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Minimum curvature flow and martingale exit times*
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Abstract

We study the following question: What is the largest deterministic amount of time T∗
that a suitably normalized martingale X can be kept inside a convex body K in Rd?
We show, in a viscosity framework, that T∗ equals the time it takes for the relative
boundary of K to reach X(0) as it undergoes a geometric flow that we call (positive)
minimum curvature flow. This result has close links to the literature on stochastic
and game representations of geometric flows. Moreover, the minimum curvature flow
can be viewed as an arrival time version of the Ambrosio–Soner codimension-(d− 1)

mean curvature flow of the 1-skeleton of K. Our results are obtained by a mix of
probabilistic and analytic methods.
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1 Introduction and main results

Let d ≥ 2 and let K ⊂ Rd be a convex body, i.e. a nonempty compact convex
set. If X = (X1, . . . , Xd) is a d-dimensional continuous martingale that starts inside K
and whose quadratic variation satisfies tr〈X〉(t) = 〈X1〉(t) + · · · + 〈Xd〉(t) ≡ t, then X

eventually leaves K. What is the maximal deterministic lower bound T∗ on the exit time,
across all such martingales X? The answer is linked to the evolution of the (relative)
boundary of K as it undergoes a geometric flow that we refer to as minimum curvature
flow: T∗ is equal to the lifetime of this flow. The minimum curvature flow resembles the
well-known mean curvature flow, in particular its version in codimension d−1 introduced
by [2]. Our goal is to develop the connection between the exit time problem and the
minimum curvature flow in detail.
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Minimum curvature flow and martingale exit times

Our original motivation comes from a long-standing problem in mathematical finance,
namely to characterize the worst-case time horizon for so-called relative arbitrage. In
a suitably normalized setup, the answer turns out to be precisely T∗, with K being the
standard d-simplex. We do not discuss this connection further here; instead we provide
full details in the companion paper [26]. Let us however emphasize that this application
motivates us to consider convex bodies K with nonsmooth boundary.

To give a precise description of our main results, let X denote the coordinate process
on the Polish space Ω = C(R+,R

d) of all continuous trajectories in Rd with the locally
uniform topology. Thus X(t, ω) = ω(t) for all ω ∈ Ω and t ∈ R+. Write P(Ω) for the set of
all probability measures on Ω with the topology of weak convergence. For each x ∈ Rd,
define

Px = {P ∈ P(Ω): X is a P-martingale and P(X(0) = x) = P(tr〈X〉(t) ≡ t) = 1} ,

where the martingale property is understood with respect to the (raw) filtration gener-
ated by X. We always take K ⊂ Rd to be compact, but not necessarily convex unless
explicitly stated. The first exit time from K is

τK = inf{t ≥ 0: X(t) /∈ K}, (1.1)

and we are interested in computing the value function

v(x) = sup
P∈Px

P- ess inf τK . (1.2)

This is the largest deterministic almost sure lower bound on the exit time τK across all
martingale laws P ∈ Px. At first glance one may suspect that v is identically zero. This is
however not the case for d ≥ 2; see for instance Example 1.8.

Our first result states that the value function solves a PDE with (degenerate) elliptic
nonlinearity

F (p,M) = inf

{
−1

2
tr(aM) : a � 0, tr(a) = 1, ap = 0

}
, (1.3)

where a ranges through the set of all symmetric matrices of appropriate size, and
a � 0 refers to the positive semidefinite order. We write Sd for the set of all d × d

symmetric matrices and Sd+ for the subset of positive semidefinite matrices. The theorem
uses the notions of viscosity solution and boundary condition in the viscosity sense.
This is because in general, the boundary condition is not satisfied pointwise, see e.g.
Example 5.4, and it is not even known whether in the interior of K the solution is
continuous. These concepts are reviewed in Section 3, where also the proof of the
theorem is given.

Theorem 1.1. Let d ≥ 2 and suppose K is compact, but not necessarily convex. The
value function v is an upper semicontinuous viscosity solution to the nonlinear equation

F (∇u,∇2u) = 1 (1.4)

in int(K) with zero boundary condition (in the viscosity sense).

The value function is always an upper semicontinuous viscosity solution. As our next
result shows, it is actually the unique viscosity solution in this class, provided that K
satisfies a certain additional condition. This condition holds for all strictly star-shaped
compact sets, in particular for all convex bodies with nonempty interior. Our condition is
however more general than that; see Example 4.2. We also show that uniqueness may
fail for star-shaped but not strictly star-shaped domains; see Example 4.3. This answers
a question of [24, Section 1.8]. The proof of the following uniqueness theorem is given
in Section 4, and follows from a comparison principle proved there, Theorem 4.1.
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Minimum curvature flow and martingale exit times

Theorem 1.2. Let d ≥ 2 and suppose K is compact. Assume there exist invertible affine
maps Tλ on Rd, parameterized by λ ∈ (0, 1), such that Tλ(K) ⊂ int(K) and limλ→1 Tλ = I

(the identity). Then the value function v is the unique upper semicontinuous viscosity
solution to (1.4) in int(K) with zero boundary condition (in the viscosity sense).

Remark 1.3. We point out that this uniqueness result is designed to handle the non-
smooth convex domains that arise in the financial applications of interest. There are
however other natural domains that are not covered by this result, such a various
non-convex domains with smooth boundary. Proving comparison theorems (and hence
uniqueness results) for such domains is an interesting problem which we do not consider
here; see however [36, 37, 5, 4].

Theorem 1.2 characterizes the value function even in cases where it is not continuous.
In fact, we will give examples showing that the value function may be discontinuous
even when K is a convex body.

Before describing this and related results, we briefly discuss links to the existing
literature and the connection to geometric flows.

Our results tie in with a well established literature on stochastic representations
of geometric PDEs, initiated by [11] and [33, 34, 35]. In particular, Soner and Touzi
introduced the notion of stochastic target problem and based their analysis on an
associated dynamic programming principle; see also [9]. Part of our analysis can be cast
in the language of stochastic target problems, and this connection is described further
in Remark 2.6.

The control problem (1.2) is formulated over an infinite time horizon. As a result,
our PDE is elliptic rather than parabolic, and, as explained next, the solution acquires
the interpretation of arrival time of an evolving surface. This is reminiscent of the
two-person deterministic game introduced by [39] and linked to the positive curvature
flow by [24]. In a similar spirit there are also the works of [29] on the tug-of-war game
and infinity Laplacian, and more recently [18] and [12].

The geometric meaning of (1.4) is most clearly conveyed by reasoning as in [24,
Section 1.2]. This is standard in the literature on geometric flows and paraphrased here
for convenience. Let K be strictly convex with smooth boundary ∂K. Suppose we are
given a family {Γt : t ≥ 0} of smooth convex surfaces with Γ0 = ∂K, that evolve with
normal velocity equal to (half) the smallest principal curvature at each point x ∈ Γt. It is
natural to call this minimum curvature flow, by analogy with mean curvature flow whose
normal velocity is the average curvature.

Let u be the arrival time function: for each x ∈ K, u(x) is the time it takes the
evolving front to reach x (we assume the front passes through each point in K exactly
once.) Thus Γt = {x : u(x) = t} is a level surface of u, and the gradient ∇u(x) is a normal
vector at x. If ∇u(x) 6= 0, the minimal principal curvature of Γt at x is the smallest value
of

−y
>∇2u(x)y

|∇u(x)|

as y ranges over all tangent unit vectors: |y| = 1 and y>∇u(x) = 0.1 On the other hand,
since u(x) is the arrival time, the speed of normal displacement at x is 1/|∇u(x)|. We
therefore expect u to satisfy

inf

{
−1

2
y>∇2u(x)y : |y| = 1, y>∇u(x) = 0

}
= 1, (1.5)

1Indeed, if γ : R→ Γt is a smooth geodesic curve with unit speed such that γ(0) = x and γ′(0) = y, then

∇u(x)>γ′′(0) + y>∇2u(x)y = 0 and γ′′(0) = k
∇u(x)
|∇u(x)| , where k is the curvature of γ at 0.
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Minimum curvature flow and martingale exit times

at least at points where ∇u 6= 0. It is not hard to check that this is precisely (1.4) thanks
to the identity

sup{tr(aM) : a � 0, tr(a) = 1, ap = 0} = sup{y>My : |y| = 1, y>p = 0}.

To verify this identity it suffices to show that the supremum on the left-hand side is
attained by a rank-one matrix. For any candidate a the spectral theorem yields a =

λ1y1y
>
1 + · · ·+λdydy>d for some orthonormal basis y1, . . . , yd and convex weights λ1, . . . , λd

such that λiy>i p = 0 for all i ∈ {1, . . . , d}. Since tr(aM) = λ1y
>
1 My1 + · · · + λdy

>
d Myd,

we may improve by replacing a with the rank-one matrix yiy>i for the index i such that
y>i Myi is maximal.

In the planar case d = 2, Γt has only one principal curvature direction, and (1.5)
reduces to the well-known arrival time PDE for the mean curvature flow,

1

|∇u|
= −1

2
div

(
∇u
|∇u|

)
.

Remark 1.4. Let us outline how the minimum curvature flow can be constructed rigor-
ously using the level set method of [27, 13, 19] and then linked to (1.2) and (1.4). Fix a
time horizon T > maxx∈K v(x) and consider the geometric parabolic equation

∂tU + F (∇U,∇2U) = 0 in (0, T ]×Rd

with an initial condition U0(x) that is positive on int(K), negative on Kc, and constant,
say equal to −1, outside some large compact set. [13, Theorems 6.7–6.8] yields existence
and uniqueness of a continuous solution U(t, x) of the initial value problem. One now
defines the evolving front of the minimum curvature flow at time t to be the boundary
of the superlevel set, ∂{x : U(t, x) > 0}. The time u(x) = inf{t : U(t, x) < 0} at which
the front passes through x ∈ K can then, under suitable conditions, be shown to be
an upper semicontinuous viscosity solution of the elliptic equation (1.4). If uniqueness
holds for this equation, for instance if Theorem 1.2 is applicable, it follows that u actually
coincides with the value function v in (1.2).

The link to the control problem (1.2) can be understood as follows. Proceeding
informally, we assume a C2 solution u of (1.4) with u = 0 on ∂K is given. By Itô’s
formula,

0 = u(X(τK)) = u(x) +

∫ τK

0

∇u(X(t))>dX(t) +
1

2

∫ τK

0

tr(a(t)∇2u(X(t)))dt (1.6)

under any law P ∈ Px, where a(t) is the derivative of the quadratic variation of X and
satisfies tr(a(t)) ≡ 1. The discussion of minimum curvature flow suggests that optimally,
X should fluctuate tangentially to the level surfaces of u, that is, a(t)∇u(X(t)) ≡ 0. Then,
due to the definition (1.3) of F and since u solves (1.4),

1

2
tr(a(t)∇2u(X(t))) ≤ −F (∇u(X(t)),∇2u(X(t))) = −1. (1.7)

Combining (1.6) and (1.7) leads to

0 = u(x) +
1

2

∫ τK

0

tr(a(t)∇2u(X(t)))dt ≤ u(x)− τK ,

showing that τK ≤ u(x). If a(t) maximizes the left-hand side of (1.7), we have equality
and expect that u coincides with the value function. Still heuristically, this happens when
X fluctuates only along the minimal principal curvature directions of the level surfaces
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Minimum curvature flow and martingale exit times

of u. This minimizes the speed at which X moves “outwards” toward ∂K, and maximizes
the amount of time X spends in K.

This discussion suggests that optimally, X lies on the evolving front of the time-
reversed minimum curvature flow. More precisely, before exiting K, one expects that X
satisfies v(X(t)) = v(x)− t under some optimal law P ∈ Px, x ∈ K. Theorem 1.7 below
shows that this is true if K is a polytope and v sufficiently regular. It is however false in
general, even if v is smooth; see Example 2.3.

In the case where K is not convex, we get a somewhat different flow. Similarly to
the positive curvature flow of [24], it is now the positive part of the minimum principal
curvature that determines the speed of the flow.

We now return to our main results, and focus on the case where K is a convex body.
Theorems 1.1 and 1.2 yield upper semicontinuity of the value function v and characterize
it as a viscosity solution of (1.4) with zero boundary condition (in the viscosity sense). If
K has empty interior we simply apply these results in the affine hull of K. The following
result is a combination of Proposition 5.1 and Lemma 5.3 in Section 5.

Theorem 1.5. Let d ≥ 2 and suppose K is a convex body. Then the value function v

is quasi-concave, vanishes on all faces of K of dimension zero and one, and is strictly
positive elsewhere in K.

In particular, if K is strictly convex, then all its boundary faces have dimension zero,
and v vanishes everywhere on ∂K. Because of upper semicontinuity, this implies that it
is continuous at ∂K. In fact, Theorem 1.6 below shows that v is continuous everywhere
in this case.

However, many convex bodies K have boundary faces of higher dimension. In
this case v does not vanish everywhere on ∂K. This includes the standard d-simplex
appearing in our motivating financial application. Additionally, and more subtly, there
are convex bodies for which the value function is actually discontinuous. This is because
in dimension d ≥ 4, there are convex bodies that admit boundary points xn, all contained
in 1-dimensional boundary faces, whose limit x̄ = limn xn lies in the relative interior of a
2-dimensional boundary face; see Example 5.4. For such points, v(xn) = 0 but v(x̄) > 0,
so continuity fails. This is in sharp contrast to the more familiar case of mean curvature
flow, where the arrival time function is continuous for any convex initial surface; see [19,
Theorem 7.4] and [20, Theorem 5.5].

