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Abstract
Does pre-voting group deliberation improve majority outcomes? To address this ques-
tion, we develop a probabilistic model of opinion formation and deliberation. Two new
jury theorems, one pre-deliberation andonepost-deliberation, suggest that deliberation
is beneficial. Successful deliberation mitigates three voting failures: (1) overcounting
widespread evidence, (2) neglecting evidential inequality, and (3) neglecting eviden-
tial complementarity. Formal results and simulations confirm this. But we identify
four systematic exceptions where deliberation reduces majority competence, always
by increasing Failure 1. Our analysis recommends deliberation that is ‘participatory’,
‘neutral’, but not necessarily ‘equal’, i.e., that involves substantive sharing, privileges
no evidences, but might privilege some persons.

Keywords Jury theorems · Group deliberation · Social choice theory · Majority
voting · Group competence · Sharing evidence

JEL: D70 · D71 · D8

1 Introduction: deliberation and voting

Does group deliberation improve group decisions? Many scholars affirm this, though
others have warned that deliberation can fall into epistemic traps. Since the formal
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Fig. 1 Voting based on evidence

understanding of the epistemicmerits of deliberation is at an early and disjointed stage,
it is hard to assess who is right.

We present a formal analysis of deliberation as sharing and absorbing. The closest
precursor is Ding and Pivato’s (2021) model of deliberation as information disclosure,
but our approach is social-choice-theoretic rather than game-theoretic. We construe
deliberation as an attempt to exchange possibly complex ‘evidences’, such as argu-
ments, intuitions, empirical facts or personal perspectives. Realistically, this exchange
succeeds only partly, because many evidences are hard for someone to share (express,
describe) and hard for others to absorb (understand, incorporate), given limitations in
language, concepts, and awareness.

Our analysis provides a clearer understanding ofwhen and how pre-voting delibera-
tion benefits the voting outcome. Following the epistemic paradigm, we take everyone
to vote for what they individually believe to be socially correct. Ideally, the voting
outcome is informationally efficient, i.e., responds optimally to the total evidence
dispersed across voters. Such efficiency can fail for at least three reasons:

• Failure 1: Overcounting widespread evidence. Evidence held by more voters has
exaggerated influence, by affecting more votes.

• Failure 2: Neglecting evidential inequality. Voters have the same weight, despite
their unequally strong total evidence.

• Failure 3: Neglecting evidential complementarity. Information obtainable after
combining different evidences dispersed across voters is undercounted, because
few or no voters access all these evidences simultaneously.

All three failures stem from bad management of available but dispersed evidences.
Figure1 gives a stylised example with three voters and three evidences. Failure 1

arises because evidence 1 is overcounted: it affects two votes while evidences 2 and 3
each affect only one vote. Failure 2 arises because voter 2 has stronger total evidence.1

Failure 3 arises, for instance, if evidences 1 and 3 are complementary, because no voter

1 Assuming her two evidences are stronger in total than evidence 1 and than evidence 3.
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has themboth. Evidences 1 and3 could be arguments that are uninformative in isolation
but highly informative in combination.

The hope is that deliberation can improve the use of evidence:

• Deliberation could reduce Failure 1 by increasing the spread of previously private
or almost private evidences.

• Deliberation could reduce Failure 2 by letting voters with initially weak total
evidence accumulate evidence.

• Deliberation could reduce Failure 3 by letting voters collect evidences from others
and then recognize and use evidential complementarities.

But are these conjectures correct? We introduce a formal model of deliberation,
and, for the first time, prove jury theorems that address the effect of deliberation on
voting outcomes. We then analyse each failure, formally and via simulations. Our
jury theorems and failure analysis partly confirm the optimistic take on deliberation,
but surprisingly also identify some systematically harmful forms of deliberation. We
present a typology of beneficial and harmful deliberation, allowing us to state more
precisely which caveats apply to the thesis of the ‘wisdom of deliberating crowds’.
Deliberation can be harmful in four cases: (i) persons initially have non-overlapping
(‘private’) evidence; (ii) persons share very badly but absorb very well; (iii) some
evidences are far easier to share than others; (iv) some evidences are far easier to absorb
than others. In all four cases, deliberation is harmful because it increases Failure 1.
By contrast, deliberation robustly reduces Failures 2 or 3.

This paper is in 9 sections. After presenting existing approaches towards pre-voting
deliberation in Sect. 2, Sect. 3 develops our new formal model of opinion formation
and deliberation. Section 4 then presents two jury theorems that set an upper bound
to collective competence, while suggesting that this upper bound is easier to reach
post-deliberation. We also decompose the group’s ‘competence gap’ into two gaps:
the ‘efficiency gap’, which deliberation can potentially close, and the ‘information
gap’, which an increase in group size can potentially close. We then analyse Failures 1
and 2 formally in Sect. 5, before presenting exploratory simulations in Sect. 6, which
suggest that deliberation ismuch better at reducingFailure 2 thanFailure 1, and support
a recommendation for ‘participatory’ and ‘neutral’ deliberation. After generalising
the framework in Sect. 7, we finally address Failure 3 in Sect. 8, where we show that
deliberation robustly reduces Failure 3. Section 9 offers concluding considerations.

2 Deliberation and voting in context

A large interdisciplinary literature addresses the interaction of deliberation and vot-
ing. Three perspectives dominate: the social-choice-theoretic, game-theoretic, and
normative-democratic perspective. We now describe the first two perspectives and
explain how our own approach relates to them. We set aside the extensive normative-
democratic literature (see Min and Wong 2018 and Estlund and Landemore 2018 for
reviews).

A first approach to deliberation comes from social choice theory, especially its
epistemic branch. There is a long tradition of thinking about the epistemic effects
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of deliberation (Aristotle 1988 [350BC]; Condorcet 1785; Rousseau 1972 [1762]).
Condorcet, a founder of social choice theory, was very much engaged with its epis-
temic aspect; not only did he interpret preferences epistemically as judgments of
social betterness (McLean and Hewitt 1994, p. 38), he also proved the first of many
jury theorems (e.g., Grofman et al. 1983; Ladha 1992; List and Goodin 2001; Diet-
rich and Spiekermann 2013; Pivato 2017; for a review see Dietrich and Spiekermann
2021). Unfortunately, deliberation has ambiguous effects on the assumptions of tradi-
tional jury theorems, potentially promoting voter competencewhile undermining voter
independence. Although more recent jury theorems escape the concern that delibera-
tion might undermine voter independence (e.g., Dietrich and Spiekermann 2013), no
jury theorem addresses deliberation effects on (majority) outcomes. Our deliberation-
specific jury theorems will aim to fill this gap. For other social-choice-theoretic takes
on the epistemic virtues of deliberation, see Betz (2013); Goodin and Spiekermann
(2018); Hartmann and Rad (2018, 2020); Perote-Pena and Piggins (2015); and Hoek
and Bradley (2022). Of course, pre-voting deliberation also serves non-epistemic pur-
poses, such as enabling stable collective preferences (Dryzek and List 2003; Rafiee
Rad and Roy 2021).

The game-theoretic literature interprets deliberation and voting as strategic interac-
tions.Voters choose strategicallywhat andwhen to communicate, and then how to vote.
One insight of this literature is that, even if all share the same ‘epistemic’ preference
for correct outcomes, incentives for strategic manipulation can arise in deliberation
and voting, depending on the environment (e.g., Coughlan 2000; Austen-Smith and
Feddersen 1996; Gerardi and Yariv 2007). We emphasise two semi-game-theoretic
models of deliberation: Chung and Duggan’s (2020) model of myopic discussion,
constructive discussion and debate, and Ding and Pivato’s (2021) model of deliber-
ation as a process of information disclosure. These analyses share with us the focus
on the dynamics of information exchange. In general, while a typical game-theoretic
approach starts from assumptions about individual motivations and predicts how indi-
viduals deliberate, we will start from how they deliberate and predict how deliberation
affects the information distribution and the correctness of individual and collective
judgments. Our analysis therefore starts where a typical game-theoretic analysis ends.
These two approaches are complementary. By setting aside the micro-foundations
of behaviour, we sacrifice some explanatory power to gain in parsimony, focus, and
generality, as explained in Sect. 3.5.

3 Amodel of opinions and deliberation

This section presents our formal model, in a simple version later generalised in Sect. 7.

3.1 Opinions and their sources

A group of persons, labelled 1, ..., n, faces two options, labelled 1 and −1. The group
is denoted N = {1, ..., n} and has any finite size n ≥ 1. Following the epistemic ‘Con-
dorcetian’ paradigm, exactly one option is objectively or intersubjectively correct; it
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is called the state of the world, for short the state. We represent it by a random variable
x taking the value 1 or −1. In general, we denote random variables in bold letters,
their particular values in non-bold letters, and the probability function by ‘Pr ’, all of
which refer to an underlying probability space (left implicit).

Each person forms an opinion aboutwhich option is correct. There are three possible
opinions: the opinion that option 1 is correct (labelled 1), the opinion that option −1
is correct (labelled −1), and a neutral or undecided opinion (labelled 0). Opinions are
based on ‘evidences’. Our notion of evidence is very broad and includes empirical facts
as well as arguments, normative aspects, and other inputs into opinion formation (but
we set aside non-evidential ‘noise’ inputs, captured later in our generalised model).
Formally, let S be a finite non-empty set of sources, and for each source s ∈ S let es
be a real-valued random variable, the evidence from source s. A positive, negative, or
zero value of an evidence represents support for option 1, support for option −1, or
evidential neutrality, respectively. The strength of this support is represented by the
absolute value of the evidence. For instance, if the source s is an argument, then the
evidence es measures which opinion it supports, and how strongly.

Each person i accesses some set of sources, her source set, represented by a ran-
dom variable Si whose values are subsets of S. In a court jury, a juror’s source set
might contain a witness report, a legal argument, and a legal text interpreting the law,
while another juror’s source set might contain the defendant’s facial expression when
interrogated, and other sources. In the introductory example of Fig. 1, the source sets
of persons 1, 2, and 3 contain one, two, and one source, respectively.

We can now define several derivative concepts. The opinion of a person i is the
option supported by i’s total evidence:

oi =
⎧
⎨

⎩

1 if
∑

s∈Si es > 0
−1 if

∑
s∈Si es < 0

0 if
∑

s∈Si es = 0.

The majority opinion is:

omaj =
⎧
⎨

⎩

1 if |{i : oi = 1}| > |{i : oi = −1}| , equivalently∑i oi > 0
−1 if |{i : oi = 1}| < |{i : oi = −1}| , equivalently∑i oi < 0
0 if |{i : oi = 1}| = |{i : oi = −1}| , equivalently∑i oi = 0.

The competence of a person i is the probability of a correct opinion pi = Pr(oi = x).
The majority competence is the probability of a correct majority opinion pmaj =
Pr(omaj = x).

Diversity is key to successful deliberation.2 It can be construed as heterogeneity
in sources, i.e., dissimilarity between the source sets Si (the arguments, the empirical
knowledge, etc.) of different persons i . Under minimal diversity, people have identical
source sets, so identical opinions. Undermaximal diversity, they have pairwise disjoint
source sets. A different concept is that of intrapersonal diversity. Someone has high
intrapersonal diversity if they have a large source set, hence an opinion with a broad

2 For an influential approach to diversity see Hong and Page (2004, 2012) and Page (2007).
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basis. As will emerge, deliberation tends to ‘internalise’ diversity: it lets sources be
more widely held, which transforms interpersonal into intrapersonal diversity.

We make three simplifying assumptions (lifted later):

Equiprobable States: the state x takes both values 1 and −1 with probability 1
2 .

Simple Gaussian Evidence: Given any state x ∈ {±1}, the evidences es (s ∈ S) have
independent Gaussian distributions with mean x and some variance σ 2 that is the
same across states x and sources s. So, as one would expect, evidence correlates with
the state: positive evidence objectively supports state 1, negative evidence objectively
supports state −1.

Independent Sources: The source-accessing events are independent across people and
sources, and jointly independent of the state and the evidences. Formally, for each
person i ∈ N and source s ∈ S, we consider the event that person i accesses source
s, ‘s ∈ Si ’, and we require these source-accessing events to be mutually independent,
and jointly independent of the state-evidence combination (x, (es)s∈S).3

The probability that a person i accesses a source s will be denoted ps→i = Pr(s ∈
Si ) and called an access probability. The access probabilities (ps→i )s∈S,i∈N fully
determine the distribution of the source profile (Si ). How?Weuse Independent Sources
twice. First, the probability that a person i has a source set Si is the product of the
probabilities of accessing any source in Si and not accessing any other source:

Pr(Si ) =
⎛

⎝
∏

s∈Si
ps→i

⎞

⎠

⎛

⎝
∏

s∈S\Si
ps→i

⎞

⎠ (1)

where p stands for 1 − p. Second, the probability of an entire source profile (Si ) is
the product

∏
i Pr(Si ), with Pr(Si ) given by (1).

To summarise, our formal primitive is a simple opinion structure, by which we
mean a triple (x, (es)s∈S, (Si )i∈N ), in short (x, (es), (Si )), that contains:

(1) a random variable x, the state or correct option, taking the value 1 or −1 with
equal probability;

(2) a family (es), indexed by some set S of sources (non-empty and finite), consisting
of real-valued random variables, the evidences from these sources, which have
state-conditionally independent Gaussian distributions withmean x andwith some
fixed variance σ 2 > 0;

(3) a family (Si ), indexed by some set N = {1, ..., n} of persons (1 ≤ n < ∞),
consisting of random subsets of S, the source sets of these persons, such that the
accessing events ‘s ∈ Si ’ are independent across sources s and persons i , and inde-
pendent of the state and the evidences. (So (Si ) is fully described distributionally
by the access probabilities (ps→i )s∈S,i∈N .)

3 For instance, when members of Congress form opinions about the effectiveness of a law (the state),
whether member 1 has listened to (accesses) the verdict of some expert (a source) is independent of which
other sources she and other members access, and also independent of the law’s effectiveness (the state) and
the evidence from each source (e.g., the verdict of the expert).
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Terminology: The source profile is the combination of source sets across persons
(Si )i∈N , in short (Si ). Person i’s evidence bundle is the family of her evidences
(es)s∈Si ; it is doubly random, through her source set Si and the evidences es from
her sources s. The evidence profile is the combination of evidence bundles across
people ((es)s∈Si )i∈N , in short ((es)s∈Si ).

3.2 The rationality of opinions

Is this opinion model arbitrary from a rationality perspective? The worry is natural,
as we presuppose a seemingly naive heuristic for forming opinions: adding up one’s
evidences and comparing the sumwith zero. In fact, such opinion formation is rational
in a perfectly classical sense. Why?

Classic rationality requires evaluating opinions (decisions) by expected utility.
Given our epistemic setting, let us identify ‘utility’ with ‘correctness level’, defined as
1 if the opinion is correct, 0 if it is incorrect, and 1

2 if it is neutral, i.e., zero. Technically,
a person i or her opinion oi is classically rational if the expected correctness level of
oi weakly exceeds that of all her other possible opinions o. Here, a possible opinion
of person i is any random variable o that generates 1, −1 or 0 as a function of i’s
information (ei )i∈Si ; its correctness level is 1 if o = x (correct opinion), 0 if o = −x
(false opinion), and 1

2 if o = 0 (neutral opinion).

Theorem 1 Given any simple opinion structure (x, (es), (Si )), the opinion oi of any
person i is classically rational.

Later, non-simple opinion structures can also model non-rational opinions.

3.3 Ideal and efficient opinion

The ideal opinion is the hypothetical opinion based on all sources:

oideal =

⎧
⎪⎨

⎪⎩

1 if
∑

s∈S es > 0

−1 if
∑

s∈S es < 0

0 if
∑

s∈S es = 0.

Its correctness probability pideal = Pr(oideal = x) is the ideal competence. The
ideal opinion is a little too ‘ideal’, as it neglects that some sources are not available
to anyone. The ‘efficient’ opinion builds only on available evidence. Formally, the
available source set is the union of the personal source sets∪iSi . The efficient opinion
is the hypothetical opinion based on the available sources:

oe f f =

⎧
⎪⎨

⎪⎩

1 if
∑

s∈∪iSi es > 0

−1 if
∑

s∈∪iSi es < 0

0 if
∑

s∈∪iSi es = 0.
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Fig. 2 Example of growing access to evidence by deliberation

Its correctness probability pef f = Pr(oe f f = x) is the efficient competence. Effi-
ciency corresponds to what is sometimes called full information equivalence, with
‘full information’ understood as ‘available information’ (e.g., Barelli et al. 2022).

The ideal and efficient opinion are in fact rational based on total evidence (es)s∈S
resp. available evidence (es)s∈∪iSi , assuming a simple opinion structure. This can be
shown in analogy to Theorem 1.

3.4 Deliberation as sharing and absorbing

We construe group deliberation as a process of evidence transmission. To capture this
idea, we now define the notion of a share-absorb process. Such a process is given
by parameters of two types, namely, for each source s ∈ S and person i ∈ N , a
‘sharing probability’ ps,i→ and an ‘absorbing probability’ ps,i←, both in [0, 1]. The
process transforms the initial source profile (Si ) into a post-deliberation source profile
(S+

i ), in two steps. First, each person i shares each of her initial sources s ∈ Si with
an independent probability of ps,i→. Second, for each source s shared by at least
someone, each person i with s /∈ Si absorbs s with an independent probability of
ps,i←. The new source set of a person i contains i’s initial sources and i’s absorbed
sources: S+

i = Si ∪ {s ∈ S : someone shares and then i absorbs s}. The process is
defined more formally in Appendix B.

Figure2 gives an illustration, which starts from the introductory example and adds
a post-deliberation stage. Thick arrows indicate new sources absorbed during delib-
eration. The three persons’ source sets grow from S1 = {s1}, S2 = {s1, s2} and
S3 = {s3} pre-deliberation to S+

1 = {s1, s2}, S+
2 = {s1, s2, s3} and S+

3 = {s1, s2, s3}
post-deliberation. To anticipate later sections, this mitigates Failures 1, 2, and 3,
because—roughly speaking—sources and their complementarities have becomemore
widely accessible.

