is suitable for the analysis linking informed
rading in the options market to stock returns, as demonstrated by
ondarenko and Muravyev (2022). This is because stock returns tend to
ecrease (increase) in response to negative (positive) news. However,
egardless of the nature of the news, we anticipate that both the bid–ask
pread in the options market and HFT in the equity market increase
ith informed trading in the options market. Consequently, for the
urpose of our study, we employ a modified version of this ratio, 𝐼𝑛𝑠𝑖,𝑑 ,
hich captures the magnitude of informed trading irrespective of the
irection of the information.

To explain, consider a scenario where the open-buy put volume
quals the open-buy call volume (indicating no information). In this
ase, the put–call ratio is 0.5, resulting in 𝐼𝑛𝑠𝑖,𝑑 being zero. We set
he put–call ratio to 0.5 and 𝐼𝑛𝑠𝑖,𝑑 to zero when both open-buy put
nd call volumes are zero. This ensures that cases where both open-
uy put and call volumes are zero are included in the analysis and

14 Bondarenko and Muravyev (2022) go a step further by distinguishing
between informed traders who use private information and those who rely on
public information. Their research shows that the prediction of stock returns
through option volume is primarily attributed to private information. However,
we do not make this distinction, as it lies outside the scope of our study.

15 CBOE categorizes the data into ‘‘customer’’ and ‘‘firm’’ groups. In our
analysis, we employ customers’ trades to calculate the put–call ratio. This
choice aligns with Pan and Poteshman (2006) and Bondarenko and Muravyev
(2022), who underscore the heightened predictive capabilities of customer

trades in forecasting future stock returns.
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Table 5
Testing the informed trading channel – main analysis (part I)

𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 𝑆𝐻𝐹𝑇 𝑆
𝑖,𝑑 𝑆𝐻𝐹𝑇 𝑆

𝑖,𝑑 𝑆𝐻𝐹𝑇𝐷
𝑖,𝑑 𝑆𝐻𝐹𝑇𝐷

𝑖,𝑑
(i) (ii) (iii) (iv) (v) (vi)

𝐼𝑛𝑠𝑖,𝑑−1 −0.01
(−0.67)

−0.04**
(−2.33)

−0.01
(−0.87)

−0.01*
(−1.72)

0.00
(0.23)

−0.01
(−1.30)

𝐸𝑣𝑒𝑛𝑡𝑖,𝑑 −0.03
(−1.41)

−0.01
(−0.82)

−0.05**
(−2.27)

𝐼𝑛𝑠𝑖,𝑑−1𝐸𝑣𝑒𝑛𝑡𝑖,𝑑 0.04**
(2.43)

0.01
(0.84)

0.02**
(1.96)

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠 Yes Yes Yes Yes Yes Yes
Stock fixed effect Yes Yes Yes Yes Yes Yes
Time fixed effect Yes No Yes No Yes No
N obs. 4892 4892 4892 4892 4892 4892
𝑅2 0.38 0.39 0.03 0.06 0.03 0.08

This table reports the results of testing the informed trading channel using the following models:
𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 = 𝛼𝑖 + 𝛾1𝐼𝑛𝑠𝑖,𝑑−1 + 𝛾2𝐸𝑣𝑒𝑛𝑡𝑖,𝑑 + 𝛾3𝐼𝑛𝑠𝑖,𝑑−1𝐸𝑣𝑒𝑛𝑡𝑖,𝑑 +

∑8
𝑘=1 𝛿𝑘𝐶𝑘,𝑖,𝑑 + 𝜀𝑖,𝑑

𝑆𝐻𝐹𝑇 𝑖,𝑑 = 𝛼𝑖 + 𝛾1𝐼𝑛𝑠𝑖,𝑑−1 + 𝛾2𝐸𝑣𝑒𝑛𝑡𝑖,𝑑 + 𝛾3𝐼𝑛𝑠𝑖,𝑑−1𝐸𝑣𝑒𝑛𝑡𝑖,𝑑 +
∑8

𝑘=1 𝛿𝑘𝐶𝑘,𝑖,𝑑 + 𝜀𝑖,𝑑
where 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 is the proportional option bid–ask spread, 𝐼𝑛𝑠𝑖,𝑑 is the measure of informed trading, and 𝑆𝐻𝐹𝑇 𝑖,𝑑 is one of two HFT measures
(𝑆𝐻𝐹𝑇 𝑆

𝑖,𝑑 and 𝑆𝐻𝐹𝑇𝐷
𝑖,𝑑 ). 𝐸𝑣𝑒𝑛𝑡𝑖,𝑑 is a dummy variable equal to one before October 16, 2009 (Rajaratnam’s arrest) and zero thereafter. The

sample encompasses a period of two months before and after the event date, with the exclusion of the five trading days preceding the event
date. 𝐶𝑘,𝑖,𝑑 is a set of 𝑘 control variables, including variables from both the options and underlying markets. The options market variables
are 𝑂𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑑 , 𝑂𝑖𝑚𝑝𝑙𝑖𝑒𝑑𝑖,𝑑 , 𝑂𝑖𝑛𝑝𝑖,𝑑 , |

|

𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑑 ||, 𝑂𝑔𝑎𝑚𝑚𝑎𝑖,𝑑 , and 𝑂𝑣𝑒𝑔𝑎𝑖,𝑑 , and the stock market variables are 𝑆𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 , and 𝑆𝑉 𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑑 . In
columns (i), (iii), and (v), both firm and day fixed effects (𝛼𝑖 and 𝛽𝑑 respectively) are included, while columns (ii), (iv), and (vi) include only
firm fixed effects. The standard errors used to compute the t-statistics (in brackets) are double clustered by firm and day. *, **, and *** denote
the significance at 10%, 5%, and 1% respectively. For detailed definitions of variables refer to Table 1.
not omitted. When the open-buy put volume surpasses the open-buy
call volume (indicating negative information), both the put–call ratio
and 𝐼𝑛𝑠𝑖,𝑑 increase. Conversely, if the open-buy call volume exceeds
the open-buy put volume (indicating positive information), the put–call
ratio diminishes, and 𝐼𝑛𝑠𝑖,𝑑 increases. This implies that any elevation
in 𝐼𝑛𝑠𝑖,𝑑 indicates an uptick in informed trading.