We prove continuity under the following regularity condition on the geometry of K.
We require that the k-skeletons, defined by

Fk = union of all faces of K of dimension at most k, (1.8)

be closed for k = 1, . . . , d (but not for k = 0, thus the set of extreme points need not be
closed.) This condition is a weakening of a notion from convex geometry called stability,
which is equivalent to all the k-skeletons being closed, including the 0-skeleton; see e.g.
[28] and [32, p. 78]. Actually the d-, (d− 1)- and (d− 2)-skeletons of a convex body are
always closed, so this does not have to be assumed separately; see Lemma 5.7.

The upshot is the following result, which is applicable in a number of interesting
situations. In particular, it covers all convex bodies in R3, all polytopes in arbitrary
dimension, and all convex bodies whose boundary faces all have dimension zero or
one. It is a rewording of Theorem 5.8 in Section 5, and is proved using probabilistic
arguments based on the control formulation (1.2).

Theorem 1.6. Let d ≥ 2 and suppose K is a convex body with Fk closed for 1 ≤ k ≤ d−3.
Then the value function v is continuous on K.

The fact that v vanishes only at the 1-skeleton F1 (the extreme points and lines), but
not elsewhere in K, suggests that (1.4) describes a geometric flow also of F1, not only of
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∂K. This flow of F1 is the codimension-(d− 1) mean curvature flow of [2], although here
the initial set F1 need not be a one-dimensional curve.

To spell this out, for any symmetric matrix A and eigenvector p of A, let λmin(A, p)

denote the smallest eigenvalue of A corresponding to an eigenvector orthogonal to p.
Then (1.5) states that

λmin

(
−1

2
P∇u(x)∇2u(x)P∇u(x),∇u(x)

)
= 1, (1.9)

where

P∇u = I − ∇u∇u
>

|∇u|2
.

Modulo sign conventions and the factor 1/2, the left-hand side of (1.9) is precisely the
operator used by [2]. In fact, the function V (t, x) = t−v(x), where v is the value function
in (1.2), solves their parabolic equation on K with initial condition V (0, x) = −v(x),
whose zero set (in K) is the 1-skeleton F1. This suggests interpreting the minimum
curvature flow of ∂K as a codimension-(d− 1) mean curvature flow of F1.

This perspective is particularly compelling when K is a polytope: F1 is then a finite
union of closed line segments and thus one-dimensional, albeit with “branching”. In this
case, the one-dimensional initial contour instantly develops higher-dimensional features
as it evolves under the flow, and eventually becomes a closed hypersurface. This is
illustrated schematically in Figure 1, where K is the standard 3-simplex.

Figure 1: Schematic illustration of the minimum curvature flow of the 3-simplex, regarded
as codimension-2 mean curvature flow of its 1-skeleton as initial contour. In the second
and third panel, the 1-skeleton is still shown for reference.

Returning to the minimum curvature flow as a flow of surfaces starting from ∂K, we
see that points inside two- and higher dimensional faces remain stationary for some
period of time. This behavior is analogous to the behavior of mean curvature flow
of non-convex contours; see [24, Figure 4] for an illustration. We thank R. Kohn for
pointing this out to us. A similar phenomenon occurs for the Gauss curvature flow; see
[22, 14, 16].

We do not have much information about the regularity of the value function v in
general, beyond the continuity assertion in Theorem 1.6 and the counterexample in
Example 5.4. An exception is the planar case d = 2, where we recover the standard
mean curvature flow. In this case, for K strongly convex with smooth boundary, [24]
proved that v is C3 (see also [23] for an earlier proof that v is C2). In general, let us
assume that v is C2 inside each face of K, with just one critical point. If in addition
K has at most countably many faces, it is then possible to construct optimal solutions
of (1.2) where the intuitive notion that X should fluctuate tangentially to, and remain on,
the level surfaces of v becomes rigorous.

Theorem 1.7. Let d ≥ 2 and let K be a convex body with at most countably many
faces. Assume the value function v lies in C2(K). Assume also that in each face F of
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dimension at least two, either v has no critical point, or v has one single critical point
which additionally is a maximum. Then for every x̄ ∈ K there is an optimal solution
P ∈ Px̄ under which v(X(t)) = v(x̄)− t for all t < τK . In particular,

.

∫ t

0

∇v(X(s))>dX(s) = 0, t < τK , (1.10)

and X lies on the evolving front of the time-reversed minimum curvature flow in the
sense that X(t) ∈ Γv(x̄)−t, where Γt = {x : v(x) = t}, until it leaves K.

The meaning of C2(K) and the notion of a critical point is explained in Section 6,
where also the proof is given. The basic idea is to observe that v satisfies (1.9) classically
at non-critical points. In particular, by definition of eigenvalue, the matrix

H(x) =
1

2
P∇v(x)∇2v(x)P∇v(x) + I

is singular at all such points, so is of rank at most d− 1. This can be used to construct
a martingale law P ∈ Px̄ under which H(X(t))d〈X〉(t) = 0. This turns out to imply
∇v(X(t))>dX(t) = 0 and then dv(X(t)) = −dt. This is essentially the desired conclusion.
Some effort is needed to construct P, basically because the Moore–Penrose inverse
H(x)+ of H(x) is no longer continuous in x. Moreover, X is obtained by constructing
martingales on each face of K separately and then “gluing” these martingales together.
This introduces some technical hurdles, and explains why the proof is somewhat lengthy.

As an illustration, and for later use, we give a simple example where the value
function v is known explicitly and happens to be smooth on K; see also [40] and [21].

Example 1.8. Let d ≥ 2 and let K = {x ∈ Rd : |x| ≤ r} be the centered closed ball of
radius r > 0. In this case, v(x) = r2 − |x|2 for all x ∈ K. To see this, choose any x ∈ K
and P ∈ Px. We have

|X(t)|2 = |x|2 + 2

∫ t

0

X(s)>dX(s) + t, t ≥ 0.

Evaluating at t = τK ∧ n, taking expectations, and letting n→∞, one obtains E[τK ] =

r2 − |x|2. In particular, this shows that X escapes from any bounded set in finite time,
P-a.s. Moreover, since of course P- ess inf τK ≤ E[τK ], we get v(x) ≤ |x|2 − r2. In fact, we
have equality. Indeed, let P ∈ Px be the law under which X3, . . . , Xd are constant and
(X1, X2)> satisfies

d

(
X1(t)

X2(t)

)
=

1√
X1(t)2 +X2(t)2

(
X2(t)

−X1(t)

)
dW (t),

where W denotes a one-dimensional Brownian motion. Such a probability measure P
always exists, even if x = 0; see Lemma 3.4. An application of Itô’s formula now yields
τK = r2 − |x|2, Px-a.s. We deduce that v(x) = r2 − |x|2 for all x ∈ K. Furthermore, it is
straightforward to verify that v satisfies (1.4) with boundary condition v = 0 on ∂K.

The reasoning in Example 1.8 directly yields the following upper bound on v.

Lemma 1.9. If K is compact, x ∈ K, and P ∈ Px, then E[τK ] ≤ r2, where r is the radius
of the smallest ball containing K. In particular, τK <∞, P-a.s., and the value function
defined in (1.2) satisfies v(x) ≤ r2 for all x.

The rest of the paper is organized as follows. Section 2 develops a number of general
properties of the value function, as well as illustrative examples. In particular, a dynamic
programming principle is proved. In Section 3 we prove Theorem 1.1 that the value
function is a viscosity solution. In Section 4 we prove Theorem 4.1, a comparison
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principle for viscosity solutions of (1.4), and use it to deduce Theorem 1.2. In Section 5
we focus on the case where K is a convex body, and establish in particular Theorem 5.8
on continuity of the value function. In Section 6 we prove Theorem 1.7.

We end with a technical remark regarding filtrations and stopping times. Whenever
X is said to be a martingale, this is understood with respect to its own filtration FX =

(FXt )t≥0 where FXt = σ(Xs, s ≤ t). In this case, X is also a martingale for the right-
continuous filtration FX+ consisting of the σ-algebras

⋂
u>t FXu , and similarly for the

filtrations obtained by augmenting FX and FX+ with nullsets. In particular, results such
as the stopping theorem are applicable with τK in (1.1), which is an FX+ -stopping time
but not an FX -stopping time.

2 The value function and dynamic programming

The purpose of this section is to establish a number of properties of the value function,
in particular a dynamic programming principle. Throughout this section, K is compact
but not necessarily convex.

Lemma 2.1. The maps ω 7→ τK(ω) from Ω to [0,∞] and P 7→ P- ess inf τK from P(Ω) to
[0,∞] are upper semicontinuous, where τK is the first exit time of K, given in (1.1).

Proof. We claim that ω 7→ τK(ω) is upper semicontinuous on Ω. To see this, let ωn, ω
satisfy τK(ω) <∞ and ωn → ω locally uniformly. Consider ε > 0 such that ω(τK(ω) + ε) /∈
K. Then for all large n, we have ωn(τK(ω) + ε) /∈ K, and hence τK(ωn) ≤ τK(ω) + ε. Thus
lim supn τK(ωn) ≤ τK(ω) + ε. This proves upper semicontinuity of τK since ε > 0 can be
chosen arbitrarily small.

Next, for every λ > 0 the Portmanteau theorem yields that the map

P 7→ fλ(P) = − 1

λ
log EP[e−λτK ]

from P(Ω) to [0,∞] is upper semicontinuous, and then so is P 7→ infλ>0 fλ(P). We now
show that infλ>0 fλ(P) = P- ess inf τK . First, fλ(P) ≥ P- ess inf τK for all λ > 0. Next, if
P- ess inf τK = ∞, the opposite inequality is immediate. If P- ess inf τK < ∞, pick any
c > P- ess inf τK and note that

fλ(P) ≤ − 1

λ
log EP[e−λτK1τK≤c] ≤ −

1

λ
log EP[e−λc1τK≤c] = c− 1

λ
logP(τK ≤ c).

We now send λ to infinity and then let c decrease to P- ess inf τK . We conclude that
P 7→ P- ess inf τK is upper semicontinuous, as claimed.

The proof of the following result uses the notion of conditional essential infimum. For
a random variable Y and a sub-σ-algebra G ⊂ F , the conditional essential infimum of Y
given G is defined as the largest G-measurable random variable P-a.s. dominated by Y ,
denoted by P- ess inf{Y | G}. Moreover, if {Fω}ω∈Ω is a regular conditional distribution of
Y given G, we have P- ess inf{Y | G}(ω) = ess inf Fω for P-a.e. ω, where we set ess inf Fω =

sup{c ∈ R : Fω([c,∞)) = 1}. For further details, see [6, 25].

Proposition 2.2. (i) Px is weakly compact for every x ∈ Rd;
(ii) v, given in (1.2), is upper semicontinuous and there is a measurable map x 7→ Px

from Rd into P(Ω) such that Px lies in Px and is optimal for all x ∈ Rd;
(iii) v satisfies the following dynamic programming principle: for every x ∈ Rd and

every FX -stopping time θ,

v(x) = sup
P∈Px

P- ess inf{θ ∧ τK + v(X(θ))1θ≤τK}.
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(Note that τK < ∞, P-a.s. for every P ∈ Px due to Lemma 1.9.) Moreover, the
supremum is attained by any optimal P ∈ Px.

Proof. (i): Consider any P ∈ Px. Fix s ≥ 0 and define M(t) = |X(t) − X(s)|2 − t + s

for t ≥ s. Then M is a P-martingale on [s,∞) and, letting a(t) be the derivative of the
quadratic variation of X with tr(a(t)) ≡ 1, we have

〈M〉(t) = 4

∫ t

s

(X(u)−X(s))>a(u)(X(u)−X(s))du ≤ 4

∫ t

s

|X(u)−X(s)|2du.

Thus

EP[〈M〉(t)] ≤ 4

∫ t

s

EP[|X(u)−X(s)|2]du = 4

∫ t

s

(u− s)du = 2(t− s)2,

so that

EP[|X(t)−X(s)|4] = EP[(M(t) + t− s)2] ≤ 2EP[〈M〉(t)] + 2(t− s)2 ≤ 6(t− s)2.

Kolmogorov’s continuity criterion (see [30], Theorem I.2.1 and its proof) then gives, for
any fixed T > 0 and α ∈ (0, 1

4 ),

EP

[(
sup

0≤s<t≤T

|X(t)−X(s)|
|t− s|α

)4
]
≤ c

for some constant c = c(T, α) that does not depend on P ∈ Px. Since Hölder balls are
relatively compact in C([0, T ],Rd) by the Arzelà–Ascoli theorem, it follows that Px is tight
and hence relatively compact by Prokhorov’s theorem. To see that Px is closed, note that
the martingale property of both X and |X|2 − t (and hence the property tr〈X〉(t) ≡ t)
carries over to weak limits of sequences in Px.