Sharing or absorbing a source can be easy or hard, take seconds or hours, and involve
verbal or non-verbal communication. For instance, statistical facts might be easier to
share or absorb than complex arguments. So the probabilities ps,i→ and ps,i← can be
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source-dependent. They can also be person-dependent, partly because some persons
are more able or willing than others to share or absorb.

A share-absorb process generates a newopinion structure (x, (es), (S
+
i ))with richer

source sets S+
i . Like the initial opinion structure, the new one induces derivative

constructs, namely opinions, competence levels, and (as will soon be seen) imbalance
measures capturing failures. They are defined as usual, but based on the new opinion
structure; we denote them by the usual symbol with an additional superscript ‘+’.
Specifically, any person i has new opinion

o+
i =

⎧
⎪⎪⎨

⎪⎪⎩

1 if
∑

s∈S+
i
es > 0

−1 if
∑

s∈S+
i
es < 0

0 if
∑

s∈S+
i
es = 0

and new competence p+
i (= Pr(o+

i = x)), resulting in a new group opinion o+
maj and

competence p+
maj (= Pr(o+

maj = x)). This machinery will allow us to operationalise
our enquiry into the effects of deliberation. For instance, whether deliberation is ben-
eficial overall depends on whether p+

maj > pmaj .
Clearly, deliberation creates cross-personal correlations of sources. So, the new

opinion structure (x, (es), (S
+
i )) violates Independent Sources, hence is no longer of

the simple kind (we come to general opinion structures in Sect. 6). Nonetheless our
rationality result (Theorem 1) continues to apply, so that post-deliberation opinions
remain rational, as shown in Appendix A.

3.5 Comparison with the game-theoretic approach

The sharing and absorbing probabilities pi,s→ and pi,s← of our share-absorb process
could be taken to emerge from (equilibrium) behaviour in an underlying ‘deliberation
game’.Thenature of this gamevaries considerablywith the intended interpretation. For
instance, one might be tempted to interpret sharing and absorbing as actions (choices).
Then the sharing and absorbing probabilities could represent mixed strategies in a
suitable dynamic gamewith imperfect information, or represent probabilities of player
types that share/absorb, relative to a different game.4 Yet an ‘action interpretation’
is often inappropriate because individuals cannot control whether they succeed in
sharing or absorbing arguments or intuitions. A game-theoretic underpinning then

4 This dynamic gamemight have the following structure.Stage 1: nature randomly draws a state x , evidences
(es )s∈S , personal source sets (Si )i∈N , and some personal character traits (types), where each person (player)
i is informed only of her evidence bundle (es )s∈Si and her type. Stage 2: simultaneously, each person i
chooses which sources in Si she shares. Stage 3: simultaneously, each person i chooses which sources she
absorbs among the sources that she did not acquire in Stage 1 and that someone shared in Stage 2. One
could include a final Voting Stage: simultaneously, everyone casts a vote in {1, −1, 0}. A player’s utility
function depends on her type, and might reflect that sharing and absorbing are costly and (importantly, to
capture an epistemic motivation) that collective outcomes should be successful. If there is a Voting Stage,
‘successful’ could mean that the voting outcome matches the state. Without the Voting Stage, ‘successful’
could mean that post-deliberation knowledge in the group is high, as measured for instance by the number
of persons whose final opinion matches the state.
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requires a less parsimonious game. Actions are now attempts to share or absorb, the
success of which depends on chance moves and possibly player types; pi,s→ and
pi,s← then represent probabilities of a successful attempt to share or absorb, i.e., of
the combination of an action and a chance move.

For some important forms of deliberation, sharing and absorbing cannot be under-
pinned game-theoretically for principled reasons. Deliberation often involves growing
awareness since individuals learn ‘surprising’ information that they did not even con-
sider (and so could not anticipate strategically). Standard game-theory notoriously
rules out changing awareness and genuine ‘surprises’.5 It reduces deliberation to
mere ‘information transmission’, without awareness change. An emerging unorthodox
branch of game theory tackles awareness growth, fundamentally revising the notions of
game and equilibrium (e.g., Feinberg 2021).We do not model the awareness dynamics
of deliberation, to focus on our main goals. However, we permit low awareness—no
one needs to know the set S of possible sources of evidence, let alone the opinion
structure.

In sum, we provide no game-theoretic underpinning of share-absorb processes so as
to gain parsimony and, more importantly, allow for various psychological interpreta-
tions and phenomena, including ones ruled out by standard game theory. For instance,
failures to share or absorb could stem froma conscious choice, or unsuccessful attempt,
or inability to even attempt. Moreover, deliberators could be instrumentally or intrin-
sically motivated, have stable or variable preferences, reason strategically or not, be
fully rational or use simple heuristics, and acquire only new information or even new
awareness and concepts. Game-theoretic models need to commit on all these issues,
often in simplified ways that seem in tension with thinking in democratic theory about
the cognitive and motivational structure of deliberation (e.g., Cohen 1997; Gutmann
andThompson 1996). The game-theoretic approach, of course, has its own advantages.
For example, Landa andMeirowitz (2009) show how game theory reveals which insti-
tutional proposals are strategically stable, though this is not a question investigated in
this paper.

Overall, the game-theoretic approach emphasises decisions to share, while we
emphasise abilities to share (express, describe) and to absorb (understand, incorpo-
rate), and effects of deliberation on the information distribution and on individual and
collective competence.

4 The wisdom of crowds pre- and post-deliberation: two jury
theorems

The wisdom of crowds is often defended by appealing to jury theorems, but the
connection to deliberation has so far remained informal. We now present two jury

5 All players of a game are supposed to know the game form, hence know what others can do. So, a
deliberation game cannot model ‘surprises’, in which a player learns things that she did not foresee as
possible (and so cannot anticipate strategically). Surprises lead to awareness growth, not just information
growth, and are at the heart of many real-life deliberation processes. A failure to absorb evidence can stem
from insufficient awareness (which prevents one from ‘seeing’ or ‘understanding’ evidence), whereas a
successful absorption can stem from sufficient awareness, or from spontaneously growing awareness.
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theorems—one pre-deliberation, one post-deliberation. Compared to classical jury
theorems, the message will be revisionary at two levels.

For one, the new jury theorems will draw a less optimistic picture, by setting
an objective bound to the wisdom of crowds instead of postulating asymptotically
infallible groups. However large, the group cannot beat the ideal opinion—i.e., the
hypothetical opinion based on total evidence. Yet even the ideal opinion is fallible,
because total evidence can lie. Worse, the group can fail to reach the ideal opinion and
thus perform ‘sub-ideally’, because firstly some evidences are accessed by nobody
and secondly the accessed evidences are scattered across members and therefore hard
to exploit.

Here deliberation steps in, by improving the spread of evidences and thereby help-
ing the group make better use of its evidence and approach the ideal opinion, as our
jury theorems suggest. By contrast, classical jury theorems make deliberation appear
inessential (as large groups find the truth anyway) or even harmful (by undermin-
ing voter independence). This rehabilitation of deliberation is the second revisionary
message of our jury theorems.

Our jury theorems operate in the framework of a simple opinion structure
(x, (es), (Si )) and a share-absorb process, although some generalisations would be
possible.

4.1 Pre-deliberation

Since jury theorems vary the group size n, we straightforwardly extend the simple
opinion structure (x, (es)s∈S, (Si )i∈N ) by letting the set of persons N be the infinite
set {1, 2, ...}, called the ‘population’. We then talk of a ‘simple opinion structure for
an infinite population’. In such a structure, we can consider groups {1, ..., n} ⊆ N of
any finite size n ≥ 1, with a corresponding majority opinion denoted omaj,n or simply
omaj , and majority competence Pr(omaj,n = x) denoted pmaj,n or simply pmaj .

Our first jury theorem says that a finite group performs sub-ideally as long as people
are not utterly perfect at accessing sources (‘Imperfect Access’), but the group reaches
the ideal asymptotically if people are good enough at accessing sources (‘Access
Competence’). Formally:

Imperfect Access: At least one source s ∈ S is not surely accessed, i.e., has access
probability ps→i < 1 for each person i .

Access Competence: The probability ps→i that a person i ∈ N accesses a source
s ∈ S is at least 2−1/|S| + ε, for some ε > 0 independent of i and s.

Pre-Deliberation Jury Theorem:Given a simple opinion structure (x, (es), (Si )) for
an infinite population, the majority competence pmaj,n

(a) is at most the ideal competence pideal , and less than it under Imperfect Access,
(b) converges to the ideal competence pideal as n → ∞ under Access Competence.

The ideal competence pideal in this (and the next) jury theorem takes a simple form.
As shown in Appendix C, it is the probability that a standard-normal variable takes a

value below
√|S|

σ
:
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pideal = Pr(oideal = x) = FN (0,1)

(√|S|
σ

)

, (2)

where FN (0,1) is the standard-normal distribution function. This competence is always
below 1, reflecting the objective limits of evidence. It is increasing in the number of
sources |S| and decreasing in the noise parameter σ . For instance, it is pideal ≈ 0.868
if |S| = 5 and σ = 2.

Access Competence is very demanding. For example, with |S| = 5 sources the
access probability ps→i must exceed 2−1/5 ≈ 0.87 for all persons i and sources s.
However, a deliberating group only needs a much weaker competence assumption.
Why?

4.2 Post-deliberation

Now suppose the group deliberates before voting. So, consider a share-absorb process.
To make the process apply to arbitrarily large group sizes n, we assume that its shar-
ing and absorbing probabilities (ps,i→, ps,i←)s∈S,i∈N run over the infinite population
N = {1, 2, ...}. We call the so-extended process a share-absorb process for an infinite
population. For any finite group {1, ..., n} ⊆ N (where n ≥ 1), the extended process
induces a standard share-absorb process for this group, defined by the (sub)family
of parameters restricted to persons from {1, ..., n}, i.e., (ps,i→, ps,i←)s∈S,i∈{1,...,n}.
This (sub)process generates a post-deliberation source set S+

i,n for each group mem-

ber i ∈ {1, ..., n}, and hence a post-deliberation opinion structure (x, (es), (S
+
i,n)),

with personal opinions o+
i,n , personal competences p+

i,n , a group opinion o+
maj,n , and

a group competence p+
maj,n . All these concepts are defined as usual. The extra index

‘n’ signals the dependence on the current group size n. Crucially, the same person
i can (and will) develop different post-deliberation opinions o+

i,n depending on the
size of the deliberating group: the larger the group, the more sources are shared,
hence absorbed. Note that personal post-deliberation competence grows with group
size: p+

i,n ≤ p+
i,n+1 ≤ p+

i,n+3 ≤ . . . This, however, does not automatically translate

into growth of majority competence p+
maj,n , because the new members may be less

competent. Still, our post-deliberation jury theorem brings positive news: majority
opinions are asymptotically ideal under a far weaker competence condition than the
pre-deliberation competence condition of Access Competence. This weaker compe-
tence condition pertains not just to people’s ability to access sources initially, but also
to their ability to absorb sources during deliberation. We use the label ‘acquisition’ to
refer to both phenomena, initial access and later absorption:

Acquisition Competence: Informally, for all persons i and sources s, the person
has a high access probability ps→i or a high absorbing probability ps,i← (or both).
Formally, for all persons i ∈ N and sources s ∈ S, the product (1− ps→i )(1− ps,i←)

is at most 1 − 2−1/|S| − ε, for some ε > 0 independent of i and s.

Crucially, if people violateAccessCompetence because of too low access probabili-
ties, they can still satisfyAcquisitionCompetencebecause their absorbingprobabilities
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canmake up for their low access probabilities.Deliberation gives thema second chance
to acquire sources. Formally:

Proposition 1 Acquisition Competence is strictly weaker than Access Competence.

Proof Given Access Competence, Acquisition Competence holds because, for any
i ∈ N and s ∈ S, (1 − ps→i )(1 − ps,i←) ≤ 1 − ps→i ≤ 1 − 2−1/|S| − ε, where
the second ‘≤’ uses Access Competence. Acquisition Competence is strictly weaker
because under many parameter constellations only Acquisition Competence holds
(example: ps→i = 0 and ps,i← = 1 for all s and i). �

Our result also uses a minimal condition on participation: new group members do
not stop sharing in the limit. This ensures that larger groups have a richer, more
diverse deliberation. Technically, recall that ps,i→ represents the conditional sharing
probability given that the source was accessed in the first place. Our condition pertains
instead to the unconditional sharing probability, i.e., the probability of accessing and
sharing the source, ps→i × ps,i←. We now state our condition, followed by the jury
theorem.

Non-Vanishing Participation: For each source s ∈ S, the probability that a person i
accesses and shares s, ps→i × ps,i→, does not tend to 0 as i → ∞.6

Post-Deliberation Jury Theorem: Given a simple opinion structure (x, (es), (Si ))
and a share-absorb process, both for an infinite population, the post-deliberation
majority competence p+

maj,n

(a) is at most the ideal competence pideal , and less than it under Imperfect Access,
(b) converges to the ideal competence pideal as n → ∞ under Acquisition Compe-

tence and Non-Vanishing Participation.

By this theorem, the interplay of deliberation and group increase makes the group
opinion asymptotically ideal under interesting conditions. Going beyond ideal group
opinions remains impossible, nomatter howmuch the groupdeliberates or is increased,
because of objectively limited evidence.

An upshot is that deliberation can lead to asymptotically ideal majority opinions
even when people are very bad at accessing sources (so that Access Competence fails),
provided that during deliberation they absorb sources well enough and participate at
least minimally, i.e., Acquisition Competence and Non-Vanishing Participation hold.

4.3 Closing the competence gap: by deliberation or group increase?

Group competence usually falls short of ideal competence. The difference pideal −
pmaj defines the competence gap. To reduce it, two instruments are available: delib-
eration and group increase. How do they complement one another? Recall that the
efficient opinion is the opinion based on the available source set ∪n

i=1Si , denoted
oe f f ,n or just oe f f ; its correctness probability is the efficient competence, denoted
pef f ,n or just pef f . Now the competence gap pideal − pmaj decomposes into the sum
of two gaps:

6 This holds for instance if all ps→i and ps,i→ exceed some fixed level ε > 0.
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• The efficiency gap is the gap from the actual to the efficient competence, pef f −
pmaj , which stems from imperfect use of available evidences.

• The information gap is the gap from the efficient to the ideal competence, pideal −
pef f , which stems from the unavailability of some evidences.

Deliberation is an attempt to reduce the efficiency gap. It cannot reduce the information
gap because it does not ‘discover’ new sources (formally, because the new available
set ∪n

i=1S
+
i is no larger than the old one ∪n

i=1Si ).
7 The information gap can instead

be reduced by increasing group size. Indeed, pef f ,n converges to pideal as n → ∞,
under the minimal assumption that the access probability ps→i does not converge
to 0 as i → ∞. The reason is that, under this assumption of ‘non-vanishing access
competence’, each source is ultimately accessed by someone when adding persons.8

Increasing the group can also reduce the efficiency gap; it even closes this (and the
other) gap asymptotically under the fortunate conditions of Access Competence, by
the Pre-Deliberation Jury Theorem. But normally Access Competence fails, and a
mere group size increase cannot close the efficiency gap—which calls for deliberation.
Figure3 shows how deliberation and group size affect both competence gaps, for some
typical parameter values chosen such that Access Competence fails while Acquisition
Competence holds.9 The efficiency gap shrinks considerably through deliberation,
as is seen by comparing the pre- and post-deliberation plots. The information gap is
deliberation-invariant but shrinks when adding persons, due to increasing available
evidence. The ideal competence pideal (top line) represents a hard upper bound; it is
well below 1, underscoring the objective limitation of evidence. The efficiency gap
persists at all group sizes without deliberating (left) but disappears asymptotically
with deliberating (right). Exactly this was expected from our jury theorems, as Access
Competence fails but Acquisition Competence holds.

5 Failures 1 and 2 analysed formally

Jury theorems do not reveal the concrete mechanism by which deliberation helps
or harms. We argue that the reduction or increase of Failures 1–3 are part of this
mechanism.

Failures 1–3 are processing failures: anomalies in how information is processed.
Processing failures should be contrasted with outcome failures: deviations of majority
outcomes from efficient decisions. Intuitively, processing failures promote outcome
failures. The results of this section substantiate this conjecture for Failures 1 and 2,
by establishing formal links between these processing failures and ‘bad’ majority
decisions. We first define numerical proxies of Failures 1 and 2 (Sect. 5.1), and then

7 Under a broader concept of deliberation (formalised in Sect. 7), deliberation can also discover sources
that nobody held initially, and thereby help close also the information gap. This would strengthen the case
for deliberation further.
8 With probability one, the available source set ∪n

i=1Si converges to the full set S as n → ∞.
9 Specifically, |S| = 5, σ = 2, ps→i = 0.2, ps,i→ = 0.5 and ps,i← = 0.85. Access Competence fails
as ps→i < 2−1/|S| ≈ 0.871. Acquisition Competence holds as (1 − ps→i ) × (1 − ps,i←) = 0.12 <

1 − 2−1/|S| ≈ 0.129. The values in Fig. 3 were computed using Monte Carlo simulations.
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Fig. 3 How both competence gaps depend on deliberation and on group size (‘e-gap’ is short for ‘efficiency
gap’, ‘i-gap’ for ‘information gap’)

show how both failures lead to inefficient majority decisions (Sect. 5.2). Failure 3 is
set aside for now.

5.1 Imbalancemeasures as proxies of Failures 1 and 2

Failures 1 and 2 reflect two forms of imbalance—either between sources (with different
spread) or between persons (with unequal evidence). How can both forms of imbalance
be measured?

