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Abstract

We study the asymptotic organization among many optimizing individuals interacting

in a suitable “moderate" way. We justify this limiting game by proving that its solution

provides approximate Nash equilibria for large but finite player games. This proof

depends upon the derivation of a law of large numbers for the empirical processes

in the limit as the number of players tends to infinity. Because it is of independent

interest, we prove this result in full detail. We characterize the solutions of the limiting

game via a verification argument.

Keywords Interacting populations · Moderate interaction · Optimal control ·
Mean-field type game

Mathematics Subject Classification 49N90 · 60G09 · 60H30 · 60K35

1 Introduction

The theory of Mean Field Games (MFGs, henceforth) began with the pioneering works

of Lasry and Lions [17] and Huang et al. [13] to describe the asymptotic organization

among a large population of optimizing individuals interacting with each other in a
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mean-field way and subject to constraints of economic or energetic type. The mean-

field interaction enables to reduce the analysis to a control problem for one single

representative player, interacting with, and evolving in, the environment created by

the aggregation of the other individuals. Intuitively, the system’s symmetries will force

the players to obey a form of law of large numbers and satisfy a propagation of chaos

phenomenon as the size of the population grows. The literature on MFGs is rapidly

growing and the application of MFG theory is catching on in areas as diverse as

Economics, Biology, Physics, and Machine Learning; hence, it is impossible to give

an exhaustive account of the activity on the topic. For this reason, we refer the reader

to the lecture notes by Cardaliaguet [3] and the two-volume monograph by Carmona

et al. [6] for a comprehensive presentation of the MFG theory and its applications; the

first reference presents the theory from an analytic perspective, whereas the second

one from a probabilistic point of view.

However, in many practical situations (e.g., in evacuation planning and crowd man-

agement at mass gatherings), it stands to reason that a single person interacts only

with the few people in the surrounding environment, i.e., each individual has her/his

space. A possible mathematical way to describe this type of interaction is through

an appropriate rescaling of a given reference function V , where V is a sufficiently

regular probability density function; see, e.g., Oelschläger [21] and Morale et al. [19].

Denoting by x and y the positions of two individuals (out of a population of N ) in a

d-dimensional space, then their interaction can be modelled by:

N−1V N (x − y),

where

V N (z) = Nβ V (Nβ/d z). (1.1)

The parameter β ∈ (0, 1) describes how V is rescaled for the total number N of

individuals and expresses the so-called moderate interaction among the individuals;

see Oelschläger [21]. On the other hand, β = 0 expresses an interaction of mean-

field type, whereas β = 1 generates the so-called nearest-neighbour interaction. This

paper aims to analyze the asymptotic organization among many optimizing individuals

moderately interacting with each other. To the best of our knowledge, the study of this

type of asymptotic organization has been performed only in Aurell and Djehiche

[1] and Cardaliaguet [4]. In the former work, authors introduced models for crowd

motion, although in a more simplified setting. Indeed, they account for the moderate

interaction among the individuals in the cost functional only, although they consider

that the position of each pedestrian (in a crowd of N pedestrians) belongs to Rd . Also,

in Cardaliaguet [4] only the payoff of a player depends in an increasingly singular

way on the players which are very close to her/him. In addition, to avoid issues related

to boundary conditions or problems at infinity, in the latter work data are assumed

periodic in space. The fact that data are assumed periodic in space and (mostly) that the

moderate interaction enters only in the cost functional has a consequence in proving the

existence and uniqueness of solutions of the Partial Differential Equation (PDE) MFG

system associated with our model; see the discussion here below in the introduction

and Sect. 4.
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The model The motion of a single-player X
N ,i
t , t ∈ [0, T ], in a population of N

individuals is assumed to be modelled as

X
N ,i
t = X0

N ,i +
∫ t

0

(
αN ,i (s) + b

(
X N ,i

s ,
1

N

N∑

j=1

V N (X N ,i
s − X

N , j
s )

))
ds

+ W
N ,i
t , t ∈ [0, T ], i ∈ {1, . . . , N } .

(1.2)

Here, αN .= (αN ,1, . . . , αN ,N ) is a vector of strategies that we will specify below, b is

a given deterministic function and W N ,1, . . . , W N ,N are independent d-dimensional

Wiener processes defined on some filtered probability space (�,F , (Ft )t∈[0,T ], P).

We will denote by XN
t

.= (X
N ,1
t , . . . , X

N ,N
t ) the vector of the positions at time t of

the N individuals. In addition, X0
N ,i , i = 1, . . . , N , are Rd -valued independent and

identically distributed (i.i.d) random variables, independent of the Wiener processes,

such that X0
N ,i d∼ ξ (notice that “

d∼ " stands for “distributed as") where ξ is an

auxiliary random variable with law μ0 with density p0, i.e. μ0 is absolutely continuous

with respect to (w.r.t) the Lebesgue measure. Eq. (1.2) says that each individual i

partially controls its velocity through her/his strategy αN ,i . However, the velocity

depends on her/his position and on the other individuals’ in a neighbourhood of X N ,i .

Indeed, the functions V N ( · ) (see Eq. (1.1)) are mollifiers (see Appendix A for a

precise definition) describing the intermediate regime between the mean-field and

the nearest-neighbour interaction. For large N they have a relatively small support

and therefore the individual i interacts, via the term V N (X
N ,i
s − X

N , j
s ), only with

few players, indexed by j , in a neighbourhood of X
N ,i
s . In particular, the rate of

convergence to zero of the support of V N will be such that the number of players i

is still very large, in the limit as N tends to infinity, but very small compared to the

full population size N . It is worth mentioning that it is also possible to let a common

disturbance affect all the individuals [13], commonly referred to in the MFGs literature

as common noise; we refer to the second volume by Carmona et al. [6] for an overview

of this theory. The common disturbance could be used—as also pointed out by Aurell

and Djehiche [1]—to model an evacuation during, for instance, a fire or a earthquake.

We leave, however, the study of this case for future research.

Each player acts to minimize her/his own expected costs according to a given

functional over a finite time horizon [0, T ]. More precisely, player i evaluates a strategy

vector αN according to the following cost functional

J N
i (αN )

.= E

⎡
⎣
∫ T

0

(
1

2
|αN ,i (s)|2 + f

(
X N ,i

s ,
1

N

N∑

j=1

V N (X N ,i
s − X

N , j
s )

))
ds + g(X

N ,i
T )

⎤
⎦,

(1.3)

where X N
t is the solution of Eq. (1.2) under αN . Notice that the cost coefficients f and g

are the same for all players. The cost functional J N
i (αN ) can be interpreted practically

in the following way; see, also, Aurell and Djehiche [1]. The first term penalizes the

usage of energy, the second term, instead, the trajectories passing through densely
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crowded areas. Finally, the final cost g( · ) penalizes deviation from specific target

regions. More details on the setting with all the technical assumptions will be given

in the next sections.

For the class of games just introduced, we focus on the construction of approxi-

mate Nash equilibria [17] for the game with a finite number of individuals (i.e., for the

N -player game) via the solution of the corresponding control problem for one single

representative player (i.e., through the solution of the corresponding MFG). Hereafter,

we will use the words “intermediate interactions" and “moderate interactions" inter-

changeably.

Our main contributions are as follows:

• We introduce the limit model corresponding to the above N -player games as N

tends to infinity, namely the MFG of moderate interaction. We formulate both the

PDE approach to MFGs with moderate interaction and the stochastic formulation;

see Definitions 4.1 and 4.7, respectively.

• We prove that the PDE system (or the equivalent mild formulation; see Lemma

4.2) admits a solution (0,∞); see Theorem 4.4. Also, we prove that the same

system admits a unique solution for T sufficiently small; see Theorem 4.5.

• We prove the existence of a solution in the feedback form to the MFG of moderate

interaction; see Theorem 4.8.

• We derive, in the limit as the number of different processes in Eq. (1.2) tends to

infinity, law of large numbers for the empirical processes, and we characterize the

limit dynamics; see Theorem 5.1.

• We prove that any feedback solution of the MFG induces a sequence of approximate

Nash equilibria for the N -player games with approximation error tending to zero

as N tends to infinity; see Theorem 6.1.

The MFG system of PDEs associated with our model takes the form of a backward

Hamilton–Jacobi equation coupled with a forward Kolmogorov equation. In particular,

it is a second-order MFG system with local coupling or of local type. Many authors

have studied this type of system in the last years; see Lasry and Lions [16, 17], Porretta

[23], Gomes et al. [12], Cardaliaguet and Porretta [5]. However, the framework in these

works deviates from ours’ for two main reasons. First, the authors consider that the

state space is the d-dimensional torus Td and not all the space Rd . Second, and most

importantly, they do not consider dependence on the local density of measure in the

dynamics; see the term b(x, p(t, x)) in the first equation in Eq. (4.1). We prove1 the

existence of solutions of the PDE MFG system for any T > 0 via the Brouwer-

Schauder fixed point theorem. Instead, we will not be able to prove the uniqueness

of such solutions under the standard monotonicity assumption for any T > 0 but

only for small T via the contraction principle, the difficulty arising precisely from the

dependence on the local density in the dynamics.

The proof of the existence of a MFG solution is based on a verification argument. We

identify the unique solution of the PDE system of the MFG with moderate interaction

with the feedback control solution of the MFG in its stochastic formulation. In our

case, the value function of the representative player is not “regular enough", and so,

1 The authors warmly thank one of the two anonymous Referees for her/his suggestion to look at the Hopf-

Cole reduction, to prove global in time existence, because of the quadratic structure of our Hamiltonian.
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in order to apply Itô formula, some work based on standard mollification arguments

will be needed; see Appendix 1, Sect. 1.

The proof of Theorem 5.1 on the characterization of the limit dynamics of the

empirical processes is one of the main achievements of this work. It represents a ver-

sion of the superb result of Oelschläger [21] on the study of the macroscopic limit of

moderately interacting diffusion particles. Contrary to us, Oelschläger [21] does not

assume the absolute continuity of μ0 with respect to the Lebesgue measure. Admit-

tedly, this would be an additional technicality that would not add to the present work’s

conceptual advancements. On the other hand, we can show the validity of Theorem 5.1

under a more general assumption on the SDE drift in Eq. (1.2). In Oelschläger [21] a

more strict Lipschitz condition on the drift (see Eq. (1.5) in his work) is imposed; this

condition is used to prove the uniqueness of the solution of a certain (deterministic)

equation that characterizes the limit dynamics of the empirical processes. We believe

that this paper’s assumptions lead to a much more comprehensive understanding of

the problem at hand. Because it is of independent interest, we will devote the entire

Sect. 5 to the proof of the propagation of chaos result.

The proof of Theorem 6.1 of approximate Nash equilibria is based on weak conver-

gence arguments and controlled martingale problems, whose use has a longstanding

tradition; see, for instance, Funaki [11], Oelschlager [20], Huang et al. [13], as well

Carmona et al. [6], Section 6.1 of the second volume. However, contrary to those

works, we have to study the passage to the many player (particle) limit in the presence

of a deviating player, which destroys the prelimit systems’ symmetry. We will use an

argument based on relaxed controls.

Structure of the paper The rest of this paper is organized as follows. Section

2 introduces some terminology and notation and sets the main assumptions on the

dynamics and on the cost functionals. Section 3 describes the setting of N -player

games with moderate interaction, while Sect. 4 introduces the corresponding MFG.

In Sect. 5, one of the main results, namely the derivation of a law of large numbers

for the empirical processes, is stated and proved. Section 6 contains the result on the

construction of approximate Nash equilibria for the N -player game from a solution

of the limit problem. The technical results used in the paper are all gathered in the

Appendix, including the aforementioned existence and uniqueness result for the PDE

system and the proof of the existence of a MFG solution in Appendix 1, and bounds on

Hölder-type semi-norm to prove the results of Sect. 5 in Appendix 1 and Appendix 1.

2 Preliminaries and Assumptions

Let d ∈ N be the dimension of the space of private state and of the noise. We equip

the spaces Rd , d ∈ N, with the standard Euclidean norm, which will be denoted by

| · |. Instead T > 0 is the finite time horizon.

For S Polish space we let P(S) denote the space of probability measures on B(S),

the Borel sets of S. For s ∈ S we let δs indicate the Dirac measure concentrated in s. If

P(S) is equipped with the topology of weak convergence of probability measures, then

P(S) is a Polish space. In particular, C([0, T ];P(S)) denotes the space of continuous

flow of measures.
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We set X
.= C([0, T ]; Rd) and we equip it with the topology of uniform conver-

gence; the space X with this topology is a Polish space. Given N ∈ N, we will use the

usual identification of X N = ×N X with the space C([0, T ]; Rd·N ); X N is equipped

with the topology of uniform convergence. For ℓ ∈ R+, we denote by Cℓ
b(R

d ; Rd) the

set of Rd -valued functions on Rd with bounded ℓ-th derivative, and by Cℓ
c(R

d ; Rd) the

set of Rd -valued functions on Rd with compact support and continuous ℓ-th derivative.

We will use simply Cb(R
d), Cℓ

b(R
d) and Cℓ

c(R
d) when the functions are real-valued.

Moreover, Cℓ([0, T ]; Cb(R
d)) denotes the space of Cb(R

d)-valued functions on [0, T ]
with continuous ℓ-th derivative; analogous definitions hold if Cb(R

d) is replaced with

either Cℓ
b(R

d) or Cℓ
c(R

d).

Similarly, we denote by C([0, T ] × Rd ; Rd) the set of Rd -valued continuous func-

tions on [0, T ] × Rd and with C1,2([0, T ] × Rd ; Rd) the set of Rd -valued continuous

functions on [0, T ] × Rd with continuous first (resp. second) derivative with respect

to the time (resp. space); analogous definitions (cfr. the characterizations in the pre-

vious paragraph) hold for the spaces C
1,2
b ([0, T ] × Rd; Rd), C

1,2
c ([0, T ] × Rd; Rd).

Again, we will use simply C([0, T ] × Rd), C1,2([0, T ] × Rd), C
1,2
b ([0, T ] × Rd),

C
1,2
c ([0, T ] × Rd) when the functions are real-valued. In particular, notice that

C([0, T ]; Cb(R
d)) ⊂ Cb([0, T ] × Rd).

As usual, ∇ and � denote the gradient and the Laplacian operator, respectively.

Finally, for the sake of simplicity, we write i ∈ [[N ]] in place of i = 1, . . . , N .

Now let
b : Rd × R+ → Rd ,

f : Rd × R+ → R, g : Rd → R.

The function b will denote the drift, while f and g will quantify the running and the

terminal costs, respectively. Let us make the following assumptions:

(H1) b and f are Borel measurable functions, continuous and such that there exist

two constants C, L > 0 for which it holds that

|b(x, p)| + | f (x, p)| ≤ C,

|b(x, p) − b(y, q)| + | f (x, p) − f (y, q)| ≤ L(|x − y| + |p − q|)

for all x, y ∈ Rd , p, q ∈ R+.

(H2) g is a Borel measurable function such that g, ∂xi
g ∈ Cb(R

d), i ∈ [[d]].
(H3) For each N ∈ N, for some β ∈ (0, 1/2) and some V ∈ C1

c(R
d) ∩ P(Rd) we

have

V N (x)
.= Nβ V (N

β
d x), x ∈ Rd , (2.1)

where, we remind, C1
c(R

d) is the space of continuous functions on Rd with

compact support and continuous first derivatives, while P(Rd) denotes the

probability measures on Rd . In particular, C1
c(R

d) ∩ P(Rd) denotes the set

of probability measures with a density that has compact support and that is

differentiable.
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(H4) The law μ0 ∈ P(Rd) is absolutely continuous with respect to the Lebesgue

measure on Rd and with density p0 ∈ Cb(R
d) satisfying the following condition:

∫

Rd

eλ|x | p0(x) dx < ∞

for all λ > 0.

3 N-Player Games

Let N ∈ N be the number of players. Denote by X
N ,i
t the private state of player

i at time t ∈ [0, T ]. The evolution of the players’ state depends on the strategies

they choose and on the initial distribution of states, which we indicate by μN
0 (thus,

μN
0 ∈ P(RN×d)). We assume that μN

0 can be factorized and that for each μ0 hypothesis

(H4) is in force. Here, we consider players using feedback strategies with full state

information, i.e. strategies α
N ,i
t = α(t, X N

t ) where α ∈ Cb([0, T ] × Rd·N ; Rd) that

are uniformly bounded by some constant C > 0. Thus, let A
N ,1, f b
C denote the set of all

these individual strategies. A vector αN .=(αN ,1, . . . , αN ,N ) of individual strategies

is called a strategy vector or strategy profile. We denote with A
N , f b
C the set of all

vectors αN of feedback strategies for the N -player game that are uniformly bounded

by some constant C > 0. Given a vector of N -player feedback strategies αN , consider

the system of equations

X
N ,i
t = X0

N ,i +
∫ t

0

(
α(s, X N

s ) + b
(

X N ,i
s ,

1

N

N∑

j=1

V N (X N ,i
s − X

N , j
s )

))
ds

+ W
N ,i
t , t ∈ [0, T ], i ∈ [[N ]],

(3.1)

where X N
t = (X

N ,1
t , . . . , X

N ,N
t ) and W N ,1, . . . , W N ,N are independent Wiener pro-

cesses defined on some filtered probability space (�,F , (Ft ), P) satisfying the usual

conditions. The initial conditions X
N ,i
0 are i.i.d. F0-measurable random variables,

each with law μ0 ∈ P(Rd) and independent of the Wiener processes, the functions

V N ( · ) are mollifiers (see hypothesis (H3)) through which we obtain the interaction of

moderate type among the players. A solution of Eq. (3.1) under αN with initial distri-

bution μN
0 is a triple ((�,F , (Ft ), P), W N , X N ) where (�,F , (Ft ), P) is a filtered

probability space satisfying the usual hypotheses, W N = (W N ,1, . . . , W N ,N ) a vector

of independent d-dimensional (Ft )-Wiener processes, and X N = (X N ,1, . . . , X N ,N )

a vector of continuous Rd -valued (Ft )-adapted processes such that Eq. (3.1) holds

P-almost surely with strategy vector αN and P ◦ (X0
N )−1 = μN

0 , each X
N ,i
0 for

i ∈ [[N ]] being independent of the Wiener processes. The i-th player evaluates a

(feedback) strategy vector αN according to the cost functional

123
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J N
i (αN )

.= E

[ ∫ T

0

(
1

2
|α(s, X N

s )|2 + f
(

X N ,i
s ,

1

N

N∑

j=1

V N (X N ,i
s − X

N , j
s )

))
ds

+g(X
N ,i
T )

]
, (3.2)

where X N
t = (X

N ,1
t , . . . , X

N ,N
t ) and ((�,F , (Ft ), P), W N , X N ) is a solution of

Eq. (3.1) under μN
0 . The cost functional is well defined thanks to the hypothesis (H1).

Given a strategy vector αN ∈ A
N , f b
C and an individual strategy β ∈ A

N ,1, f b
C , let

[αN ,−i , β] ∈ A
N , f b

C indicate the strategy vector that is obtained from αN by replacing

αN ,i , the strategy of player i , with β. The correct interpretation of optimization of the

cost functional J N
i (αN ) in Eq. (3.2)—classical in game theory—would be the concept

of Nash Equilibrium. In the case of a large number of players, our goal will be to prove

the validity of a weaker equilibrium concept, that is the concept of ε-Nash equilibrium,

introduced in the theory of MFGs.

Definition 3.1 (ε-Nash equilibria) Let ε ≥ 0. A strategy vector αN is called an ε-Nash

equilibrium for the N -player game if for every i ∈ [[N ]]

J N
i (α) ≤ J N

i ([αN ,−i , β]) + ε, (3.3)

for all admissible single player strategies β, i.e., strategies that belong to A
N ,1, f b

C .

If αN is an ε-Nash equilibrium with ε = 0, then αN is called Nash equilibrium.

In our framework, we consider strategy vectors αN belonging to A
N , f b

C , where we

will later in the work fix the constant C to be equal to K (T , b, f , p0, g) defined in

Eq. (4.13). We say that a single player strategy β is admissible (i.e. it is an admissible

deviation from equilibrium) for a player i ∈ [[N ]] if it belongs to A
N ,1, f b
C where the

constant C is intended to be fixed.

4 Mean Field Games

Let T > 0 be the finite time horizon and b, f , p0, g as in Sect. 2. Let us introduce the

PDE approach to MFGs with moderate interaction via the following coupled system

of backward Hamilton–Jacobi Bellman equation and Kolmogorov forward equation,

called PDE system:

⎧
⎪⎨
⎪⎩

−∂t u − 1
2
�u − b(x, p(t, x)) · ∇u + 1

2
|∇u|2 = f (x, p(t, x)), (t, x) ∈ [0, T ) × Rd ,

∂t p − 1
2
�p + div[p(t, x)(−∇u(t, x) + b(x, p(t, x)))] = 0, (t, x) ∈ (0, T ] × Rd ,

p(0, · ) = p0( · ) x ∈ Rd , u(T , · ) = g( · ), x ∈ Rd ,

(4.1)

for all (x, p) ∈ Rd × R+. Precisely, the first equation of the PDE system is the

Hamilton–Jacobi Bellman equation with a quadratic cost for the value function u of
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the representative player. Instead, the second one is the Kolmogorov forward equation

for the density p(t, · ) of the representative player. As said in the introduction, the

PDE MFG system is of local type with the dependence on the local density p(t, x)

appearing both on the dynamics, via the term b(x, p(t, x)), and on the running cost,

via the term f (x, p(t, x)). In addition, the state space is Rd .