(ii): First observe that Px consists of the pushforwards (x + ·)∗P with P ∈ P0.
Thus v(x) = supP∈P0

f(x,P), where f(x,P) = g((x + ·)∗P) and g(P) = P- ess inf τK . By
Lemma 2.1, the function g is upper semicontinuous. Since f is the composition of g
with the continuous function (x,P) 7→ (x+ ·)∗P from Rd × P(Ω) to P(Ω), it is also upper
semicontinuous. Moreover, P0 is compact by (i). A suitable selection theorem, see e.g. [7,
Proposition 7.33], yields upper semicontinuity of v as well as a measurable map x 7→ Qx
from Rd into P0 such that v(x) = f(x,Qx) for all x ∈ Rd. Setting Px = (x+ ·)∗Qx gives
the required map.

(iii): Fix x ∈ Rd and an FX -stopping time θ. We first first fix P ∈ Px and prove that

v(x) ≥ P- ess inf{θ ∧ τK + v(X(θ))1θ≤τK}. (2.1)

To this end, consider the extended space Ω× Ω with coordinate process (X,Y )(t, ω, ω̃) =

(ω(t), ω̃(t)) and define a law P′ on (Ω × Ω,F ⊗ F) by P′(dω, dω̃) = PX(θ(ω),ω)(dω̃)P(dω),
where we use the measurable map Rd 3 y 7→ Py ∈ P from (ii). We now consider the
process X ′(t) = X(t)1t≤θ + Y (t − θ)1t>θ and let Q denote the law of X ′. Define next
θ′(ω, ω̃) = θ(X ′(ω, ω̃)); thus θ′ depends on the trajectory of X ′ like θ depends on the
trajectory of X. Since θ is an FX -stopping time, and since X ′(t) and X(t) coincide
for all t ≤ θ, it follows by Galmarino’s test that θ′(ω, ω̃) = θ(ω) for all (ω, ω̃); see [17,
Theorem IV.100(a)]. Consequently, for all bounded measurable maps F,G : Ω→ R, we
have

EQ[F (X( · ∧ θ))G(X(θ + ·))] = EP′ [F (X ′( · ∧ θ′))G(X ′(θ′ + ·))]
= EP′ [F (X( · ∧ θ))G(Y )]

= EP[F (X( · ∧ θ))EPX(θ)
[G(X)]].
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Thanks to the definition of Q we have

Q ∈ Px, Q|FXθ = P|FXθ . (2.2)

Furthermore, with the notation τK(X(θ+ ·)) = inf{t ≥ 0: X(θ+ t) /∈ K}, one derives the
identity

τK = θ ∧ τK + τK(X(θ + ·))1θ≤τK . (2.3)

Finally, the Q-conditional distribution of X(θ + ·) given FXθ equals the PX(θ)-distribution
of X(·). Since also Py is optimal for every y, we get

τK(X(θ + ·)) ≥ v(X(θ)), Q-a.s. (2.4)

Combining the definition of v(x), (2.2), (2.3), and (2.4), we get

v(x) ≥ Q- ess inf τK = Q- ess inf{θ ∧ τK + τK(X(θ + ·))1θ≤τK}
≥ Q- ess inf{θ ∧ τK + v(X(θ))1θ≤τK}
= P- ess inf{θ ∧ τK + v(X(θ))1θ≤τK}.

In the last step we used that θ ∧ τK and 1θ≤τK are FXθ -measurable (even though τK is
only an FX+ -stopping time) and hence have the same law under P as under Q due to (2.2).
This proves (2.1).

It remains to prove that

v(x) = P- ess inf{θ ∧ τK + v(X(θ))1θ≤τK} (2.5)

for any optimal P ∈ Px. We thus fix any optimal P ∈ Px. Using (2.3), we get

v(x) ≤ τK = θ ∧ τK + τK(X(θ + ·))1θ≤τK , P-a.s. (2.6)

Next, let {Qω}ω∈Ω be a regular conditional distribution of X(θ + ·) given FXθ ; see [41,
Theorem 1.3.4]. In particular, {Fω}ω∈Ω with Fω = Qω(τK ∈ ·) is then a regular con-
ditional distribution of τK(X(θ + ·)) given FXθ . We will now make use of conditional
essential infima, which were reviewed before the statement of the proposition. Specifi-
cally, we take the FXθ -conditional essential infimum in (2.6). Since θ ∧ τK and 1θ≤τK are
FXθ -measurable we get

v(x) ≤ θ ∧ τK + 1θ≤τKP- ess inf{τK(X(θ + ·)) | FXθ }
= θ ∧ τK + 1θ≤τK ess inf Fω

= θ ∧ τK + 1θ≤τKQω- ess inf τK , P-a.s.

One readily verifies that Qω ∈ PX(θ,ω) for P-a.e. ω. Hence Qω- ess inf τK ≤ v(X(θ, ω)) for
P-a.e. ω, and we deduce that v(x) ≤ θ ∧ τK + v(X(θ))1θ≤τK , P-a.s. This yields (2.5), and
completes the proof of the proposition.

It is not true in general that, under an optimal law, X(t) is located on the t-level
surface of the value function, even if the value function is smooth. The following example
illustrates this.

Example 2.3. Let K ⊂ R3 be the union of the line segment L = (−1, 1) × {(0, 0)} and
the shifted unit discs (1, 0, 0) + D and (−1, 0, 0) + D with D = {(0, y, z) : y2 + z2 ≤ 1}.
Thanks to Example 1.8, at points (±1, y, z) in the shifted discs, the value function is
v(±1, y, z) = 1 − y2 − z2. At points x̄ = (x, 0, 0) ∈ L, the value function is v(x̄) = 1.
Indeed, X evolves as a Brownian motion along L until it hits (±1, 0, 0). This happens
arbitrarily quickly, and at either point the value function is 1. Thus everywhere in K,
v(x, y, z) = 1 − y2 − z2. We see that for x̄ ∈ L, under any optimal P ∈ Px̄ one has
v(X(t)) > v(x̄) − t for all t > 0. Note that in this example, v is very smooth: on K it
coincides with a polynomial.
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Proposition 2.5 below can be viewed as an assertion about propagation of continuity:
if the value function is continuous on a certain set, then it is also continuous on a larger
set. Upper semicontinuity, which holds in general due to Proposition 2.2(ii), plays an
important role. Furthermore, a refined version of this result is crucial in Section 5, where
K will be a convex body. These results depend crucially on the following elementary
lemma, which allows us to exploit the fact that the value function is always upper
semicontinuous.

Lemma 2.4. Let C ⊂ Rd be a compact set, and let f : Rd → R be a function that is upper
semicontinuous at every point in C. If the restriction f |C is continuous, then there exists
a modulus ω such that

f(x) ≤ f(y) + ω(|x− y|) for all x ∈ Rd and y ∈ C.

Proof. It suffices to pick any ε > 0 and exhibit δ > 0 such that f(x) ≤ f(y) + ε holds
whenever x ∈ Rd, y ∈ C, and |x − y| < δ. Since f |C is continuous and f is upper
semicontinuous at C, for every y ∈ C there exists δy > 0 such that |f(y)−f(y′)| < ε/2 and
f(x) < f(y) + ε/2 whenever y′ ∈ C, |y−y′| < δy, x ∈ Rd, |y−x| < δy. The balls B(y, δy/2),
y ∈ C, cover C. By compactness, there is a finite subcover B(yi, ri), i = 1, . . . , n, where
ri = δyi/2. Define δ = min{r1, . . . , rn}. Suppose x ∈ Rd, y ∈ C, and |x − y| < δ. Then
y ∈ B(yi, ri) for some i ∈ {1, . . . , n}, and hence |x− yi| ≤ |x− y|+ |y − yi| < 2ri ≤ δyi and
|y − yi| < δyi . Therefore

f(x) < f(yi) +
ε

2
≤ f(y) + |f(yi)− f(y)|+ ε

2
< f(y) + ε,

as required.

Proposition 2.5. Let K be compact, and assume v|∂K is continuous. Then v|K is
continuous.

Proof. Since v is upper semicontinuous by Proposition 2.2(ii), since ∂K is compact, and
since v|∂K is continuous by assumption, Lemma 2.4 below gives a modulus ω such that

v(x) ≤ v(y) + ω(|x− y|) for all x ∈ Rd and y ∈ ∂K. (2.7)

Fix x̄, ȳ ∈ K and an optimal law P ∈ Px̄. Define the process Y = X − x̄ + ȳ and the
FX -stopping time θ = inf{t ≥ 0: Y (t) /∈ int(K)}. Note that P(θ <∞) = 1 by Example 1.8.
Since Y (θ) ∈ ∂K, we have from (2.7) that

v(X(θ)) ≤ v(Y (θ)) + ω(|x̄− ȳ|), P-a.s.

We now combine this with two applications of the dynamic programming principle of
Proposition 2.2(iii). We get

v(x̄) = P- ess inf{θ ∧ τK + v(X(θ))1θ≤τK}
≤ P- ess inf{θ + v(Y (θ))}+ ω(|x̄− ȳ|)
≤ v(ȳ) + ω(|x̄− ȳ|).

In the last inequality, the application of the dynamic programming principle uses that
the law of Y lies in Pȳ, that FY = FX , and that θ ≤ inf{t ≥ 0: Y (t) /∈ K}, P-a.s. Since
x̄, ȳ ∈ K were arbitrary, we deduce that v|K is uniformly continuous with modulus ω.

As mentioned in Section 1, some of the analysis in this paper can be cast in the
language of stochastic target problems. We end this section with a remark detailing this
connection. Since this is not used in the analysis to come, we do not give proofs.

EJP 29 (2024), paper 101.
Page 11/32

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1166
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Minimum curvature flow and martingale exit times

Remark 2.6. For any t ∈ [0,∞), the target reachability set when the target is K and the
controlled state dynamics is described by Px is defined by

V (t) = {x ∈ Rd : ∃P ∈ Px such that X(t) ∈ K, P-a.s.}.

This is a “time-to-maturity” version, in a weak formulation, of the definition in [33,
Section 2.4]. Clearly V (0) = K, and one can show that V (t) = ∅ for all t > diam(K)2/4.
One expects the following representation of the value function v in (1.2) in terms of the
target reachability set:

v(x) = sup{t ≥ 0: x ∈ V (t)}, x ∈ K.

This equality can be shown to hold if K is convex, but there are non-convex examples
where it fails. In such cases, one can work with the obstacle version of the stochastic
target problem, where the reachability set is defined by

W (t) = {x ∈ Rd : ∃P ∈ Px such that Xs ∈ K for all s ∈ [0, t], P-a.s.}.

This problem is discussed briefly in Section 7 of [33] and further in [10] (where the
terminology “obstacle version” is introduced). It is straightforward to show that

v(x) = sup{T ≥ 0: x ∈W (T )}, x ∈ K,

regardless of the geometry of K. A suitable weak-formulation version of the geometric
dynamic programming principle in Theorem 7.1 of [33] or Theorem 2.1 of [10] could
then be used to derive characterizations of W (t), and hence v(x), in terms of PDEs.

3 The value function is a viscosity solution

In this section we prove Theorem 1.1, the viscosity solution property, assuming
that d ≥ 2 and that K is compact but not necessarily convex. (We already know from
Proposition 2.2(ii) that v is upper semicontinuous.) A bounded function u : K → R is
called a viscosity subsolution of F (∇u,∇2u) = 1 in int(K) if

(x̄, ϕ) ∈ int(K)× C2(Rd) and

(u∗ − ϕ)(x̄) = maxK(u∗ − ϕ)

}
=⇒ F∗(∇ϕ(x̄),∇2ϕ(x̄)) ≤ 1,

where an upper (lower) star denotes upper (lower) semicontinuous envelope (restricting
the function to K). We say that u has zero boundary condition (in the viscosity sense) if

(x̄, ϕ) ∈ ∂K × C2(Rd) and

(u∗ − ϕ)(x̄) = maxK(u∗ − ϕ)

}
=⇒ F∗(∇ϕ(x̄),∇2ϕ(x̄)) ≤ 1 or u∗(x̄) ≤ 0.

The function u is said to be a viscosity supersolution in int(K) with zero boundary
condition if the same conditions hold with u∗, F∗, max, ≤ replaced by u∗, F ∗, min, ≥. It
is a viscosity solution in int(K) with zero boundary condition if it is both a viscosity sub-
and supersolution in int(K) with zero boundary condition.

To prove Theorem 1.1, we must establish the sub- and supersolution properties. We
carry out these tasks separately in the following two subsections. To do so, the following
description of the semicontinuous envelopes of F will be needed.

Lemma 3.1. The nonlinearity (1.3) satisfies F∗ = F , as well as F ∗(p,M) = F (p,M)

for p 6= 0, and F ∗(0,M) = −λ2(M)/2. Here λ1(M) ≥ λ2(M) ≥ · · · ≥ λd(M) are the
eigenvalues of M ∈ Sd. In particular, F is continuous on the set (Rd \ {0})× Sd.
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Proof. From the representation (1.5) we have F (p,M) = − 1
2 sup{y>My : |y| = 1, y>p = 0}.

One checks that this is continuous on the set (Rd \ {0})× Sd, and in particular equal to
F∗ and F ∗ there. Next, we claim that

− 1

2
λ1(M) ≤ F (p,M) ≤ −1

2
λ2(M) (3.1)

for all (p,M). The first inequality follows because sup{y>My : |y| = 1} = λ1(M). For the
second inequality, use the spectral theorem to write M = λ1(M)w1w

>
1 + · · ·+λd(M)wdw

>
d

for an orthonormal basis w1, . . . , wd of eigenvectors of M . Express p and y in this basis,
say p = π1w1 + · · ·+ πdwd and y = η1w1 + · · ·+ ηdwd, to get

F (p,M) = −1

2
sup

{
d∑
i=1

η2
i λi(M) :

d∑
i=1

η2
i = 1,

d∑
i=1

ηiπi = 0

}
.

