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Abstract
We study the circuit diameter of polyhedra, introduced by Borgwardt, Finhold, and
Hemmecke (SIAM J. Discrete Math. 29(1), 113–121 (2015)) as a relaxation of the
combinatorial diameter. We show that the circuit diameter of a system {x ∈ Rn :
Ax = b, 0 ≤ x ≤ u} for A ∈ Rm×n is bounded by O(mmin{m, n − m} log(m +
κA) + n log n), where κA is the circuit imbalance measure of the constraint matrix.
This yields a strongly polynomial circuit diameter bound if e.g., all entries of A have
polynomially bounded encoding length in n. Further, we present circuit augmentation
algorithms for LPs using the minimum-ratio circuit cancelling rule. Even though the
standardminimum-ratio circuit cancelling algorithm is not finite in general, our variant
can solve an LP in O(mn2 log(n + κA)) augmentation steps.
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1 Introduction

The combinatorial diameter of a polyhedron P is the diameter of the vertex-edge
graph associated with P . Hirsch’s famous conjecture from 1957 asserted that the
combinatorial diameter of a d-dimensional polytope (bounded polyhedron) with f
facets is at most f − d. This was disproved by Santos in 2012 [30]. The polynomial
Hirsch conjecture, i.e., finding a poly( f ) bound on the combinatorial diameter remains
a central question in the theory of linear programming.

The first quasipolynomial bound was given by Kalai and Kleitman [24, 25], see
[32] for the best current bound and an overview of the literature. Dyer and Frieze [11]
proved the polynomial Hirsch conjecture for totally unimodular (TU) matrices. For a
system {x ∈ Rd : Mx ≤ b} with integer constraint matrix M , polynomial diameter
bounds were given in terms of the maximum subdeterminant �M [4, 7, 12, 20]. These
arguments can be strengthened to using a parametrization by a ‘discrete curvature
measure’ δM ≥ 1/(d�2

M ). The best such bound was given by Dadush and Hähnle
[12] as O(d3 log(d/δM )/δM ), using a shadow vertex simplex algorithm.

As a natural relaxation of the combinatorial diameter, Borgwardt, Finhold, and
Hemmecke [5] initiated the study of circuit diameters. Consider a polyhedron in
standard equality form

P = { x ∈ Rn : Ax = b, x ≥ 0 } (P)

for A ∈ Rm×n , b ∈ Rm ; we assume rk(A) = m. For the linear space W = ker(A) ⊆
Rn , g ∈ W is an elementary vector if g is a support-minimal nonzero vector in W ,
that is, no h ∈ W \ {0} exists such that supp(h) � supp(g). A circuit in W is the
support of some elementary vector; these are precisely the circuits of the associated
linear matroid M(A). We remark that many papers on circuit diameter, e.g., [2, 3,
5, 8, 26], refer to elementary vectors as circuits; we follow the traditional convention
of [21, 27, 29]. We let E(W ) = E(A) ⊆ W and C(W ) = C(A) ⊆ 2n denote the set
of elementary vectors and circuits in the space W = ker(A), respectively. All edge
directions of P are elementary vectors, and the set of elementary vectors E(A) equals
the set of all possible edge directions of P in the form (P) for varying b ∈ Rm [31].

A circuit walk is a sequence of points x (0), x (1), . . . , x (k) in P such that for each
i = 0, . . . , k − 1, x (i+1) = x (i) + α(i)g(i) for some g(i) ∈ E(A) and α(i) > 0, and
further, x (i)+αg(i) /∈ P for anyα > α(i), i.e., each consecutive circuit step ismaximal.
The circuit diameter of P is themaximum length (number of steps) of a shortest circuit
walk between any two vertices x, y ∈ P . Note that, in contrast to walks in the vertex-
edge graph, circuit walks are non-reversible and the minimum length from x to y may
be different from the one from y to x ; this is due to the maximal step requirement.
The circuit-analogue of Hirsch conjecture, formulated in [5], asserts that the circuit
diameter of d-dimensional polyhedron with f facets is at most f − d; this may be
true even for unbounded polyhedra, see [8]. For P in the form (P), d = n −m and the
number of facets is at most n; hence, the conjectured bound is m.

Circuit diameter bounds have been shown for some combinatorial polytopes such as
dual transportation polyhedra [5], matching, travelling salesman, and fractional stable
set polytopes [26]. The paper [2] introduced several other variants of circuit diameter,
and explored the relation between them. We note that [2, 16, 26] considers circuits for
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On circuit diameter bounds via circuit imbalances

LPs given in the general form {x ∈ Rn : Ax = b, Bx ≤ d}. In Sect. 8, we show that
this setting can be reduced to the form (P).
Circuit augmentation algorithms Circuit diameter bounds are inherently related to
circuit augmentation algorithms. This is a general algorithmic scheme to solve an LP

min 〈c, x〉 s.t. Ax = b , x ≥ 0 . (LP)

The algorithm proceeds through a sequence of feasible solutions x (t). An initial
feasible x (0) is required in the input. For t = 0, 1, . . . , the current x (t) is updated to
x (t+1) = x (t) + αg for some g ∈ E(A) such that 〈c, g〉 ≤ 0, and α > 0 such that
x (t) +αg is feasible. The elementary vector g is an augmenting direction if 〈c, g〉 < 0
and such an α > 0 exists; by LP duality, x (t) is optimal if and only if no augmenting
direction exists. The augmentation ismaximal if x (t)+α′g is infeasible for anyα′ > α;
α is called the maximal stepsize for x (t) and g. Clearly, an upper bound on the number
of steps of a circuit augmentation algorithmwith maximal augmentations for arbitrary
cost c and starting point x (0) yields an upper bound on the circuit diameter.

Simplex is a circuit augmentation algorithm that is restricted to using special
elementary vectors corresponding to edges of the polyhedron. Many network opti-
mization algorithms can be seen as special circuit augmentation algorithms. Bland [6]
introduced a circuit augmentation algorithm for LP, that generalizes the Edmonds–
Karp–Dinic maximum flow algorithm and its analysis, see also [27, Proposition 3.1].
Circuit augmentation algorithms were revisited by De Loera, Hemmecke, and Lee in
2015 [15], analyzing different augmentation rules and also extending them to integer
programming. De Loera, Kafer, and Sanità [16] studied the convergence of these rules
on 0/1-polytopes, as well as the computational complexity of performing them. We
refer the reader to [15] and [16] for a more detailed overview of the background and
history of circuit augmentations.

The circuit imbalance measure For a linear space W = ker(A) ⊆ Rn , the circuit
imbalance κW = κA is defined as the maximum of |g j/gi | over all elementary vectors
g ∈ E(W ), i, j ∈ supp(g). It can be shown that κW = 1 if and only if W is a
unimodular space, i.e., the kernel of a totally unimodular matrix. This parameter
and related variants have been used implicitly or explicitly in many areas of linear
programming and discrete optimization, see [19] for a recent survey. It is closely
related to the Dikin–Stewart–Todd condition number χ̄W that plays a key role in
layered-least-squares interior point methods introduced by Vavasis and Ye [38]. An
LP of the form (LP) for A ∈ Rm×n can be solved in time poly(n,m, log κA), which
is strongly polynomial if κA ≤ 2poly(n); see [13, 17] for recent developments and
references.

Imbalance and diameter The combinatorial diameter bound O(d3 log(d/δM )/δM )

from [12] mentioned above translates to a bound O((n−m)3mκA log(κA+n)) for the
system in the form (P), see [19]. For circuit diameters, the Goldberg-Tarjan minimum-
mean cycle cancelling algorithm for minimum-cost flows [23] naturally extends to a
circuit augmentation algorithm for general LPs using the steepest-descent rule. This
yields a circuit diameter bound O(n2mκA log(κA + n)) [19], see also [22]. However,
note that these bounds may be exponential in the bit-complexity of the input.
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1.1 Our contributions

Our first main contribution improves the κA dependence to a log κA dependence for
circuit diameter bounds.

Theorem 1.1 The circuit diameter of a system in the form (P) with constraint matrix
A ∈ Rm×n is O(mmin{m, n − m} log(m + κA)).

The proof in Sect. 3 is via a simple ‘shoot towards the optimum’ scheme. We need the
well-known concept of conformal circuit decompositions. We say that x, y ∈ Rn are
sign-compatible if xi yi ≥ 0 for all i ∈ [n]. We write x 	 y if they are sign-compatible
and further |xi | ≤ |yi | for all i ∈ [n]. It follows from Carathéodory’s theorem and
Minkowski–Weyl theorem that for any linear space W ⊆ Rn and x ∈ W , there exists
a decomposition x = ∑k

j=1 h
( j) such that h( j) ∈ E(W ), h( j) 	 x for all j ∈ [k]

and k ≤ dim(W ). This is called a conformal circuit decomposition of x (see also
Definition 2.2 and Lemma 2.3 below).

Let B ⊆ [n] be a feasible basis and N = [n] \ B, i.e., x∗ = (A−1
B b,0N ) ≥ 0n

is a basic feasible solution. This is the unique optimal solution to (LP) for the cost
function c = (0B,1N ). Let x (0) ∈ P be an arbitrary vertex. We may assume that
n ≤ 2m, by restricting to the union of the support of x∗ and x (0), and setting all
other variables to 0. For the current iterate x (t), let us consider a conformal circuit
decomposition x∗−x (t) = ∑k

j=1 h
( j). Note that the existence of such a decomposition

does not yield a circuit diameter bound of n, due to the maximality requirement in
the definition of circuit walks. For each j ∈ [k], x (t) + h( j) ∈ P , but there might be a
larger augmentation x (t) + αh( j) ∈ P for some α > 1.

Still, one can use this decomposition to construct a circuit walk. Let us pick the
most improving circuit from the decomposition, i.e., the one maximizing− 〈

c, h( j)
〉 =

‖h( j)
N ‖1, and obtain x (t+1) = x (t) + α(t)h( j) for the maximum stepsize α(t) ≥ 1. The

proof of Theorem 1.1 is based on analyzing this procedure. The first key observation
is that

〈
c, x (t)

〉 = ‖x (t)
N ‖1 decreases geometrically. Then, we look at the set of indices

Lt = {i ∈ [n] : x∗
i > nκA‖x (t)

N ‖1} and Rt = {i ∈ [n] : x (t)
i ≤ (n − m)x∗

i }, and
show that indices may never leave these sets once they enter. Moreover, a new index
is added to either set every O(m log(m + κA)) iterations. In Sect. 4, we extend this
bound to the setting with upper bounds on the variables.

Theorem 1.2 The circuit diameter of a system in the form Ax = b, 0 ≤ x ≤ u with
constraint matrix A ∈ Rm×n is O(mmin{m, n − m} log(m + κA) + (n − m) log n).

There is a straightforward reduction from the capacitated form to (P) by adding n
slack variables; however, this would give an O(n2 log(n+κA)) bound. For the stronger
bound, we use a preprocessing that involves cancelling circuits in the support of the
current solution; this eliminates all but O(m) of the capacity bounds in O(n log n)

iterations, independently of κA.
For rational input, log(κA) = O(size(A))where size(A) denotes the total encoding

length of A [13]. Hence, our result yields an O(mmin{m, n − m} size(A) + n log n)

diameter bound on Ax = b, 0 ≤ x ≤ u. This can be compared with the bounds
O(n size(A, b))usingdeepest descent augmentation steps in [15, 16],where size(A, b)
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is the encoding length of (A, b). (Such a bound holds for every augmentation rule that
decreases the optimality gap geometrically, including the minimum-ratio circuit rule
discussed below.) Note that our bound is independent of b. Furthermore, it is also
applicable to systems given by irrational inputs, in which case arguments based on
subdeterminants and bit-complexity cannot be used.