The notion of solution we consider for the PDE system is the one in Definition 4.1

below, where we let A denote the following operator:

A
.= ∂t −

1

2
�. (4.2)

Definition 4.1 (MFG solution, PDE formulation) A weak solution of the PDE system

is a pair (u, p) such that:

(i) u, ∂i u and p ∈ Cb([0, T ] × Rd) for all i ∈ [[ d ]];
(ii) for all ϕ,ψ ∈ C

1,2
c ([0, T ] × Rd) and all t ∈ [0, T ] the following two equations

〈u (t) , ϕ (t)〉 − 〈g, ϕ (T )〉 +
∫ T

t

〈u (s) ,Aϕ (s)〉 ds

=
∫ T

t

〈
b( · , p(s)) · ∇u (s) −

1

2
|∇u (s)| .2 + f ( · , p(s)), ϕ (s)

〉
ds,

〈p (t) , ψ (t)〉 − 〈p0, ψ (0)〉 −
∫ t

0

〈u (s) ,Aψ (s)〉 ds (4.3)

=
∫ t

0

〈p(s)(−∇u(s) + b( · , p(s))),∇ψ (s)〉 ds. (4.4)

hold.

We now state and prove that under the regularity condition (i) in Definition 4.1 the

system in Eqs. (4.3)–(4.3) admits an equivalent mild formulation. To this end, set

G(t, x − y) the density of x + Wt , where Wt is a standard blackian motion, t ∈ [0, T ]
and x, y ∈ Rd , and introduce the notation Pt for the associated semi-group,

(Pt h)(x)
.=
∫

Rd

G(t, x − y)h(y) dy, (4.5)

defined on functions h ∈ Cb(R
d). By taking, for all t ∈ [0, T ], in the Eqs. (4.3)

and (4.3) the functions ϕ(t) and ψ(t) as the function y �→ G(t, x − y) h(y), with

x a given parameter, one can show the equivalence between the weak formulations

of Eq. (4.3) and (4.3 and the following mild formulation. This is the content of the

following lemma.

Lemma 4.2 Let (u, p) a pair with the regularity of point (i) in Definition 4.1. Then (ii)

in the same definition is equivalent to the validity, for all t ∈ [0, T ], of the following
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system:

u (t) = PT −t g −
∫ T

t

Ps−t

(
b ( · , p (s)) · ∇u (s) −

1

2
|∇u (s)|2 + f ( · , p(s))

)
ds

(4.6)

and

p (t) = Pt p0 −
∫ t

0

∇Pt−s (p (s) (∇u (s) − b( · , p(s)))) ds, (4.7)

where in the last integral we understand that

(∇Pt−sh) (x) =
∫

Rd

∇x G (t − s, x − y) h (y) dy. (4.8)

A solution of this integral system with the regularity of point (i) in Definition (4.1) is

called a mild solution.

Proof See Appendix 1, Sect. 1, where we give a sketch of the (less classical) proof for

the backward equation (4.6). ⊓⊔

Now, we prove that there exists (u, p) weak solution (cfr. Definition 4.1) of the PDE

MFG system 4.1 in (0,∞). In order to do so, we use the Hopf-Cole transform for

quadratic Hamiltonians (see, e.g. Remark 1.13 in Cardaliaguet and Porretta [5]) and

we consider the following auxiliary system

⎧
⎪⎨
⎪⎩

∂tw + 1
2
�w + b(x, p(t, x)) · ∇w = w f (x, p(t, x)), (t, x) ∈ [0, T ) × Rd ,

∂t p − 1
2
�p + div

[
p(t, x)

(∇w
w

+ b(x, p(t, x))
)]

= 0, (t, x) ∈ (0, T ] × Rd ,

p(0, · ) = p0( · ) x ∈ Rd , w(T , · ) = exp(−g( · )), x ∈ Rd .

(4.9)

Notice that if (w, p) is a weak solution of the previous system such that p, w, ∂iw ∈
Cb([0, T ] × Rd), i ∈ [[d]], then w(t, x) ≥ e−(‖g‖∞+T ‖ f ‖∞) by strong maximum

principle. Therefore, the ratio ∇w
w

∈ Cb([0, T ] × Rd; Rd) with a bound that depends

only on the infinity norms of the coefficients; precisely:

∥∥∥∥
∇w

w

∥∥∥∥
∞

≤ Cw(g, f , b, T ). (4.10)

This observation justifies the following definition, analogous to Definition 4.1.

Definition 4.3 (MFG solution, PDE formulation - I) Let p0 ∈ Cb

(
Rd
)

a given prob-

ability density and g ∈ Cb

(
Rd
)
, also given. A weak solution of the PDE system

(4.9) is a pair (w, p) such that w, ∂iw and p ∈ Cb

(
[0, T ] × Rd

)
for all i ∈ [[d]],

w (t, x) ≥ e−(‖g‖∞+T ‖ f ‖∞) and the system is satisfied in the weak sense as in Defi-

nition 4.1.
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In particular, the weak formulation in Definition 4.3 is equivalent to the validity, for

all t ∈ [0, T ], of the following system

w (t) = PT −t exp (−g) −
∫ T

t

Ps−t (b (·, p (s)) · ∇w (s) − w (s) f (·, p (s))) ds

(4.11)

and

p (t) = Pt p0 +
∫ t

0

∇Pt−s

(
p (s)

(
∇w (s)

w (s)
+ b (·, p (s))

))
ds, (4.12)

where the quantity ∇Pt−s is defined in Lemma 4.2, Eq. (4.8). The proof of such

equivalence is the same as in Lemma 4.2 and we decide to omit it for the sake of

space.

To prove global existence of weak solutions, we need the following additional assump-

tion on p0:

(H5) There exists a continuous function ρ : Rd → (0,∞) such that

lim
‖x‖→∞

ρ (x) = 0 and p0 (x) ≤ ρ (x)

for all x ∈ Rd . Moreover p0 ∈ Cα
b (Rd) for some α > 0 and ρ−1 ∈ C2

(
Rd
)

with∥∥�ρ−1
∥∥

∞ +
∥∥∇ρ−1

∥∥
∞ < ∞.

Notice that the latter assumption on ρ−1 is not restrictive. Indeed, smoothness of ρ−1

can be obtained by regularization and the bounds on
∥∥�ρ−1

∥∥
∞ and

∥∥∇ρ−1
∥∥

∞ are

true if ρ decays slowly, monotonically and radially, which can always be assumed

without loss of generality. We are now ready to prove the existence of a weak solution

of the PDE system (4.9); this is the content of the following theorem, whose proof is

relatively standard but some new details – up to our knowledge – are due to the fact

that the space is Rd instead of a bounded set.

Theorem 4.4 There exists a weak solution (w, p) on [0, T ] of system (4.9). Moreover,

the pair

(u, p)
.= (− log w, p)

is a weak solution of the system (4.1).

Proof See Appendix 1, Sect. 1. ⊓⊔

Now, we prove that the system (4.1) admits a unique solution for T sufficiently small

via the contraction principle; indeed, the following theorem holds.

Theorem 4.5 (Local well posedness) There exists a unique weak (or mild) solution of

the MFG system (4.6)–(4.7), for T sufficiently small.
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Proof See Appendix 1, Sect. 1. ⊓⊔

Next, let T > 0 indicate (as before) the finite time horizon, and let b, f , p0, g as in

Sect. 2. If the PDE system in Eq. (4.1) has a unique weak (or mild) solution (u, p),

then we denote by K (T , b, f , p0, g) the following constant:

K (T , b, f , p0, g)
.= sup

t∈[0,T ],x∈Rd

|∇u (t, x)| . (4.13)

4.1 FeedbackMFGwith Given Density

We started the section by formulating the PDE approach to MFGs of moderate inter-

action. Here, instead, we introduce the corresponding stochastic (feedback first and

open-loop in the next subsection) formulation.

Let K > 0. In order to make precise our definition of (feedback) MFG solution, we

introduce the following notation:

(i) We denote by A
f b
K the set of feedback controls for the MFG, which is defined

as the set of functions α ∈ Cb([0, T ] × Rd ; Rd) bounded by K .

(ii) Next, given the function p as in Definition 4.1, given an admissible control

α ∈ A
f b
K , we consider the equation

X t = X0 +
∫ t

0

(α(s, Xs) + b(Xs, p(s, Xs))) ds + Wt , t ∈ [0, T ], (4.14)

where X0 is a F0-measurable random variable distributed as μ0 having den-

sity p0 while W is a d-dimensional Wiener process defined on some filtered

probability space (�,F , (Ft ), P).

(iii) Finally, we consider the following cost functional

J (α)
.= E

[∫ T

0

1

2
|α(s, Xs)|2 + f (Xs, p(s, Xs)) ds + g(XT )

]

and we say that α∗ ∈ A
f b

K is an optimal control if it is a minimizer of J over

A
f b
K , i.e. if J (α∗) = inf

α∈A
f b
K

J (α).

The notion of solution we will consider in the feedback case is then the following:

Definition 4.6 (MFG solution, stochastic feedback formulation) Let T > 0 be the

finite time horizon and b, f , p0, g as in (H1)-(H2) and (H4); see Sect. 2. Then a

feedback MFG solution for bound K > 0 is a pair (α∗, p) such that:

(i) p ∈ Cb([0, T ] × Rd) and α∗ ∈ A
f b
K ;

(ii) Given p ∈ Cb([0, T ]×Rd), α∗ ∈ A
f b
K is an optimal control for the cost functional

J (·) (in the sense of item (iii) above);

(iii) For any weak solution (�,F , (Ft ), P, X , W ) of Eq. (4.14), X t has law μt with

density p(t, ·) for every t ∈ [0, T ].
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Assume that the MFG system in Eq. (4.1) has a unique weak solution (u, p) and let

K be any constant such that

K ≥ K (T , b, f , p0, g),

where K (T , b, f , p0, g) is the constant in Eq. (4.13). From an operative point of view,

in order to find a (feedback) MFG solution in the sense of Definition 4.6, we look for an

optimal control α∗ ∈ A
f b

K such that, given p ∈ Cb([0, T ] × Rd) and given any weak

solution (�,F , (Ft ), P, X∗, W ) of Eq. (4.14) (controlled by α∗ and with density p

appearing in the drift), the law of X∗
t has density p∗ ∈ Cb([0, T ] × Rd) such that

p∗ ≡ p.

Given the environment (�,F , (Ft ), P, W , p), i.e. a filtered probability space

with Wiener process W and with a given distribution of players specified by its

density function p, where p is as in Definition 4.1, we notice that path-wise unique-

ness and existence of a strong solution of Eq. (4.14) is provided by Veretennikov

[25]. Then, we define the unique solution X of Eq. (4.14) in the given environment

(�,F , (Ft ), P, W , p) and with α
.= −∇u, to be the state of the PDE system in

Eq. (4.1) in the given environment with density p. Nevertheless, we decide to intro-

duce and work with weak solutions in view of the approximation result of Sect. 6,

where we exploit weak convergence of the laws of the N -player system and provide a

stochastic representation of the limiting dynamics by means of the martingale problem

of Stroock and Varadhan [24].

4.2 Open-LoopMFGwith Given Density

We now introduce a more general notion of control, that of open-loop control, together

with what we intend with a solution of the MFG in open-loop form.

Let K > 0. In order to make precise our definition of (open-loop) MFG solution, we

introduce the following notation:

(i) We denote by AK the set of admissible open-loop controls for the MFG, which is

defined as the set of tuples (�,F , (Ft ), P, X , W , α) where α = (α(t))t∈[0,T ] is

Ft -progressively measurable, continuous and bounded by K a.s. for all t ∈ [0, T ],
while (�,F , (Ft ), P, X , W ) is a weak solution of

X t = X0 +
∫ t

0

(α(s) + b(Xs, p(s, Xs))) ds + Wt , t ∈ [0, T ] (4.15)

where X0
d∼ μ0, having density p0, is independent of the Ft -Wiener process W .

For the sake of brevity and where no confusion is possible we will denote a control

for the MFG simply with α, in place of the full tuple.

(ii) We consider the following cost functional

J (α)
.= E

[∫ T

0

1

2
|α(s)|2 + f (Xs, p(s, Xs)) ds + g(XT )

]
(4.16)
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and we say that α∗ .= (α∗(t))t∈[0,T ] ∈ AK is an optimal control if it is a minimizer

of J over AK , i.e. if J (α∗) = infα∈AK
J (α).

Thereafter, we will denote by OC the just-introduced optimal control problem. The

notion of solution we will consider in the open-loop case is then the following:

Definition 4.7 (MFG solution, stochastic open-loop formulation) Let T > 0 be the

finite time horizon and b, f , p0, g as in (H1)–(H2) and (H4); see Sect. 2. Then a

open-loop MFG solution for bound K > 0 is a pair (α∗, p) such that:

(i) p ∈ Cb([0, T ] × Rd) and α∗ ∈ AK , α∗ standing for the full tuple:

(�,F , (Ft ), P, X , W , α∗);

(ii) Given p ∈ Cb([0, T ] × Rd), α∗ ∈ AK is an optimal control for problem OC (in

the sense of item (ii) above);

(iii) (�,F , (Ft ), P, X , W ) is a weak solution of Eq. (4.15) such that X t has law μt

with density p(t, ·) for every t ∈ [0, T ].
As for the feedback case, given the environment (�,F , (Ft ), P, W , p) where p is

as in Definition 4.1, given an admissible control α ∈ AK , we notice that path-wise

uniqueness and existence of a strong solution of Eq. (4.15) is provided by Veretennikov

[25] but we will continue working with weak solutions in view of the approximation

result of Sect. 6.

We point out that feedback controls induce stochastic open-loop controls so, as

a consequence, the computation of the infimum of J (α) over the class of stochastic

open-loop controls would, in principle, lead to a lower value with respect to performing

the same computation over the set of stochastic feedback controls. However, thanks to

Proposition 2.6 in El Karoui et al. [10], the two minimization problems are equivalent

from the point of view of the value function.

We state now the main result of this section, the Verification Theorem, which gives

an optimal control for OC. In particular, we are going to show that α∗ is the optimal

feedback control, namely the optimal strategy to play at time t for a given state x .

Theorem 4.8 (Verification Theorem) Consider the PDE system in Eq. (4.1) and let

(u, p) be a weak (or mild) solution. Consider the optimal control problem OC as in

Definition 4.7-(iii) and set α∗(t) = α∗(t, x)
.= −∇u(t, x). Then,

(i) α∗ is an optimal control for OC;

(ii) For any weak solution (�,F , (Ft ), P, X∗, W ) of Eq. (4.15) with α(s) =
α∗(s, X∗

s ), the state X∗
t has law μ∗

t with density p(t, · ) for every t ∈ [0, T ].
Proof Let α ∈ AK and Xα .= (Xα

t )t∈[0,T ] the solution of Eq. (4.15) controlled by α.

Besides, let X∗
t as in Definition 4.16-(ii), i.e.,

X∗
t = X0 +

∫ t

0

(−∇u(s, X∗
s ) + b(X∗

s , p(s, X∗
s ))) ds + Wt .

Notice that, thanks to boundedness of the drift, the previous equation admits both a

weak solution and, in any given environment (�,F , (Ft ), P, W , p), a strong solution

that is path-wise unique [25].
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Proof of (i). Heuristically, should the function u ∈ C1,2([0, T ] × Rd), then we

could apply Itô formula to u(t, Xα
t ) and obtain (in expectation)

E[g(Xα
T )]

= E[u(T , Xα
T )]

= E

[
u(0, Xα

0 ) +
∫ T

0

(
α(s) · ∇u(s, Xα

s ) −
1

2
|∇u(s, Xα

s )|2 − f (Xα
s , p(s, Xα

s )

)
ds

]
,

(4.17)

where we use the fact that the function u satisfies the first equation of the PDE system

in Eq. (4.1), which implies

E[g(Xα
T )] ≥ E

[
u(0, Xα

0 ) +
∫ T

0

(
−

1

2
|α(s)|2 − f (Xα

s , p(s, Xα
s )

)
ds

]
.

Hence for any admissible control α we would have J (α) ≥ E[u(0, Xα
0 )]. In particular,

the above inequality becomes an equality for α(s) = α∗(s, x) = −∇u(s, x), i.e.

J (α∗) = infα J (α) = E[u(0, X∗
0)]. This would prove that α∗ is an optimal control

for OC.

However, the function u is not “regular enough" to apply Itô formula and some

work is needed to adapt the heuristic argument to u. Given the technicality of this

part and being it based on standard mollification arguments, we decide to move the

required computations in Appendix 1, Sect. 1.

Proof of (ii). Now, let μ∗
t be the law of X∗

t and let ϕ ∈ C2
b(R

d) be a test function.

By Itô formula,

ϕ(X∗
t ) = ϕ(X0) +

∫ t

0

∇ϕ(X∗
s ) · (−∇u(s, X∗

s ) + b(X∗
s , p(s, X∗

s ))) ds

+
∫ t

0

∇ϕ(X∗
s ) dWs +

1

2

∫ t

0

�ϕ(X∗
s ) ds.

Hence, taking expectations on both sides, we have

〈
μ∗

t , ϕ( · )
〉
= 〈p0, ϕ( · )〉 +

∫ t

0

〈
μ∗

s ,∇ϕ( · ) · (−∇u(s, · ) + b( · , p(s, · )))
〉

ds

+
1

2

∫ t

0

〈
μ∗

s ,�ϕ( · )
〉

ds.

Theorem 4.5 guarantees that this equation has a unique weak (or mild) solution μt

with density p(t, · ); hence μ and μ∗ coincide and μ∗
t has density p(t, · ) for every

t ∈ [0, T ]. This concludes the proof. ⊓⊔
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5 Moderately Interacting Particles

Let N ∈ N be the number of players and denote by X
N ,i
t the private state of player i

at time t , t ∈ [0, T ]. In this section, we assume that the evolution of the players’ states

is given by Eq. (3.1) and, as said, we consider players using feedback strategies, i.e.

αN ,i (s) = α(s, XN
s ) with α sufficiently smooth. In particular, we will assume – with

the natural identification – that α ∈ Cb([0, T ]×Rd·N ; Rd). Besides, b, V N and X0
N ,i ,

i ∈ [[N ]], satisfy the hypotheses (H1), (H3) and (H4) in Sect. 2. Before proceeding,

notice that the function

F : [0, T ] × Rd·N → Rd·N

defined component-wise as

Fi (t, x1, . . . , xN )
.= α(t, xi ) + b

(
xi ,

1

N

N∑

j=1

V N (xi − x j )

)
(5.1)

is continuous and bounded. Since the blackian motion W N
t ∈ Rd·N in Eq. (3.1) is

non-degenerate, both existence of a weak solution and existence of a pathwise unique

strong solution in any given environment ((�N ,FN , (F N
t ), PN ), W N , V ), where now

in the N -player case the interaction among players is prescribed by V , holds for this

system [25]. Let SN
t be the empirical measure on Rd of the players’ private states, that

is,

SN
t (B)

.=
1

N

N∑

i=1

δ
X

N ,i
t

(B), B ∈ B(Rd), t ∈ [0, T ]. (5.2)

SN = (SN
t ) is a continuous stochastic process with values in P(Rd); hence it can be

seen as a random variable with values in C([0, T ];P(Rd)) (notice that for the sake

of notation we do not put the explicit dependence on ω ∈ � in these definitions).

Therefore, L(SN
t ) ∈ P(P(Rd)) and L(SN ) ∈ P(C([0, T ];P(Rd))), respectively.

The main goal of this section is the characterization of the convergence of the laws

(L(SN ))N∈N in P(C([0, T ];P(Rd))). This characterization result is the content of

Theorem 5.1 here below.

Theorem 5.1 (Moderately interacting particles) [cfr.21, Theorem1] Grant (H1) and

(H3) − (H4). Let α ∈ Cb([0, T ] × Rd×N ; Rd) be given. Then,

(i) The sequence of laws (L(SN ))N∈N converges weakly in P(C([0, T ];P(Rd)))

to δμ ∈ P(C([0, T ];P(Rd))) for a flow of probability measures μ ∈
C([0, T ];P(Rd)); hence also SN converges in probability to μ;

(ii) For each t ∈ [0, T ], μt is absolutely continuous with respect to the Lebesgue

measure on Rd , with density p(t, · ); the flow of density functions satisfies

p ∈ Cb([0, T ] × Rd)
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and it is the unique solution in this space of the equation

p (t) = Pt p0 +
∫ t

0

∇Pt−s (p (s) (α (s) + b( · , p(s)))) ds. (5.3)

The proof of the previous theorem is divided into four parts. The first one is the

tightness of the sequence of laws (L(SN ))N∈N in P(C([0, T ];P(Rd)); see Sect. 5.1.

The second one is the collection of estimates on V N ∗ SN
t ; see Sect. 5.2. The third one

is the characterization of the limits: all the possible limits are a random solutions of

the deterministic equation in Eq. (5.3), with the required regularity; see Sect. 5.3. The

fourth one is the proof of the uniqueness of solutions of this deterministic equation.

5.1 Tightness of the Empirical Measure

On P(Rd) the weak topology is generated by the following complete metric:

dw(μ, ν)
.= sup

f ∈Lip1(R
d )∩Cb(Rd )

(〈μ, f 〉 − 〈ν, f 〉) .

We refer to Oelschläger [21], Page 285, and Dudley [8], Theorem 18, for a complete

proof of the previous result. Also, we consider the regularized empirical measures

(
V N ∗ SN

t

)
(x) =

∫

Rd

V N (x − y)SN
t (dy).

In particular, these are probability densities, because they are non-negative functions

with

∫

Rd

(
V N ∗ SN

t

)
(x)dx =

∫

Rd

(∫

Rd

V N (x − y)dx

)
SN

t (dy) = 1.

