
Heliyon 10 (2024) e32572

Contents lists available at ScienceDirect

Heliyon

journal homepage: www.cell.com/heliyon

Research article

Analyzing digital societal interactions and sentiment classification 

in Twitter (X) during critical events in Chile
Pablo A. Henríquez a,∗, Francisco Alessandri b
a Facultad de Administración y Economía, Universidad Diego Portales, Santiago, Chile
b London School of Economics and Political Science, United Kingdom

A R T I C L E I N F O A B S T R A C T

Dataset link: https://
github .com /pabhenriquez /Indicadores

Keywords:

Sentiment classification
Twitter
Engagement
Inclusivity

This study explores the influence of social media content on societal attitudes and actions 
during critical events, with a special focus on occurrences in Chile, such as the COVID-19 
pandemic, the 2019 protests, and the wildfires in 2017 and 2023. By leveraging a novel tweet 
dataset, this study introduces new metrics for assessing sentiment, inclusivity, engagement, and 
impact, thereby providing a comprehensive framework for analyzing social media dynamics. The 
methodology employed enhances sentiment classification through the use of a Deep Random 
Vector Functional Link (D-RVFL) neural network, which demonstrates superior performance over 
traditional models such as Support Vector Machines (SVM), naive Bayes, and back propagation 
(BP) neural networks, achieving an overall average accuracy of 78.30% (0.17). This advancement 
is attributed to deep learning techniques with direct input–output connections that facilitate faster 
and more precise sentiment classification. This analysis differentiates the roles of influencers, 
press radio, and television handlers during crises, revealing how various social media actors 
affect information dissemination and audience engagement. By dissecting online behaviors and 
classifying sentiments using the RVFL network, this study sheds light on the effects of the digital 
landscape on societal attitudes and actions during emergencies. These findings underscore the 
importance of understanding the nuances of social media engagement to develop more effective 
crisis communication strategies.

1. Introduction

Over the past few years, there has been a significant surge in the creation of text-based content on social media platforms. For 
example, as of July 2018, Twitter (X) boasted 326 million active users who collectively sent over 500 million tweets daily.1 Social 
media fosters virtual connections among users, facilitating the expression of views and the formation of ties via posts, comments, 
messages, and likes. It offers individuals a platform to instantly and effortlessly convey emotions, ideas, and viewpoints [1–3].

Online social platforms such as Facebook, Instagram, and Twitter (X) provide millions of individuals with unlimited access to 
information and connectivity [4]. The content created on such platforms has been proven to have a significant impact on society as 
a whole. From social and political discussions [5,6] and emergency and disaster responses [7,8], social media conversation affects 
the offline, physical world in tangible ways. This tendency, combined with the rapidly spreading nature of virtual content, has 
transformed online opinions into valuable assets.
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The prevalence of social crises in modern times presents a significant and challenging issue that cannot be promptly resolved. 
These crises, which pose threats to societal well-being, have garnered the attention of both government authorities and community 
members alike [9]. Recognizing and understanding situations that endanger social life are crucial when considering a social crisis. 
Early identification allows for the mitigation of adverse effects and resolution of this issue. In times of crisis, access to reliable 
information is critical for effective problem-solving. While many organizations leverage the capabilities of social media, only a few 
specifically focus on aiding individuals during social crises [10]. Platforms such as Twitter have become essential for users, not only 
as a means for academics to gather data through tweets but also as a tool for monitoring societal crises [11]. Twitter serves as a 
rich source of data for analyzing topics and detecting crises. The initial act of a societal event is often observed first on social media 
platforms [12]. People may refrain from being direct about things in real life; however, extensive discussions, blog posts, and short 
messages proliferate on the Internet via social media. Nonetheless, it is important to note that such online content can range from 
genuine to fraudulent, potentially fueling rumors on social media platforms [13].

Building on this understanding of social media’s role in crisis communication, it is apparent that influencers play a pivotal role 
in shaping narratives during such times. At the peak of a crisis, researchers have found that, through qualitative analysis of Twitter 
communication, valuable insights can be gleaned regarding people’s perceptions, the nature of the critical event, and its level of 
visibility [14]. With their vast reach and trusted authority, influencers have been found to significantly expedited the propagation 
process and augmented the scale of information dissemination. Their ability to connect with a large audience and the trust they 
command owing to their authenticity and position [15] further highlight social media’s transformative power. By leveraging their 
influence, they can either amplify the dissemination of critical and reliable information during crises or, conversely, contribute to 
the spread of rumors and misinformation.

Sentiment Analysis (SA) is a growing task [16], aims to classify opinions and sentiments expressed in text, particularly within 
the realm of social media analysis. Known also as opinion mining, this application seeks to determine the orientation of opinions— 
positive, negative, or neutral—expressed in text streams. Building a classification model that can accurately perform sentiment 
classification requires an analysis of tweets with both positive and negative sentiments. It is noteworthy that the training time for 
such a sentiment classification model increases with an increasing volume of training tweets [17].

Artificial Neural Networks (ANN) are popular in Machine Learning (ML) for tasks such as classification and regression. However, 
the detailed process of adjusting their settings can slow their learning [18]. The popular way to train an ANN is through backprop-
agation (BP). To solve this problem [19], a single hidden layer neural network with random weights (RWSLFN) has been proposed, 
with random weight assignment between the input and hidden layers and least-squares estimation of the output weights as the 
training method. A functional link neural network known as the Random Vector Functional Link (RVFL) network (RVFLN) has been 
proposed [20]. Although it is similar to the RWSLFN reported in [19], it has direct input–output connections between the input and 
output neurons. Extreme Learning Machine (ELM) [21] is an RVFL variant that omits direct links and adopts the primitive structure 
of single hidden layer feedforward neural networks (SLFN). ELM is essentially a variation of the RVFL network [22,23]. Various 
studies, including those by [24–26,22,23,27], have highlighted the efficacy of RVFL networks, particularly emphasizing the crucial 
role of the direct input—output link in enhancing network performance.

Recently, a Deep RVFL model [28,27], RVFL learning with privileged information [29], and variance-embedded RVFL [30] have 
been proposed to enhance the generalization of the RVFL based models. The variations, improvements, and applications of the RVFL 
models are discussed in [31]. The work presented in [27] is one of the most groundbreaking attempts to propose multilayer RVFL 
networks. The authors introduced a novel deep neural network using RVFL networks called Deep RVFL (D-RVFL). They evaluated 
the performance of the D-RVFL on human sentiments using Twitter. In Table 1 we present a review of the most commonly used 
applications using RVFL models. From this review, we observe that most studies using RVFL networks do not focus on sentiment 
classification.

Understanding which information (content and type) resonates most significantly with the audience can serve as a pivotal strategy 
for enhancing engagement [32]. The integration of an RVFL network into SA underscores the broader implications of understanding 
the specific content types with which the audience resonates, thereby enhancing engagement and fostering sustained dialogue with 
the public. This strategy is crucial for calming people, establishing trust, and navigating crises. Consequently, this study examines 
the role of content creators and social media platforms in shaping societal attitudes and actions during natural disasters and social 
uprisings by assessing their engagement and impact in such situations. This comprehensive examination highlights the critical role 
of SA in crisis communication and management. The major highlights of this study are as follows:

• We obtained a set of tweets concerning several significant events in Chile, including the COVID-19 pandemic in 2020, the social 
uprising in October 2019, and the wildfires that transpired in January 2017 and February 2023.

• We introduced new indicators to measure sentiment, inclusivity, engagement, and societal impact of Spanish social media 
content, offering a comprehensive toolkit to analyze this content.

• This study outlines how influencers, the press, radio stations, and television uniquely affect information sharing during emer-
gencies. This demonstrates the distinct ways in which each group influences the flow of information.

• We used the Deep Random Vector Functional Link (D-RVFL) to improve the accuracy of tweet sentiment classification.
• We perform a comparative analysis of different classifiers to establish the superiority of the RVFL and deep random vector 
2

functional link (D-RVFL) networks over traditional models in social media sentiment classification.
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Table 1

Application of RVFL Models.