We use the first lag of 𝐼𝑛𝑠𝑖,𝑑 (𝐼𝑛𝑠𝑖,𝑑−1) in Eqs. (8) and (9) for two
main reasons. First, the literature on the equity markets suggests that
informed investors strategically choose to trade when there are more
liquidity traders, and they use limit orders instead of market orders.
Collin-Dufresne and Fos (2015) show that this generates a negative con-
temporaneous association between information trading and standard
liquidity measures, such as the bid–ask spread. Along this line, Degryse
et al. (2016) document that for large firms, the liquidity metrics exhibit
a lagged response to informed trading activities. Second, the open-buy
data (provided by CBOE) that we use to calculate 𝐼𝑛𝑠𝑖,𝑑 is available at
the end of the day during our sample period.16 Hence, market makers
are not able to observe the data in real-time and adjust ask and bid
prices. Consistent with this, Pan and Poteshman (2006) demonstrate
that price adjustments to the open-buy volume tend to take more than
a day.

We present the estimation results of Eqs. (8) and (9) in Table 5.
The sample period encompasses a two-month window both preceding
and following the event date of October 16, 2009, due to our data
availability. In column (i), our findings indicate that 𝐼𝑛𝑠𝑖,𝑑−1 is not
tatistically significantly related to 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 . However, after incor-

porating the event dummy, 𝐸𝑣𝑒𝑛𝑡𝑖,𝑑 , in column (ii), the interaction term
𝑛𝑠𝑖,𝑑−1𝐸𝑣𝑒𝑛𝑡𝑖,𝑑 is positively and statistically significantly associated

with 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 . In economic terms, a one-standard-deviation rise in
𝐼𝑛𝑠𝑖,𝑑−1 leads to an approximately 5.8% increase in 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 before
the arrest of Raj Rajaratnam. Similar results are observed when we
employ 𝑆𝐻𝐹𝑇𝐷

𝑖,𝑑 as our dependent variable, as indicated in columns
v) and (vi). A one-standard-deviation uptick in 𝐼𝑛𝑠𝑖,𝑑−1 corresponds to

roughly a 2% increase in 𝑆𝐻𝐹𝑇𝐷
𝑖,𝑑 before the arrest of Raj Rajaratnam.

Nonetheless, such a significant relationship is not evident when we
employ 𝑆𝐻𝐹𝑇 𝑆

𝑖,𝑑 as the dependent variable.
These empirical results suggest that our informed trading metric

predicts higher options bid–ask spreads and greater levels of liquidity-
consuming HFT activity in the stock market during the period leading

16 CBOE’s intraday open-buy data is available since January 2011.
10
up to the arrest of Raj Rajaratnam. Intriguingly, this predictive capacity
dissipates post-arrest. These findings are consistent with Bondarenko
and Muravyev (2022), who show that option trading volume predicts
the future stock return before the arrest of Raj Rajaratnam only.

As mentioned above, in our main specification, we use the first
lag of our informed trading measure. This choice is motivated by the
literature suggesting a negative association between informed trading
and liquidity in the contemporaneous relationship. However, we also
extend the horizon of predictability by regressing the options bid–ask
spread on informed trading observed at various lags (0, -1-day, -2-
day, -3-day, -4-day, and -5-day). The slope coefficients and their 95%
confidence intervals are presented in Fig. 2.

Two points are worth discussing here. First, before the arrest of
Raj Rajaratnam, the contemporaneous effect of informed trading on
the bid–ask spread is negative (albeit not statistically significant). This
finding aligns with Collin-Dufresne and Fos (2015), who demonstrate
that informed traders strategically choose the timing of their trading
and opt for limit orders over market orders to hide their informa-
tion (Kaniel and Liu, 2006). Second, the magnitude of the coefficients
appears to decay, consistent with Pan and Poteshman (2006). These
results support our choice to use the first lag of informed trading in the
main specification.

Our informed trading channel postulates a dual impact of options-
informed trading on the options and equity markets. First, in response
to the risk of trading against informed participants, options market
makers widen the bid–ask spread. Second, informed trading increases
temporary violations in the put–call parity, a phenomenon detected by
liquidity-consuming HFTs, prompting an upsurge in their activities in
the underlying markets. Consequently, we anticipate observing a posi-
tive correlation between informed trading and both the bid–ask spread
in options and the trading activities of liquidity-consuming HFTs in
the underlying markets. The findings presented in Table 5 corroborate
these predictions, underscoring the relevance of the informed trading
channel as a second explanation for the positive relationship between
liquidity-consuming HFT activity in the underlying markets and the
options bid–ask spread.