Therefore, we consider the probability measure with density V N ∗ SN
t as a random

time-dependent element of P(Rd) (for each t and a.s. on the probability space). In the

next lemma, when we mention the laws (L(V N ∗ SN ))N∈N on P(C([0, T ];P(Rd))),

we adopt this interpretation.

Lemma 5.2 (Tightness) The laws (L(SN ))N∈N are tight in P(C([0, T ];P(Rd))). Sim-

ilarly, the laws (L(V N ∗ SN ))N∈N are tight in P(C([0, T ];P(Rd))).

Proof Part 1. Recall that the initial conditions X0
N ,i , i ∈ [[N ]], admit a density p0

which is integrable. Therefore,

E

[∫

Rd

|x |SN
0 (dx)

]
≤ C

for some constant C > 0, uniformly in N ∈ N. To establish the tightness in

C([0, T ];P(Rd)), we have to show (see, for instance Karatzas and Shreve, 1998,

Problem 2.4.11) that the following two conditions are satisfied:
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(i) E
[
supt∈[0,T ]

∫
Rd |x |SN

t (dx)
]

≤ C , t ∈ [0, T ],
(ii) E

[
dw(SN

t , SN
s )p

]
≤ C |t − s|1+ǫ , t, s ∈ [0, T ]

for some constants C > 0, p ≥ 2 and ǫ > 0. In order to verify (i), we compute

∫

Rd

|x |SN
t (dx) =

1

N

N∑

i=1

|X N ,i
t |,

where

|X N ,i
t | ≤ |X0

N ,i | +
∫ t

0

|α
(

s, X N ,i
s

)

+b
(

X N ,i
s ,

1

N

N∑

j=1

V N (X N ,i
s − X

N , j
s )

)
|ds + |W N ,i

t |.

Hence,

‖X N ,i‖∞,t ≤ |X0
N ,i | + CT + ‖W i‖∞,t ,

which implies

E

[
‖X N ,i‖∞,T

]
≤ E

[
|X0

N ,i |
]

+ CT + CW
T (d),

where we use the boundedness (uniformly in N ) of α, b and E
[
|X0

N ,i |
]
; the quantity

CW
T (d) only depends on T and d. As regards (i i), instead,

E

[
dw(SN

t , SN
s )p

]
≤ E

⎡
⎣sup

f

∣∣∣∣∣
1

N

N∑

i=1

( f (X
N ,i
t ) − f (X N ,i

s ))

∣∣∣∣∣

p
⎤
⎦

≤ E

[
sup

f

1

N

N∑

i=1

∣∣∣ f (X
N ,i
t ) − f (X N ,i

s )

∣∣∣
p

]

≤ E

[
1

N

N∑

i=1

∣∣∣X N ,i
t − X N ,i

s

∣∣∣
p
]

≤ C(|t − s|p + |t − s|
p
2 ),

where we apply Jensen’s inequality, the 1-Lipschitz continuity of f , boundedness of

α and b and Burkholder-Davis-Gundy inequality, respectively. To conclude it suffices

to choose p > 2.

Part 2 To prove the statement for the random flow of probability measures V N ∗SN
t ,

let us first notice that, denoting by R > 0 a real number such that the support of V
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is included in BR(0), the open ball of radius R around the origin, for all y ∈ Rd we

have

∫

Rd

|x | V N (x − y) dx =
∫

Rd

|z + y| V N (z) dz ≤ sup
|w|≤R

|w + y| ≤ |y| + R

and thus

∫

Rd

|x |
(

V N ∗ SN
t

)
(x) dx =

∫

Rd

|x |
(∫

Rd

V N (x − y) SN
t (dy)

)
dx

=
∫

Rd

(∫

Rd

|x | V N (x − y) dx

)
SN

t (dy)

≤
∫

Rd

|y| SN
t (dy) + R.

We conclude by going back to the previous estimate without the mollifier. Moreover,

denoted V N ,− (x) = V N (−x), if f has Lipschitz constant less or equal to one, then

∣∣∣
(

V N ,− ∗ f
)

(x) −
(

V N ,− ∗ f
)

(y)

∣∣∣

=
∣∣∣∣
∫

Rd

V N
(
x ′ − x

)
f
(
x ′) dx ′ −

∫

Rd

V N
(
x ′ − y

)
f
(
x ′) dx ′

∣∣∣∣

=
∣∣∣∣
∫

Rd

V N (z) f (z + x) dz −
∫

Rd

V N (z) f (z + y) dz

∣∣∣∣

≤
∫

Rd

V N (z) | f (z + x) − f (z + y)| dz ≤ |x − y|
∫

Rd

V N (z) dz = |x − y|

namely V N ,− ∗ f has also Lipschitz constant less or equal to one. Therefore,

∣∣∣
〈
V N ∗ SN

t , f
〉
−
〈
V N ∗ SN

s , f
〉∣∣∣

=
∣∣∣
〈
SN

t , V N ,− ∗ f
〉
−
〈
SN

s , V N ,− ∗ f
〉∣∣∣

≤
1

N

N∑

i=1

∣∣∣
(

V N ,− ∗ f
)

(X
N ,i
t ) −

(
V N ,− ∗ f

) (
X N ,i

s

)∣∣∣

≤
1

N

N∑

i=1

∣∣∣X N ,i
t − X N ,i

s

∣∣∣ ,

and we are again led back to the previous estimate without the mollifier. ⊓⊔

5.2 Estimates onMollified Empirical Measures

In this subsection we obtain estimates on mollified empirical measures. More precisely,

we first prove that the empirical measure SN
t satisfies the following identity for a test
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function ϕ ∈ C
1,2
b ([0, T ] × Rd):

〈
SN

t , ϕ (t, · )
〉
=
〈
SN

0 , ϕ (0, · )
〉

+
∫ t

0

(〈
SN

s ,
∂ϕ

∂s
(s, · ) +

1

2
�ϕ (s, · )

〉
+
〈
SN

s , α (s) · ∇ϕ (s, ·)
〉)

ds

+
∫ t

0

〈
SN

s , b
(

· ,
(

V N ∗ SN
s

)
( · )

)
· ∇ϕ (s, · )

〉
ds + M

N ,ϕ
t ,

where M
N ,ϕ
t is a martingale to be defined below. Then, in Lemma 5.3 we obtain an

identity in mild form for the empirical density; the latter is defined as any convolution

of the empirical measure with a smooth mollifier. In our paper, we work with the

following particular convolution:

pN (t, x)
.=
(

V N ∗ SN
t

)
(x) =

∫

Rd

V N (x − y)SN
t (dy) =

1

N

N∑

i=1

V N (x − X
N ,i
t ),

(5.4)

where t ∈ [0, T ] and x ∈ Rd . Then, in Lemma 5.4 we derive Hölder-type semi-

norm bound for the martingale M
N ,ϕ
t , and in Lemma 5.6, instead, Hölder-type semi-

norm bound for the empirical density (5.4). In particular, we will see that in order

to understand the limit of (L(SN ))N∈N it is crucial to study rigorously the regularity

properties of pN that remain stable in the limit as N tends to infinity.

First, we obtain the identity for the empirical measure. Let ϕ ∈ C
1,2
b ([0, T ] × Rd)

be a test function. By Itô formula,

d
〈
SN

t , ϕ (t, · )
〉
=

1

N

N∑

i=1

dϕ
(

t, X
N ,i
t

)

=
1

N

N∑

i=1

∂ϕ

∂t

(
t, X

N ,i
t

)
dt +

1

N

N∑

i=1

∇ϕ
(

t, X
N ,i
t

)
· α(t, X

N ,i
t )dt

+
1

N

N∑

i=1

∇ϕ
(

t, X
N ,i
t

)
· b
(

X
N ,i
t ,

1

N

N∑

j=1

V N (X
N ,i
t − X

N , j
t )

)
dt

+
1

N

N∑

i=1

∇ϕ
(

t, X
N ,i
t

)
· dW

N ,i
t +

1

2N

N∑

i=1

�ϕ
(

t, X
N ,i
t

)
dt

=
〈
SN

t ,
∂ϕ

∂t
(t, · )

〉
+
〈
SN

t , α(t) · ∇ϕ(t, · )
〉

dt

+
〈
SN

t , b( · ,
(

V N ∗ SN
t

)
( · )) · ∇ϕ(t, · )

〉
dt

+
1

N

N∑

i=1

∇ϕ
(

t, X
N ,i
t

)
· dW

N ,i
t +

1

2

〈
SN

t ,�ϕ(t, · )
〉

dt .
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In particular, the previous expression can be rewritten in integral form as:

〈
SN

t , ϕ (t, · )
〉
=
〈
SN

0 , ϕ (0, · )
〉

+
∫ t

0

(〈
SN

s ,
∂ϕ

∂s
(s, · ) +

1

2
�ϕ (s, · )

〉
+
〈
SN

s , α (s) · ∇ϕ (s, ·)
〉)

ds

+
∫ t

0

〈
SN

s , b
(

· ,
(

V N ∗ SN
s

)
( · )

)
· ∇ϕ (s, · )

〉
ds + M

ϕ,N
t ,

(5.5)

where M
N ,ϕ
t is the martingale

M
N ,ϕ
t =

∫ t

0

1

N

N∑

i=1

∇ϕ
(

s, X N ,i
s

)
· dW N ,i

s . (5.6)

Second, we obtain the identity in mild form for the empirical density. Henceforth,

we will use the classical notational conventions used in the semigroups theory [see22].

Sometimes, it may happen that we will indicate the explicit dependence on the state

variable to clarify the results; see e.g. the second integral in the lemma here below.

Lemma 5.3 Let pN as in Eq. (5.4). Grant assumptions of Theorem 5.1. Then,

pN (t) = Pt pN (0) +
∫ t

0

∇Pt−s

(
V N ∗

(
α(s) SN

s

))
ds

+
∫ t

0

∇Pt−s

(
V N ∗

(
b
(

· , pN (s, · )
)

SN
s

))
ds + M N

t ( · )

where

M N
t ( · ) =

∫ t

0

1

N

N∑

i=1

Pt−s∇V N
(

· − X N ,i
s

)
dW N ,i

s . (5.7)

Proof For the reader convenience, let us first recall the definition of Pt ; cfr. Eq. (4.5).

If we set G(t, x − y) the density of x + Wt , where Wt is a standard blackian motion,

t ∈ [0, T ] and x, y ∈ Rd , then Pt is defined on functions h ∈ Cb(R
d) as

(Pt h)(x)
.=
∫

Rd

G(t, x − y)h(y) dy,

Now, consider for a given t ∈ [0, T ] the identity in Eq. (5.5) with the following choice

ϕ(t) (s, x) =
(
Pt−s(V N ,− ∗ h)

)
(x) , s ∈ [0, t],

with h ∈ C2
b(R

d) and V N ,− (x)
.= V N (−x). Recall that the convolution commutes

and hence Pt (V N ,− ∗ h) = (V N ,− ∗ Pt h). Besides, it holds that ∇Pt (V N ,− ∗ h) =
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(V N ,− ∗ ∇Pt h). Therefore,

〈
V N ∗ SN

t , h
〉
=
〈
V N ∗ SN

0 ,Pt h
〉
−
∫ t

0

〈
V N ∗

(
α (s) SN

s

)
,∇Pt−sh

〉
ds

+
∫ t

0

〈
V N ∗

(
b
(

· ,
(

V N ∗ SN
s

)
( · )

)
SN

s

)
,∇Pt−sh

〉
ds

+
∫ t

0

1

N

N∑

i=1

V N ,− ∗ ∇ (Pt−sh)

(
X N ,i

s

)
· dW N ,i

s .

By Fubini–Tonelli theorem and stochastic Fubini theorem, we can move the semigroup

on the first argument and use integration by parts to obtain:

〈
pN (t) , h

〉
=
〈
Pt pN (0), h

〉
−
∫ t

0

〈
∇Pt−s

(
V N ∗

(
α (s) SN

s

))
, h
〉

ds

+
∫ t

0

〈
∇Pt−s

(
V N ∗

(
b
(

· ,
(

V N ∗ SN
s

)
( · )

)
SN

s

))
, h
〉

ds

+
〈
M N

t ( · ), h
〉
.

By the arbitrarily of h, this concludes the proof. ⊓⊔

Now, let denote by [ f ]γ the Hölder semi-norm on Rd and by ‖ f ‖γ the associated

norm, i.e.:

[ f ]γ = sup
x,y∈Rd

x �=y

| f (x) − f (y)|
|x − y|γ , ‖ f ‖γ = [ f ]γ + ‖ f ‖∞ (5.8)

where, as usual, ‖ f ‖∞ = supx∈Rd | f (x)|. We state the following lemma.

Lemma 5.4 Let M N
t ( · ) be the martingale in Eq. (5.7) and β ∈ (0, 1/2) the constant

as in the definition of V N ; see Eq. (2.1). Then, there exists γ ∈ (0, 1) such that, for

all p ≥ 2, there is a constant C p > 0 such that E

[∥∥M N
t

∥∥p

γ

]
≤ C p, for all N ∈ N

and t ∈ [0, T ].

Proof It is enough to check the sufficient conditions (C.3)–(C.4) of Lemma C.2 in

Appendix 1.
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Let ǫ−1
N = N

β
d . Using Eq. (C.6), the bound in Eq. (C.3) reads

E

[∣∣∣M N
t (x)

∣∣∣
p]

=
1

N p
E

⎡
⎣
∣∣∣∣∣

N∑

i=1

∫ t

0

∇Pt−s V N
(

x − X N ,i
s

)
dW N ,i

s

∣∣∣∣∣

p
⎤
⎦

≤
C p

N p
E

⎡
⎣
∣∣∣∣∣

N∑

i=1

∫ t

0

∣∣∣∇Pt−s V N
(

x − X N ,i
s

)∣∣∣
2

ds

∣∣∣∣∣

p/2
⎤
⎦

≤
C pC

p

T ,R,V ǫ
−pd−pδ

N

N p
E

⎡
⎣
∣∣∣∣∣

N∑

i=1

∫ t

0

1

(t − s)1−δ
e−

∣∣∣x−X
N ,i
s

∣∣∣
4T ds

∣∣∣∣∣

p/2
⎤
⎦

≤
C̃ p,T ,R,V ǫ

−pd−pδ

N

N p
e− |x |

8T E

⎡
⎣e

||X N ,i ||∞,T
4T

∣∣∣∣∣

N∑

i=1

∫ t

0

1

(t − s)1−δ
ds

∣∣∣∣∣

p/2
⎤
⎦

≤
C ′

p,T ,R,V ,δǫ
−pd−pδ

N

N p/2
e− |x |

8T E

[
ep

||X N ,1||∞,T
8T

]

where, to ease notation, we set ||X N ,i ||∞,T
.= sups∈[0,T ] |X

N ,i
s |, i ∈ [[N ]]. The last

expected value is finite thanks to (H4); therefore,

E

[∣∣∣M N
t (x)

∣∣∣
p]

≤ C ′′
p,T ,R,V ,δ

ǫ
−pd−pδ

N

N p/2
g p (x) ,

where (up to a constant) g (x)
.= e− |x |

8T is integrable at any power. Now, recall that

ǫ−1
N = N

β
d . Then

ǫ
−pd−pδ

N

N p/2
=

N
β
d (pd+pδ)

N p/2
= N

(
1
2 −β

)
p− β pδ

d ,

which is bounded for β < 1
2

by choosing δ (depending on p) small enough.

As regards the bound in Eq. (C.3), we use estimate (C.7) with γ small enough

compared to δ so to have (γ − δ (1 − γ )) < 0. To ease notation and for the sake

of space, we denote

�h M N
t (x)

.= M N
t (x) − M N

t (x + h)

�hPt−s V N (x − X N ,i
s )

.= V N (x − X N ,i
s ) − V N (x + h − X N ,i

s )
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and, as before, ||X N ,i ||∞,T
.= sups∈[0,T ] |X

N ,i
s |, i ∈ [[N ]]. We get

E

[∣∣∣�h M N
t (x)

∣∣∣
p]

=
1

N p
E

⎡
⎣
∣∣∣∣∣

N∑

i=1

∫ t

0

�hPt−s V N (x − X N ,i
s )dW N ,i

s

∣∣∣∣∣

p
⎤
⎦

≤
C p

N p
E

⎡
⎣
∣∣∣∣∣

N∑

i=1

∫ t

0

∣∣∣�hPt−s V N (x − X N ,i
s )dW N ,i

s

∣∣∣
2

ds

∣∣∣∣∣

p/2
⎤
⎦

≤
C p

N p
E

⎡
⎣
∣∣∣∣∣

N∑

i=1

∫ t

0

C2
T ,R,V

(t − s)1+γ̄
|h|2γ ǫ

−2d−2δ(1−γ )

N e
−2λT ,R,V

∣∣∣x−X
N ,i
s

∣∣∣
ds

∣∣∣∣∣

p/2
⎤
⎦

≤
C̃ p,T ,R,V ǫ

−pd−pδ(1−γ )

N

N p/2
|h|pγ e−2λT ,R,V |x |E

[
ep λT ,R,V ‖X N ,i ‖∞,T

]

and the conclusion is the same as for the previous term. ⊓⊔

Remark 5.5 Lemma 5.4 is a non-trivial achievement of this paper. Indeed, the

Kolmogorov–Chentsov criterion (see Karatzas and Shreve 1998, Theorem 2.2.8)

would provide with much fewer computations a similar result on bounded sets. How-

ever, the dominating constant would diverge when passing to the full space. Notice

that we will need the passage to the full space in Lemma 5.6 below. For this reason, we

use a more complicated strategy—summarized by the results in Appendix 1—based

on Sobolev embedding theorem.

Lemma 5.6 Let pN (t) as in Lemma 5.3. If β ∈ (0, 1/2) and supN

∥∥pN (0)
∥∥2

γ
< ∞,

then there exist p ≥ 2, γ ∈ (0, 1) and a constant Cγ > 0 such that E

[∥∥pN (t)
∥∥p

γ

]
≤

C.

Proof Lemma 5.3 provides the following bound

E

[∥∥∥pN (t)

∥∥∥
p

γ

]1/p

≤ E

[∥∥∥Pt pN (0)

∥∥∥
p

γ

]1/p

+
∫ t

0

E

[∥∥∥∇Pt−s

(
V N ∗

(
α(s)SN

s

))∥∥∥
p

γ

]1/p

ds

+
∫ t

0

E

[∥∥∥∇Pt−s

(
V N ∗

(
b
(

· , pN (s, · )
)

SN
s

))∥∥∥
p

γ

]1/p

ds

+ E

[∥∥∥M N
t

∥∥∥
p

γ

]1/p

,
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where we use the first inequality of Lemma C.3 in Appendix 1 and the bound of

Lemma 5.4. Therefore,

E

[∥∥∥pN (t)

∥∥∥
p

γ

]1/p

≤ C +
∫ t

0

C

(t − s)
1+γ

2

E

[∥∥∥V N ∗
(
α(s, · )SN

s

)∥∥∥
p

∞

]1/p

ds

+
∫ t

0

C

(t − s)
1+γ

2

E

[∥∥∥V N ∗
(

b
(

· , pN (s, · )
)

SN
s

)∥∥∥
p

∞

]1/p

ds

+ C .

At this point, we need to find a bound for the last two expected values. We start from

the first.

∣∣∣
(

V N ∗
(
α(s, · )SN

s

))
(x)

∣∣∣ ≤
∫

Rd

V N (x − y) |α(s, y)| SN
s (dy)

≤ ‖α(s, · )‖∞

∫

Rd

V N (x − y) SN
s (dy) = ‖α(s, · )‖∞ pN (s, x)

hence

E

[∥∥∥V N ∗
(
α(s, · )SN

s

)∥∥∥
p

∞

]1/p

≤ ‖α(s, · )‖∞ E

[∥∥∥pN (s)

∥∥∥
p

∞

]1/p

≤ ‖α(s, · )‖∞ E

[∥∥∥pN (s)

∥∥∥
p

γ

]1/p

As regards the second expected value, we similarly obtain

E

[∥∥∥V N ∗
(

b
(

· , pN (s, · )
)

SN
s

)∥∥∥
p

∞

]1/p

≤ ‖b‖∞ E

[∥∥∥pN (s)

∥∥∥
p

γ

]1/p

.

Therefore,

E

[∥∥∥pN (t)

∥∥∥
p

γ

]1/p

≤ C+C

∫ t

0

‖α(s, · )‖∞ +
∥∥b
(
· , pN (s, · )

)∥∥
∞

(t − s)
1+γ

2

E

[∥∥∥pN (s)

∥∥∥
p

γ

]1/p

ds.

The conclusion follows by a generalized version of Gronwall’s lemma. ⊓⊔

We are now ready to prove Theorem 5.1; its proof is the content of the next subsection.

5.3 Identification of the Limit

Let us denote by PN and QN the laws of SN and V N ∗ SN , respectively, on

C([0, T ];P(Rd)), for each N ∈ N. By Lemma 5.2, we know that both the families

(PN )N∈N and (QN )N∈N are tight in C([0, T ];P(Rd)). In particular, their convergent

sub-sequences have the same limit, in the following strong sense.
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Lemma 5.7 Assume a subsequence (PNk
)k∈N converges weakly to a probability mea-

sure P on C([0, T ];P(Rd)). Then also (QNk
)k∈N converges weakly to P.