In light of these results, the next important step towards the polynomial Hirsch con-
jecture might be to show a poly(n, log κA) bound on the combinatorial diameter of (P).
Note that—in contrast with the circuit diameter—not even a poly(n, size(A, b)) bound
is known. In this context, the best knowngeneral bound isO((n−m)3mκA log(κA+n))

implied by [12].

Circuit augmentation algorithms The diameter bounds in Theorems 1.1 and 1.2 rely
on knowing the optimal solution x∗; thus, they do not provide efficient LP algorithms.
We next present circuit augmentation algorithms with poly(n,m, log κA) bounds on
the number of iterations. Such algorithms require subroutines for finding augmenting
circuits. In many cases, such subroutines are LPs themselves. However, they may be
of a simpler form, and might be easier to solve in practice. Borgwardt and Viss [9]
exhibit an implementation of a steepest-descent circuit augmentation algorithm with
encouraging computational results.

We assume that a subroutineRatio- Circuit(A, c, w) is available; this implements
the well-known minimum-ratio circuit rule. It takes as input a matrix A ∈ Rm×n ,
c ∈ Rn , w ∈ (R++ ∪ {∞})n , and returns a basic optimal solution to the system

min 〈c, z〉 s.t. Az = 0 ,
〈
w, z−

〉 ≤ 1 , (1)

where (z−)i := max{0,−zi } for i ∈ [n]. Here, we use the convention wi zi = 0 if
wi = ∞ and zi = 0. This system can be equivalently written as an LP using auxiliary
variables. If bounded, a basic optimal solution is either 0 or an elementary vector
z ∈ E(A) that minimizes 〈c, z〉 /

〈
w, z−

〉
.

Given x ∈ P , we use weights wi = 1/xi (with wi = ∞ if xi = 0). For minimum-
cost flow problems, this rule was proposed by Wallacher [39]; such a cycle can be
found in strongly polynomial time for flows. The main advantage of this rule is that
the optimality gap decreases by a factor 1 − 1/n in every iteration. This rule, along
with the same convergence property, can be naturally extended to linear programming
[28], and has found several combinatorial applications, e.g., [40, 41], and has also
been used in the context of integer programming [33].

On the negative side, Wallacher’s algorithm is not strongly polynomial: it does
not terminate finitely for minimum-cost flows, as shown in [28]. In contrast, our
algorithms achieve a strongly polynomial running time whenever κA ≤ 2poly(n). An
important modification is the occasional use of a second type of circuit augmentation
step Support- Circuit that removes circuits in the support of the current (non-basic)
iterate x (t) (see Subroutine 2.1); this can be implemented using simple linear algebra.
Our first result addresses the feasibility setting:

Theorem 1.3 Consider an LP of the form (LP) with cost function c = (0[n]\N ,1N )

for some N ⊆ [n]. There exists a circuit augmentation algorithm that either finds a
solution x such that xN = 0 or a dual certificate that no such solution exists, using
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O(mn log(n + κA)) Ratio- Circuit and (m + 1)n Support- Circuit augmentation
steps.

Such problems typically arise in Phase I of the Simplex method when we add auxiliary
variables in order to find a feasible solution. The algorithm is presented in Sect. 6. The
analysis extends that of Theorem 1.1, tracking large coordinates x (t)

i . Our second result
considers general optimization:

Theorem 1.4 Consider an LP of the form (LP). There exists a circuit augmenta-
tion algorithm that finds an optimal solution or concludes unboundedness using
O(mn2 log(n + κA)) Ratio- Circuit and (m + 1)n2 Support- Circuit augmen-
tation steps.

The proof is given in Sect. 7. The main subroutine identifies a new index i ∈ [n]
such that x (t)

i = 0 in the current iteration and x∗
i = 0 in an optimal solution; we

henceforth fix this variable to 0. To derive this conclusion, at the end of each phase
the current iterate x (t) will be optimal to (LP) with a slightly modified cost function c̃;
the conclusion follows using a proximity argument (Theorem 5.4). The overall algo-
rithm repeats this subroutine n times. The subroutine is reminiscent of the feasibility
algorithm (Theorem 1.3) with the following main difference: whenever we identify a
new ‘large’ coordinate, we slightly perturb the cost function.

Comparison to black-box LP approaches An important milestone towards strongly
polynomial linear programming was Tardos’s 1986 paper [35] on solving (LP) in time
poly(n,m, log�A), where �A is the maximum subdeterminant of A. Her algorithm
makes O(nm) calls to a weakly polynomial LP solver for instances with small integer
capacities and costs, and uses proximity arguments to gradually learn the support of
an optimal solution. This approach was extended to the real model of computation
for a poly(n,m, log κA) bound [17]. The latter result uses proximity arguments with
circuit imbalances κA, and eliminates all dependence on bit-complexity.

The proximity tool Theorem 5.4 derives from [17], and our circuit augmenta-
tion algorithms are inspired by the feasibility and optimization algorithms in this
paper. However, using circuit augmentation oracles instead of an approximate LP
oracle changes the setup. Our arguments become simpler since we proceed through
a sequence of feasible solutions, whereas much effort in [17] is needed to deal with
infeasibility of the solutions returned by the approximate solver. On the other hand, we
need to be more careful as all steps must be implemented using circuit augmentations
in the original system, in contrast to the higher degree of freedom in [17] where we
can make approximate solver calls to arbitrary modified versions of the input LP.

Organization of the paper The rest of the paper is organized as follows. We first
provide the necessary preliminaries in Sect. 2. In Sect. 3, we upper bound the circuit
diameter of (P). In Sect. 4, this bound is extended to the setting with upper bounds on
the variables. Then, we develop circuit-augmentation algorithms for solving (LP). We
first present the required proximity results in Sect. 5, Sect. 6 contains the algorithm
for finding a feasible solution, whereas Sect. 7 contains the algorithm for solving (LP)
given an initial feasible solution. Section8 shows how circuits in LPs of more general
forms can be reduced to the notion used in this paper.
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2 Preliminaries

Let [n] = {1, 2, . . . , n}. Let R+ and R++ be the set of nonnegative and positive real
numbers respectively. For α ∈ R, we denote α+ = max{0, α} and α− = max{0,−α}.
For a vector z ∈ Rn , we define z+, z− ∈ Rn as (z+)i = (zi )+, (z−)i = (zi )− for
i ∈ [n]. For z ∈ Rn , we let supp(z) = {i ∈ [n] : zi �= 0} denote its support, and
1/z ∈ (R∪ {∞})n denote the vector (1/zi )i∈[n]. We use ‖ · ‖p to denote the �p-norm;
we simply write ‖ · ‖ for ‖ · ‖2. For A ∈ Rm×n and S ⊆ [n], we let AS ∈ Rm×|S|
denote the submatrix corresponding to columns S. We denote rk(S) := rk(AS), i.e.,
the rank of the set S in the linear matroid associated with A. A spanning subset
of S is a subset T ⊆ S such that rk(T ) = rk(S). The closure of S is defined as
cl(S) := {i ∈ [n] : rk(S ∪ {i}) = rk(S)}. The dual linear program of (LP) is

max 〈b, y〉 s.t. A�y + s = c , s ≥ 0 . (DLP)

Note that y uniquely determines s, and due to the assumption rk(A) = m, s also
uniquely determines y. For this reason, given a dual feasible solution (y, s), we can
just focus on y or s.

For A ∈ Rm×n , let W = ker(A). Recall that C(W ) = C(A) and E(W ) = E(A) are
the set of circuits and elementary vectors in W respectively. Note that every circuit
has size at most m + 1 because we assumed that rk(A) = m. The circuit imbalance
measure of W is defined as

κW := κA := max
g∈E(W )

{ |gi |
|g j | : i, j ∈ supp(g)

}

if W �= {0}. Otherwise, it is defined as κW := κA := 1. For a linear space W ⊆ Rn ,
let W⊥ denote the orthogonal complement. Thus, for W = ker(A), W⊥ = Im(A�).
According to the next lemma, circuit imbalances are self-dual.

Lemma 2.1 ([13]) For a linear space W ⊆ Rn, we have κW = κW⊥ .

For P as in (P), x ∈ P and an elementaryvector g ∈ E(A)\Rn+,we let augP (x, g) :=
x + αg where α = max{ᾱ : x + ᾱg ∈ P}.
Definition 2.2 [14] We say that x, y ∈ Rn are sign-compatible if xi yi ≥ 0 for all
i ∈ [n]. We write x 	 y if they are sign-compatible and further |xi | ≤ |yi | for all
i ∈ [n]. For a linear space W ⊆ Rn and x ∈ W , a conformal circuit decomposition
of x is a set of elementary vectors h(1), h(2), . . . , h(k) in W such that x = ∑k

j=1 h
( j),

k ≤ dim(W ), and h( j) 	 x for all j ∈ [k].
The following lemma shows that every vector in a linear space has a conformal cir-

cuit decomposition. It is a simple corollary of the Minkowski–Weyl and Carathéodory
theorems.

Lemma 2.3 For a linear space W ⊆ Rn, every x ∈ W has a conformal circuit decom-
position x = ∑k

j=1 h
( j) such that k ≤ min{dim(W ), |supp(x)|}.
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2.1 Circuit oracles

In Sects. 4, 6, and 7, we use a simple circuit finding subroutine Support-
Circuit(A, c, x, S) that will be used to identify circuits in the support of a solution x .
This can be implemented easily using Gaussian elimination. Note that the constraint
〈c, z〉 ≤ 0 is superficial as−z is also an elementary vector for every elementary vector
z.

Subroutine 2.1. Support- Circuit(A, c, x, S)

For a matrix A ∈ Rm×n , vectors c, x ∈ Rn and S ⊆ [n], the output is an
elementary vector z ∈ E(A) with supp(z) ⊆ supp(x), supp(z) ∩ S �= ∅ with
〈c, z〉 ≤ 0, or concludes that no such elementary vector exists.

The circuit augmentation algorithms inSects. 6 and7will use the subroutineRatio-
Circuit(A, c, w).

Subroutine 2.2. Ratio- Circuit(A, c, w)

For a matrix A ∈ Rm×n and vectors c ∈ Rn , w ∈ (R++ ∪ {∞})n , the output is
a basic optimal solution to the system:

min 〈c, z〉 s.t. Az = 0 ,
〈
w, z−

〉 ≤ 1 , (2)

and an optimal solution to the following dual program:

max −λ s.t. A�y + s = c 0 ≤ s ≤ λw (3)

Note that (2) can be reformulated as an LP using additional variables, and its dual
LP can be equivalently written as (3). Recall that we use the convention wi zi = 0 if
wi = ∞ and zi = 0 in (2). The opposite convention is used in (3), i.e., λiwi = ∞ if
λ = 0 and wi = ∞. If (2) is bounded, then a basic optimal solution is either 0 or an
elementary vector z ∈ E(A) that minimizes 〈c, z〉 /

〈
w, z−

〉
. Moreover, observe that

every feasible solution to (3) is also feasible to (DLP).
We will use the following lemma, a direct consequence of [18, Lemma 4.3].