Spread imbalance. Each source s is accessed by some set of persons, to be denoted
Ns = {i : s ∈ Si }. The spread of a source s is the number of source owners #Ns . The
absolute variation of spread between two distinct sources s and t is |#Ns − #Nt |. The
relative variation is more relevant. It is calculated by dividing the absolute variation
|#Ns − #Nt | by the average spread 1

2 (#Ns + #Nt ). Here and elsewhere, divisions of 0
by 0 are handled by setting 0

0 = 0. Now the spread imbalance is the average relative
variation of spread across all pairs of distinct sources:

SI = 1

|S| (|S| − 1)

∑

(s,t)∈S2:s �=t

‘imbalance in spread between s and t’

= 1

|S| (|S| − 1)

∑

(s,t)∈S2:s �=t

|#Ns − #Nt |
1
2 (#Ns + #Nt )

.

Here |S| (|S| − 1) is the number of pairs (s, t) of distinct sources.10

Interpersonal imbalance. Each person i has some total evidence, to be denoted
Ei = ∑

s∈Si es . Her evidence strength is her absolute total evidence |Ei |. The absolute
variation of evidence strength between two distinct persons i and j is

∣
∣|Ei | − ∣

∣E j
∣
∣
∣
∣.

10 An alternative definition of SI restricts attention to available sources, by replacing each ‘S’ in the formula
defining SI with ‘∪iSi ’.
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What matters is, however, the relative variation of evidence strength, obtained by
dividing the absolute variation

∣
∣|Ei | − ∣

∣E j
∣
∣
∣
∣ by the average strength 1

2

(|Ei | + ∣
∣E j

∣
∣
)
.

The interpersonal imbalance is the average relative variation of evidence strength
across all pairs of distinct persons:

II = 1

n(n − 1)

∑

(i, j)∈N2:i �= j

‘imbalance in evidence strength between i and j’

= 1

n(n − 1)

∑

(i, j)∈N2:i �= j

∣
∣|Ei | − ∣

∣E j
∣
∣
∣
∣

1
2 (|Ei | + ∣

∣E j
∣
∣)

.

Here, n(n − 1) is the number of pairs (i, j) of distinct persons.

The imbalance indices as proxies of processing failures. We will use the two
imbalance indices—spread imbalance and interpersonal imbalance—as proxies for
the extent of Failure 1 and 2, respectively. The rationale is simple: Failure 1 (‘over-
counting widespread evidence’) occurs to the extent that evidences have differently
strong spread, which is measured by spread imbalance, and Failure 2 (‘neglecting
evidential inequality’) occurs to the extent that there is evidential inequality, which is
measured by interpersonal imbalance.

5.2 How Failures 1 and 2 harm voting outcomes

In the presence of Failures 1 or 2, majority outcomes can be inefficient: they can
respond suboptimally to the evidence scattered across voters. Let us see why. Con-
sider a simple opinion structure. Majority rule is inefficient at an evidence profile
((es)s∈Si ) (a value of ((es)s∈Si )) if the majority opinion omaj differs there from the
efficient opinion oe f f , which is based on the group’s available evidence (es)s∈∪iSi (see
Sect. 3.3). Failures 1 and 2 can each lead to inefficiency, and do so without the other
failure:

Proposition 2 Given a simple opinion structure with non-zero access probabilities
and at least two sources and persons,

(a) the majority opinion is inefficient at some evidence profile at which SI > 0 and
II = 0, i.e., at which Failure 1 occurs without Failure 2,

(b) the majority opinion is inefficient at some evidence profile at which II > 0 and
SI = 0, i.e., at which Failure 2 occurs without Failure 1.

Intuitively, a majority selects the inefficient decision for two different reasons:

• In (a), strong evidence in one direction is spread less widely than weak opposite
evidence, without any evidential inequality between voters.

• In (b), a minority of voters holds strong total evidence in one direction while a
majority holdsweak total evidence in the opposite direction,without any difference
in spread between single evidences.
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Less technically inclined readers might skip the rest of this subsection. Proposition
2 leaves open the frequency of inefficiencies under Failure 1 or 2. Such inefficien-
cies happen in abundance. We will show this by focusing on a more basic property
than efficiency. We call majority rule epistemically monotonic if, informally speaking,
additional evidential support for an option never harms this option: if the evidence
profile changes from ((es)s∈Si ) to ((e′

s)s∈S′
i
) such that one option becomes more prob-

ably correct, then the majority outcome does not change towards the other option. Two
restricted forms of epistemic monotonicity are monotonicity in evidence and mono-
tonicity in sources, defined by restricting the monotonicity condition to particular
changes of the evidence profile, namely changes of the evidences es only (fixing the
source sets Si ) resp. changes of the source sets Si only (fixing the evidences es). All
these definitions are re-stated formally in Appendix D.

Any monotonicity violation leads to an inefficiency, as shown in the appendix:

Remark 1 A violation of epistemic monotonicity at a pair of evidence profiles implies
inefficiency at one of both of these profiles.

Failures 1 and 2 can lead to different violations of monotonicity (and thus of effi-
ciency). This is shown by the following propositions, which will be re-stated formally
in the appendix to clarify the meaning of ‘sufficiently strongly’ and ‘almost every’:

Proposition 3 (informally stated) Given a simple opinion structure with non-zero
access probabilities and at least three sources,

(a) each evidence profile at which Failure 1 occurs ‘sufficiently strongly’ leads to
a violation of monotonicity in evidence when paired with some other evidence
profile,

(b) ‘almost every’ evidence profile leads to a violation of monotonicity in evidence
when paired with some evidence profile at which Failure 2 occurs ‘sufficiently
strongly’.

Proposition 4 (informally stated) Given a simple opinion structure with non-zero
access probabilities and at least three persons,

(a) ‘almost every’ evidence profile leads to a violation ofmonotonicity in sources when
paired with some evidence profile at which Failure 1 occurs ‘sufficiently strongly’,

(b) ‘almost every’ evidence profile leads to a violation ofmonotonicity in sources when
paired with some evidence profile at which Failure 2 occurs ‘sufficiently strongly’.

6 A typology of beneficial and harmful deliberation

This section uses Monte Carlo simulations to help us understand how deliberation can
mitigate (or worsen) Failures 1 and 2, and ultimately raise (or lower) group compe-
tence. After brief preliminaries (Sect. 6.1 ), we will see that share-absorb processes
perform well in baseline scenarios (Sect. 6.2). We then identify four harmful scenarios
(Sect. 6.3), an analysis of which suggests that deliberation should be ‘participatory’
and ‘neutral’, but not necessarily ‘equal’ (Sect. 6.4).
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6.1 Preliminaries to the simulations

Resulting vs. systemic failures. Our simulation-based analysis will take an ex-ante
rather than ex-post perspective on Failures 1 and 2. In what sense? Our indices SI
(spread imbalance) and II (interpersonal imbalance) measure the resulting or ex-post
imbalance, i.e., the imbalance created as an outcome of the particular values taken by
the source sets Si and evidences es . By contrast, the systemic or ex-ante imbalance is
the tendency towards resulting imbalance, to be measured by the expected resulting
imbalance, denoted SI = E(SI) resp. II = E(II).

Failures 1 and 2 (and even 3) can indeed be understood either as ‘resulting’ (ex-post)
failures or as ‘systemic’ (ex-ante) failures, i.e., tendencies towards resulting failures.
Which understandingmatters is context-dependent.While Sect. 5 focused on resulting
failures, using the proxies SI and II, the current simulation-based section will focus
on systemic failures, using the proxies SI and II.
Our simulation setting.All simulations apply share-absorb processes to simple opin-
ion structures (x, (es), (Si )). Previous notation applies. We shall estimate the old and
new group competence pmaj and p+

maj , and the old and new failure proxies SI, SI+,
II and II+—under various parameter constellations. In principle, one could vary
all model parameters: the group size n, source number |S|, noise parameter σ , access
probabilities ps→i , sharing probabilities ps,i→, and absorbing probabilities ps,i←.
While we have explored several parameter constellations privately, we only report
results that vary the parameters ps→i , ps,i→ and ps,i←, while assuming that n = 9,
|S| = 5 and σ = 2 (one exception will be highlighted). These choices of n, |S|
and σ are rich enough for making meaningful comparisons, and limited enough for
inspecting results visually and keeping computational costs low. Our private robust-
ness checks for other values of n, |S| and σ suggest that not much is lost by focusing on
our particular values of n, |S| and σ .11 Our estimates are obtained by taking averages
over 1,000,000 rounds of Monte Carlo simulation (our Python code is available as
Supplementary Material).

6.2 Beneficial deliberation in baseline cases

We now present simulation results. They will show that share-absorb processes can
generate diverse but not erratic aggregate phenomena, which can be systematised,
explained, and exploited for recommendations. The current subsection treats cases
of beneficial deliberation; the next two subsections turn to harmful deliberation and
recommendations.

We call a share-absorb process:

• neutral if its parameters are source-independent. Intuitively, no evidence is privi-
leged.

• equal (or anonymous) if its parameters are person-independent. Intuitively, every-
one takes part equally in deliberation.

11 Other values of n, |S| and σ affect the extent and frequency of harmful outcomes, but seem not to add
entirely new types of harmful deliberation.

123



Deliberation and the wisdom of crowds

Fig. 4 Results for neutral, equal and participatory deliberation

Fig. 5 Examples of the four harmful types of deliberation

The labels ‘neutral’ and ‘equal’ can also be applied to sharing alone, or to absorb-
ing alone, or to access, meaning that the corresponding parameters are source- resp.
person-independent. Finally, deliberation is:

• participatory if every person i shares substantially, in the sense that her average
sharing probability 1

|S|
∑

s∈S ps,i→ exceeds some threshold δ (of for instance 0.5).
For neutral deliberation this condition simplifies: every person i has a (source-
independent) sharing probability of ps,i→ > δ. There are stronger and weaker
notions of ‘participatory’, depending on the choice of δ.

Figure4 gives examples of howdeliberation performs in the baseline case of neutral,
equal and participatory scenarios. Here ps→i , ps,i→ and ps,i← are all independent of
s and i , leaving us with just three parameters to vary.

In all these scenarios, deliberation raises majority competence and reduces Failure
2. Deliberation occasionally raises Failure 1, as SI grows in Scenario 1.4, but the
effect does not dominate since group competence still grows.

6.3 Four types of harmful deliberation

Outside the neutral, equal and participatory baseline case, deliberation can become
harmful, i.e., lower majority competence. We have identified four elementary types
of harmful deliberation; these types and some ‘hybrid’ types that combine them seem
to exhaust the space of harmful share-absorb processes (except for degenerate cases
discussed in Sect. 6.4). Figure5 gives an example of each elementary harmful type.
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Remarkably, in all four examples deliberation raises Failure 1, not 2: deliberation
harms by raising source imbalance, not evidential inequality. We now discuss the four
elementary harmful types. By a ‘scenario’ we mean a parameter constellation, i.e., a
family of access, sharing and absorbing probabilities (ps→i , ps,i→, ps,i←)

Type 1: some private-evidence scenarios.Deliberation harms in some of the scenar-
ios in which most or all members have few or no evidences in common: their source
sets have little or no overlap. This happens in Scenario 2.1, in which each person i
accesses only one source si , i.e., Si = {si } for sure, with si �= s j if i �= j . (To model
this scenario, we let |S| equal n = 9 rather than 5.) Part of why deliberation can harm
in such scenarios is that the group is already highly competent pre-deliberation. Why?
For one, the lack of source overlap creates (state-conditional) independence between
votes, so that the law of large numbers kicks in already for relatively small n, lifting
majority competence close to 1. For another, Failure 1 is fully absent in scenario 2.1:
each source is accessed by exactly one voter. Deliberation unsettles this fine balance,
creating dependence between voters as well as Failure 1. Whether this then reduces
majority competence, as it does in Scenario 2.1, depends on the precise parameters.12

Scenario 2.1 is of special interest because it yields the classic Condorcet jury set-
ting.13 It is essentially Austen-Smith and Banks’ (1996) standard jury model, which
follows Condorcet but adds the previously implicit informational basis of opinions.14

Two insights follow. First, since Scenario 2.1’s access structure is artificial, classic
jury theorems implicitly rely on an implausible opinion structure. Second, this implicit
assumption has skewed the debate about the relevance of deliberation for voting: the
cards have been stacked against deliberation. Deliberation is far more useful in reality
than is being suggested by classic jury settings. Authors who find that deliberation is
useful indeed often work in less classical settings (e.g., Barelli et al. 2022 consider
complementary evidence, as discussed in Sect. 8.1).

Type 2: some non-participatory scenarios. Deliberation harms in some of the sce-
narios in which many voters have low average sharing probability. An example is
Scenario 2.2. Here, everyone shares any source with probability of only 0.1. Although
Scenario 2.2 is equal and neutral in both access and deliberation, deliberation sur-
prisingly harms majority competence, driven by rising spread imbalance (Failure 1).
By the combination of low sharing and high absorbing, deliberation puts very few
evidences on the table; these are then widely absorbed and become overinfluential,
letting Failure 1 rise.

Figure6 gives an example ofwhat can happen: only one source s3—withmisleading
evidence—comes on the table, and spreads fully. Thin arrows indicate initial access,
thick arrows indicate new post-deliberation access. The evidence values and post-
deliberation opinions are as displayed. The correct option being 1, source s3 supports

12 If for instance all sharing and absorbing probabilities are close to one, deliberation is beneficial, as it
tends to give everyone all available information.
13 It implies Condorcet’s controversial assumptions of voter independence and homogeneous competence:
voters have independent and identical probabilities above 1

2 of holding a correct opinion.
14 Scenario 2.1 andAusten-Smith andBanks’model both let voters access (state-conditionally) independent
evidences of homogeneous quality. Scenario 2.1 differs from Austen-Smith and Banks’ model in that
evidences are Gaussian rather than binary. But this difference is small if each voter has a single evidence
and hence need not aggregate different evidences.
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Fig. 6 An epistemically harmful outcome of neutral deliberation

the incorrect option, namely−1. By spreadingmisleading evidence, deliberation turns
a correct majority opinion omaj = 1 into an incorrect one o+

maj = −1. But total
available evidence is non-misleading: es1 + · · · + es5 > 0. So the problem lies in the
evidence management, not the evidence availability.

Types 3 & 4: some non-neutral-sharing or non-neutral-absorbing scenarios:
Deliberation harms in some of the scenarios in which sources are shared non-neutrally
(see Scenario 2.3) or absorbed non-neutrally (see Scenario 2.4). The origin of the
problem is in plain sight: some evidences spread overly compared to others, being
over-shared or over-absorbed. Deliberation creates a bottleneck where few evidences
become dominant, which feeds into Failure 1 and possibly lowers majority compe-
tence. The effect is at its worst if very few or just one evidence is put on the table
(Scenario 2.3) or picked up (Scenario 2.4).

Although the four harmful scenarios differ structurally, they share two features.
First, members have low access probability on average; otherwise enough evidence is
available to prevent the negative deliberation effects identified. Second, as mentioned,
deliberation always harms through raising Failure 1, not 2. We did privately identify
some rare scenarios where deliberation raised Failure 2, but this never translated into
falling majority competence unless also Failure 1 rose. So the drawbacks of a delib-
erative rise in Failure 2 seem to be compensated by a deliberative reduction in Failure
1 whenever existent.

6.4 Recommendations and discussion

Our analysis yields a clear-cut recommendation: the group should engage in par-
ticipatory and neutral deliberation, as a means to improve group decisions. Such
deliberation is characterised by source-independent sharing and absorbing proba-
bilities ps,i→ ≡ pi→ and ps,i← ≡ pi← (‘neutral’) and a sufficiently high pi→
(‘participatory’). More precisely, our analysis warrants the following general conjec-
ture:
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Conjecture: Deliberation in the form of a participatory and neutral share-absorb
process improves collective competence, given any plausible simple opinion structure
as the starting point.

The Conjecture is warranted because participatory and neutral deliberation blocks
the four harmful types of scenario: Types 1 and 2 are only little participatory, and
Types 3 and 4 are non-neutral. The Conjecture excludes ‘implausible’ initial opinion
structures, as participatory and neutral deliberation can be non-beneficial for certain
highly artificial access parameters. Two such settings stand out. First, deliberation has
no effect at all if all sources are certainly accessed by everyone, or more generally
if some sources are certainly accessed by everyone and the other sources are never
accessed by anyone; in such cases everyone has the same source set, hence learns
nothing in deliberation. Second, if some minority of persons certainly accesses the
same sources (at least one source) while everybody else never accesses any source,
thendeliberation harms, because the pre-deliberationmajority opinion is theminority’s
opinion (as the other persons abstain), and this opinion is efficient by being based on
all available evidence, whereas the post-deliberation majority opinion can become
inefficient.

This second scenario also helps us understand whether deliberation is more bene-
ficial if there is evidential ex-ante inequality between voters. Ex-ante inequality is
inequality prior to observing evidence. Technically, the group is ex-ante equal if
the access-probabilities ps→i are person-independent.15 One might conjecture that
deliberation is particularly important under ex-ante inequality, since more ‘evidential
equalization’ work is then to be done. Investigating this conjecture goes beyond this
paper’s remit. We can however exclude that the conjecture holds in full generality: in
the second scenario, ex-ante inequality is high and yet deliberation can be harmful (and
would become beneficial if people’s access probabilities were suitably equalized).