Therefore, in the subsequent analysis, we assess the effects of
liquidity-consuming HFTs on the bid–ask spread of options, taking
into account the effects of the informed trading channel. To do this,
we modify Eq. (8) by including 𝑆𝐻𝐹𝑇𝐷

𝑖,𝑑 and its interaction with
𝐸𝑣𝑒𝑛𝑡 (𝑆𝐻𝐹𝑇𝐷 𝐸𝑣𝑒𝑛𝑡 ) as explanatory variables. Our rationale for
𝑖,𝑑 𝑖,𝑑 𝑖,𝑑
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Fig. 2. The predictability of open-buy option volume signal for options bid–ask spread. This figure reports the coefficient and the 95% confidence intervals of the model
regressing bid–ask spread on informed trading observed at various lags (0, -1-day, -2-day, -3-day, -4-day, and -5-day) before the arrest of Raj Rajaratnam.
Table 6
Testing the informed trading channel – main analysis (part II)

𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑

𝐼𝑛𝑠𝑖,𝑑−1 −0.04**
(−2.31)

𝐸𝑣𝑒𝑛𝑡𝑖,𝑑 −0.04
(−1.55)

𝐼𝑛𝑠𝑖,𝑑−1𝐸𝑣𝑒𝑛𝑡𝑖,𝑑 0.04**
(2.40)

𝑆𝐻𝐹𝑇𝐷
𝑖,𝑑 0.04***

(5.52)

𝑆𝐻𝐹𝑇𝐷
𝑖,𝑑𝐸𝑣𝑒𝑛𝑡𝑖,𝑑 0.02**

(2.03)

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠 Yes
Stock fixed effect Yes
Time fixed effect No
N obs. 4892
𝑅2 0.40

This table reports the results of testing the informed trading channel using the following
model:
𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 = 𝛼𝑖 + 𝛾1𝐼𝑛𝑠𝑖,𝑑−1 + 𝛾2𝐸𝑣𝑒𝑛𝑡𝑖,𝑑 + 𝛾3𝐼𝑛𝑠𝑖,𝑑−1𝐸𝑣𝑒𝑛𝑡𝑖,𝑑 + 𝛾4𝑆𝐻𝐹𝑇𝐷

𝑖,𝑑 +
𝛾5𝑆𝐻𝐹𝑇𝐷

𝑖,𝑑𝐸𝑣𝑒𝑛𝑡𝑖,𝑑 +
∑8

𝑘=1 𝛿𝑘𝐶𝑘,𝑖,𝑑 + 𝜀𝑖,𝑑
where 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 is the proportional option bid–ask spread, 𝑆𝐻𝐹𝑇𝐷

𝑖,𝑑 is the measure
of HFTs’ liquidity-demanding activities, and 𝐼𝑛𝑠𝑖,𝑑 is the measure of informed trading.
𝐸𝑣𝑒𝑛𝑡𝑖,𝑑 is a dummy variable equal to one before October 16, 2009 (Rajaratnam’s arrest)
and zero thereafter. The sample encompasses a period of two months before and after
the event date, with the exclusion of the five trading days preceding the event date.
𝐶𝑘,𝑖,𝑑 is a set of 𝑘 control variables, including variables from both the options and
underlying markets. The options market variables are 𝑂𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑑 , 𝑂𝑖𝑚𝑝𝑙𝑖𝑒𝑑𝑖,𝑑 , 𝑂𝑖𝑛𝑝𝑖,𝑑 ,
|

|

𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑑 ||, 𝑂𝑔𝑎𝑚𝑚𝑎𝑖,𝑑 , and 𝑂𝑣𝑒𝑔𝑎𝑖,𝑑 , and the stock market variables are 𝑆𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 ,
and 𝑆𝑉 𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑑 . The table includes only firm fixed effects. The standard errors used
to compute the t-statistics (in brackets) are double clustered by firm and day. *, **, and
*** denote the significance at 10%, 5%, and 1% respectively. For detailed definitions
of variables refer to Table 1.

this test is that if the informed trading channel accounts for the entire
relationship between HFT in the equity markets and options bid–
ask spreads, then the impact of liquidity-consuming HFTs on options
bid–ask spreads should only be significant before the arrest of Raj
Rajaratnam. This is because informed trading does not predict HFT
activities in the underlying markets after that date.

Table 6 presents the results of this analysis, revealing two findings.
First, the coefficient for 𝑆𝐻𝐹𝑇𝐷

𝑖,𝑑𝐸𝑣𝑒𝑛𝑡𝑖,𝑑 is statistically significant and
positive. This implies that, in line with the informed trading channel,
11
the effects of liquidity-consuming HFT are more pronounced before the
arrest of Raj Rajaratnam, i.e., when there is more informed trading.
Second, the coefficient of 𝑆𝐻𝐹𝑇𝐷

𝑖,𝑑 remains significant after accounting
for total informed trading (𝐼𝑛𝑠𝑖,𝑑−1𝐸𝑣𝑒𝑛𝑡𝑖,𝑑) and the impact of informed
trading through HFTs (𝑆𝐻𝐹𝑇𝐷

𝑖,𝑑𝐸𝑣𝑒𝑛𝑡𝑖,𝑑). This suggests that the in-
formed trading channel alone does not fully explain the association
between HFT activity in the stock market and options bid–ask spreads.

To estimate the economic magnitude of the informed trading chan-
nel in explaining the impact of HFT in equity markets on the options
bid–ask spread, we can compare the coefficients of 𝑆𝐻𝐹𝑇𝐷

𝑖,𝑑 and
𝑆𝐻𝐹𝑇𝐷

𝑖,𝑑𝐸𝑣𝑒𝑛𝑡𝑖,𝑑 . When we introduce controls for liquidity-consuming
HFT activities before the arrest of Raj Rajaratnam (𝑆𝐻𝐹𝑇𝐷

𝑖,𝑑𝐸𝑣𝑒𝑛𝑡𝑖,𝑑),
the size of the coefficient for 𝑆𝐻𝐹𝑇𝐷

𝑖,𝑑 is 0.04, while the coefficient
for 𝑆𝐻𝐹𝑇𝐷

𝑖,𝑑𝐸𝑣𝑒𝑛𝑡𝑖,𝑑 is 0.02. Given that our variables are standardized,
this suggests that informed trading amplifies the relationship between
liquidity-consuming HFT and options bid–ask spread by roughly 50%
(0.02/0.04).