Year Literature Application

2023 [33] Direction-of-arrival (DOA)
2023 [34] ORL database
2023 [35] UCI datasets
2023 [36] Solar exposure forecasting
2023 [37] Diagnosis of enlarged lymph nodes
2023 [38] Leaf disease detection
2023 [39] Wind power forecasting
2022 [40] Alzheimer’s disease diagnosis
2022 [41] UCI datasets
2021 [42] Nonlinear system identification
2021 [43] Stock price prediction
2021 [44] Assessing dry weight of hemodialysis patients
2021 [45] forecasting of oil production in China
2021 [46] Time series forecasting
2021 [47] Short term solar power forecasting
2020 [48] COVID-19 cases forecasting
2020 [49] Nonlinear system identification
2020 [50] Brain MRI image classification problem
2020 [51] Respiratory motion prediction
2020 [52] Forecasting seawater power consumption and productivity
2019 [53] Water quality analysis
2019 [54] Detecting Brain abnormalities
2019 [55] UCI datasets
2019 [56] Forecasting crude oil price
2018 [27] Twitter sentiment classification
2018 [57] Indian summer monsoon rainfall prediction

The rest of the article is structured as follows. The Related Work section presents a literary review of related work. Methodology 
section discusses the research methodology. Results section provides the experimental results, and the Discussion and Conclusion 
sections conclude the article.

2. Related works

Social media has emerged as an important medium for governments and citizens to understand and explain crisis situations, make 
public decisions, and act accordingly [9]. Government agencies in various countries use special media to communicate and manage 
crises [58]. Studies have shown that public health organizations effectively engage the public on social media during past crises, with 
platforms such as Instagram showing higher levels of interaction, indicating their potential for strategic health risk communication 
[59]. How economic crises affect Generation Z’s engagement with a city’s social media in the past has been investigated [60]. This has 
been related to the city’s image, brand personality, and residents’ satisfaction, revealing that crises altered past engagement patterns. 
In [61], it was found that during the COVID-19 crisis, Chinese government agencies’ use of social media for citizen engagement 
was complex; media richness tended to reduce engagement, whereas interactive communication increased it. Crisis news content and 
government actions enhanced engagement, with the impact varying depending on the emotional tone of the posts. In 2020, radiology 
residency programs expanded the use of social media to engage students and promote diversity, equity, and inclusion during the 
NRMP application cycle. They utilized platforms such as Twitter, Instagram, and Facebook with a consistent approach to expand 
outreach [62].

Building on these insights, a recent study analyzed Tweets from leaders and healthcare organizations in countries with high 
COVID-19 resilience. This analysis revealed that the UAE Prime Minister and the Canada’s Public Health Agency had the most 
significant societal associations online [63]. These leaders showed an acute awareness of individual factors on social media, aligning 
with user preferences for these platforms during health crises. Furthermore, [58] delved into the coproduction of disaster risk 
communications between the government and citizens during Hurricane Sandy, analyzing over 132,922 #sandy tweets. Networked 
citizen interactions on social media significantly amplified the government’s communication and agility. This case study underlines 
the critical role of social media policy governance networks in enabling effective public service coproduction and emphasizes the 
importance of social media in crisis communication and management.

A significant amount of research has been conducted on the analysis of tweets about natural disasters. For example, [64] provided 
a network analysis of official Twitter accounts activated during the Charleston, West Virginia water contamination crisis in 2014. 
Another study [8] analyzed the activity of the 2010 earthquake in Chile. Furthermore, the authors conducted a preliminary study 
of certain social phenomena, such as the circulation of false rumors and confirmed news. A pivotal study [65] proposed significant 
advancements in crisis-related information detection on Twitter, with an absolute improvement of 16.55 points in identifying crisis 
events and an enhancement of 21.71 points in classifying different types of crisis information. In [66], a comprehensive literature 
review was conducted to identify social media users during a disaster. This framework can be used to facilitate the development 
of disaster social media tools, formulation of disaster social media implementation processes, and scientific study of disaster social 
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media effects. Another study examined tsunami warnings in Padang, Indonesia and the reactions of Twitter users [67]. In [68], 
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the shifting perceptions of international students during the COVID-19 crisis were explored by analyzing 6,501 Twitter posts from 
January to April 2020. The study revealed a transition from initial stereotypes and discrimination to empathy and support after 
universities closed, including being labeled as disease carriers. Another study [69], investigated misinformation on Facebook and 
Twitter during the initial months of the Russia–Ukraine conflict, using large datasets to track the spread of Russian propaganda and 
unreliable content. They revealed the pivotal role of superspreaders and reported that only 8–15% of such posts were moderated. 
Additionally, the study found a right-leaning bias among sharers of this content, emphasizing platform vulnerabilities and the critical 
need for improved moderation to safeguard online discourse integrity.

A study has examined Twitter use during and after Typhoon Haiyan devastated the Philippines [70]. The authors explored 
the usage time, geographic location, type of stakeholders (e.g., ordinary citizens and journalists), and social media engagement to 
forecast these uses. They demonstrated that different stakeholders used social media mostly for the dissemination of second-hand 
information, to help coordinate relief efforts, and to pay tribute to those affected.

A study did a Twitter investigation of the real-time interaction of events, such as earthquakes, and proposed an algorithm to 
monitor tweets and detect a target event [7]. The researchers devised a tweet classifier based on features such as keywords in a 
tweet, the number of words, and the context thereof. In [71], a SA approach applied to a set of tweets related to a natural disaster 
in Italy (a study on the 2014 Genoa Flash Floods) was presented. They identified tweets that may provide useful information from 
a disaster management perspective. In [72], was utilized text mining and SA of Twitter data to identify recent social crises by 
comparing the findings with those of reputable newspapers. Employing a hybrid method, they achieved high identification rates for 
the top crises between February 27 and March 11, 2020. This study demonstrates the potential of social media analytics in detecting 
and understanding social issues, offering a valuable tool for effectively addressing them.

2.1. A BERT framework to SA of tweets

Recent developments in Sentiment Analysis (SA) have witnessed a substantial move towards more advanced techniques. This shift 
goes beyond the traditional approaches that relied on lexicons and machine learning (ML). Instead, it embraces the methodologies 
of deep learning. A seminal study [73] compared various SA techniques, including BERT, and found that it outperformed the others, 
especially when analyzing IMDB reviews and social media content. This study highlighted the adaptability of SA across various 
domains like marketing, politics, economics, and healthcare. However, it also identified a lack of application in areas like emergency 
response.

At the same time, another study [74] reinforced the effectiveness of machine learning (ML) and ensemble learning techniques in 
sentiment analysis (SA). This study brought to light popular and successful mechanisms within the field. While it offered valuable 
contributions to our understanding of current practices, a more in-depth comparison between the methodologies was not provided.

The growing appreciation for BERT, a state-of-the-art deep learning framework, has become increasingly evident in SA of tweets. 
A prior study [75] suggested a groundbreaking improvement to BERT by incorporating emotion-cognitive reasoning, with the goal 
of enhancing sentiment classification in tweets related to emergencies. While this approach shows promise, its reliance on basic 
emotional rules and lexicons necessitates further development.

An initial investigation conducted by [76] explored the influence of preprocessing techniques on BERT’s effectiveness for ana-
lyzing tweets in both English and Italian. This study illuminates the ideal preparation methods for informal Twitter text to optimize 
BERT’s performance. In a similar vein, another study by [77] demonstrated the harmonious interaction between BERT’s contextual 
embeddings and deep learning classifiers, such as CNN and Bi-LSTM, for sentiment analysis across various tweet datasets. These 
studies reinforce BERT’s ability to handle the informal and contextual nature of tweets, suggesting that exploring other transformer 
models could be a promising direction for future advancements.

A study by [78] underscored the difficulty posed by the scarcity of annotated datasets for training powerful deep learning models. 
This study utilized transfer learning techniques, including BERT, to analyze public sentiment on Twitter regarding HPV vaccines. The 
results showcased BERT’s superiority in performance. Further emphasizing the significance of domain-specific knowledge, a study by 
[79] demonstrated that integrating external sentiment knowledge from the domain into BERT can mitigate the limitations of training 
data, especially for aspect-based sentiment analysis.

Research conducted on Arabic sentiment analysis [80] has highlighted the need for advancements in language-specific method-
ologies and datasets. This research emphasizes the importance of detecting sarcasm within Arabic natural language processing (NLP). 
Similarly, a study on Vietnamese SA [81] advocates for the use of PhoBERT and acknowledges challenges like limitations on input 
length. Finally, a study by [82] demonstrated that BERT and GPT-3 outperform traditional SA methods on standard datasets. Their 
findings revealed GPT-3’s superior performance when analyzing COP9 tweets, reinforcing the effectiveness of pre-trained models for 
sentiment analysis with limited data annotations.