If π1 = 0 one can take η1 = 1 and ηi = 0 for i ≥ 2 to get F (p,M) ≤ −λ1(M)/2.
Otherwise one can take η2 = (1 + (π2/π1)2)−1/2 and η1 = −η2π2/π1 to get F (p,M) ≤
−(η2

1λ1(M) + η2
2λ2(M))/2 ≤ −λ2(M)/2. In either case, the second inequality of (3.1)

holds.
For any fixedM , there is a sequence (pn,Mn)→ (0,M) with F∗(0,M) = limn F (pn,Mn).

Thus by (3.1) and since λ1(M) is continuous in M , we get

F (0,M) ≥ F∗(0,M) = lim
n
F (pn,Mn) ≥ −1

2
lim
n
λ1(Mn) = −1

2
λ1(M) = F (0,M).

This shows that F∗(0,M) = F (0,M). On the other hand, with w1 an eigenvector of M
with eigenvalue λ1(M), we have F (n−1w1,M) = −λ2(M)/2. Sending n → ∞ shows
that F ∗(0,M) ≥ −λ2(M)/2 and thus, by (3.1) and the continuity of λ2(M) in M , that
F ∗(0,M) = −λ2(M)/2.

For later use, let us also record the following observations. We let |A|op = sup|y|=1 |Ay|
denote the operator norm of a matrix A.

Lemma 3.2. If p ∈ Rd, M ∈ Sd, F ∗(p,M) > 0, and B is an d× d invertible matrix then

F ∗(p,M) ≤ |(BB>)−1|op F
∗(B>p,B>MB).

Proof. Assume first p 6= 0, so that F ∗(p,M) = F (p,M) by Lemma 3.1. Consider any ā ∈
Sd+ with āB>p = 0 and tr(ā) = 1. Then tr(BāB>) > 0. Define now a = (BāB>)/ tr(BāB>).
Then a ∈ Sd+, ap = 0, and tr(a) = 1. Thus from the definition of F ,

F ∗(p,M) = F (p,M) ≤ −1

2
tr(aM) = −1

2
tr(āB>MB)

1

tr(BāB>)
. (3.2)

Since F ∗(p,M) ≥ 0 we have tr(āB>MB) ≤ 0. Moreover, by expanding BāB> using
the spectral theorem and applying the definition of the operator norm, we obtain
1 = tr(BāB>(BB>)−1) ≤ tr(BāB>)|(BB>)−1|op. Thus (3.2) yields

F ∗(p,M) ≤ −1

2
tr(āB>MB)|(BB>)−1|op,

and taking infimum on the right-hand side gives the assertion, still for p 6= 0.
Consider now the case p = 0 and consider a sequence (pn,Mn) converging to (p,M)

with pn 6= 0 such that limn F (pn,Mn) = F ∗(p,M). Since for sufficiently large n we have
F (pn,Mn) > 0, we get from the case just established that

F ∗(p,M) = lim
n
F (pn,Mn) ≤ |(BB>)−1|op lim sup

n
F ∗(B>pn, B

>MnB)

≤ |(BB>)−1|opF
∗(B>p,B>MB),

as desired.
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Corollary 3.3. Let B be a d × d invertible matrix, viewed as a linear map. Define
K ′ = B−1(K) and w̄ = |(BB>)−1|op w ◦B. If, on K, w is a lower semicontinuous viscosity
supersolution of (1.4) with zero boundary condition, then so is w̄ on K ′.

Proof. The statement follows from the definition of viscosity supersolution, in conjunction
with Lemma 3.2.

3.1 Subsolution property

We now prove the subsolution property claimed in Theorem 1.1. Since v is upper
semicontinuous and F is lower semicontinuous, we may drop the stars in the definition
of subsolution.

Proof of the subsolution property. Fix x̄ ∈ K. If x̄ ∈ int(K) then v(x̄) > 0 by Example 1.8.
If x̄ ∈ ∂K and v(x̄) = 0 then the subsolution property holds for this point. Hence, without
loss of generality, we may assume that v(x̄) > 0.

Fix now ϕ ∈ C2(Rd) with ϕ(x̄) = v(x̄) and ϕ(x) ≥ v(x) for all x 6= x̄. We assume that
F (∇ϕ(x̄),∇2ϕ(x̄)) > 1 and work towards a contradiction. Without loss of generality, we
may assume ϕ(x) > v(x) for all x 6= x̄.

We claim that there exists ε ∈ (0,
√
v(x̄)/2) such that

for all (x, a) ∈ (K ∩Bε(x̄))× Sd+ with tr(a) = 1, we have

1 +
1

2
tr(a∇2ϕ(x)) > 0 implies ∇ϕ(x)>a∇ϕ(x) ≥ ε.

(3.3)

Indeed, if not, there exist εn → 0 and (xn, an) ∈ (K ∩ Bεn(x̄))× Sd+ such that tr(an) = 1

and ∇ϕ(xn)>an∇ϕ(xn) ≤ εn, but 1 + 1
2 tr(an∇2ϕ(xn)) > 0. In particular, xn → x̄ and,

after passing to a subsequence, we also have an → a for some a ∈ Sd+. Passing to the limit
yields tr(a) = 1, a∇ϕ(x̄) = 0, and 1 + 1

2 tr(a∇2ϕ(x̄)) ≥ 0. This contradicts the assumption
that 1− F (∇ϕ(x̄),∇2ϕ(x̄)) < 0, and proves the claim.

Note also that there exists some c > 0 such that for all (x, a) ∈ (K ∩Bε(x̄))× Sd+ with
tr(a) = 1 we have

1 +
1

2
tr(a∇2ϕ(x)) ≤ 1 +

1

2
λ1(∇2ϕ(x)) ≤ c <∞, (3.4)

where λ1(M) denotes the largest eigenvalue of a symmetric matrix M . The boundedness
comes from the continuity of λ1. Furthermore, we have

δ = min
K∩∂Bε(x̄)

(ϕ− v) > 0. (3.5)

Fix any optimal P ∈ Px̄. We then have a predictable Sd+-valued process (a(s))s≥0 such
that

〈X〉(t) =

∫ t

0

a(s)ds and tr(a(t)) = 1, dt⊗ dP-a.e.

Define the stopping time

θ = inf{t ≥ 0: X(t) /∈ Bε(x̄)} ∧ v(x̄).

Clearly θ ≤ τK by definition of v(x̄) and P[X(θ) ∈ K ∩ ∂Bε(x̄)] > 0 since ε <
√
v(x̄)/2

(recall Example 1.8).
We can now define the predictable set

J = {s ∈ [0, θ) : 1 +
1

2
tr(a(s)∇2ϕ(X(s))) > 0}.
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Next, the dynamic programming principle of Proposition 2.2(iii) with t ∧ θ in place of θ
yields

v(x̄) ≤ t ∧ θ + v(X(t ∧ θ)), P–a.s. (3.6)

Using (3.6) and then (3.5), we get

ϕ(x̄) = v(x̄) ≤ t ∧ θ + v(X(t ∧ θ)) ≤ t ∧ θ − δ1[θ,∞)(t)1{X(θ)∈K∩∂Bε(x̄)} + ϕ(X(t ∧ θ)).

Combining this with Itô’s formula, the definition of J , and (3.4), we get

δ1[θ,∞)(t)1{X(θ)∈K∩∂Bε(x̄)} ≤ t ∧ θ + ϕ(X(t ∧ θ))− ϕ(x̄)

=

∫ t∧θ

0

∇ϕ(X(s))>dX(s) +

∫ t∧θ

0

(1 +
1

2
tr(a(s)∇2ϕ(X(s))))ds

≤
∫ t∧θ

0

∇ϕ(X(s))>dX(s) + c

∫ t∧θ

0

1J(s)ds.

Now, define the process

X̃(t) = X(t) +
c

ε

∫ t

0

a(s)∇ϕ(X(s))1J(s)ds.

Due to (3.3) and the definition of J , we then have

δ1[θ,∞)(t)1{X(θ)∈K∩∂Bε(x̄)} ≤
∫ t∧θ

0

∇ϕ(X(s))>dX̃(s)

+

∫ t∧θ

0

(c− c

ε
∇ϕ(X(s))>a(X(s))∇ϕ(X(s)))1J(s)ds

≤
∫ t∧θ

0

∇ϕ(X(s))>dX̃(s). (3.7)

Consider now the exponential local martingale Z given by

dZ(t)

Z(t)
= − c

ε
1J(t)∇ϕ(X(t))>dX(t), Z0 = 1.

This is well-defined since ∇ϕ is bounded on the closure of Bε(x̄), which contains X(t) for
t ∈ J . An application of Itô’s formula shows that multiplying (3.7) by Z(t) gives a local
martingale, and hence a supermartingale since it is nonnegative. Therefore,

0 < δ E[1{X(θ)∈K∩∂Bε(x̄)}Z(θ)] ≤ E

[
Z(θ)

∫ θ

0

∇ϕ(X(s))>dX̃(s)

]
≤ 0,

using that θ < ∞, P-a.s., and P[X(θ) ∈ K ∩ ∂Bε(x̄)] > 0 for the first inequality. This
contradiction completes the proof of the subsolution property.

3.2 Supersolution property

The following result is used in the proof.

Lemma 3.4. Let m ∈ N with m ≥ 2, and let S be a nonzero skew-symmetric m × m
matrix and let x, x̄ ∈ Rm. Then there exists a weak solution to the SDE

dY (t) =
S(Y (t)− x̄)

|S(Y (t)− x̄)|
dW (t), Y (0) = x,

that satisfies |S(Y (t) − x̄)|2 = |S(x − x̄)|2 + t for all t ≥ 0. Here W denotes a one-
dimensional Brownian motion.
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Proof. Suppose first that S(x− x̄) 6= 0. Since the SDE has locally Lipschitz coefficients
on the set {y : S(y − x̄) 6= 0}, there is a local solution Y on [0, ζ), where ζ = inf{t ≥
0: S(Y (t)− x̄) = 0}. Itô’s formula and the skew-symmetry of S give

d|S(Y (t)− x̄)|2 = 2
(Y (t)− x̄)>S>S2(Y (t)− x̄)

|S(Y (t)− x̄)|
dW (t) + dt = dt, t < ζ,

so ζ =∞. Thus Y is actually a global solution, and |S(Y (t)− x̄)|2 = |S(x− x̄)|2 + t for all
t ≥ 0. This proves the case where S(x− x̄) 6= 0.

Suppose now that S(x − x̄) = 0, and select points xn ∈ Rm with xn → x and
S(xn − x̄) 6= 0. For each n, let Yn be a solution to the SDE with Yn(0) = xn. Since
tr〈Yn〉(t) ≡ t, the law of Yn − xn lies in P0, which is compact by Proposition 2.2(i). Thus
after passing to a subsequence, we have Yn − xn ⇒ Y − x for some limiting process Y
with Y (0) = x. Since the set C = {ω : |S(ω(t)− x̄)|2 = |S(ω(0)− x̄)|2 + t for all t ≥ 0} is
closed, and since Yn lies in C almost surely for all n, the Portmanteau lemma implies
that Y does as well. In particular, we have |S(Y (t)− x̄)|2 = t for all t ≥ 0.

Now, for every f ∈ C∞c (Rm), k ∈ N, 0 ≤ s1 ≤ · · · ≤ sk < s < t, and g ∈ Cb((Rm)k), we
have

E

[(
f(Yn(t))− f(Yn(s))−

∫ t

s

Lf(Yn(u))du

)
g(Yn(s1), . . . , Yn(sk))

]
= 0, (3.8)

where Lf(y) = 1
2 (y − x̄)>S>∇2f(y)S(y − x̄)/|S(y − x̄)|2 is the operator associated to the

given SDE. Since |S(Yn(u)− x̄)|2 = |S(xn − x̄)|2 + u, the integral in (3.8) can be written
as ∫ t

s

Lf(Yn(u))du =

∫ t

s

(Yn(u)− x̄)>S>∇2f(Yn(u))S(Yn(u)− x̄)

2(|S(xn − x̄)|2 + u)
du. (3.9)

The right-hand side of (3.9) is a bounded continuous function Gn of the trajectory of
Yn. Since S(xn − x̄) → S(x − x̄) = 0, the functions Gn converge uniformly to the
function G given by G(ω) =

∫ t
s
(ω(u) − x̄)>S>∇2f(ω(u))S(ω(u) − x̄)/(2u)du. Since the

limiting process Y again satisfies |S(Y (t)− x̄)|2 = t, we have G(Y ) =
∫ t
s
Lf(Y (u))du. We

may now pass to the limit in (3.8) and deduce that the corresponding equality holds
for Y in place of Yn. Since the set of all random variables g(Y (s1), . . . , Y (sk)) with
k, s1, . . . , sk, g as above generate σ(Y (u) : u ≤ s), we deduce that the process Mf (t) =

f(Y (t))− f(Y (0))−
∫ t

0
Lf(u, Y (u))du, t ≥ 0, is a martingale with respect to the filtration

generated by Y . Since f ∈ C∞c (Rm) was arbitrary, Y solves the martingale problem
associated with the given SDE. Equivalently, Y is a weak solution, as desired.