Lemma 2.4 Given A ∈ Rm×n, W = ker(A), � ∈ (R ∪ {−∞})n and u ∈ (R ∪ {∞})n,
let r ∈ W such that � ≤ r ≤ u. In poly(m, n) time, we can find a vector r ′ ∈ W such
that � ≤ r ′ ≤ u and ‖r ′‖∞ ≤ κA‖�+ + u−‖1.
This lemma, together with Lemma 2.1, allows us to assume that the optimal dual
solution s returned by Ratio- Circuit satisfies

‖s‖∞ ≤ 2κA‖c‖1. (4)

To see this, let (y, s, λ) be an optimal solution to (3). We know that −c ≤ s − c ≤
λw−c. Let � := −c, r := s−c and u := λw−c. By Lemma 2.4, we can in poly(m, n)

time compute r ′ ∈ W⊥ such that � ≤ r ′ ≤ u and
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‖r ′‖∞ ≤ κW⊥‖�+ + u−‖1 ≤ κW⊥‖c− + c+‖1 = κW⊥‖c‖1.

Then, s′ := r ′ + c is an optimal solution to (3) which satisfies

‖s′‖∞ ≤ ‖r ′‖∞ + ‖c‖∞ ≤ (κW⊥ + 1)‖c‖1 ≤ 2κW⊥‖c‖1.

Thus, (4) follows using Lemma 2.1, since κW⊥ = κW = κA.
The following lemma is well-known, see e.g., [28, Lemma 2.2].

Lemma 2.5 Let OPT be the optimal value of (LP), and assume that it is finite. Given
a feasible solution x to (LP), let g be the optimal solution to (2) returned by Ratio-
Circuit(A, c, 1/x).

(i) If 〈c, g〉 = 0, then x is optimal to (LP).
(ii) If 〈c, g〉 < 0, then letting x ′ = augP (x, g), we have α ≥ 1 for the augmentation

stepsize and

〈
c, x ′〉 − OPT ≤

(

1 − 1

|supp(x)|
)

(〈c, x〉 − OPT) .

Proof We only prove (ii) because (i) is trivial. The stepsize bound α ≥ 1 follows
since

〈
1/x, g−〉 ≤ 1; thus, x + g ∈ P . Let x∗ be an optimal solution to (LP), and let

z = (x∗ − x)/|supp(x)|. Note that g � 0, as otherwise (2) is unbounded. So, x �= 0.
Then, z is feasible to (2) for w = 1/x . Therefore,

α 〈c, g〉 ≤ 〈c, g〉 ≤ 〈c, z〉 = OPT − 〈c, x〉
|supp(x)| ,

implying the second claim. ��
Remark 2.6 It is worth noting that Lemma 2.5 shows that applying Ratio- Circuit to
vectors x with small support gives better convergence guarantees. Algorithms 3 and
4 for feasibility and optimization in Sects. 6 and 7 apply Ratio- Circuit to vectors
x which have large support |supp(x)| = 	(n) in general. These algorithms could be
reformulated in that one first runs Support- Circuit to reduce the size of the support
to size O(m) and only then runs Ratio- Circuit. The guarantees of Lemma 2.5 now
imply that to reduce the optimality gap by a constant factor we would replace O(n)

calls to Ratio- Circuit with only O(m) calls. On the other hand, this comes at the
cost of n additional calls to Support- Circuit for every call to Ratio- Circuit.

2.2 A norm bound

We now formulate a proximity bound asserting that if the columns of A outside N are
linearly independent, then we can bound the �∞-norm of any vector in ker(A) by the
norm of its coordinates in N . This can be seen as a special case of Hoffman-proximity
results; see Sect. 5 for more such results and references.
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Lemma 2.7 For A ∈ Rm×n, let N ⊆ [n] such that A[n]\N has full column rank. Then,
for any z ∈ ker(A), we have ‖z‖∞ ≤ κA‖zN‖1.
Proof Let h(1), . . . , h(k) be a conformal circuit decomposition of z. Then, ‖z‖∞ ≤∑k

t=1 ‖h(t)‖∞. For each h(t), we have supp(h(t)) ∩ N �= ∅ because A[n]\N has full

column rank. Hence, ‖h(t)‖∞ ≤ κA|h(t)
j(t)| for some j(t) ∈ N . Conformality implies

that

k∑

t=1

∣
∣
∣h

(t)
j(t)

∣
∣
∣ =

∑

s∈N

∑

j(t)=s

∣
∣
∣h

(t)
j(t)

∣
∣
∣ ≤

∑

s∈N
|zs | = ‖zN‖1.

The lemma follows by combining all the previous inequalities. ��

2.3 Estimating circuit imbalances

The circuit augmentation algorithms in Sects. 6 and 7 explicitly use the circuit imbal-
ance measure κA. However, this is NP-hard to approximate within a factor 2O(n), see
[13, 36]. We circumvent this problem using a standard guessing procedure, see e.g.,
[13, 38]. Instead of κA, we use an estimate κ̂ , initialized as κ̂ = n. Running the algo-
rithm with this estimate either finds the desired feasible or optimal solution (which
one can verify), or fails. In case of failure, we conclude that κ̂ < κA, and replace κ̂ by
κ̂2. Since the running time of the algorithms is linear in log(n + κ̂), the running time
of all runs will be dominated by the last run, giving the desired bound. For simplicity,
the algorithm descriptions use the explicit value κA.

3 The circuit diameter bound

In this section, we show Theorem 1.1, namely the bound O(mmin{m, n−m} log(m+
κA)) on the circuit diameter of a polyhedron in standard form (P). As outlined in the
Introduction, let B ⊆ [n] be a feasible basis and N = [n] \ B such that x∗ =
(A−1

B b,0N ) is a basic solution to (LP). We can assume n ≤ 2m: the union of the
supports of the starting vertex x (0) and the target vertex x∗ is at most 2m; we can fix
all other variables to 0. Defining ñ := |supp(x∗)∪ supp(x (0))| ≤ 2m and restricting A
to these columns, we show a circuit diameter bound O(ñ(ñ −m) log(m + κA)). This
implies Theorem 1.1 for general n. In the rest of this section, we use n instead of ñ,
but assume n ≤ 2m. The simple ‘shoot towards the optimum’ procedure is shown in
Algorithm 1.

A priori, even finite termination is not clear. First, we show that the ‘cost’ ‖x (t)
N ‖1

decreases geometrically. It is a consequence of choosing the most improving circuit
g(t) in each iteration.

Lemma 3.1 For every iteration t ≥ 0, we have ‖x (t+1)
N ‖1 ≤ (1 − 1

n−m )‖x (t)
N ‖1. Fur-

thermore, |x (t+1)
i − x (t)

i | ≤ (n − m)|x∗
i − x (t)

i | for all i ∈ [n].
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Algorithm 1: Diameter- Bound
Input : Polyhedron in standard form (P), basis B ⊆ [n] with its corresponding vertex

x∗ = (A−1
B b, 0N ), and initial vertex x(0).

Output: Length of a circuit walk from x(0) to x∗.
1 t ← 0;

2 while x(t) �= x∗ do
3 Let h(1), h(2), . . . , h(k) be a conformal circuit decomposition of x∗ − x(t);

4 g(t) ← h( j) for any j ∈ argmaxi∈[k] ‖h(i)
N ‖1;

5 x(t+1) ← augP (x(t), g(t)); t ← t + 1 ;

6 return t ;

Proof Let h(1), . . . , h(k) with k ≤ n − m be the conformal circuit decomposition of
x∗ − x (t) used in iteration t of Algorithm 1. Note that h(i)

N ≤ 0N for all i ∈ [k] because
x∗
N = 0N and x (t) ≥ 0. By our choice of g(t),

‖g(t)
N ‖1 = max

i∈[k] ‖h
(i)
N ‖1 ≥ 1

k

∑

i∈[k]
‖h(i)

N ‖1 = 1

k
‖x (t)

N ‖1

where the last equality uses the conformality of the decomposition. Let α(t) be such
that x (t+1) = x (t) + α(t)g(t). Clearly, α(t) ≥ 1 because x (t) + g(t) ∈ P . Hence,

∥
∥x (t+1)

N

∥
∥
1 = ∥

∥x (t)
N + α(t)g(t)

N

∥
∥
1 ≤ ∥

∥x (t)
N + g(t)

N

∥
∥
1

= ∥
∥x (t)

N

∥
∥
1 − ∥

∥g(t)
N

∥
∥
1 ≤

(

1 − 1

k

)
∥
∥x (t)

N

∥
∥
1 .

Further, using 0 ≤ x (t+1)
N ≤ x (t)

N , we see that

α(t) =
∥
∥x (t+1)

N − x (t)
N

∥
∥
1∥

∥g(t)
N

∥
∥
1

≤
∥
∥x (t)

N

∥
∥
1∥

∥g(t)
N

∥
∥
1

≤ k,

and so for all i ∈ [n] we have |x (t+1)
i − x (t)

i | = α(t)|g(t)
i | ≤ k|g(t)

i | ≤ k|x∗
i − x (t)

i |. ��
Our convergence proof is based on analyzing the following sets

Lt := {i ∈ [n] : x∗
i > nκA‖x (t)

N ‖1} , Tt := [n] \ Lt ,

Rt := {i ∈ [n] : x (t)
i ≤ (n − m)x∗

i } .

The set Lt consists of indices i where x∗
i is much larger than the current ‘cost’ ‖x (t)

N ‖1.
On the other hand, the set Rt consists of indices i where x (t)

i is not much above x∗
i .

The next lemma shows that the sets Lt and Rt are monotonically growing.
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Lemma 3.2 For every iteration t ≥ 0, we have Lt ⊆ Lt+1 ⊆ B and Rt ⊆ Rt+1.

Proof Clearly, Lt ⊆ Lt+1 as ‖x (t)
N ‖1 is monotonically decreasing by Lemma 3.1,

and Lt ⊆ B as x∗
N = 0N . Next, let j ∈ Rt . If x

(t)
j ≥ x∗

j , then x (t+1)
j ≤ x (t)

j by

conformality. If x (t)
j < x∗

j , then x (t+1)
j ≤ x (t)

j + (n − m)(x∗
j − x (t)

j ) ≤ (n − m)x∗
j by

Lemma 3.1. In both cases, we conclude that j ∈ Rt+1. ��
Our goal is to show that Rt or Lt is extended within O((n − m) log(n + κA))

iterations. By the maximality of the augmentation, we know that at least one variable
is set to zero in every iteration t . The following lemma shows that these variables do
not lie in Lt .

Lemma 3.3 For every iteration t ≥ 0, we have ∅ �= supp(x (t))\supp(x (t+1)) ⊆ Tt .

Proof Let i ∈ supp(x (t)) \ supp(x (t+1)). Such a variable exists by the maximality of
the augmentation. Clearly, x (t+1)

i = 0. Applying Lemma 2.7 to x (t+1) − x∗ ∈ ker(A)

yields

x∗
i ≤ ‖x (t+1) − x∗‖∞ ≤ κA‖x (t+1)

N − x∗
N‖1 = κA‖x (t+1)

N ‖1 ≤ κA‖x (t)
N ‖1.

The equality is due to x∗
N = 0, while the last inequality follows from Lemma 3.1. So,

i ∈ Tt . ��
Clearly, any variable i that is set to zero in iteration t belongs to Rt+1. So, if i /∈ Rt ,

then we make progress as Rt � Rt+1. Note that this is always the case if i ∈ N . We
show that if ‖x (t)

Tt
− x∗

Tt
‖∞ is sufficiently large, then i /∈ Rt .

Lemma 3.4 If ‖x (t)
Tt

−x∗
Tt

‖∞ > 2mn2κ2
A

∥
∥
∥x∗

Tt

∥
∥
∥∞ for some iteration t, then Rt � Rt+1.