3. Methodology

3.1. Data collection

We collected datasets using the academic API2 provided by Twitter to collect information on non-protected users. In the data 
collection stage, we employed a rigorous process of curating keywords. These keywords were drawn from official documentation, 

2 https://developer .twitter .com /en /products /twitterapi /academic -research. We systematically searched for and extracted relevant tweets from Twitter using the 
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academictwitteR package, which is developed in the R programming language [83]. However, it should be noted that this academic API is no longer accessible.

https://developer.twitter.com/en/products/twitterapi/academic-research
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Table 2

Duration of the event.

Event Duration

Wildfire 2017 1 month
Wildfire 2023 2 months
COVID-19 9 months
Social Uprising 14.5 months

media narratives, and preliminary analyses of social media activity. This thorough approach ensured the dataset’s relevance and 
richness. It allowed us to align the keywords with the subtle contextual variations of each chosen event, ultimately capturing the 
most representative data for our analysis.

Four different critical events in Chile were chosen for this study:

• Chilean forest fires of 2017: The dataset contains a collection of 195,044 tweets. The keywords such as #bomberosdechile, 
#Chileenllamas, #EstadoDeCatastrofe were systematically selected to capture the broad societal impact and public response 
over the event duration from 12/01/2017 to 01/02/2017.

• Chilean forest fires of 2023: A total of 415,791 tweets were captured from 01/01/2023 to 02/28/2023. To ensure focused and 
relevant data extraction, the exclusive keyword #IncendiosForestales was used.

• Chilean Social Protests of 2019: This dataset includes 15,892,881 tweets collected from 10/10/2019 to 01/31/2020. To capture 
the complex and varied facets of the protests, multiple keywords were used including #EstallidoSocial, #PlazaDeLaDignidad, 
#PrimeraLinea, and #Carabineros, among others. These keywords were selected to accurately reflect the diverse opinions, 
significant moments, and key actors involved in the unfolding social dynamics during the protests.

• COVID-19 pandemic: The dataset comprises 2,118,000 tweets, gathered through the keywords #COVID2019chile and #Coron-
aVirusEnChile, reflecting the public discourse from the onset of the pandemic restrictions in Chile to their gradual easing.

Our selection of these diverse events, including the forest fires of 2017 and 2023, the 2019 protests, and the COVID-19 pandemic, 
was driven by two main goals. First, we aimed to investigate the far-reaching effects of various crisis types on Chilean society. 
Second, we sought to capitalize on the substantial amount of social media engagement surrounding these events to conduct robust 
sentiment analysis. Given the profound societal impact of these events, they offer a rich and conducive environment for analyzing 
online social interactions across diverse crisis scenarios.

The timeframe for each dataset was meticulously chosen to coincide precisely with the duration of the event itself. This ensured we 
captured the societal sentiment as it unfolded, from the initial stages of each crisis to its eventual resolution. This strategic approach 
to timing guaranteed our analysis comprehensively covered the trajectory of public opinion and societal responses throughout the 
events.

Following the meticulous selection of keywords and timeframes, the tweets underwent preprocessing to eliminate noise and 
extraneous information. This preprocessing involved removing elements like URLs, punctuation marks, symbols, numbers, emojis, 
non-Spanish and non-ASCII characters, hashtags, and user mentions.

3.2. Societal interactions

Building on the collected data, this study analyzes four significant events that profoundly impacted Chilean society, encompassing 
both natural disasters and social uprisings. Specifically, we focus on the COVID-19 pandemic in 2020, the social uprising in October 
2019, and the wildfires that occurred in January 2017 and February 2023. These events were of national importance, dominating 
discussions in both the media and social networks over varying periods, as illustrated in Table 2.

After preprocessing the tweets, our focus shifted towards identifying key communicators for each event. We compared the ac-
counts of prominent radio stations, television channels, press agencies, and online news outlets with those of a select group of 
influencers. The influencers for each event were identified based on a specific strategy that revolved around their engagement and 
reach during the event. This strategy entailed the following steps:

• Throughout the event duration, we specifically selected hash tags that achieved a Trending Topic status in Chile.
• The selected hashtags were subsequently refined to include only those tags directly associated with the event. Subsequently, all 

tweets containing these specific hashtags within the designated timeframe were downloaded.
• Tweets were grouped by account and non-institutional accounts with the highest total retweets were identified as influencers.

Further details regarding the tweets authored by each account, including the influencers, can be found in Table 3. We analyzed 
the results of these accounts using three parameters: account engagement and impact, tweet sentiment, and tweet diversity and 
inclusivity. Fig. 1 depicts the overall research framework. Finally, the average of the normalized indicators was used to observe the 
accounts’ societal impact, both before and after the events.

The engagement and impact metrics (as defined in Eq. (1)) were derived from two key factors: the influence of the social network 
account and the level of engagement achieved by each individual tweet posted during the event. This dual approach allows us to 
5

factor in both account outreach and the viral nature of specific tweets [63]:
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Table 3

Distribution of tweets made from selected accounts.

Account type Account name Wild fire 2017 Wildfire 2023 COVID-19 Social Uprising
total tweets total tweets total tweets total tweets

press and radio adnradiochile 4044 7125 33560 48974
biobio 4929 9444 35715 55940
Cooperativa 10919 16625 84270 139520
eldesconcierto 1511 3471 18771 28543
elmostrador 2103 3916 21352 32095
InterferenciaCL 263 1143 1849
latercera 9804 10307 55291 85348
PublimetroChile 6722 3153 25971 45249
Tele13_Radio 4087 6780 54290 75779
thecliniccl 1749 8898 28332 45592

television 24HorasTVN 7090 10429 51034 78740
CHVNoticias 7 6210 22672 32343
meganoticiascl 2438 7681 35816 57856
T13 5443 7800 36244 58494

influencers ablanch4 3307
alegriagonzaa 4848
bomberoschillan 400
CEBioBio 1378
InfoNuble 1232
INFORMADORCHILE 1712
PiensaPrensa 1834 19812
reddeemergencia 4317
S_Schwartzmann 2418
ayala_rodolfo 667
Cachoescalona1 511
camilaemiliasv 3021
CapuchaCreativa 823
Chileno17039890 1417
JackoProu 1518
MrRangerR1 924
rsumen 1958
SpreenDMC 240
csantander23 245 427
El_Ciudadano 19684 30413
FelipeParadaM 2334 5629
FrancoBassoSotz 2382
Izkia 3820
Pa__tty 9435
PolarBearby 9749
RockandRolec 6943
UPLaRadio 18997
Vitalicio7020 24924
andres20ad 3806
Chileokulto 11699
GAMBA_CL 5693
hernan_sr 24078
JoviNomas 32625
vagoilustrado 6174

Total 82,292 113,181 602,974 926,678

𝑖𝑚𝑝𝑎𝑐𝑡 =
𝑡𝑤𝑒𝑒𝑡𝑠 × log(

√
𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟𝑠

𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔+1 + 1)

𝑎𝑛𝑡𝑖𝑞𝑢𝑖𝑡𝑦2
(1)

Thus, the impact is increased by the number of tweets and followers of the users. However, the impact is diminished by the 
account’s age, which is measured by the number of days between the first of January of the ongoing year and the date on which the 
account was created, because older accounts are expected to have more tweets and followers and the number of accounts following.

In our analysis, interactions represent measurable engagement metrics exhibited by Twitter users towards tweets related to the 
studied events. Specifically, an “interaction” refers to any of these user actions on a tweet: like, retweet, quote tweet, or reply. These 
actions signify the level of user engagement and information dissemination across the platform. To calculate the daily engagement 
indicator (𝐷𝑎𝑖𝑙𝑦_𝐸𝐼), we first summed the number of interactions for each tweet. This sum was then multiplied by the account’s 
impact score. This impact score considers factors like follower count, follower-to-following ratio, and account age, providing a holistic 
perspective of its potential reach and influence. Through this approach, we were able to quantify the engagement and influence of 
6

tweets and accounts during the critical events under study. This analysis offers valuable insights into the dynamics of information 
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Fig. 1. Overall research framework.

diffusion and societal response on Twitter. The daily indicator, 𝐷𝑎𝑖𝑙𝑦_𝐸𝐼 is obtained by multiplying the impact and daily average 
engagement of the tweets, and the indicator 𝐸𝐼 is the average of the 𝐷𝑎𝑖𝑙𝑦_𝐸𝐼 , as shown in Eq. (2) and Eq. (3) [84]:

𝐷𝑎𝑖𝑙𝑦_𝐸𝐼 = 𝑖𝑚𝑝𝑎𝑐𝑡 ×

∑
𝑡𝑤𝑒𝑒𝑡𝑠

𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠

4 × #𝑜𝑓 _𝑡𝑤𝑒𝑒𝑡𝑠
(2)

𝐸𝐼 =

∑
𝑑𝑎𝑦𝑠

𝐷𝑎𝑖𝑙𝑦_𝐸𝐼

#𝑜𝑓 _𝑑𝑎𝑦𝑠
(3)

To calculate the sentiment indicator 𝑆𝑒𝑛𝑡, we analyzed each tweet using the Robertuito [85] model to obtain its positive, negative, 
and neutral emotions. As a mode, Robertuito is regarded as the highest benchmark of language model in Spanish. Robertuito is a 
pretrained language model for user-generated content in Spanish, trained following the RoBERTa guidelines on 500 million tweets. 
After calculating the sentiment and labeling each tweet as neutral, positive, or negative, the 𝑆𝑒𝑛𝑡 indicator is calculated for each 
user. To do so, we calculate the proportion of each sentiment for the user, and assign the values 10−6 if the user has mostly neutral 
tweets, the proportion of positive tweets if the user has mostly positive ones, and minus the proportion of negative tweets if the user 
mostly tweeted negatively (Eq. (4)) [63,14].

