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Summary: Many studies in economics use instruments or treatments that combine a set 
of exogenous shocks with other predetermined variables via a known formula. Examples 
include shift-share instruments and measures of social or spatial spillo v ers. We re vie w recent 
econometric tools for this setting, which leverage the assignment process of the exogenous 
shocks and the structure of the formula for identification. We compare this design-based 
approach with conventional estimation strategies based on conditional unconfoundedness, and 
contrast it with alternative strategies that leverage a model for unobservables. 
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1. INTRODUCTION 

any studies in economics use instruments or treatments that combine a set of observed shocks
ith other predetermined variables via a known formula. A leading example is shift-share instru-
ents, which sum or average a common set of shocks ( g k ) K 

k= 1 , varying at a different ‘level’ than ob-
ervations i, with weights s ik (‘shares’) reflecting heterogenous shock exposure: z i = 

∑ 

k s ik g k . 1

ther examples include treatments capturing the transmission of shocks in social or geographic
etworks, and variables based on formulas for policy eligibility. 2 

This paper re vie ws a recent econometric literature that sho ws ho w causal ef fects or structural
arameters of linear models can be estimated in such settings when the shocks in the formula
re exogenous with a known ‘design’. Exogeneity here means that the shocks are conditionally
1 Shift-share (or ‘Bartik‘) instruments were originally developed by Bartik ( 1991 ) and Blanchard and Katz ( 1992 ) to 
stimate labour demand elasticities. More recent applications study topics in trade (e.g., Autor et al., 2013 ; Hummels 
t al., 2014 ), immigration (e.g., Card, 2009 ; Peri et al., 2016 ), finance (e.g., Greenstone et al., 2020 ; Xu, 2022 ), public 
conomics (e.g., Saiz, 2010 ; Diamond, 2016 ), and macroeconomics (e.g., Nakamura and Steinsson, 2014 ; Jaravel, 2019 ; 
berfield and Raval, 2021 ). 
2 Settings with such treatments and instruments include Miguel and Kremer ( 2004 ), who study spillo v ers from 

eworming shocks across students; Donaldson and Hornbeck ( 2016 ), who study market access effects from new rail w ay 
onstruction; and Currie and Gruber ( 1996 ), who study the effects of Medicaid eligibility. 
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independent of the outcome error, allowing all other components of the formula to be endogenous.
A known design means a specification of the assignment process from which the vector of
observed shocks is drawn. These assumptions jointly formalize the notion of the shocks being ‘as-
good-as-randomly assigned’. Borusyak et al. ( 2022 , henceforth BHJ) first develop this approach to
shift-share identification and consistency, while Ad ̃ ao et al. ( 2019 ) study inference in this setting.
Borusyak and Hull ( 2023 , henceforth BH) extend the approach to general formula instruments.
Our re vie w unifies the BHJ and BH frame works and draws connections to alternati ve approaches
to causal inference with formula instruments, such as by Goldsmith-Pinkham et al. ( 2020 ). 

The key problem addressed by BHJ and BH is that the exogeneity of the shocks is not by itself
enough to a v oid omitted variable bias (OVB). This is easily seen with shift-share instruments:
suppose the shocks are drawn completely at random (with, say, a positive expectation), but
observ ations v ary in the sum of exposure shares to all shocks, S i = 

∑ 

k s ik . The instrument will
then be positively correlated with the sum of shares, since E [ z i | s i1 , . . . s iK 

] = E [ g k ] S i , and thus
may also correlate with the errors. Randomizing the shocks does not imply instrument validity
when shock exposure is not exogenous. 

BHJ and BH sho w ho w le veraging the formula allo ws one to a v oid OVB when the shock design
is known. In the previous example, the shift-share formula along with the random assignment
of shocks imply that all systematic variation in the instrument is captured by the sum of shares;
controlling for this sum eliminates OVB. Identification in the general case, for arbitrary formulas
and designs, follows from simple adjustments based on the expected instrument : the average
value of the formula across counterfactual sets of shocks, drawn from the specified assignment
process. Specifically, OVB is a v oided by either adding the expected instrument as a control or
by using a r ecentr ed instrument that subtracts the expected instrument from the original formula.
Controlling for or recentring by the expected instrument is generally necessary for identification
with formula instruments, absent additional assumptions on the exogeneity of shock exposure. 

How can the shock assignment process be specified in practice? This is trivial when the
shocks are generated from a true experiment as shock counterfactuals then follow from the
randomization protocol. 3 In observational data, it is useful to distinguish two cases. With shift-
share instruments, only the conditional mean of the shocks needs to be specified. BHJ note that this
task, while nontrivial, is no harder than the usual one of selecting controls in a more conventional
shock-level analysis. In the general case, shock design can follow from the exchangeability of
shocks conditional on observables, such that appropriate permutations of shocks can serve as
valid shock counterfactuals. Exchangeability of the running variable around a policy threshold,
as in the local randomization approach to regression discontinuity designs (e.g., Lee, 2008 ),
scientific knowledge (e.g., geological models when using earthquakes as shocks), and other
forms of institutional knowledge can also serve as sources of shock design. Such strategies build
on a long tradition in the analysis of randomized experiments, going back to Neyman ( 1923 ). 

We next re vie w results on the consistency of IV estimators based on (recentred) formula
instruments, and on valid statistical inference using them. BHJ and BH show that shift-share
IV estimators converge to the true parameter given a large number of exogenous shocks with
sufficiently dispersed average exposure across observations. With shift-share instruments, valid
asymptotic inference can be conducted under similar assumptions using results in Ad ̃ ao et al.
( 2019 ) or using an equi v alent shock-le v el IV re gression proposed by BHJ. In settings with a
3 Note, ho we ver, that e ven in randomized experiments the assumption of exogenous shocks is not trivial: it requires the 
included treatment variable to capture all mechanisms through which the common shocks affect observations (an implicit 
exclusion restriction). 

© The Author(s) 2024. 
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onlinear formula or few shocks, randomization inference (RI) can be a natural alternative with
alid finite-sample co v erage. 

The baseline setting we consider involves a constant-effect causal or structural model with a
calar treatment in a cross-section of observations and a known shock design. We discuss, ho we ver,
arious extensions of the design-based approach: to settings with heterogeneous treatment effects,
ultiple treatments and instruments, shock designs with estimated parameters, and panel data.
e also re vie w the results of Borusyak and Hull ( 2021a ) on the most efficient formula instrument

onstructions for a given treatment variable. 
We compare design-based identification with two alternative strategies that do not leverage

he structure of the formula for identification. First, we draw a connection to conventional
dentification methods based on a conditional unconfoundedness assumption. Most closely related
s the E-estimator of Robins et al. ( 1992 ), which uses as an instrument the difference between a
reatment and an estimate of its expectation conditional on the covariates. The formula instrument
etting is more general, involving instruments constructed from a common set of exogenous
hocks that may vary at a different ‘level’ than the observations. Unlike conventional settings,
he potentially confounding relationship between the instrument and shock exposure cannot be
earned from the data since only one set of shocks is observed. Instead, OVB can be purged by
pecifying or estimating the assignment process for shocks and using the formula. Second, we
ontrast the design-based approach to formula instruments with strategies that do not directly use
he formula, but instead model the unobservables (via, e.g., a parallel trends assumption) as in
he Goldsmith-Pinkham et al. ( 2020 ) approach to shift-share instruments. Such approaches may
e especially useful when there are too few shocks or when it is difficult to credibly specify the
hock design. We note, ho we ver, that the underlying assumptions of these approaches can be
nappropriate when observations are exposed to common unobserved shocks in the same way as
hey are exposed to the observed shocks in the formula instrument. 

The rest of this paper is structured as follows. The next section outlines the basic setting and
ssumptions. Section 3 re vie ws results on identification, both in general and in special cases
uch as shift-share instruments. Section 4 re vie ws results on consistency and inference. Section 5
iscusses extensions of the main results. Section 6 compares the design-based approach with
lternative methods. Section 7 concludes with open questions in this recent literature. 

2. SETTING 

onsider a simple causal model for an outcome y i and treatment x i observed across units
 = 1 , . . . , N : 

y i = βx i + ε i . (2.1)

ere β is the parameter of interest (i.e., the treatment effect) and ε i is the unobserved error (i.e.,
nit i’s potential outcome when x i is set to zero). For initial notational simplicity, we assume y i 
nd x i (and thus ε i ) have been de-meaned across the units. To estimate β, we suppose a researcher
as constructed a candidate ‘formula’ instrument 

z i = f i ( s, g) , (2.2)

or a set of known functions f 1 ( ·) , . . . , f N 

( ·) , a vector of observed shocks g ∈ R 

K , and some
bserved data s. The shocks are assumed to be exogenous conditional on s and possibly some
ther observed q; formally, with ε = ( ε i ) N and w = ( s, q) , we consider: 
i= 1 

The Author(s) 2024. 
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ASSUMPTION 2.1. (Shoc k e xo g eneity) ε ⊥ ⊥ g | w. 

Exogeneity, here formalized by the conditional independence of ε and g given w, is satisfied
in a four-stage data-generating process where first w is determined, second g and ε are drawn
independently (but possibly in a way that depends on w), third x = ( x i ) N 

i= 1 is determined in an
unspecified way, and fourth y = ( y i ) N 

i= 1 is determined by equation ( 2.1 ). We discuss the mapping
of Assumption 2.1 onto several empirical contexts in Section 3.2 ; below we discuss a weaker
mean-independence condition that suffices in some important settings. Exogeneity can also be
understood as combining two distinct assumptions: exclusion of the shocks from the causal model
and conditionally independent shock assignment. The working paper of BH (Borusyak and Hull,
2021b , appendix C.1) presents a more general potential outcomes model that isolates these two
assumptions. 

Three examples of candidate instrument constructions illustrate the generality of this setup. In
the first example of linear shift-share IV, the instrument is an average (or sum) of the shocks g k 

with weights s ik reflecting heterogeneous shock exposure: 

EXAMPLE 2.1. (Linear shift-share) s is an N × K matrix of s ik ≥ 0 and z i = 

∑ K 

k= 1 s ik g k . 