Proof Let i ∈ supp(x (t))\supp(x (t+1)). Clearly, i ∈ Rt+1 because x (t+1)
i = 0. So,

it suffices to show that i /∈ Rt . Since x (t+1) − x (t) is an elementary vector, we have
‖x (t+1) − x (t)‖∞ ≤ κA|x (t+1)

i − x (t)
i | = κAx

(t)
i . As |supp(x (t+1) − x (t))| ≤ m + 1,

we obtain

∥
∥x (t)

N − x (t+1)
N

∥
∥
1 ≤ (m + 1)

∥
∥x (t)

i − x (t+1)
i

∥
∥∞ ≤ (m + 1)κAx

(t)
i ≤ 2mκAx

(t)
i . (5)

Let h(1), . . . , h(k) with k ≤ n − m be the conformal circuit decomposition of
x∗ − x (t) used in iteration t of Algorithm 1. Let j ∈ Tt such that |x (t)

j − x∗
j | =

‖x (t)
Tt

− x∗
Tt

‖∞. There exists h̃ = h(�) for some � ∈ [k] in this decomposition such that

|̃h j | ≥ 1
k |x (t)

j − x∗
j |. Since AB has full column rank, we have supp(̃h) ∩ N �= ∅ and

so

‖h̃N‖1 ≥ |̃h j |
κA

≥ |x (t)
j − x∗

j |
kκA

. (6)
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From (5), (6) and noting that ‖h̃N‖1 ≤ ‖g(t)
N ‖1 ≤ ‖x (t)

N − x (t+1)
N ‖1 by our choice of

g(t), we get

x (t)
i ≥ ‖x (t)

N − x (t+1)
N ‖1

2mκA
≥ ‖h̃N‖1

2mκA
≥ ‖x (t)

Tt
− x∗

Tt
‖∞

2mkκ2
A

.

Thus, if ‖x (t)
Tt

− x∗
Tt

‖∞ > 2mn2κ2
A‖x∗

Tt
‖∞ as in the assumption of the lemma, then

x (t)
i > n‖x∗

Tt
‖∞ ≥ nx∗

i , where the last inequality is due to i ∈ Tt by Lemma 3.3. It
follows that i /∈ Rt as desired. ��

We are ready to give the convergence bound. We have just proved that a large
‖x (t)

Tt
− x∗

Tt
‖∞ guarantees the extension of Rt . Using the geometric decay of ‖x (t)

N ‖
(Lemma3.1),wenowshow that if‖x (t)

Tt
−x∗

Tt
‖∞ is small, then‖x (t)

N ‖1 drops sufficiently
such that a new variable enters Lt .

Proof of Theorem 1.1 Recall that we assumed n ≤ 2m without loss of generality. In
light of Lemma 3.2, it suffices to show that either Lt or Rt is extended in every

O((n − m) log(n + κA)) iterations. If ‖x (t)
Tt

− x∗
Tt

‖∞ > 2mn2κ2
A

∥
∥
∥x∗

Tt

∥
∥
∥∞, then Rt �

Rt+1 by Lemma 3.4.

So, let us assume that ‖x (t)
Tt

− x∗
Tt

‖∞ ≤ 2mn2κ2
A

∥
∥
∥x∗

Tt

∥
∥
∥∞, that is, ‖x (t)

Tt
‖∞ ≤

(2mn2κ2
A +1)

∥
∥
∥x∗

Tt

∥
∥
∥∞. We may also assume that ‖x (t)

N ‖1 > 0, as otherwise x (t) = x∗.
By Lemma 3.1, there is an iteration r = t + O((n − m) log(n + κA)) such that
n2κA(2mn2κ2

A + 1)‖x (r)
N ‖1 < ‖x (t)

N ‖1. Hence,

(2mn2κ2
A + 1)‖x∗

Tt ‖∞ ≥ ‖x (t)
Tt

‖∞ ≥ ‖x (t)
N ‖∞

≥ 1

n
‖x (t)

N ‖1 > nκA(2mn2κ2
A + 1)‖x (r)

N ‖1,

where the second inequality is due to N ⊆ Tt by Lemma 3.2. Thus, ‖x∗
Tt

‖∞ >

nκA‖x (r)
N ‖1 and so Lt � Lr . ��

4 Circuit diameter bound for the capacitated case

In this section we consider diameter bounds for systems of the form

Pu = {x ∈ Rn : Ax = b,0 ≤ x ≤ u}. (Cap-P)

The theory in Sect. 3 carries over to Pu at the cost of turning m into n via the
standard reformulation

P̃u =
{

(x, y) ∈ Rn+n :
[
A 0
I I

] [
x
y

]

=
[
b
u

]

, x, y ≥ 0

}

, Pu = {x : (x, y) ∈ P̃u}.
(7)
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Corollary 4.1 The circuit diameter of a system in the form (Cap-P) with constraint
matrix A ∈ Rm×n is O(n2 log(n + κA)).

Proof Follows straightforward from Theorem 1.1 together with the reformulation (7).
Let Ã denote the constraint matrix of (7). It is easy to check that κA = κ Ã, and that
there is a one-to-one mapping between the circuits and maximal circuit augmentations
of the two systems. ��
Intuitively, the polyhedron should not become more complex; related theory in [37]
also shows how two-sided bounds can be incorporated in a linear program without
significantly changing the complexity of solving the program.

Theorem 1.2 is proved using a new procedure, which we outline below. A basic
feasible point x∗ ∈ Pu is characterised by a partition B ∪ L ∪ H = [n] where AB is
a basis (has full column rank), x∗

L = 0L and x∗
H = uH . In O(n log n) iterations, we

fix all but 2m variables to the same bound as in x∗; for the remaining system with 2m
variables, we can use the standard reformulation.

Algorithm 2 starts with a preprocessing. We let St ⊆ L ∪ H denote the set of
indices where x (t)

i �= x∗
i , i.e., we are not yet at the required lower and upper bound.

If |St | ≤ m, then we remove the indices in (L ∪ H) \ St , and use the diameter bound
resulting from the standard embedding as in Corollary 4.1.

As long as |St | > m, we proceed as follows. We define the cost function c ∈ Rn by
ci = 0 for i ∈ B, ci = 1/ui for i ∈ L , and ci = −1/ui for i ∈ H . For this choice,
we see that the optimal solution of the LP minx∈Pu 〈c, x〉 is x∗ with optimal value
〈c, x∗〉 = −|H |.

Depending on the value of
〈
c, x (t)

〉
, we perform one of two updates. As long as

〈
c, x (t)

〉 ≥ −|H | + 1, we take a conformal decomposition of x∗ − x (t), and pick
the most improving augmenting direction from the decomposition. If

〈
c, x (t)

〉
<

−|H | + 1, then we use a support circuit augmentation obtained from Support-
Circuit(A, c, x (t), St ).

Let us show that whenever Support- Circuit is called, g(t) is guaranteed to exist.
This is because |St | > m and x (t)

i > 0 for all i ∈ St . Indeed, if x
(t)
j = 0 for some

j ∈ St , then j ∈ H from the definition of St . However, this implies that

〈c, x (t)〉 ≥
∑

i∈H\{ j}
ci x

(t)
i ≥ −|H | + 1,

which is a contradiction.
The cost

〈
c, x (t)

〉
is monotone decreasing, and it is easy to see that

〈
c, x (0)

〉 ≤ n
for any initial solution x (0). Hence, within O((n −m) log n) iterations we must reach
〈
c, x (t)

〉
< −|H | + 1. Each support circuit augmentation sets x (t+1)

i = 0 for i ∈ L or

x (t+1)
i = ui for i ∈ H ; hence, we perform at most n − m such augmentations. The
formal proof is given below.

Proof of Theorem 1.2 We show that Algorithm 2 has the claimed number of itera-
tions. As previously mentioned, 〈c, x∗〉 = −|H | is the optimal value of the LP

minx∈Pu 〈c, x〉. Initially, 〈
c, x (0)

〉 = −∑
i∈H x (0)

ui
+ ∑

i∈L x (0)

ui
≤ n. Similar to
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Algorithm 2: Capacitated- Diameter- Bound
Input : Polyhedron in the form (Cap-P), partition B ∪ L ∪ H = [n] with its corresponding vertex

x∗ = (A−1
B b, 0L , uH ), and initial vertex x(0).

Output: Length of a circuit walk from x(0) to x∗.
1 Set the cost c ∈ Rn as ci = 0 if i ∈ B, ci = 1/ui if i ∈ L , and ci = −1/ui if i ∈ H ;
2 t ← 0;

3 S0 ← {i ∈ L ∪ H : x(0)
i �= x∗

i };
4 while |St | > m do
5 if 〈c, x(t)〉 ≥ −|H | + 1 then
6 Let h(1), h(2), . . . , h(k) be a conformal circuit decomposition of x∗ − x(t);

7 g(t) ← h( j) for any j ∈ argmini∈[k]〈c, h(i)〉;
8 else
9 g(t) ← Support- Circuit(A, c, x(t), St )

10 x(t+1) ← augP (x(t), g(t));

11 St+1 ← {i ∈ L ∪ H : x(t+1)
i �= x∗

i }; t ← t + 1 ;

12 Run Algorithm 1 on Ã :=
[
AB∪St 0

I I

]

and b̃ =
[
b
u

]

to get t ′ ∈ Z+;

13 return t + t ′ ;

Lemma 3.1, due to our choice of g(t) from the conformal circuit decomposition, we
have

〈
c, x (t+1)

〉 + |H | ≤ (1 − 1
n−m )(

〈
c, x (t)

〉 + |H |). In particular, O((n − m) log n)

iterations suffice to find an iterate t such that 〈c, x (t)〉 < −|H | + 1.
Note that the calls to Support- Circuit do not increase

〈
c, x (t)

〉
, so from now we

will never make use of the conformal circuit decomposition again. An augmentation
resulting from a call to Support- Circuit will set at least one variable i ∈ supp(g(t))

to either 0 or ui . We claim that either x (t+1)
i = 0 for some i ∈ L , or x (t+1)

i = ui for
some i ∈ H , that is, we set a variable to the ‘correct’ boundary. To see this, note that
if x (t+1)

i hits the wrong boundary, then the gap between
〈
c, x (t+1)

〉
and −|H | must be

at least 1, a clear contradiction to
〈
c, x (t+1)

〉
< −|H | + 1.

Thus, after atmost n−m calls toSupport- Circuit, we get |St | ≤ m, at which point
we call Algorithm 1 with at most 2m variables, so the diameter bound of Theorem 1.1
applies. ��

5 Proximity results

We now present Hoffman-proximity bounds in terms of the circuit imbalance measure
κA. A simple such bound was Lemma 2.7; we now present additional norm bounds.
These can be derived from more general results in [17]; see also [19]. The references
also explain the background and similar results in previous literature, in particular,
to proximity bounds via �A in e.g., [35] and [10]. For completeness, we include the
proofs.

The next technical lemma will be key in our arguments. See Corollary 5.2 below
for a simple implication.
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Lemma 5.1 Let A ∈ Rm×n and x ∈ Rn. Let L ⊆ supp(x) and S ⊆ [n] \ L. If there is
no circuit C ⊆ supp(x) such that C ∩ S �= ∅, then

‖xS‖∞ ≤ κA min
z∈ker(A)+x

‖z[n]\cl(L)‖1.

Before the proof, it is worth stating a useful special case L = ∅ and S = [n].
Corollary 5.2 Let x be a basic (but not necessarily feasible) solution to (LP). Then,
for any z where Az = b, we have ‖x‖∞ ≤ κA‖z‖1.
Proof of Lemma 5.1 First, we show that xS∩cl(L) = 0 due to our assumption. Indeed,
any i ∈ S∩cl(L)with xi �= 0 gives rise to a circuit in L∪{i} ⊆ supp(x), contradicting
the assumption in the lemma. It follows that ‖xS‖∞ = ‖xS\ cl(L)‖∞; let j ∈ S\ cl(L)

such that |x j | = ‖xS‖∞. Let z ∈ ker(A)+x be aminimizer of theRHS in the statement.
We may assume that |x j | > |z j |, as otherwise we are done because κA ≥ 1.