𝑆𝑒𝑛𝑡 =

⎧⎪⎪⎨⎪⎪⎩

10−6 𝑖𝑓 𝑚𝑎𝑥 = 𝑛𝑒𝑢𝑡𝑟𝑎𝑙

#𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒_𝑡𝑤𝑒𝑒𝑡𝑠

#𝑇 𝑜𝑡𝑎𝑙_𝑡𝑤𝑒𝑒𝑡𝑠
𝑖𝑓 𝑚𝑎𝑥 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

−#𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒_𝑡𝑤𝑒𝑒𝑡𝑠

#𝑇 𝑜𝑡𝑎𝑙_𝑡𝑤𝑒𝑒𝑡𝑠
𝑖𝑓 𝑚𝑎𝑥 = 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

(4)

The third indicator 𝐷𝑖𝑣 analyzes the diversity and inclusivity of the language used by the user. This indicator uses a dictionary 
with terms in five dimensions, considering diversity in terms of gender, age, ethnicity, structure, and sectors of the economy, as 
shown in Table 4. This indicator was calculated as the number of dictionary terms, divided by the total number of tweets (Eq. (5)).

𝐷𝑖𝑣 = #𝑤𝑜𝑟𝑑𝑠_𝑖𝑛_𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦

#𝑇 𝑜𝑡𝑎𝑙_𝑡𝑤𝑒𝑒𝑡𝑠
(5)

Finally, the compound Societal Impact indicator is created with the average of the normalized engagement indicator, sentiment 
indicator, and diversity indicator, as shown in Eq. (6) [63]:

𝑆𝑜𝑐𝑖𝑒𝑡𝑎𝑙𝐼𝑚𝑝𝑎𝑐𝑡 = 𝐸𝐼 + |𝑆𝑒𝑛𝑡|+𝐷𝑖𝑣

3
(6)

3.3. Sentiment classification

3.3.1. TF-IDF

After preprocessing, the tweets were converted into a matrix of numeric vectors. We used a method called term frequency–inverse 
TF-IDF. This technique consists of term frequency (TF) and inverse document frequency (IDF). The TF focuses on the raw word count 
7

in a document, whereas the IDF focuses on how the frequency of a word is measured. Eq. (7) shows the TF formulations:
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Table 4

Dictionary.

Dimension Terms

Gender hombre, mujer, trans, lgbt, mujeres, hombres, padres, madres, queer, homosexual 
transexual, pansexual, gay, lesbiana

Age niños, niño, niña, jóvenes, adultos, adultos mayores
abuelos, abuelas, familia, familias, abuela, abuelo

Cultural inferences extranjero, extranjeros, peruano, venezolano, colombiano, haitiano
Ethnicity mestizo, mapuches, mapuche, originarios, aymara, selknam, diaguita, indígenas
Economic sectors salud, educación, construcción, minería, agricultura, energía, transporte, retail

Table 5

Social Uprising (October 2019).

Account type Data Positive Negative Total

Influencers Train 10919 79039 89958
Test 4707 33847 38554

Press & Radio Train 37644 212043 249687
Test 16083 90926 107009

Television Train 15516 78884 94400
Test 6814 33644 40458

Table 6

COVID-19.

Account type Data Positive Negative Total

Influencers Train 7468 35783 43251
Test 3055 15482 18537

Press & Radio Train 17354 101672 119026
Test 7594 43418 51012

Television Train 6975 41744 48719
Test 2949 17931 20880

Table 7

Wildfires (January 2017).

Account type Data Positive Negative Total

Influencers Train 2115 6459 8574
Test 938 2737 3675

Press & Radio Train 6491 21208 27699
Test 2923 8948 11871

Television Train 2069 6400 8469
Test 930 2736 3666

𝑇𝐹 (𝑡, 𝑑) =
Frequency of term (t) in the document (d)

Total word in the document (d)
(7)

IDF’s purpose is to calculate the informativeness of the word in a document. We need IDF because it helps minimize the weight 
of frequent terms and lends the infrequent terms a high impact. IDF can be computed using Eq. (8).

𝐼𝐷𝐹 (𝑡) = 𝑙𝑜𝑔2(
Total documents (N)

Total documents with term (df(t))
) (8)

The TF-IDF expression in Eq. (9) can be obtained by combining Eq. (7) and Eq. (8) [86]:

𝑇𝐹 − 𝐼𝐷𝐹 = 𝑡𝑓 .𝑖𝑑𝑓 (𝑡, 𝑑,𝑁) = 𝑡𝑓 (𝑡, 𝑓 ).𝑖𝑑𝑓 (𝑡,𝑁) (9)

3.3.2. Data labeling

SA can be defined as a process that automates the mining of attitudes, opinions, views and emotions from text, speech, tweets 
and database sources through NLP. SA involves classifying text opinions into categories, such as positive or negative or neutral.

The labels in Tables 5, 6, 7 and 8, representing datasets from various events, such as the Chilean protests in October 2019, COVID-
8

19, and wildfires (January 2017 and February 2023), are evidently imbalanced in terms of positive and negative classifications across 
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Table 8

Wildfires (February 2023).

Account type Data Positive Negative Total

Influencers Train 1497 5995 7492
Test 648 2564 3212

Press & Radio Train 6145 24825 30970
Test 2666 10608 13274

Television Train 2430 12897 15327
Test 5496 1074 6567

Fig. 2. Diagram illustrating an RVFL network, highlighting the direct links between input and output neurons (dashed red arrows).

different account types and data splits (training and testing). This imbalance can compromise the efficacy of ML models. Hence, 
there is an urgent need to implement algorithms or techniques that balance these labels to ensure reliable and unbiased analytical 
outcomes. To address the class imbalance within our data, we employed the Synthetic Minority Oversampling Technique (SMOTE) 
[87]. This technique generates new, synthetic data points based on existing ones to achieve a more balanced distribution. Here’s 
how it works: for each data sample 𝑥𝑖 belonging to the minority class 𝑆min, the algorithm identifies its (k) nearest neighbors. In our 
experiments, we set the value of 𝑘 to 5.

3.4. Random vector functional link neural networks (RVFLN)

The Random Vector Functional Link Neural Network (RVFLN) [88] is a special type of neural network. Different from most, it 
connects the input directly to the output layer, bypassing the multiple layers typically found in these networks. This straightforward 
design, highlighted in our study and other studies [31,89], makes it faster and potentially more efficient for certain tasks, as illustrated 
in Fig. 2.

RVFL uses a novel approach for weight initialization. All weights and biases between the input and hidden layers are randomly 
initialized. Once set, these parameters remain unchanged during training. On the other hand, the output weights, shown as black 
solid lines in the diagram, are computed either via the Moore–Penrose pseudo-inverse or through ridge regression.

An intrinsic feature of RVFL is the direct connection (red line) between the input and output layers. This not only simplifies the 
architecture, but also acts as a regularization method, curbing the potential for overfitting.

One of RVFL’s main merits is its efficiency. Given that there is no iterative weight tuning in the training phase, it boasts quicker 
convergence, computational ease, and often a diminished training error compared with other neural network methodologies.