For instance, supply shocks in China g k across industries k could be combined with industry
employment shares s ik across US commuting zones i to study local employment outcomes, as
in Autor et al. ( 2013 ). A key feature of such z i is the linearity of f i ( s, g) in g; as we discuss
below, this simplifies identification, consistency, and inference. This instrument construction is
also ‘anonymous’, in that f i ( s, g) = f ( s i , g) for a common f ( ·) across i and s i = ( s ik ) K 

k= 1 . Often
(though not al w ays) 

∑ 

k s ik = 1 , in which case z i is a conv e x av erage of the shocks. 4 

A second example relaxes linearity of f i ( s, g) while maintaining the anonymous construction:

EXAMPLE 2.2. (Nonlinear shift-share) z i = f ( s i , g) for nonlinear f ( ·) and vectors s i . 

Here a concrete setting comes from Boustan et al. ( 2013 ), who instrument changes in the income
Gini coefficient of municipalities i with a predicted change in the area’s Gini coefficient f ( s i , g)
based on national shocks g k to the average income of w ork er groups (defined by percentiles of
initial income) k with baseline regional shares of these groups s ik . Another popular construction
in this class, seen for instance in Berman et al. ( 2015 ), comes from taking the natural log of a
linear shift-share variable: z i = log 

(∑ 

k s ik g k 

)
. 

A third example of network spillovers illustrates the generality of the setting by relaxing both
linearity and anonymity: 

EXAMPLE 2.3. (Network spillo ver s) K = N , s = ( s ik ) N 

i,k= 1 is a network adjacency matrix, and
z i = f i ( s, g) . 

In Carvalho et al. ( 2021 ), for instance, a natural disaster generates shocks g k to firms k that
propagate across the firm-to-firm supplier network. Here f i ( s, g) returns the network distance
between i and the nearest shocked firm, which depends on the full adjacency matrix s. Of course,
there are also network spillo v er applications that satisfy linearity and anon ymity. F or e xample, in
Miguel and Kremer ( 2004 ), health shocks from a randomized deworming intervention propagate
across a network of students captured by s. Here f i ( s, g) = s ′ i g simply counts the number of
4 The restriction that s ik ≥ 0 is not essential. We impose it because it is satisfied in most applications while it 
simplifies the results below. In particular, the conditions for consistent estimation in Proposition 4.1 need to be adjusted 
to accommodate ne gativ e e xposure shares. 

© The Author(s) 2024. 
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ewormed neighbours of student i, showing this example of network spillo v ers can also be viewed
s a linear shift-share variable with varying sum of exposure shares 

∑ 

k s ik . 
BH discuss other examples of formula instruments, including market access instruments used

o study the effects of transportation upgrades (as in Donaldson and Hornbeck, 2016 ) and policy
ligibility instruments used to study the effects of complex eligibility changes (as in Currie and
ruber, 1996 ). The class of formula instruments is quite broad, containing any z i which can be

omputed from a set of observed shocks g and other observed data s. 

EMARK 2.1. The setup allows x i = z i , in which case β captures the reduced-form effect of
he formula instrument itself. The exclusion restriction in this case requires the formula f i ( ·) to
e correct, in the sense of capturing all channels by which the shocks affect the outcome. In the
ore general IV case, Assumption 2.1 allows the consideration of any formula f i ( ·) as long as x i

aptures all shock effects. While strong, this exclusion restriction is standard. 

EMARK 2.2. Formula instruments are often derived from the structure of x i by removing or
eplacing some endogenous components. F or e xample, canonical shift-share instruments were
erived in settings where x i = 

∑ 

k s ik ̃  x ik for observation-specific shocks ˜ x ik (e.g., local industry
rowth rates), which were replaced with national averages when constructing z i . Similarly, in the
oustan et al. ( 2013 ) example, z i replaces the local income shocks at national income percentiles
ith the corresponding national changes in their predictions of local Gini coefficients. We return

o this relationship between x i and z i when discussing instrument rele v ance in Section 4.1 and
symptotic efficiency in Section 5 . 

EMARK 2.3. The setup does not assume the ( y i , x i ) are independently and identically dis-
ributed ( iid ), as when sampled from some population, or put other restrictions on the dependence
f ε i across units. This permits the units to have common exposure to shocks, both observed and
nobserved. The approach is consistent with the design-based tradition of conditioning on the set
f potential outcomes, though we do not require such conditioning. It further allows the N units
o represent a population—for example, all regions of a country (Abadie et al., 2020 )—where
andom sampling assumptions are inappropriate. 

In addition to shock exogeneity, we assume knowledge about the shock ‘assignment process’—
.e., restrictions on the distribution of g given w. The most demanding version of such design
nowledge is complete specification of this distribution: 

SSUMPTION 2.2. (Known design) The distribution of g given w, denoted G ( g | w) , is known.

In randomized controlled trials (RCTs), where g is drawn from according to an experimental
rotocol that may depend on q (e.g., Miguel and Kremer, 2004 ), this assumption holds trivially
s G ( g | w) is then given by the protocol. For instance, the g k may be independent Bernoulli
andom variables with known strata-specific means, with strata indicators included in q. 

Outside of true experiments, Assumption 2.2 may be satisfied by appropriate exchangeability
ssumptions which specify the permutations of shocks that were as likely to hav e occurred. F or
xample, assuming the g k are iid across k conditional on s implies permutations of g are equally
ikely to arise. Hence G ( g | w) is known to be uniform o v er permutations � ( g) = { π ( g) | π ∈
 K 

} , with � K 

denoting the set of permutation operators π ( ·) on vectors of length K , and with
q = � ( g) . Similar design knowledge follows under weaker shock exchangeability conditions,
uch as when the g k are iid within, but not across, a set of known clusters and q contains the
lass of within-cluster permutations of g. BH, for example, consider a setting where the shocks
The Author(s) 2024. 
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are indicators for whether each planned interregional rail w ay line has opened before a certain
date; the treatment is regional market access created by those lines. The timing of line opening
is assumed random within groups of planned lines with similar characteristics—specifically, the
number of regions a line connects. Thus, expected market access is computed by permuting the
opening dates of planned lines that connect the same number of regions. Exchangeability could
also be assumed local to some policy threshold, as in the local randomization view of regression
discontinuity in Lee ( 2008 ) and Cattaneo et al. ( 2015 ). Scientific or other institutional knowledge
(e.g., geological models when using earthquakes as shocks) may also yield specifications of
G ( g | w) , as we discuss below. 

An important relaxation of Assumptions 2.1 and 2.2 follows when f i ( s, g) is linear in the
shocks, as in Example 2.1. Specifically, they can be jointly weakened to a restriction on the
conditional mean of the shocks: 

ASSUMPTION 2.3. (Conditionally linear shock means) There exists unknown θ such that
E [ g k | ε , w ] = q 

′ 
k θ for known q = ( q k ) K 

k= 1 included in w and for all k. 

This restriction can be seen as combining a shock mean-independence condition of
E [ g k | ε , w ] = E [ g k | w ] with a linearity restriction of E [ g k | w ] = q 

′ 
k θ (for a θ that can implic-

itly depend on w). The former condition weakens Assumption 2.1 to allow higher moments of
the shocks to depend on the unobserved ε, while the latter restriction weakens Assumption 2.2
to a partial parameterization of G ( g | w) . For example, in the shift-share application of Autor
et al. ( 2013 ), the latter condition allows the mean of industry-specific supply shocks in China to
systematically vary across broader sectors (e.g., consumer electronics, apparel, food, etc.). This
would be captured by a set of sectoral dummies q k , with the aim of leveraging residual shock
variation within each sector (e.g., between TVs and computers). Below we further discuss and
illustrate the usefulness of Assumption 2.3 in the linear shift-share setting, while also showing
how it can be used with linear approximations of nonlinear shift-share instruments. In Section 5 ,
we discuss other incomplete specifications for G ( g | w) . 

3. IDENTIFICATION 

3.1. Expected and r ecentr ed instruments 

We first consider IV identification of β, or whether the parameter can be learned
from first-stage and reduced-form moments. 5 Formally, we consider the key orthogonal-
ity condition of E 

[
1 
N 

∑ 

i z i ε i 
] = 0 . Identification follows under this condition with β =

E 

[
1 
N 

∑ 

i z i y i 
]
/ E 

[
1 
N 

∑ 

i z i x i 
]

so long as E 

[
1 
N 

∑ 

i z i x i 
] �= 0 : a rele v ance condition we return

to below. 6 

A key insight of BH is that shock exogeneity is not, by itself, enough for formula instrument
orthogonality. To see this, define μi ( w) ≡ E [ f i ( s, g) | w ] as the expectation of the candidate
5 Identification in this setting is less straightforwardly defined than it would be under the usual assumption of iid data 
(see Remark 2.3). Following Goldsmith-Pinkham and Imbens ( 2013 ), we approach the problem in two steps: first by 
considering whether certain moment conditions hold (in this section) and then considering whether the moments can 
be asymptotically learned from the data (in our consistency results in Section 4.1 ). Appropriately for non- iid data, we 
consider full-sample moments like E 

[ 1 
N 

∑ 

i z i ε i 
]

that generalize moments like E [ z i ε i ] studied in iid data. 
6 Expectations here are taken with respect to the joint distribution of ( g, x, w, ε) . The frame work allo ws, but does not 

require, ( w , ε ) to be considered fixed, in line with the design-based tradition of focusing on randomness in the shocks 
and induced variation in the treatment. 