Let h(1), . . . , h(k) be a conformal circuit decomposition of z− x ∈ ker(A). Among
these elementary vectors, consider the set R := {t ∈ [k] : h(t)

j �= 0}.

Claim 5.3 For each t ∈ R, there exists an index i(t) ∈ supp(h(t))\ cl(L) such that
xi(t) = 0 and zi(t) �= 0.

Proof For the purpose of contradiction, suppose that supp(h(t)) \ cl(L) ⊆ supp(x).
For every i ∈ cl(L)\L , we can write Ai = Ay(i) where supp(y(i)) ⊆ L . Consider the
vector

h := h(t) +
∑

i∈cl(L)\L
h(t)
i (y(i) − ei ).

Clearly, hcl(L)\L = 0 and h[n]\ cl(L) = h(t)
[n]\ cl(L). Since L ⊆ supp(x) and we assumed

supp(h(t)) \ cl(L) ⊆ supp(x), it follows that supp(h) ⊆ supp(x). Moreover, j ∈
supp(h) because j ∈ S \ cl(L). Hence, applying Lemma 2.3 to h ∈ ker(A) yields an
elementary vector g ∈ E(A) such that supp(g) ⊆ supp(x) and supp(g) ∩ S �= ∅. This
contradicts the assumption of the lemma. ��

By conformality of the decomposition, |x j−z j | = ∑
t∈R |h(t)

j |. According toClaim
5.3, for every t ∈ R, we have |h(t)

j | ≤ κA|h(t)
i(t)|where i(t) ∈ [n] \ (cl(L)∪{ j}); notice

that i(t) �= j for all t ∈ R due to our assumption |x j | > 0. Applying conformality
again yields

∑

t∈R

|h(t)
i(t)| =

∑

s∈[n]\(cl(L)∪{ j})

∑

i(t)=s

|h(t)
i(t)| ≤

∑

s∈[n]\(cl(L)∪{ j})
|zs | = ‖z[n]\(cl(L)∪{ j})‖1.

Therefore,

‖xS‖∞ = |x j | ≤ |z j | + |x j − z j | ≤ κA‖z[n]\cl(L)‖1
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where the last inequality is obtained by combining the previous equation and inequal-
ities. ��

The following proximity theorem will be key to derive x∗
i = 0 for certain variables

in our optimization algorithm; see [17] and [19, Theorem 6.5]. For c̃ ∈ Rn , we use
LP(c̃) to denote (LP) with cost vector c̃, and OPT(c̃) as the optimal value of LP(c̃).

Theorem 5.4 Let c, c′ ∈ Rn be two cost vectors, such that both LP(c) and LP(c′)
have finite optimal values. Let s′ be a dual optimal solution to LP(c′). For all indices
j ∈ [n] such that

s′
j > (m + 1)κA‖c − c′‖∞,

it follows that x∗
j = 0 for every optimal solution x∗ to LP(c).

Proof We may assume that c �= c′, as otherwise we are done by complementary
slackness. Let x ′ be an optimal solution to LP(c′). By complementary slackness,
s′
j x

′
j = 0, and therefore x ′

j = 0. For the purpose of contradiction, suppose that there

exists an optimal solution x∗ to LP(c) such that x∗
j > 0. Let h(1), . . . , h(k) be a

conformal circuit decomposition of x∗ − x ′. Then, h(t)
j > 0 for some t ∈ [k]. Since

h(t) is an elementary vector, |supp(h(t))| ≤ m+1 and so ‖h(t)‖1 ≤ (m+1)‖h(t)‖∞ ≤
(m + 1)κAh

(t)
j . Observe that for any i ∈ [n] where h(t)

i < 0, we have s′
i = 0 because

x ′
i > x∗

i ≥ 0. Hence,

〈
c, h(t)

〉
=

〈
c − c′, h(t)

〉
+

〈
c′, h(t)

〉
≥ −‖c − c′‖∞‖h(t)‖1 +

〈
s′, h(t)

〉

≥ −(m + 1)κA‖c − c′‖∞ h(t)
j + s′

j h
(t)
j > 0 .

The first inequality here used Hölder’s inequality and that
〈
c′, h(t)

〉 = 〈
s′, h(t)

〉
since

c′−s′ ∈ Im(A�) and h(t) ∈ ker(A). Since x∗−h(t) is feasible toLP(c), this contradicts
the optimality of x∗. ��

The following lemma provides an upper bound on the norm of the perturbation
c − c′ for which the existence of an index j as in Theorem 5.4 is guaranteed.

Lemma 5.5 Let c, c′ ∈ Rn be two cost vectors, and let s′ be an optimal dual solution
to LP(c′). If c ∈ ker(A), ‖c‖2 = 1 and ‖c − c′‖∞ < 1/(

√
n(m + 2)κA), then there

exists an index j ∈ [n] such that

s′
j >

m + 1√
n(m + 2)

.

Proof Let r = c − c′. Note that s′ + r ∈ Im(A�) + c. Then,

‖s′‖∞ + ‖r‖∞ ≥ ‖s′ + r‖∞ ≥ 1√
n
‖s′ + r‖2 ≥ 1√

n
‖c‖2 = 1√

n
,
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where the last inequality is due to s′ + r − c and c being orthogonal. This gives us

‖s′‖∞ ≥ 1√
n

− ‖r‖∞ >
(m + 2)κA − 1√

n(m + 2)κA
≥ m + 1√

n(m + 2)

as desired because κA ≥ 1. ��

6 A circuit augmentation algorithm for feasibility

In this section we prove Theorem 1.3: given a linear program (LP) with cost c =
(0[n]\N ,1N ) for some N ⊆ [n], find a solution x with xN = 0 (showing that the
optimum value is 0), or certify that no such solution exists. A dual certificate in the
latter case is a vector y ∈ Rm such that A�y ≤ c and 〈b, y〉 > 0.

Theorem 1.3 can be used to solve the feasibility problem for linear programs.
Given a polyhedron in standard form (P), we construct an auxiliary linear program
whose feasibility problem is trivial, andwhose optimal solutions correspond to feasible
solutions to (P). This is in the same tune as Phase I of the Simplex method:

min 〈1, z〉 s.t. Ay − Az = b , y, z ≥ 0 . (Aux-LP)

For the constraint matrix Ã = [
A −A

]
, it is easy to see that κ Ã = κA and that any

solution Ax = b can be converted into a feasible solution to (Aux-LP) via (y, z) =
(x+, x−). Hence, if the subroutines Support- Circuit and Ratio- Circuit are avail-
able for (Aux-LP), thenwe can invokeTheorem1.3with N = {n+1, n+2, . . . , 2n} on
(Aux-LP) to solve the feasibility problem of (P) in O(mn log(n + κA)) augmentation
steps.

Our algorithm is presented in Algorithm 3. We maintain a set Lt ⊆ [n] \ N ,
initialized as ∅. Whenever x (t)

i ≥ 4mnκA‖x (t)
N ‖1 for the current iterate x (t), we add i

to Lt . Note that once an index i enters Lt , it is never removed, even though xi might
drop below this threshold in the future. Still, we will show that Lt ⊆ supp(x (t)) in
every iteration.

Whenever rk(Lt ) increases, we run Support- Circuit(A, c, x (t), N ) iterations as
long as there exists a circuit in supp(x (t)) intersecting N .Afterwards,we run a sequence
of Ratio- Circuit iterations until rk(Lt ) increases again. The key part of the analysis
is to show that rk(Lt ) increases in every O(n log(n + κA)) iterations.

Let us first analyze what happens during Ratio- Circuit iterations.

Lemma 6.1 If Ratio- Circuit is called in iteration t, then either ‖x (t+1)
N ‖1 ≤

(
1 − 1

n

) ‖x (t)
N ‖1, or the algorithm terminates with a dual certificate.

Proof The oracle returns g(t) that is optimal to (2) and (y(t), s(t)) that is optimal to
(3) with optimum value −λ. Thus, A�y + s = c and 0 ≤ s ≤ λw. Recall that we use
weights wi = 1/x (t)

i . If
〈
b, y(t)

〉
> 0, the algorithm terminates. Otherwise, note that
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Algorithm 3: Feasibility- Algorithm
Input : Linear program in standard form (LP) with cost c = (0[n]\N ,1N ) for some N ⊆ [n], and

initial feasible solution x(0).
Output: A solution x with xN = 0, or a dual solution y ∈ Rm , A�y ≤ c, 〈b, y〉 > 0.

1 t ← 0 ; Lt−1 ← ∅ ;

2 while x(t)
N �= 0 do

3 Lt ← Lt−1 ∪ {i ∈ [n] : x(t)
i ≥ 4mnκA‖x(t)

N ‖1} ;
4 if t = 0 or rk(Lt ) > rk(Lt−1) then
5 while ∃ a circuit in supp(x(t)) intersecting N do
6 g(t) ← Support- Circuit(A, c, x(t), N ) ;

7 x(t+1) ← augP (x(t), g(t)) ;
8 Lt+1 ← Lt ; t ← t + 1 ;

9 if x(t)
N = 0 then

10 return x(t) ;

11 (g(t), y(t), s(t)) ← Ratio- Circuit(A, c, 1/x(t)) ;

12 if
〈
b, y(t)

〉
> 0 then

13 Terminate with infeasibility certificate ;

14 x(t+1) ← augP (x(t), g(t)); t ← t + 1 ;

15 return x(t) ;

〈
c, x (t)

〉
=

〈
b, y(t)

〉
+

〈
s(t), x (t)

〉
≤ λ

〈
wsupp(x (t)), x

(t)
supp(x (t))

〉
≤ nλ ,

implying λ ≥ 〈
c, x (t)

〉
/n, and therefore

〈
c, g(t)

〉 = −λ ≤ − 〈
c, x (t)

〉
/n. This implies

the lemma, noting that

‖x (t+1)
N ‖1 =

〈
c, x (t+1)

〉
≤

〈
c, x (t)

〉
+

〈
c, g(t)

〉
≤

(

1 − 1

n

)

‖x (t)
N ‖1 .

��
Next, we analyze what happens during Support- Circuit iterations.

Lemma 6.2 If Support- Circuit is called in iteration t, then ‖x (t+1) − x (t)‖∞ ≤
κA‖x (t)

N ‖1.

Proof We have g(t)
i < 0 for some i ∈ N because supp(g(t))∩N �= ∅ and

〈
c, g(t)

〉 ≤ 0.
Hence,

‖x (t+1) − x (t)‖∞ ≤ κA|x (t+1)
i − x (t)

i | ≤ κAx
(t)
i ≤ κA‖x (t)

N ‖1.

��
The following lemma shows that once a coordinate enters Lt , its value stays above a
certain threshold.
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Lemma 6.3 For every iteration t ≥ 0, we have x (t)
j ≥ 2mnκA‖x (t)

N ‖1 for all j ∈ Lt .

Proof Fix an iteration t ≥ 0 and a coordinate j ∈ Lt .Wemay assume that ‖x (t)
N ‖1 > 0,

as otherwise the lemma trivially holds because x (t) ≥ 0. Let r ≤ t be the iteration in
which j was added to Lr ; the lemma clearly holds at iteration r .