The asymmetry between deliberative effects onSI andII is remarkable: according
to the simulations, SI may well increase, which then often harms the majority com-
petence, whereas II rarely increases, and when it does then the majority competence
is not harmed (except if also SI increases). What explains this asymmetry? Under a
share-absorb processes,SI has an intrinsic tendency for self-reinforcement, because a
source that is spread more than others is usually more likely to be shared by someone,
and hence often more likely to be newly absorbed by someone (although this tendency
is frequently counterbalanced by the fact that highly spread sources have less potential
for additional spread). And such an increase in SI may be collectively harmful, as
few evidences come to dominate the decision. By contrast, a self-reinforcement mech-
anism is harder to identify for II: there is usually no systematic reason for someone
with stronger evidence to gain more evidence than others through deliberation—on
the contrary, deliberation may allow others to catch up in evidence strength, reducing
II. And if II nonetheless increases, then the majority competence need by no means
fall, since no evidence was necessarily overcounted. Rather some voter was under-
counted (by neglecting her evidential superiority). A raise in II does not tend to make
majority outcomes worse, but rather tends to make majority rule a worse voting rule
in comparison, since voters become more heterogeneous in competence and thus rival

15 A different (weaker) notion of ex-ante inequality is that II �= 0.
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voting rules with competence-sensitive voting power suddenly perform much better
than majority rule.

7 A Generalised Framework

Important real phenomena go beyond the framework used above, with respect to both
opinion formation and deliberation. To name just a few limitations, simple opinion
structures preclude irrational opinions (cf. Theorem 1) and a treatment of Failure 3 (as
will be seen). In addition, share-absorb processes preclude deliberative phenomena
such as discovery of sources outside everyone’s initial access, communication within
subgroups or networks, and sharing or absorbing with a bias towards some option. To
capture such phenomena and prepare our analysis of Failure 3, we now generalise our
model of opinion formation (Sects. 7.1 and 7.2) and deliberation (Sect. 7.3).

7.1 General opinion structures

No major departure from simple opinion structures (x, (es), (Si )) is needed to model
opinion formation very generally. It suffices to lift assumptions that were made ‘for
simplicity’. For instance, by no longer assuming that all es correlate with the state,
we can model irrational opinions that are affected by ‘noises’, i.e., state-independent
variables es without objective evidential value. This, for instance, allows modelling
verdicts of jurors influenced by the defendant’s skin colour, the room temperature, or
other noises. In general, (es) will then consist of ‘influences’, be they evidences or
noises. Further, by no longer assuming that all es followGaussian distributions, we can
model opinion formation as a discrete rather than continuous process, in the simplest
case driven by binary influences es taking only the values 1 (‘support for 1’) and −1
(‘support for −1’). In fact, we will not even require evidences to be real-valued.

Specifically, we will lift the three distributional assumptions (Equiprobable States,
Simple Gaussian Evidence, and Independent Sources), and we no longer assume that
a person i’s influences es (s ∈ Si ) are real numbers that are aggregated additively. So,
we replace the additive expression ‘

∑
s∈Si es’ with a general expression ‘g((es)s∈Si )’.

Here, g is called the ‘influence aggregator’ and is some function transforming any
influence bundle into a real number, the ‘total influence’. Simple opinion structures
implicitly assume real-valued evidences and an additive influence aggregator g given
by

g((es)s∈S′) =
∑

s∈S′
es

for any influence bundle (es)s∈S′ over any source set S′ ⊆ S.
Formally, a (general) opinion structure is thus a quadruple (x, (es)s∈S, (Si )i∈N , g),

in short (x, (es), (Si ), g), that contains:

(1) a random variable x, the state or correct option, taking the value 1 or −1 with
arbitrary non-zero probabilities;
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(2) a family (es), indexed by some set S of sources (non-empty and finite), consisting
of random variables, the influences from these sources, where each es ranges over
some (discrete or continuous) space Es ;

(3) a family (Si ), indexed by some set N = {1, ..., n} of persons (1 ≤ n < ∞),
consisting of random subsets of S, the source sets of these persons, again with
arbitrary distributions;

(4) a function g, the influence aggregator,mapping any influence bundle (es )s∈S′ (S′ ⊆
S) to its ‘total influence’ g((es)s∈S′) (technically, a function from ∪S′⊆S�s∈S′Es
to R that is measurable16).

Allowing influences es to take values other than real numbers offers additional
modelling flexibility, since influences such as arguments, sensory perceptions or even
‘moods’ naturally take non-numerical values.17

In the default case of an additive influence aggregator g with real-valued influences,
we abbreviate the opinion structure by ‘(x, (es), (Si ))’, leaving g implicit. Examples
of this are simple opinion structures, which moreover satisfy the three distributional
conditions. An influence es is called a noise if it is independent of the state x (even
conditional on the other influences), and an evidence otherwise.

As different influences can now be (state-conditionally) dependent, aggregating
(real-valued) influences additively can in fact be irrational. For instance, positively
dependent influences, say from similar sources, are best aggregated subadditively, to
avoid double-counting. It is now clear why our generalised notion of opinion structure
allows g to be non-additive: otherwise we would require irrational responses to corre-
lated evidences. Still, g could be additive, even for correlating evidences. In sum, our
model is very flexible and can capture irrational or rational opinions, formed using
simple heuristics or sophisticated evidence aggregation.

Our entire earlier machinery carries over to a general opinion structure (x, (es),
(Si ), g). The opinion of a person i is determined by her (now possibly non-additive)
aggregate influence:

oi =
⎧
⎨

⎩

1 ifg((es)s∈Si ) > 0
−1 ifg((es)s∈Si ) < 0
0 ifg((es)s∈Si ) = 0.

All other derivative concepts—notably the majority opinion omaj , personal com-
petence pi , majority opinion omaj and competence pmaj , ideal opinion oideal and
competence pideal , efficient opinion oe f f and competence pef f , and spread imbalance
SI or SI—keep their original definitions, except that the definition of interpersonal
imbalance II orII should be generalised by using g instead of summation to aggregate
personal influences. One should now more properly call (ei )i∈Si person i’s influence

16 The co-domain ∪S′⊆S�s∈S′Es carries the natural σ -algebra, i.e., the union σ -algebra of the spaces
�s∈S′Es (S′ ⊆ S), where each �s∈S′Es carries the product σ -algebra of the spaces Es (s ∈ S′).
17 For instance, arguments might take sentences as values. Simple opinion structures effectively capture
and represent an evidence by its degree of support for option 1 over option −1, which is indeed a real
number. General opinion structures allow modelling evidences and other influences as the ‘raw’ data or
phenomena that they initially are.
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bundle and call ((ei )i∈Si ) the influence profile, since the earlier labels ‘evidence bundle’
and ‘evidence profile’ neglect the possibility of non-evidential influences.

7.2 Rationality in general opinion structures

Less technical readers might skip this subsection. Part of the point of general opinion
structures was to allow for irrational influences on opinions, in the form of noise
rather than evidence. But let us return here to the fully rational paradigm of opinion
formation. In simple opinion structures, aggregating one’s evidences additively was
rational, by Theorem 1. What sort of non-additive aggregator g is rational in general
opinion structures with possibly correlated or even non-real-valued es’s? A general
Bayesian answer is that the total evidence contained in a bundle ((es)s∈S′) is the
log-likelihood-ratio

g((es)s∈S′) = log
fS′((es)s∈S′ |1)

fS′((es)s∈S′ | − 1)
, (3)

where, for each S′ ⊆ S, fS′(·|x) is a probability mass or density function of the
vector (es)s∈S′ given state x .18 A so-defined aggregator g creates classically rational
opinions (as defined in Sect. 3.2), assuming that Pr(x = 1) = 1

2 (‘Equiprobable
States’) and every person i’s source set Si is independent of the state and influences,
i.e., of (x, (es)s∈S) (a condition weaker than ‘Independent Sources’). The reason is,
in short, that the log-likelihood ratio of someone’s information exceeds 0 just in case
the likelihood-ratio exceeds 1, which happens just in case state 1 is more likely than
state −1, given the information.19

Let us give a concrete formula for g in the special case of a ‘generalised simple
opinion structure’, in which the ‘Simple Gaussian Evidence’ property is generalised
such that different evidences can be correlated and of different (expected) strength.
That is, the distribution of the evidences is still Gaussian, but with arbitrary means
and correlations, given the state. More precisely:

Generalised Gaussian Evidence: Given any state x ∈ {±1}, the evidences es (s ∈ S)
are real-valued with a multivariate Gaussian distribution on R

S with mean vector xμ
and covariance matrix �, for some vector μ = (μx )x∈S ∈ R

S and some positive-
definite matrix � = (�s,t )s,t∈S ∈ R

S×S (with μ and � independent of x).

Thus, given any state x ∈ {±1}, the evidences es are still Gaussian variables over
Ei = R, but now with any means E(es |x) = xμs (rather than the same mean of x)
and with any covariances given by the off-diagonal entries of � (rather than zero
covariance). The simple condition emerges if μs = 1 for all s ∈ S and �s,t = 0 for

18 Density functions are of course defined w.r.t. a measure on the co-domain �s∈S′Es of (es )s∈S′ , e.g., the
Lebesgue measure on R

S′
if all evidences are real-valued.

19 The second step uses Equiprobably States. The first step uses our independence assumption on each Si ,
which guarantees that a person i learns nothing about the state from Si , i.e., from the fact of which sources
she could access, so that only the es ’s carry information about the state. Without assuming Equiprobable
States, rational opinions are obtained through amending (3) by adding the prior log-odds log Pr(x=1)

Pr(x=−1) .
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s �= t while �s,t = σ 2 for s = t . The generalised condition will rationalise a non-
additive opinion formation in which each evidence bundle (es)s∈S′ ∈ R

S′
(S′ ⊆ S) is

aggregated into the total evidence of

g((es)s∈S′) = (μ|S′)T (�|S′)−1(es)s∈S′ , (4)

where (es)s∈S′ is the evidence bundle seen as a column vector, μ|S′ = (μs)s∈S′ is the
subvector of μ with dimensions in S′, again seen as a column vector, (μ|S′)T is its
transpose (a row vector), and �|S′ = (�s,t )s,t∈S′ is the submatrix of � with row and
column dimensions in S′ (an S′ × S′ matrix), and (�|S′)−1 is its inverse. One should
interpret (μ|S′)T (�|S′)−1(es)s∈S′ as 0 if S′ = ∅, i.e., if μ|S′ , (es)s∈S′ , and �|S′ are
degenerate 0-dimensional objects.

Formally, we call an opinion structure (x, (es), (Si ), g) generalised simple if it
satisfies Equiprobable States, Independent Sources, Generalised Gaussian Evidence,
and g is given by (4) or a positive multiple of (4). Of these four properties, the first
two are shared with simple opinion structures and the last two are more general.

Theorem 2 Under a generalised simple opinion structure (x, (es), (Si ), g), the opin-
ion oi of any person i is classically rational.

The rational evidence aggregator g given by (4) has some notable properties. First,
under a simple opinion structure, g reduces to the additive evidence aggregator up to
a multiplicative constant, i.e., g((es)s∈S′) = 1

σ 2

∑
s∈S′ es for all (es)s∈S′ .20 Second,

although g is usually non-additive, it is linear: g((es)s∈S′) is a linear combination of
the es’s (s ∈ S′). The coefficients reflect the means and correlations of evidences, to
account for evidence strength and avoid double-counting highly correlated evidences.

7.3 General deliberation processes

Deliberation may involve phenomena that go beyond a share-absorb process, such as:
(1) the discovery of entirely new arguments, aspects or other sources outside anyone’s
initial awareness (Goodin 2017; more generally: Müller 2018), (2) non-public delib-
eration, in subgroups or networks, or (3) evidence-sensitive (possibly biased) sharing,
where sources are shared only if they provide evidence of certain strength or direction.
While these three phenomena can be captured by suitably generalised share-absorb
processes, they call for a unified notion of ‘deliberation process’ that can accommo-
date these phenomena and others. We now spell out the three processes capturing
(1)–(3), before presenting our unified notion of ‘deliberation process’. Throughout
we presuppose an arbitrary initial opinion structure (x, (es), (Si ), g). The three gen-
eralised share-absorb processes (and later the unified process) each generate a new
source profile (S+

i ). How?

• Tomodel (1), we add a discovery stage to the share-absorb process, located between
sharing and absorbing. Here is an example of the three-stage process: two argu-
ments are shared, then this sparks the discovery of a third argument, and finally

20 Because in (4) μ|S′ consists of 1’s and �|S′ has diagonal entries σ 2 and off-diagonal entries 0, so that
(μ|S′ )T (�|S′ )−1 = 1

σ2 (1, . . . , 1).
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the three arguments on the table are selectively absorbed by members. Formally,
besides the usual sharing and absorbing probabilities ps,i→ and ps,i←, we intro-
duce probabilities pT→s of discovering a sources s ∈ S after a set of sources
T ⊆ S\{s} was shared. These sharing, absorbing, and discovering probabilities
jointly induce a share-discover-absorb process.21 This can, for instance, model
the likely discovery of an argument s after such-and-such arguments T are placed
on the table: just set the discovery probability pT→s high. Standard share-absorb
processes emerge if all discovery probabilities are zero.

• To model (2), we must capture sharing to, or absorbing from, a subgroup. For each
source s, person i , and subgroup J ⊆ N\{i}, consider probabilities ps,i→J and
ps,i←J that i shares s to J or absorbs s from J , respectively.These parameters again
induce a generalised share-absorb process. This can model not only deliberation in
subgroups or networks, but also biased absorbing, where someone absorbs more
easily from certain members than from others, perhaps out of prejudice.

• To model (3), the tendency to share or absorb must depend on the influence from
the source. For each source s, influence value e ∈ Es , and person i , consider
probabilities ps,e,i→ and ps,e,i← that person i shares (resp. absorbs) source s
emitting influence e. These parameters induce a generalised share-absorb process.
It can, for instance, model deliberation where only sufficiently strong influences
are transmitted: just set ps,e,i→ and ps,e,i← to zero if e is not ‘strong’ in some
sense. It can also model biased sharing, where some members i only share sources
whose evidence supports option 1 (so that ps,e,i→ = 0 if e supports −1) while
other members i do the opposite (so that ps,e,i→ = 0 if e supports 1). Biased
absorbing can be modelled analogously.

What, then, is our unified notion of ‘deliberation process’ that encompasses all these
specific processes and many others? A deliberation process is any transformation that
stochastically generates a newsource profile (S+

i )basedon individual inputs. The input
of a person i is anything she has access to, i.e.,maximally her influence bundle (es)s∈Si .
Formally, the process is any (measurable) function D that maps each initial influence
profile ((es)s∈Si ), i.e., each value of ((es)s∈Si ), to a lottery over source profiles (S+

i ),
i.e., profiles of subsets of S. The probability of an (S+

i ) represents how likely (S+
i )

emerges from deliberation, starting from the initial influence profile ((es)s∈Si ). The
process generates a new random source profile (S+

i ), defined as the random source
profile whose conditional distribution is D(((es)s∈Si )) given (x, (es), (Si )) (hence
also given ((es)s∈Si )). This generated source profile (S+

i ) is essentially unique, i.e., its
distribution is unique. More generally, the new opinion structure (x, (es), (S

+
i ), g) is

essentially unique, i.e., its (joint) distribution is unique.22

21 Based on an initial source profile (Si ), first persons i share their sources s ∈ Si with independent
probabilities of ps,i→; second, letting T be the set of sources shared, the non-shared sources s ∈ S\T are
discovered with independent probabilities of pT→s ; third, persons i absorb sources s that they did not own
and were shared or discovered with independent probabilities of ps,i←.
22 That is, if (S+

i ) and (̂S+
i ) are each generated by D, then (x, (es ), (S

+
i )) and (x, (es ), (̂S

+
i )) have the

same (joint) distribution.
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8 Evidential complementarity and Failure 3

Failure 3 arises when some sources emit mutually complementary evidences and this
complementarity is underappreciated because few or no voters access all these sources
simultaneously. The generalised framework permits modelling complementarity and
addressing Failure 3. We begin with illustrations (Sect. 8.1) and then turn to a more
systematic analysis (Sect. 8.2).

8.1 Some illustrations

Let us start with two brief illustrations of complementarities leading to Failure 3. First,
consider the generalised simple opinion structure of Sect. 7.2.Here, evidences combine
linearly: the total support for option 1 contained in an evidence bundle (es)s∈S′ ∈ R

S′

(S′ ⊆ S) is a linear combination

g((es)s∈S′) =
∑

s∈S′
as,S′es, (5)

for certain coefficients as,S′ ∈ R (s ∈ S′ ⊆ S).23 Complementaries arise once the
weight as,S′ attributed to an evidence es depends on S′, hence on the kind of other
evidences available. If for instance as,{s}, as′,{s′} > 0 but as,{s,s′}, as′,{s,s′} < 0, then
the evidences es and es′ will (if positive) support option 1 when taken in isolation, but
support option −1 when combined. Failure 3 lurks: voters accessing just one of these
sources (say, pre-deliberation) fail to use this complementarity.