© The Author(s) 2024. 
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nstrument of unit i across the distribution of shocks while conditioning on the predetermined
ata in s and q. BH call this object, which we write as μi for brevity, the expected instrument .
hey show that under Assumption 2.1: 

E 

[ 

1 

N 

∑ 

i 

z i ε i 

] 

= E 

[ 

1 

N 

∑ 

i 

μi ε i 

] 

. (3.1)

n other words, shock exogeneity does not make the cross-sectional covariance between z i 
nd ε i zero, unless the expected instrument is itself orthogonal to ε i . Adjusting for μi —the
ey confounder in this setting—is therefore necessary for IV identification, absent additional
estrictions on the exogeneity of shock exposure. The proof of ( 3.1 ) follows by repeated use of
he law of iterated expectations: for any i, E [ z i ε i ] = E [ E [ f i ( g, w ) ε i | w ] ] = E [ μi E [ ε i | w ] ] =
 [ μi ε i ] , using Assumption 2.1 in the second equality. When z i is linear in the shocks, as with

inear shift-share instruments, the same result holds under Assumption 2.3. 
Two simple adjustments for μi follow: recentring and controlling. Note first that equation ( 3.1 )

mmediately implies that the r ecentr ed instrument ˜ z i = z i − μi satisfies orthogonality: 

E 

[ 

1 

N 

∑ 

i 

˜ z i ε i 

] 

= 0 . (3.2)

hus, as long as it also satisfies rele v ance, E 

[
1 
N 

∑ 

i ˜ z i x i 
] �= 0 , using ̃  z i as an instrument identifies

. This follows because E [ ̃ z i | w ] = 0 by construction. Hence ˜ z i cannot be correlated with any
unction of w which, through its unrestricted dependence with ε, could violate orthogonality. 

The second adjustment is perhaps more familiar: controlling for the confounder μi —or, more
enerally, for a vector of functions r i ≡ r i ( w) that linearly span μi —in an IV regression that
ses the unadjusted z i as the instrument. This approach works because controlling for such a r i 
mplicitly recentres z i by residualizing it on μi . Formally, by the Frisch–Waugh–Lovell theorem,
he controlled IV regression is equi v alent to an uncontrolled IV regression of y ⊥ 

i on x ⊥ 

i where
 denotes the residuals from an in-sample projection on r i . The orthogonality condition of this

egression, 

E 

[ 

1 

N 

∑ 

i 

z i ε 
⊥ 

i 

] 

= 0 , (3.3)

olds because E 

[
1 
N 

∑ 

i ˜ z i ε 
⊥ 

i 

] = 0 by analogy to equation ( 3.1 ) and because
 

[
1 
N 

∑ 

i ( z i − ˜ z i ) ε ⊥ 

i 

] = 0 by the orthogonality between fitted values and residuals of the
n-sample projection. 7 The r i controls remo v e some variation from ε i , which may impro v e
fficiency in large samples. 

Under Assumption 2.2, the recentring and controlling procedures are both straightforward
o implement because μi is easily computed. In some cases the expectation E [ z i | w ] can be
omputed analytically or (as we show in the next section) is known to be linear in some observed

r i . Otherwise, μi can be approximated by a simple simulation procedure: 
7 Similarly, if the recentred instrument is used, any set of functions of w can be controlled for, whether or not this set 
ncludes μi . For this reason, BH argue recentring is the key step for identification, while controlling for r i is a convenient 
mplementation. We note that these results go through even if the number of controls is large. As is well known (e.g., 
reedman, 2008 ), including many controls can create bias with heterogeneous effects (which we consider in Section 5 ) 
r otherwise reduce estimation efficiency or affect the validity of inference techniques. 

The Author(s) 2024. 
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(1) For simulations j = 1 , . . . , J , redraw counterfactual shocks g 

( j ) from G ( · | w) (e.g., by
following the RCT protocol or taking appropriate permutations of observed shocks). 

(2) Compute z ( j ) 
i = f i ( s, g 

( j ) ) . 
(3) For each observation, take the average across simulations: μi ≈ 1 

J 

∑ J 
j= 1 z 

( j ) 
i . 

For identification, it is enough to approximate μi by any number of simulations J so long as

draws are independent of g and ε conditionally on w: E 

[ 
1 
N 

∑ 

i ( z i − 1 
J 

∑ 

j f i ( s, g 

( j ) )) ε i 
] 

= 0 by

the law of iterated expectations, since E [ z i | w , ε ] = E 

[
f i ( s, g 

( j ) ) | w , ε 
]
. 8 

REMARK 3.1. Should recentring or controlling be used in practice? BH note that the answer may
depend on whether the shocks arise from an RCT or a natural experiment. In RCTs, Assumption
2.2 is satisfied trivially. Thus, the researcher can first recentre the instrument to a v oid OVB and
then choose the controls solely by efficiency considerations. Controlling for μi , as opposed to
any other r i , is only preferable if μi is believed to be strongly correlated with ε i . In a natural
experiment, ho we ver, the controlling strategy has an additional appeal relative to recentring, as it
allows the researcher to incorporate multiple guesses for μi arising from different specifications
of G ( g | w) . If these candidate μi are included as controls while using z i as the instrument,
identification follows if any one candidate is correctly specified. 

REMARK 3.2. A related approach to a v oid bias from nonrandom exposure is developed by
Aronow and Samii ( 2017 ) in the context of discrete network treatments x i and discrete shocks
g k . While their estimator is based on inverse probability weighting, recentring is a regression
adjustment and hence does not require an additional o v erlap condition. 

3.2. Linear shift-share IV 

A particularly important case of formula instruments is linear shift-share instruments, with
z i = 

∑ 

k s ik g k , where identification can be achieved under weaker conditions than in the general
case. We consider three cases of increasing complexity. 

Case 1: Complete shares, no controls We first suppose the exposure shares are ‘complete’,
in the sense that 

∑ 

k s ik = 1 for all i, and that Assumption 2.3 holds with no additional controls
such that q k = 1 and E [ g k ] = θ for all k. The latter condition requires each shock g k to have the
same mean θ , regardless of the realizations of the unobservables ε and exposure shares s. 

In this case, instrument orthogonality holds without any recentring as long as the estimat-
ing equation includes an intercept. This follows because the expected instrument is constant,
μi = 

∑ 

k s ik E [ g k | w ] = θ
∑ 

k s ik = θ , and is thus absorbed by the intercept. The weaker mean-
independence restriction of Assumption 2.3 is furthermore enough because of the linear construc-
tion of z i . Intuitively, when all the shocks are exogenous and have the same expectation, there is
no reason for a weighted average of those shocks z i to be systematically higher or lower for units
with any particular shares s i and thus with higher or lower ε i . 

For further intuition, it is instructive to rewrite the ( r i -controlled) orthogonality condition at
the shock ‘level’, following BHJ: 

0 = E 

[ 

1 

N 

∑ 

i 

z i ε 
⊥ 

i 

] 

= E 

[ 

1 

N 

∑ 

i 

∑ 

k 

s ik g k ε 
⊥ 

i 

] 

= E 

[ ∑ 

k 

s k g k ̄ε 
⊥ 

k 

] 

, (3.4) 
8 BH further show that the number of simulations is not important for consistency of the estimator. The proof of their 
proposition 1 shows the number of simulations generally affects the estimator’s efficiency, however. 

© The Author(s) 2024. 
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here s k = 

1 
N 

∑ 

i s ik and ε̄ ⊥ 

k = 

∑ 

i s ik ε 
⊥ 
i ∑ 

i s ik 
with ε ⊥ 

i again denoting the residualized error. This shows

hat the orthogonality of z i and ε ⊥ 

i is equi v alent to a weighted ‘shock-level’ orthogonality condi-
ion, which considers the relationship between g k and unobserved ε̄ ⊥ 

k . The s k weights capture the
importance’ of each shock, in terms of its av erage e xposure s ik , while ε̄ ⊥ 

k are exposure-weighted
verages of ε ⊥ 

i . Since 
∑ 

k s k ̄ε 
⊥ 

k = 

1 
N 

∑ 

i 

∑ 

k s ik ε 
⊥ 

i = 

1 
N 

∑ 

i ε 
⊥ 

i = 0 , with r i including a constant,
quation ( 3.4 ) shows that orthogonality holds when the weighted covariance of g k and ε̄ ⊥ 

k is zero.
As a concrete example, consider the setting of Aghion et al. ( 2022 , henceforth AABJ), who

tudy the impact of lowering the cost of automation technologies on labour demand in France
n the 2000s. Here y i is the change in employment of firm i, x i is the change in the firm’s stock
f automation technologies, and z i = 

∑ 

k s ik g k is the predicted change in the cost of importing
hese technologies. This prediction is based on shocks g k to the supply of imported technologies
cross source countries and technology categories, such that k inde x es country-technology pairs
e.g., robots from Italy). Exposure shares s ik are computed as the proportion of imports from cell
in firm i’s total imports of automation technologies in a previous period (which sum to one). 
In this example, Assumption 2.3 requires cell-level supply shocks to have the same expectation

egardless of all firm-le vel unobserv ables. The representation ( 3.4 ) provides further intuition:
he shift-share instrument would violate orthogonality if the country-technology pairs that have
re-existing relationships with French firms with growing employment (for reasons other than
utomation) receive systematically different supply shocks. For instance, orthogonality fails if
etter managed French firms (with better employment trends) established ties with Chinese
uppliers in the 1990s in anticipation of the growing supply from China in the 2000s. We next
elax the assumption of equal expected shocks to accommodate situations like this. 

Case 2: Complete shares with controls We now turn to linear shift-share instruments with
eneral shock-level controls q k . In the AABJ application, for example, it appears important
o allow for productivity shocks that differ systematically across supplier countries (e.g., China
 xperiences positiv e productivity shocks in the 2000s) and for firms connected to certain countries
o have systematically different unobservables. Similarly, one may allow productivity shocks to
ary across technology categories (e.g., robots experience faster productivity growth than textile
achines), with firms connected to those technologies being systematically different. The shock-

evel controls q k could then include supplier country and technology fixed effects. 
With shock-level controls, the expected instrument is linear in e xposure-weighted av erages of

hese controls: 

μi = 

∑ 

k 

s ik q 

′ 
k θ = Q 

′ 
i θ, Q i = 

∑ 

k 

s ik q k . (3.5)

ence, we can view z i as combining systematic (and potentially confounding) variation in
i = Q 

′ 
i θ with idiosyncratic variation in shocks drawn above or below their expectation: 

z i = Q 

′ 
i θ + 

∑ 

k 

s ik 
(
g k − q 

′ 
k θ

)
. (3.6)

ncluding Q i in the control vector r i remo v es the systematic variation, ensuring instrument
rthogonality. In the AABJ example this would mean controlling for the total exposure share of
 firm to each supplying country, as well as the total exposure share to each technology. 