We analyze the ratio x (t ′)
j /‖x (t ′)

N ‖1 for iterations t ′ = r , . . . , t . At an iteration

r ≤ t ′ < t that performs Ratio- Circuit, observe that if x (t ′)
j /‖x (t ′)

N ‖1 ≥ 2nκA, then

x (t ′+1)
j∥

∥
∥x

(t ′+1)
N

∥
∥
∥
1

≥
x (t ′)
j − κA

∥
∥
∥x

(t ′+1)
N − x (t ′)

N

∥
∥
∥
1

(1 − 1
n )

∥
∥
∥x

(t ′)
N

∥
∥
∥
1

≥
x (t ′)
j − 2κA

∥
∥
∥x

(t ′)
N

∥
∥
∥
1

(1 − 1
n )

∥
∥
∥x

(t ′)
N

∥
∥
∥
1

≥ (1 − 1
n )x (t ′)

j

(1 − 1
n )

∥
∥
∥x

(t ′)
N

∥
∥
∥
1

= x (t ′)
j∥

∥
∥x

(t ′)
N

∥
∥
∥
1

.

The first inequality is due to Lemma 6.1 and the fact that x (t ′+1) − x (t ′) is an elemen-
tary vector whose support intersects N . This fact follows from 〈c, g(t ′)〉 < 0 because

‖x (t ′)
N ‖1 ≥ ‖x (t)

N ‖1 > 0 and 〈b, y(t ′)〉 ≤ 0. The second inequality uses the mono-

tonicity ‖x (t ′+1)
N ‖1 ≤ ‖x (t ′)

N ‖1 and the triangle inequality. The third inequality uses the
assumption x (t ′)

j /‖x (t ′)
N ‖1 ≥ 2nκA.

Hence, it suffices to show that Support- Circuit maintains the invariant x (t ′)
j /

‖x (t ′)
N ‖1 ≥ 2nκA. At an iteration r ≤ t ′ < t which performs Support- Circuit, we

have

x (t ′+1)
j∥

∥
∥x

(t ′+1)
N

∥
∥
∥
1

≥
x (t ′)
j − κA

∥
∥
∥x

(t ′)
N

∥
∥
∥
1∥

∥
∥x

(t ′)
N

∥
∥
∥
1

= x (t ′)
j∥

∥
∥x

(t ′)
N

∥
∥
∥
1

− κA

by Lemma 6.2. Since Algorithm 3 performs at most (m + 1)n Support- Circuit
iterations, the total decrease of this ratio is at most (m + 1)nκA ≤ 2mnκA. As
the starting value is at least 4mnκA, it follows that this ratio does not drop below
2mnκA. ��
Proof of Theorem 1.3 The correctness of Algorithm 3 is obvious. If the algorithm ter-
minates due to x (t)

N = 0, then x (t) is the desired solution to (LP). Otherwise, if the
algorithm terminates due to 〈b, y(t)〉 > 0, then y(t) is the desired dual certificate as it
is feasible to (DLP).

Next, we show that if rk(Lt ) = m, then the algorithm will terminate in iteration
r ≤ t + n with x (r)

N = 0. As long as x (t)
N �= 0, we have Lt ⊆ [n]\N by Lemma 6.3.

Moreover, any i ∈ supp(x (t)
N ) induces a circuit inLt∪{i}, soSupport- Circuitwill be

invoked. Since every call to Support- Circuit reduces supp(x (t)), all the coordinates
in N will be zeroed-out in at most n calls.
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It is left to bound the number of iterations of Algorithm 3. In the first iteration and
whenever rk(Lt ) increases, we perform a sequence of at most n Support Circuit
cancellations. Let us consider an iteration t right after we are done with the Support
Circuit cancellations. Then, there is no circuit in supp(x (t)) intersecting N . We show
that rk(Lt ) increases within O(n log(n + κA)) consecutive calls to Ratio- Circuit;
this completes the proof.

By Lemma 6.1, within O(n log(nκA)) = O(n log(n + κA)) consecutive Ratio-
Circuit augmentations, we reach an iterate r = t + O(n log(n + κA)) such
that ‖x (r)

N ‖1 ≤ (4mn3κ2
A)−1‖x (t)

N ‖1. Since Lt ⊆ supp(x (t)) and N ⊆ [n]\Lt by
Lemma 6.3, and there is no circuit in supp(x (t)) intersecting N , applying Lemma 5.1
with x = x (t) and z = x (r) yields

∥
∥
∥x

(r)
[n]\cl(Lt )

∥
∥
∥∞ ≥

∥
∥
∥x

(r)
[n]\cl(Lt )

∥
∥
∥
1

n
≥

∥
∥
∥x

(t)
N

∥
∥
∥∞

nκA
≥

∥
∥
∥x

(t)
N

∥
∥
∥
1

n2κA
≥ 4mnκA

∥
∥
∥x

(r)
N

∥
∥
∥
1
,

showing that some j ∈ [n] \ cl(Lt ) must be included in Lr . ��

7 A circuit augmentation algorithm for optimization

In this section, we give a circuit-augmentation algorithm for solving (LP), given by
A ∈ Rm×n , b ∈ Rm and c ∈ Rn . We also assume that an initial feasible solution
x (0) is provided. In every iteration t , the algorithm maintains a feasible solution x (t) to
(LP), initialized with x (0). The goal is to augment x (t) using the subroutines Support-
Circuit and Ratio- Circuit until the emergence of a nonempty set N ⊆ [n] which
satisfies x (t)

N = x∗
N = 0 for every optimal solution x∗ to (LP). When this happens,

we have reached a lower dimensional face of the polyhedron that contains the optimal

face. Hence, we can fix x (t ′)
N = 0 in all subsequent iterations t ′ ≥ t . In particular, we

repeat the same procedure on a smaller LP with constraint matrix A[n]\N , RHS vector

b, and cost c[n]\N , initialized with the feasible solution x (t)
[n]\N . Note that a circuit walk

of this smaller LP corresponds to a circuit walk of the original LP. This gives the
overall circuit-augmentation algorithm.

In what follows, we focus on the aforementioned variable fixing procedure (Algo-
rithm 4), since the main algorithm just calls it at most n times.

We fix parameters

δ := 1

2n3/2(m + 2)κA
, T := 	(n log(n + κA)) , 
 := 6(m + 2)

√
nκ2

AT

δ
.

Throughout the procedure, A and b will be fixed, but we will sometimes modify the
cost function c. Recall that for any c̃ ∈ Rn , we use LP(c̃) to denote the problem
with cost vector c̃, and the optimal value is OPT(c̃). We will often use the fact that if
s̃ ∈ Im(A�) + c̃, then the linear programs LP(s̃) and LP(c̃) are equivalent.

Let us startwith a high level overviewbefore presenting the algorithm.The inference
that x (t)

N = x∗
N = 0 for every optimal x∗ will be made using Theorem 5.4. To apply
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this, our goal is to find a cost function c′ and an optimal dual solution s′ to LP(c′) such
that the set of indices N := { j : s′

j > (m + 1)κA‖c − c′‖∞ } is nonempty.

If c = 0, thenwecan return x (0) as anoptimal solution.Otherwise,we cannormalize
to ‖c‖ = 1.1 Let us start from any primal and dual feasible solutions (x (0), s(0)) to
LP(c); we can obtain s(0) from a call to Ratio- Circuit. Within O(n log(n + κA))

Ratio- Circuit augmentations,we arrive at a pair of primal and dual feasible solutions
(x, s) = (x (t), s(t)) such that 〈x, s〉 ≤ ε := 〈

x (0), s(0)
〉
/poly(n, κA).

We now describe the high level motivation for the algorithm. Suppose that for
every i ∈ supp(x), si is small, say si < δ. Let c̃i := si if i /∈ supp(x) and c̃i := 0
if i ∈ supp(x). Then, ‖c̃ − s‖∞ < δ and x and c̃ are primal and dual optimal
solutions to LP(c̃). This follows because they are primal and dual feasible and satisfy
complementary slackness. Consider the vector c′ := c − s + c̃, which satisfies ‖c −
c′‖∞ < δ. Since c− s ∈ Im(A�), LP(c′) and LP(c̃) are equivalent. Thus, x and c̃ are
primal and dual optimal solutions to LP(c′). Then, Theorem 5.4 is applicable for the
costs c, c′ and the dual optimal solution c̃. However, to be able to make progress by
fixing variables, we also need to guarantee that N �= ∅. Following Tardos [34, 35],
this can be ensured if we pre-process by projecting the cost vector c onto ker(A); this
guarantees that ‖s‖—and thus ‖c̃‖—must be sufficiently large.

Let us now turn to the case when the above property does not hold for (x, s): for
certain coordinates we could have xi > 0 and si ≥ δ. We enter the second phase of the
algorithm. Let S = {i ∈ [n] : si ≥ δ} be the coordinates with large dual slack. Since
xi si ≤ 〈x, s〉 ≤ ε, this implies xi ≤ ε/δ for all i ∈ S. Therefore, ‖xS‖ is sufficiently
small, and one can show that the set of ‘large’ indices L = {i ∈ [n] : xi ≥ 
‖xS‖1}
is nonempty. We proceed by defining a new cost function c̃i := si if i ∈ S and c̃i := 0
if i /∈ S. We perform Support- Circuit iterations as long as there exist circuits in
supp(x) intersecting supp(c̃), and then perform further O(n log(n + κA)) Ratio-
Circuit iterations for the cost function c̃. If we now arrive at an iterate (x, s) =
(x (t ′), s(t ′)) such that si < δ for every i ∈ supp(x), then we truncate s as before to an
optimal dual solution to LP(c′′) for some vector c′′ where ‖c−c′′‖∞ < 2δ. After that,
Theorem 5.4 is applicable for the costs c, c′′ and said optimal dual solution. Otherwise,
we continue with additional phases.

The algorithm formalizes the above idea, with some technical modifications. The
algorithm comprises at most m + 1 phases; the main potential is that the rank of the
large index set L increases in every phase. We show that if an index i /∈ cl(L) was
added to L, then it must have si < δ at the beginning of every later phase. Thus, these
indices cannot be violating anymore.

We now turn to a more formal description of Algorithm 4. We start by orthogonally
projecting the input cost vector c to ker(A). This does not change the optimal face of
(LP). If c = 0, then we terminate and return the current feasible solution x (0) as it is
optimal. Otherwise, we scale the cost to ‖c‖2 = 1, and use Ratio- Circuit to obtain
a feasible solution s̃(−1) to the dual of LP(c).

1 Taking square roots can be avoided by normalizing with ‖c‖1 = 1 or ‖c‖∞ = 1 instead, and changing
the parameters of the algorithm accordingly.
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Algorithm 4: Variable- Fixing

Input : Linear program in standard form (LP), and initial feasible solution x(0).
Output: Either an optimal solution to (LP), or a feasible solution x and ∅ �= N ⊆ [n] such that

xN = x∗
N = 0 for every optimal solution x∗ to (LP).