Second, hidden common causes can often create correlations and ultimately com-
plementarities between evidences, leading to Failure 3 if voters fail to access the
complementarities. An insightful illustration of this can be found in Barelli et al.’s
(2022) general analysis of voting (in)efficiency under private information. Adapting
one of their examples, a group votes on whether to select (option 1) or dismiss (option
−1) a political candidate. The candidate stands somewhere on a political left-right
axis. We represent her position by a random variable z on R, with some symmetric
distribution around 0 (z will act as a common cause). As is agreed, acceptance (1)
is correct just in case the candidate is non-extreme, i.e., her position z falls into the
interval [−10, 10] of centrist positions. So, x = 1 if |z| ≤ 10 and x = −1 if |z| > 10.
Each voter i observes a single noisy signal about the candidate’s position, represented
by an evidence esi = z + εi , where εi is an ‘error’ variable, which is distributed
symmetrically around 0 (and is independent of z). Each voter i thus accesses a sin-
gle source: Si = {si } with probability 1. She votes for 1 just in case her evidence
is ‘non-extreme’, i.e.,

∣
∣esi

∣
∣ is small enough. While the details depend on the exact

distributional assumptions, it is clear that this sort of opinion structure normally leads
to significant complementarities: two persons i and j can each own evidence for an
extreme candidate (−1) while the combined evidence suddenly supports the opposite
(1): just imagine esi � 0, es j � 0 and esi + es j ≈ 0. Such unused complementarities

23 In the notation of Sect. 7.2, given any S′ ⊆ S, the numbers as,S′ (s ∈ S′) are the components of the row

vector (μ|S′ )T (�|S′ )−1; in short, ((as,S′ )s∈S′ )T = (μ|S′ )T (�|S′ )−1.
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can translate into inefficient voting outcomes – Failure 3 in action. Barelli et al. suggest
that such settings call for deliberation. We agree: deliberation tends to reduce Failure
3 by uncovering complementarities.24

8.2 Amore systematic analysis

What exactly is evidential complementarity, and why does deliberation robustly
mitigate Failure 3? Informally, different evidences are ‘complementary’ if their
combination contains different information from the aggregate information of these
evidences in isolation. In short: the information in aggregate evidence differs from
the aggregate information in evidence. For instance, two complementary arguments
might be inconclusive in isolation but conclusive in combination, leading to Failure 3
if each voter owns just one of the arguments.25

Instead of defining a measure of Failure 3 (as done for Failures 1 and 2), let us
define what an instance of Failure 3 is. The definition will first be stated loosely:

Informal Definition: Failure 3 occurs over a set of sources S′ if (the evidence from) S′
is complementary and dispersed.26

What does it mean to be ‘complementary’ and ‘dispersed’?We leave ‘complementary’
unspecified for a moment. We call S′ dispersed if all sources in S′ are available
to the group but not to all members, i.e., S′ ⊆ ∪iSi but S′

� Si for at least one
person i . So, someone or even everyone does not fully access S′, hence fails use the
complementarity in (es)s∈S′ (if any). Worse, fewer persons use this complementarity
than use any given evidence in (es)s∈S′ , because anyone who fully accesses S′ must
access any given s ∈ S′. So, the complementarity is underused compared to isolated
evidences. Exactly this constitutes the failure. The parallel to Failure 1 is clear: While
in Failure 1 some evidence is less accessed and thus underappreciated, in Failure 3
some complementarity is less accessed and thus underappreciated.

Now assume deliberation creates a new source profile (S+
i ), following any mono-

tonic deliberation process, e.g., a share-absorb process or one of its three extensions
in Sect. 7.3. ‘Monotonic’ means that nobody loses sources: Si ⊆ S+

i for all persons
i . How is Failure 3 affected? The good news is: Failure 3 occurs over fewer source
sets S′. Why? While deliberation does not affect the complementarity of S′, it may
eliminate the dispersion of S′ by transforming people’s partial access to S′ into full
access. The opposite effect is impossible, since monotonic deliberation never reduces
anyone’s access to sources.

There is a caveat to the claim that monotonic deliberation reduces Failure 3: if
deliberation can discover new sources—so that ∪iS

+
i grows beyond ∪iSi , as is possi-

24 Barelli et al.’s analysis goes much further, by identifying general conditions on the information structure
and/or voters’ shared utilities such that voting outcomes are asymptotically efficient.
25 As discussed in Sect. 3.5, our framework allows not only for lack of information, but also more radically
for unawareness, though without explicitly modelling it. Unawareness of unowned evidence usually comes
with unawareness of complementarities between owned and unowned evidence. In creating awareness of
new evidence, deliberation also brings the complementarity between old and new evidence to awareness.
26 In saying ‘evidence’ rather thanmore generally ‘influence’,we anticipate that a (proper) complementarity
can only exist between evidences, not noises, as will become clear.
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ble for certain deliberation processes such as share-discover-absorb processes—then
deliberation can create a Failure 3 over particular sets S′, namely sets S′ that contain
newly discovered source from ∪iS

+
i \ ∪i Si . But this fact can hardly count against

deliberation, since the group’s initial avoidance of Failure 3 over such sets S′ came
merely from not yet having discovered part of S′.

The complementarity of an evidence bundle (es)s∈S′ can be given a precise statis-
tical meaning. How? The central tool is that of information. For any evidence bundle
(es)s∈S′ , consider a real number in f o((es)s∈S′) representing the information in (es)s∈S′
about the state, i.e., the evidential support for state 1 against state −1. This num-
ber could be g((es)s∈S′), the aggregate evidence according to the opinion structure,
or it could be ‘statistical information’ according to one of the powerful approaches
developed in statistics – it will be both if the opinion structure models ‘statistically
rational’ opinion formation. According to the most canonical statistical approach,
the information in (es)s∈S′ is defined by the likelihood-ratio, or equivalently (after
changing to a logarithmic scale) by the logarithm of its likelihood-ratio. We adopt this
approach. Thus, we define an information function induced by the opinion structure
(x, (es), (Si ), g) (or simply by (x, (es))) as a function in f o that maps each evidence
bundle (es)s∈S′ in ∪S′⊆S�s∈S′Es to a real number given by

in f o((es)s∈S′) = log
fS′((es)s∈S′ |1)

fS′((es)s∈S′ | − 1)
(6)

if fS′((es)s∈S′ |1), fS′((es)s∈S′ | − 1) �= 0, where, for each source set S′ ⊆ S, fS′(·|x)
is a joint probability density or mass function of the bundle (es)s∈S′ conditional on
the state x (with respect to some measure over �s∈S′Es). For instance, fS′(·|x) could
be a multivariate Gaussian density function over R

S′
, if evidences are Gaussian. The

likelihood-ratio captures how much more likely state 1 makes the bundle than state
−1. If this ratio is above (resp. below, equal to) 1, then in f o((es)s∈S′) is positive
(resp. negative, zero), indicating support for 1 (resp. for −1, for neither). When S′ is a
singleton set {s}, then we simply write ‘in f o(es)’ and talk of the ‘information in es’.

We call the source set S′ or the evidence bundle (es)s∈S′ complementary if the
combined information in f o((es)s∈S′) differs from the total isolated information∑

s∈S′ in f o(es). Such complementarity is ruled out if evidences are state-conditionally
independent.27 This is why simple opinion structures rule out Failure 3.

The complementarity of a set S′ can be improper, being merely inherited from that
of some subset S′′

� S′. If for instance three evidences are complementary merely
because the first two are complementary while the third is independent, then the triple
is improperly complementary. A formal definition of Failure 3 must rule out improper
complementarity of S′, since there is obviously no real neglect of complementarity
if an improperly complementary set S′ is not fully accessed whilst its properly com-
plementary subsets are fully accessed. Formally, a complementary set S′ is properly
complementary if each non-empty strict subset S′′ of S′ is complementary with the
rest of S′, i.e., in f o((es)s∈S′) �= in f o((es)s∈S′′) + in f o((es)s∈S′\S′′).

27 Under state-conditional independence, the joint likelihood function factorises: fS′ ((es )s∈S′ |x) =∏
s∈S′ f{s}(es |x) for each state x ∈ {±1}. Taking the ratio across states and then the logarithm on both

sides yields in f o((es )s∈S′ ) = ∑
s∈S′ in f o(es ).
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We are ready to state the above notions and result formally28:

Definition 1 Given an opinion structure (x, (es), (Si ), g) (inducing an information
function in f o) and a source set S′ ⊆ S,

• Dispersion of S′ is the event that S′ ⊆ ∪iSi and S′
� Si for some i , i.e., S′ is

available to the group but not to all members,
• Complementarity of S′ is the event that in f o((es)s∈S′) �= ∑

s∈S′ in f o(es), i.e.,
information in combined evidence differs from total isolated information,

• Proper complementarity of S′ is the event that S′ is complementary and more-
over each non-empty strict subset S′′ ⊆ S′ is complementary with S′\S′′, i.e.,
in f o((es)s∈S′) �= in f o((es)s∈S′′) + in f o((es)s∈S′\S′′).

• Failure 3 over S′ is the event that S′ is properly complementary and dispersed.

Proposition 5 Given any opinion structure (x, (es), (Si ), g) (inducing an information
function in f o), every monotonic deliberation process reduces Failure 3 in the sense
that, for all S′ ⊆ S, if Failure 3 occurs over S′ post-deliberation then Failure 3
already occurred over S′ pre-deliberation or S′ was unavailable pre-deliberation,
formally F3+

S′ ⊆ F3S′ ∪ {S′
� ∪iSi }, where F3S′ and F3+

S′ are the events of Failure
3 over S′ pre- resp. post-deliberation and {S′

� ∪iSi } is the event that S′
� ∪iSi .

Proof sketch. Given the assumptions, we must show that F3+
S′ ⊆ F3S′ ∪ {S′

�

∪iSi }, or equivalently that F3+
S′ ∩ {S′ ⊆ ∪iSi } ⊆ F3S′ . Let CS′ and DS′ denote the

events that S′ is complementary resp. dispersed pre-deliberation, and C+
S′ and D+

S′
the corresponding events post-deliberation. By definition, F3S′ = CS′ ∩ DS′ and
F3+

S′ = C+
S′ ∩ D+

S′ . Now CS′ = C+
S′ , as events of complementarity are unaffected by

individual source sets, hence by deliberation. So it suffices to show that CS′ ∩ D+
S′ ∩

{S′ ⊆ ∪iSi } ⊆ CS′ ∩ DS′ , or simply that D+
S′ ∩ {S′ ⊆ ∪iSi } ⊆ DS′ . In words: if S′ is

dispersed post-deliberation and initially already available, then S′ is already dispersed
pre-deliberation. This holds as Si ⊆ S+

i for all i by monotonicity. �

The result simplifies if attention is restricted to non-discovering deliberation pro-

cesses, in which no new sources are discovered, i.e., for which ∪iS
+
i ⊆ ∪iSi :

Corollary 1 Given any opinion structure (x, (es), (Si ), g) (with an induced infor-
mation function in f o), every monotonic and non-discovering deliberation process
reduces Failure 3 in the sense that, for all S′ ⊆ S, if Failure 3 occurs over S′
post-deliberation then Failure 3 already occurred over S′ pre-deliberation, formally
F3+

S′ ⊆ F3S′ .

Proof Note F3+
S′ ⊆ {S′ ⊆ ∪iS

+
i } = {S′ ⊆ ∪iSi }; the second equality holds because

∪iS
+
i = ∪iSi by ‘non-discovering’ and ‘monotonic’. So, in Proposition 5, ‘F3+

S′ ⊆
F3S′ ∪ {S′

� ∪iSi }’ is equivalent to ‘F3+
S′ ⊆ F3S′ ’. �


28 Strictly speaking, density function need neither exist nor be unique. But in practical applications, there
usually exists a unique natural version of f (·|x), and hence of the information function in f o. Hence, the
information function in f o corresponding to the opinion structure, and thus the events defined based on it
(events of complementarity and of Failure 3), will exist and be essentially unique in practical applications.
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The above analysis suggests measuring the degree of complementarity of an evi-
dence bundle (es)s∈S′ by the gap between information in combined evidence and total
isolated information:

comp((es)s∈S′) = in f o((es)s∈S′) −
∑

s∈S′
in f o(es).

This measure captures the ‘relational’ rather than ‘isolated’ information in a bundle,
i.e., the information contained in the relationship between evidences rather than in
each evidences intrinsically. The evidence is complementary simpliciter whenever the
measure takes a non-zero value.

9 Concluding Remarks

Knowledge that groups hold in a dispersed fashion is often used poorly because vot-
ing is bad at aggregating the knowledge underlying votes. The fundamental tension
between respecting voter’s equality and achieving factually correct decisions is there-
fore hard to resolve. Giving up the principle of one-person-one-vote is unpalatable,
but holding on to it is—short of rare symmetries—epistemically suboptimal.

We show that deliberation canmitigate the tension and enable electoral democracies
and other groups tomake better use of evidence. The effect of deliberation on collective
decisions can be studied at two levels: the general level of overall correctness proba-
bility of outcomes, or the level of specific failures that threaten collective correctness.
At the general level, we have presented the (to our best knowledge) first jury theorems
about the effect of deliberation on majority decisions. They suggest that deliberation
can increase group competence, though not overcoming the objective limits of avail-
able evidence. This message is different from that of orthodox jury theorems, which
might suggest that deliberation is unnecessary (because large group perform very well
anyway) or even harmful (because voter independence is undermined).

We have studied three information processing failures: overcounting widespread
evidence, neglecting evidential inequality, and neglecting evidential complementar-
ity. A mixture of theoretic results and simulations supports an overall positive picture:
deliberation tends to mitigate these failures. But there are systematic exceptions. A
typology of harmful deliberation has been presented. This analysis led to a recom-
mendation for deliberation processes that are participatory and neutral: everyone
contributes substantially and no evidences are privileged over others.

Interestingly, while our epistemic approach to democracy suggests participatory
and neutral deliberation, a procedural-fairness approach to democracy might instead
suggest participatory and equal deliberation, because participation adds legitimacy to
outcomes and equality is a central fairness requirement (e.g., Manin 1987; Christiano
1996; Habermas 1996; Knight and Johnson 1997; Cohen 1997; Young 2002). A hybrid
epistemic-procedural approach might therefore recommend participatory, neutral and
equal deliberation.

Taken together, our results provide a robust argument in favor of pre-ballot delib-
eration on epistemic grounds. Deliberation is not only valuable because democratic
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citizens owe one another reasons, or because the practice of deliberation is intrinsically
valuable, or because deliberation helps structuring voter preferences such as to escape
voting paradoxes. It is also valuable because it helps groups make better use of their
evidence when voting.

Appendix

A Proof of Theorems 1 and 2 about rationality

We first prove Theorem 1, in fact generalised to quasi-simple opinion structures (x,
(es), (Si )). Such opinion structures are defined exactly like simple ones except that
Independent Sources isweakened toQuasi-Independent Sources, the condition that the
source-access events ‘s ∈ Si ’ (where s ∈ S and i ∈ N ) are independent across sources
s and jointly independent of the state and the evidences, i.e., of (x, (es)). This condition
weakens Independent Sources by no longer requiring independence across persons of
the source-access events. The generalisation ensures that the theorem also captures
post-deliberation opinions. Indeed, a share-absorb process transforms a simple opinion
structure (x, (es), (Si )) into a quasi-simple one (x, (es), (S

+
i ))—‘quasi’ because of

interpersonal source dependencies.
We begin by proving an astonishing fact about Gaussian evidences:

Lemma 1 If an opinion structure (x, (es), (Si )) satisfies Simple Gaussian Evidence
(e.g., is quasi-simple), then each evidence is proportional to its own log-likelihood-
ratio, more precisely

es = σ 2

2
log

f (es |1)
f (es | − 1)

for each s ∈ S,

where f (·|x) denotes the Gaussian density (‘likelihood’) function of each evidence es
(s ∈ S) given state x (∈ {±1}).
Proof Let (x, (es), (Si )) satisfy Simple Gaussian Evidence. Let s ∈ S. Conditional on
a state x (∈ {±1}), es is normally distributed with mean x and variance σ 2, hence has
a Gaussian density function given by

f (e|x) = 1

σ(2π)1/2
e− 1

2 (
e−x
σ )

2

for all e ∈ R.

We have es = σ 2

2 log f (es |1)
f (es |−1) because, for all values e ∈ R of es ,

log
f (e|1)

f (e| − 1)
= log

exp
(
− 1

2

( e−1
σ

)2
)

exp
(
− 1

2

( e+1
σ

)2
) = log

[

exp

(
1

2

(
e + 1

σ

)2

− 1

2

(
e − 1

σ

)2
)]

= 1

2σ 2

[(
e2 + 2e + 1

) − (
e2 − 2e + 1

)] = 2

σ 2 e.

�


123



F. Dietrich, K. Spiekermann

Proof of Theorem 1 generalised to quasi-simple opinion structures. Fix a quasi-
simple opinion structure (x, (es), (Si )), a person i , and a possible opinion of i , i.e.,
a random variable o generating values in {1, 0,−1} based on i’s evidence bundle
(es)s∈Si .Wemust show thatE(u(oi , x)) ≥ E(u(o, x)),where the utility of anyopinion-
state pair (o, x) in {1, 0,−1} × {1,−1} is the correctness level, given by

u(o, x) =
⎧
⎨

⎩

1 if o = x (correct opinion)
0 if o = −x (false opinion)
1
2 if o = 0 (neutral opinion).

We prove this by showing that E(u(oi , x)|(es)s∈Si ) ≥ E(u(o, x)|(es)s∈Si ).29 So, we
fix any value (es)s∈Si of (es)s∈Si and, writing oi (resp. o) for the value of oi (resp. o)
under (es)s∈Si , we must prove that

E(u(oi , x)|(es)s∈Si ) ≥ E(u(o, x)|(es)s∈Si ). (7)

We prove this in two steps.
Claim 1: Pr(x = 1|(es)s∈Si ) > (<,=) 1

2 ⇔ ∑
s∈Si es > (<,=) 0.

We only prove the equivalence for ‘>’, as those for ‘<’ and ‘=’ are analogous. For
any state x ∈ {±1}, writing f (·|x) for the Gaussian density function on R of any es
given x , and g(·|x) for the |Si |-dimensional Gaussian density function on R

Si of the
vector (es)s∈Si , we have

Pr(x = 1|(es)s∈Si ) > 1
2 ⇔ g((es )s∈Si |1)

g((es )s∈Si |−1) > 1

⇔ ∏
s∈Si

f (es |1)
f (es |−1) > 1

⇔ ∑
s∈Si log

f (es |1)
f (es |−1) > 0

⇔ ∑
s∈Si es > 0.

Here, the first equivalence follows easily from Bayes’ rule, using that Pr(x = 1) =
Pr(x = −1) and also that i’s source set is independent of the state and the evidences.30

The second equivalence holds by state-conditional independence of the evidences.
The third equivalence holds by applying the logarithm on both sides of the previous
inequality. The fourth equivalence holds by Lemma 1. Q.e.d.

Claim 2: The inequality (7) holds (completing the proof).
We proceed case by case.