An alternative approach in this case would be to first residualize the g k shocks on the q k

ontrols then use a modified shift-share instrument 
∑ 

k s ik ( g k − q 

′ 
k ̂

 θ) , possibly with no additional
ontrols. This can be viewed as a recentring approach, although with an estimated parameter ˆ θ
The Author(s) 2024. 
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affecting shock expectations (we allow for shock assignment process specified with parameters
in Section 5 ). In the AABJ case this can be implemented by residualizing cell-level supply shocks
on country and technology fixed effects and constructing the shift-share instruments from the
estimated residuals. 

Case 3: Incomplete shares In certain shift-share applications, the exposure shares are ‘in-
complete’ in that they do not sum to one: i.e., S i = 

∑ 

k s ik varies across observations i. This is the
case in the ‘China shock’ study of Autor et al. ( 2013 , henceforth ADH) where i denotes commut-
ing zones and k inde x es manufacturing industries. ADH estimate the response of labour market
outcomes (e.g., manufacturing employment) across commuting zones to exposure to industry-
specific supply shocks in China. Here g k captures the supply shock in China, while the shares
s ik are lagged industry employment shares in each commuting zone. The shares are measured
relative to total employment (i.e., both in manufacturing and in other sectors) and so they add up
to the lagged total manufacturing share of region i: S i < 1 . 

Even when Assumption 2.3 holds with no controls ( q k = 1 ), the incompleteness of shares
can make instrument orthogonality fail. Intuitively, z i leverages variation in S i which may be
correlated with the error term even when shocks are fully random. More formally, we again
consider the expected instrument: 

μi = 

∑ 

k 

s ik E [ g k ] = θ
∑ 

k 

s ik = θS i . 

Instrument orthogonality generally fails when θ �= 0 and when S i is cross-sectionally correlated
with ε i . F or e xample, in the ADH setting, industry-level China shocks g k are positive in expectation
such that z i is systematically higher in regions where manufacturing as a whole is a bigger share
of the local economy. Because manuf acturing emplo yment is on a downward trend for reasons
other than trade with China (e.g., structural transformation), this can be a source of ne gativ e bias. 9 

Controlling for the sum of shares S i isolates the idiosyncratic variation in z i which yields
instrument orthogonality. 10 Constructing the shift-share instrument from de-meaned shocks is
again an alternative recentring solution. The more general case with incomplete shares and other
controls q k follows similarly. Here μi = Q 

′ 
i θ for Q i = 

∑ 

k s ik q k , but this μi is not an exposure-
weighted average of q k since the weights do not add up to one. Still, as before, including Q i in
r i would isolate the idiosyncratic variation in the instrument. 11 
9 In practice, ADH include a control that is highly correlated with S i : total manufacturing employment share from a 
later period. BHJ show their estimates of manufacturing employment effects are similar when controlling for S i itself. 

10 As BHJ note, another way to arrive at this solution is to imagine a ‘missing’ shock g 0 = 0 with exposure share 
s i0 = 1 − S i : e.g., the nonmanufacturing sector in ADH that is not subject to the China shock. With this shock added, 
there are no incomplete shares. Ho we ver, E [ g 0 ] = 0 while E [ g k ] = θ for k �= 0 . Thus, unless θ = 0 (e.g., the expected 
supply shock in China in each manufacturing industry is zero), the indicator 1 [ k > 0 ] should be included in q k , and 
correspondingly the share-weighted exposure to it, which equals S i , should be controlled for. 

11 F or e xample, ADH study two periods (the 1990s and 2000s) with systematically higher shocks to manufacturing 
industries in the 2000s. With period fixed effects in q k , the corresponding Q i includes the total manufacturing share 
interacted with period fixed ef fects. BHJ sho w that adding this control is empirically rele v ant in the ADH context. The 
intuition is that regions with a higher total manufacturing share al w ays have systematically higher z i , but especially in 
the 2000s. If manufacturing-heavy regions face stronger declines in employment in the 2000s for reasons other than trade 
with China (again, perhaps because of structural change), the shift-share IV estimator is biased even if period dummies 
and S i are separately controlled for. 

© The Author(s) 2024. 
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3.3. Linear vs. nonlinear formulas 

e now contrast identification with linear and nonlinear formula instruments, using the nonlin-
ar shift-share example of z i = f ( s i , g) for concreteness. As with the linear case, a common
oti v ation for such instruments is that the endogenous treatment of interest can be written as
 i = f ( s i , ˜ x i ) for some (potentially unobserved) ˜ x i = ( ̃  x ik ) K 

k= 1 . An intuitive instrument in this
ase replaces the ˜ x ik with an exogenous shifter g k . Concrete examples include the predicted
hange in a regional Gini coefficient in Boustan et al. ( 2013 ), the predicted share of migrants in
asso and Peri ( 2015 ), and the predicted foreign demand instrument of Berman et al. ( 2015 ). 
Nonlinearity of f ( ·) complicates the structure of the expected instrument relative to the linear

ase. Even with complete shares and fully random shocks (i.e., iid g k conditionally on w)—a
ase where μi is constant for linear shift-share instruments—a nonlinear shift-share instrument
enerally has a μi that depends on s i in complex ways. Outside this case, μi further depends on the
eteroskedasticity and mutual dependence between the shocks making the mean-independence
ondition (Assumption 2.3) insufficient. 

Borusyak and Hull ( 2021b , appendix D.4) make these points concrete by considering an
nstrument that could be called a ‘shift-share in logs’—see, e.g., Berman et al. ( 2015 ), Berthou
t al. ( 2019 ), and Costa et al. ( 2019 ). Suppose x i = log ( X i1 /X i0 ) measures the growth rate of a
egional variable that can be represented as a sum of local industry components, X it = 

∑ 

k 
˜ X ikt 

or t ∈ 

{ 0 , 1 

} . Then x i can be rewritten as a nonlinear function of initial shares s ik = 

˜ X ik0 
X i0 

and

egional growth rates ̃  x ik = 

˜ X ik1 
˜ X ik0 

, as x i = log 

(∑ 

k s ik ̃  x ik 
)
. Suppose the ˜ x ik are endogenous, but

e observe an industry characteristic G kt with plausibly exogenous growth rates g k = 

G k1 
G k0 

that

redict the ̃  x ik . A natural nonlinear shift-share instrument is then z i = log 

(∑ 

k s ik g k 

)
. 

The log transformation makes μi heterogeneous across re gions, ev en with fully random g k

nd complete shares. In particular, by Jensen’s inequality, E 

[
log 

(∑ 

k s ik g k 

) | s ] is the lowest for
egions where 

∑ 

k s ik g k has little variance conditional on s. Thus, regions with very dispersed
ndustries (i.e., where 

∑ 

k s 
2 
ik ≈ 0 ) will tend to have lower μi and z i . Such regions may also have

ystematically dif ferent unobserv ables ε i . F or e xample, a more dispersed local economy may not
eap the benefits from returns to scale leading to higher regional economic growth, which would
enerate a downward bias in an IV estimator taking growth as outcome. 

One solution to this problem, following the general approach in Section 3.1 , is to compute
i from a specification of shock counterfactuals and either recentre by or control for it. An
lternative solution is to take a first-order approximation of f ( ·) around some fixed vector
f shocks to return to the linear case and obviate the need for a full specification of shock
ounterfactuals. F or e xample, taking a log-linear approximation around g k = 1 in the preceding
 xample giv es z̆ i = 

∑ 

k s ik log g k , with s ik = 

∂f ( s i , 1 ) 
∂ log g k 

. This is a linear shift-share instrument, with
ogged shocks and exposure shares which need not sum to one. As an approximation to z i , the
inear instrument might predict x i less well and thus be less ef ficient. Ho we ver, unlike z i , the
rthogonality of z̆ i depends only on correct specification of E 

[
log g k | ε , w 

]
(i.e., Assumption

.3), making identification more robust. 

3.4. Nonanonymous constructions 

e now consider cases where the formula used to build the instrument is nonanonymous: z i =
 i ( s, g) , i.e., where the exposure of unit i to the shocks cannot be naturally summarized by some
The Author(s) 2024. 
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observation-specific vector s i . 12 For example, one may study the propagation of shocks across a
network where the units i represent nodes and g captures shocks that are as-good-as-randomly
assigned to nodes. 

Avoiding bias may seem particularly challenging with such cases. Consider for example the
setting of Carvalho et al. ( 2021 ), who study the effects of network distance between a focal firm
i and the nearest firm located in the geographic area of the 2011 Tohoku earthquake. Exposure to
the earthquake shock is given by the entire firm-to-firm supplier netw ork, with netw ork distance
yielding a complex nonanonymous construction. 

In this setting, it is not clear how to pick the right set of controls to span μi without lever-
aging the formula and some knowledge of the shock assignment process. Ho we ver, the general
simulation procedure from Section 3. yields μi given specification of shock counterfactuals: for
e xample, by dra wing on geological models of earthquake probabilities across regions to redraw
earthquake realizations. This example demonstrates how the recentering logic and the specifi-
cation of counterfactual shocks help address the specific challenges with nonanonymous (and
nonlinear) constructions. 

4. CONSISTENCY AND INFERENCE 

4.1. Consistency with many shocks 

We next consider consistency of IV estimators that recentre by or control for μi . Even if the
orthogonality condition ( 3.2 ) holds and ̃  z i is rele v ant, additional conditions are generally required
for consistent estimation because of the potentially complex dependencies in the data. Indeed,
˜ z i captures common exposure of the observations to the shocks in g and may thus be correlated
across i in nonstandard ways. Similarly, the ε i may exhibit nonstandard dependencies from their
common dependence on unobserved shocks. Consistency may nevertheless be guaranteed as long
as g includes a large number of sufficiently independent shocks regardless of the dependence
structure of unobservables. 