1 t ← 0; k ← 0; Lt−1 ← ∅;
2 c ← �ker(A)(c);
3 if c = 0 then
4 return x(0);

5 c ← c/‖c‖2;
6 (·, ·, s̃(−1)) ← Ratio- Circuit(A, c,1) ; � Any dual feasible solution to LP(c)

7 while
〈
s̃(t−1), x(t)

〉
> 0 do

8 St ← {i ∈ [n] : s̃(t−1)
i ≥ δ};

9 Lt ← Lt−1 ∪ {i ∈ [n] : x(t)
i ≥ 
‖x(t)

St
‖1};

10 if t = 0 or rk(Lt ) > rk(Lt−1) then
11 k ← k + 1 ; � New phase

12 Set modified cost c̃(k) ∈ Rn+ as c̃(k)i ← s̃(t−1)
i if i ∈ St , and c̃

(k)
i ← 0 otherwise;

13 while ∃ a circuit in supp(x(t)) intersecting supp(c̃(k)) do
14 g(t) ← Support- Circuit(A, c̃(k), x(t), supp(c̃(k))) ;

15 x(t+1) ← augP (x(t), g(t));
16 Lt+1 ← Lt ; t ← t + 1;

17 (g(t), y(t), s(t)) ← Ratio- Circuit(A, c̃(k), 1/x(t));

18 if 〈c̃(k), g(t)〉 = 0 then
19 x(t+1) ← x(t) ; � Terminating in the next iteration by Claim 7.2
20 else
21 x(t+1) ← augP (x(t), g(t));

22 s̃(t) ← argmins∈{c̃(k),s(t)}
〈
s, x(t+1)

〉
; t ← t + 1;

23 N ← {i ∈ [n] : s̃(t−1)
i > κA(m + 1)nδ};

24 return (x(t), N );

The rest of Algorithm 4 consists of repeated phases, ending when
〈
s̃(t−1), x (t)

〉 = 0.

In an iteration t , let St = {i ∈ [n] : s̃(t−1)
i ≥ δ} be the set of coordinates with large

dual slack. The algorithm keeps track of the following set

Lt := Lt−1 ∪
{
i ∈ [n] : x (t)

i ≥ 
‖x (t)
St

‖1
}

.

These are the variables that were once large with respect to ‖x (t ′)
St ′ ‖1 in iteration t ′ ≤ t .

Note that |Lt | is monotone nondecreasing.
The first phase starts at t = 0, and we enter a new phase k whenever rk(Lt ) >

rk(Lt−1). Such an iteration t is called the first iteration in phase k. At the start of the
phase, we define a new modified cost c̃(k) from the dual slack s̃(t−1) by truncating
entries less than δ to 0. This cost vector will be used until the end of the phase. Then,
we call Support- Circuit(A, c̃(k), x (t), supp(c̃(k))) to eliminate circuits in supp(x (t))

intersecting supp(c̃(k)). Note that there are at most n such calls because each call sets
a primal variable x (t)

i to zero.
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In the remaining part of the phase, we augment x (t) using Ratio- Circuit(A, c̃(k),

1/x (t)) until rk(Lt ) increases, triggering a new phase. In every iteration, Ratio-
Circuit(A, c̃(k), 1/x (t)) returns a minimum cost-to-weight ratio circuit g(t), where
the choice of weights 1/x (t) follows Wallacher [39]. It also returns a feasible solution
(y(t), s(t)) to the dual of LP(c̃(k)). After augmenting x (t) to x (t+1) using g(t), we update
the dual slack as

s̃(t) := argmin
s∈{c̃(k),s(t)}

〈
s, x (t+1)

〉
.

This finishes the description of a phase.
Since rk(A) = m, clearly there are at most m + 1 phases. Let k and t be the final

phase and iteration of Algorithm 4 respectively. As
〈
s̃(t−1), x (t)

〉 = 0, and x (t), s̃(t−1)

are primal-dual feasible solutions to LP(c̃(k)), they are also optimal. Now, it is not
hard to see that c̃(k) ∈ Im(A�) + c − r for some 0 ≤ r ≤ (m + 1)δ1 (Claim 7.3).
Hence, s̃(t−1) is also an optimal solution to the dual of LP(c − r). The last step of the
algorithm consists of identifying the set N of coordinates with large dual slack s̃(t−1)

i .
Then, applying Theorem 5.4 for c′ = c − r allows us to conclude that they can be
fixed to zero.

In order to prove Theorem 1.4, we need to show that N �= ∅. Moreover, we need to
show that there are at most T iterations of Ratio- Circuit per phase. First, we show
that the objective value is monotone nonincreasing.

Lemma 7.1 For any two iterations r ≥ t in phases � ≥ k ≥ 1 respectively,

〈
c̃(�), x (r)

〉
≤

〈
c̃(k), x (t)

〉
.

Proof We proceed by induction on � − k ≥ 0. For the base case � − k = 0, iterations
r and t occur in the same phase. So, the objective value is nonincreasing from the
definition of Support Circuit andRatio- Circuit. Next, suppose that the statement
holds for � − k = d, and consider the inductive step � − k = d + 1. Let q be the first
iteration in phase k + 1; note that r ≥ q > t . Then, we have

〈
c̃(�), x (r)

〉
≤

〈
c̃(k+1), x (q)

〉
≤

〈
s̃(q−1), x (q)

〉
≤

〈
c̃(k), x (q)

〉
≤

〈
c̃(k), x (t)

〉
.

The first inequality uses the inductive hypothesis. In the second inequality, we use that
c̃(k+1) is obtained from s̃(q−1) by setting some nonnegative coordinates to 0. The third
inequality is by the definition of s̃(q−1). The final inequality is by monotonicity within
the same phase. ��

The following claim gives a sufficient condition for Algorithm 4 to terminate.

Claim 7.2 Let t be an iteration in phase k ≥ 1. If Ratio- Circuit returns an elemen-
tary vector g(t) such that

〈
c̃(k), g(t)

〉 = 0, then Algorithm 4 terminates in iteration
t + 1.
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Proof Recall that the weights w in Ratio- Circuit are chosen as w = 1/x (t). Recall
also the constraint s(t) ≤ λw in the dual program (3). Hence, for every i ∈ supp(x (t)),
s(t)
i x (t)

i ≤ λ = − 〈
c̃(k), g(t)

〉
, where the equality is due to strong duality. It follows that

〈
s(t), x (t)

〉 ≤ −n
〈
c̃(k), g(t)

〉 = 0. Since s̃(t), x (t+1) ≥ 0, we have

0 ≤
〈
s̃(t), x (t+1)

〉
≤

〈
s(t), x (t+1)

〉
=

〈
s(t), x (t)

〉
≤ 0.

Thus, the algorithm terminates in the next iteration. ��
The next two claims provide some basic properties of the modified cost c̃(k). For

convenience, we define c̃(0) := c.

Claim 7.3 For every phase k ≥ 0, we have c̃(k) ∈ Im(A�) + c − r for some 0 ≤ r ≤
kδ1.

Proof We proceed by induction on k. The base case k = 0 is trivial. Next, suppose that
the statement holds for k, and consider the inductive step k+1. Let t be the first iteration
of phase k + 1, i.e., c̃(k+1)

i = s̃(t−1)
i if i ∈ St , and c̃(k+1)

i = 0 otherwise. Note that
s̃(t−1) ∈ {c̃(k), s(t−1)}. Since both of them are feasible to the dual of LP(c̃(k)), we have
s̃(t−1) ∈ Im(A�)+ c̃(k). By the inductive hypothesis, c̃(k) ∈ Im(A�)+ c− r for some
0 ≤ r ≤ kδ1.Hence, from thedefinitionof c̃(k+1),wehave c̃(k+1) ∈ Im(A�)+c−r−q
for some 0 ≤ q ≤ δ1 as required. ��
Claim 7.4 For every phase k ≥ 0, we have ‖c̃(k)‖∞ ≤ 3

√
nκA.

Proof We proceed by induction on k. The base case k = 0 is easy because ‖c‖∞ ≤
‖c‖2 = 1. Next, suppose that the statement holds for k, and consider the inductive
step k + 1. Let t be the first iteration of phase k + 1. If s̃(t−1) = c̃(k), then c̃(k+1) is
obtained from c̃(k) by setting some coordinates to 0, so we are done by the inductive
hypothesis. Otherwise, s̃(t−1) = s(t−1). We know that s(t−1) is an optimal solution
to (3) for Ratio- Circuit(A, c̃(k), 1/x (t−1)). Since c − r ∈ Im(A�) + c̃(k) for some
0 ≤ r ≤ kδ1 by Claim 7.3, s(t−1) is also an optimal solution to (3) for Ratio-
Circuit(A, c − r , 1/x (t−1)). By (4), we obtain

‖s(t−1)‖∞ ≤ 2κA‖c − r‖1 ≤ 2κA(‖c‖1 + ‖r‖1)
≤ 2κA

(√
n + nkδ

) ≤ 2κA
(√

n + n(m + 1)δ
) ≤ 3

√
nκA.

The third inequality is due to ‖c‖2 = 1, the fourth inequality follows from the fact
that there are at most m + 1 phases, and the last inequality follows from the definition
of δ. ��

We next show a primal proximity lemma that holds for iterates throughout the
algorithm.

Lemma 7.5 Let t be the first iteration of a phase k ≥ 1. For any iteration r ≥ t ,

∥
∥
∥x (r+1) − x (r)

∥
∥
∥∞ ≤ 3

√
nκ2

A

δ

∥
∥
∥x

(t)
St

∥
∥
∥
1

. (8)
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Proof Fix an iteration r ≥ t and let � ≥ k be the phase in which iteration r occurred.
Consider the elementary vector g(r). If it is returned by Support- Circuit, then g(r)

i <

0 for some i ∈ supp(c̃(�)) by definition. If it is returned by Ratio- Circuit, we
also have g(r)

i < 0 for some i ∈ supp(c̃(�)) unless 〈c̃(�), g(r)〉 = 0. Note that if
〈c̃(�), g(r)〉 = 0, then the algorithm sets x (r+1) = x (r), which makes the lemma
trivially true. Hence, we may assume that such an iteration does not occur.

By construction, we have x (r+1)−x (r) = αg(r) for some α > 0, and α|g(r)
i | ≤ x (r)

i .
Applying the definition of κA yields

∥
∥
∥x (r+1) − x (r)

∥
∥
∥∞ ≤ κAx

(r)
i ≤ κA

δ

〈
c̃(�), x (r)

〉
≤ κA

δ

〈
c̃(k), x (t)

〉
≤ 3

√
nκ2

A

δ

∥
∥
∥x

(t)
St

∥
∥
∥
1
.

The second inequality uses that all nonzero coordinates of c̃(�) are at least δ. The
third inequality is by Lemma 7.1, whereas the fourth inequality is by Claim 7.4 and
supp(c̃(k)) = St . ��

With the above lemma, we show that any variable which enters Lt at the start of a
phase, is lower bounded by poly(n, κA)‖x (t)

St
‖1 in the next 	(mT ) iterations.

Lemma 7.6 Let t be the first iteration of a phase k ≥ 1 and let i ∈ Lt\Lt−1. For any
iteration t ≤ t ′ ≤ t + 2(m + 1)T ,

x (t ′)
i ≥ 6

√
nκ2

A

δ
‖x (t)

St
‖1.

Proof By definition, we have that x (t)
i ≥ 
‖x (t)

St
‖1. With Lemma 7.5 we get

x (t ′)
i ≥ x (t)

i − ‖x (t ′) − x (t)‖∞ ≥ x (t)
i −

t ′−1∑

r=t

‖x (r+1) − x (r)‖∞

≥
(


 − 6(m + 1)
√
nκ2

AT

δ

)

‖x (t)
St

‖1

≥ 6
√
nκ2

AT

δ
‖x (t)

St
‖1 .

The lower bound follows from T ≥ 1, as long as the constant in the definition of T is
chosen large enough. ��

For any iteration t in phase k ≥ 1, let us define

Dt :=
⋃ {Lt ′ \ Lt ′−1 : t ′ is the first iteration of phase k′ = 1, 2, . . . , k

}
. (9)

These are the variables which enteredLt ′ at the start of a phase for all t ′ ≤ t . Note that
rk(Dt ) = rk(Lt ) holds. As a consequence of Lemma 7.6, Dt remains disjoint from
the support of the modified cost c̃(k).
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Lemma 7.7 Let 0 ≤ t ≤ 2(m + 1)T be an iteration and let k ≥ 1 be the phase in
which iteration t occured. Let Dt ⊆ Lt be defined as in (9). If 〈c̃(k), x (t)〉 > 0, then

Dt ∩ supp(c̃(k)) = ∅ .