Next, we extend the baseline tests of the informed trading channel
in several directions to strengthen our interpretation. First, we conduct
a cross-sectional analysis to assess: (i) the empirical relevance of our
informed trading measure; and (ii) whether the effects of liquidity-
consuming HFTs on the options bid–ask spread persist in situations
where informed traders are less active. Our motivation for this ex-
tension stems from the findings of Bondarenko and Muravyev (2022),
who establish that informed trading in the options market has better
predictive power for future stock returns in cases of: (i) out-of-the-
money (OTM) options; (ii) days marked by firm-specific unexpected
news17; and (iii) smaller trades. In this test, we calculate our informed
trading measure, 𝐼𝑛𝑠𝑖,𝑑 , for different classes of option contracts and
estimate the following model (with all variables as previously defined):

𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 = 𝛼𝑖 + 𝛾1𝐼𝑛𝑠𝑖,𝑑−1+𝛾2𝐸𝑣𝑒𝑛𝑡𝑖,𝑑
+𝛾3𝐼𝑛𝑠𝑖,𝑑−1𝐸𝑣𝑒𝑛𝑡𝑖,𝑑 + 𝛾4𝑆𝐻𝐹𝑇𝐷

𝑖,𝑑

+
8
∑

𝑘=1
𝛿𝑘𝐶𝑘,𝑖,𝑑 + 𝜀𝑖,𝑑

(11)

17 This specific analysis is omitted in the updated version of the referenced
paper.
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Table 7
Testing the informed trading channel – cross-sectional analysis.

𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑
(i) - OTM (ii) - ITM (iii) - News (iv) - Nonews (v) - Small (vi) - Large

𝐼𝑛𝑠𝑖,𝑑−1 −0.05***
(−2.63)

−0.00
(−0.09)

−0.08***
(−2.85)

−0.00
(−0.21)

−0.04**
(−2.51)

−0.01
(−1.26)

𝐸𝑣𝑒𝑛𝑡𝑖,𝑑 −0.04*
(−1.74)

−0.01
(−0.27)

−0.06*
(−1.82)

0.00
(0.03)

−0.03
(−1.25)

−0.01
(−0.38)

𝐼𝑛𝑠𝑖,𝑑−1𝐸𝑣𝑒𝑛𝑡𝑖,𝑑 0.05***
(3.03)

0.02
(0.74)

0.08**
(2.53)

0.01
(0.43)

0.04**
(2.35)

0.02*
(1.71)

𝑆𝐻𝐹𝑇𝐷
𝑖,𝑑 0.04***

(3.59)
0.05***
(3.55)

0.03**
(2.15)

0.04**
(2.14)

0.03***
(2.89)

0.03***
(3.24)

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠 Yes Yes Yes Yes Yes Yes
Stock fixed effect Yes Yes Yes Yes Yes Yes
Time fixed effect No No No No No No
N obs. 4623 4148 2100 2792 4892 4892
𝑅2 0.40 0.34 0.43 0.37 0.40 0.40

This table reports the results of testing the informed trading channel using the following model:
𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 = 𝛼𝑖 + 𝛾1𝐼𝑛𝑠𝑖,𝑑−1 + 𝛾2𝐸𝑣𝑒𝑛𝑡𝑖,𝑑 + 𝛾3𝐼𝑛𝑠𝑖,𝑑−1𝐸𝑣𝑒𝑛𝑡𝑖,𝑑 + 𝛾4𝑆𝐻𝐹𝑇𝐷

𝑖,𝑑 +
∑8

𝑘=1 𝛿𝑘𝐶𝑘,𝑖,𝑑 + 𝜀𝑖,𝑑
where 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 is the proportional option bid–ask spread, 𝑆𝐻𝐹𝑇𝐷

𝑖,𝑑 is the measure of HFTs’ liquidity-demanding activities, and 𝐼𝑛𝑠𝑖,𝑑 is the
measure of informed trading. 𝐸𝑣𝑒𝑛𝑡𝑖,𝑑 is a dummy variable equal to one before October 16, 2009 (Rajaratnam’s arrest) and zero thereafter.
The sample encompasses a period of two months before and after the event date, with the exclusion of the five trading days preceding the
event date. 𝐶𝑘,𝑖,𝑑 is a set of 𝑘 control variables, including variables from both the options and underlying markets. The options market variables
are 𝑂𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑑 , 𝑂𝑖𝑚𝑝𝑙𝑖𝑒𝑑𝑖,𝑑 , 𝑂𝑖𝑛𝑝𝑖,𝑑 , |

|

𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑑 ||, 𝑂𝑔𝑎𝑚𝑚𝑎𝑖,𝑑 , and 𝑂𝑣𝑒𝑔𝑎𝑖,𝑑 , and the stock market variables are 𝑆𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 , and 𝑆𝑉 𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑑 . In
columns 1 and 2, 𝐼𝑛𝑠𝑖,𝑑 is calculated separately for out-of-the-money (OTM) and in-the-money (ITM) options. A put (call) is OTM if the stock
price is above (below) the strike price. In columns 3 and 4, we conduct the regression analysis for unscheduled news (obtained from RavenPack
database) and no-news days independently. In columns 5 and 6, 𝐼𝑛𝑠𝑖,𝑑 is calculated separately for small and large trade sizes (based on the 100
contracts threshold). All models include firm fixed effects only. The standard errors used to compute the t-statistics (in brackets) are double
clustered by firm and day. *, **, and *** denote the significance at 10%, 5%, and 1% respectively. For detailed definitions of variables refer
to Table 1.
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Columns (i) and (ii) of Table 7 provide the results separately for
ut-of-the-money (OTM) and in-the-money (ITM) options. We classify
ption contracts into OTM and ITM categories based on whether the
tock price is above or below the strike price. A put option is considered
TM if the stock price exceeds the strike price, whereas a call option

s OTM if the stock price is below the strike price. Two observations
merge from our analysis, which are discussed below.