In the RVFL network, enhancement nodes are used to map data from the input layer to the hidden layer, represented as 𝑔(𝑤𝑗𝑥𝑖 +
𝑏𝑗 ) where 𝑔(⋅) is the activation function, 𝑤𝑗 is the weight of the 𝑗th enhancement node, 𝑏𝑗 is the threshold and 𝑥𝑖 the input vector. 
Input nodes are essentially a linear combination of inputs, expressed as 

∑ℎ+𝑛
𝑗=ℎ+1 𝛽𝑗𝑥𝑖, with 𝛽𝑗 being the weight terms. The RVFL 

network structure is represented concisely in a given format [18]:

𝑦𝑖 =
ℎ∑

𝑗=1
𝛽𝑗𝑔(𝑤𝑗𝑥𝑖 + 𝑏𝑗 ) +

ℎ+𝑛∑
𝑗=ℎ+1

𝛽𝑗𝑥𝑖. (10)

Eq. (10) can be written in a compact form as follows

𝐇𝜷 = 𝐘̂, (11)
9

where
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𝐇 =
⎡⎢⎢⎣

𝑔(𝑤 ⋅ 𝑥1 + 𝑏1) ⋯ 𝑔(𝑤ℎ ⋅ 𝑥1 + 𝑏ℎ) 𝑥𝑇
1

⋮ ⋱ ⋮
𝑔(𝑤1 ⋅ 𝑥𝑁 + 𝑏1) ⋯ 𝑔(𝑤ℎ ⋅ 𝑥𝑁 + 𝑏ℎ) 𝑥𝑇

𝑁

⎤⎥⎥⎦
The output matrix 𝜷 can be determined analytically with the least-squares solutions, under the constraint of minimum least-square 

min𝜷 ||𝜷|| and min𝜷 ||𝐇𝜷 −𝐘|| can be calculated as

𝜷 =𝐇†𝐘, (12)

where 𝐇† is the Moore-Penrose generalized inverse of matrix H [90] (Eq. (12)). The groundtruth 𝐘 is a matrix of size 𝑁 ×𝑚.

3.4.1. Deep RVFL network

The Deep Random Vector Functional Link (D-RVFL) network builds upon the traditional RVFL network by introducing concepts 
from representation learning or deep learning. In contrast to standard RVFL networks with a single hidden layer, D-RVFL utilizes 
multiple hidden layers. Each layer is fully interconnected and incorporates direct input-output connections that bypass the interme-
diate hidden layers. These direct connections play a crucial role in mitigating the vanishing gradient problem, a common challenge 
in deep neural networks.

Unlike its single-layered predecessor, the Deep Random Vector Functional Link (D-RVFL) network incorporates multiple hidden 
layers. Each layer is densely interconnected and includes direct input-output connections that bypass the intervening hidden layers. 
These direct connections play a critical role in alleviating the vanishing gradient problem, a frequent obstacle in deep networks.

By eliminating the requirement for backpropagation through the use of pre-defined, random weights and direct training of the 
output layer, D-RVFL networks achieve a substantial reduction in training time compared to traditional deep learning models [91]. 
D-RVFL networks also boast simplified configuration and implementation due to the absence of hidden layer weight tuning. Only 
the output weights require calculation, leading to diminished complexity and a lower risk of overfitting. The D-RVFL network 
architecture presents a compelling alternative to conventional neural network models, especially for applications where training 
speed and model parsimony are paramount. Its resilience to common neural network issues like overfitting, coupled with its ability 
to effectively manage complex patterns, makes it a valuable tool for expeditious yet precise data analysis [92,31].

While the D-RVFL network’s stacked, hierarchical hidden layer structure offers general adaptability in terms of network dimen-
sions (both width and depth), we will focus on a simpler case for this analysis. Here, we consider a stack of 𝐿 hidden layers, with 
each layer containing an identical number of ℎ hidden nodes [28].

The D-RVFL architecture, as referenced in [28,27], comprises multiple layered stacks. Within this structure, all the parameters of 
the hidden layers are initialized randomly and remain unchanged throughout the training period. Only the parameters of the output 
layer are computed analytically.

The output of the first hidden layer is then defined as follows:

𝐇(𝟏) = 𝐠(𝐗𝐖(𝟏)) (13)

Every layer 𝑙 > 1 (Eq. (13)) it is defined as [28,27,92,31]:

𝐇(𝐥) = 𝐠(𝐇𝐥−𝟏𝐖(𝐥)) (14)

The weights and biases of the hidden neurons are randomly generated within a suitable range and kept fixed during the training. 
𝑔() denotes the non-linear activation function (Eq. (14)). The input to the output layer is then defined as ([28,27]):

𝐃 = [𝐇(𝟏)𝐇(𝟐)...𝐇(𝐥−𝟏)𝐇(𝐥)𝐗] (15)

This design structure (Eq. (15)) is very similar to that of a standard RVFL network, wherein the input to the output layer consists 
of non-linear features from the stacked hidden layers along with the original features (as shown in Fig. 3).

The sigmoidal activation function 𝑔(𝑥) = 1∕(1 +exp(−𝑥)) was used in our simulations. The maximum number of hidden layers was 
set to ten and the best performance was achieved. All experimental runs were performed 100 times and the averages and standard 
deviations were recorded. We divided all datasets into 70% for training and 30% for testing, and the division was performed 
randomly. All simulations were performed using the open-source R software environment for statistical computing running on an 
Apple M2 Max computer with 32 GB RAM.

4. Results

The results of each account for each event are shown in Tables 9, 10, 11 and 12. All values are between -1 and 1, in keeping with 
the methodology set forth under the previous section.

When obtaining the sentiment indicator for all four sets, all TV accounts obtained a value of 0.001, meaning that these accounts 
publish mostly neutral tweets with no difference in either natural or social events. However, the influencers showed more neutral 
results in the 2017 wildfire. They are more negative during the COVID-19 pandemic. In both the 2023 wildfire and social uprising, 
most influencers had negative indicators. Finally, the press and radio have a few accounts with mostly negative results, whereas the 
rest are mostly neutral but more open to presenting negative emotions about any event. In three of the four events, @ayala_rodolfo in 
10

the 2023 wildfire (-0.783), @GAMBA_CL in the 2019 social uprising (-0.946), and @Vitalicio7020 in the COVID pandemic (-0.603)-
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Fig. 3. Diagram illustrating an Deep-RVFL network, highlighting the direct links between input and output neurons (dashed red arrows).

Table 9

Account indicator results during the 2017 wildfires.

Account type Name Sentiment Inclusion Engagement Societal indicator

Influencers ablanch4 0.001 0.04 0.04 0.03
alegriagonzaa 0.001 0.04 0.08 0.04
bomberoschillan 0.001 0.05 0.01 0.02
CEBioBio 0.001 0.04 0.02 0.02
InfoNuble 0.001 0.06 0.00 0.02
INFORMADORCHILE -0.523 0.09 0.27 0.30
PiensaPrensa -0.531 0.07 0.08 0.23
reddeemergencia 0.001 0.05 0.26 0.10
S_Schwartzmann 0.001 0.10 0.08 0.06

Press & Radio adnradiochile 0.001 0.06 0.39 0.15
biobio 0.001 0.12 0.98 0.37

Cooperativa 0.001 0.05 0.19 0.08
eldesconcierto -0.613 0.16 0.06 0.28
elmostrador -0.482 0.10 0.24 0.27
latercera 0.001 0.08 0.29 0.12
PublimetroChile 0.001 0.09 0.20 0.10
thecliniccl -0.576 0.13 0.16 0.29

Television 24HorasTVN 0.001 0.06 1.00 0.36
CHVNoticias 0.001 0.00 0.00 0.00
meganoticiascl 0.001 0.07 0.55 0.20
T13 0.001 0.06 0.26 0.11

influencers obtained the most negative value, with the only exception being the online press portal @eldesconcierto, which obtained 
a score of -0.613 during the 2017 wildfires.

The inclusivity and diversity indicators showed similar levels between influences, press & radio accounts, and television accounts 
during all four events. However, it can be observed that natural disasters, like wildfires, show less inclusivity and diversity than events 
concerning social issues, such as the Chilean protests, the COVID-19 pandemic, and its measures. The highest values for the 2017 
wildfire are obtained by the online news portal @eldesconcierto (0.16), for the 2023’s wildfires the influencer @Cachoescalona1 
(0.18) obtained the highest values, for the 2019 social uprising, it was the online news portal @InterferenciaCL (0.22), and for the 
COVID-19 pandemic, the influencer @Pa__tty (0.29) recorded the highest value.