Formally, we consider the recentred IV estimator 

ˆ β = 

∑ 

i y i ̃  z i ∑ 

i x i ̃  z i 
= β + 

∑ 

i ε i ̃  z i ∑ 

i x i ̃  z i 
. (4.1) 

Here we assume that y i and x i (and correspondingly ε i ) have been residualized on some regres-
sion controls r i ≡ r i ( w) , dropping the previous ⊥ notation. This definition of ˆ β therefore nests
estimators that control for functions of w that span μi (making recentring unnecessary) or include
any predetermined controls after recentering z i . 

BHJ and BH study the convergence of ˆ β along a sequence of distributions P N 

for the complete
data 

{
( y i , x i , z i ) N 

i= 1 , s, g, q 

}
where the number of shocks K N 

= dim ( g) can vary with the number

of observations N . In particular, they consider consistency: ˆ β
p −→ β as N → ∞ . Here we suppress

the N subscript for clarity. 
As with the identification discussion in Section 3.2 , it is instructive to first study consistency in

the special case of shift-share instruments. Without loss of generality, assume s k = 

1 
N 

∑ 

i s ik > 0
for every k since, if s ik = 0 for all i, shock g k can be dropped. Consider: 
12 Note that it is technically al w ays possible to write z i = f i ( s, g) anonymously, for example as z i = 

˜ f ( a i , g) where 
a i includes copies of s and an observation indicator such that ˜ f ( ·) returns f i ( s, g) . Such constructions are unnatural in 
most settings with nonanonymous constructions, ho we ver. 

© The Author(s) 2024. 
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SSUMPTION 4.1. (a) Many uncorrelated shocks: E 

[ ∑ K 

k= 1 s 
2 
k 

] 
→ 0 and Cov [ g k , g k ′ | ε, w ] =

 for all k �= k ′ . 
(b) First stage: 1 

N 

∑ 

i x i ̃  z i 
p → π �= 0 . 

(c) Regularity: Var [ g k | ε , w ] ≤ B g and E 

[
ε̄ 2 k | w 

] ≤ B ε uniformly over N , for ε̄ k =
1 
N 

∑ 

i s ik ε i /s k . 
13 

We then have: 

ROPOSITION 4.1. In the shift-share case where ˜ z i = 

∑ K 

k= 1 s ik ̃  g k with s ik ≥ 0 and ˜ g k = g k −
q 

′ 
k θ , Assumptions 2.3 and 4.1 imply ˆ β

p → β. 

roof . F ollows from proposition 3 of BHJ applied to the de-meaned shocks ˜ g = ( ̃  g k ) K 

k= 1 . �

Assumption 4.1(a) ensures that the law of large numbers applies to 

1 
N 

∑ 

i ε i ̃  z i regardless of
he mutual correlations of ε i . It requires that the number of shocks grows with the sample size
since 

∑ K 

k= 1 s 
2 
k ≥ 1 /K), that shocks are mutually uncorrelated, and average exposure to them

s dispersed in the sense of the Herfindahl inde x conv erging to zero. 14 Just as in conventional
egressions, mutual uncorrelatedness of the shocks can easily be relaxed: e.g., by having many
ncorrelated clusters of shocks or other forms of weak dependence between them, with the
erfindahl condition appropriately strengthened (see assumptions 5 and 6 in BHJ). In a panel

ontext, the large number of shocks can arise either from many shocks in each cross-section or
rom a long time series, a point we return to in Section 5 . 

Assumption 4.1(b) requires the first-stage covariance 1 
N 

∑ 

i ˜ z i x i to converge to some nonzero
onstant. BHJ provide lo w-le vel conditions suf ficient for this using a model that often underlies
he usage of shift-share instruments in the first place (and which holds trivially in reduced-form
tudies where x i = z i ). Specifically, they assume that the treatment can naturally be decomposed
nto k-specific components each strongly affected by the respective shock: x i = 

∑ 

k s ik ̃  x ik with
˜  ik = πik g k + u ik , πik ≥ π̄ > 0 and E [ g | w , ε , u ] = E [ g | w ] for u = ( u ik ) i,k . With this model
nd additional regularity conditions, Assumption 4.1(b) follows if E 

[
1 
N 

∑ 

i 

(∑ 

k s 
2 
ik 

)]
is bounded

rom below. This last condition requires an average observation to be effectively exposed to
nly a small number of shocks, in the sense of a nonvanishing Herfindahl index of exposure
hares, such that the law of large numbers does not apply to individual ˜ z i and the variance of the
nstrument does not converge to zero. It is instructive to compare this condition with Assumption
.1(a), which requires the avera g e exposure to be dispersed. Both conditions can hold when most
bservations are exposed to a small set of shocks, but different ones for different observations.
 or e xample, the y hold in the ADH setting when most local labour markets specialize in a small
umber of manufacturing industries—the identities of which vary across markets. 

Propositions 1–6 in BH generalize Proposition 4.1 and the sufficient conditions for a nonva-
ishing first stage to nonlinear and nonanonymous formula instruments. While the assumptions
ecome more technically restrictive, the main intuition extends: dispersed average exposure to
ufficiently independent shocks makes 1 

N 

∑ 

i ε i ̃  z i converge to zero regardless of the mutual cor-
elation in the errors, while concentrated individual shock exposure is key to the first stage. We
13 All conditions here and in Assumption 4.2 should be understood as applying almost surely with respect to w. 
14 The literal interpretation of 

∑ 

k s 
2 
k as a Herfindahl index and the result of 

∑ K 

k= 1 s 2 k > 1 /K both technically require 
omplete shares, 

∑ 

k s ik = 1 , which implies 
∑ 

k s k = 1 . Ho we ver, in typical incomplete share cases where 
∑ 

k s k is 
etween zero and one and bounded away from zero, the same intuition applies. 

The Author(s) 2024. 
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reproduce one of the sets of sufficient conditions for convergence of 1 
N 

∑ 

i ˜ z i ε i , applicable to
continuous shocks: 

ASSUMPTION 4.2. (a) Many independent shocks: the components of g are jointly independent

conditionally on w, and 

∑ 

k E 

[(
∂ ̄f ( g, w) 

∂g k 

)2 
]

→ 0 for f̄ ( g, w) = 

1 
N 

∑ 

i ( f i ( s, g) − μi ( w) ) . 

(b) Each f i ( s, g) is weakly monotone in g. 
(c) Each g k has a Gaussian distribution. 

(d) Regularity: E 

[
ε 2 i | w 

] ≤ U ε uniformly; E 

[ ∣∣∣ ∂ ̄f ( g, w) 
∂g k 

∣∣∣ | w 

] 
< ∞ for all k; Var [ g k | w ] ∈

[ L σ , U σ ] for fixed constants 0 < L σ < U σ < ∞ . 

PROPOSITION 4.2. Assumptions 2.1 and 4.2 imply Var 
[

1 
N 

∑ 

i ˜ z i ε i 
] → 0 . 

Proof . F ollows from propositions 1 and 4(a) of BH. �

BH also establish a similar result for Bernoulli-distributed shocks, where ∂ ̄f ( g, w) 
∂g k 

is replaced by
discrete deri v ati ves, as well as analogous lo w-le v el conditions for conv ergence of the first stage. 

4.2. Asymptotic inference with shift-share variables 

We now consider statistical inference on β. Inference is challenging in this setting, even with
a large number of shocks, again because the observations of z i ( ε i ) are jointly exposed to the
observ ed (unobserv ed) shocks and may therefore e xhibit comple x mutual correlations. Ad ̃ ao
et al. ( 2019 , henceforth AKM) illustrate this problem in the linear shift-share setting, via a Monte
Carlo simulation based on the specifications in Autor et al. ( 2013 ). They show that conventional
heteroskedasticity-robust and state-clustered standard errors, with nominal 5% significance level,
lead to rejections of the true null of β = 0 in around half of their placebo samples with randomly
generated shocks. 

To address this issue, AKM derive new design-based central limit theorems and variance
estimators for ˆ β in the linear shift-share context, which are asymptotically valid regardless of the
correlation structure of the errors—what BHJ label ‘exposure-robust’. The variance estimators
can be moti v ated by first writing 

√ 

N ( ̂  β − β) = 

1 √ 

N 

∑ 

i ε i ̃  z i 

1 
N 

∑ 

i x i ̃  z i 
= 

(
1 √ 

N 

∑ 

i 
ε i ̃  z i 

)
π−1 (1 + o p (1)) , (4.2) 

using Assumption 4.1(b). For simplicity, suppose Assumption 2.3 holds with θ = 0 , such that
E [ g k | ε , w ] = 0 and ˜ z i = z i . Then: 

Var 
[

ˆ β
] ≈ 1 

π2 
Var 

[ 

1 

N 

∑ 

i 

ε i z i 

] 

= 

1 

π2 
Var 

[ 

1 

N 

∑ 

k 

g k 

( ∑ 

i 

s ik ε i 

) ] 

= 

1 

π2 

∑ 

k 

E 

⎡ ⎣ g 

2 
k 

( 

1 

N 

∑ 

i 

s ik ε i 

) 2 
⎤ ⎦ , (4.3) 
© The Author(s) 2024. 
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sing Assumption 4.1(a) in the final line. This suggests a feasible estimator of
1 
ˆ π2 

∑ 

k g 

2 
k 

(
1 
N 

∑ 

i s ik ̂  ε i 
)2 

where ˆ π = 

1 
N 

∑ 

i ˜ z i x i and ˆ ε i = y i − ˆ βx i . AKM pro v e the validity of
imilar variance estimators in the general case of θ �= 0 and when Assumption 4.1(a) is weakened
o allow for clustered shocks. 15 

BHJ propose a convenient way to obtain exposure-robust standard errors based on this asymp-
otic approximation, which come from standard formulas applied to an equi v alent IV regression
stimated at the ‘level’ of the shocks. To see this result, it is first useful to note (following propo-
ition 1 in BHJ) that ˆ β equals the second-stage coefficient from an s k -weighted shock-level IV
egression, which uses the shocks g k as the instrument to estimate 16 

ȳ k = βx̄ k + ε̄ k . (4.4)

his result follows from the definition of z i : 

ˆ β = 

∑ 

i 
1 
N 

(∑ 

k s ik g k 

)
y i ∑ 

i 
1 
N 

(∑ 

k s ik g k 

)
x i 

= 

∑ 

k g k 

(
1 
N 

∑ 

i s ik y i 
)∑ 

k g k 

(
1 
N 

∑ 

i s ik x i 
) = 

∑ 

k s k g k ̄y k ∑ 

k s k g k ̄x k 
. (4.5)

oreo v er, if Q i = 

∑ 

k s ik q k has been included in the controls r i , the same coefficient is obtained
rom a richer shock-level IV specification: 

ȳ k = βx̄ k + q 

′ 
k δ + ε̄ k . (4.6)

he ssa g gregate packages in Stata and R automate the translation of linear shift-share regressions
o the shock level. 