We now turn to the supersolution property claimed in Theorem 1.1.

Proof of the supersolution property. Fix x̄ ∈ K. If x̄ ∈ ∂K then there is nothing to prove
since v is nonnegative. Hence, we may assume throughout the proof that x̄ ∈ O, where
we write O = int(K).

Fix now ϕ ∈ C2(Rd) with ϕ ≤ v∗ and ϕ(x̄) = v∗(x̄). A standard perturbation argument
relying on test functions ϕ(x)− ε|x− x̄|2 lets us suppose that ϕ(x) < v∗(x) for all x 6= x̄,
and that the Hessian ∇2ϕ(x̄) is nonsingular. We consider three cases, depending on the
properties of ∇ϕ(x̄) and ∇2ϕ(x̄).

Case 1: Suppose ∇ϕ(x̄) 6= 0. Assume for contradiction that F ∗(∇ϕ(x̄),∇2ϕ(x̄)) < 1.
Since F ∗ equals F at this point, it follows from the representation (1.5) that there exists
σ̄ ∈ Rd such that

|σ̄| = 1, σ̄>∇ϕ(x̄) = 0, and 1 +
1

2
σ̄>∇2ϕ(x̄)σ̄ > 0.
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In particular, there exists a skew-symmetric d× d matrix S such that σ̄ = S∇ϕ(x̄); for
instance,

S =
1

|∇ϕ(x̄)|2
(σ̄∇ϕ(x̄)> −∇ϕ(x̄)σ̄>).

Furthermore, we can select ε > 0 such that the closure of Bε(x̄) is contained in O and

|S∇ϕ| ≥ 1

2
and |S∇ϕ|2 +

1

2
∇ϕ>S>∇2ϕS∇ϕ ≥ 0 on Bε(x̄). (3.10)

Fix any x ∈ Bε(x̄). Define
θ = inf{t ≥ 0: X(t) /∈ Bε(x̄)}, (3.11)

and let P be the law under which X satisfies

dX(t) =

(
S∇ϕ(X(t))

|S∇ϕ(X(t))|
1[0,θ)(t) + e11[θ,∞)(t)

)
dW (t), X0 = x, (3.12)

where W is a one-dimensional Brownian motion and e1 is the first canonical unit vector
(any other unit vector would also do). Note that P ∈ Px and θ ≤ τK , and thus θ < ∞,
P-a.s. by Lemma 1.9. Define

δ = min
∂Bε(x̄)

(v∗ − ϕ) > 0.

Using first that v ≥ v∗ ≥ ϕ + δ on ∂Bε(x̄); then Itô’s formula; and finally (3.10) along
with the fact that ∇ϕ>S∇ϕ = 0 by skew-symmetry of S, we get

θ + v(X(θ)) ≥ δ + θ + ϕ(X(θ))

= δ + ϕ(x) +

∫ θ

0

∇ϕ>S∇ϕ
|S∇ϕ|

(X(s))dW (s) +

∫ θ

0

(1 +
∇ϕ>S>∇2ϕS∇ϕ

2|S∇ϕ|2
(X(s)))ds

≥ δ + ϕ(x), P-a.s.

Combining this with the dynamic programming principle of Proposition 2.2(iii) yields

v(x) ≥ P- ess inf{θ + v(X(θ))} ≥ δ + ϕ(x).

Since x ∈ Bε(x̄) was arbitrary, we may send x → x̄ such that v(x) → v∗(x̄) = ϕ(x̄), and
deduce 0 ≥ δ. This contradiction proves the supersolution property when ∇ϕ(x̄) 6= 0.

Case 2: Suppose now that ∇ϕ(x̄) = 0 and ∇2ϕ(x̄) is negative definite. Assume
for contradiction that F ∗(0,∇2ϕ(x̄)) < 1, meaning that 1 + λ2(∇2ϕ(x̄))/2 > 0 thanks
to Lemma 3.1. We will replace ϕ by a simpler test function ϕ̃. To this end, define
γi = λi(∇2ϕ(x̄)) − η for i = 1, . . . , d, where η > 0 is small enough so that 1 + γ2/2 ≥ 0.
Let w1, . . . , wd be an orthonormal basis of eigenvectors of ∇2ϕ(x̄) corresponding to its
ordered eigenvalues. Define

M = γ2(w1w
>
1 + w2w

>
2 ) + γ3w3w

>
3 + · · ·+ γdwdw

>
d

and

ϕ̃(x) = v∗(x̄) +
1

2
(x− x̄)>M(x− x̄).

Then ϕ̃(x̄) = ϕ(x̄) = v∗(x̄), ∇ϕ̃(x̄) = ∇ϕ(x̄) = 0, and ∇2ϕ̃(x̄) = M ≺ ∇2ϕ(x̄). Thus ϕ̃ ≤ ϕ
on some ball Bε(x̄) with positive radius ε > 0, whose closure is contained in O. Define
the skew-symmetric matrix

S = w1w
>
2 − w2w

>
1 .

Fix any x ∈ Bε(x̄), and let P be a law under which X satisfies

dX(t) =
S(X(t)− x̄)

|S(X(t)− x̄)|
dW (t), X(0) = x,
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and |S(X(t) − x̄)|2 = |S(x − x̄)|2 + t, where W is a one-dimensional Brownian motion.
Such P exists by Lemma 3.4, and it is clear that P ∈ Px. Itô’s formula, the identity
MS = γ2S, and the skew-symmetry of S give

ϕ̃(Xt) = ϕ̃(x) +

∫ t

0

(X(s)− x̄)>MS(X(s)− x̄)

|S(X(s)− x̄)|
dW (s)

+
1

2

∫ t

0

(X(s)− x̄)>S>MS(X(s)− x̄)

|S(X(s)− x̄)|2
ds

= ϕ̃(x) +
γ2

2
t, t ≥ 0, P-a.s.

As in Case 1, let θ be given by (3.11) and define δ = min∂Bε(x̄)(v∗ − ϕ̃) > 0. We then get

θ + v(X(θ)) ≥ δ + θ + ϕ̃(X(θ)) ≥ δ + ϕ̃(x) +
(

1 +
γ2

2

)
θ ≥ δ + ϕ̃(x), P-a.s.,

using that 1 + γ2/2 ≥ 0. The contradiction v∗(x̄) ≥ δ + v∗(x̄) is now obtained as in Case 1
using the dynamic programming principle and a limiting argument.

Case 3: Suppose finally that ∇ϕ(x̄) = 0 and ∇2ϕ(x̄) has at least one strictly positive
eigenvalue with eigenvector ê, say. Fix ε0 > 0 such that the closure of Bε0(x̄) is contained
in O, and define

δ = min
∂Bε0 (x̄)

(v∗ − ϕ) > 0. (3.13)

Following [33] (specifically, Steps 6–7 in the proof of Theorem 4.1, see Section 8.2 in
their paper), we define perturbed test functions

ϕε(x) = ϕ(x) + εê>(x− x̄).

The minimum of v∗ − ϕε over the closure of Bε0(x̄) is at most v∗(x̄)− ϕε(x̄) = 0. Because
of (3.13), for every sufficiently small ε > 0, the minimum cannot be attained on the
boundary ∂Bε0(x̄), so must be attained at some xε ∈ Bε0(x̄). Moreover, since x̄ is a strict
minimizer of v∗ − ϕ, we have xε → x̄ as ε → 0. The argument in Step 7 of the proof of
Theorem 4.1 in [33], which makes use of the fact that ê is an eigenvector with strictly
positive eigenvalue, yields that

∇ϕε(xε) 6= 0 for all sufficiently small ε.

Therefore, the result proved in Case 1 above implies that F ∗(∇ϕε(xε),∇2ϕε(xε)) ≥
1. Sending ε → 0 gives F ∗(∇ϕ(x̄),∇2ϕ(x̄)) ≥ 1, which completes the proof of the
supersolution property.

4 Comparison and uniqueness

The main result of this section is the following comparison principle, which is used to
prove Theorem 1.2.

Theorem 4.1. Let d ≥ 2 and suppose K is compact. Assume there exist invertible affine
maps Tλ on Rd, parameterized by λ ∈ (0, 1), such that Tλ(K) ⊂ int(K) and limλ→1 Tλ = I.
Let u (w) be an upper (lower) semicontinuous viscosity subsolution (supersolution)
of (1.4), both u and w with zero boundary condition (in the viscosity sense). Then u ≤ w∗.

Before giving the proof, let us show how this implies Theorem 1.2. Let u and v be two
upper semicontinuous viscosity solutions of (1.4) with zero boundary condition. Applying
the comparison principle with w = v∗ yields u ≤ (v∗)

∗ ≤ v∗ = v. Letting u and v switch
places yields v ≤ u, and hence u = v.
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Example 4.2. If K is strictly star-shaped about the origin, meaning that λK ⊂ int(K)

for all λ ∈ (0, 1), then it clearly satisfies the assumption of Theorem 4.1. In particular,
this is the case if K is convex with 0 ∈ int(K). Here is an example of a body that is not
star-shaped but satisfies the assumptions of Theorem 4.1:

K = [−1, 1]2 ∩ {(x, y) : |y| ≤ 0.01 + x2}.

Indeed, one can use the linear maps Tλ(x, y) = (λx, λ2y). It is easily verified that K is
not star-shaped.

If K is star-shaped but not strictly star-shaped, then uniqueness among upper semi-
continuous viscosity solutions may fail, as the following example shows; see also [38,
Example 8.2].

Example 4.3. Let D be the centered unit disk inR2, and set K = (D+(1, 0))∪(D−(1, 0)).
Then K is star-shaped because λK ⊂ K for all λ ∈ (0, 1), but not strictly star-shaped
because int(K) is not connected. The value function is upper semicontinuous and
satisfies v(0, 0) ≥ 1, which can be seen by the argument in the proof of Proposition 5.1
below. However, it is easy to verify that the function v̄(x, y) = 1 − (|x| − 1)2 − y2 for
(x, y) ∈ K is a (continuous) viscosity solution of (1.4) with zero boundary condition. Since
v̄(0, 0) = 0 6= v(0, 0), this shows non-uniqueness.

We now give the proof of the comparison principle; see also [38, Section 9], [3,
Section 2 and Theorem 4.3], and [24, Theorem 4] for related uniqueness statements.

Proof of Theorem 4.1. We assume for simplicity that the Tλ are linear, not just affine;
we may then identify Tλ with its d × d matrix. Recall that | · |op denotes the operator
norm. By Corollary 3.3, the function wλ = |(TλT>λ )−1|op w ◦ Tλ is a lower semicontinuous
viscosity supersolution of (1.4) with zero boundary condition on K ′ = T−1

λ (K). By the
properties of Tλ, we have K ⊂ int(K ′). Theorem A.1 then yields u ≤ wλ on K for all
λ ∈ (0, 1). We thus obtain u ≤ lim supλ→1 wλ ≤ w∗ on K as desired.

5 Convex bodies

Our next goal is to prove continuity of the value function v when K ⊂ Rd (d ≥ 2) is a
convex body, i.e. a nonempty compact convex set, satisfying an additional assumption.
We first record the following simple property of the value function.

Proposition 5.1. Let K be a convex body. Then v is quasi-concave.

Proof. We must prove that v has convex super-level sets. Pick two distinct points
x, y ∈ K, and let L be the line passing through x and y. Fix any point z ∈ L, and let P
be the law under which X is a standard Brownian motion along L starting at z. Then
P ∈ Pz, and with θ = inf{t ≥ 0: X(t) ∈ {x, y}} the dynamic programming principle yields
v(z) ≥ P- ess inf{θ + v(X(θ))} ≥ v(x) ∧ v(y). This proves quasi-concavity.

Recall the following notions from convex geometry; see [31, 32] for more details. Let
G be any subset of Rd. The affine hull of G is denoted by aff(G), with dimension dim(G).
The relative interior ri(G) is the interior of G in aff(G), and the relative boundary is
rbd(G) = G \ ri(G). A face of a convex set K is a convex subset F ⊂ K such that every
(closed) line segment L ⊂ K with ri(L) ∩ F 6= ∅ satisfies L ⊂ F . In particular, every face
is closed. A face is called a boundary face if it is nonempty and not all of K. The relative
boundary rbd(K) is the union of all boundary faces. For every x ∈ K, there is a unique
face of K whose relative interior contains x. We call this face Fx. For each k = 0, . . . , d,
the k-skeleton is defined as in (1.8), namely

Fk = union of all faces F of K with dim(F ) ≤ k.
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In particular, F0 consists of all extreme points, F1 consists of all extreme points and line
segments, Fd−1 is the boundary of K, and Fd is K itself. For convenience we introduce
the notation

τF = inf{t ≥ 0: X(t) /∈ F} (5.1)

for the first exit time of X from a set F . This notation is consistent with (1.1).

Lemma 5.2. Let K be a convex body and consider a point x̄ ∈ K. For every P ∈ Px̄, we
have τK = τFx̄ , P-a.s.