Proof To prove the lemma, we are going to show that every convergent subsequence of

(QNk
)k∈N has limit P; indeed, this implies that (QNk

)k∈N converges to P . To this end,

let (QN ′
k
)k∈N be a subsequence of (QNk

)k∈N converging to a probability measure Q on

C([0, T ];P(Rd)). In particular, for every positive integer m and every finite sequence

t1 < ... < tm ∈ [0, T ], both π(t1,...,tm ) PN ′
k

and π(t1,...,tm )QN ′
k

converge weakly on

P(Rd)m , where π(t1,...,tm ) is the projection on the finite dimensional marginal at times

(t1, ..., tm). The limits are, respectively, π(t1,...,tm ) P and π(t1,...,tm )Q. If we prove that

they are equal, then P = Q as a consequence of Kolmogorov extension theorem (see

e.g. Stroock and Varadhan, 2007, Theorem 1.1.10).

Now, by Skorokhod representation theorem, on a new probability space
(
�̃, F̃ , P̃

)

we may consider a sequence S̃
N ′

k
t of continuous processes with values in P(Rd) and a

continuous process μ̃t with values in P(Rd) such that their laws on C([0, T ];P(Rd))

are PN ′
k

and P respectively; and V N ′
k ∗ S̃

N ′
k· has law QN ′

k
, which we know to be

convergent, weakly, to Q. As remarked at the beginning of Appendix 1, given t ∈
[0, T ], with probability one,

〈
V N ′

k ∗ S̃
N ′

k
t , ϕ

〉
converges to 〈μ̃t , ϕ〉 for all ϕ ∈ Cc

(
Rd
)
,

and therefore for all ϕ ∈ Cb

(
Rd
)

because μ̃t ∈ P
(
Rd
)
. Therefore, with P̃-probability

one, V N ′
k ∗ S̃

N ′
k

t converges to μ̃t in the topology of P(Rd). Hence, also the law of

V N ′
k ∗ S̃

N ′
k

t converges weakly to the law of μ̃t in the topology of P(Rd); namely

πt QN ′
k

converges weakly to πt P . Similarly, if t1 < ... < tm ∈ [0, T ], the P(Rd)m-

valued random variable
(

V N ′
k ∗ S̃

N ′
k

t1
, ..., V N ′

k ∗ S̃
N ′

k
tm

)
converges a.s. to

(
μ̃t1 , ..., μ̃tm

)

in the topology of P(Rd)m . Therefore, also the law of
(

V N ′
k ∗ S̃

N ′
k

t1
, ..., V N ′

k ∗ S̃
N ′

k
tm

)

converges weakly to the law of
(
μ̃t1 , ..., μ̃tm

)
in the topology of P(Rd)m , which means

that π(t1,...,tm )QN ′
k

converges weakly to π(t1,...,tm ) P . ⊓⊔

Now, let (PNk
)k∈N be a convergent subsequence of (PN )N∈N (which exists thanks

to Lemma 5.2) with limit P on C([0, T ];P(Rd)). We shall prove the following two

statements.

(i) The probability measure P is equal to δμ for a suitable μ ∈ C([0, T ];P(Rd))

which does not depend on the subsequence (Nk)k∈N; hence the full sequence

(PN )N∈N will converge weakly to δμ and SN will converge in probability to μ.

(ii) μ satisfies the conditions in Theorem 5.1.

To this end, with the purpose of simplifying notations, we shall prove that the original

sequence (PN )N∈N admits a subsequence (PNk
)k∈N which converges weakly to δμ

for a unique μ ∈ C([0, T ];P(Rd)) satisfying all the conditions of Theorem 5.1. The

same argument applied to any subsequence (PNk
)k∈N in place of the original (PN )N∈N,

proves the claim above; this will be the content of Proposition 5.8.

Denote by � ⊂ C([0, T ];P(Rd)) the set of all (μt )t∈[0,T ] such that there exists

p : [0, T ] × Rd → R with the property that x �→ p (t, x) is continuous, bounded,
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non negative,
∫

Rd p (t, x) dx = 1 and μt (dx) = p (t, x) dx for all t ∈ [0, T ]. Since

t �→
∫

Rd

p (t, x) ϕ (x) dx = 〈μt , ϕ〉

is continuous for every ϕ ∈ Cb

(
Rd
)
, p is measurable in (t, x) and weakly continuous

in t , in the previous sense.

Given α ∈ Cb([0, T ] × Rd ; Rd), ϕ ∈ C
1,2
c

(
[0, T ] × Rd

)
and μ ∈ �, set

�ϕ (μ) = sup
t∈[0,T ]

∣∣∣∣〈μt , ϕ(t, · )〉 − 〈μ0, ϕ(0, ·)〉 −
∫ t

0

〈μs,Aϕ(s, · )

− (α(s) + b (p(s))) · ∇ϕ(s, · )〉 ds| (5.9)

where for the sake of space b (p(s)) denotes the function b ( · , p (s, · )) and p (s, · )
is the density of μs . Moreover, we remind that A is the operator defined in Eq. (4.2).

Proposition 5.8 Let (Nk) be a subsequence such that PNk
converges in law to P on

C([0, T ];P(Rd)). Then:

(i) P (�) = 1.

(ii)
∫ (

�ϕ (μ) ∧ 1
)

P (dμ) = 0 for every ϕ ∈C
1,2
c

(
[0, T ] × Rd

)
.

Proof The proof is divided in four steps. Before proceeding, notice that by Lemma

5.7 also (QNk
)k∈N converges weakly to P .

Step 1 On an auxiliary probability space, let (μt )0≤t≤T be a process with law

P . Given t ∈ [0, T ], S
Nk
t converges in law to μt . Moreover, V Nk ∗ S

Nk
t satisfies the

assumptions of Lemma D.2 of Appendix 1. Therefore P (�) = 1.

Step 2 For every δ ∈ (0, 1) and μ ∈ P(Rd), let Pδμ denote the following function:

(Pδμ) (x) =
∫

Rd

G (δ, x − y) μ (dy) .

Moreover, introduce for ϕ ∈ C
1,2
c

(
[0, T ] × Rd

)
and δ ∈ (0, 1), the regularized func-

tional, defined on μ ∈ C([0, T ];P(Rd)) (instead of �)

�ϕ,δ (μ) = sup
t∈[0,T ]

∣∣∣∣〈μt , ϕ(t, · )〉 − 〈μ0, ϕ(0, · )〉 −
∫ t

0

〈μs,Aϕ(s, · ) − (α(s)

+b (Pδμs)) · ∇ϕ(s, · )〉 ds| .

It is easy to check the previous functional is continuous on C([0, T ];P(Rd)). There-

fore, being �ϕ,δ (·) ∧ 1 continuous and bounded,

lim
k→∞

∫ (
�ϕ,δ (μ) ∧ 1

)
QNk (dμ) =

∫ (
�ϕ,δ (μ) ∧ 1

)
P (dμ) .
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Recall we know that P (�) = 1. For each μ ∈ � and s ∈ [0, T ] it holds that:

lim
δ→0

Pδμs = p(s),

locally in the uniform topology, where p(s) is the density of μs ; therefore,

lim
δ→0

b (Pδμs) = b (p(s))

locally in the uniform topology, and it is a bounded convergence. Hence, thanks to the

local cut-off given by ϕ(s) we have:

〈μs, b (Pδμs) · ∇ϕ(s, · )〉 = 〈p(s), b (Pδμs) · ∇ϕ(s, · )〉
δ→0→ 〈p(s), b (p(s)) · ∇ϕ(s, · )〉
= 〈μs, b (p(s)) · ∇ϕ(s, · )〉 .

By Lebesgue dominated convergence we conclude that

lim
δ→0

�ϕ,δ (μ) = �ϕ (μ)

and thus again, by the same theorem,

lim
δ→0

∫ (
�ϕ,δ (μ) ∧ 1

)
P (dμ) =

∫ (
�ϕ (μ) ∧ 1

)
P (dμ) .

Therefore

∫ (
�ϕ (μ) ∧ 1

)
P (dμ) = lim

δ→0
lim

k→∞

∫ (
�ϕ,δ (μ) ∧ 1

)
QNk (dμ) .

In the next step, we prove that this double limit, taken in the specified order, is zero.

Step 3 We have the following identity:

∫ (
�ϕ,δ (μ) ∧ 1

)
QNk (dμ) = E

[
�ϕ,δ

(
V Nk ∗ SNk

)
∧ 1

]
. (5.10)

Choosing V Nk ,− ∗ ϕ as test function,

〈
S

Nk
t , (V Nk ,− ∗ ϕ) (t, · )

〉
−
〈
S

Nk

0 , (V Nk ,− ∗ ϕ) (0, · )
〉

−
∫ t

0

〈
SNk

s ,A(V Nk ,− ∗ ϕ)(s, · )
〉

ds

=
∫ t

0

〈
SNk

s ,
(
α(s) + b

(
V Nk ∗ SNk

s

))
· (∇V Nk ,− ∗ ϕ)(s, · )

〉
ds + M

Nk ,V
Nk ,−∗ϕ

t ,
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where M
Nk ,V

Nk ,−∗ϕ
t denotes the martingale (5.6) in which N and ϕ have been replaced

by Nk and V Nk ,− ∗ ϕ, respectively. Thus,

〈
V Nk ∗ S

Nk
t , ϕ (t, · )

〉
−
〈
V Nk ∗ S

Nk

0 , ϕ (0, · )
〉
−
∫ t

0

〈
V Nk ∗ SNk

s ,Aϕ(s, · )
〉

ds

=
∫ t

0

〈
V Nk ∗

[(
α(s) + b

(
V Nk ∗ SNk

s

))
SNk

s

]
,∇ϕ(s, · )

〉
ds + M

Nk ,V
Nk ,−∗ϕ

t .

(5.11)

For the sake of space, we set for t ∈ [0, T ]:

V
k,∗
t

.= V Nk ∗ S
Nk
t V

k,α,∗
t

.= V Nk ∗ (α(t)S
Nk
t )

V
k,α,b
t

.= α(s) + b(V k,∗
s ) V

k,α,b,δ
t

.= α(s) + b(Pδ(V k,∗
s )).

Now, we compute the expected value on the right-hand side of Eq. (5.10).

E

[
�ϕ,δ(V

k,∗
t ) ∧ 1

]

≤ E

[
sup

t∈[0,T ]

∣∣∣
〈
V

k,∗
t , ϕ(t, · )

〉
−
〈
V

k,∗
0 , ϕ(0, · )

〉

−
∫ t

0

〈
V k,∗

s ,Aϕ(s, · ) − V
k,α,b,δ
t · ∇ϕ(s, · )

〉
ds

∣∣∣∣
]

= E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

〈
V Nk ∗

[
V

k,α,b
t SNk

s

]
,∇ϕ(s, · )

〉
ds + M

Nk ,V
Nk ,−∗ϕ

t

−
∫ t

0

〈
V k,∗

s , V k,α,b,δ
s · ∇ϕ(s, · )

〉
ds

∣∣∣∣
]

≤ E

[∣∣∣M Nk ,V
Nk ,−∗ϕ

T

∣∣∣
2
]1/2

+ E

[∫ T

0

∣∣∣
〈
V

k,α,∗
t ,∇ϕ(s, · )

〉
−
〈
V k,∗

s , α(s) · ∇ϕ(s, · )
〉∣∣∣ ds

]

+ E

[∫ T

0

∣∣∣
〈
V Nk ∗

[
b(V k,∗

s )SNk
s

]
,∇ϕ(s, · )

〉

−
〈
V k,∗

s , b(Pδ(V k,∗
s )) · ∇ϕ(s, · )

〉∣∣∣ ds
]

.= (i) + (i i) + (i i i).

(5.12)

In the previous equation, we use the following bound

E

[
sup

t∈[0,T ]

∣∣∣M Nk ,V
Nk ,−∗ϕ

t

∣∣∣
]

≤ CE

[∣∣∣M Nk ,V
Nk ,−∗ϕ

T

∣∣∣
2
]1/2
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due to Doob’s inequality. At this point, we have that the terms (i)− (i i i) in Eq. (5.12)

converge to zero as Nk → ∞. By hypothesis ‖V Nk ,− ∗ ∇ϕ‖∞ is bounded because

∇ϕ is uniformly continuous and hence V Nk ,− ∗ ∇ϕ converges uniformly to ∇ϕ. This

implies that (5.12)-(i) converges to zero. Indeed,

E

[(
M

Nk ,V
Nk ,−∗ϕ

T

)2
]

=
1

N 2

N∑

i=1

∫ t

0

E

[∣∣∣∇V Nk ,− ∗ ϕ(s, X N ,i
s )

∣∣∣
2
]

ds

≤
1

N

∥∥∥V Nk ,− ∗ ∇ϕ

∥∥∥
2

∞
T

The uniform converges of V Nk ,− ∗ ∇ϕ and V Nk ,− ∗ (α( · ) · ∇ϕ), the weak conver-

gence of S
Nk
s (realized a.s. on an auxiliary probability space, by Skorohod theorem)

and Lebesgue dominated convergence theorem implies that also the term (5.12)-(i i)

converges to zero. The converges to zero of the third term is more delicate and it will

be proved here below in the third step.

Step 4 Let us consider

E

[∫ T

0

∣∣∣
〈
SNk

s , b(V k,∗
s ) · (V Nk ∗ ∇ϕ)(s, · ) − V Nk ∗

[
b(Pδ(V k,∗

s )) · ∇ϕ(s, · )
]〉∣∣∣ ( · )ds

]

≤
∫ T

0

E

[∫

Rd

∫

Rd

V Nk (x − y)

∣∣∣b(Pδ(V k,∗
s )(y)) − b(V k,∗

s (x))

∣∣∣ |∇ϕ (s, y)| dy SNk
s (dx)

]
ds

≤ Lb

∫ T

0

E

[∫

Rd

∫

Rd

V Nk (x − y)

∣∣∣Pδ(V k,∗
s )(y) − V k,∗

s (x)

∣∣∣ |∇ϕ (s, y)| dy SNk
s (dx)

]
ds

≤
∫ T

0

E

[∫

Rd

∫

Rd

V Nk (x − y)

∣∣∣Pδ(V k,∗
s )(y) − V k,∗

s (y)

∣∣∣ |∇ϕ(s, y)| dy SNk
s (dx)

]
ds

+
∫ T

0

E

[∫

Rd

∫

Rd

V Nk (x − y)

∣∣∣V k,∗
s (y) − V k,∗

s (x)

∣∣∣ |∇ϕ (s, y)| dy SNk
s (dx)

]
ds.

We now compute the following two bounds (notice that we use the explicit expression).

The first is given by:

∣∣∣Pδ

(
V Nk ∗ SNk

s

)
(y) − (V Nk ∗ SNk

s ) (y)

∣∣∣

=
∣∣∣E
[(

V Nk ∗ SNk
s

)
(y + Wδ) −

(
V Nk ∗ SNk

s

)
(y)

]∣∣∣

≤ E

[∣∣∣
(

V Nk ∗ SNk
s

)
(y + Wδ) −

(
V Nk ∗ SNk

s

)
(y)

∣∣∣
]

≤
[
V Nk ∗ SNk

s

]
γ

E
[
|Wδ|γ

]

≤ Cγ

[
V Nk ∗ SNk

s

]
γ

δγ /2,
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whereas the second, since V has compact support, say 1, so that the support of V Nk

is ǫNk
, by

V Nk (x − y)

∣∣∣(V Nk ∗ SNk
s ) (y) − (V Nk ∗ SNk

s ) (x)

∣∣∣

≤ V Nk (x − y)

[
V Nk ∗ SNk

s

]
γ

|x − y|γ

≤ ǫ
γ

Nk
V Nk (x − y)

[
V Nk ∗ SNk

s

]
γ

.

Therefore

E

[∫ T

0

∣∣∣
〈
SNk

s , b(V k,∗
s ) · (V Nk ∗ ∇ϕ)(s, · ) − V Nk ∗

[
b(Pδ(V k,∗

s )) · ∇ϕ(s, · )
]〉∣∣∣ ( · )ds

]

≤ Cγ δγ /2

∫ T

0

E

[[
V Nk ∗ SNk

s

]
γ

∫

Rd

∫

Rd

V Nk (x − y) |∇ϕ (s, y)| dy SNk
s (dx)

]
ds

+ ǫ
γ

Nk

∫ T

0

E

[[
V Nk ∗ SNk

s

]
γ

∫

Rd

∫

Rd

V Nk (x − y) |∇ϕ (s, y)| dy SNk
s (dx)

]
ds

≤
(

Cγ δγ /2 + ǫ
γ

Nk

)
‖∇ϕ‖∞

∫ T

0

E

[[
V Nk ∗ SNk

s

]
γ

∫

Rd

∫

Rd

V Nk (x − y) dy SNk
s (dx)

]
ds

=
(

Cγ δγ /2 + ǫ
γ

Nk

)
‖∇ϕ‖∞

∫ T

0

E

[[
V Nk ∗ SNk

s

]
γ

]
ds,

which converges to zero as k → ∞ and then δ → ∞ thanks to the first estimate of

Lemma 5.6. ⊓⊔

In order to complete the proof of Theorem 5.1 we have to prove that P is

supported on a class of solutions of equation (5.3) where we may apply the unique-

ness result of Appendix 1 now we know that P is supported on � and satisfies∫ (
�ϕ (μ) ∧ 1

)
P (dμ) = 0 for every ϕ ∈C

1,2
c

(
[0, T ] × Rd

)
. On an auxiliary proba-

bility space
(
�̃, F̃ , P̃

)
with expectation Ẽ, let (μ̃t )0≤t≤T be a process with law P . We

know that

Ẽ
[
�ϕ (μ̃) ∧ 1

]
= 0

hence

sup
t∈[0,T ]

|〈μ̃t , ϕ(t, · )〉

− 〈μ0, ϕ(0, · )〉 −
∫ t

0

〈μ̃s,Aϕ(s, · ) − (α(s) + b ( p̃s)) · ∇ϕ(s, · )〉 ds

∣∣∣∣ = 0

(5.13)

with P̃-probability one. The set C
1,2
c

(
[0, T ] × Rd

)
is separable in the natural metric

and therefore we may find a dense countable family D ⊂ C
1,2
c

(
[0, T ] × Rd

)
; it follows
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that we may reverse the quantifiers and get that with P̃-probability one identity (5.13)

holds for all ϕ ∈ D. Obviously we can also write

sup
t∈[0,T ]

|〈 p̃(t), ϕ(t, · )〉 − 〈p0, ϕ(0, · )〉

−
∫ t

0

〈 p̃(s),Aϕ(s, · ) − (α(s) + b ( p̃s)) · ∇ϕ(s, · )〉 ds

∣∣∣∣ = 0

since μ̃t has density p̃t , and also μ0 has density p0 by assumption. From the density

of D and classical limit theorems we get that, with P̃-probability one, the previous

identity holds for every ϕ ∈ C
1,2
c

(
[0, T ] × Rd

)
. Recall that we denote by G (t, x) the

density of blackian motion in Rd and by Pt the associated heat semigroup. From the

previous identity we deduce

〈 p̃(t), ψ( · )〉 = 〈Pt p0, ψ( · )〉 −
∫ t

0

〈∇Pt−s (α(s) + b( p̃(s))) , ψ( · )〉 ds (5.14)

for every ψ ∈ C2
c

(
Rd
)
. Indeed, given t ∈ [0, T ] and ψ ∈ C2

c

(
Rd
)
, consider the

test function ϕ(t)(s) = Pt−sψ for s ∈ [0, t]; by approximation by functions of class

C
1,2
c

(
[0, T ] × Rd

)
, we deduce

〈 p̃(t),Pt−tψ〉 − 〈p0,Pt−0ψ〉

−
∫ t

0

〈 p̃(s),A(Pt−·ψ)(s) − (α(s) + b ( p̃(s))) · ∇Pt−sψ〉 ds

(5.15)

which simplifies to

〈 p̃(t), ψ〉 = 〈p0,Ptψ〉 −
∫ t

0

〈αs + b( p̃(s)),∇Pt−sψ〉 ds

and therefore leads to equation (5.14) by simple manipulations. By the arbitrariness

of ψ and the continuity in x of p̃t and of both Pt f and ∇Pt−s f (this one only for

s < t) for every continuous bounded f (here we also use the bound ‖∇Pt−s f ‖∞ ≤
C

(t−s)1/2 ‖ f ‖∞ and the integrability of C

(t−s)1/2 ) we get

p̃ (t, x) = (Pt p0) (x) −
∫ t

0

∇Pt−s (α(s) + b( p̃(s))) (x) ds.

By the same arguments we deduce that p̃ is continuous in (t, x). Moreover, it is

bounded uniformly in (t, x) by the identity itself, because P· p0 is bounded, α is

bounded, b is bounded and again we use ‖∇Pt−s f ‖∞ ≤ C

(t−s)1/2 ‖ f ‖∞. In conclusion

p̃ is of class Cb

(
[0, T ] × Rd

)
. In Appendix 1 it is proved that in this class there is

a unique solution of the previous mild equation, hence P is supported by a single

element. This completes the proof of Theorem 5.1.
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6 Approximate Nash Equilibria from theMean Field Game

In this section we show that if we have a weak solution (u, p) of the PDE system in

Eq. (4.1), then we can construct a sequence of approximate Nash equilibria for the

corresponding N -player game. This is the content of the following theorem.

Theorem 6.1 Let N ∈ N, N > 1. Grant (H1)-(H4). Suppose (u, p) is a weak solution

of the PDE system in Eq. (4.1) and let α∗(t, x)
.= −▽u(t, x) the optimal control of

the problem OC in the class A
f b
K with K given by Definition (4.13). Set

αN ,i (t, x)
.= α∗(t, xi )

.= −▽u(t, xi ), t ∈ [0, T ],
x = (x1, . . . , xN ) ∈ Rd×N , i ∈ [[N ]] (6.1)

and αN = (αN ,1, . . . , αN ,N )∈ A
N ; f b
K . Then for every ε > 0, there exist N0 =

N0(ε) ∈ N such that αN is an ε-Nash equilibrium for the N-player game whenever

N ≥ N0.