Under regularity conditions (see BHJ, proposition 5), the conventional heteroskedasticity-
obust standard error for ˆ β in ( 4.6 ) yields asymptotically valid confidence intervals for β. While
his deri v ation follo ws under the assumption of conditionally uncorrelated shocks (Assump-
ion 4.1(a)), BHJ note the same shock-level regression can be used to conduct asymptotically
alid inference when shocks are clustered, again using conventional clustered standard errors.
ndeed, one convenient feature of their approach is the flexibility of accommodating other relax-
tions of Assumption 4.1(a), such as serial correlation (with conventional heteroskedastic-and-
utocorrelation-consistent standard errors) or tw o-w ay clustering. 

EMARK 4.1. While BHJ only consider the case where Q i has been initially controlled for,
quation ( 4.6 ) produces valid estimates (and, we conjecture, standard errors) regardless of this,
onsistent with the recentring logic. Indeed, by the Frisch–Waugh–Lo v ell theorem, ˆ β from ( 4.6 )
an be obtained by residualizing the shocks on q k (with weights s k ) and constructing the shift-share
nstrument from the residualized shocks. 

EMARK 4.2. A key assumption underlying the validity of the BHJ approach to exposure-robust
nference is that only two types of controls are included in r i . First, all sources of shock-level
onfounding have to be captured by controls with a shift-share structure (i.e., Q i ). Second, all
ther controls should not be asymptotically correlated with the instrument; these controls may,
o we ver, increase the asymptotic efficiency of the estimator. BHJ show that the standard errors are
symptotically conserv ati ve under a weaker assumption, which allows for controls in r i to be of
he form 

∑ 

k s ik p k + u i where p k are unobserved shock-level confounders and u i is noise. AKM
15 AKM consider other extensions, including confidence intervals which impose a null hypothesis on β and settings 
ith heterogeneous treatment effects (but assuming that each observation is asymptotically exposed to only one shock). 
16 Note that ( 4.4 ) does not include an intercept, but ( 4.6 ) shows that including it does not change the estimate so long 

s the shares are complete or the sum of shares is controlled for. 

The Author(s) 2024. 



16 K. Borusyak et al. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/ectj/advance-article/doi/10.1093/ectj/utae003/7590835 by guest on 11 June 2024
provide a variance estimator that is asymptotically exact when controls have this ‘approximate’
shift-share structure. Asymptotically exact shift-share inference with general control vectors
(which are necessary for identification and do not have this form) remains an open problem. 

REMARK 4.3. The asymptotic inference results of AKM and BHJ are also useful to conduct
regression-based falsification tests of shock orthogonality, and for verifying the strength of the
instrument. Falsification tests for orthogonality can be conducted by regressing any proxy for
the unobserved error (such as a pre-trend in the outcome) on the shift-share instrument while
controlling for Q i . For asymptotically valid tests, the coefficient on the instrument can be
computed by the shock-lev el re gression ( 4.6 ) with exposure-robust standard errors. Similarly, a
valid first-stage F-statistic can be computed by translating the regression of x i on z i and Q i to
the shock level. 

REMARK 4.4. Note that reduced-form regressions on z i are still IV regressions at the shock
level, which instrument z̄ k with g k controlling for q k . 

4.3. Randomization inference 

The asymptotic results of AKM and BHJ are specific to linear shift-share variables with a large
number of shocks. We now discuss an alternative RI approach, which BH propose for other
formula instruments or settings with only a small number of shocks. This approach may be
natural when Assumption 2.2 is made, because specified shock counterfactuals immediately
yield confidence intervals that are exact in finite samples of observations and shocks—albeit only
under the constant-effect model ( 2.1 ). 17 

Formally, BH propose to construct confidence intervals for β using the sample covariance
between ˜ z i and the residual as a randomization test statistic: 

T = 

1 

N 

∑ 

i 

( f i ( s, g) − μi ) ( y i − bx i ) , (4.7) 

where b is a candidate parameter value. Under the null hypothesis of β = b and Assumption 2.1,
y i − bx i = ε i , and the distribution of T conditional on ε and w is implied by the shock assignment
process G ( g | w) . One may simulate this distribution under Assumption 2.2, by redrawing the
shocks and recomputing T . The null is rejected if the original value of T is far in the tails of the
simulated distribution. 18 The confidence interval for β is then obtained by inversion of such tests,
i.e., by collecting all b that are not rejected. These intervals have correct size, both conditionally
on ( ε , w ) and unconditionally. 

While any statistic T ( g, y − bx, w) can in principle be used in a similar procedure, the choice
of ( 4.7 ) is moti v ated by its close connection to the IV estimator ˆ β. Specifically, Borusyak and Hull
( 2021b ) show that ˆ β is the Hodges–Lehman estimator corresponding to T (Hodges and Lehmann,
1963 ; Rosenbaum, 2002 ) and provide guarantees for the consistency of the randomization tests
when 

ˆ β is consistent. 

REMARK 4.5. RI-based confidence intervals can be useful even when few shocks are observed
in the data, making the asymptotic approach inapplicable even with linear formulas. Consider
17 RI methods are typically used to test the ‘sharp null’ of zero treatment effects for all observ ations; v alid inference 
under weaker nulls of (say) no average effect is a more challenging problem in general. See, e.g., Chung and Romano 
( 2013 ) for an approach moti v ated by this challenge. 

18 Note that, while we recentre T in equation ( 4.7 ), this is not necessary since the term 

1 
N 

∑ 

i μi ( y i − bx i ) shifts the 
observed and re-randomized T equally. 

© The Author(s) 2024. 
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or example the single earthquake studied by Carvalho et al. ( 2021 ). Ev en without spillo v ers, it
s not possible to consistently estimate the effect of earthquakes if only one region is shocked.
et RI remains informative in this case, as it can produce confidence intervals of finite length.
 or e xample, if the true effect is zero, it is unlikely that unobserv ed shocks hit e xactly the same
egion where the earthquake randomly happened and the randomization test could reject β = 0 . 

EMARK 4.6. As with asymptotic shift-share inference, RI-based confidence intervals can be
sed for falsification tests of the identifying assumptions. A falsification test of Assumption 2.1
s obtained by checking that the sample covariance between ˜ z i and a proxy for ε i is close to zero
or, more precisely, is not in the tail of the distribution of this covariance across counterfactual
hocks). Similarly, to test the correct specification of the shock assignment process (Assumption
.2) and the expected instrument implied by it, one can check that ˜ z i is not correlated with any
re-specified functions of w. While the assumption of constant effects required for the validity
f RI-based confidence intervals can be restrictive in practice, it is not a problem for falsification
ests where the true effect should be zero for all i. 19 

5. EXTENSIONS 

dentification with heterogeneous effects Borusyak and Hull ( 2021b , appendix C.1) and BHJ
appendix A.1) show that classic results on linear IV identification with heterogeneous treatment
ffects (e.g., Imbens and Angrist, 1994 ) extend to formula instruments provided μi is recentred by
r controlled for and a version of the usual first-stage monotonicity condition holds. Specifically,
hey show that when an exclusion restriction holds, but the outcome model features nonlinear
nd heterogeneous effects of the treatment (as opposed to the linear specification in ( 2.1 )), the
ecentred IV estimand is a conv e x weighted av erage of the marginal effects of x i on y i . For
xample, in the reduced-form case with linear effect heterogeneity, i.e., y i = βi z i + ε i , recentred
V identifies E 

[
1 
N 

∑ 

i ω i βi 

]
where the weights ω i are proportional to Var [ z i | w ] . This conditional

ariance can be computed by a simulation analogously to μi , allowing researchers to study the
mplied weights of the estimand. When Var [ z i | w ] is bounded away from zero, a recentred IV
stimator that inversely weights by it identifies the unweighted average causal effect E 

[
1 
N 

∑ 

i βi 

]
.

In the IV case, Borusyak and Hull ( 2021b ) generalize Imbens and Angrist ( 1994 ) by allowing
he regression of x i on ˜ z i to be noncausal, in the sense that the first-stage coefficient on ˜ z i does
ot capture the causal effect of shocks g on x i . This extension is useful for formula instruments,
ince ̃  z i is a constructed variable that does not usually correspond to a real economic object. Thus,
t is more appropriate to specify the potential values of x i in terms of the primitive shocks g.
H show that ˆ β retains its interpretation as a conv e xly-weighted av erage of causal effects under
n appropriate monotonicity assumption, even if ˜ z i does not capture all of the ways for how the
hocks affect the treatment. In the context of linear shift-share instruments, BHJ consider the
ase where use exposure shares s ik are misspecified, such that they do not correlate imperfectly
ith the true shares through which shocks g k affect x i . Nevertheless, a causally interpretable IV

stimand is guaranteed as long as x i is correctly specified, the s ik are nonne gativ e, the shocks are
eakly positively correlated, and the true effects of shocks on each treatment are monotone. 
These results can be contrasted to those of Blandhol et al. ( 2022 ), who show the importance

f including controls flexibly for IV regressions to be ‘weakly causal’ (i.e., to identify a convex
19 Testing the first-stage relationship between x i and ̃  z i is similarly straightforward, though, as noted by Imbens and 
osenbaum ( 2005 ), there is no weak instrument problem for RI-based confidence intervals. 