First, our informed trading metric (𝐼𝑛𝑠𝑖,𝑑−1𝐸𝑣𝑒𝑛𝑡𝑖,𝑑) exhibits statisti-
al significance exclusively for OTM contracts. This finding is consistent
ith expectations, as OTM options offer greater leverage, rendering

hem more appealing to informed investors (Bondarenko and Mu-
avyev, 2022). Most importantly, the correlation between liquidity-
onsuming HFT activity and the options bid–ask spread is also statisti-
ally significant for ITM options, which are not as frequently traded by
nformed investors.

In columns (iii) and (iv) of our analysis, we differentiate between
ays with and without firm-relevant unexpected news events, as identi-
ied via the RavenPack database. Our rationale is based on the anticipa-
ion of more pronounced effects of informed traders prior to days with
nanticipated news. In line with our expectations, the results mirror
he patterns observed in the moneyness analysis. First, the impact
f informed trading on the options bid–ask spread is only evident
rior to days with unexpected news. Second, the association between
iquidity-consuming HFTs and the options bid–ask spread is statistically
ignificant on days unaffected by such news even though such days are
haracterized by lower levels of informed trading.

In the final two columns of Table 7, we provide the results for
oth larger and smaller trades. Following a similar methodology to
ondarenko and Muravyev (2022), we categorize trades into these
roups using a threshold of 100 contracts. Bondarenko and Muravyev
2022) establish that small options trades exhibit superior predictive
ower for future returns, in line with the notion that informed traders
refer to break down their larger parent orders into smaller child
rades in the options market. Consistent with this insight, our analysis
eveals a more pronounced association between informed trading and
he options bid–ask spread in the case of small trades. Importantly,
he impact of liquidity-consuming HFTs on the options bid–ask spread
emains statistically significant for large trades despite the fact that
nformed investors prefer to use small orders.
12
In summary, the cross-sectional analyses presented in Table 7 yield
wo significant implications. First, our proxy for informed trading
emonstrates empirical validity, as evidenced by the greater impact of
he informed trading measure on the bid–ask spread for scenarios that
re more appealing to informed investors (OTM contracts, days prior to
nanticipated news, and small trades). Second, the influence of HFTs
n the options bid–ask spread extends beyond the impact of informed
rading on the spread. This is evident from the persistent significance
f the association between HFTs in the stock market and the options
id–ask spread, even in cases associated with less trading activity by
nformed investors (ITM contracts, days without unanticipated news,
nd large trades).

We present the results of two more extensions in the Internet
ppendix. First, we employ close-buy option trades to compute the

nformed trading measure 𝐼𝑛𝑠𝑖,𝑑 , and subsequently re-estimate the
ffects of informed trading on the options bid–ask spread and liquidity-
onsuming HFTs’ activities employing this revised measure. The ratio-
ale for this extension lies in the distinct motivations underpinning
hese two types of trades. Despite both involving the purchase of
ptions, open-buy trades often signify leveraged bets on the underlying
tock, whereas close-buy trades typically occur as a result of profit-
aking and other liquidity-related factors (e.g., Pan and Poteshman
2006) and Bondarenko and Muravyev (2022)). Consequently, we do
ot expect to detect a significant association between 𝐼𝑛𝑠𝑖,𝑑−1𝐸𝑣𝑒𝑛𝑡𝑖,𝑑
nd 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 , or 𝑆𝐻𝐹𝑇𝐷

𝑖,𝑑 in this particular test. The results pre-
sented in Table IA.2 in the Internet Appendix support this expectation.

We acknowledge that our primary dataset for calculating the put–
call ratio and the informed trading measure is derived from CBOE’s
open-close data. This dataset presents three key limitations that are
relevant to the specific objectives of our study. First, it only has transac-
tions executed within CBOE, potentially limiting its representativeness.
Second, this data is only available at a daily frequency, which might
not adequately capture the high-frequency microstructure dynamics we
intend to investigate. Third, our data access is constrained to a four-
month period, encompassing two months before and two months after
the event date. To address these concerns and account for other poten-
tial limitations associated with CBOE’s open-close data, we introduce
a third extension, wherein we employ transaction-level OPRA data to
explore the informed trading channel.



Journal of Financial Economics 159 (2024) 103900M. Nimalendran et al.

a
(
r
s
i

To calculate the put–call ratio with the OPRA data, we initially
categorize trades into buy and sell directions using the Lee and Ready
(1991) algorithm. It is essential to note that the OPRA data does not
provide distinctions between opening and closing positions. Conse-
quently, we calculate the put–call ratio as the ratio of buy-put volume
to the sum of buy-put and buy-call volumes. In contrast to the daily
measurements available from the CBOE data, we shift our focus to
the high-frequency microstructure environment in this test. For this
purpose, we introduce a new informed trading measure, 𝑂𝑖𝑛𝑠𝑖,𝑑 . To
compute this measure, we determine the put–call ratio for each minute
and calculate the daily standard deviation of minute-to-minute percent-
age changes in the put–call ratio. This approach is conceptually akin
to computing the volatility of stock returns, a common technique em-
ployed to capture information arrival in financial markets. In essence,
when information flow is more pronounced at the high-frequency level,
we expect to observe a higher standard deviation in the changes in the
put–call ratio. Subsequently, we replicate the main tests reported in
Table 5, using 𝑂𝑖𝑛𝑠𝑖,𝑑 as our new informed trading measure.