Proof. We assume without loss of generality that dim(K) = d. If x̄ ∈ Fd \ Fd−1, then
Fx̄ = K, and the statement is obvious. Otherwise, there exists a supporting halfspace
H1 = {x ∈ Rd : a>1 x ≥ b1} with (a1, b1) ∈ Rd × R such that K ⊂ H1 and x̄ ∈ ∂H1. Set
K1 = K ∩ ∂H1 and note that dim(K1) < dim(K) = d and Fx̄ ⊂ K1. The scalar process
a>1 X

τK − b1 is a nonnegative P-martingale starting at zero, hence is identically zero.
Therefore τK1

= τK . If K1 = Fx̄, we are done. If not, we iterate the procedure and
fix another halfspace H2 = {x ∈ Rd : a>2 x ≥ b2} 6= H1 with (a2, b2) ∈ Rd × R such that
K1 ⊂ H2 and x̄ ∈ ∂H2. Setting K2 = K1 ∩ ∂H2 yields dim(K2) < dim(K1) and Fx̄ ⊂ K2.
As above, we again obtain τK2

= τK1
= τK . We proceed in the same way but, thanks to

the reduction in dimension, at most d times until Kk = Fx̄ for some k ∈ {1, . . . , d}. We
then have τFx̄ = τKk = . . . = τK1

= τK , which proves the statement.

Lemma 5.3. Let K be a convex body and consider a point x ∈ K. Then v(x) = 0 if and
only if dim(Fx) ≤ 1.

Proof. Suppose dim(Fx) = 0, so that Fx = {x} is a singleton. Then X leaves Fx immedi-
ately under any P ∈ Px, that is, τFx = 0. Suppose instead that dim(Fx) = 1, so that Fx is a
line segment. Then under any P ∈ Px, X evolves like a one-dimensional Brownian motion
along the line segment Fx, at least until τFx . Thus P- ess inf τFx = 0, since X reaches the
endpoints of Fx arbitrarily quickly with positive probability. By Lemma 5.2, we have
P- ess inf τK = 0. Therefore, in either case, we deduce that v(x) = 0. For the converse
direction, assume that dim(Fx) > 1. Then there exists a dim(Fx)-dimensional closed ball
B ⊂ Fx with radius r > 0. Since τB ≤ τK , Example 1.8 yields v(x) ≥ r2 > 0.

We now discuss continuity of the value function v. It was shown in Proposition 2.2(ii)
that the value function v is upper semicontinuous. Therefore, if v(x) = 0 at a point
x ∈ K, then v must be continuous at x. Of course, many convex bodies K have boundary
faces of dimension two or higher, in which case Lemma 5.3 shows that v will not be zero
everywhere on the boundary. Still, even in such cases, one might hope that v remains
continuous. Unfortunately, this is not true in general, as the following example shows.

Example 5.4. Let C = {(x, x(1−x), 0) : x ∈ (0, 1]} denote a half-open arc in the xy-plane.
Next let K0 ⊂ R3 be the closed convex hull of {(0, 0, 1), (0, 0,−1)} ∪ C. Then every point
x̄0 ∈ C is an extreme point of K0, but the origin (0, 0, 0) ∈ {(0, 0)} × [−1, 1] ⊂ K0 is not,
despite being a limit point of C. Now, define K = K0 × [−1, 1] ⊂ R4, which is compact
and convex. If x̄ = (x̄0, 0) ∈ C ×{0}, then dim(Fx̄) = 1, so v(x̄) = 0 by Lemma 5.3. On the
other hand, the boundary face containing the origin is the square F0 = {(0, 0)} × (−1, 1)2

with dim(F0) = 2, so that v(0) > 0. Since the origin is a limit point of C × {0}, we
conclude that v is not continuous on K, despite K being convex.

In Example 5.4, continuity of v fails because F1 is not closed. One might therefore
hope that continuity can be proved if F1, . . . ,Fd are closed. (Requiring F0 closed should
be, and is, unnecessary because v is zero on all of F1.) This condition indeed turns out
to imply continuity. The proof iterates over the k-skeletons, in each step making use
of the following refined version of the argument in Proposition 2.5. The argument is
probabilistic and rests on the dynamic programming principle.
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Lemma 5.5. Let K be a convex body, fix k ∈ {1, . . . , d}, and assume v|cl(Fk−1) is con-
tinuous. Then there is a modulus ω such that the following holds. If x̄, ȳ ∈ Fk,
dim(Fx̄) ≤ dim(Fȳ), A is an affine subspace containing Fx̄, and Q is an orthogonal
d× d matrix such that the map x 7→ Q(x− x̄) + ȳ maps A to aff(Fȳ), then

v(x̄) ≤ v(ȳ) + ω(c|Q− I|+ |x̄− ȳ|),

where c = diam(K) is the diameter of K.

Proof. Since v is upper semicontinuous by Proposition 2.2(ii), since cl(Fk−1) is compact,
and since v|cl(Fk−1) is continuous by assumption, Lemma 2.4 gives a modulus ω such that

v(x) ≤ v(y) + ω(|x− y|) for all x ∈ Rd and y ∈ cl(Fk−1). (5.2)

We now show that ω satisfies the claimed property. To this end, let x̄, ȳ, A, and Q be as
in the statement of the lemma, and select an optimal law P ∈ Px̄. Lemma 5.2 asserts
that X(t) ∈ Fx̄ for all t ≤ τK , P-a.s. By modifying the behavior after τK , which does not
affect the optimality of P, we may therefore assume that

X(t) ∈ A for all t ≥ 0, P-a.s. (5.3)

Consider the affine isometry Φ: A → aff(Fȳ) given by Φ(x) = Q(x − x̄) + ȳ. Using this
isometry, define

Y = Φ(X) and θ = inf{t ≥ 0: Y (t) /∈ ri(Fȳ)}.

Note that P(θ < ∞) = 1 by Example 1.8. Due to (5.3), Y takes values in aff(Fȳ), and
hence Y (θ) ∈ rbd(Fȳ) ⊂ Fk−1, P-a.s. Thus by (5.2) and monotonicity of ω we have, P-a.s.,

v(X(θ)) ≤ v(Y (θ)) + ω(|X(θ)− Y (θ)|)
= v(Y (θ)) + ω(|(I −Q)(X(θ)− x̄) + x̄− ȳ|)
≤ v(Y (θ)) + ω(c|I −Q|+ |x̄− ȳ|),

where c = diam(K). We now combine this with two applications of the dynamic program-
ming principle of Proposition 2.2(iii). This is permissible because θ is P-a.s. equal to an
FX -stopping time, despite not being an FX -stopping time itself in general. We get

v(x̄) = P- ess inf{θ ∧ τK + v(X(θ))1θ≤τK}
≤ P- ess inf{θ + v(Y (θ))}+ ω(c|I −Q|+ |x̄− ȳ|)
≤ v(ȳ) + ω(c|I −Q|+ |x̄− ȳ|).

In the last inequality, the application of the dynamic programming principle uses that
the law of Y lies in Pȳ due to the isometry property of Φ, that FY = FX , and that
θ ≤ inf{t ≥ 0: Y (t) /∈ K}, P-a.s. This completes the proof.

We now state the key propagation of continuity result, analogous to Proposition 2.5.
Part of the proof is convenient to phrase in terms of convergence of affine subspaces.
For affine subspaces An and A of Rd, we say that An → A if dim(An) = dim(A) for all
large n, there are points xn ∈ An and x ∈ A such that xn → x, and An − xn converges
to A− x as elements of the Grassmannian Gr(dim(A),Rd) of dim(A)-dimensional linear
subspaces of Rd. In this case, there exist orthogonal d× d matrices Qn such that Qn → I

and the map y 7→ Qn(y−x)+xn maps A to An for n sufficiently large. The Grassmannian
is known to be compact. Therefore, whenever the affine subspaces An contain points xn
that converge to some limit, it is possible to select a convergent subsequence of the An.
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Lemma 5.6. Let K be a convex body, fix k ∈ {1, . . . , d}, and assume v|cl(Fk−1) is continu-
ous. Then v|Fk is also continuous.

Proof. Since v is upper semicontinuous by Proposition 2.2(ii), it suffices to show that
v|Fk is lower semicontinuous. Since v|cl(Fk−1) is continuous by assumption, this amounts
to showing that

x̄ ∈ Fk, xn ∈ Fk \ cl(Fk−1), xn → x̄, v(xn)→ α ∈ R =⇒ v(x̄) ≤ α. (5.4)

Let therefore x̄, xn, α be as in (5.4). Define rn = dist(xn, rbd(Fxn)). This is the radius of
the largest k-dimensional ball centered at xn and contained in Fxn . We consider two
separate cases.

Case 1: Suppose lim infn→∞ rn = 0. After passing to a subsequence, we have rn → 0.
Then there exist points yn ∈ rbd(Fxn) such that |xn − yn| → 0. Thus yn ∈ Fk−1 and
yn → x̄, so that x̄ ∈ cl(Fk−1) and v(yn) → v(x̄). Moreover, applying Lemma 5.5 with
x̄ = yn, ȳ = xn, A = aff(Fxn), and Q = I then gives

v(xn) = v(yn) + v(xn)− v(yn) ≥ v(yn)− ω(|xn − yn|)→ v(x̄).

Thus v(x̄) ≤ α, proving (5.4) in this case.
Case 2: Suppose instead there exists r > 0 such that rn ≥ r for all n. Then each

Fxn contains a k-dimensional ball Bn of radius r centered at xn. After passing to a
subsequence, we have aff(Fxn) → A for some k-dimensional affine subspace A. Thus
there exist orthogonal d × d matrices Qn such that Qn → I and the affine isometry
Φn : x 7→ Qn(x − x̄) + xn maps A to aff(Fxn) for each n. Now, let B ⊂ A be the k-
dimensional ball of radius r centered at x̄. There is only one such ball, and we have
Bn = Φn(B) for all n. For any x ∈ B we thus have Φn(x) ∈ Fxn ⊂ K and Φn(x) → x.
Since K is closed, it follows that B ⊂ K. Thanks to [32, Theorem 2.1.2], B is contained in
the relative interior of a unique face of K. Because x̄ is in B, this face must be Fx̄. That is,
we have B ⊂ Fx̄, so that A = aff(B) ⊂ aff(Fx̄). On the other hand, dim(A) = k ≥ dim(Fx̄),
so in fact A = aff(Fx̄). We now apply Lemma 5.5 with x̄, ȳ = xn, A = aff(Fx̄), and Q = Qn
to get

v(x̄) ≤ v(xn) + ω(c|Qn − I|+ |x̄− xn|)

with c = diam(K). Sending n→∞ yields v(x̄) ≤ α and proves (5.4).

In view of Lemma 5.6, it is of interest to know whether the k-skeletons of a given
convex body are closed. For some values of k, closedness is automatic.

Lemma 5.7. Let K be a convex body. Then Fd, Fd−1, and Fd−2 are closed.

Proof. Both Fd = K and Fd−1 = ∂K are closed. To see that Fd−2 is closed, assume for
contradiction that there is a point x̄ ∈ cl(Fd−2) \ Fd−2. Then x̄ lies in ∂K but not in Fd−2,
so must lie in the relative interior of a (d− 1)-dimensional boundary face F . But then x̄
admits an open neighborhood contained in ri(F ) ∪ int(K) ∪Kc, and therefore cannot lie
in the closure of Fd−2. This contradiction finishes the proof.

Here is the main result of this section.

Theorem 5.8. Let K be a convex body with Fk closed for 1 ≤ k ≤ d − 3. Then v|K is
continuous.

Proof. By Lemma 5.3, v vanishes on F1 and is therefore continuous there. Continuity
on K now follows by repeated application of Lemma 5.6, making use of the closedness
hypothesis on the (k−1)-skeletons for 1 ≤ k−1 ≤ d−3, and Lemma 5.7 for k−1 ≥ d−2.

As an immediate corollary, several interesting cases are covered.
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Corollary 5.9. Each of the following conditions implies that v|K is continuous.

(i) All boundary faces of K have dimension zero or one.

(ii) dim(K) ∈ {0, 1, 2, 3}.
(iii) K is a (convex) polytope.

Proof. (i) and (ii) are immediate from Theorem 5.8. As for (iii), if K is a polytope, then
Fk is closed for all k = 0, . . . , d; see e.g. [28, Theorem 2.3] and the subsequent discussion.
Now apply Theorem 5.8.

Thanks to Lemma 5.3, if v|K is continuous then F1 is necessarily closed. Are the other
k-skeletons also closed in this case? If d = 4 the answer is yes thanks to Lemma 5.7.
In general the answer is no, as shown in Example 5.10 below. Continuity of the value
function therefore cannot be used to characterize closedness of the k-skeletons.

Example 5.10. Recall the set K0 ⊂ R3 from Example 5.4. Let K ′ = K0 ×R2 ⊂ R5 and
set

K = K ′ ∩ {(x, y, z, u, w) ∈ R5 : z2 + u2 + w2 ≤ 1}.

Then K is a convex body, and one can check that

F1 = {(x, y, z, u, w) ∈ R5 : (x, y, z) ∈ ∂K0, z
2 + u2 + w2 = 1};

F2 = {(x, y, z, u, w) ∈ R5 : (x, y, z) ∈ K0, z
2 + u2 + w2 = 1}

∪ {(x, y, 0, u, w) ∈ R5 : x ∈ (0, 1], y = x(1− x), u2 + w2 ≤ 1};
cl(F1) = F1;

cl(F2) = F2 ∪ {(0, 0, 0, u, w) : u2 + w2 ≤ 1}.