Proof The proof is divided in three steps.

Step 1 Let ((�N ,FN , (F N
t ), PN ), W N , X N ) be a weak solution of Eq. (3.1) under

strategy vector αN . We note that the function F defined in (5.1) with α(s, X
N ,i
s ) =

−▽u(s, X
N ,i
s ) is continuous and bounded; this guarantees the existence of a weak

solution of the the system in Eq. (3.1) for any N ∈ N Let SN
t (resp. SN ) denote the

associated empirical measure on Rd (resp. on the path space X ). We are going to show

that

lim
N→∞

J N
i (αN ) = J (α∗). (6.2)

Theorem (5.1)-(i) enables us to prove the convergence result in Eq. (6.2) for the

following simplified cost functional, where we do not change the notation for the sake

of simplicity:

J N
i (αN ) = E

[∫ T

0

1

2
| − ▽u(s, X N ,i

s )|2 ds + g(X
N ,i
T )

]
.

Symmetry of the coefficients allows us to re-write the previous cost functional in terms

of SN
t , t ∈ [0, T ] as

J N
i (αN ) = E

[∫ T

0

1

N

N∑

i=1

1

2
| − ▽u(s, X N ,i

s )|2 ds +
1

N

N∑

i=1

g(X
N ,i
T )

]

= E

[∫ T

0

〈SN
s ,

1

2
| − ▽u(s, · )|2〉 ds + 〈SN

T , g( · )〉
]

which converges, as N → ∞, to

∫ T

0

〈S∞
s ,

1

2
| − ▽u(s, · )|2〉 ds + 〈S∞

T , g( · )〉
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where S∞ is the deterministic limit in probability of the sequence of random empirical

measures (SN )N∈N given by Theorem (5.1)-(i).

We claim that S∞
t ≡ p(t, · ), t ∈ [0, T ], with p the second component of the pair

(u, p), i.e. the density of the solution of Eq. (4.15) as stated by the Verification Theorem

4.8. Theorem 5.1 states that, given αN , the empirical measure SN
t corresponding to

the interacting system with this control converges to a flow of measures with density

pα(t, · ), where we stress the dependence on α. In addition, Theorem 5.1-(i i) states

that pα(t, · ) is the mild solution of Eq. (5.3). By applying the previous result to the

optimal control we have that the corresponding empirical measure on Rd converges

to pα∗
(t, · ), mild solution of Eq. (5.3). Also p, the second component of (u, p), is a

mild solution of this equation. The uniqueness Theorem 4.5 now implies that pα∗
(t, · )

coincides with p(t, · ). Hence, we can conclude that Eq. (6.2) holds.

Step 2 For each N ∈ N \ {i}, let βN ,i ∈ A
N ;1; f b
K such that

J N
i ([αN ,−i , βN ,i ]) ≤ inf

β∈A
N ;1; f b
K

J N
i ([αN ,−i , β]) + ε/2.

We are going to show the following result:

lim inf
N→∞

J N
i ([αN ,−i , βN ,i ]) ≥ J (α∗). (6.3)

To this aim, we introduce the N -player dynamics in the case the first player only

deviates from the Nash equilibrium. For N ∈ N, consider the system of equations:

X
N ,1;β
t = X0

N ,1 +
∫ t

0

⎛
⎝βN ,1(s, X N ;β

s ) + b(X N ,1;β
s ,

1

N

N∑

j=1

V N (X N ,1;β
s − X

N , j;β
s ))

⎞
⎠ ds

+ W
N ,1;β
t

X
N ,i;β
t = X0

N ,i +
∫ t

0

⎛
⎝α∗(s, X N ,i;β

s ) + b(X N ,i;β
s ,

1

N

N∑

j=1

V N (X N ,i;β
s − X

N , j;β
s ))

⎞
⎠ ds

+ W
N ,i;β
t

i ∈ {2, . . . , N } , t ∈ [0, T ],
(6.4)

where βN ,1 ∈ A
N ;1; f b

K . We denote with SN ;β .= (S
N ;β
t )t∈[0,T ] the empirical measure

process on Rd of the previous system.

Now, for each N ∈ N, let ((�N ,FN , (F N
t ), QN ), W N ;β , X N ;β) be a weak solution

of Eq. (6.4). Since the presence of a deviating player destroys the symmetry of the

pre-limit system, following Lacker [15] proof of Theorem 3.10 therein, we perform
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a change of measure to restore it. More precisely, we define as PN the probability

measure under which X N ;β has the following dynamics:

X
N ,i;β
t = X0

N ,i +
∫ t

0

⎛
⎝α∗(s, X N ,i;β

s ) + b(X N ,i;β
s ,

1

N

N∑

j=1

V N (X N ,i;β
s − X

N , j;β
s ))

⎞
⎠ ds+

+ Ŵ
N ,i;β
t , i ∈ [[N ]], t ∈ [0, T ],

where the Ŵ
N ,i;β
t are PN -Wiener processes, i.e. PN is defined via dPN

dQN

∣∣∣
t=T

.= Z N
T

where

Z N
t

.= Et

(∫ ·

0

(
βN (s, X N ;β

s ) − αN (s, X N ;β
s )

)
dW N ;β

s

)

where βN = [αN ,−1, βN ,1] and W N ;β = (W N ,1;β , . . . , W N ,N ;β). We notice that Z N

is a well-defined QN -martingale thanks to boundedness of the coefficients. Theorem

5.1-(i) ensures the convergence under PN of the SN ;β to S∞ ≡ δp. Boundedness

of the coefficients also gives uniform integrability of the sequence ((Z N
T )−1)N∈N;

therefore, the probability measures QN (A)
.= EPN [

(Z N
T )−1

1A

]
, A ∈ F N , converge

to zero whenever PN (A) converges to zero in the limit N → ∞. So the convergence

(in law and also in probability) of SN ;β to S∞ under PN implies its convergence (in

law and also in probability) under QN to the same (constant) limit.

Now, in order to gain more compactness in the space of admissible controls, we

interpret the controls in Eq. (6.4) as stochastic relaxed controls (Appendix 1). To this

end, we denote with BK (0) ⊂ Rd the closed ball of radius K around the origin and

RK
.= RBK (0). Then RK is compact (Appendix 1). For N ∈ N, let β̃1

t and α̃
∗,i
t ,

i ∈ {2, . . . , N }, be RK -valued random measures determined by:

β̃
N ,1
t (dx) dt

.= δ
βN ,1(t,X

N ;β
t )

(x) dx dt, (t, x) ∈ [0, t] × BK (0)

α̃
∗,i
t (dx) dt

.= δ
α∗(t,X

N ,i;β
t )

(x) dx dt (t, x) ∈ [0, t] × BK (0), i ∈ {2, . . . , N }.

We rewrite Eq. (6.4) in terms of these relaxed controls:

X
N ,1;β
t = X0

N ,1 +
∫

[0,t]×BK (0)

x β̃N ,1
s (dx) ds

+
∫ t

0

b(X N ,1;β
s ,

1

N

N∑

j=1

V N (X N ,1;β
s − X

N , j;β
s )) ds + W

N ,1;β
t

X
N ,i;β
t = X0

N ,i +
∫

[0,t]×BK (0)

x α̃∗
i,s(dx) ds

+
∫ t

0

b(X N ,i;β
s ,

1

N

N∑

j=1

V N (X N ,i;β
s − X

N , j;β
s )) ds + W

N ,i;β
t

i ∈ {2, . . . , N } , t ∈ [0, T ].

(6.5)
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We do the following claims. Claim a.: the family
(
PN ◦ (X N ,1;β , β̃N ,1, SN ;β)−1

)
N∈N

is tight in P(X × RK × P(Rd)) and thus it admits a convergent subsequence. We

denote by (Xβ∗
, β̃∗,1, p) the limit of the subsequence that can be constructed by

means of Skorokhod’s representation theorem on a suitable limiting probability space

(�β∗
,Fβ∗

, Qβ∗
); Claim b.: the limit Xβ∗

has the following representation:

X
β̃∗
t = X0 +

∫

[0,T ]×BK (0)

x β̃∗,1
s (dx) ds +

∫ t

0

b(X β̃∗
s , p(s, X β̃∗

s )) ds + W
β∗
t ,

t ∈ [0, T ] (6.6)

on (�β∗
,Fβ∗

, Qβ∗
) where W β∗

is a Wiener process, i.e. there exist a filtration (F
β∗
t )

and an (F
β∗
t )-Wiener process W β∗

on (�β∗
,Fβ∗

, Qβ∗
). such that X β̃∗

has represen-

tation (6.6). If both Claim a and Claim b hold, by setting β∗
t

.=
∫

BK (0)
x β̃

∗,1
t (dx), we

have that J N
i ([αN ,−i , βN ,i ]) converges to

J (β∗) = E

[∫ T

0

1

2
|β∗

s |2 ds + g(X
β∗

T )

]

along the selected subsequence with J (β∗) ≥ J (α∗). Equation (6.3) follows by taking

the limit inferior of the sequence.

We now prove the two claims.

Proof of Claim a. Tightness of (PN ◦ (X N ,1:β)−1) and of (PN ◦ (SN ;β)−1) under

QN follows from their tightness under PN . On the other hand, (PN ◦(β̃N ,1)−1) is tight in

P(RK )becauseRK is compact. This implies that
(
PN ◦ (X N ,1;β , β̃N ,1, SN ;β)−1

)
N∈N

is tight in P(X × RK × P(Rd)).

Proof of Claim b. We use a characterization of solutions to Eq. (6.6) with fixed

measure variable through a martingale problem in the sense of Stroock and Varadhan

[24] (see El Karoui and Méléard [9] for a study of the martingale problems we employ).

Let f ∈ C2
c(R

d) and let us define the process M f on (X × RK ,B(X × RK )) by

M
f

t (ϕ, ρ)
.= f (ϕ(t)) − f (ϕ(0)) −

∫

[0,t]×BK (0)

xρs(dx)∇ f (ϕ(s)) ds

−
∫ t

0

(
b(ϕ(s), p(s, ϕ(s))∇ f (ϕ(s)) +

1

2
� f (ϕ(s))

)
ds,

(6.7)

where t ∈ [0, T ]. We claim that �∗ .= P◦ (X β̃∗
, β̃∗)−1 ∈ P(X ×RK ) is a solution of

the martingale problem associated to Eq. (6.7), i.e. such that for all f ∈ C2
c(R

d), M f is

a �∗-martingale. The martingale property is intended on (X ×RK ,B(X ×RK )) with

respect to the �∗-augmentation of the canonical filtration made right continuous by a

standard procedure. However, to conclude it is sufficient to check that the martingale

property holds with respect to the canonical filtration on X × RK (see, for instance,

Problem 5.4.13 in Karatzas and Shreve (1998)). We denote by (Gt )t∈[0,T ] such a
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filtration show that the process in Eq. (6.7), which is bounded, measurable and Gt -

adapted, is a �∗ .= P ◦ (X β̃∗
, β̃∗)−1 martingale for all f ∈ C2

c(R
d). This is equivalent

to having

E�∗ [
Y · (M

f
t2

− M
f

t1
)
]

= 0

for every choice of (t1, t2, Y ) ∈ [0, T ]2 × Cb(X × RK ) such that t1 ≤ t2 and Y is

Gt1 -measurable. To this aim, we define and compute the following function � p =
�

p

(t1,t2,Y , f )
: P(X × RK ) → R:

� p(�∗) = �
p

(t1,t2,Y , f )
(�∗)

.= E�∗ [
Y · (M

f
t2

− M
f

t1
)
]

=
∫

X×RC

Y (ϕ, ρ) ( f (ϕ(t2)) − f (ϕ(t1))) �∗(dϕ, dρ)

−
∫

X×RC

Y (ϕ, ρ)

∫

B̄C ×[t1,t2]
xρt (dx)∇ f (ϕ(t))dt �∗(dϕ, dρ)

−
∫

X×RC

Y (ϕ, ρ)

∫ t2

t1

b(ϕ(t), p(t, ϕ(t))∇ f (ϕ(t))dt �∗(dϕ, dρ)

−
1

2

∫

X×RC

Y (ϕ, ρ)

∫ t2

t1

� f (ϕ(t))dt �∗(dϕ, dρ).

(6.8)

The previous function, in particular, is continuous with respect to the weak convergence

of measure since the integrands are bounded and continuous on X × RK . Also, we

define:

M
f ,i

t (ϕN , ρN )
.= f (ϕN ,i (t)) − f (ϕN ,i (0))

−
∫ t

0

[∫

B̄C

xρN ,i
s (dx) + b(ϕN ,i (s), v(ϕN (s)))

]
∇ f (ϕN ,i (s))

+
1

2
� f (ϕN ,i (s))ds

v(ϕN (t))
.=

1

N

N∑

j=1

V N (ϕN ,i (t) − ϕN , j (t)), t ∈ [0, T ], i ∈ [[N ]],

for (ϕN , ρN ) ∈ X ×N ×R
×N
K , where ρN ,i and ϕN ,i are respectively the i th component

of ρ and ϕ, and the extended empirical measure S
N ;β

as

S
N ;β .=

1

N

N∑

i=1

δ(X N ,i;β ,ρN ,i;β ).

Here, X N ,i;β denotes the dynamics of player i in the system where the first player

only deviates from the Nash equilibrium written in terms of relaxed controls ρN ,i;β .
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Now, by construction, it holds that

1

N

N∑

i=1

E�
∗
N

[
Y

i ·
(

M
f ,i

t2
− M

f ,i

t1

)]
= 0, (6.9)

where �
∗
N

.= PN ◦ (X N ,i;β , ρN ,i;β)−1 and for every choice of (t1, t2, Y
i
) ∈ [0, T ]2 ×

Cb(X
×N × R

×N
K ) such that t1 ≤ t2 and Y is GN

t1
-measurable, with (GN

t ) being the

canonical filtration on B(X ×N × R
×N
K ). To conclude, it then suffices to show that

the previous term converges to the expected value of � p(�∗) in the limit for N →
∞. Let us set the sequence Y

i
as Y

i
(ϕN )

.= Y (ϕN ,i ) and show that the following

decomposition for the term in Eq. (6.9) holds:

1

N

N∑

i=1

E�
∗
N

[
Y ·

(
M

f ,i

t2
− M

f ,i

t1

)]
= E

[
�(t1,t2,Y , f )(S

N ;β
)
]

− �
p

(t1,t2,Y , f )
(S

N ;β
).

(6.10)

Indeed, the first term is equal to:

E

[
�(t1,t2,Y , f )(S

N ;β
)
]

=
1

N

N∑

i=1

E

[
Y (X N ,i;β , ρN ,i;β)

(
f (X

N ,i;β
t2

) − f (X
N ,i;β
t1

)
)]

−
1

N

N∑

i=1

E

[
Y (X N ,i;β , ρN ,i;β)

∫

BK (0)×[t1,t2]
xρ

N ,i;β
t (dx)∇ f (X

N ,i;β
t )dt

]

−
1

N

N∑

i=1

E

[
Y (X N ,i;β , ρN ,i;β)

∫ t2

t1

b(X
N ,i;β
t , p(t, X

N ,i;β
t ))∇ f (X

N ,i;β
t )dt

]

−
1

N

N∑

i=1

E

[
Y (X N ,i;β , ρN ,i;β)

∫ t2

t1

1

2
� f (X

N ,i;β
t )dt

]
,

(6.11)

whereas the second reads as:

�
p

(t1,t2,Y , f )
(S

N ;β
)

=
1

N

N∑

i=1

E

[
Y (X N ,i;β , ρN ,i;β)

∫ t2

t1

b(X
N ,i;β
t , v(X

N ;β
t ))∇ f (X

N ,i;β
t )dt

]

−
1

N

N∑

i=1

E

[
Y (X N ,i;β , ρN ,i;β)

∫ t2

t1

b(X
N ,i;β
t , p(t, X

N ,i;β
t ))∇ f (X

N ,i;β
t )dt

]

(6.12)

In particular, �(t1,t2,Y , f )(S
N ;β

) corresponds to the integrals in Eq. (6.8) computed

w.r.t. the extended empirical measure S
N ;β

. The term in Eq. (6.11) converges to
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�
p

(t1,t2,Y , f )
(p) in the limit for N → ∞ thanks to the weak continuity of the involved

functional and weak convergence of measures. Term in Eq. (6.12), instead, vanishes

in the limit as N → ∞ thanks to Lemma D.2, since it can be bounded by: :

∣∣∣�p

(t1,t2,Y , f )
(S

N ;β
)

∣∣∣

≤
1

N

N∑

i=1

E

[∣∣∣Y (X N ,i;β)

∣∣∣
∫ t2

t1

∣∣∣b(X N ,i;β
s , pN (s, X N ,i;β

s ))

−b(X N ,i;β
s , p(s, X N ,i;β

s ))

∣∣∣
∣∣∣∇ f (X N ,i;β

s )

∣∣∣ ds
]

≤
1

N

N∑

i=1

‖Y‖∞‖∇ f ‖∞L

∫ t2

t1

‖pN (s, ·) − p(s, ·)‖∞ds.

(6.13)

We conclude that �∗ ∈ P(X × RK ) solves the martingale problem associated to

Eq. (6.7). By an argument analogous to that in the proofs of Proposition 5.4.6 and

Corollary 5.4.8 in Karatzas and Shreve (1998), we finally conclude that there exists a

weak solution ((�β∗
,Fβ∗

, Qβ∗
), X β̃∗

, W β∗
) of Eq. (6.6).

Step 3 For every N ∈ N,

J N
i (αN ) − inf

β
J N

i ([αN ,−i , β])

≤ J N
i (αN ) − J (α∗) + J (α∗) − J N

i ([αN ,−i , βN
1 ]) + ε/2.

(6.14)

By Step 1 and Step 2 there exists N0(ε) such that

J N
i (αN ) − J (α∗) ≤ ε/4 J (α∗) − J N

i ([αN ,−i , βN
1 ]) ≤ ε/4.

for all N ≥ N0(ε). This concludes the proof. ⊓⊔
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Appendix A: SomeWell Known Results

For the reader convenience, we collect here some (well-known) results on convolu-

tions, regularizations and mollifiers that have been used through the paper.

First, we remind some properties on convolution and regularization.
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Proposition A.1 (Convolution and regularization) [2, Propositions 4.4.15, 4.4.19 and

4.4.20] The following statements on convolution hold true:

(i) Let f ∈ L1(Rd) and g ∈ L p(Rd), 1 ≤ p ≤ ∞. Then f ∗ g is well defined in

L p(Rd).

(ii) Let θ ∈ Cc(R
d) and ϕ ∈ L1

loc(R
d). Then � ∗ ϕ is well defined in C(Rd).

(iii) Let θ ∈ Ck
c(R

d) and ϕ ∈ L1
loc(R

d). Then �∗ϕ is well defined in Ck(Rd), k ≥ 1,

also k = ∞.

In particular, in our work we used convolution of the type θ∗μ, where θ ∈ C∞
c (Rd) and

μ ∈ P(Rd). Therefore, since μ ∈ L1(Rd) and θ ∈ L p(Rd) for any 1 ≤ p ≤ ∞, by

item (i) of Proposition A.1 the convolution θ ∗μ is well defined in L p(Rd). Moreover,

by items (ii) and (iii) of Proposition A.1, θ ∗ μ ∈ Ck(Rd) for any k ≥ 1, also k = ∞.

Also, we use scalar product of the type 〈θ ∗ μ, ϕ〉, where ϕ ∈ L2(Rd). In particular,

for any function g : Rd → R if we denote g− .= g(−·), then

〈θ ∗ μ, ϕ〉 =
∫

Rd

∫

Rd

θ(x − y)μ(dy)ϕ(x)dx

=
∫

Rd

∫

Rd

θ(x − y)ϕ(x)dxμ(dy)

=
∫

Rd

θ(−·) ∗ ϕ(y)μ(dy) = 〈μ, θ− ∗ ϕ〉.

Second, we give the following definition and proposition.

Definition A.2 (Mollifiers) [2, Chapter 4.4] A sequence of mollifiers is any sequence

of functions (θN )N∈N from Rd to R such that for each N ∈ N: θN ∈ C∞
c (Rd) with

support in B1/N (0), θN ≥ 0 and
∫

Rd θ N (dx) = 1.

Proposition A.3 (Mollification) [2, Proposition 4.4.21] Let f ∈ C(Rd). Then θN ∗
f → f uniformly on compact sets.

Third, we give the following results on weak convergence.

Lemma A.4 (Weak convergence and the double index problem) Let (μN )N∈N ⊂
P(Rd) a sequence converging weakly to μ ∈ P(Rd). Let ( fN )N∈N ∈ Cb(R

d) be

a sequence converging to f ∈ Cb(R
d) uniformly on compact sets and such that

supn∈N ‖ fN ‖∞ ≤ C < ∞, ‖ f ‖∞ ≤ C < ∞ for some C > 0. Then

∫

Rd

fN (x)μN (dx) −→
N→∞

∫

Rd

f (x)μ(dx).