The Author(s) 2024. 



18 K. Borusyak et al. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/ectj/advance-article/doi/10.1093/ectj/utae003/7590835 by guest on 11 June 2024
average of heterogeneous effects). Here design knowledge yields the single control μi needed for
the IV estimand to be weakly causal; other low-dimensional r i ( w) can again increase precision
while not affecting this estimand. 

Multiple treatments and instruments The identification results of Section 3 extend im-
mediately to cases with multiple formula instruments f �i ( s, g) , � = 1 , . . . , L , for either a single
treatment x i or multiple treatments x pi , p = 1 , . . . , P ≤ L . As long as each expected instrument
E [ f �i ( s, g) | w ] is adjusted for via recentring or controlling, the corresponding orthogonality
conditions hold—such that ( β1 , . . . , βP ) is identified under a standard rank condition. 

The case of multiple treatments is particularly useful in network settings where it allows,
including a node’s own shock along with a treatment capturing network spillo v ers; e.g., student
i’s own deworming status and the number of her neighbours who have been dewormed, in
the Miguel and Kremer ( 2004 ) setting. Notably, the same set of exogenous shocks allows for
identification of the effects of both treatments, via different exposure mappings. 20 

The case of multiple instruments is also rele v ant when the researcher has access to multiple
sets of exogenous shocks. BHJ illustrate this scenario in the ADH China shock setting. While
ADH measure industry supply shocks as average Chinese import growth across eight non-US
countries, in principle the shocks from each individual country may be considered as-good-as-
randomly assigned leading to multiple shift-share instruments for the regional exposure to import
competition from China and thus o v eridentification of the parameter of interest. BHJ show how
to extend the shock-level representation of the shift-share IV estimator when the exposure shares
used to construct the instruments are the same, but the shocks differ. This yields results for both
identification and asymptotic exposure-robust inference. 

Other necessary controls The framew ork so f ar may seem unable to accommodate certain
controls that may be deemed necessary for identification. Specifically, the identification results
in Section 3.1 only allow for controls r i which are functions of w. The purpose of these controls
for identification is to absorb confounding variation in μi ; beyond that, they only play a role in
estimation efficiency. In the linear shift-share case of z i = 

∑ 

k s ik g k , for example, this means all
necessary controls must have a shift-share structure of the form 

∑ 

k s ik q k . 
One could imagine, ho we ver, other necessary controls that remove confounding variation in ε i .

Such controls can be accommodated by augmenting the causal model ( 2.1 ) to have ε i = c ′ i λ + ηi 

for an observed c i (which is not assumed conditionally independent of g) and an error ηi defined
to be orthogonal to c i (without loss of generality, since λ is not interpreted causally). Then 

y i = βx i + c ′ i λ + ηi , (5.1) 

and the identification question shifts to the orthogonality of z i and ηi . Modifying Assumption 2.1
to the conditional independence of η = ( ηi ) N 

i= 1 and g given w (and thus allowing violations of
g ⊥ ⊥ ε | w via c) and maintaining Assumption 2.2 and appropriate instrument rele v ance, we obtain
identification in a recentred IV regression of y i on x i which instruments by ˜ z i and controls for c i ,
because the orthogonality conditions E 

[
1 
N 

∑ 

i ˜ z i ηi 

] = E 

[
1 
N 

∑ 

i c i ηi 

] = 0 hold. The same result
holds for linear instruments with Assumption 2.3 modified to specify that the conditional mean
of g k given ( η, w) is linear in q k . Alternatively, as before, μi can be controlled for along with c i 
with the original z i used as the instrument. 21 

To make these ideas concrete, consider again the setting of Autor et al. ( 2013 ). Imagine that
re gions more e xposed to supply shocks in China also have higher (lagged) local unemployment
20 Constant effects play a bigger role with multiple treatments, ho we ver. See Bhuller and Sigstad ( 2023 ) and Goldsmith- 
Pinkham et al. ( 2022 ) for discussions in the context of IV and reduced-form regressions. 

21 Consistency and inference with such controls may be more complicated (see Remark 4.2). 

© The Author(s) 2024. 
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ates, due to some location-specific factors (e.g., local regulations). The local unemployment rate
oes not have a shift-share structure, as there is residual variation in unemployment rates across
ocations with the same industry composition. Ho we ver, one can directly control for the (lagged)
ocal unemployment rate for identification. 

Panel data While we hav e inde x ed observations by i with cross-sectional data in mind, the
esults of Sections 2 –4 extend to panel data where observations i = ( �, t ) correspond to units �
n periods t and shocks can also vary o v er time. We make two remarks specific to panel data. 

First, including unit fixed effects does not generally alleviate the need to adjust the formula in-
trument, unless the corresponding expected instrument is time-invariant. Consider the instrument
 �t = f �t ( s t , g t ) with g t ⊥ ⊥ ε t | w t (here objects like v t , with just a t subscript, refer to the vector
f v �t ). Then μ�t = E [ z �t | w t ] is absorbed by the unit fixed effects under the very restrictive
onditions that the f �t ( ·) mapping, the value of w t , and the shock assignment process G ( g t | w t )
re all time-invariant. In linear and nonlinear shift-share settings, for e xample, ev en if e xposure
hares are measured in a fixed pre-period for the entire panel, the shocks often vary systematically
 v er time. F ootnote 11 abo v e illustrates this issue in the ADH setting where industry-level China
hocks are higher in the 2000s than in the 1990s, making μ�t time-varying. 

Second, an advantage of panel data is that the number of cross-sectional shocks (and observa-
ions) need not be large; instead, a long time series of shocks g t with weak serial dependence may
lso suffice for consistency of ˆ β. BHJ formalize this insight for linear shift-share settings. Nunn
nd Qian ( 2014 ) is an empirical example of constructing shift-share instruments from purely
ime-series exogenous shocks (specifically, in total US foreign aid arising from wheat production
n the US) with no cross-sectional variation. 

Estimated shock assignment processes Assumption 2.2 requires complete knowledge of
he shock assignment process, conditionally on w. Appendix C.5 of Borusyak and Hull ( 2021b )
hows that this assumption can be relaxed with the assignment process specified up to a vector of
arameters, G ( g | w; θ ) . If these parameters can be consistently estimated by 

ˆ θ from shock-level
ata (e.g., by maximum likelihood) and some regularity conditions hold, adjusting the instrument
y the estimated ˆ μi = 

∫ 
f i ( s, g) dG ( g | w; ̂  θ ) leads to consistent estimation of β. This generalizes

ssumption 2.3 (which allowed the conditional shock mean to be parameterized) to nonlinear
ormula instruments. This approach is especially attractive when the shocks are binary (and
utually independent conditionally on w) as a model the conditional mean, e.g., via logit or

robit, yields the entire conditional distribution. 
Inference on β will typically be affected by the first-step estimation of θ . Appendix C.5 of

orusyak and Hull ( 2021b ) shows how the baseline BH RI procedure can be extended to build
onserv ati ve finite-sample confidence intervals, drawing on the approach of Berger and Boos
 1994 ). It further notes that there are cases in which exact confidence intervals can be constructed
y using sufficient statistics that obviate the need to estimate θ . In some settings valid asymptotic
nference may also be possible. 

Most efficient r ecentr ed instruments The results of Sections 2 –4 take the instrument con-
truction f i ( ·) as given, but different constructions are likely to yield estimates with different
evels of precision in large samples. Borusyak and Hull ( 2021a ) study the question of optimal
nstrument construction (under constant effects), building on Chamberlain ( 1987 , 1992 ). In a
lass of regular recentred IV estimators, the asymptotically most efficient one can be described
n a three step process: the best prediction of x from ( g, w) is constructed, recentred using the
hock assignment process, and then adjusted for ‘heteroskedasticity’ (formally, weighted by the
nverse of E 

[
ε ε ′ | w 

]
which also depends on E [ ε | w ] ). The prediction and recentring steps can

e seen to justify the empirical practice, noted in Remark 2.2, of forming instruments from the
The Author(s) 2024. 
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structure of x i by removing or replacing some endogenous components. The heteroskedasticity
adjustment step is infeasible in non- iid data, but it is often ignored in practice even in settings
where it would be feasible (see, e.g., Coussens and Spiess, 2021 ). 

6. COMPARISONS WITH ALTERNATIVE APPR OA CHES 

The design-based approach le verages kno wledge of the formula construction f i ( ·) to correct
for potential confounding. A natural question is whether identification is possible without such
kno wledge, potentially under alternati ve assumptions. We answer this question by comparing
the design-based approach to two alternativ e strate gies for identification in linear models: those
based on conventional assumptions of conditional treatment unconfoundedness, and those based
on alternative restrictions on outcome unobservables (such as parallel trend assumptions). 

For both comparisons we use the fact that, under Assumption 2.1, equation ( 2.1 ) can be written
as a partially linear model in the spirit of Robinson ( 1988 ). Specifically, with h i ( w) = E [ ε i | w ] , 

y i = βx i + h i ( w) + ηi , E [ ηi | g, w ] = 0 . (6.1) 

One approach to identification in partially linear models, advanced by Robins et al. ( 1992 ) and
in line with a long literature on propensity score methods, adjusts x i for its association with
potential confounders in w before estimating β. A different approach, considered by Goldsmith-
Pinkham et al. ( 2020 ) for linear shift-share instruments, restricts the form of h i ( w) in order to
directly estimate ( 6.1 ). This section connects the design-based approach to formula instruments
to the first strategy—showing that explicit use of the formula is essential in this case—before
contrasting it with the alternative restrictions implied by the second strategy. 