Since F1 is closed, Lemmas 5.3 and 5.6 imply that v|F2 is continuous. We claim that
v|cl(F2) is also continuous, but since F2 6= cl(F2) we must argue this directly at the
remaining points of cl(F2). Consider therefore such a point (0, 0, 0, u, w) ∈ cl(F2) with
u2 + w2 ≤ 1 and an approximating sequence of points (xn, yn, zn, un, wn) ∈ cl(F2). Then
we know that v(xn, yn, zn, un, wn) ≥ 1− z2

n − u2
n −w2

n for all n ∈ N thanks to Example 1.8.
Thus by upper semicontinuity, we have

1− u2 − w2 = v(0, 0, 0, u, w) ≥ lim sup
n

v(xn, yn, zn, un, wn)

≥ lim inf
n

v(xn, yn, zn, un, wn) ≥ 1− u2 − w2.

This yields continuity of v|cl(F2). Hence by Lemma 5.6, v|F3
is continuous. Lemma 5.7

yields that F3, F4, F5 = K are closed. Repeating the previous argument shows that v|K
is continuous, even though F2 is not closed.

6 Smooth value functions

The goal of this section is to prove Theorem 1.7. Let us first introduce some ter-
minology. Let K be a convex body. We say that a function f lies in C2(K) if f |K
is continuous, and the restriction f |ri(F ) to the relative interior of any face F of K
lies in C2(ri(F )), understood in the usual sense of twice continuous differentiability
on the dim(F )-dimensional open set ri(F ) ⊂ aff(F ). The gradient and Hessian com-
puted relative to this set are then denoted ∇Kf(x) = ∇(f |ri(F ))(x) ∈ aff(F − x) and
∇2
Kf(x) = ∇2(f |ri(F ))(x) for any x ∈ ri(F ). Thus ∇Kf(x) and ∇2

Kf(x) are the projections
of ∇f(x) and ∇2f(x) onto aff(F − x), whenever the latter exist. A critical point of f in F
is a point x ∈ ri(F ) where ∇Kf(x) = 0.

To prove Theorem 1.7, it is enough to prove the following.
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Theorem 6.1. Let d ≥ 2 and let K be a convex body with at most countably many
faces. Assume the value function v lies in C2(K). Assume also that in each face F of
dimension at least two, either v has no critical point, or v has one single critical point
which additionally is a maximum. Then for every x̄ ∈ K there is an optimal solution
P ∈ Px̄ under which v(X(t)) = v(x̄)− t for all t < τK .

Before proving Theorem 6.1 we show how it implies Theorem 1.7.

Proof of Theorem 1.7. The only part of Theorem 1.7 that does not follow directly from
Theorem 6.1 is (1.10). Let F1 = Fx̄ be the face that contains x̄ in its relative interior, and
consider a nested sequence of faces F1 ⊃ F2 ⊃ · · · ⊃ Fm such that dim(Fi) > dim(Fi+1)

for i = 1, . . . ,m−1. Let θ0 = 0 and define θi = inf{t ≥ θi−1 : X(t) /∈ ri(Fi)} for i = 1, . . . ,m.
Consider now the event A = {X(θi) ∈ ri(Fi+1) for i = 1, . . . ,m − 1 and θm = τK}. If A
has positive probability we may condition on A and get from Itô’s formula that

v(X(t))− v(x̄) =

m∑
i=1

(v(X(θi ∧ t))− v(X(θi−1 ∧ t))) =

m∑
i=1

∫ θi∧t

θi−1∧t
∇v(X(s))>dX(s) + V (t)

for t ≤ τK on the event A, where V is a finite variation process. That is, we get
v(X(t)) = v(x̄)+

∫ t
0
∇v(X(s))>dX(s)+V (t) for t ≤ τK onA. SinceK has at most countably

many faces and X cannot move to a higher-dimensional without also leaving K in view of
(the proof of) Lemma 5.2, the events of the form A are at most countably many and, up to
a nullset, form a partition of Ω. We deduce that v(X(t)) = v(x̄)+

∫ t
0
∇v(X(s))>dX(s)+V (t)

for t ≤ τK holds almost surely. Since v(X(t)) = v(x̄) − t for all t < τK by Theorem 6.1,
we see that the left-hand side of (1.10) is a martingale of finite variation and hence zero,
as claimed.

Observe that the assumption that v lies in C2(K) immediately implies that v|aff(F )

is a classical solution of (1.4) in ri(F ) away from the critical point, for every face F of
dimension at least two; just use v itself as test function in the definition of viscosity sub-
and supersolutions.

The proof of Theorem 6.1 proceeds by first constructing solution laws P under which
X behaves in the desired manner while inside any given face F of K. Then these laws
are pasted together as X reaches ever lower-dimensional faces, until it leaves K. To
implement this idea, for any face F of K with dim(F ) ≥ 2 and any point x ∈ ri(F ), we
define

P∗x = {P ∈ Px : v(X(t)) = v(x)− t for all t < τri(F ) and X(τri(F )) ∈ rbd(F )},

where τri(F ) = inf{t ≥ 0: X(t) /∈ ri(F )} is the first time X leaves the relative interior of
F . For points x ∈ Kc ∪ F1, we somewhat arbitrarily set P∗x = Px.

Let now the hypotheses of Theorem 6.1 be in force. Our first goal is to prove that P∗x
is nonempty for every x ∈ Rd. This rests on the following construction of a martingale
with increments in the kernel of a given location-dependent matrix.

Lemma 6.2. Let O ⊂ Rd be open and let H : Rd → Sd be a locally bounded measurable
map such that H|O is continuous and rankH(x) ≤ d− 1 for all x ∈ O. For every x̄ ∈ O
there exists a continuous martingale Y with Y (0) = x̄ and tr〈Y 〉(t) ≡ t such that∫ t

0

H(Y (s))d〈Y 〉(s) = 0, t < τO, (6.1)

where τO = inf{t ≥ 0: Y (t) /∈ O}.
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Proof. Define

a(x) =


I −H(x)+H(x)

d− rankH(x)
, x ∈ O

d−1I, x /∈ O

where H(x)+ is the Moore–Penrose generalized inverse of H(x). Thus if the spectral
decomposition of H(x) is H(x) = Qdiag(λ1, . . . , λr, 0, . . . , 0)Q> with λi 6= 0 for i = 1, . . . , r,
then H(x)+H(x) = Qdiag(1, . . . , 1, 0, . . . , 0)Q>, where the diagonal matrix contains r
ones. It follows that

a(x) � 0 and tr(a(x)) = 1 for all x ∈ Rd, and H(x)a(x) = 0 for all x ∈ O.

Unless H has constant rank on O, a is not continuous on O. Consider therefore
mollifications

an(x) =

∫
Rd
ϕn(x− y)a(y)dy,

where ϕn(x) = ndϕ(nx) for a positive mollifier ϕ supported on the centered unit ball.
Then an is continuous, positive semidefinite, and has unit trace. Thus there exist weak
solutions Yn of the SDEs

dYn(t) = an(Yn(t))1/2dW (t), Yn(0) = x̄,

where the positive semidefinite square root is understood, and W is d-dimensional
Brownian motion. The law of Yn lies in Px̄ for each n, so Proposition 2.2(i) shows
that after passing to a subsequence, Yn ⇒ Y for some limiting process Y whose law
again lies in Px̄. Since 〈Yn〉(t) =

∫ t
0
an(Yn(s))ds and the an are uniformly bounded, after

passing to a further subsequence we actually have (Yn, 〈Yn〉) ⇒ (Y,Q) in the space
C(R+,R

d × Sd) for some process Q. Since YnY >n − 〈Yn〉 is a martingale for each n, and
using the uniform bound on the quadratic variations, we may pass to the limit to deduce
that Y Y > − Q is also martingale, and hence Q = 〈Y 〉. Furthermore, by Skorohod’s
representation theorem (see [8, Theorem 6.7]), we may assume that the (Yn, 〈Yn〉) and
(Y, 〈Y 〉) are defined on a common probability space (Ω′,F ′,P′) and that, almost surely,
(Yn, 〈Yn〉)→ (Y, 〈Y 〉) in C(R+,R

d × Sd), that is, locally uniformly.
We now verify (6.1). We first claim that

if x ∈ O and xn → x then H(xn)an(xn)→ 0. (6.2)

To prove this, note that

H(xn)an(xn) =

∫
Rd
ϕn(xn − y)H(xn)a(y)dy =

∫
Rd
ϕn(xn − y)(H(xn)−H(y))a(y)dy.

Since a is bounded and the restriction H|O is continuous, arguing component by com-
ponent, we see that the right-hand side converges to zero. This proves (6.2). Now pick
t < τO. Then Y (s) ∈ O for all s ≤ t. Since (Yn, 〈Yn〉) → (Y, 〈Y 〉) locally uniformly, the
bounded convergence theorem and (6.2) yield that∫ t

0

H(Yn(s))d〈Yn〉(s) =

∫ t

0

H(Yn(s))an(Yn(s))ds→ 0.

On the other hand, the left-hand side converges to
∫ t

0
H(Y (s))d〈Y 〉(s). This yields (6.1)

and completes the proof of the lemma.

Remark 6.3. An examination of the proof of Lemma 6.2 shows that the process Y is of
the form dYt = σtdW

′
t for some Brownian motion W ′, where σt = a(Yt)

1/2 for all t such
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that a is continuous at Yt. By properties of the Moore–Penrose inverse, a is continuous
except on the boundaries of the sets {x ∈ O : rankH(x) = r}, r = 0, . . . , d− 1 and on ∂O.
Thus if Y can be shown to spend zero time in these sets, it is a bona fide weak solution
of dYt = a(Yt)

1/2dW ′t .

Proposition 6.4. Continue to assume v ∈ C2(K). Then P∗x̄ is nonempty for every x̄ ∈ Rd.

Proof. If x̄ ∈ Kc ∪ F1, then P∗x̄ = Px̄ and the statement is obvious. Below we prove the
statement for x̄ ∈ int(K); the case x̄ ∈ ri(F ) for a face F with dim(F ) ≥ 2 is identical
since all considerations are then restricted to aff(F ). So suppose x̄ ∈ int(K) and, initially,
also that x̄ is not the maximizer of v over K; in particular x̄ is not a critical point in K.

Since v lies in C2(K), it is a classical solution of (1.4) in int(K) away from the critical
point. As explained in Section 1, an alternative form of this equation at non-critical
points is (1.9). That is,

λmin

(
−1

2
P∇v(x)∇2v(x)P∇v(x),∇v(x)

)
= 1, (6.3)

where λmin(A, p) denotes the smallest eigenvalue of A corresponding to an eigenvector
orthogonal to p, and

P∇v(x) = I − ∇v(x)∇v(x)>

|∇v(x)|2
.

Let O = {x ∈ int(K) : ∇v(x) 6= 0} be the set of non-critical points in int(K). Define

H(x) =
1

2
P∇v(x)∇2v(x)P∇v(x) + I, x ∈ O,

and arbitrarily set H(x) = 0 for x /∈ O. It is clear that H is locally bounded measurable
and that H|O is continuous. Moreover, the equation (6.3) satisfied by v implies that H(x)

is singular, i.e. rankH(x) ≤ d− 1, for all x ∈ O. We may thus apply Lemma 6.2 to obtain
a martingale Y as in the statement of that lemma whose law we denote by P. Clearly
P ∈ Px̄, and due to (6.1) we have

H(X(t))a(t) = 0 on [0, τO), P-a.s.,

where a(t) satisfies 〈X〉 =
∫ ·

0
a(s)ds and tr(a(t)) = 1, and τO = inf{t ≥ 0: X(t) /∈ O}. As

a consequence, omitting the argument X(t) for readability, we have for t < τO that

0 = ∇v>Ha(t) =
1

2
∇v>P∇v∇2vP∇va(t) +∇v>a(t) = ∇v>a(t).

We thus have ∇v>a(t) = 0, which yields P∇va(t)P∇v = a(t). Consequently,

0 = tr(Ha(t)) = 1 + tr

(
1

2
P∇v∇2vP∇va(t)

)
= 1 +

1

2
tr(a(t)∇2v).

An application of Itô’s formula now gives

dv(X(t)) = ∇v(X(t))>dX(t) +
1

2
tr(a(t)∇2v(X(t)))dt = −dt.

These computations are valid for t < τO, so we deduce that v(X(t)) = v(x̄)− t for t < τO.
In particular, X(t) will not attain a critical point before τO, so in fact τO = τint(K), the
first exit time from int(K). Moreover, at the exit time, we have X(τint(K)) ∈ ∂K. This
shows that P ∈ P∗x̄ , as desired.

The case where x̄ is a critical point still remains. In this case, we select points xn ∈
int(K)\{x̄} with xn → x̄, and let Pn ∈ P∗xn . In particular, the laws Qn = ( · −xn)∗Pxn lie in
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P0, which is compact by Proposition 2.2(i). The Qn are thus subsequentially convergent
toward some Q ∈ P0. Along this subsequence, the Pn converge to P = ( · + x̄)∗Q ∈ Px̄.
Lemma 6.5 below shows that the properties v(X(t)) = v(X(0))− t for all t < τint(K) and
X(τint(K)) ∈ ∂K if τint(K) < ∞ carry over to weak limits. This shows that P ∈ P∗x , and
completes the proof of the proposition.