The results of this analysis are presented in Table IA.3 in the Internet
Appendix. In line with the primary findings reported in Table 5, our in-
formed trading measure positively predicts the options bid–ask spread
and liquidity-consuming HFT activity before the event date; however,
the positive prediction diminishes after the event date. Thus, our core
results, derived from the analysis of CBOE data, align with the newly
computed informed trading measure based on the OPRA data.

3.3.2. Out-of-sample test
So far, we have based our analysis on the NASDAQ HFT dataset,

which categorizes transactions as either initiated by liquidity-
demanding or liquidity-consuming HFTs. However, this dataset is lim-
ited to only 120 (103 once merged with the OPRA data) randomly
chosen stocks and a single year (2009). To overcome this constraint, we
leverage the HFT data obtained from the SEC’s MIDAS, encompassing
all U.S.-listed common stocks and a broader time period, from 2012
to 2019. This analysis enables us to perform additional out-of-sample
assessments to validate our primary findings derived from the NASDAQ
HFT data. The results from the analysis of the MIDAS data are con-
sistent with the main findings: there is a positive association between
HFT activity and options bid–ask spreads, and this association is likely
entirely driven by the interplay of the latency arbitrage and informed
trading channels.

The results and further details of this test are reported in Table IA.4
in the Internet Appendix Section C. However, we want to emphasize
two limitations in this analysis. First, we do not make any causal in-
ferences in this test. Our primary aim is to demonstrate the correlation
between HFT activity in equity markets and the costs of options market
making, which remains valid during an out-of-sample test spanning a
longer and more recent time period and including a larger number of
stocks. Second, the MIDAS data does not directly identify HFT activity
but instead provides proxies known to correlate with HFT activity.

4. Addressing endogeneity – instrumental variable approach

One concern is that HFT in the stock market and the option bid–
ask spreads may be influenced by common underlying factors, implying
that they are jointly endogenous. This concern arises from the fact that
option contracts are based on underlying assets traded in the stock
markets, creating a cross-market relationship that can introduce endo-
geneity. To address this concern, we use the two-stage least squares
(2SLS) instrumental variable (IV) approach. Given that we employ
the NASDAQ HFT dataset from 2009, this involves identifying an
exogenous shock to the volume of HFT on the NASDAQ stock exchange
during this period as an instrument. Any instrument that we choose
must be correlated with the HFT variable and not correlated with
the error term in Eq. (1). Skjeltorp et al. (2016) propose a potential
instrument satisfying these criteria.
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On June 5, 2009, the NASDAQ stock exchange introduced a new
trading feature known as NASDAQ-Only Flash and Flash Enhanced
Routable Orders.18 These orders allow market participants to expose
their orders for an additional 500 ms after an unsuccessful execution
attempt in the NASDAQ limit order book before reaching the general
marketplace.19 Notably, the time constraint suggests that only qual-
ified low-latency traders – HFTs – are expected to use flash orders
(e.g., Harris and Namvar (2016)). This expectation is also consistent
with the flash order implementation of Direct Edge – the first company
to introduce flash orders on January 27, 2006 – who state that such
orders allow HFTs to see and execute flash orders (e.g., Skjeltorp
et al. (2016)). Thus, HFTs benefit from flash orders and, consequently,
the introduction of the flash order functionality orders is expected to
increase HFTs’ participation.

Building on the discussion of flash orders and their potential effects
on HFT, we use the introduction of flash orders on the NASDAQ stock
exchange as an exogenous shock in a 2SLS IV framework to address
endogeneity. We specify our 2SLS IV model as follows:

𝑆𝐻𝐹𝑇 𝑖,𝑑 = 𝛼𝑖 + 𝜗1𝐼𝑉 𝑖,𝑑 +
8
∑

𝑘=1
𝛿𝑘𝐶𝑘,𝑖,𝑑 + 𝜀𝑖,𝑑 (12)

𝑂𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 = 𝛼𝑖 + 𝛾1 ̂𝑆𝐻𝐹𝑇 𝑖,𝑑 +
8
∑

𝑘=1
𝛿𝑘𝐶𝑘,𝑖,𝑑 + 𝜀𝑖,𝑑 (13)

where 𝑆𝐻𝐹𝑇 𝑖,𝑑 is one of three HFT measures (𝑆𝐻𝐹𝑇𝐴𝑙𝑙
𝑖,𝑑 , 𝑆𝐻𝐹𝑇 𝑆

𝑖,𝑑
nd 𝑆𝐻𝐹𝑇𝐷

𝑖,𝑑) and ̂𝑆𝐻𝐹𝑇 𝑖,𝑑 is the fitted values of three HFT measures
̂𝑆𝐻𝐹𝑇𝐴𝑙𝑙

𝑖,𝑑 , ̂𝑆𝐻𝐹𝑇 𝑆
𝑖,𝑑 and ̂𝑆𝐻𝐹𝑇𝐷

𝑖,𝑑) that are obtained by regressing the
espective variables on 𝐼𝑉 𝑖,𝑑 in Eq. (12). Thus, the first- and second-
tage models are estimated separately for each HFT measure. The
nstrumental variable 𝐼𝑉 𝑖,𝑑 is a dummy variable that takes a value of

one during the period from June 5, 2009 to August 31, 2009, when
NASDAQ introduced its flash order system, and zero for the other
periods in our sample. To control for other factors that may affect the
options bid–ask spread, we include the same control variables as those
employed in the OLS specification (Eq. (1)).

Three crucial considerations require further discussion. First, while
NASDAQ initially introduced flash orders on June 5, 2009, subsequent
refinements to these orders were implemented on June 8, 2009. Addi-
tionally, NASDAQ initially intended to introduce flash orders on June
1, 2009, before rescheduling to June 5, 2009. Hence, to ensure a
clean research setting, we exclude a 10-day window before and after
the event date. Second, we restrict our sample to data preceding the
arrest date of Raj Rajaratnam (October 16, 2009). This step ensures
that the shock to informed trading does not impact our results. Third,
in this specification, we only include stock fixed effects because our
instrument does not have a time variation across stocks.