29 Strictly speaking, we must show that this inequality holds for some versions of the conditional expecta-
tions on both sides. This qualification is necessary because conditional expectations are random variables
that are not unique, but still ‘essentially unique’ in that any two versions of a conditional expectation coincide
outside a zero-probability event.
30 How is this independence conditionusedhere? Informally, it ensures that the identity of the source set Si is
of no extra information, i.e., that only the evidences from those sources carry information. This explains why
the numerator and denominator of the likelihood-ratio each features the joint (state-conditional) likelihood
of the evidences only, not of the evidences and the source set Si . To be slightlymore explicit, conditionalising
on the evidence bundle (es )s∈Si is equivalent to conditionalising first on the source set Si and then on the
evidences from these sources; which however reduces to conditionalising only on the evidences, by the
independence condition.
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Case 1: oi = 1, i.e.,
∑

s∈Si es > 0. Then E(u(oi , x)|(es)s∈Si ) = Pr(x =
1|(es)s∈Si ) > 1

2 , where the inequality holds by Claim 1 as
∑

s∈Si es > 0.
Subcase 1.1: o = 1. Then (7) holds (with ‘=’) because oi = o.
Subcase 1.2: o = −1. Then (7) holds (with ‘>’) because E(u(o, x)|(es)s∈Si ) =

Pr(x = −1|(es)s∈Si ) = 1− Pr(x = 1|(es)s∈Si ) < 1
2 , where the last inequality holds

as Pr(x = 1|(es)s∈Si ) > 1
2 .

Subcase 1.3: o = 0. Then (7) holds (with ‘>’) because E(u(o, x)|(es)s∈Si ) = 1
2 .

Case 2: oi = −1, i.e.,
∑

s∈Si es < 0. Then E(u(oi , x)|(es)s∈Si ) = Pr(x =
−1|(es)s∈Si ) = 1 − Pr(x = 1|(es)s∈Si ) > 1

2 , where the inequality holds because
Pr(x = 1|(es)s∈Si ) < 1

2 by Claim 1 as
∑

s∈Si es < 0. An argument similar to that in
Case 1 then implies (7).

Case 3: oi = 0, i.e.,
∑

s∈Si es = 0. Then E(u(oi , x)|(es)s∈Si ) = 1
2 . Further,

Pr(x = 1|(es)s∈Si ) = Pr(x = −1|(es)s∈Si ) = 1
2 , by Claim 1 as

∑
s∈Si es = 0.

Subcase 3.1: o = 0. Then (7) holds (with ‘=’) because oi = o.
Subcase 3.2: o = 1. Then (7) holds (with ‘=’) because E(u(o, x)|(es)s∈Si ) =

Pr(x = 1|(es)s∈Si ) = 1
2 .

Subcase 3.3: o = −1. Then (7) holds (with ‘=’) because E(u(o, x)|(es)s∈Si ) =
Pr(x = −1|(es)s∈Si ) = 1

2 . �

We now prove Theorem 2, again starting with a lemma.

Lemma 2 If an opinion structure (x, (es), (Si )) satisfies Generalised Gaussian Evi-
dence, then for each ∅ �= S′ ⊆ S the vector (es)s∈S′ has a log-likelihood-ratio given
by

log
f ((es)s∈S′ |1)

f ((es)s∈S′ | − 1)
= 2g((es)s∈Si ) for all (es)s∈S′ ∈ R

S′
,

where f (·|x) denotes the density function of the vector (es)s∈S′ given state x (∈ {±1}),
i.e., themultivariateGaussian density functionwithmean xμ|S′ and covariancematrix
�|S′ .

Proof Let (x, (es), (Si )) satisfy Generalised Gaussian Evidence. Fix ∅ �= S′ ⊆ S.
Write μ′ for μ|S′ and �′ for �|S′ . Given any x ∈ {±1}, (es)s∈S′ has an N (xμ′, �′)
distribution, with density function given by:

f (e|x) = 1

(det�′)1/2(2π)|S′|/2 exp
(

−1

2
(e − xμ′)T�′−1(e − xμ′)

)

for all e ∈ R
S′
.

So, for all e ∈ R
S′
,

log
f (e|1)

f (e| − 1)
= log

1
(det�′)1/2(2π)|S′ |/2 exp

(− 1
2 (e − μ′)T�′−1(e − μ′)

)

1
(det�′)1/2(2π)|S′ |/2 exp

(− 1
2 (e + μ′)T�′−1(e + μ′)

)

= log exp

(
1

2

[
(e + μ′)T�′−1(e + μ′) − (e − μ′)T�′−1(e − μ′)

])
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= 1

2

[
eT�′−1e + 2μ′T�′−1e + μ′T�′−1μ′ − (eT�′−1e − 2μ′T�′−1e + μ′T�′−1μ′)

]

= 2μ′T�′−1e = 2g(e).

�

Proof of Theorem 2 generalised to generalised quasi-simple opinion structures Let (x,
(es), (Si )) be generalised quasi-simple, i.e., generalised simple except that ‘Indepen-
dent Sources’ is weakened to ‘Quasi-Independent Sources’. Let o be a possible opinion
of a given person i , i.e., a random variable into {1, 0,−1} based on (es)s∈Si . We show
E(u(oi , x)) ≥ E(u(o, x)), with u defined as before. As in the proof of Theorem 1, it
suffices to fix a value (es)s∈Si of (es)s∈Si , and, writing oi and o for the value of oi resp.
o under (es)s∈Si , to prove that

E(u(oi , x)|(es)s∈Si ) ≥ E(u(o, x)|(es)s∈Si ). (8)

First assume Si = ∅. Then (8) reduces to E(u(oi , x)) ≥ E(u(o, x)), which holds
with ‘=’ because, firstly, E(u(oi , x)) = E(u(0, x)) = E(0) = 0, and secondly,
E(u(o, x)) = 1

2 (u(o, 1) + u(o, 0)), which equals 0 regardless of the value of o, since
o = 1 ⇒ [u(o, 1) = 1 & u(o,−1) = −1], o = −1 ⇒ [u(o, 1) = −1 & u(o,−1) =
1], and o = 0 ⇒ u(o, 1) = u(o,−1) = 0.

From now on let Si �= ∅. The proof proceeds in two steps.
Claim 1: Pr(x = 1|(es)s∈Si ) > (<,=) 1

2 ⇔ g((es)s∈Si ) > (<,=) 0.
We only show the equivalence for ‘>’, as that for ‘<’ or ‘=’ is analogous. For any

state x ∈ {±1}, writing f (·|x) for the Gaussian density function on R
Si of the vector

(es)s∈Si , we have

Pr(x = 1|(es)s∈Si ) > 1
2 ⇔ f ((es)s∈Si |1)

f ((es)s∈Si |−1) > 1

⇔ log
f ((es )s∈Si |1)
f ((es)s∈Si |−1) > 0

⇔ g((es)s∈Si ) > 0.

Here, the first equivalence holds in analogy to the corresponding equivalence in the
proof of Theorem 1. The second equivalence holds trivially. The third equivalence
holds Lemma 2. Q.e.d.

Claim 2: The inequality (8) holds (completing the proof).
This claim follows from Claim 1 through an argument analogous to that underlying

Claim 2 in the proof of Theorem 1. �


B Formal Analytics of Share-Absorb Processes

The definition of share-absorb processes has been stated informally. The formalisa-
tion is obvious. In short, given a simple opinion structure (x, (es), (Si )) (we could
have used a general opinion structure), the share-absorb process with parameters
(ps,i→, ps,i←)s∈S,i∈N assumes that there exist events ‘i shares s’ and ‘i absorbs
s’ for any person i ∈ N and source s ∈ S; that the new source set of any person i
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is S+
i = Si ∪ {s ∈ S : ‘i absorbs s’}, the set of initially accessed or later absorbed

sources; that, for any person i and source s, the probability of ‘i shares s’ given any
initial source profile (S j ) is ps,i→ if s ∈ Si and 0 otherwisei ; that, for any person i
and source s, the probability of ‘i absorbs s’ given any initial source profile (S j ) and
any sharing profile is ps,i← if [s /∈ Si and someone shares s in the sharing profile] and
0 otherwise (where a ‘sharing profile’ is a combination of truth values of the sharing
events across persons and sources); and, finally, that the access, sharing, and absorbing
events are jointly independent of the state and the evidences.

How is the new source profile (S+
i ) distributed? And how is it distributed condi-

tional on the initial evidence profile? We now answer both questions. The first answer
completes the description of the new opinion structure (x, (es), (S

+
i )), as we already

know how (x, (es)) is distributed and that (S
+
i ) is independent of (x, (es)). The second

answer implies an alternative (and equivalent) definition of the share-absorb process
as a deliberation process in the general sense of Sect. 7, i.e., a mapping D from initial
evidence profiles to lotteries over new source profiles.

Fix a simple31 opinion structure (x, (es), (Si )) and a share-absorb process with
sharing and absorbing probabilities (ps,i→, ps,i←)s∈S,i∈N , generating a new source
profile (S+

i ). The probability of any new source profile (S+
i ) (any value of (S+

i )) is

Pr((S+
i )) =

∏

s∈S
πs (9)

where, for each source s ∈ S, πs is the probability that the new set of owners of s is
Is = {i : s ∈ S+

i }, and equals

πs =
⎛

⎝
∏

i∈Is
ps→i

⎞

⎠

⎛

⎝
∏

i∈Is
ps→i

⎞

⎠

⎛

⎝
∏

i∈Is
ps,i→

⎞

⎠

+
⎛

⎝
∏

i∈Is
ps,i←

⎞

⎠
∑

∅�=I⊆Is

(
∏

i∈I
ps→i

)⎛

⎝
∏

i∈I
ps→i

⎞

⎠

(
∏

i∈I
ps,i→

)⎛

⎝
∏

i∈Is\I
ps,i←

⎞

⎠ .

Further, the conditional probability of any new source profile (S+
i ) given any initial

evidence profile ((es)s∈Si ), or given just (Si ), is

Pr((S+
i )|((es)s∈Si ) = Pr((S+

i )|(Si )) =
∏

s∈S
γs (10)

where, for each source s ∈ S, γs is the probability that the new set of owners of source
s is Is = {i : s ∈ S+

i } given that the initial one is Js = {i : s ∈ Si } , which equals

31 Simplicity could be weakened considerably, to Independent Sources.
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γs =

⎧
⎪⎪⎨

⎪⎪⎩

(∏
i∈Js ps,i→

) (∏
i∈Is\Js ps,i←

) (∏
i∈Is ps,i←

)
if Js � Is

(∏
i∈Js ps,i→

) (∏
i∈Js

ps,i←
)

+ ∏
i∈Js ps,i→ if Js = Is

0 otherwise.

(11)

Proof of (9) For each s ∈ S, define two random subgroups, the old set of owners
Js = {i : s ∈ Si } and the new one Is = {i : s ∈ S+

i }. Fix any (S+
i ), and define

each Is (s ∈ S) as above. Note that (S+
i ) takes the value (S+

i ) if and only if (Is)
(= (Is)s∈S) takes the value (Is) (= (Is)s∈S). Hence, Pr((S+

i )) = Pr((Is)). The sets
Is are independent across sources s. So, Pr((Is)) = ∏

s∈S Pr(Is), and thus

Pr((S+
i )) =

∏

s∈S
Pr(Is).

Now fix a source s. We calculate Pr(Is) (= πs). We do this under the assumption that
all parameters ps→i and ps,i→ are strictly between 0 and 1. This is sufficient since
the formula generalises to extreme parameter values by a continuity argument.

First assume Is = ∅. Note that Is takes the value ∅ if and only if Js takes the value
∅. The probability of the latter is

∏
i ps→i . So, Pr(Is) = ∏

i ps→i . This is what
had to be proved, since the claimed expression for Pr(Is) (= πs) indeed reduces to∏

i ps→i if Is = ∅.
From now on assume Is �= ∅. Then it is certain that Js takes a value Js that satisfies

∅ �= Js ⊆ Is , and each such value Js has non-zero probability (as each ps→i is strictly
between 0 and 1), so can be conditionalised on. By implication,

Pr(Is) =
∑

∅�Js⊆Is

Pr(Js)Pr(Is |Js). (12)

In this expression, the term Pr(Js) can be written as

Pr(Js) =
⎛

⎝
∏

i∈Js

ps→i

⎞

⎠

⎛

⎝
∏

i∈Js

ps→i

⎞

⎠ .

We now calculate Pr(Is |Js). Denote by !s the event that at least someone shares s.
Given the (non-empty) event Js , each of !s and !s has non-zero probability (as each
ps,i→ is strictly between 0 and 1), so can be conditionalised on. Hence, Pr(Is |Js) is
writable as Pr(!s |Js)Pr(Is |!s, Js) + Pr(!s |Js)Pr(Is |!s, Js), where Pr(Is |!s, Js) is 0
if Js �= Is and 1 if Js = Is . So,

Pr(Is |Js) =
{
Pr(!s |Js)Pr(Is |!s, Js) i f Js �= Is
Pr(!s |Js)Pr(Is |!s, Js) + Pr(!s |Js) if Js = Is .
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Note that if Js = Is then

Pr(Is |Js) =
∏

i∈Is
ps,i→.

Upon inserting the derived expressions into (12) and rearranging,

Pr(Is) =
⎛

⎝
∏

i∈Is
ps→i

⎞

⎠

⎛

⎝
∏

i∈Is
ps→i

⎞

⎠

⎛

⎝
∏

i∈Is
ps,i→

⎞

⎠

+
∑

∅�Js⊆Is

⎛

⎝
∏

i∈Js

ps→i

⎞

⎠

⎛

⎝
∏

i∈Js

ps→i

⎞

⎠ Pr(!s |Js)Pr(!s |!s, Js).

In this,

Pr(!s |Js)Pr(Is |!s, Js) =
⎛

⎝
∏

i∈Js

ps,i→

⎞

⎠

⎛

⎝
∏

i∈Is\Js
ps,i←

⎞

⎠

⎛

⎝
∏

i∈Is
ps,i←

⎞

⎠ .

So, after rearranging and relabelling the index ‘Js’ into ‘I ’,

Pr(Is) =
⎛

⎝
∏

i∈Is
ps→i

⎞

⎠

⎛

⎝
∏

i∈Is
ps→i

⎞

⎠

⎛

⎝
∏

i∈Is
ps,i→

⎞

⎠

+
⎛

⎝
∏

i∈Is
ps,i←

⎞

⎠
∑

∅�=I⊆Is

(
∏

i∈I
ps→i

)⎛

⎝
∏

i∈I
ps→i

⎞

⎠

(
∏

i∈I
ps,i→

)⎛

⎝
∏

i∈Is\I
ps,i←

⎞

⎠ .

�

Proof of (10) Fix any initial evidence profile ((es)s∈Si ) and new source profile (S+

i ).
Notation is as above. By definition of share-absorb processes, Pr((S+

i )|((es)s∈Si )) =
Pr((S+

i )|(Si )). Is and Js are instances of the random variables Is and Js defined in
the proof of (9). Since the events (S+

i ) = (S+
i ) and (Is) = (Is) are equivalent, and the

events (Si ) = (Si ) and (Js′) = (Js′) are also equivalent,

Pr((S+
i )|(Si )) = Pr((Is)|(Js′)) =

∏

s∈S
Pr(Is |(Js′)) =

∏

s∈S
Pr(Is |Js)︸ ︷︷ ︸

γs

,

where the second and third equalities hold by construction of share-absorb processes.
Now fix a source s ∈ S. It remains to prove that Pr(Is |Js) (= γs) is given by (11).

We do this under the assumption that each ps,i→ is strictly between 0 and 1. (The
generalisation to extreme parameters follows by continuity.)

If Js = Is = ∅, then Pr(Is |Js) = 1, because if no one initially owns s, then
certainly no one shares or absorbs s.
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If Js = ∅ and Is �= ∅, then Pr(Is |Js) = 0, because a source that no one owns is
never shared, hence never acquired.

If Js � Is , i.e., if Js is not a subset of Is , then Pr(Is |Js) = 0, because during
deliberation no one loses any initially held sources.

Now assume the remaining case that∅ �= Js ⊆ Is .As in the proof of (9), denote by
!s the event that at least someone shares s. Given (Si ), each of !s and !s has non-zero
probability (because the parameters ps,i→ are neither 0 nor 1, and in case of !s also
because Js �= ∅). So we can conditionalise on !s and on !s , and write

Pr(Is |Js) = Pr(!s |Js)Pr(Is |!s, Js) + Pr(!s |Js)Pr(Is |!s, Js).

Hence, as Pr(Is |!s, Js) is 0 if Js �= Is and 1 if Js = Is ,

Pr(Is |Js) =
{
Pr(!s |Js)Pr(Is |!s, Js) i f ∅ �= Js � Is
Pr(!s |Js)Pr(Is |!s, Js) + Pr(!s |Js) i f ∅ �= Js = Is

In this,

Pr(!s |Js) =
∏

i∈Js

ps,i→

Pr(!s |Js) =
∏

i∈Js

ps,i→

Pr(Is |!s, Js) =
⎛

⎝
∏

i∈Is\Js
ps,i←

⎞

⎠

⎛

⎝
∏

i∈Is
ps,i←

⎞

⎠ .

Here, Pr(Is |!s, Js) reduces to ∏
i∈Js

ps,i← if Js = Is . In sum, we have shown that

Pr(Is |Js) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 if Js = Is = ∅

0 if∅ = Js � Is
0 if Js � Is(∏

i∈Js ps,i→
) (∏

i∈Is\Js ps,i←
) (∏

i∈Is ps,i←
)
if∅ �= Js � Is

(∏
i∈Js ps,i→

) (∏
i∈Js

ps,i←
)

+ ∏
i∈Js ps,i→ if∅ �= Js = Is

Of these six cases, the first can be subsumed under the last, as the formula in the last
reduces to 1 if Js = Is = ∅; and the second can be subsumed under the fourth, as the
formula in the fourth reduces to 0 if ∅ = Js . This yields formula (11). �


C The Jury Theorems: Proofs

Proof of equation (2) Under the given assumptions, oideal = x holds if and only if
total evidence

∑
s∈S es has the same sign as x. The probability of this event equals the

conditional probability that
∑

s∈S es > 0 given x = 1, by Simple Gaussian Evidence.
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Given x = 1,
∑

s∈S es is the sum of |S| independent Gaussian variables of mean
1 and variance σ 2, hence is itself a Gaussian variable, with mean |S| and variance
|S| σ 2. The probability that such a variable is positive equals the probability that a

standard-Gaussian variable is below
√|S|

σ
, by a simple linear transformation. �


Proof of the Pre-Deliberation Jury Theorem Assume a simple opinion structure (x,
(es), (Si )) for an infinite population N = {1, 2, ...}. Notation is as usual.