We now turn to the task of pasting solutions together as X reaches ever lower-
dimensional faces of K. This uses a measurable selection of laws from P∗x , which in turn
requires suitable closedness properties of these sets. The following closedness result
was already used in the proof of Proposition 6.4.

Lemma 6.5. Let F be a face of K and write σ = τri(F ) for brevity. Then the set

CF = {ω ∈ Ω: v(ω(t)) = v(ω(0))− t ∀ t < σ(ω), and ω(σ(ω)) ∈ rbd(F ) if σ(ω) <∞}

is closed in Ω. As a consequence, {P ∈ P(Ω): P(CF ) = 1} is closed in P(Ω). The same
conclusion holds if v is only known to be continuous, not necessarily C2(K).

Proof. It suffices to prove that CF is closed, as the second statement then follows from
the Portmanteau lemma. Pick ωn ∈ CF with ωn → ω in Ω. Define T = lim infn σ(ωn) ∈
[0,∞], and pass to a subsequence to get T = limn σ(ωn). Then v(ωn(t)) = v(ωn(0))− t and
ωn(t) ∈ F if n is sufficiently large, for all t < T . Since v is continuous and F closed, we get
v(ω(t)) = v(ω(0))− t and ω(t) ∈ F for all t < T . Provided σ(ω) ≤ T , this implies ω ∈ CF
and proves closedness. If T =∞ then of course σ(ω) ≤ T . If T <∞, then by definition of
T we have σ(ωn) ≤ T+ε for any ε > 0 and all large n. Thus mint≤T+ε dist(ωn(t), rbd(F )) =

0 for all large n. By continuity we get mint≤T+ε dist(ω(t), rbd(F )) = 0, and hence σ(ω) ≤
T + ε. Since ε > 0 was arbitrary, this yields σ(ω) ≤ T as required.

The following lemma produces the required measurable selection. This is actually
the only step that uses that K has countably many faces. If the lemma could be
established without assuming this, the assumption could be dropped from Theorem 6.1
(and Theorem 1.7). In fact, the current proof works for the more general situation where
K has countably many faces of dimension two and higher, and arbitrarily many faces of
dimension zero and one.

Lemma 6.6. Assume K has countably many faces, and continue to assume v ∈ C2(K).
Them there is a measurable map x 7→ Px from Rd to P(Ω) such that Px ∈ P∗x for all x.

Proof. We apply the selection theorem of Kuratowski and Ryll-Nardzewski; see [1,
Theorem 18.13]. This requires that the set-valued map x 7→ P∗x be weakly measurable
with nonempty closed values. By Proposition 6.4, P∗x is nonempty for all x. For x ∈ Kc∪F1,
P∗x = Px is closed (even compact) by Proposition 2.2(i). If F is a face ofK with dim(F ) ≥ 2

and x ∈ ri(F ), then
P∗x = Px ∩ {P ∈ P(Ω): P(CF ) = 1},

which is closed by Lemma 6.5. So P∗x is closed for all x.
We now argue weak measurability, initially for the map x 7→ Px. We must show that

for every open subset U ⊂ P(Ω), the set {x ∈ Rd : Px ∩ U 6= ∅} is measurable; see [1,
Definition 18.1]. But since Px = ( · + x)∗P0, the condition Px ∩ U 6= ∅ means that there
exists P ∈ P0 such that ( · + x)∗P ∈ U . If this holds for some x ∈ Rd, then it also holds
for all y in a neighborhood of x since U is open and x 7→ ( · + x)∗P is continuous. Thus
{x ∈ Rd : Px ∩ U 6= ∅} is actually open, and in particular measurable. So x 7→ Px is
weakly measurable.

Furthermore, the set-valued map x 7→ ϕ(x) specified by ϕ(x) = P(Ω) for x ∈ Kc ∪ F1

and ϕ(x) = {P ∈ P(Ω): P(CF ) = 1} for x ∈ ri(F ) is constant on Kc and on each face of
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K. Since K has countably many faces, we deduce that x 7→ ϕ(x) is weakly measurable.
By [1, Lemma 18.4(3)], it now follows that x 7→ P∗x = Px ∩ ϕ(x) is weakly measurable, as
required.

Proof of Theorem 6.1. For k = 2, . . . , d, define Uk = Fk \ Fk−1. Equivalently, Uk is the
(possibly empty) union of the relative interiors of all k-dimensional faces ofK. We work on
the d-fold product Ωd = C(R+,R

d)d of the canonical path space, and let (W,Y 2, . . . , Y d)

be the (Rd)d-valued coordinate process. Let x 7→ Px ∈ P∗x be the measurable map
given by Lemma 6.6; we will use it to specify the law of Y 2, . . . , Y d. Define random
times τk−1 = inf{t ≥ 0: Y k(t) /∈ Uk}. Given x̄ ∈ K, let Y d have law Px̄. Next, if the
law of (Y d, . . . , Y k) has been specified for k ≥ 3, then specify the law of Y k−1 to be
conditionally independent of (Y d, . . . , Y k) given Y k(τk−1), which is finite almost surely,
with law Y k−1 ∼ PY k(τk−1). That is, the regular conditional distribution of Y k−1 given
Y k(τk−1) = y is Py. This procedure specifies the law of Y 2, . . . , Y d. Finally, let W have
the law of an independent standard d-dimensional Brownian motion. Now, set τd = 0 and
define a process Y by

Y (t) = Y k(t− (τk + · · ·+ τd)), t ∈ [τk + · · ·+ τd, τk−1 + · · ·+ τd),

for k = 2, . . . , d, and

Y (t) = Y 2(τ1) + d−1/2W (t− (τ1 + · · ·+ τd)), t ≥ τ1 + · · ·+ τd.

Thus Y first follows the dynamics of Y d while in the interior of K (a possibly empty time
interval); then Y follows the dynamics of Y d−1 while inside the relative interior of a
(d−1)-dimensional face, and so on, until it reaches a face of dimension zero or one. From
that point onwards, it follows a Brownian motion, scaled so that the quadratic variation
has unit trace. Since the law of each Y k is chosen from the sets P∗x , it is straightforward
but somewhat tedious to make this intuitive description rigorous. One also finds that Y is
a continuous martingale, starting at Y (0) = x̄ and with tr〈Y 〉(t) ≡ t, and (using that v|K
is continuous) such that v(Y (t)) = v(x̄)− t for all t < τK\F1

= inf{t ≥ 0: Y (t) /∈ K \ F1}.
Moreover, Y does not leave K before reaching F1, but then leaves K immediately since
its dynamics switches to that of a scaled standard Brownian motion in d ≥ 2 dimensions.
In particular, τK\F1

= τK , and we have τK = v(x̄) − v(Y (τK)) = v(x̄), using also that
v = 0 on F1. The law P of Y is therefore the required optimal law.

A A useful maximum principle

The proof of Theorem 4.1 relies on the following maximum principle, which holds for
arbitrary compact sets K. The boundary conditions in its statement should be understood
in the viscosity sense.

Theorem A.1. Let d ≥ 2 and suppose K is compact. Let u (w) be an upper (lower)
semicontinuous viscosity subsolution (supersolution) of (1.4). Then there exists x̄ ∈ ∂K
that achieves maxK(u − w). Moreover, if u in addition satisfies the zero boundary
condition, and if w is a lower semicontinuous viscosity supersolution of (1.4) with zero
boundary condition on some compact set K ′ such that K ⊂ int(K ′), then u ≤ w on K.

Proof. We proceed in several steps.
1. It is enough to prove the two assertions with u replaced by δu, for each δ ∈ (0, 1).

Indeed, if δu ≤ w for all δ ∈ (0, 1) then also u ≤ w, yielding the second assertion. For the
first assertion, assume we have x̄δ ∈ ∂K that achieves maxK(δu− w), for each δ ∈ (0, 1).
Then there exists a sequence (δn) such that limn δn = 1 and limn x̄δn = x̄ for some x̄ ∈ ∂K.
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Then for all x ∈ K we have

δnu(x)− w(x) ≤ δnu (x̄δn)− w (x̄δn) = u (x̄δn)− w (x̄δn)− (1− δn)u (x̄δn) .

Sending n to infinity and using upper semicontinuity of u−w then shows that x̄ achieves
maxK(u− w) as required. Now, δu is a subsolution of the equation

F (∇u,∇2u) = δ, (A.1)

and if u satisfies the zero boundary condition, then so does δu. Thus, by writing u instead
of δu, we may and do assume throughout the proof that u itself is a subsolution of (A.1),
where δ ∈ (0, 1) is arbitrary but fixed.

2. For the first assertion, for every ε > 0, define

Φε(x, y) = u(x)− w(y)− 1

ε4
|x− y|4

for (x, y) ∈ K ×K, and let (xε, yε) maximize Φε over K ×K. Then we have

Φε(xε, yε) ≥ max
x∈K

Φε(x, x) = max
K

(u− w). (A.2)

By compactness, (xε, yε) converges to some (x̄, ȳ) ∈ K ×K as ε→ 0 along a suitable sub-
sequence; in the following, ε is always understood to belong to this subsequence. Since
ε−4|xε− yε|4 ≤ maxK u−minK w−maxK(u−w), we actually have x̄ = ȳ. Moreover, (A.2)
yields

max
K

(u− w) ≤ lim sup
ε→0

Φε(xε, yε) ≤ lim sup
ε→0

(u(xε)− w(yε)) ≤ u(x̄)− w(x̄),

by upper semicontinuity of u and of −w. Hence x̄ maximizes u−w over K. Thus, to show
the first assertion it suffices to argue that (xε, yε) ∈ int(K)× int(K) is not possible. This
forces x̄ ∈ ∂K as desired.

For the second assertion, we define Φε as above, but now on the larger set K×K ′. Let
(xε, yε) again denote the corresponding maximizers, which converge along a subsequence
to some (x̄, ȳ) ∈ K ×K ′. We again obtain x̄ = ȳ, thus ȳ ∈ K ⊂ int(K ′), and therefore
yε ∈ int(K ′) for all sufficiently small ε. We will use this to argue that u cannot satisfy the
viscosity inequality at xε. This forces xε ∈ ∂K and, due to the boundary condition, u(xε) ≤
0. Together with nonnegativity of w (see Lemma A.2 below) this yields Φε(xε, yε) ≤ 0 and
thus, thanks to (A.2), maxK(u− w) ≤ 0. This is the second assertion.

3. Both assertions can now be argued by contradiction in the same manner: for
any fixed small ε > 0, we assume that both u and w simultaneously satisfy the viscosity
inequalities at xε and yε, respectively, and use this to derive a contradiction. (Indeed, to
prove the first assertion we had to exclude that (xε, yε) ∈ int(K)× int(K), while for the
second assertion we had to exclude that u satisfies the viscosity inequality at xε.)

4. Let us work under the assumptions of Step 3. Define

ζ(x, y) =
1

ε4
|x− y|4.

To simplify notation, write

p = ∇xζ(xε, yε) = 2ε−4|xε − yε|2(xε − yε),
H = ∇2

xxζ(xε, yε) = 2ε−4|xε − yε|2I + 4ε−4(xε − yε)(xε − yε)>.

Then ∇yζ(xε, yε) = −p, ∇2
xyζ(xε, yε) = −H, and ∇2

yyζ(xε, yε) = H. We also define

A = ∇2ζ(xε, yε) =

(
H −H
−H H

)
. (A.3)
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We now claim that p 6= 0. Suppose for contradiction that p = 0. Then xε = yε,
∇yζ(xε, yε) = 0, and ∇yyζ(xε, yε) = 0. Since yε minimizes y 7→ w(y) + ζ(xε, y) over K
(respectively, over K ′), the supersolution inequality states that 0 = F ∗(0, 0) ≥ 1. This
contradiction confirms that p 6= 0.

Ishii’s lemma, see [15, Theorem 3.2], now gives M,N ∈ Sd such that

(p,M) ∈ J2,+

K u(xε), (−p,N) ∈ J2,−
K w(yε),

and (
M 0

0 −N

)
� A+A2. (A.4)

Pre- and post-multiplying (A.4) by vectors of the form (z, z) and using (A.3) shows that
M � N . Now we use the fact that (p,M) lies in the limiting superjet of the subsolution u
at xε, the ellipticity of F , Lemma 3.1, the fact that p 6= 0, and finally that (−p,N) lies in
the limiting subjet of the supersolution w at yε to get

δ ≥ F (p,M) ≥ F (p,N) = F (−p,N) = F ∗(−p,N) ≥ 1.

This is the required contradiction, which concludes the proof.

We used the following observation in the previous proof. The boundary condition in
its statement should be understood in the viscosity sense.

Lemma A.2. If w is a lower semicontinuous viscosity supersolution of (1.4) with zero
boundary condition on some compact K ⊂ Rd with d ≥ 2 then w ≥ 0.

Proof. The constant test function ϕ ≡ minK w certifies that w ≥ 0. Indeed, if x̄ minimizes
w over K and w(x̄) < 0, then the supersolution inequality holds regardless of whether
x̄ lies in the interior or on the boundary. Thus 0 = F ∗(∇ϕ(x̄),∇2ϕ(x̄)) = F ∗(0, 0) ≥ 1, a
contradiction. So w(x̄) ≥ 0.
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