The estimation results of the first stage are reported in Table IA.5
in the Internet Appendix, where we find that our instrument, 𝐼𝑉 𝑖,𝑑 , is
statistically significant and positively related to all three HFT measures:
𝑆𝐻𝐹𝑇𝐴𝑙𝑙

𝑖,𝑑 , 𝑆𝐻𝐹𝑇𝐷
𝑖,𝑑 , and 𝑆𝐻𝐹𝑇 𝑆

𝑖,𝑑 . Hence, the implementation of flash
orders on June 5, 2009, led to an increase in the activities of both
liquidity-demanding and liquidity-supplying HFTs. Furthermore, the
F-statistics obtained from the first-stage analysis are statistically signif-
icant at conventional levels of significance, confirming the validity of
our selected instrument.

The second stage results presented in Table 8 reveal two key find-
ings with respect to the impact of HFT on options market making. First,
we find a statistically significant positive relationship between total
HFT activities and options spreads, indicating that greater HFT par-
ticipation in equity markets results in higher trading costs for options

18 https://www.nasdaqtrader.com/TraderNews.aspx?id=ETA2009-35.
19 Skjeltorp et al. (2016) provide the implementation details for these orders,

and some numerical examples.

https://www.nasdaqtrader.com/TraderNews.aspx?id=ETA2009-35
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Table 8
The impact of HFT activities on option spread – 2 SLS IV – second stage.

𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑
(i) (ii) (iii)

̂𝑆𝐻𝐹𝑇 𝐴𝑙𝑙
𝑖,𝑑 0.08**

(2.03)
̂𝑆𝐻𝐹𝑇 𝑆

𝑖,𝑑 0.01
(0.54)

̂𝑆𝐻𝐹𝑇𝐷
𝑖,𝑑 0.08**

(2.02)

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠 Yes Yes Yes
Stock fixed effect Yes Yes Yes
Time fixed effect No No No
N obs. 14,432 14,432 14,432
𝑅2 0.39 0.39 0.39

This table reports the results of estimating the impact of HFT in equity markets on the
options bid–ask spread using the following models:
𝑆𝐻𝐹𝑇 𝑖,𝑑 = 𝛼𝑖 + 𝜗1𝐼𝑉 𝑖,𝑑 +

∑8
𝑘=1 𝛿𝑘𝐶𝑘,𝑖,𝑑 + 𝜀𝑖,𝑑

𝑂𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 = 𝛼𝑖 + 𝛾1 ̂𝑆𝐻𝐹𝑇 𝑖,𝑑 +
∑8

𝑘=1 𝛿𝑘𝐶𝑘,𝑖,𝑑 + 𝜀𝑖,𝑑
where 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 is the proportional option bid–ask spread and 𝑆𝐻𝐹𝑇 𝑖,𝑑 is one of
three HFT measures (𝑆𝐻𝐹𝑇 𝐴𝑙𝑙

𝑖,𝑑 , 𝑆𝐻𝐹𝑇 𝑆
𝑖,𝑑 and 𝑆𝐻𝐹𝑇𝐷

𝑖,𝑑 ). ̂𝑆𝐻𝐹𝑇 𝑖,𝑑 is the fitted values
of one of three HFT measures ( ̂𝑆𝐻𝐹𝑇 𝐴𝑙𝑙

𝑖,𝑑 , ̂𝑆𝐻𝐹𝑇 𝑆
𝑖,𝑑 and ̂𝑆𝐻𝐹𝑇𝐷

𝑖,𝑑 ) that is obtained
by regressing the respective variables on 𝐼𝑉 𝑖,𝑑 , 𝐼𝑉 𝑖,𝑑 is a dummy equal to one from
June 5, 2009 to August 31, 2009, and zero for the other periods (from January 1,
2009 to June 4, 2009, and from September 1, 2009 to October 15, 2009). We exclude
the 10 days before and after the event date. 𝐶𝑘,𝑖,𝑑 is a set of 𝑘 control variables,
including variables from both the options and underlying markets. The options market
variables are 𝑂𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑑 , 𝑂𝑖𝑚𝑝𝑙𝑖𝑒𝑑𝑖,𝑑 , 𝑂𝑖𝑛𝑝𝑖,𝑑 , |

|

𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑑 ||, 𝑂𝑔𝑎𝑚𝑚𝑎𝑖,𝑑 , and 𝑂𝑣𝑒𝑔𝑎𝑖,𝑑 , and
the stock market variables are 𝑆𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 , and 𝑆𝑉 𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑑 . All models include firm
fixed effect (𝛼𝑖). The standard errors used to compute the t-statistics (in brackets) are
double clustered by firm and day. *, **, and *** denote the significance at 10%, 5%,
and 1% respectively. For detailed definitions of variables refer to Table 1.

market makers. Second, this positive effect is sourced from liquidity-
demanding HFT orders (𝑆𝐻𝐹𝑇𝐷

𝑖,𝑑). These results are broadly consistent
with the OLS setting findings and they support a causal interpretation
of the impact of HFT activities on options market-making trading costs.

Table 9 reports the estimation results for the latency arbitrage
channel by using the 2SLS IV approach. Consistent with the results
for OLS regressions with fixed effects, we find that the positive and
statistically significant association between HFTs’ liquidity-demanding
trading activity and the option proportional spread is concentrated in
stocks with a higher frequency of profitable put–call parity violations.

While we employ the 2SLS IV approach to investigate the latency
arbitrage channel, we cannot use flash orders to address endogeneity
in the informed trading channel. This is because NASDAQ introduced
flash orders in June 2009, but our CBOE open-buy data only covers the
period from August 2009 onwards. It is also worth noting that since we
use an exogenous shock to the information environment (the arrest of
Raj Rajaratnam) to test the informed trading channel, endogeneity is
less of a concern for this particular test.