Proof The proof is based on the following decomposition, holding for any R > 0:

∫

Rd

fN (x)μN (dx) −
∫

Rd

f (x)μ(dx)

=
∫

B R(0)

( fN (x) − f (x))μN (dx)
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+
∫

B R(0)

f (x)(μN − μ)(dx)

+
∫

Rd\B R(0)

fN (x)μN (dx) −
∫

Rd\B R(0)

f (x)μ(dx)

where B R(0) ⊂ Rd is the closed ball of radius R centered at the origin. Hence

∣∣∣∣
∫

Rd

fN (x)μN (dx) −
∫

Rd

f (x)μ(dx)

∣∣∣∣ ≤ ‖ fN − f ‖∞,B R(0)

+
∣∣∣∣
∫

B R(0)

f (x)(μN − μ)(dx)

∣∣∣∣

+C
(
μN (Rd \ B R(0)) + μ(Rd \ B R(0))

)

where ‖ · ‖∞,B R(0) is the infinity norm on B R(0). Now let ε > 0 and choose R > 0

be such that

sup
N∈N

μN (Rd \ B R(0)) <
ε

4C
and μ(Rd \ B R(0)) <

ε

4C

by the tightness of the family (μN )N∈N. Then, by uniform convergence on compact

sets of the sequence ( fN )N∈N to f and by weak convergence of the (μN )N∈N to μ

there exists N0 ∈ N such that the first and second terms are lower than ε
4

for all

N ≥ N0. We conclude that for all ε > 0 there exists N0 ∈ N such that

∣∣∣∣
∫

Rd

fN (x)μN (dx) −
∫

Rd

f (x)μ(dx)

∣∣∣∣ < ε

for all N ≥ N0. ⊓⊔

Lemma A.5 Let (μN )N∈N ⊂ P(Rd) a sequence converging weakly to μ ∈ P(Rd).

Set fN
.= θN ∗ μN for some mollifiers θN and assume limN→∞ fN = f in L2(Rd)

for some f ∈ L2(Rd). Then μ has density f with respect to the Lebesgue measure on

Rd .

Proof First, notice that 〈 fN , ϕ〉 = 〈θN ∗ μN ϕ〉 = 〈μN θ−
N ∗ ϕ〉 for any ϕ ∈ L2(Rd) ∩

C(Rd) and for each N ∈ N. Set ϕN
.= θ−

N ∗ϕ for each N ∈ N. Now 〈 fN , ϕ〉 → 〈 f , ϕ〉
for any ϕ ∈ L2(Rd), by strong convergence in L2(Rd) of the f N , but also

∫

Rd

fN (x)ϕ(x)dx =
∫

Rd

ϕ−
N (x)μN (dx) →

∫

Rd

ϕ(x)μ(dx)

by weak convergence of the μN and uniform convergence on compact sets of the φN

to φ (Lemma A.4). Hence

∫

Rd

ϕ(x)μ(dx) =
∫

Rd

ϕ(x) f (x)dx
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for any ϕ ∈ L2(Rd) ∩ C(Rd). The same reasoning holds for any ϕ ∈ Cb(R
d) hence

we conclude. ⊓⊔

Appendix B: Hamilton–Jacobi Equation, Kolmogorov Equation Equa-
tions andMild Solutions

In Sect. 1 we study the decoupled Hamilton–Jacobi Bellman equation and Kolmogorov

equation equations defining the PDE system in Eq. (4.1) via the mild formulation; see

Theorem B.1, Theorem B.2. This enables us to prove the equivalence between the

mild and weak formulations; see proof of Lemma 4.2 in Sect. 1. In Sect. 1 we prove

Theorem 4.4, i.e. the existence of a global solution of the PDE system (see Theorem

4.4 in Sect. 4). On the other hand, in Sect. 1 we prove Theorem 4.5, i.e. the local

uniqueness of a solution of the PDE system (see Theorem 4.5 in Sect. 4). Finally, in

Sect. 1 we give the proof of Theorem 4.8.

B.1: The Hamilton–Jacobi and the Kolmogorov Equation Equation In Mild Form

Throughout this section, we assume that p0, b, f , g satisfy the hypotheses (H1)–(H2)

and (H4) in Sect. 2.

Theorem B.1 Given p0 ∈ Cb

(
Rd
)
, given α ∈ Cb

(
[0, T ] × Rd ; Rd

)
, there exists at

most one solution of equation

p (t) = Pt p0 −
∫ t

0

∇Pt−s (p(s) (α(s) − b( · , p(s)))) ds. (B.1)

in the class Cb

(
[0, T ] × Rd

)
.

Proof Assume by contradiction that p(i)(t), i = 1, 2, are two solutions of Eq. (B.1)

of class Cb([0, T ] × Rd) and set q(t) as their difference. By a generalized form of

Gronwall’s lemma one has that ‖q (t)‖∞ = 0 for every t ∈ [0, T ], from which the

conclusion readily follows. The precise estimates can be found in the proof of Theorem

4.5 in Sect. (1). For the sake of space, we refer the reader to that proof; in particular

one has to use the estimate for the map Ŵ1, first component of the map Ŵ defined in

(B.7). ⊓⊔

Theorem B.2 Given p ∈ Cb([0, T ] × Rd), If α ∈ Cb([0, T ] × Rd; Rd), then there

exists at most one solution u, in the class Cb

(
[0, T ] × Rd

)
and such that its partial

derivatives are also of class Cb

(
[0, T ] × Rd

)
, of the following equation

u (t) = PT −t g −
∫ T

t

Ps−t

(
b ( · , p (s)) · α (s) −

1

2
|∇u (s)|2 + f ( · , p(s))

)
ds

(B.2)

Proof Assume by contradiction that u(i)(t), i = 1, 2, are two solutions of Eq. (B.2)

of class Cb

(
[0, T ] × Rd

)
and such that their partial derivatives are of class
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Cb

(
[0, T ] × Rd

)
. Set θ (i) = ∇u(i), i = 1, 2 and q(t) their difference. Using the

estimates for the map Ŵ2, second component of the map Ŵ defined in (B.7), one

has that ‖q(t)‖∞ = 0 for every t ∈ [0, T ], from which θ (1)(t) = θ (2)(t) for every

t ∈ [0, T ]. Therefore, u(1)(t) = u(2)(t) because of Eq. (B.2). ⊓⊔

B.2: Proof of Lemma 4.2

Proof Let (u, p) be a weak solution of the PDE system in Eqs. (4.3)–(4.3), and consider

Eq. (4.3). In particular, for a given t ∈ [0, T ],

〈u (t) , ϕ (t)〉 − 〈g, ϕ (T )〉 +
∫ T

t

〈u (s) ,Aϕ(s)〉 ds

=
∫ T

t

〈
b( · , p(s)) · ∇u (s) −

1

2
|∇u (s)|2 + f ( · , p(s)), ϕ (s)

〉
ds.

(B.3)

Using on [t, T ] the following test function

ϕ(t) (s, x) = (Ps−tφ) (x) , s ∈ [t, T ] ,

with φ ∈ C1([0, T ] × C2
b(R

d) ∩ W 2,2(Rd)), we get

〈u (t) , φ〉 − 〈g,PT −tφ〉 +
∫ T

t

〈u (s) ,APs−tφ〉 ds

=
∫ T

t

〈
b( · , p(s)) · ∇u (s) −

1

2
|∇u (s)|2 + f ( · , p(s)),Ps−tφ

〉
ds.

Notice that APs−tφ = 0 and that 〈a,Pt b〉 = 〈Pt a, b〉 for every pair of functions

a, b ∈ Cb

(
Rd
)
. Then

〈u (t) , φ〉 − 〈PT −t g, φ〉
∫ T

t

〈
Ps−t

(
b( · , p(s)) · ∇u (s) −

1

2
|∇u (s)|2 + f ( · , p(s))

)
, φ

〉
ds.

Because φ can be chosen in an arbitrary way, we deduce the mild formulation of

Eq. (4.6). The equation for p is similar, as well as the other direction. ⊓⊔

B.3: Proof of Theorem 4.4

Throughout this section, we assume that p0, b, f , and g satisfy the hypotheses (H1)–

(H2) and (H4) in Sect. 2 and (H5) in Sect. 4. In addition, we shall repeatedly use the

following well-known inequality:

‖∇Pt f ‖∞ ≤ Cd t−1/2 ‖ f ‖∞ (B.4)
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for all f ∈ L∞ (
Rd
)
, with Cd = d1/2, which follows for instance from the formula

∇Pt f (x) = t−1E [Wt f (x + Wt )] (elementary proved by differentiating the heat

kernel):

|∇Pt f (x)| ≤ t−1 ‖ f ‖∞ E [|Wt |] ≤ t−1 ‖ f ‖∞ E

[
|Wt |2

]1/2
≤ Cd t−1/2 ‖ f ‖∞ .

We use the Brouwer–Schauder fixed point theorem to prove Theorem 4.4. Brouwer–

Schauder fixed point theorem says that if K is a non empty, closed, bounded and

convex subset of a Banach space V and � : K → K is a continuous map such that

�(K ) is relatively compact in V , then � has a fixed point in K .

We will apply this theorem to the space V = Cb([0, T ] × Rd). Instead, in order

to define the map �, let p ∈ V be given and let w = wp be a weak solution of the

first equation of the PDE system (4.9). Existence and uniqueness of such a solution

is given by classical parabolic results; e.g., one proof can be done by contraction

principle applied to the mild formulation in Eq. (B.5) below. In particular, wp satisfies

the following properties:

wp (t, x) ≥ e−(‖g‖∞+T ‖ f ‖∞) and
∥∥wp

∥∥
∞ +

∥∥∇wp

∥∥
∞ ≤ C1 (b, f , g, T )

independently of p ∈ V , with C1 (b, f , g, T ) > 0 depending only on ‖b‖∞, ‖ f ‖∞
and ‖g‖∞. One way to prove this fact is by using the following identity

wp (t) = PT −t exp (−g) −
∫ T

t

Ps−t

(
b (·, p (s)) · ∇wp (s) − wp (s) f (·, p (s))

)
ds

(B.5)

and estimate B.4 of the heat semi-group’s gradient. At this point, we call �(p) the

solution of the following equation

�(p) (t) = Pt p0 +
∫ t

0

∇Pt−s

(
�(p) (s)

(∇wp (s)

wp (s)
+ b (·, p (s))

))
ds. (B.6)

Notice that this is not the second equation of the PDE system (4.9) with w = wp

because we keep the original p in b (·, p (s)). Existence of a global solution �(p) ∈ V

can be proved by iteration, using B.4 and

∥∥∥∇wp

wp

∥∥∥
∞

≤ Cw (g, f , b, T ). In addition,

one gets

‖�(p)‖∞ ≤ C2 (b, f , g, p0, T )

for a suitable constant C2 (b, f , g, p0, T ) > 0 depending, again, only on ‖b‖∞, ‖ f ‖∞
and ‖g‖∞. Therefore, the set

K
.=
{

p ∈ V : ‖p‖∞ ≤ C2 (b, f , g, p0, T )
}

is bounded, closed, convex and invariant.

We prove now that the map � satisfies the assumptions in the Brouwer-Schauder

fixed point theorem. It is not difficult to prove that the map � is continuous by using
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B.4 again. Instead, it is non straightforward to prove that �(K ) is relatively compact,

due to the unboundedness of the space domain. In order to do so, we use the following

compactness result, which is an easy variant of the Ascoli-Arzelà theorem.

Theorem B.3 Let α(·), β(·) and C1(·), C2(·) be four positive and non-decreasing func-

tions and ρ as in (H5); see Sect. 4. Let C3 > 0 a constant. Then the set �α,C1,β,C2,ρ,C3

of all functions f ∈ Cb

(
[0, T ] × Rd

)
such that

sup
t∈[0,T ]

‖ f (t)‖α,R ≤ C1 (R) for every R > 0 (H1.1)

sup
t,s∈[0,T ]

t �=s

‖ f (t) − f (s)‖∞,R

|t − s|β
≤ C2 (R) for every R > 0 (H2.1)

| f (t, x)| ≤ C3ρ (x) for all (t, x) ∈ [0, T ] × Rd (H3.1)

is relatively compact in Cb

(
[0, T ] × Rd

)
.

Before proceeding with the proof of Theorem B.3, we recall the following version of

the Ascoli-Arzelà theorem.

Theorem B.4 Assume that that a family of functions F ⊂ C ([0, T ] ; Cb (BM )) satisfies

the following two properties:

(i) { f (t) ; f ∈ F, t ∈ [0, T ]} ⊂ KM for some compact set KM ⊂ Cb (BM )

(ii) F is uniformly equicontinuous in C ([0, T ] ; Cb (BM )), namely for every ǫ > 0

there exists a δ > 0 such that ‖ f (t) − f (s)‖Cb(BM ) ≤ ǫ for every f ∈ F and

t, s ∈ [0, T ] such that |t − s| ≤ δ.

Then F is relatively compact in C ([0, T ] ; Cb (BM )).

Proof of Theorem B.3 Notice that given any closed ball BM
.= B M (0) ⊂ Rd of radius

M around the origin, the space Cb ([0, T ] × BM ) and the space C ([0, T ] ; Cb (BM ))

are equivalent. This is not longer true for Cb

(
[0, T ] × Rd

)
and C

(
[0, T ] ; Cb

(
Rd
))

.

Indeed, it holds that C
(
[0, T ] ; Cb

(
Rd
))

⊂ Cb

(
[0, T ] × Rd

)
. On any BM we use

Theorem B.4. Now, consider a sequence (pn)n∈N ⊂ �α,C1,β,C2,ρ,C3 . For every BM ,

denote by pM
n the restriction of pn to [0, T ] × BM . They belong to Cb ([0, T ] × BM )

which is equivalent to C ([0, T ] ; Cb (BM )). The space Cα
b (BM ) has compact embed-

ding into Cb (BM ) by Ascoli-Arzelà theorem. By (H1.1) in Theorem B.3, the set{
pM

n (t) , n ∈ N, t ∈ [0, T ]
}

is bounded in Cα
b (BM ), hence assumption (i) of The-

orem B.4 is satisfied. On the other hand, by (H2.1) in Theorem B.3 the sequence(
pM

n

)
n∈N

is uniformly equicontinuous in C ([0, T ] ; Cb (BM )). Hence, by Theorem

B.4 we may extract a subsequence which converges in C ([0, T ] ; Cb (BM )). By a

diagonal argument, we can find a function p ∈ C
(
[0, T ] × Rd

)
and a subsequence

(
pnk

)
such that

∥∥∥(pM
n − p)|[0,T ]×BM

∥∥∥
∞

→ 0 as k → ∞, for every M . Given ǫ > 0,

let Mǫ be such that ∥∥∥ρ|Bc
M

∥∥∥
Cb(Bc

M)
≤

ǫ

4C3
.
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Since
∣∣pnk (t, x)

∣∣ ≤ C3ρ (x), we also have

∥∥∥pnk
|[0,T ]×Bc

M

∥∥∥
Cb([0,T ]×Bc

M)
≤

ǫ

4
.

In addition, since pnk
→ p point-wise, we also have |p (t, x)| ≤ C3ρ (x) and thus

∥∥∥p|[0,T ]×Bc
M

∥∥∥
Cb([0,T ]×Bc

M)
≤

ǫ

4
.

Then p ∈ Cb

(
[0, T ] × Rd

)
and

∥∥pnk
− p

∥∥
∞ ≤ ǫ. Now, if corresponding to Mǫ , we

choose k0 such that for all k ≥ k0 we have

∥∥∥(pN
nk

− p)|[0,T ]×BN

∥∥∥
Cb([0,T ]×BN )

≤
ǫ

2
.

Whence, we have proved uniform convergence on the full space Rd . ⊓⊔

The following proposition allows us to conclude the proof of Theorem 4.4.

Proposition B.5 There exist four positive and non decreasing functions α( · ), C1( · ),
β( · ), C2( · ), ρ as in (H5) of Sect. 4 and a constant C3 > 0 such that �(K ) ⊂
�α,C1,β,C2,ρ,C3 .

Proof Without loss of generality, we may assume α < 1
2

. To shorten notations, set

h (s)
.=

∇wp (s)

wp (s)
+ b (·, p (s)) .

Notice that the following inequalities hold

‖h (s)‖∞ ≤ Cw (g, f , b, T ) + ‖b‖∞
.= Ch (g, f , b, T )

‖�(p) (s) h (s)‖∞ ≤ C2 (b, f , g, p0, T ) Ch (g, f , b, T )
.= C3 (b, f , g, p0, T )

From Eq. (B.6) we have

‖�(p) (t)‖α ≤ CT ,α ‖p0‖α +
∫ t

0

CT ,α

(t − s)
1
2 +α

‖�(p) (s) h (s)‖∞ ds

≤ CT ,α ‖p0‖α + CT ,αT
1
2 −αC3 (b, f , g, p0, T ) ,

were we have used a gradient estimate in Hölder norm similar to those of Lemma C.3

below, but easier. Therefore, (H1.1) in Theorem B.3 is satisfied, even uniformly with

respect to R. Let us see (H2.1) in Theorem B.3 with t > t ′:

∥∥�(p) (t) − �(p)
(
t ′
)∥∥

∞,R
≤ I1 + I2 + I3

I1 := ‖Pt p0 − Pt ′ p0‖∞,R
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I2 :=
∫ t

t ′
‖∇Pt−s (� (p) (s) h (s))‖∞,R ds

I3 :=
∫ t ′

0

∥∥(∇Pt−s − ∇Pt ′−s

)
(� (p) (s) h (s))

∥∥
∞,R

ds.

We use the following property: for small t ,

k ∈ Cα
b (BN ) ⇒ ‖Pt k − k‖∞ ≤ Cαtα ‖k‖α .

Hence

I1 =
∥∥Pt−t ′Pt ′ p0 − Pt ′ p0

∥∥
∞

≤ Cα

(
t − t ′

)α ‖Pt ′h‖α ≤ C
(
t − t ′

)α ‖h‖α

I2 ≤
∫ t

t ′

CT

(t − s)
1
2

‖�(p) (s) h (s)‖∞ ds ≤ 2CT

√
t − t ′C3 (g, f , b, p0, T )

I3 =
∫ t ′

0

∥∥(Pt−t ′ − I d
)
∇Pt ′−s (� (p) (s) h (s))

∥∥
∞ ds

≤
∫ t ′

0

Cα

(
t − t ′

)α ∥∥∇Pt ′−s (� (p) (s) h (s))
∥∥

α
ds

≤ Cα

(
t − t ′

)α
∫ t ′

0

CT ,αC3 (g, f , b, p0, T )

(t ′ − s)
1
2 +α

ds ≤ C
(
t − t ′

)α

Therefore, also the second condition in the definition of �α,C1,β,C2,ρ,C3 is satisfied,

even uniformly with respect to R. The difficult property is

|�(p) (t, x)| ≤ C3ρ (x)

for every x ∈ Rd , t ∈ [0, T ] , p ∈ K , for a suitable constant C3 > 0. The idea is to

write an equation for πp (t, x) := ρ−1 (x) � (p) (t, x) and deduce that
∥∥πp (t)

∥∥
∞ ≤

C3 for every t ∈ [0, T ] , p ∈ K . We use the weak formulation

〈�(p) (t) , ϕ〉 = 〈p0, ϕ〉 +
1

2

∫ t

0

〈�(p) (s) ,�ϕ〉 ds +
∫ t

0

〈�(p) (s) h (s) ,∇ϕ〉 ds

with a test function ϕ of the form ρ−1ψ with ψ ∈ C∞
c

(
Rd
)
. Then

〈
πp (t) , ψ

〉
=
〈
ρ−1 p0, ψ

〉
+

1

2

∫ t

0

〈
πp (s) ,�ψ

〉
ds

+
1

2

∫ t

0

〈
�(p) (s) , ψ�ρ−1 + 2∇ψ · ∇ρ−1

〉
ds

+
∫ t

0

〈
�(p) (s) h (s) ,∇

(
ρ−1ϕ

)〉
ds
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namely, formally speaking,

πp (t) = ρ−1 p0 +
1

2

∫ t

0

�
(
ρ−1�(p) (s)

)
ds

+
1

2

∫ t

0

(
�ρ−1

)
�(p) (s) ds −

∫ t

0

div
(
�(p) (s)∇ρ−1

)
ds

−
∫ t

0

ρ−1div (� (p) (s) h (s)) ds.

Using

ρ−1div (� (p) (s) h (s)) = div
(
πp (s) h (s)

)
− �(p) (s) h (s) · ∇ρ−1

this leads to

πp (t) = Pt

(
ρ−1 p0

)
+

1

2

∫ t

0

Pt−s

((
�ρ−1

)
�(p) (s)

)
ds

+
∫ t

0

∇Pt−s

(
�(p) (s) ∇ρ−1

)
ds

+
∫ t

0

∇Pt−s

(
πp (s) h (s)

)
ds

+
∫ t

0

Pt−s

(
∇ρ−1 · �(p) (s) h (s)

)
ds.

Therefore

∥∥πp (t)
∥∥

∞ ≤
∥∥∥ρ−1 p0

∥∥∥
∞

+
1

2

∫ t

0

∥∥∥
(
�ρ−1

)
�(p) (s)

∥∥∥
∞

ds

+
∫ t

0

CT√
t − s

∥∥∥�(p) (s) ∇ρ−1
∥∥∥

∞
ds

+
∫ t

0

CT√
t − s

∥∥πp (s) h (s)
∥∥

∞ ds

+
∫ t

0

∥∥∥∇ρ−1 · �(p) (s) h (s)

∥∥∥
∞

ds

≤
∥∥∥ρ−1 p0

∥∥∥
∞

+
∥∥�ρ−1

∥∥
∞ ‖�(p)‖∞

2
T

+2CT T 1/2
∥∥∥∇ρ−1

∥∥∥
∞

‖�(p)‖∞

+Ch (g, f , b, T )

∫ t

0

CT√
t − s

∥∥πp (s)
∥∥

∞ ds

+T

∥∥∥∇ρ−1
∥∥∥

∞
C3 (g, f , b, p0, T ) .
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Recall that ‖�(p)‖∞ ≤ C2 (g, f , b, p0, T ) independently of p ∈ K . Moreover recall

that
∥∥�ρ−1

∥∥
∞ +

∥∥∇ρ−1
∥∥

∞ < ∞. From a generalized form of Gronwall lemma we

deduce a uniform bound for
∥∥πp (t)

∥∥
∞. ⊓⊔

At this point, we can apply Brouwer–Schauder fixed point theorem and have existence

of a weak solution (w, p). The proof that (u, p) := (− log w, p) satisfies the original

system can then be done by means of mollifiers.