Regarding engagement, influencers show worse results in the instructor than in the press & radio, and television accounts. This 
may be explained by the greater number of followers of the latter, which indicates that institutional accounts have broader public 
outreach. Simultaneously, in Figs. 4, 5 and 6, we observe that engagement peaked on the day the social uprising began for every 
account. However, as the other events did not have a day that directly marked the beginning of the event but instead grew consistently 
over time, there is no such peak for wildfires or COVID-19. When observing the total engagement indicator, we observe that, in three 
of the four events, higher values are obtained by accounts of established media agencies - @24HorasTVN, the state-owned television 
channel during the 2017 wildfires; @PublimetroChile, the most read newspaper of the country during the 2023’s wildfires, and 
@biobio, a 60-year-old radio with a national outreach, during the social uprising- the COVID pandemic being the only exception, as 
the influencer @FelipeParadaM obtained the highest score.

Finally, the societal indicator for each account was calculated across all events. The influencers, press & radio, and television 
accounts achieved similar results for each event. This is normal because accounts with higher engagement are mostly neutral. Both 
11

wildfires show that the top scores in the indicator mostly belong to press & radio accounts, followed by influencers and top TV 
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Table 10

Account indicator results during the 2023 wildfires.

Account type Name Sentiment Inclusion Engagement Societal indicator

Influencers ayala_rodolfo -0.783 0.06 0.00 0.28
Cachoescalona1 -0.589 0.18 0.23 0.33
camilaemiliasv -0.497 0.09 0.74 0.44

CapuchaCreativa 0.001 0.17 0.06 0.08
Chileno17039890 -0.567 0.06 0.05 0.23
MrRangerR1 0.001 0.07 0.00 0.02
rsumen -0.61 0.15 0.02 0.26

Press & Radio adnradiochile 0.001 0.09 0.29 0.13
biobio -0.454 0.11 0.73 0.43
Cooperativa 0.001 0.06 0.14 0.07
eldesconcierto -0.519 0.08 0.05 0.22
elmostrador 0.001 0.14 0.11 0.09
InterferenciaCL -0.487 0.17 0.01 0.22
latercera 0.001 0.09 0.24 0.11
PublimetroChile 0.001 0.11 1.00 0.37
thecliniccl 0.001 0.17 0.05 0.07

Television 24HorasTVN 0.001 0.09 0.18 0.09
CHVNoticias 0.001 0.11 0.13 0.08
meganoticiascl 0.001 0.13 0.44 0.19
T13 0.001 0.09 0.18 0.09

Table 11

Account indicator results during the 2019 social uprising.

Account type Name Sentiment Inclusion Engagement Societal indicator

Influencers andres20ad -0.77 0.21 0.01 0.33
Chileokulto -0.552 0.11 0.03 0.23
csantander23 -0.534 0.07 0.00 0.20
El_Ciudadano 0.001 0.16 0.03 0.06
FelipeParadaM -0.489 0.08 0.01 0.20
GAMBA_CL -0.946 0.14 0.02 0.37
hernan_sr -0.562 0.07 0.00 0.21
JoviNomas -0.551 0.09 0.01 0.22
PiensaPrensa -0.538 0.14 0.09 0.26
vagoilustrado -0.563 0.15 0.00 0.24

Press & radio adnradiochile 0.001 0.09 0.30 0.13
biobio 0.001 0.13 1.00 0.38

Cooperativa 0.001 0.07 0.22 0.10
eldesconcierto 0.001 0.13 0.04 0.06
elmostrador 0.001 0.13 0.22 0.12
InterferenciaCL -0.509 0.22 0.04 0.25
latercera 0.001 0.09 0.13 0.07
PublimetroChile -0.48 0.11 0.31 0.30
thecliniccl 0.001 0.13 0.22 0.11

Television 24HorasTVN 0.001 0.11 0.82 0.31
CHVNoticias 0.001 0.12 0.06 0.06
meganoticiascl 0.001 0.10 0.15 0.08
T13 0.001 0.10 0.32 0.14

accounts, while in COVID-19 and the Chilean protests the top scores were held mostly by influencers. The highest value in the 
indicator was held by @biobio during the 2017 wildfires (0.37) and in the 2019 social uprising (0.38), being the only account that 
obtained the highest result in any indicator across two different events, while influencers obtained the highest value in the other two 
events @camilaemiliasv (0.44) of 2023 wildfires, and @FelipeParadaM (0.53) in the COVID pandemic.

4.1. Classification

This section compares different ML methods, highlighting how the RVFL and its advanced version, the Deep RVFL, perform across 
various scenarios and types of social media accounts.

In Table 15, our findings demonstrate that the RVFL network exhibits relatively stable accuracy across varying neuron counts. 
This stability suggests robustness in the model’s performance regardless of the changes in the dimensionality of the hidden layer. 
Specifically, we observed that during the COVID-19 event, influencers achieved the highest accuracy with 40 neurons at 75.53% 
(0.09). By contrast, the press & radio, and television categories reached their highest accuracies with 100 neurons, recording 77.52% 
(0.07) and 77.75% (0.12), respectively. The Chilean protests showed all account types performing optimally at the 40-neuron mark. 
12

For both the Wildfire events, there was a noticeable trend in which the accuracy increased with the number of neurons, with the 
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Table 12

Indicators results for the accounts during the COVID-19 pandemic.

Account type Name Sentiment Inclusion Engagement Societal indicator

Influencers csantander23 -0.592 0.09 0.02 0.23
El_Ciudadano 0.001 0.18 0.07 0.08
FelipeParadaM -0.510 0.09 1.00 0.53

FrancoBassoSotz 0.001 0.15 0.00 0.05
Izkia 0.001 0.20 0.20 0.13
Pa__tty 0.001 0.29 0.19 0.16
PolarBearby 0.001 0.12 0.19 0.10
RockandRolec 0.001 0.03 0.01 0.01
UPLaRadio 0.001 0.11 0.02 0.04
Vitalicio7020 -0.603 0.11 0.12 0.28

Press & radio adnradiochile 0.001 0.10 0.64 0.25
biobio 0.001 0.13 0.54 0.23
Cooperativa 0.001 0.08 0.31 0.13
eldesconcierto 0.001 0.13 0.25 0.13
elmostrador 0.001 0.14 0.32 0.15
InterferenciaCL -0.495 0.21 0.04 0.25
latercera 0.001 0.10 0.17 0.09
PublimetroChile 0.001 0.12 0.77 0.30
thecliniccl 0.001 0.15 0.39 0.18

Television 24HorasTVN 0.001 0.12 0.56 0.23
CHVNoticias 0.001 0.13 0.16 0.09
meganoticiascl 0.001 0.11 0.36 0.16
T13 0.001 0.11 0.30 0.14

Fig. 4. Daily results for influencer engagement indicator during the Chilean protests and nine months prior.

influencer category reaching a peak accuracy of 100 neurons during the Wildfires in January 2017 and February 2023, with accu-
racies of 79.41% (0.19) and 80.57% (0.28), respectively. Our overall average accuracy across all events and neuron configurations 
was 77.21% (0.13), indicating a consistent model performance.

As shown in Table 16, the D-RVFL network exhibited a slight increase in accuracy as the neuron count increased. For instance, 
during the COVID-19 pandemic, influencers achieved the highest accuracy with 120 neurons at 76.46% (0.11). Press & radio and 
television categories delivered their best performance with 100 and 120 neurons, achieving accuracies of 78.23% (0.13) and 78.67% 
13

(0.16) respectively. Most notably, during the Wildfires (February 2023) event, the television account type achieved an accuracy 



Heliyon 10 (2024) e32572P.A. Henríquez and F. Alessandri

Fig. 5. Daily engagement indicator results of press and radio accounts during the social uprising and nine months prior.

Fig. 6. Daily engagement indicator results of television accounts during the social uprising and nine months prior.

of 81.41% (0.29) with 100 neurons. The overall average accuracy for the D-RVFL network was 78.30% (0.17), outperforming the 
standard RVFL.

Table 17 provides a performance comparison of the various classifiers, including RVFL and D-RVFL. Our analysis indicates that 
14

traditional classifiers such as SVM, naive Bayes, and backpropagation (BP) neural networks were consistently outperformed by the 
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Table 13

Accuracy Results for COVID-19 
Twitter Dataset.

Algorithm Accuracy (%)

SVMBFTAN 82.8
BFTAN 72.5
TAN 69.8
Naive Bayes 72.13
SVM 69.62
RF 70.50
RVFL 72.77

D-RVFL 74.88

Table 14

Accuracy Results for Expo-2020 
Twitter Dataset.