Proof For the purpose of contradiction, suppose that there exists an index i ∈ Dt ∩
supp(c̃(k)). Let r ≤ t be the iteration in which i was added to Lr . By our choice of Dt ,
r is the first iteration of phase j for some j ≤ k, which implies that Sr = supp(c̃( j)).
Since 〈c̃( j), x (r)〉 ≥ 〈c̃(k), x (t)〉 > 0 by Lemma 7.1, we have ‖x (r)

Sr
‖1 > 0. However,

we get the following contradiction

6
√
nκ2

A‖x (r)
Sr

‖1 ≤ δx (t)
i ≤

〈
c̃(k), x (t)

〉
≤

〈
c̃( j), x (r)

〉
≤ 3

√
nκA‖x (r)

Sr
‖1.

The first inequality is by Lemma 7.6, the third inequality is by Lemma 7.1, while the
fourth inequality is by Claim 7.4. ��

The following lemma shows thatRatio- Circuit geometrically decreases the norm
‖x (t)

St
‖1.

Lemma 7.8 Let t be the first Ratio- Circuit iteration in phase k ≥ 1. After p ∈ N
consecutive Ratio- Circuit iterations in phase k,

‖x (t+p)
St+p

‖1 ≤ 3n1.5κA

δ

(

1 − 1

n

)p−1

‖x (t)
supp(c̃(k))

‖1,
Proof

‖x (t+p)
St+p

‖1 ≤ 1

δ

〈
s̃(t+p−1), x (t+p)

〉
(as s̃(t+p−1)

i ≥ δ for all i ∈ St+p)

≤ 1

δ

〈
s(t+p−1), x (t+p)

〉
(from the definition of s̃(t+p−1))

= 1

δ

〈
s(t+p−1), x (t+p−1) + αg(t+p−1)

〉
(for some augmentation step size α)

= 1

δ

(〈
s(t+p−1), x (t+p−1)

〉
+ α

〈
c̃(k), g(t+p−1)

〉)
(as s(t+p−1) ∈ Im(A�) + c̃(k))

≤ 1

δ

〈
s(t+p−1), x (t+p−1)

〉
(because

〈
c̃(k), g(t+p−1)

〉
≤ 0)

≤ −n

δ

〈
c̃(k), g(t+p−1)

〉
(s(t+p−1)
i ≤ −

〈
c̃(k), g(t+p−1)

〉
/x (t+p−1)

i (by (3))

≤ n

δ

(〈
c̃(k), x (t+p−1)

〉
− OPT(c̃(k))

)
(by step size α ≥ 1 in Lemma 2.5)

≤ n

δ

(

1 − 1

n

)p−1 (〈
c̃(k), x (t)

〉
− OPT(c̃(k))

)
(by geometric decay in Lemma 2.5)

≤ n

δ

(

1 − 1

n

)p−1 〈
c̃(k), x (t)

〉
(because c̃(k) ≥ 0)

≤ 3n1.5κA

δ

(

1 − 1

n

)p−1 ∥
∥
∥x (t)

supp(c̃(k))

∥
∥
∥
1

(by Claim 7.4).

��
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Recall Lemma 5.5 which guarantees the existence of a coordinate with large dual
slack. It explains why we chose to work with a projected and normalized cost vector
in Algorithm 4. We are now ready to prove the main result of this section.

Proof of Theorem 1.4 We first prove the correctness of Algorithm 4. Suppose that the
algorithm terminates in iteration t . We may assume that there is at least 1 phase, as
otherwise x (0) is an optimal solution to (LP). Let k ≥ 1 be the phase in which iteration
t occurred. Since

〈
s̃(t−1), x (t)

〉 = 0 and x (t), s̃(t−1) are primal-dual feasible solutions
to LP(c̃(k)), they are also optimal. By Claim 7.3, we know that c̃(k) ∈ Im(A�)+ c− r
for some ‖r‖∞ ≤ (m + 1)δ. Hence, s̃(t−1) is also an optimal dual solution to LP(c′)
where c′ := c − r . Since c ∈ ker(A), ‖c‖2 = 1, and

‖c − c′‖∞ ≤ (m + 1)δ = m + 1

2n3/2(m + 2)κA
<

1√
n(m + 2)κA

,

where the strict inequality is due to n ≥ m and n > 1, Lemma 5.5 guarantees the
existence of an index j ∈ [n] such that

s̃(t)
j >

(m + 1)√
n(m + 2)

> (m + 1)κA‖c − c′‖∞.

Thus, the algorithm returns N �= ∅. Moreover, for all j ∈ N , Theorem 5.4 allows us
to conclude that x (t)

j = x∗
j = 0 for every optimal solution x∗ to LP(c).

Next, we show that if rk(Lt ) = m in some phase k, then the algorithmwill terminate
in iteration r ≤ t + n + 1. As long as 〈c̃(k), x (t)〉 > 0, we have Dt ⊆ [n] \ supp(c̃(k))

by Lemma 7.7. Moreover, any i ∈ supp(c̃(k))∩supp(x (t)) induces a circuit in Dt ∪{i},
so Support- Circuit will be invoked. Since every call to Support- Circuit reduces
supp(x (t)), all the coordinates in supp(c̃(k)) will be zeroed-out in at most n calls. Let
t ≤ t ′ ≤ t + n be the first iteration when 〈c̃(k), x (t ′)〉 = 0. Since Ratio- Circuit
returns g(t ′) with 〈c̃(k), g(t ′)〉 = 0, the algorithm terminates in the next iteration by
Claim 7.2.

It is left to bound the number of iterations of Algorithm 4. Clearly, there are at
most m + 1 phases. In every phase, there are at most n Support- Circuit iterations
because each call sets a primal variable to 0. It is left to show that there are at most T
Ratio- Circuit iterations in every phase.

Fix a phase k ≥ 1 and assume that every phase � < k consists of at most T many
Ratio- Circuit iterations. Let t be the first iteration in phase k. We may assume that
rk(Lt ) < m, as otherwise there is only one Ratio- Circuit iteration in this phase by

the previous argument. Note that this implies ‖x (t ′)
St ′ ‖1 > 0 for all t ′ ≤ t . Otherwise,

Lt ′ = [n] and rk(Lt ′) = m, which contradicts rk(Lt ′) ≤ rk(Lt ).
Let r ≥ t be the first Ratio- Circuit iteration in phase k. Let Dr ⊆ Lr be as

defined in (9). By Lemma 7.6 and our assumption, we have x (r)
Dr

> 0. We claim that

Dr ∩ supp(c̃(k)) = ∅. This is clearly the case if 〈c̃(k), x (r)〉 = 0. Otherwise, it is given
by Lemma 7.7. We also know that there is no circuit in supp(x (r)) which intersects
supp(c̃(k)). Hence, applying Lemma 5.1 with L = Dr , S = supp(c̃(k)), x = x (r),
z = x (r+T ) yields
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∥
∥
∥x

(r+T )
[n]\cl(Dr )

∥
∥
∥∞ ≥

∥
∥
∥x

(r+T )
[n]\cl(Dr )

∥
∥
∥
1

n
≥

∥
∥
∥x

(r)
supp(c̃(k))

∥
∥
∥∞

nκA
≥

∥
∥
∥x

(r)
supp(c̃(k))

∥
∥
∥
1

n2κA
≥ 


∥
∥
∥x

(r+T )
Sr+T

∥
∥
∥
1
,

where the last inequality follows from Lemma 7.8 by choosing a sufficiently large
constant in the definition of T . Note that cl(Dr ) = cl(Lr ) because Dr is a spanning
subset of Lr . Thus, there exists an index i ∈ [n]\ cl(Lr ) which is added to Lr+T ,
showing that rk(Lr+T ) > rk(Lr ) as required.

Since the main circuit-augmentation algorithm consists of applying Algorithm 4 at
most n times, we obtain the desired bound on the number of iterations. ��

8 Circuits in general form

There are many instances in the literature where circuits are considered outside stan-
dard equality form. For example, [2, 16, 26] defined circuits for polyhedra in the
general form

P = {x ∈ Rn : Ax = b, Bx ≤ d} , (10)

where A ∈ RmA×n , B ∈ RmB×n , b ∈ RmA , c ∈ RmB . It implicitly includes polyhedra
in inequality form, which were considered by e.g., [5, 8]. For this setup, they define
g ∈ Rn to be an elementary vector if

(i) g ∈ ker(A), and
(ii) Bg is support minimal in the collection {By : y ∈ ker(A), y �= 0}.
In the aforementioned works, the authors use the term ‘circuit’ also for elementary
vectors.

Let us assume that

rk

(
A
B

)

= n . (11)

This assumption is needed to ensure that P is pointed; otherwise, there exists a vector
z ∈ Rn , z �= 0 such that Az = 0, Bz = 0. Thus, the lineality space of P is nontrivial.
Note that the circuit diameter is defined as the maximum length of a circuit walk
between two vertices; this implicitly assumes that vertices exists and therefore the
lineality space is trivial.

Under this assumption, we show that circuits in the above definition are a special
case of our definition in the Introduction, and explain how our results in the standard
form are applicable. Consider the matrix and vector

M :=
(
A 0
B ImB

)

, q :=
(
b
d

)

,

and let W̄ := ker(M) ⊆ Rn+mB . Let J denote the set of the last mB indices, and
W := πJ (W̄ ) denote the coordinate projection to J . The assumption (11) guarantees
that for each s ∈ W , there is a unique (x, s) ∈ W̄ ; further, x �= 0 if and only if s �= 0.
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Consider the polyhedron

P̄ = {
(x, s) ∈ Rn × RmB : M(x, s) = q , s ≥ 0

}
.

Note that P is the projection of P̄ onto the x variables. Let Q := πJ (P̄) ⊆ RmB be
the projection of P̄ onto the s variables. It is easy to verify the following statements.

Lemma 8.1 If (11) holds, then there is an invertible affine one-to-one mapping ψ

between Q and P, defined by

M(ψ(s), s) = q .

Further, g ∈ Rn is an elementary vector as in (i),(ii) above if and only if there exists
h ∈ RmB such that (g, h) ∈ W̄ , h �= 0 and h is support minimal.

Given such a pair (g, h) ∈ W̄ of elementary vectors, let s ∈ Q and let s′ :=
augQ(s, h) denote the result of the circuit augmentation starting from s. Then,ψ(s′) =
augP (ψ(s), g).

Consequently, the elementary vectors of (10) are in one-to-one mapping to ele-
mentary vectors in the subspace W as used in this paper. This was also independently
shown by Borgwardt and Brugger [1, Corollary 3]. By the last part of the statement,
analyzing circuit walks on P reduces to analyzing circuit walks of Q that is given in
the subspace form Q = {s ∈ RmB : s ∈ W + r , s ≥ 0}.

Finally, we can represent Q in standard equality form as follows. Using row oper-
ations on M , we can create an n × n identity matrix in the first n columns. Thus,
we can construct a representation Q = {s ∈ RmB : Hs = f , s ≥ 0}, where
H ∈ R(mA+mB−n)×mB , f ∈ RmA+mB−n . By Lemma 8.1,

κH = max

{ |(Bg)i |
|(Bg) j | : i, j ∈ supp(Bg), g is an elementary vector of (10)

}

.
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