B.4: Proof of Theorem 4.5

Throughout this section, we assume that p0, b, f , g satisfy the hypotheses (H1)–(H2)

and (H4) in Sect. 2.

Proof We are going to apply the contraction principle to the system in Eqs. (4.6)–(4.7).

Setting θ
.= ∇u, for T small enough, it reads as

p (t) = Pt p0 −
∫ t

0

∇Pt−s (p (s) (θ (s) − b ( · , p(s)))) ds

θ (t) = ∇PT −t g −
∫ T

t

∇Pr−t

(
b ( · , p(s)) · θ (r) −

1

2
|θ (r)|2 + f ( · , p(r))

)
dr .

Now, consider the following Banach space:

XT = Cb([0, T ] × Rd) × Cb([0, T ] × Rd),

and by ‖ · ‖T ,∞ the norm in each space Cb([0, T ] × Rd). On the product space XT

consider the norm

‖(a, b)‖T ,∞
.= ‖a‖T ,∞ + ‖b‖T ,∞ .

Define the map Ŵ : XT → XT as

Ŵ (p, θ) = (Ŵ1 (p, θ) , Ŵ2 (p, θ)) (B.7)

whose marginals are given by

Ŵ1 (p, θ) (t)
.= Pt p0 −

∫ t

0

∇Pt−s (p (s) (θ (s) − b ( · , p(s))))

Ŵ2 (p, θ) (t)
.= ∇PT −t g −

∫ T

t

∇Pr−t (b ( · , p(r)) · θ (r)

−
1

2
|θ (r)|2 + f ( · p(r))

)
dr .

Notice that the fact that Ŵ (p, θ) ∈ XT when (p, θ) ∈ XT is implicit in the following

computations and thus it will not be explained a priori. It is based on the following

estimates of the heat semi-group’s gradient (cfr. also the proof of Theorem 4.4 and

the reference therein): ‖∇Pt F‖∞ ≤ C0t−1/2 ‖F‖∞ for some constant C0 and every
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F ∈ Cb

(
Rd
)

and ‖∇Pt F‖∞ ≤ C0 ‖∇F‖∞ for every F ∈ Cb

(
Rd
)

such that ∇F ∈
Cb

(
Rd
)
.

Now, let us investigate when Ŵ is a contraction. We have

∥∥Ŵ1 (p, θ) (t) − Ŵ1

(
p′, θ ′) (t)

∥∥
∞

≤
∫ t

0

C0

(t − s)1/2

(
‖p (s)‖∞

(∥∥θ (s) − θ ′ (s)
∥∥

∞

+
∥∥b ( · , p (s)) − b

(
· , p′ (s)

)∥∥
∞
))

ds

+
∫ t

0

C0

(t − s)1/2

∥∥p (s) − p′ (s)
∥∥

∞
(∥∥θ ′ (s)

∥∥
∞ +

∥∥b
(
· , p′ (s)

)∥∥
∞
)

ds

≤
∫ t

0

C0

(t − s)1/2

(
‖p (s)‖∞

(∥∥θ (s) − θ ′ (s)
∥∥

∞ + Lb

∥∥p (s) − p′ (s)
∥∥

∞
))

ds

+
∫ t

0

C0

(t − s)1/2

∥∥p (s) − p′ (s)
∥∥

∞
(∥∥θ ′ (s)

∥∥
∞ + Cb

(
1 +

∥∥p′ (s)
∥∥

∞
))

ds

≤
∫ t

0

C0

(t − s)1/2
ds ·

(
‖p‖T ,∞

(∥∥θ − θ ′∥∥
T ,∞ + L

∥∥p − p′∥∥
T ,∞

))

+
∫ t

0

C0

(t − s)1/2
ds ·

∥∥p − p′∥∥
T ,∞

(∥∥θ ′∥∥
T ,∞ + C

(
1 +

∥∥p′∥∥
T ,∞

))

≤ 2C0

√
T
[
‖p‖T ,∞

∥∥θ − θ ′∥∥
T ,∞

+
(

C +
∥∥θ ′∥∥

T ,∞ + C
∥∥p′∥∥

T ,∞ + L ‖p‖T ,∞

) ∥∥p − p′∥∥
T ,∞

]

and

∥∥Ŵ2 (p, θ) (t) − Ŵ2

(
p′, θ ′) (t)

∥∥
∞

≤ 2C0

√
T

[(
C + C ‖p‖T ,∞ +

‖θ‖T ,∞ +
∥∥θ ′∥∥

T ,∞
2

)
∥∥θ − θ ′∥∥

T ,∞

+
(

L + L
∥∥θ ′∥∥

T ,∞

) ∥∥p − p′∥∥
T ,∞

]
,

respectively.

Summarizing, there exists a constant C̃ > 0, depending only on C0, C , L , such

that

∥∥Ŵ (p, θ) − Ŵ
(

p′, θ ′)∥∥
T ,∞ ≤ C̃

√
T
∥∥(p, θ) −

(
p′, θ ′)∥∥

T ,∞(
‖(p, θ)‖T ,∞ +

∥∥(p′, θ ′)∥∥
T ,∞

)
.
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Therefore, to have a contraction we need a bound on ‖(p, θ)‖T ,∞ +
∥∥(p′, θ ′)∥∥

T ,∞.

Proceeding as above we have

‖Ŵ1 (p, θ) (t)‖∞ ≤‖p0‖∞ +
∫ t

0

C0

(t − s)1/2

(
‖p (s)‖∞

(
‖θ (s)‖∞ + ‖b( · , p(s))‖∞

))
ds

‖Ŵ2 (p, θ) (t)‖∞ ≤ C0 ‖∇g‖∞

+
∫ T

t

C0

(r − t)1/2

(
‖b( · , p(r))‖∞ ‖θ (r)‖∞+

1

2
‖θ (r)‖2

∞ + ‖ f ( · , p(r))‖∞

)
dr

and

‖Ŵ1 (p, θ) (t)‖∞ = ‖p0‖∞ + 2C0

√
T
(
‖p‖T ,∞

(
‖θ‖T ,∞ + ‖b (p)‖T ,∞

))

‖Ŵ2 (p, θ) (t)‖∞ ≤ C0 ‖∇g‖∞ + 2C0

√
T

(
‖b (p)‖T ,∞ ‖θ‖T ,∞ +

1

2
‖θ‖2

T ,∞ + ‖ f (p)‖T ,∞

)

Using the bound on b and f , we get

‖Ŵ1 (p, θ) (t)‖T ,∞ ≤ ‖p0‖∞ + 2C0

√
T ·

(
‖p‖T ,∞

(
‖θ‖T ,∞ + C

(
1 + ‖p‖T ,∞

)))

‖Ŵ2 (p, θ) (t)‖T ,∞ ≤ C0 ‖∇g‖∞

+ 2C0

√
T ·

(
C
(
1 + ‖p‖T ,∞

)
‖θ‖T ,∞ +

1

2
‖θ‖2

T ,∞ + C
(
1 + ‖p‖T ,∞

))

Therefore, we have proved:

‖Ŵ (p, θ)‖T ,∞ ≤
(
C0 ‖∇g‖∞ + ‖p0‖∞

)

+2C0

√
T K ·

(
‖(p, θ)‖T ,∞ + ‖(p, θ)‖2

T ,∞

)

for some constant K > 0. Hence setting

�T ,R =
{
(p, θ) ∈ XT : ‖(p, θ)‖T ,∞ ≤ R

}

if we take (p, θ) ∈ �T ,R we get

‖Ŵ (p, θ)‖T ,∞ ≤
(
C0 ‖∇g‖∞ + ‖p0‖∞

)
+ 2C0

√
T K

(
R + R2

)
.

In particular, there exist T0, R0 > 0 such that for every 0 < T ≤ T0 and 0 < R ≤ R0

we have (
C0 ‖∇g‖∞ + ‖p0‖∞

)
+ 2C0

√
T K

(
R + R2

)
≤ R.
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With any such choice of T , R > 0 we have

Ŵ
(
�T ,R

)
⊂ �T ,R .

If (p, θ) ,
(

p′, θ ′) ∈ �T ,R we have proved above

∥∥Ŵ (p, θ) − Ŵ
(

p′, θ ′)∥∥
T ,∞ ≤ 2RC̃

√
T
∥∥(p, θ) −

(
p′, θ ′)∥∥

T ,∞ .

Hence, reducing T if necessary, we see that Ŵ, as a map from the metric space �T ,R

into itself, is a contraction. ⊓⊔

B.5: Proof of Theorem 4.8-(i)

Proof Let ǫ > 0 and let be (θǫ)ǫ>0 be a family of mollifiers. Now, define the function

uǫ : [0, T ] × Rd → R by setting

uǫ(t, x)
.= (θǫ ∗ u(t, · ))(x) =

∫

Rd

θǫ(x − y) u(t, y) dy.

In particular, taking the convolution of the Hamilton–Jacobi Bellman equation (4.1)

with θǫ it is not difficult to see that uǫ satisfies the following equation

−∂t uǫ −
1

2
�uǫ − θǫ ∗ (b(x, p(t, x)) · ∇u) +

1

2
θǫ ∗ |∇u|2 = θǫ ∗ f (x, p(t, x))

on (0, T ) × Rd . The smoothing properties of convolution (see Proposition A.1)

guarantees that D2uǫ(t, x) is continuous; besides, from the Hamilton–Jacobi Bell-

man equation it follows that also ∂t uǫ is continuous, and therefore that uǫ ∈
C1,2((0, T ) × Rd). Applying Itô’s formula we obtain

duǫ(t, Xα
t ) = ∂t uǫdt + ∇uǫ · (αt + b(Xα

t , p(t, Xα
t ))) dt + ∇uǫ · dWt +

1

2
∇uǫ dt

=
(

∂t uǫ +
1

2
∇uǫ + θǫ ∗ (b( · , p) · ∇uǫ)(t, Xα

t )

)
dt

+
(
(αt + b(Xα

t , p(t, Xα
t )) · ∇uǫ(t, Xα

t )

−θǫ ∗ (b( · , p) · ∇u)(t, Xα
t )
)

dt

+ ∇uǫ(t, Xα
t ) · dWt

=
(

1

2
(θǫ ∗ |∇u|2)(t, Xα

t ) − (θǫ ∗ f ( · , p))(t, Xα
t )

)
dt

+
(
αt∇uǫ(t, Xα

t ) + rǫ

)
dt + ∇uǫ(t, Xα

t ) · dWt ,

where we defined

rǫ(t)
.= b(Xα

t , p(t, Xα
t )) · ∇uǫ(t, Xα

t ) − θǫ ∗ (b( · , p) · ∇u)(t, Xα
t ).
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Hence,

E[(θǫ ∗ g)(Xα
T )] − E[uǫ(0, Xα

0 )]

= E

[∫ T

0

(
1

2
(θǫ ∗ |∇uǫ |2)(t, Xα

t ) − (θǫ ∗ f ( · , p))(t, Xα
t

)
dt

]

+ E

[∫ T

0

(αt · ∇uǫ(t, Xα
t ) + rǫ(t)) dt

]

We claim that by taking the limit as ǫ → 0 in the previous equation we obtain the

identity (4.17) as in the heuristic argument.

We first deal with terms that do not explicitly depend on time, then extend the

argument to time-dependent terms. To this end, let v ∈ C(Rd); then, θǫ ∗ v → v as

ǫ → 0 uniformly on compact sets (see Proposition A.2). Set now vǫ
.= θǫ ∗ v. If v is

bounded by a constant K , then the same holds for vǫ and the constant bounding vǫ is

independent of ǫ. For all R > 0 and for any probability measure μ ∈ P(Rd) we have

∣∣∣∣
∫

Rd

(vǫ(x) − v(x)) μ(dx)

∣∣∣∣ ≤ |B R(0)| sup
x∈B R(0)

|vǫ(x) − v(x)|

+
∫

Rd\B R(0)

(‖vǫ‖∞ + ‖v‖∞) μ(dx)

→ 2K

∫

Rd\B R(0)

μ(dx) as ǫ → 0,

(B.8)

where B R(0) ⊂ Rd denotes the closed ball of radius R around the origin and |B R(0)|
its measure. In particular, the last term in (B.8) converges to zero as R → ∞.

Let now u(t, · ) ∈ Cb(R
d), bounded by a constant K , with u the first component of

the solution of the PDE system in Eq. (4.1). Moreover, let μα
t the law of Xα

t . Then

E[(θǫ ∗ u(t, · ))(Xα
t )] =

∫

Rd

(θǫ ∗ u(t, ·))(x) μα
t (dx)

→
∫

Rd

u(t, x)μα
t (t)(dx) as ǫ → 0

for all t ∈ [0, T ], so in particular for t = T and u(T ) = g.

Now, we show that a similar argument holds also for terms that have an explicit,

continuous, dependence on the time variable. Let v ∈ Cb([0, T ] × Rd); then for each

fixed t ∈ [0, T ] we have that θǫ ∗ v(t) → v(t) as ǫ → 0 uniformly on compact

sets (see, again, Proposition A.2). In particular, for all R > 0 and for any probability

measure μ ∈ P(Rd) we have:

∣∣∣∣
∫

Rd

∫ T

0

(vǫ(t, x) − v(t, x)) dt μ(dx)

∣∣∣∣ ≤
∫

B R(0)

∫ T

0

|vǫ(t, x) − v(t, x)| dt μ(dx)

+
∫

Rd\B R(0)

∫ T

0

(‖vǫ‖∞ + ‖v‖∞) dt μ(dx).
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The first term converges to zero as ǫ → 0 provided that both vǫ and v belongs to

C([0, T ] × Rd); indeed, in this case we can compute the maximum over [0, T ]. The

second term converges to zero by an argument similar to that used in Eq. (B.8).

However, if v ∈ Cb([0, T ] × Rd), then v(t, · ) ∈ Cb(R
d) and v( · , x) ∈ C([0, T ]);

therefore, the compactness of [0, T ] implies the uniform continuity of v( · , x). Then,

the fact that v(t, · ) ∈ Cb(R
d) and the uniform continuity of v( · , x) imply the joint

continuity of v. Indeed, let (t, x) ∈ [0, T ] × Rd . For all ǫ > 0 there exist δ > 0 and

η > 0 such that

|v(t ′, x ′) − v(t, x)| < ǫ ∀(t ′, x ′) ∈ [0, T ] × Rd s.t. |x − x ′| < η, |t − t ′| < δ.

More precisely, let δ > 0 be the constant related to the uniform continuity in time

associated to ǫ/2 and η > 0 be the constant related to the continuity in space associated

to ǫ/2. Then:

|v(t ′, x ′) − v(t, x)| ≤ |v(t ′, x ′) − v(t, x ′)| + |v(t, x ′) − v(t, x)|

<
ǫ

2
+

ǫ

2
∀(t ′, x ′) ∈ [0, T ] × Rd

s.t. |x − x ′| < η, |t − t ′| < δ.

By the fact that all our terms satisfy the required continuity as v, by the boundedness

of the admissible controls and by choosing μ = μα law of Xα we conclude. ⊓⊔

Appendix C: Hölder-Type Seminorm Bounds-1

This section collects some results for Hölder-type seminorm (see Definition in

Eq. (5.8)) used in the proof of Theorem 5.1.

We start by fixing the fractional exponent s ∈ (0, 1) and for any p ∈ [1,+∞), we

define W s,p(Rd) as the space:

W s,p(Rd)
.=
{

f ∈ L p(Rd) :
| f (x) − f (y)|

|x − y|
d
p
+s

∈ L p(Rd × Rd)

}

endowed with the following norm:

‖ f ‖p

W s,p(Rd )

.=
∫

Rd

| f (x)|p dx +
∫

Rd

∫

Rd

| f (x) − f (y)|p

|x − y|d+sp
dx dy

.= ‖ f ‖p

L p(Rd )
+ [ f ]

p
p,sp .

Let p ∈ [1,+∞) and s ∈ (0, 1) be such that sp > d. Then, there exists a constant

C > 0, depending on d, s, p, such that

‖ f ‖∞ + [ f ]γ ≤ C
(
‖ f ‖L p + [ f ]p,sp

)
, (C.1)
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where γ
.= (sp − d)/p and sp > d. We refer to [7], Theorem 8.2, for a proof of the

previous result. We state the following lemma

Lemma C.1 Let p ∈ [1,+∞), s ∈ (0, 1) be such that sp > d, d ∈ N. Then,

[ f ]
p
p,sp ≤

∫

Rd

∫

|h|≤1

| f (y + h) − f (y)|p

|h|d+sp
dh dy + 2 C p,d,s ‖ f ‖p

L p .

Proof We write [ f ]p
p,sp as

[ f ]
p
p,sp =

∫

Rd

∫

Rd

| f (y + h) − f (y)|p

|h|d+sp
dh dy = I1 + I2 where

I1 =
∫

Rd

∫

|h|≤1

| f (y + h) − f (y)|p

|h|d+sp
dh dy and

I2 =
∫

Rd

∫

|h|>1

| f (y + h) − f (y)|p

|h|d+sp
dh dy

Then,

∫

Rd

∫

|h|>1

| f (y + h) − f (y)|p

|h|d+sp
dh dy

≤ C p

∫

Rd

∫

|h|>1

| f (y + h)|p

|h|d+sp
dh dy+C p

(∫

|h|>1

1

|h|d+sp
dh

)(∫

Rd

| f (y)|p dy

)

= C p

∫

|h|>1

∫

Rd

| f (y + h)|p

|h|d+sp
dy dh + C p,d,s ‖ f ‖p

L p

= C p

∫

|h|>1

∫

Rd

| f (y)|p

|h|d+sp
dy dh + C p,d,s ‖ f ‖p

L p = 2 C p,d,s ‖ f ‖p
L p ,

which concludes the proof. ⊓⊔

Lemma C.2 Assume there exists a number ǫ > 0 with the following property. For every

p ≥ 2 there is a function gp > 0 such that

E

[∣∣∣M N
t (x)

∣∣∣
p]

≤ gp (x) , (C.2)

E

[∣∣∣M N
t (x) − M N

t (x + h)

∣∣∣
p]

≤ gp (x) |h|ǫ p , (C.3)
∫

Rd

gp (x) dx < ∞ (C.4)

for all |h| ≤ 1 and x ∈ Rd . Then, there is γ > 0 such that, for every p ≥ 2, there is a

constant C p > 0 such that

E

[∥∥∥M N
t

∥∥∥
p

γ

]
≤ C p.
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Proof It is sufficient to prove the thesis for arbitrarily large p̄ ≥ 2, since for smaller

ones it follows from Hölder inequality. Choose s ∈ (0, ε); then take any p̄ ≥ 2 such

that s p̄ > d. We have to find γ > 0 such that for every such p̄ there is a constant C p̄

such that E

[∥∥M N
t

∥∥ p̄

γ

]
≤ C p̄ uniformly in t ∈ [0, T ] and N ∈ N.

Thanks to the assumptions,

E

[∫

Rd

∣∣∣M N
t (x)

∣∣∣
p̄

dx

]
≤ C .

Moreover, thanks to Lemma C.1,

E

[[
M N

t

] p̄

p̄,s p̄

]

≤
∫

Rd

∫

|h|≤1

E

[∣∣M N
t (y + h) − M N

t (y)
∣∣ p̄
]

|h|d+s p̄
dh dy + 2 C p̄,d,sE

[∥∥∥M N
t

∥∥∥
p̄

L p̄

]

≤
∫

Rd

∫

|h|≤1

g p̄ (y) |h|ǫ p̄

|h|d+s p̄
dh dy + C

≤
(∫

|h|≤1

1

|h|d−(ǫ−s) p̄
dh

)∫

Rd

g p̄ (y) dy + C ≤ C .

(C.5)

Now, using again the fact that E

[
‖M N

t ‖ p̄

L p̄

]
≤ C , we may apply inequality (C.1) and

deduce the desired bound for γ̄ = (s p̄ − d)/ p̄. A-priori this value of γ depends on

the particular p̄ chosen above. However, it is sufficient to choose first a value p̄0, such

that s p̄0 > d and prove that E

[
‖M N

t ‖ p̄
γ̄0

]
≤ C p̄0 ; then for all p̄ > p̄0, we prove the

inequality with γ̄ = s − d/ p̄ which is larger than γ̄0, hence it holds also with Hölder

exponent γ̄0, which can be taken as the value of γ in the statement of the lemma. ⊓⊔

Lemma C.3 Let N , d ∈ N, let Pt be the semi-group associated to the density G(t, x)

of x + Wt where Wt is a standard blackian motion, x ∈ Rd and t ∈ (0, T ]. Moreover,

let V ∈ C1
c(R

d) ∩ P(Rd). Then

‖Pt h‖γ ≤ Cγ ‖h‖γ .