Algorithm Accuracy (%)

SVMBFTAN 90.84
BFTAN 88.50
TAN 87.62
Naive Bayes 87.30
SVM 90.45
RF 91.50
RVFL 90.77

D-RVFL 92.81

RVFL and D-RVFL models. This is particularly evident in the Wildfires (Feb 2023) event, where the D-RVFL network achieved an 
accuracy of 80.87% (0.25) for influencers, which was significantly higher than that of the traditional models. The average accuracy 
across all events and account types for D-RVFL is 78.30% (0.17), highlighting its superior performance.

Our findings highlight the benefits of using RVFL and D-RVFL networks to classify information from various datasets. We found 
that D-RVFL networks with more neurons achieved higher accuracy than traditional methods. This demonstrates their strong capa-
bility to classify tweet sentiments accurately.

To evaluate the performance of various classification algorithms, we conducted a comparative analysis involving six algorithms 
on two separate events. Our analysis leveraged the sentiment analysis (SA) approach and data size established in [93], but applied 
it to these two new events. The algorithms included in this comparison were: Support Vector Machine (SVM), Bayes Factor Tree 
Augmented Naive Bayes (SVMBFTAN), Bayes Actor Tree Augmented Naive Bayes (BFTAN), Tree Augmented Naive Bayes (TAN), 
Naive Bayes, Random Forest (RF), Random Vector Functional Link (RVFL), and Deep Random Vector Functional Link (D-RVFL).

Our comparative analysis revealed that our approach yielded significantly higher accuracy on both datasets compared to the 
benchmarks established in [93]. As shown in Table 13, the D-RVFL network demonstrably surpassed all the conventional models 
evaluated using the COVID-19 Twitter data, solidifying its superior analytical capacity. For the Expo-2020 Twitter dataset (as detailed 
in Table 14), the D-RVFL network not only exceeded the peak accuracy achieved by the best performing RF model in the benchmark 
study [93], but it also underscores the substantial advantages of incorporating deep learning advancements into network architectures 
for intricate sentiment analysis tasks. These findings conclusively demonstrate that the D-RVFL network outperforms the existing 
methodologies outlined in [93], bringing about significant advancements in social media analytics.

4.1.1. Rationale for selecting RVFL and D-RVFL networks

When choosing methodologies for our sentiment analysis tasks, we prioritized the unique strengths and recent advancements of 
RVFL and D-RVFL networks in the field of Natural Language Processing (NLP). Our decision to favor RVFL and D-RVFL over other 
machine learning methods stems from several key factors.

Firstly, RVFL networks are renowned for their superior computational efficiency and faster training times. Unlike traditional deep 
learning models that rely heavily on backpropagation for parameter tuning, RVFL networks utilize pre-defined, random weights 
within their hidden layers. This streamlined approach significantly reduces training time and computational requirements, which are 
crucial for processing large datasets in sentiment analysis. Furthermore, D-RVFL networks capitalize on these strengths of RVFLs by 
incorporating deep learning architectures, ultimately enhancing the network’s capacity to identify intricate data patterns.

Table 18 showcases the computational efficiency of various classifiers, including RVFL and D-RVFL, across diverse event types 
and account categories. As expected, the RVFL and D-RVFL networks exhibit significantly lower computational times compared 
to conventional machine learning classifiers like SVM, Naive Bayes, and Backpropagation (BP), highlighting their suitability for 
15

real-time sentiment analysis applications.
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Table 15

RVFL performance for different neuron numbers in terms of accuracy and standard deviation.

Event Account type 40 Neurons 60 Neurons 80 Neurons 100 Neurons 120 Neurons

COVID-19

Influencers 75.53 (0.09) 75.20 (0.10) 75.02 (0.08) 74.12 (0.07) 75.37 (0.09)
Press & Radio 76.84 (0.07) 76.12 (0.09) 76.45 (0.08) 77.52 (0.07) 77.42 (0.08)
Television 77.47 (0.11) 77.12 (0.10) 77.15 (0.12) 77.75 (0.12) 77.47 (0.13)

Social Uprising

Influencers 77.11 (0.07) 76.88 (0.07) 77.04 (0.06) 76.85 (0.08) 77.13 (0.08)
Press & Radio 74.88 (0.05) 74.02 (0.07) 75.15 (0.05) 75.21 (0.07) 75.19 (0.06)
Television 75.44 (0.05) 74.64 (0.06) 75.84 (0.04) 75.88 (0.05) 75.61 (0.07)

Wildfires (Jan 2017)

Influencers 78.69 (0.17) 78.72 (0.18) 79.01 (0.21) 79.41 (0.19) 79.22 (0.20)
Press & Radio 77.25 (0.11) 77.41 (0.14) 76.98 (0.12) 76.57 (0.13) 76.49 (0.14)
Television 76.12 (0.17) 75.76 (0.14) 77.12 (0.18) 77.21 (0.21) 76.94 (0.19)

Wildfires (Feb 2023)

Influencers 79.52 (0.26) 79.61 (0.31) 79.66 (0.29) 80.57 (0.28) 80.29 (0.27)
Press & Radio 75.40 (0.15) 75.45 (0.17) 75.34 (0.21) 75.91 (0.12) 75.05 (0.14)
Television 80.26 (0.19) 79.78 (0.19) 79.12 (0.19) 79.50 (0.21) 81.33 (0.22)

Average 77.04 (0.12) 76.72 (0.14) 76.99 (0.14) 77.21 (0.13) 77.29 (0.14)

Table 16

Deep RVFL performance for different neuron numbers in terms of accuracy and standard deviation.

Event Account type 40 Neurons 60 Neurons 80 Neurons 100 Neurons 120 Neurons

COVID-19

Influencers 76.24 (0.11) 75.78 (0.12) 75.94 (0.09) 75.37 (0.09) 76.46 (0.11)
Press & Radio 77.79 (0.09) 76.79 (0.11) 77.56 (0.09) 78.23 (0.13) 77.92 (0.11)
Television 77.88 (0.13) 77.73 (0.14) 77.82 (0.15) 78.67 (0.16) 77.86 (0.16)

Social Uprising

Influencers 78.99 (0.11) 77.78 (0.11) 77.89 (0.12) 78.56 (0.07) 78.88 (0.09)
Press & Radio 75.21 (0.06) 74.88 (0.08) 75.78 (0.06) 77.12 (0.09) 76.96 (0.07)
Television 75.89 (0.09) 75.35 (0.08) 76.34 (0.06) 77.67 (0.07) 77.31 (0.08)

Wildfires (Jan 2017)

Influencers 79.67 (0.19) 79.45 (0.19) 79.88 (0.19) 80.17 (0.25) 80.21 (0.22)
Press & Radio 77.56 (0.12) 77.78 (0.15) 77.88 (0.13) 77.12 (0.14) 77.23 (0.16)
Television 76.42 (0.18) 76.72 (0.16) 77.42 (0.20) 77.56 (0.25) 77.22 (0.22)

Wildfires (Feb 2023)

Influencers 80.12 (0.24) 80.22 (0.30) 80.46 (0.27) 80.87 (0.25) 80.44 (0.27)
Press & Radio 75.52 (0.18) 75.77 (0.21) 76.12 (0.22) 76.88 (0.19) 75.31 (0.18)
Television 80.32 (0.21) 80.22 (0.19) 80.19 (0.20) 81.41 (0.29) 81.39 (0.27)

Average 77.55 (0.14) 77.37 (0.15) 77.77 (0.15) 78.30 (0.17) 78.10 (0.16)

Table 17

Performance comparison of various classifiers with RVFL and D-RVFL in terms of accuracy.

Event Account type SVM Naive Bayes BP RVFL D-RVFL

COVID-19

Influencers 61.07 (1.21) 62.82 (1.11) 64.19 (1.09) 74.12 (0.07) 75.37 (0.09)
Press & Radio 62.56 (1.09) 63.65 (1.02) 65.23 (1.20) 77.52 (0.07) 78.23 (0.13)
Television 62.78 (1.12) 63.89 (1.11) 65.79 (1.21) 77.75 (0.12) 78.67 (0.16)

Social Uprising

Influencers 63.45 (0.98) 64.12 (1.14) 66.78 (0.98) 76.85 (0.08) 78.56 (0.07)
Press & Radio 64.12 (1.07) 65.31 (1.08) 66.91 (1.04) 75.21 (0.07) 77.12 (0.09)
Television 65.13 (1.11) 65.89 (1.01) 66.65 (1.19) 75.88 (0.05) 77.67 (0.07)

Wildfires (Jan 2017)

Influencers 66.12 (1.78) 65.87 (1.14) 67.12 (1.17) 79.41 (0.19) 80.21 (0.22)
Press & Radio 65.88 (1.16) 65.91 (1.05) 66.21 (1.11) 76.57 (0.13) 77.23 (0.16)
Television 66.08 (1.15) 66.12 (1.01) 66.24 (1.25) 77.21 (0.21) 77.22 (0.22)

Wildfires (Feb 2023)

Influencers 66.67 (1.16) 66.92 (1.13) 67.24 (1.02) 80.57 (0.28) 80.87 (0.25)
Press & Radio 66.56 (1.12) 66.78 (1.18) 67.34 (1.26) 75.91 (0.12) 76.88 (0.19)
Television 66.48 (1.17) 66.89 (1.18) 67.39 (1.17) 79.50 (0.21) 81.41 (0.29)

Average 64.74 (1.18) 65.35 (1.09) 66.42 (1.14) 77.21 (0.13) 78.30 (0.17)

5. Discussion and future directions

This section explores some intriguing insights gleaned from this study regarding the strengths and limitations of the proposed 
approach. These observations warrant further discussion.