(a) To prove the non-asymptotic claim, we fix a group size n and write omaj for
omaj,n . We first show that pmaj ≤ pideal , i.e., that Pr(omaj = x) ≤ Pr(oideal = x).
We begin by proving a general claim:

Claim: For every discrete randomvariable z that is independent of the state-evidence
combination (x, (es)) (e.g., for z = (Si )),

Pr(oideal = x|(es), z) >
1

2

except in a zero-probability event (i.e., except if the combination ((es), z) falls into a
set into which it falls with zero probability).

To show the claim, note first that such a variable z is independent of the event
oideal = x conditional on (es), because oideal is a function of (es). So, Pr(oideal =
x|(es), z) can be replaced by Pr(oideal = x|(es)), which, by construction of the ideal
opinion oideal , indeed exceeds 1

2 , except in the zero-probability event that
∑

s es = 0
(i.e., except if oideal is zero, hence certainly distinct from x). Q.e.d.

Now choose z = (Si ). Then

Pr(omaj = x|(es), z) =
⎧
⎨

⎩

Pr(oideal = x|(es), z) if omaj = oideal
1 − Pr(oideal = x|(es), z) if omaj = −oideal
0 if omaj = 0.

(13)

Here, ‘if omaj = oideal ’ of course means ‘if ((es), z) takes a value such that
omaj = oideal ’, which is indeed a well-defined condition because the value of ((es), z)
determines the values of omaj and oideal , hence determines whether omaj = oideal .
The meanings of ‘if omaj = −oideal ’ and ‘if omaj = 0’ are analogous.

The ‘Claim’ and (13) jointly imply that, still for z = (Si ),

Pr(omaj = x|(es), z) ≤ Pr(oideal = x|(es), z) (14)

with probability one. By taking expectations on both sides (thereby averaging out (es)
and z), we obtain Pr(omaj = x) ≤ Pr(oideal = x), i.e., pmaj ≤ pideal .

Finally, assume Imperfect Access. Then with non-zero probability the variable z =
(Si ) takes a value such that some source is not accessed by anyone, hence not accessed
by a majority. This easily implies that with non-zero probability the second or third
case in (13) applies. So, in (14) the ‘≤’ is a ‘<’with non-zero probability.Hence, taking
the expectation on both sides of (14) now yields Pr(omaj = x) < Pr(oideal = x),
i.e., pmaj < pideal .

(b) We now show the convergence claim, assuming Access Competence. By this
assumption, there is an ε > 0 such that ps→i ≥ 2−1/|S| + ε for all s and i . Consider a
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person i . The probability of having full source set S satisfies Pr(Si = S) ≥ 1
2 + ε|S|,

because

Pr(Si = S) =
∏

s∈S
ps→i ≥

∏

s∈S
(2−1/|S| + ε) =

(
2−1/|S| + ε

)|S|

≥ (2−1/|S|)|S| + ε|S| = 1

2
+ ε|S|.

Since the full-access events ‘Si = S’ (i = 1, 2, ...) are mutually independent (by
Independent Sources) and each of probability at least 1

2 + ε|S|, the probability that the
proportion of members with full access exceeds 1

2 (the event #{i∈{1,...,n}:Si=S}
n > 1

2 )
tends to one as n → ∞, by the law of large numbers. In other words, the probability
of a majority with full access (the event #{i ∈ {1, ..., n} : Si = S} > n

2 ) tends to
1 as n → ∞. Meanwhile, full access implies an ideal opinion (i.e., Si = S implies
oi = oideal ). So a majority with full access implies a majority with the ideal opinion
(i.e., #{i ∈ {1, ..., n} : Si = S} > n

2 implies omaj,n = oideal ). Hence, also the
probability of an ideal majority opinion converges to one: Pr(omaj,n = oideal) → 1.
This implies that Pr(omaj,n = x) → Pr(oideal = x), i.e., that pmaj,n → pideal . �


Proof of the Post-Deliberation Jury Theorem Assume a simple opinion structure (x,
(es), (Si )) and a share-absorb process, both for an infinite population N = {1, 2, ...}.
The usual notation applies.

(a) The non-asymptotic claim holds by a version of the proof of part (a) of the
Pre-Deliberation Jury Theorem. One should substitute o+

maj for omaj , and apply the

‘Claim’ with z = (S+
i ) rather than z = (Si ), which is possible since also (S+

i ) is
independent of (x, (es)).

(b)We now turn to the asymptotic claim.We shall face the difficulty of interpersonal
correlations between post-deliberation source sets. The weak law of large numbers in
Pivato’s (2017) version for correlated variables will ultimately come to help, but first
several claims must be established. We assume Acquisition Competence (needed only
from Claim b5) and Non-Vanishing Participation (needed only from Claim b4).

Claim b1: For any source s ∈ S, group size n ∈ {1, 2, ...}, and group member
i ∈ {1, ..., n}, the probability that another member shares s is

ps,i,n =
∏

j∈{1,...,n}\{i}
ps→ j ps, j→. (15)

The probability is given by (15) because it equals the probability that it is not the
case that each other member j does not share s, where j shares s with probability
ps→ j ps, j→, the product of the probabilities of accessing s and of sharing an accessed
s. Q.e.d.

Claim b2: For any s ∈ S, n ∈ {1, 2, ...}, and i ∈ {1, ..., n}, the probability that
some member other than i shares s and then i absorbs s, given that i has not accessed
s initially, is ps,i,n ps,i←.
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The claim holds because the relevant probability is the product of the probability
that someone else shares s, i.e., ps,i,n by Claim b1, and the probability that i absorbs
a shared source s, i.e., ps,i←. Q.e.d.

Claim b3: For any s ∈ S, n ∈ {1, 2, ...}, and i ∈ {1, ..., n}, Pr(s ∈ S+
i,n) =

ps→i × ps,i,n ps,i←.
This holds because i does not hold s post-deliberation if and only if i does not

initially access s (probability: ps→i ) and i does not absorb s (probability: ps,i,n ps,i←).
Q.e.d.

Claim b4: For any s ∈ S and i ∈ {1, 2, ...}, Pr(s ∈ S+
i,n) → ps→i × ps,i← as

n → ∞.
Fix s and i . ByClaimb3,we just show ps,i,n → 1, i.e.,

∏
j∈{1,...,n}\{i} ps→ j ps, j→ →

0. By Non-Vanishing Participation, ps→ j ps, j→ � 0 as j → ∞, and hence
ps→ j ps, j→ � 1 as j → ∞. In consequence,

∏
j∈{1,...,n}\{i} ps→ j ps, j→ → 0 as

n → ∞. Q.e.d.
Claim b5: For any i ∈ {1, 2, ...}, the full-access probability Pr(S+

i,n = S) converges

to a value of at least 1
2 + ε|S| as n → ∞, where ε > 0 is the threshold in Acquisition

Competence (which is independent of i).
Fix a person i . We have Pr(S+

i,n = S) = ∏
s∈S Pr(s ∈ S+

i,n), because the access

events ‘s ∈ S+
i,n’ are independent across sources s as a consequence of the fact that

the pre-deliberation access events ‘s ∈ Si ’ are independent across sources (by Source
Independence) and the share-absorb process operates independently across sources.
So, by Claim b4, Pr(S+

i,n = S) → ∏
s∈S ps→i × ps,i← as n → ∞. Now choose

ε > 0 as in Acquisition Competence. Then, for all s, ps→i × ps,i← ≤ 1−2−1/|S| − ε,
i.e., ps→i × ps,i← ≥ 2−1/|S| + ε. So,

∏

s∈S
ps→i × ps,i← ≥

(
2−1/|S| + ε

)|S| ≥ (2−1/|S|)|S| + ε|S| = 1

2
+ ε|S|.

Hence limn→∞ Pr(S+
i,n = S) ≥ 1

2 + ε|S|. Q.e.d.
Claim b6: For all n ∈ {1, 2, ...} and distinct i, j ∈ {1, ..., n}, the covariance between

i’s and j’s full access satisfies

Cov(S+
i,n = S,S+

j,n = S) ≤
∏

s∈S

∏

k=i, j

ps→k × ps,k← −
∏

s∈S

∏

k=i, j

ps→k × ps,k,n ps,k←

Fix n ∈ {1, 2, ...} and distinct i, j ∈ {1, ..., n}. Then

Cov(S+
i,n = S,S+

j,n = S) = Pr(S+
i,n = S,S+

j,n = S) −
∏

k=i, j

Pr(S+
k,n = S)

=
∏

s∈S
Pr(s ∈ S+

i,n, s ∈ S+
j,n) −

∏

s∈S

∏

k=i, j

Pr(s ∈ S+
k,n),
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where the second equality holds by independence across sources of the access events.
Since Pr(s ∈ S+

k,n) = ps→k × ps,k,n ps,k← by Claim b3, it suffices to show that

Pr(s ∈ S+
i,n, s ∈ S+

j,n) ≤
∏

k=i, j

ps→k × ps,k← for all s ∈ S.

This holds since, letting E be the event that s is shared by someone in {1, ..., n},

Pr(s ∈ S+
i,n, s ∈ S+

j,n) ≤ Pr(s ∈ S+
i,n, s ∈ S+

j,n|E)

=
∏

k=i, j

Pr(s ∈ S+
k,n|E) =

∏

k=i, j

ps→k × ps,k←,

where the first equality holds by independence between ‘s ∈ S+
i,n’ and ‘s ∈ S+

i,n’
given E , and the second equality holds because s is held ex-post if and only if it is not
the case that s is not accessed ex-ante (probability: ps→k) and not absorbed ex-post
(probability: ps,i←). Q.e.d.

Claim b7:: mins∈S,k≤n ps,k,n → 1 as n → ∞.
For all s and n, pick is,n ∈ {1, ..., n} with ps→is,n ps,is,n→ = maxk≤n ps→k ps,k→.

By construction,

min
k≤n

ps,k,n =
∏

j∈{1,...,n}\{is,k }
ps→ j ps, j→.

ByNon-VanishingParticipation, ps→ j ps, j→ � 0. So
∏

j∈{1,...,n}\{is,k } ps→ j ps, j→ →
0. Hence, mink≤n ps,k,n → 1. So, as |S| is finite, mins∈S,k≤n ps,k,n → 1. Q.e.d.

Claim b8: δn ≡ maxs∈S,k≤n
(
ps→k × ps,k← − ps→k × ps,k,n ps,k←

) → 0 as n →
∞.

For all s ∈ S, n ∈ {1, 2, ...} and k ≤ n, we have

ps→k × ps,k← − ps→k × ps,k,n ps,k← = ps→k × ps,k,n ps,k← − ps→k × ps,k←
= ps→k

(
ps,k,n ps,k← − ps,k←

)

= ps→k
(
ps,k← − ps,k,n ps,k←

)

= ps→k ps,k←
(
1 − ps,k,n

)

≥ 1 − ps,k,n .

This lower bound implies the desired convergence via Claim b7. Q.e.d.
Claim b9: The average covariance of full access between groupmembers converges

to zero, i.e.,

1

n2

n∑

i, j=1

Cov(S+
i,n = S,S+

j,n = S) → 0 as n → ∞.
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It suffices to show that Cov(S+
i,n = S,S+

j,n = S) ≤ 1 whenever i = j (≤ n) and

that maxi, j≤n,i �=i Cov(S+
i,n = S,S+

j,n = S) → 0, by a simple argument (which uses

that each Cov(S+
i,n = S,S+

j,n = S) is positive). The former is obvious. We now show
the latter. By Claim b6 and the positivity of all the covariances, it is enough to prove
that, for any distinct i, j ,

∏

s∈S

∏

k=i, j

as,k −
∏

s∈S

∏

k=i, j

as,k,n → 0 as n → ∞,

where as,k = ps→k × ps,k← and as,k,n = ps→k × ps,k,n ps,k←. Fix distinct i, j . Note
that ak,s = (as,k − as,k,n) + as,k,n ≤ δn + as,k,n, by Claim b8. So it suffices to show
that

∏

s∈S

∏

k=i, j

(δn + as,k,n) −
∏

s∈S

∏

k=i, j

as,k,n → 0 as n → ∞. (16)

By developing the product
∏

s∈S
∏

k=i, j (δn+as,k,n), check that it equals a polynomial
in δn (of order 2 |S|) whose constant term is ‘+∏

s∈S
∏

k=i, j as,k,n’. This constant
term cancels out against ‘−∏

s∈S
∏

k=i, j as,k,n’, so that the expression in (16) is a
polynomial in δn with zero constant term. As n → ∞, δn converges to 0 (by Claim
b8), and so any polynomial in δn with zero constant term also converges to 0. This
proves (16). Q.e.d.

Claim b10: p+
maj,n → pideal . (This completes the proof.)

Since every person i’s full-access event S+
i,n = S has probability converging to

1
2 + ε|S| as n → ∞ by Claim b5, while the average covariance of these events
tends to zero by Claim b9, the probability that the proportion of members with full

access exceeds 1
2 (the event

#{i∈{1,...,n}:S+
i,n=S}

n > 1
2 ) tends to one, by the weak law of

large numbers in Pivato’s (2017) version for correlated variables.32 Equivalently, the
probability of a majority with full access (the event #{i ∈ {1, ..., n} : S+

i,n = S} > n
2 )

tends to 1. Since (a majority with) full access implies (a majority with) an ideal
opinion, also the probability of an ideal majority opinion converges to 1: Pr(o+

maj,n =
oideal) → 1. So, Pr(o+

maj,n = x) → Pr(oideal = x), i.e., p+
maj,n → pideal . �


D Proofs and Clarifications for Sect. 5.2

In Sect. 5.2, some of the definitions and propositions were stated informally. We now
provide the exact statements, followed by the proofs of all results.

Consider a simple opinion structure. Majority rule is epistemically monotonic if,
for all evidence profiles ((es)s∈Si ) and ((e′

s)s∈S′
i
),

Pr(x = 1|(es)s∈∪i Si ) < Pr(x = 1|(e′
s)s∈∪i S′

i
) ⇒ omaj ≤ o′

maj , (17)

32 This version of the law follows from the proof of Pivato’s Theorem 5.2 (i.e., from Claim 2 in that proof,
combined with Chebyshev’s Inequality). A closely related result is Proposition A2 in Pivato (2016).
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where omaj and o′
maj denote the majority outcomes in {−1, 0, 1}, respectively.33 We

say that epistemic monotonicity is violated ‘at a (given) evidence profile’ if this profile
is one of two profiles ((es)s∈Si ) and ((e′

s)s∈S′
i
) for which (17) is violated. The two

subtypes of epistemic monotonicity are defined as follows:

• Monotonicity in evidence holds if (17) holds for those evidence profiles ((es)s∈Si )
and ((e′

s)s∈S′
i
) such that Si = S′

i for all persons i ∈ N .
• Monotonicity in sources holds if (17) holds for those evidence profiles ((es)s∈Si )
and ((e′

s)s∈S′
i
) such that es = e′

s for all sources s contained in some Si and some
S′
j (i, j ∈ N ).

A violation of monotonicity in evidence resp. sources ‘at a (given) evidence profile’
is defined like for general epistemic monotonicity.

We now state Propositions 3 and 4 formally. We begin with Proposition 3 about
violations of monotonicity in evidence. At an evidence profile ((es)s∈Si ), let us call an
available source s ∈ ∪i Si a minority source if fewer persons access s than do not not
access s among the persons accessing at least one source, i.e., #{i : s ∈ Si } < #{i :
s /∈ Si �= ∅}.
Proposition 3 Given a simple opinion structure with non-zero access probabilities
and at least three sources, there exist thresholds 	,	′ > 0 such that

(a) monotonicity in evidence is violated at each evidence profile at which Failure 1
occurs to a degree SI ≥ 	 (moreover 	 is low enough that such profiles exist),

(b) monotonicity in evidence is violated at each evidence profile with at least one
minority source, in such a way that at the other evidence profile of the violation
Failure 2 occurs to a degree II ≥ 	′.

To paraphrase this result, monotonicity in evidence is frequently violated in the
presence of Failures 1 or 2: it is violated at all evidence profiles with large enough
Failure 1, and at almost all evidence profiles when paired with some other evidence
profile with large enough Failure 2. In fact, a stronger result holds with precise thresh-
olds given by 	 = 6|S|−1

5|S|−5 and 	′ = 4
n+2 , as our proof will show.

We now formally restate our result about violations of monotonicity in sources:

Proposition 4 Given a simple opinion structure with non-zero access probabilities
and at least three persons, there exist thresholds 	,	′ > 0 such that34

(a) monotonicity in sources is violated at each evidence profile with at least two
evidences supporting each option, in such a way that at the other evidence profile
of the violation Failure 1 occurs to a degree SI ≥ 	,

33 Technical detail: A probability conditional on a random variable (such as Pr(x = 1|(es )s∈∪iSi ), where
the variable is the vector (es )s∈∪iSi with random components and random dimensionality) is a function of
that variable and is defined only ‘almost uniquely’, where two versions coincide at all values of that variable
except for a set of values of probability zero. The condition (17) should be read as applying to the uniquely
existing ‘natural’ version of Pr(x = 1|(es )s∈∪iSi ) that depends continuously on the es ’s, assuming a
simple opinion structure with non-zero access probabilities. So we need not bother with non-uniqueness
problems.
34 i.e., with |{s ∈ ∪Si : es > 0}| , |{s ∈ ∪Si : es < 0}| ≥ 2, where ((es )s∈Si) denotes the evidence profile.
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(b) monotonicity in sources is violated at each evidence profile with at least two
evidences supporting each option, in such a way that at the other evidence profile
of the violation Failure 2 occurs to a degree II ≥ 	′.
So, in short, monotonicity in sources is violated frequently in the presence of Failure

1or 2: it is violated at almost all evidenceprofileswhenpairedwith someother evidence
profile with large enough Failure 1 or 2. The result holds in a stronger version with
precise thresholds given by 	 = 4 n−2

n|S| and 	′ = (3 − 2
√
2) n−1

n , as our proof will
show.