Moreover, if R > 0 denotes a number such that the support of V is contained in BR(0),

the open ball of radius R around the origin, and we write V N (x) = ǫ−d
N V

(
ǫ−1

N x
)

,

then there exist two constants CT ,R,V > 0 and λT ,R,V > 0 with the following property:

for every δ, γ ∈ (0, 1), x ∈ Rd , |h| ≤ 1 and t ∈ [0, T ]

∣∣∣
(
∇Pt V

N
)

(x)

∣∣∣ ≤
CT ,R,V

t
1−δ

2

ǫ−d−δ
N e− |x |

8T . (C.6)

∣∣∣
(
∇Pt V

N
)

(x) −
(
∇Pt V

N
)

(x + h)

∣∣∣
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≤
CT ,R,V

t
1
2 (1+γ )− δ

2 (1−γ )
|h|γ ǫ

−d−δ(1−γ )

N e−λT ,R,V |x | (C.7)

Proof The first inequality is a well known properties of analytic semi-group (see, for

instance, Lunardi [18]). We give a detailed proof of the last two equalities.

Step 1 We collect some preliminary fact. We recall that

G t (x)
.= G(t, x) =

1

(2π t)d/2
e− 1

2t
|x |2 and (Pt f ) (x) =

∫

Rd

G t (x − y) f (y) dy

and we find a bound for ∇G t (x) and |D2G t (x)|. Notice that

∇G t (x) = −
x

t

1

(2π t)d/2
e− 1

2t
|x |2 = −

1
√

t

1

(2π t)d/2

√
|x |2

t
e− 1

2t
|x |2

hence, being
√

r exp
(
− 1

2
r
)

≤ exp
(
− 1

4
r
)
,

|∇G t (x)| ≤
1

√
t

·
1

(2π t)d/2
e− 1

4t
|x |2 =

2d/2

√
t

·
1

(2π (2t))d/2
e
− 1

2
|x |2
(2t)

Similarly, for suitable λ, C > 0,

∣∣∣D2G t (x)

∣∣∣ ≤
C

t
·

1

(2π (λt))d/2
e
− 1

2
|x |2
(λt)

Step 2 In this step we prove that

∣∣∣
(
∇Pt V

N
)

(x)

∣∣∣ ≤
CT ,R,V√

t
ǫ−d

N e− |x |
8T

for all x ∈ Rd and t ∈ (0, T ], for a suitable constant CT ,R,V > 0. From the bound for

|∇G t (x)| in Step 1 we obtain

∣∣∣
(
∇Pt V

N
)

(x)

∣∣∣ ≤
∫

Rd

|∇G t (x − y)| V N (y) dy

=
∫

BR(0)

|∇G t (x − y)| ǫ−d
N V

(
ǫ−1

N y
)

dy

≤
2d/2

√
t

ǫ−d
N ‖V ‖∞

∫

BR(0)

1

(2π (2t))d/2
e
− 1

2
|x−y|2

(2t) dy.

If |x | ≤ R + 1, we bound the integral from above by the integral on the full space,

which is equal to one, and deduce

sup
|x |≤R+1

∣∣∣
(
∇Pt V

N
)

(x)

∣∣∣ ≤
2d/2

√
t

ǫ−d
N ‖V ‖∞ .
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If |x | > R + 1 and |y| ≤ R, then (we oversimplify to make expressions easier in the

sequel) |x − y|2 ≥ |x − y| ≥ |x | − R. Therefore, for |x | > R + 1,

∣∣∣
(
∇Pt V

N
)

(x)

∣∣∣ ≤
2d/2

√
t

ǫ−d
N ‖V ‖∞ |BR(0)|

1

(2π (2t))d/2
e
− 1

2
|x |−R
(2t)

One show that there is CT > 0 such that for t ∈ [0, T ] and |x | > R + 1, one has

1

(2π (2t))d/2
e
− 1

2
|x |−R
(2t) ≤ CT e− 1

8T (|x |−R)

Indeed the left-hand-side is controlled (up to a constant) by
(

|x |−R
2t

)d/2
e− 1

2
|x |−R

2t

(because |x | − R ≥ 1) and the function rd/2e− 1
2 r is bounded above by e− 1

4 r , up

to a constant; finally, e− 1
4

|x |−R
2t ≤ e− 1

8T (|x |−R).

Hence

∣∣∣
(
∇Pt V

N
)

(x)

∣∣∣ ≤
CT ,R,V√

t
ǫ−d

N e− |x |−R
8T =

C ′
T ,R,V√

t
ǫ−d

N e− |x |
8T

Remaning the constant C ′
T ,R,V , the same bound is true for |x | ≤ R + 1, hence it is

true for all x and all t ∈ (0, T ].
Step 3 We complete the proof of (C.6). In addition to the bound found in Step 2 we

have

∣∣∣
(
∇Pt V

N
)

(x)

∣∣∣ ≤
∫

Rd

G t (x − y)

∣∣∣∇V N (y)

∣∣∣ dy

= ǫ−d−1
N

∫

Rd

G t (x − y)

∣∣∣(∇V )

(
ǫ−1

N y
)∣∣∣ dy

≤ ǫ−d−1
N ‖∇V ‖∞

∫

BR(0)

G t (x − y) dy.

Arguing as above we get,

∣∣∣
(
∇Pt V

N
)

(x)

∣∣∣ ≤ CT ,R,V ǫ−d−1
N e− |x |

8T

where if necessary we have renamed the constant CT ,R,V . Now, taken δ ∈ (0, 1), we

use both inequalities for
∣∣(∇Pt V

N
)
(x)

∣∣ to get

∣∣∣
(
∇Pt V

N
)

(x)

∣∣∣ =
∣∣∣
(
∇Pt V

N
)

(x)

∣∣∣
1−δ ∣∣∣

(
∇Pt V

N
)

(x)

∣∣∣
δ

≤
CT ,R,V

t
1−δ

2

ǫ−d−δ
N e− |x |

8T .

Step 4 Finally we prove (C.7). We note first that

∣∣∣
(
∇Pt V

N
)

(x) −
(
∇Pt V

N
)

(x + h)

∣∣∣
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≤ sup
|ξ |≤|h|

∣∣∣D2Pt V
N (x + ξ)

∣∣∣ |h|

≤ sup
|ξ |≤|h|

∫

Rd

∣∣∣D2G t (x + ξ − y)

∣∣∣ V N (y) dy |h|

≤
C

t

|h| ǫ−d
N ‖V ‖∞

(2π (λt))d/2
sup

|ξ |≤|h|

∫

BR(0)

e
− 1

2
|x+ξ−y|2

(λt) dy

≤
CT ,R,V

t
|h| ǫ−d

N sup
|ξ |≤|h|

e− |x+ξ |
4λT

≤
CT ,R,V

t
|h| ǫ−d

N sup
|ξ |≤|h|

e− |x |−|ξ |
4λT

=
CT ,R,V

t
|h| ǫ−d

N e
1

4λT e− |x |
4λT

=
C ′

T ,R,V

t
|h| ǫ−d

N e− |x |
4λT .

On the other hand, it holds:

∣∣∣
(
∇Pt V

N
)

(x) −
(
∇Pt V

N
)

(x + h)

∣∣∣ ≤
∣∣∣
(
∇Pt V

N
)

(x)

∣∣∣+
∣∣∣
(
∇Pt V

N
)

(x + h)

∣∣∣

≤
CT ,R,V

t
1−δ

2

ǫ−d−δ
N e− |x |

8T +
CT ,R,V

t
1−δ

2

ǫ−d−δ
N e− |x+h|

8T

≤
C ′

T ,R,V

t
1−δ

2

ǫ−d−δ
N e− |x |

8T

because |h| ≤ 1. Therefore, for every (small) γ ∈ (0, 1),

∣∣∣
(
∇Pt V

N
)

(x) −
(
∇Pt V

N
)

(x + h)

∣∣∣

≤
C ′

T ,R,V

t
1−δ

2 (1−γ )

1

tγ
|h|γ ǫ

(−d−δ)(1−γ )

N ǫ
−dγ

N e
− |x |

4(2∧λ)T

=
C ′

T ,R,V

t
1
2 (1+γ )− δ

2 (1−γ )
|h|γ ǫ

−d−δ(1−γ )

N e
− |x |

4(2∧λ)T ,

which completes the proof. ⊓⊔

Appendix D: Hölder-Type Seminorm Bounds-2

Let N ∈ N. This section collects some results on Hölder type semi-norm for

convolution of the type V N ∗ μN , where V N satisfies to hypothesis (H3), i.e.

V N (x) = ǫ−d
N V (ǫ−1

N x) with ǫN > 0, limN→∞ ǫN = 0, V ∈ C1(Rd) ∩ P(Rd).

In addition, μN ∈ P(Rd). In what follows, for pedagogical reasons, we first treat the

case in which the probability measure μN is deterministic, then we analyse the case

123



   38 Page 60 of 65 Applied Mathematics & Optimization            (2022) 85:38 

in which μN is stochastic; the results’ proofs in the latter case are less elementary.

We make the following remark. If μ ∈ P(Rd), then V N ∗μ ∈ C1(Rd). Moreover,

if (μN )N∈N ⊂ P(Rd) converges weakly to μ ∈ P(Rd) as N → ∞, then

lim
N→∞

〈
V N ∗ μN , ϕ

〉
= 〈μ, ϕ〉 for all ϕ ∈ Cc(R

d).

Indeed,
〈
V N ∗ μN , ϕ

〉
=
〈
μN , V N ,− ∗ ϕ

〉
where V N ,− (x) = V N (−x); then V N ,− ∗

ϕ → ϕ uniformly on Rd as N → ∞ and thus
〈
μN , V N ,− ∗ ϕ

〉
converges to 〈μ, ϕ〉.

Let, as usual, B R(0) be the closed ball of radius R centred around zero. Spaces

like C
γ

ℓoc(R
d), namely with the ℓoc specification, are Polish spaces; the convergence

in this spaces is the convergence in the corresponding topologies over B R(0) for each

R > 0. In addition, let

C
γ−
ℓoc(R

d)
.= ∩

γ
′
<γ

C
γ

′

ℓoc(R
d)

and endow it with the natural metric which yields convergence in each C
γ

′

ℓoc(R
d).

Recall that, by ‖ f ‖γ we mean the sum of the supremum norm ‖ f ‖∞ on full space

Rd plus the γ -Hölder seminorm on Rd .

Lemma D.1 Let (μN )N∈N ⊂ P
(
Rd
)

be a sequence converging weakly to μ ∈ P(Rd).

Set pN = V N ∗ μN . Let γ ∈ (0, 1) be such that there exists K > 0 for which

‖pN ‖γ ≤ K

for all N ∈ N. Then μ is absolutely continuous w.r.t. Lebesgue measure with density

p ∈ C
γ−
ℓoc

(
Rd
)

and ‖p‖∞ ≤ K . Moreover, pN → p in C
γ−
loc

(
Rd
)
.

Proof First, notice that for every R > 0 and γ
′
< γ the space Cγ (B R(0)) is compactly

embedded into Cγ
′
(B R(0)). Take any subsequence (pNk

)k∈N. Thanks to the previous

compactness result, together with a diagonal procedure on a subsequence of radius

(Ri )i∈N, Ri → ∞ as i → ∞ and a sequence of exponents γ
′
i < γ such that γ

′
i → γ

as i → ∞, we may prove that there exists a subsequence
(

p
N

′
k

)
k∈N

which converges

in Cγ
′
(Rd) for every γ ′ < γ , to a function p ∈ C

γ
′

ℓoc(R
d); a priori, the function p

depends on the subsequence. Therefore (see the remark above)

〈μ, ϕ〉 = lim
k→∞

〈p
N

′
k
, ϕ〉 = 〈p, ϕ〉

for every ϕ ∈ Cc

(
Rd
)
. Hence, μ is absolutely continuous with respect the Lebesgue

measure with density p. Notice that the properties p ≥ 0 a.e. and p ∈ L1(Rd) follow

from the identity 〈μ, ϕ〉 = 〈p, ϕ〉 for every ϕ ∈ Cc

(
Rd
)
. This identify uniquely p,

independently of the subsequence. Since the convergence in C
γ ′

ℓoc

(
Rd
)

is metric, we

deduce that the whole sequence (pN ) converges to p in C
γ ′

ℓoc

(
Rd
)
.
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Finally, the previous convergence implies pointwise convergence, hence

|p (x)| = lim
N→∞

|pN (x)| ≤ K

This proves ‖p‖∞ ≤ K . ⊓⊔

Now, we state and prove the previous lemma in the case in which (μN )N∈N ⊂
P(Rd) is a random sequence. Recall that a random probability measure is a random

variable from (�,F , P) to P(Rd), considered as a Polish space with a metric inducing

weak convergence of measures. Instead, a random function p of class C
γ

ℓoc

(
Rd
)

is a

random variable from (�,F , P) to C
γ

ℓoc

(
Rd
)
.

Lemma D.2 Let (μN )N∈N ⊂ P
(
Rd
)

be a sequence of random probability measures

converging in law, in the weak topology of P(Rd), to a random μ ∈ P(Rd). Introduce

the random differentiable functions pN
.= V N ∗ μN . Let γ ∈ (0, 1), q ≥ 2 be such

that there exists a constant K > 0 for which

E

[
‖pN ‖q

γ

]
≤ K (D.1)

for all N ∈ N. Then there exists a random function p of class C
γ−
ℓoc

(
Rd
)

such that,

with probability one, μ (dx) = p (x) dx; and for every q ′ < q we have

E

[
‖p‖q ′

∞
]

< K q ′/q . (D.2)

Moreover, pN converges to p in law, in the topology of C
γ−
ℓoc

(
Rd
)
; and when p is

deterministic (so that pN converges to p also in probability) we have

lim
N→∞

E

[
‖pN − p‖q

′

C
(
B R(0)

)
]

= 0 (D.3)

for every q ′ < q and R > 0.

Proof Let us denote by PN the law of pN on Borel sets of Cγ (Rd), by πN and π the

laws of μN and μ on Borel sets P(Rd), respectively. We know that πN converges

weakly to π . Set

KR
.= { f ∈ Cγ (Rd) : ‖ f ‖Cγ (Rd ) ≤ R}.

KR is pre-compact in C
γ−
ℓoc(R

d). By assumption (D.1) and Markov inequality,

PN (KC
R) ≤

K

Rq
.

Then the family (PN )N∈N is tight in C
γ−
ℓoc (R

d). Let (PNk
)k∈N be any subsequence

converging weakly in the topology of C
γ−
ℓoc(R

d) to some measure P , which, in principle,
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depends a priori on the subsequence. More precisely, denote by QN the joint law of

the vector (pN , μN ) on Borel sets of C
γ−
ℓoc (R

d) × P(Rd). Since we already know that

μN converges weakly, hence it is precompact, we can extract (nk)k∈N such that QNk

converges weakly to a probability measure Q on Borel sets of C
γ−
ℓoc (R

d) × P(Rd).

The second marginal of Q is π , the first marginal will be called P , as above. The first

marginal of QNk
is PNk

and converges weakly to P; the second marginal is πNk
and

converges weakly to π . Notice that at this stage we do not know yet μ has a density

and that P is the law of such density. Concerning uniqueness, μ is the unique limit

point (in law) of μN , but P a priori is not the unique weak limit point of PN .

By Skorohod representation theorem, there exists a probability space (�̃, F̃ , P̃),

random variables
(

p̃Nk
, μ̃Nk

)
and ( p̃, μ̃) from (�̃, F̃ , P̃) to C

γ−
ℓoc

(
Rd
)

× P
(
Rd
)
,

with laws QNk
and Q respectively, such that

(
p̃Nk

, μ̃Nk

)
→ ( p̃, μ̃) as k → ∞ in

C
γ−
ℓoc

(
Rd
)
×P

(
Rd
)
, P̃-a.s. The link pNk

= V Nk ∗μNk
is preserved under this change

of basis: p̃Nk
= V Nk ∗ μ̃Nk

with P̃ probability one. Indeed, denoting by Ẽ[ · ] the

mathematical expectation on (�̃, F̃ , P̃),

Ẽ

[
1 ∧

∥∥∥V Nk ∗ μ̃Nk
− p̃Nk

∥∥∥
C
(
B R(0)

)

]
= E

[
1 ∧

∥∥∥V Nk ∗ μNk
− pNk

∥∥∥
C
(
B R(0)

)

]
= 0

(the first identity is true because
(

p̃Nk
, μ̃Nk

)
and

(
pNk

, μNk

)
have the same law; second

identity is true because pNk
= V Nk ∗ μNk

). Hence p̃Nk
= V Nk ∗ μ̃Nk

, P̃-a.s.

The novelty on (�̃, F̃ , P̃) is that we have the random variable p̃, not only μ̃. Let

us prove that the former is the density of the latter. From the remark above, with P̃

probability one, since μ̃Nk
converges weakly to μ̃ we have

lim
k→∞

〈
V Nk ∗ μ̃Nk

, ϕ
〉
= 〈μ̃, ϕ〉

for all ϕ ∈ Cc(R
d). But at the same time, being V Nk ∗ μ̃Nk

= p̃Nk
and p̃Nk

converges

to p̃ in C
γ−
ℓoc

(
Rd
)
, we have

lim
k→∞

〈
V Nk ∗ μ̃Nk

, ϕ
〉
= 〈 p̃, ϕ〉

for all ϕ ∈ Cc(R
d). Therefore,

〈 p̃, ϕ〉 = 〈μ̃, ϕ〉 for all ϕ ∈ Cc(R
d)

with P̃ probability one. It implies that, P̃-a.s., the measure μ̃ has density p̃ ∈ C
γ−
ℓoc

(
Rd
)
;

the property that p̃ is a probability density follows from the same identity, by suitable

choice of ϕ ∈ Cc

(
Rd
)
.

Call � the subset of C
γ−
ℓoc

(
Rd
)
× P

(
Rd
)

such that the first element is the density

of the second. Call �2 the set of elements of P
(
Rd
)

that have a density of class

C
γ−
ℓoc

(
Rd
)
. The sets � and �2 are in bijection. The two sets are measurable in the
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corresponding spaces and the bijection is bi-measurable. Therefore a probability mea-

sure on C
γ−
ℓoc

(
Rd
)
×P

(
Rd
)
, concentrated on �, corresponds uniquely to a probability

measure on P
(
Rd
)

concentrated on �2, by this bijection. It follows that Q is uniquely

determined by its second marginal π , which is unique a priori. This proves that Q is

independent of the subsequence (nk)k∈N and thus the full sequence (QN )N∈N con-

verges, to a single Q.

We can now prove that μ has a density, P̃-a.s. We have proved that the law of μ̃ is

concentrated on �2; but, being Q the law of ( p̃, μ̃) and having Q second marginal π ,

the law of μ̃ is π . Hence π , which is also the law of μ, is concentrated on �2. Namely,

P-a.e. realization of μ has a density p, of class C
γ−
ℓoc(R

d). The random element (p, μ)

is the image of μ under the bijection above, hence it has law Q. It follows, from the

weak convergence of (QN )N∈N to Q, that pN converges to p in law.

It remains to prove (D.2) and (D.3). Let us prove (D.2). The sequence of r.v.’s{
sup|x |≤n |p (x)|q ′

}
n∈N

is non decreasing and non-negative, and converges a.s. to

supx∈Rd |p (x)|q ′
, hence by Beppo-Levi theorem

E

[
sup

x∈Rd

|p (x)|q ′
]

= lim
n→∞

E

[
sup
|x |≤n

|p (x)|q ′
]

.

Therefore (using also the fact that p̃ and p have the same law, the first marginal of Q

above) it is sufficient to find a constant C > 0, independent of R, such that

E

[
sup

|x |≤R

| p̃ (x)|q ′
]

≤ C

for every R > 0. But we know that sup|x |≤R

∣∣ p̃NK (x)
∣∣q ′

converges a.s. to

sup|x |≤R | p̃ (x)|q ′
. Moreover, we know that there exists γ > 1 such that

E

[(
sup

|x |≤R

∣∣∣ p̃N (x)

∣∣∣
q ′
)γ]

≤ K

(take γ = q/q ′ and use assumption (D.1)). Hence, by Vitali convergence theorem, we

get

E

[
sup

|x |≤R

| p̃ (x)|q ′
]

= lim
N→∞

E

[
sup

|x |≤R

∣∣∣ p̃N (x)

∣∣∣
q ′
]

≤ K 1/γ .

Finally, (D.3) is proved similarly, under the additional assumption that p is deter-

ministic. In this case pN converges to p in probability, not only in law, in C
γ−
ℓoc(R

d).

In particular, sup|x |≤R

∣∣pN (x) − p (x)
∣∣q ′

converges to zero in probability. Since

sup|x |≤R

∣∣pN (x) − p (x)
∣∣q ′

is uniformly integrable, by Vitali theorem it converges

to zero in average. ⊓⊔
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Appendix E: Relaxed Controls

In the proof of Theorem 6.1 we use the concept of relaxed controls. In this section we

briefly recall the definition of relaxed controls are; for more details, see, for instance,

El Karoui et al. [10] and Kushner [14]. Let S be a Polish space and let RS be the space

of all deterministic S-valued relaxed controls over the time interval [0, T ], that is,

RS
.= {r : r positive measure on B(S × [0, T ]) : r(S × [0, t]) = t, t ∈ [0, T ]}.

If r ∈ RS , then the time derivative of r exists almost everywhere as a measurable

mapping
·
r t : [0, T ] → P(S) such that r(dy, dt) = ·

r t (dy) dt . The topology of weak

convergence of measure turns RS into a Polish space. In addition, the space RS is

compact if S is compact. Finally, any S-valued (Ft )-adapted process α defined on

some filtered probability space (�,F , P) induces a RS -valued random variable ρ,

the corresponding stochastic relaxed control, according to:

ρω(B × I )
.=
∫

I

δα(t,ω)(B) dt,

where B ∈ B(Ŵ) with Ŵ the set of control actions, or action space, I ∈ B([0, T ])
and ω ∈ �. The random measure ρ is (Ft )-adapted in the sense that its restriction to

S × [0, t] is Ft -measurable for every t ∈ [0, T ].
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