Our approach offers a broader and more comprehensive perspective on critical events compared to traditional social science 
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methods. This includes in-depth interviews, focus groups, questionnaires, and conventional big data analysis of social media plat-
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Table 18

Computational time (in seconds) of various classifiers.

Event Account type SVM Naive Bayes BP RVFL D-RVFL

COVID-19

Influencers 80.12 50.56 107.17 30.67 32.19
Press & Radio 100.12 80.12 134.78 45.14 48.09
Television 60.10 51.14 111.45 32.11 33.22

Social Uprising

Influencers 142.11 101.15 223.87 78.45 81.49
Press & Radio 214.41 188.45 312.89 121.12 123.56
Television 143.21 109.23 225.46 79.15 82.56

Wildfires (Jan 2017)

Influencers 30.14 21.56 38.12 14.78 16.21
Press & Radio 52.12 41.16 78.19 22.78 24.91
Television 30.88 21.14 39.55 15.09 16.76

Wildfires (Feb 2023)

Influencers 31.11 22.12 39.44 15.01 16.33
Press & Radio 54.17 43.19 81.46 24.46 27.11
Television 45.11 38.58 66.89 21.83 24.52

forms. However, we acknowledge the persistent challenges associated with coding and classifying Twitter data. This can hinder the 
identification of relevant communication patterns, especially when the volume of tweets and retweets surges during critical events. 
Furthermore, discrepancies between Twitter data and ground truth information obtained from physical sensors can lead to authori-
ties making misinformed decisions. To mitigate these issues, we propose developing methods to minimize data collection errors and 
introducing new time-saving techniques to improve geolocation accuracy.

Data retrieved through Twitter’s APIs (including the Filter API and Sample API) may not always be fully indicative of the 
platform’s overall communication, making it challenging to evaluate the data’s representativeness. To address these potential biases 
inherent in using these APIs, we employed deep neural networks for sentiment analysis. This approach capitalized on the sentiment 
conveyed by hashtags as a significant classification feature. By incorporating this strategy, we were able to mitigate the biases and 
noise potentially present within the dataset, potentially strengthening the reliability of our results.

One challenge, as identified by [94], is the duplication of hashtags, both individually and collectively. Over time, this repetition 
can indicate confirmation bias and the development of echo chambers. To address potential bias in hashtag trends, [95] proposed 
a method that involves extracting representative samples from the Sample API (which offers an unbiased view of tweets) and 
calculating confidence intervals for hashtag activity. However, the possibility that the Sample API itself may be biased, as suggested 
by [96], necessitates closer examination and the development of more refined data collection strategies.

To address these data collection obstacles, [97] proposed a strategy that bolsters the trustworthiness of Twitter data. Their method 
involves sampling user accounts through the REST API, which yielded a substantial dataset encompassing 1.6 million accounts and 
500 million tweets. This dataset is noteworthy for containing primarily Japanese users, recognized for their high level of activity 
on Twitter. The data is updated monthly using cost-efficient cloud services. This approach demonstrably enhances the correlation 
between keyword trends and other patterns when compared to alternative API-based methods. This is corroborated by the remarkably 
high correlation score of 0.97 achieved with the Crimson Hexagon dataset.

This study also highlights a potential bias in the emotional makeup of Twitter samples due to the platform’s inherent sampling 
methods. While there’s a common perception that negative tweets might be more prevalent during critical events, the true distri-
bution of sentiment classes within the data may not precisely reflect this. To address this class imbalance issue, we implemented 
weighting strategies or oversampling techniques like SMOTE. These techniques help improve the classifiers’ ability to accurately 
predict sentiment across datasets with uneven class distributions. This is a significant area for further exploration, and although we 
only examined the use of SMOTE in this study, other approaches to mitigating class imbalance problems warrant investigation within 
this context, as suggested by [98].

Moving forward, the convergence of hashtag-level and tweet-level sentiment analysis has the potential to strengthen the validity 
of sentiment assessments. However, training deep RVFL network classifiers for specific events presents challenges due to the transient 
and event-dependent nature of the data. This characteristic may limit the effectiveness of trained models when applied to future, 
similar events. To address these limitations, we propose exploring online learning techniques or unsupervised learning algorithms 
for deep RVFL networks. These approaches can continuously train models using large-scale datasets, improving their adaptability. 
This capability, combined with the network’s capacity to handle big data, positions deep RVFL networks as promising instruments 
for sentiment analysis in evolving and critical event scenarios.

We acknowledge the vital importance of considering a wider range of contextual variables that influence social media behavior 
during emergencies. Future research should delve into how cultural backgrounds, socioeconomic conditions, and political landscapes 
impact information sharing and processing across diverse social media platforms and geographic locations. To accomplish this, we 
propose broadening our analysis beyond Twitter to encompass platforms like Facebook and Instagram, facilitating a cross-platform 
investigation. This expansion has the potential to yield a more nuanced understanding of the distinct dynamics and user interactions 
characteristic of each platform.

Furthermore, to glean more profound understandings of social media users’ motivations and behaviors during critical events, we 
will incorporate qualitative methodologies such as user interviews and content analysis. This approach will equip us to investigate 
17

the types of content that generate user interest and how these preferences evolve across various crisis stages and contexts.
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6. Conclusion

The indicators showed that the higher inclusivity scores were mostly obtained by influencers and independent online news 
portals, and not by established mass media. This can be related to not having to follow organizational guidelines but instead taking 
the personal decision of having a more inclusive language or focusing on topics where inclusivity is a major theme.

We also observed that the influencers’ characteristics changed depending on the event. Because the social uprising was an event 
with higher political and social components, most confrontational people became influencers, which was reflected in the higher 
negative scores on the sentiment indicator. This explains why stronger sentiments increase an account’s engagement and reach but 
only when the event is favorable to such comments.

Integrating the performance metrics of ML classifiers with the sentiment, inclusivity, engagement, and societal indicators from 
social media account analyses provides a comprehensive overview of information dissemination during critical events.

The consistent performance of RVFL and D-RVFL across different neuron configurations, as highlighted by ML classifier evalua-
tions, underscores the potential of these networks in predicting complex data patterns. This robustness is particularly relevant when 
analyzing social media content, which is characterized by its dynamic and multifaceted nature.

A SA across the four events revealed that television accounts maintained a neutral stance, potentially reflecting a systematic 
approach to broadcasting without emotional bias. By contrast, influencers showed more variability in sentiment, with a proclivity for 
negativity during the COVID-19 and 2023 wildfires, indicating a more personal or individualized expression of reactions to events. 
The press and radio accounts were generally neutral but had a greater propensity to express negative sentiments, possibly reflecting 
the critical role of journalism in scrutinizing events.

The inclusivity and diversity indicators suggest that social issues may elicit more diverse viewpoints and discussions across the 
analyzed account types than natural disasters. This could be due to the social ramifications of such events, which might engage a 
broader spectrum of voices and opinions.

Engagement levels point to institutional accounts having a wider reach and impact, possibly because of their established follower 
bases. However, during the social uprising, a spike in engagement was observed across all account types, implying that certain events 
can dramatically heighten public attention and interaction regardless of the usual engagement patterns.

In conclusion, the interplay between ML classifier performance and social media analysis provides insights into how different 
account types react to and are perceived during various events. While ML models, such as RVFL and D-RVFL, can efficiently classify 
and predict data patterns, sentiment and engagement indicators offer a nuanced understanding of human responses to the data, espe-
cially in the context of influencers and institutional accounts during times of crisis. The higher accuracy of D-RVFL in classification 
tasks suggests that deeper models may be better at capturing the complexities of social media discourse, which is reflected in the 
diverse sentiments and engagement levels observed across events.
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