Proof of Remark 1 Let (17) be violated, i.e., Pr(x = 1
|(es)s∈∪i Si ) < Pr(x = 1|(e′

s)s∈∪i S′
i
) but omaj > o′

maj . Let omaj be efficient; we
show that o′

maj is inefficient. As omaj > o′
maj , we have omaj ≥ 0 and o′

maj ≤ 0.
As omaj is efficient and omaj ≥ 0, we have Pr(x = 1|(es)s∈∪i Si ) ≥ 0. So
Pr(x = 1|(e′

s)s∈∪i S′
i
) > 0, i.e., outcome 1 is efficient at (e′

s)s∈∪i S′
i
. Hence, o′

maj
(≤ 0) is inefficient. �

Notation for the proofs of Propositions 2–4 The values of omaj , SI, II, Ns (s ∈ S) and
Ei (i ∈ N ) at an evidence profile ((es)s∈Si ) are denoted omaj , SI , I I , Ns resp. Ei ;
and their value for an evidence profile denoted using prime(s) (such as ((e′

s)s∈S′
i
) or

((e′
s)s∈Si ) or ((es)s∈S′

i
)) are denoted o′

maj , SI
′, I I ′, N ′

s resp. E
′
i .

Proof of Proposition 2 Fix a simple opinion structure (x,
(es)s∈S, (Si )i∈N ) such that |S| , |N | ≥ 2, and ps→i �= 0 for all s ∈ S and i ∈ N .

(a) Pick distinct sources s1, s2 ∈ S. Let ((es)s∈Si ) be an evidence profile with source
sets S1 = {s1, s2} and S2 = · · · = Sn = {s2} andwith evidences es1 = −2 and es2 = 1.
At ((es)s∈Si ), all persons i have the same evidence strength of |Ei | = 1, so that I I = 0,
whereas SI �= 0 as #Ns1 = 1 while #Ns2 = n �= 1. Finally, the majority opinion omaj

is inefficient, because the efficient opinion is−1 (as
∑

s∈∪i Si es = es1 +es2 = −1 < 0

so that Pr(x = 1|(es)s∈∪i Si ) < 1
2 ) but the majority opinion satisfies omaj ≥ 0 as only

person 1 votes for −1 while the other n − 1 (≥ 1) persons vote for 1.
(b) Let m = |S|, say S = {s1, ..., sm}. Consider two cases.
Case 1: m ≥ n. Let ((es)s∈Si ) be the evidence profile with Si = {si } for all

i = 1, ..., n − 1, Sn = {sn, ..., sm}, es1 = · · · = esm−1 = 1 and esm = −m. At
((es)s∈Si ), each source is accessed by exactly one person, so that SI = 0, whereas
I I �= 0 because persons i = 1, ..., n−1 have evidence strength |Ei | = 1 while person
n has |En| = m − (m − n) × 1 = n �= 1. The majority opinion omaj is inefficient,
because the efficient opinion is −1 (as

∑
s∈∪i Si es = (m − 1) × 1 − m < 0 so that

Pr(x = 1|((es)s∈Si )) < 1
2 ) but the majority opinion satisfies omaj ≥ 0 as n − 1 (≥ 1)

persons vote for 1 while only person n votes for −1.
Case 2:m < n. Let ((es)s∈Si ) be evidence profilewith Si = {si } for all i = 1, ...,m,

Sm+1 = · · · = Sn = ∅, es1 = · · · = esm−1 = 1, and esm = −m. At ((es)s∈Si ),
each source is accessed by exactly one person, so that SI = 0, whereas I I �= 0
because persons i = 1, ...,m − 1 have evidence strength |Ei | = 1 while person m
has |Em | = m > 1. The majority opinion omaj is again inefficient, since it satisfies
omaj ≥ 0 while the efficient opinion is −1, as can be checked (the argument uses that
the voters i = m + 1, ..., n vote 0, not affecting the majority outcome). �
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Proof of Proposition 3 in its strengthened formwith 	 = 6|S|−1
5|S|−5 and 	′ = 4

n+2 . Let
the assumptions hold.

(a) Consider an evidence profile ((es)s∈Si ) at which SI >
6|S|−1
5|S|−5 . Write the spread

of a source s ∈ S as xs = #Ns , and let S̃ = {s : xs �= 0} and j = # S̃. We first establish
the following fact:

Claim: There are sources s+, s− ∈ S̃ such that xs+ > 2xs− .
Assume for a contradiction that xs ≤ 2xt for all s, t ∈ S̃. We write

SI = 1

|S| (|S| − 1)

∑

(s,t)∈S2:s �=t

|xs − xt |
1
2 (xs + xt )

= 1

|S| (|S| − 1)
(�0 + �1 + 2�2)

where we define

�0 =
∑

(s,t)∈(S\S̃)2:s �=t

|xs − xt |
1
2 (xs + xt )

,�1

=
∑

(s,t)∈S̃2:s �=t

|xs − xt |
1
2 (xs + xt )

,�2 =
∑

(s,t)∈S̃×(S\S̃)

|xs − xt |
1
2 (xs + xt )

.

In �0, each term
|xs−xt |
1
2 (xs+xt )

is 0; so �0 = 0. In �1, each term satisfies |xs−xt |
1
2 (xs+xt )

≤ 2
3 , as

can be shown using that xs ≤ 2xt and xt ≤ 2xs ; so �1 ≤ 2
3#{(s, t) ∈ S̃2 : s �= t} =

2
3 j( j − 1). Finally, in �2 each term satisfies |xs−xt |

1
2 (xs+xt )

= 2, since xs > 0 and xt = 0;

so �2 = 2|S̃ × (S\S̃)| = 2|S̃||S\S̃| = 2 j(|S| − j). It follows that

SI ≤ 1

|S| (|S| − 1)

[

0 + 2

3
j( j − 1) + 4 j(|S| − j)

]

= 1

|S| (|S| − 1)

[

−10

3
j2 + (4 |S| − 2

3
) j

]

.

By basic algebra, the second-order polynomial ‘− 10
3 j2 + (4 |S|− 2

3 ) j’ in j (regarded

as a real number) takes a maximum at j∗ = 6|S|−1
10 , where its value is 6

5 (|S| − 1/6)2.
Since j∗ /∈ N but the actual j belongs to N, the maximum is not reached. Thus,
− 10

3 j2 + (4 |S| − 2
3 ) j < 6

5 (|S| − 1/6)2, and so

SI <
6

5
× (|S| − 1/6)2

|S| (|S| − 1)
≤ 6

5
× |S| − 1/6

|S| − 1
= 6 |S| − 1

5 |S| − 5
.

This contradicts the assumption that SI ≥ 6|S|−1
5|S|−5 . Q.e.d.

Now fix s+, s− ∈ S̃ as in the ‘Claim’. We construct another evidence profile
((e′

s)s∈Si ) with same source sets Si such that monotonicity in evidence is violated
for ((es)s∈Si ) and ((e′

s)s∈Si ).
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Case 1: omaj ≥ 0. Choose e′
s+ = −1, e′

s− > max
{∑

s∈∪i Si es, 0
}

+ 1, and e′
s = 0

for all s ∈ (∪i Si )\{s+, s−}. Then o′
maj = −1, because at ((e′

s)s∈Si ) option 1 receives
only #Ns− = xs− votes while option −1 receives #(Ns+\Ns−) ≥ xs+ − xs− > 2xs− −
xs− = xs− votes. Soomaj > o′

maj . This implies a violation of (17) for the pair of profiles
((es)s∈Si ) and ((e′

s)s∈Si ), because Pr(x = 1|(es)s∈∪Si ) < Pr(x = 1|(e′
s)s∈∪Si ) as

∑
s∈∪i Si e

′
s > −1 + max

{∑
s∈∪i Si es, 0

}
+ 1 ≥ ∑

s∈∪i Si es .

Case 2: omaj ≤ 0. Choose e′
s+ = 1, e′

s− < min
{∑

s∈∪i Si es, 0
}

− 1, and e′
s = 0

for all s ∈ (∪i Si )\{s+, s−}. Arguments analogous to those under Case 1 show that
o′
maj = 1 (> omaj ) and that (17) is violated for the pair of profiles ((e′

s)s∈Si ) and
((es)s∈Si ) (in this order).

(b) Let ((es)s∈Si ) be an evidence profile with a minority source t ∈ S. We construct
an evidence profile ((e′

s)s∈Si ) with same source sets Si such that monotonicity in
evidence is violated for ((es)s∈Si ) and ((e′

s)s∈Si ) and I I ′ > 4
n+2 .

Case 1: omaj ≥ 0. Choose e′
s = −1 for all s ∈ (∪i Si )\{t} and e′

t = (n + 2) |S| +
max

{∑
s∈∪Si es, 0

}
. Then o′

maj = −1 (< omaj ), because at ((e′
s)s∈Si ) the option

1 receives #{i : t ∈ Si } votes and the option −1 receives #{i : t /∈ Si �= ∅}
votes, where #{i : t ∈ Si } < #{i : t /∈ Si �= ∅} as t is a minority source. It
follows that (17) is violated for the pair of profiles ((es)s∈Si ) and ((e′

s)s∈Si ), because
Pr(x = 1|(es)s∈∪Si ) < Pr(x = 1|(e′

s)s∈∪Si ) as

∑

s∈∪i Si

e′
s = (−1) |∪i Si )\{t}|︸ ︷︷ ︸

≤|S|
+(n + 2) |S| + max

⎧
⎨

⎩

∑

s∈∪Si

es, 0

⎫
⎬

⎭
>

∑

s∈∪Si

es .

Write a person i’s evidence strength at ((e′
s)s∈Si ) as yi = ∣

∣E ′
i

∣
∣. For all j ∈ N\Nt

we have y j = ∣
∣(−1)

∣
∣S j

∣
∣
∣
∣ = ∣

∣S j
∣
∣ < |S|, while for all j ∈ Nt , writing z for

max
{∑

s∈∪Si es, 0
}
, we have

y j = (−1)
∣
∣S j\{t}

∣
∣ + (n + 2) |S| + z > z + (n + 1) |S| .

Now for all (i, j) ∈ Nt × (N\Nt ), since yi > z + (n + 1) |S| > |S| > y j ≥ 0, we
have

∣
∣yi − y j

∣
∣

1
2 (yi + y j )

= 2
yi − y j
yi + y j

> 2
z + (n + 1) |S| − |S|
z + (n + 1) |S| + |S|) > 2

n |S|
(n + 2) |S| = 2n

n + 2
.

In I I ′ = 1
n(n−1)

∑
(i, j)∈N2:i �= j

|yi−y j |
1
2 (yi+y j )

, the term |yi−y j |
1
2 (yi+y j )

is 0 if (i, j) ∈ N 2 or

(i, j) ∈ (N\Nt )
2, and it exceeds 2n

n+2 if (i, j) ∈ Nt×(N\Nt ) or (i, j) ∈ (N\Nt )×Nt .
So,

I I ′ >
1

n(n − 1)
2

∑

(i, j)∈Nt×(N\Nt )

2n

n + 2
= 4 |Nt | |N\Nt |

(n − 1)(n + 2)
≥ 4 × 1 × (n − 1)

(n − 1)(n + 2)
= 4

n + 2
.
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Case 2: omaj ≤ 0. Here choose e′
s = 1 for all s ∈ (∪i Si )\{t} and e′

t = −(n +
2) |S|+min

{∑
s∈∪Si es, 0

}
. For reasons like those under Case 1, o′

maj = 1 (> omaj ),

(17) is violated for the pair of profiles ((e′
s)s∈Si ) and ((es)s∈Si ) (in this order), and

I I ′ > 2n
n+2 . �


Proof of Proposition 4 in its strengthened form with 	 = 4 n−2
n|S| and 	′ =

(3 − 2
√
2) n−1

n . Let the assumptions hold. For the proof of both parts, we fix an
evidence profile (es)s∈Si ) such that |{s ∈ ∪Si : es > 0}| , |{s ∈ ∪Si : es < 0}| ≥ 2,
and construct another profile ((es)s∈S′

i
) with e′

s = es for all s ∈ (∪i Si ) ∩ (∪i S′
i ) such

that monotonicity in sources is violated for this pair of profiles and SI ′ ≥ 4(n−2)
|S|n resp.

I I ′ > (3 − 2
√
2) n−1

n . The proof assumes w.l.o.g. that omaj ≥ 0 (an analogous proof
works if omaj ≤ 0). To construct ((es)s∈S′

i
), we choose a subgroup M ⊆ N such that

0 < |M | < n
2 (it exists as n ≥ 3) and a source set T �= ∅ that is a strict subset of

{s ∈ ∪i Si : es < 0} (it exists as |{s ∈ ∪Si : es < 0}| ≥ 2), and we define

S′
i =

{ {s ∈ ∪i Si : es > 0} if i ∈ M
T if i ∈ N\M .

Then o′
maj = −1, as all i ∈ N\M vote for −1 and |N\M | > n

2 . Monotonicity
in sources is violated, because omaj > o′

maj although option 1 has gained evidence
support as

∑
s∈∪i S′

i
es = ∑

s∈∪i Si :es>0 es +∑
s∈T es >

∑
s∈∪i Si es . From here on, the

proof of parts (a) and (b) diverge.
Remaining proof for (a). For (a), chooseM = {m} and T = {s ∈ ∪i Si : es < 0}\{t}

for some m ∈ N and some t ∈ ∪i Si with et < 0. Write the spread of a source s ∈ S
as xs = #Ns . Since xs = n − 1 if s ∈ T and xs ≤ 1 if s ∈ S\T (note that xs = 0
if s /∈ ∪i S′

i ), the spread imbalance between any s ∈ T and any t ∈ S\T satisfies
|xs−xt |
1
2 (xs+xt )

= 2 xs−xt
xs+xt

≥ 2 (n−1)−1
(n−1)+1 = 2 n−2

n .

Now recall that SI ′ = 1
|S|(|S|−1)

∑
(s,t)∈S2:s �=t

|xs−xt |
1
2 (xs+xt )

. Here, each |xs−xt |
1
2 (xs+xt )

is 0

if (s, t) ∈ T 2 or (s, t) ∈ (S\T )2 and is at least 2 n−2
n if (s, t) ∈ T × (S\T ) or

(s, t) ∈ (S\T ) × T . So, SI ′ ≥ 1
|S|(|S|−1)2 |T | |S\T | × 2 n−2

n . Hence, as |T | |S\T | =
|T | (|S| − |T |) ≥ |S| − 1, we have SI ′ ≥ 4 n−2

n|S| . Q.e.d.
Remaining proof for (b). For (b), let M be a maximal minority M ⊆ N , i.e.,

|M | = n−2
2 if n is even and |M | = n−1

2 if n is odd. Pick distinct sources t, t ′ ∈ ∪i Si
with et ′ ≤ et < 0 (they exist by assumption) and let

T =
{ {t} if |et | ≤ 1√

2

∑
s∈∪i Si :es>0 es

{t, t ′} if |et | > 1√
2

∑
s∈∪i Si :es>0 es .

Any person i’s evidence strength is written yi = ∣
∣E ′

i

∣
∣ =

∣
∣
∣
∑

s∈S′
i
es
∣
∣
∣; it equals

∑
s∈∪i Si :es>0 es if i ∈ M and equals |et | or |et + et ′ | if i ∈ N\M . Now, the inter-
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personal imbalance between an i ∈ M and a j ∈ N\M satisfies

∣
∣yi − y j

∣
∣

1
2 (yi + y j )

≥ 2(3 − 2
√
2). (18)

Why? If |et | ≤ 1√
2
yi , then T = {t} and so y j = |et | ≤ 1√

2
yi ; thus

|yi−y j |
1
2 (yi+y j )

= 2
yi−y j
yi+y j

,

where

yi − y j
yi + y j

≥
yi − 1√

2
yi

yi + 1√
2
yi

=
√
2 − 1√
2 + 1

= (
√
2 − 1)2

(
√
2 + 1)(

√
2 − 1)

= 3 − 2
√
2. (19)

If instead |et | > 1√
2
yi , then T = {t, t ′}, and so y j = |et + et ′ | = |et |+|et ′ | ≥ 2 |et | >

2√
2
yi = √

2yi , an thus yi < y j/
√
2; so, |yi−y j |

1
2 (yi+y j )

= 2
y j−yi
yi+y j

, where
y j−yi
yi+y j

> 3 − 2
√
2

by a calculation analogous to (19).

Recall that I I ′ = 1
n(n−1)

∑
(i, j)∈N2:i �= j

|yi−y j |
1
2 (yi+y j)

.Here, each |yi−y j |
1
2 (yi+y j)

is 0 if (i, j) ∈
M2 or (i, j) ∈ (N\M)2, and it is at least 2(3 − 2

√
2) if (i, j) ∈ M × (N\M) or

(i, j) ∈ (N\M) × M . So, I I ′ ≥ 1
n(n−1)2 |M | |N\M | × 2(3 − 2

√
2). The definition

of M and the fact that n ≥ 3 imply that |M | (n − |M |) >
(n−1)2

4 . Therefore,

I I ′ >
1

n(n − 1)

[

2
(n − 1)2

4
× 2(3 − 2

√
2)

]

= (3 − 2
√
2)
n − 1

n
. �
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