To sum up, our analysis shows that HFTs’ trading activities in equity
markets affect the trading costs in the options market, and this effect
extends beyond the hedging channel documented in previous market
microstructure literature. The impact of HFTs in the stock market on
the options bid–ask spread can be attributed to a combination of latency
arbitrage and informed trading channels. While exogenous shocks to
HFT activity in the stock market, and to informed trading in the options
market, provide a valuable means of separately mitigating endogene-
ity concerns for the two channels, we acknowledge the complexity
associated with conclusively and fully addressing endogeneity in this
setting due to the inherent interconnectedness of the stock and options
markets.

5. Conclusion

We find a negative relationship between aggressive HFT strategies
in the stock market and options market liquidity: more aggressive
14
Table 9
Testing the latency arbitrage channel – 2 SLS IV – second stage.

𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑
(i) (ii)

̂𝑆𝐻𝐹𝑇 𝐴𝑙𝑙
𝑖,𝑑 −0.32***

(−4.33)
̂𝑆𝐻𝐹𝑇𝐷

𝑖,𝑑 −0.29***
(−4.60)

𝐻𝑖𝑔ℎ𝑖,𝑑 −0.03**
(−2.02)

−0.03**
(−2.12)

̂𝑆𝐻𝐹𝑇 𝐴𝑙𝑙
𝑖,𝑑 𝐻𝑖𝑔ℎ𝑖,𝑑 0.04***

(3.82)
̂𝑆𝐻𝐹𝑇𝐷

𝑖,𝑑𝐻𝑖𝑔ℎ𝑖,𝑑 0.05***
(3.69)

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠 Yes Yes
Stock fixed effect Yes Yes
Time fixed effect No No
N obs. 5899 5899
𝑅2 0.33 0.33

This table reports the results of testing the latency arbitrage channel using the following
model:
𝑂𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 = 𝛼𝑖 + 𝛾1 ̂𝑆𝐻𝐹𝑇 𝑖,𝑑 + 𝛾2𝐻𝑖𝑔ℎ𝑖,𝑑 + 𝛾3 ̂𝑆𝐻𝐹𝑇 𝑖,𝑑𝐻𝑖𝑔ℎ𝑖,𝑑 +

∑8
𝑘=1 𝛿𝑘𝐶𝑘,𝑖,𝑑 + 𝜀𝑖,𝑑

where 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 is the proportional option bid–ask spread and ̂𝑆𝐻𝐹𝑇 𝑖,𝑑 is the fitted
values of one of two HFT measures ( ̂𝑆𝐻𝐹𝑇 𝐴𝑙𝑙

𝑖,𝑑 and ̂𝑆𝐻𝐹𝑇𝐷
𝑖,𝑑 ) that is obtained by

regressing the respective variables on 𝐼𝑉 𝑖,𝑑 , 𝐼𝑉 𝑖,𝑑 is a dummy equal to one from June 5,
2009 to August 31, 2009, and zero for the other periods (from January 1, 2009 to June
4, 2009, and from September 1, 2009 to October 15, 2009). We exclude the 10 days
before and after the event date. 𝐻𝑖𝑔ℎ𝑖,𝑑 is a dummy variable equal to one in day 𝑑 if
its 𝑁𝑝𝑣𝑖,𝑑 (the number of put–call parity violations) value is above the median number
of profitable put–call parity violations for all stocks. 𝐶𝑘,𝑖,𝑑 is a set of 𝑘 control variables,
including variables from both the options and underlying markets. The options market
variables are 𝑂𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑑 , 𝑂𝑖𝑚𝑝𝑙𝑖𝑒𝑑𝑖,𝑑 , 𝑂𝑖𝑛𝑝𝑖,𝑑 , |

|

𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑑 ||, 𝑂𝑔𝑎𝑚𝑚𝑎𝑖,𝑑 , and 𝑂𝑣𝑒𝑔𝑎𝑖,𝑑 , and
the stock market variables are 𝑆𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 , and 𝑆𝑉 𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑑 . All models include firm
fixed effect (𝛼𝑖). The standard errors used to compute the t-statistics (in brackets) are
ouble clustered by firm and day. *, **, and *** denote the significance at 10%, 5%,
nd 1% respectively. For detailed definitions of variables refer to Table 1.

FT activity in the stock market leads to wider bid–ask spreads in
he options market. These results hold after controlling for known
rivers of stock and option liquidity. We attribute this relationship to
wo channels: (i) the latency arbitrage channel; and (ii) the informed
rading channel. In the first channel, aggressive HFTs engaged in cross-
arket latency arbitrage strategies expose option market makers to the

isk of trading at stale prices. To test this, we measure the frequency of
rofitably exploitable put–call parity violations and find that the impact
f HFT in equity markets on options bid–ask spreads is higher when
here are more such violations.

The second channel, the informed trading channel, posits that in-
ormed trading activities in the options market may influence the
mpact of HFT in equity markets on the options bid–ask spread by
imultaneously affecting both the options spread and the intensity of
ggressive HFT actions in the underlying market. We find that informed
rading in the options markets intensifies the positive relationship
etween liquidity-demanding HFT in the stock market and options
id–ask spread by roughly 50%.

Our study provides important insights into the role of HFTs in
xplaining the cross-market dynamics between stock and options mar-
ets. More broadly, our results have significant implications for market
articipants, regulators, and policymakers seeking to understand the
volving landscape of financial markets and design effective policies to
nsure market stability and efficiency. The findings of this study also
nderscore the need for a better understanding of the costs and risks
ssociated with HFTs in today’s highly fragmented and complex market
tructures.
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