6.1. Conventional unconfoundedness 

Partially linear models are typically considered in iid data where x i = g i is assumed to be
unconfounded given observation-specific w i . That is, with h ( w i ) = E [ ε i | w i ] , 

y i = βx i + h ( w i ) + ηi , E [ ηi | x i , w i ] = 0 . (6.2) 

Based on a suggestion by Newey ( 1990 ), Robins et al. ( 1992 ) consider estimation of β when a
researcher has ‘sharper’ information on the relationship between the observed x i and w i than on
the form of unobservables as captured by h ( w i ) . This motivates their ‘E-estimator’: 

ˆ βE 

= 

∑ 

i y i ( x i − E [ x i | w i ] ) ∑ 

i x i ( x i − E [ x i | w i ] ) 
. (6.3) 

The recentred IV estimator of BH can be seen to generalize the E-estimator to the setting where
x i = f i ( s, g) is constructed by a formula from common shocks. The E [ x i | w i ] term becomes μi 

in this case. A further generalization is obtained by letting ̃  z i = z i − μi instrument for a different
treatment x i , now with z i = f i ( s, g) and μi = E [ z i | w i ] . 22 

A central difference in the BHJ/BH settings, where the treatment or instrument is constructed
from common shocks, is that estimation of μi = E [ f i ( s, g) | w ] via some first-stage procedure
22 When z i is binary, μi can be seen to generalize the propensity score of Rosenbaum and Rubin ( 1983 ) to the formula 
instrument setting. Propensity scores are typically defined in settings with randomly sampled data and a conditionally 
unconfounded treatment, and used in weighting or matching estimators rather than with regression. Appendix C.1 of 
Borusyak and Hull ( 2021b ) shows how such estimators can be adapted to formula instruments. 

© The Author(s) 2024. 
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s not possible without using the formula. In the conventional setting Robins et al. ( 1992 ) study,
 [ x i | w i ] may be learned nonparametrically from the conditional distribution of observation-
pecific shocks g i given the confounders w i . But when all observations i are exposed to the
ame vector of shocks g, and only one realization of this vector is observed, such nonparametric
stimation is impossible. Indeed, in conventional settings there are many observations with similar
 i , but dif ferent v alues of x i , such that E [ x i | w i ] can be learned. In contrast, for the linear shift-

hare instruments there is no cross-sectional variation in 

∑ 

k s ik g k conditionally on s i , while
ariation across possible realizations of g vectors is not observed. This problem is distinct from
hallenges related to high-dimensional confounding, which can be solved by modern machine
earning methods (e.g., Chernozhukov et al., 2018 ). 23 

Leveraging the knowledge contained in the formula, however, allows the researcher to circum-
ent the common shocks issue. This is achieved in two steps: by first specifying or estimating the
ssignment process for shocks, similar to the design-based approach of Robins et al. ( 1992 ), and
hen ‘translating’ it to the level at which observations and treatment are observed. The shock-level
qui v alence results of BHJ make this translation especially clear in the linear shift-share case. 

6.2. Outcome model restrictions 

n alternative approach to estimating β in the partially linear model ( 6.1 ) restricts the unobserved
utcome error ε i , without restricting the assignment process of conditionally unconfounded
hocks. Specifically, one posits a model for h i ( w) and jointly estimates it along with β. Specifi-
ation of the shock design plays no role in this strategy. In fact, the strategy is coherent when the
hocks are considered nonrandom, in which case Assumptions 2.1 and 2.2 hold trivially. More
enerally, consider a linear outcome model replacing Assumptions 2.1 and 2.2 (or 2.3): 

SSUMPTION 6.1. (Outcome model) There exists unknown γ such that E [ ε i | g, w ] = q 

′ 
i γ for

bserved q i included in w and for all i. 

Assumption 6.1 requires a weaker version of Assumption 2.1, E [ ε i | g, w ] = E [ ε i | w ] , which
s trivially satisfied when the shocks are nonrandom. 

A concrete example of Assumption 6.1 in the linear shift-share setting comes from Goldsmith-
inkham et al. ( 2020 ). Conditioning on the shocks g, they assume ε is mean-independent of

he shares s after partialling out a vector of controls. Then z i = 

∑ 

k s ik g k satisfies orthogonality.
ustification for the key mean-independence assumption is similar to that underlying conven-
ional ‘parallel trends’ restrictions in dif ference-in-dif ferences estimation and related strategies
or causal inference in panel data. Indeed, shift-share regressions are often specified in first-
ifferences, in which case E [ ε i | s ] = 0 amounts to an assumption that observations with different
xposure shares would have been on similar outcome trends if not for a change in x i . Assumption
.1 relaxes this condition by allowing for time-varying controls q i and stochastic shocks. 

Assumption 6.1 is very powerful; this can be seen from the fact that it justifies the orthogonality
f any formula instrument f i ( s, g) when including the same set of controls q i . Indeed, in the
oldsmith-Pinkham et al. ( 2020 ) case, any function of s i (including individual s ik ) satisfies

nstrument orthogonality. In this sense, identification strategies based on such models for ε i can
e said to not leverage the specific formula construction. Restrictions on ε i may be especially
23 Consider, for instance, a shift-share instrument z i where E [ g k | s ] = 0 for all but a small set of k ∈ K. The expected 
nstrument μ( s i ) is then sparse in s i , suggesting one might estimate it via least absolute shrinkage and selection operator 
LASSO) methods. Ho we ver, this intuition is misleading: the observed z i are based on a single draw of each g k , which 
ay be far from zero even for k ∈ K, giving no hope to identify K or μ( ·) even as N → ∞ . 

The Author(s) 2024. 
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valuable when design-based estimation is imprecise (e.g., because the shocks are too few or too
mutually correlated), if credible assumptions on their assignment process are lacking, or if the
shocks are unobserved. 

The cost of this alternative model-based approach is that Assumption 6.1 can be very restrictive.
In particular, BHJ show that in the shift-share setting the Goldsmith-Pinkham et al. ( 2020 )
approach generally fails when there are any unobserved shocks νk that affect the outcomes
through the same (or correlated) exposure shares; e.g., when 

ε i = 

∑ 

k 

s ik νk + ˜ ε i , 

for some idiosyncratic ˜ ε i . 24 Ruling out such νk is implausible in applications where g k are
‘specific’ shocks that are of interest, while other unobserved shocks varying at the same level are
likely. 25 For instance, in the ADH China shock setting, Assumption 6.1 is generally violated if
there are any unobserved industry shocks affecting the outcome of interest—such as those arising
from automation or changing tastes. Indeed, Goldsmith-Pinkham et al. ( 2020 ) find evidence
against their ‘exogenous shares’ assumption in the ADH setting. 

Models for ε i can more generally be unsatisfying for the same reason that moti v ates Robins
et al. ( 1992 ): one may have limited information about the ‘right’ form of h i ( w) , particularly since
ε i is unobserved. It may be unclear, for example, whether linearity of the unobservables more
plausibly holds when the outcome is specified in levels vs. in logs (while both generally cannot
hold; see Roth and Sant’Anna, 2023 ). Moreo v er, it may be challenging to pick the appropriate
observation-specific features q i in the kinds of non- iid settings where formula instruments are
deployed, such as with spatial or network data. The challenge is amplified in the presence of
heterogeneous effects where a correct model of untreated potential outcomes may not suffice for
the regression to estimate a conv e x av erage of treatment effects. 26 The design-based approach
helps meet these challenges, as the formula for z i and specification of the distribution of observed
shocks guide the choice of controls via μi and, as noted in Section 5 , the design-based approach
guarantees a causally interpretable estimand even with heterogeneous effects under a first-stage
monotonicity condition. 

7. CONCLUSION 

The design-based approach to formula instruments can be seen to bring new insights to longstand-
ing identification strategies in economics (shift-share IV, in particular) while also pointing a way
forward for no v el econometric strate gies that lev erage more comple x instrument constructions.
An ever-increasing richness of data, sophistication of economic models, and creativity in discov-
ering plausibly exogenous shocks are likely to yield many new settings where Assumptions 2.1,
24 If E [ νk | s ] = 0 for all k, Assumption 6.1 technically holds. But the presence of the νk shocks may still affect the 
consistency of the nonrecentred shift-share IV estimator; see appendix A.2 of BHJ. 

25 Conversely, BHJ argue this problem may be less concerning when the shares are ‘tailored’ to the treatment of interest 
such that they are unlikely to mediate other unobserved shocks. One candidate for this is Card ( 2009 ), who uses lagged 
immigrant enclave shares and builds on an earlier dif ference-in-dif ference strategy in Card ( 1990 ). 

26 This is now well known in the context of staggered difference-in-differences designs—e.g., de Chaisemartin and 
D’Haultfœuille ( 2020 ), Borusyak et al. ( 2023 ). Restrictions on treatment effects can only be a v oided in a restricted class 
of settings where ‘imputation’ estimators are feasible—e.g., Wooldridge ( 2021 ). Borusyak et al. ( 2023 ), Borusyak and 
Hull ( 2024 ) link this literature on nonconv e x ‘e x post’ weighting schemes to the conv e x ‘e x ante’ weight results of BHJ 
and BH, and to design-based IV and OLS estimation more broadly. 

© The Author(s) 2024. 
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.2, or 2.3 credibly hold. A focus on shock design in such settings can allow researchers to a v oid
xtraneous or undesirably strong assumptions on how model unobservables relate to predeter-
ined observables, provided the formula construction is leveraged appropriately for identification

nd inference. 
Several open paths remain in this agenda. First, asymptotic inference results are only available

n some special cases. It would be valuable to develop asymptotically valid inference techniques
utside the linear shift-share case, and for shift-share instruments with unrestricted control vectors,
s well as to extend results on RI with heterogeneous treatment effects (e.g., Chung and Romano,
013 ) to formula instruments. Second, it would be interesting to extend recent double/debiased
achine learning results (e.g., Chernozhukov et al., 2018 ) to shift-share instruments—allowing

he vector q k of shock-level confounders to be high-dimensional. Third, it would be useful to
haracterize properties of the recentring approach when the shock assignment process is estimated
n a flexible way; e.g., by nonparametric estimation of the distribution of g k | q k when ( g k , q k )
re iid . Fourth, the estimand of the recentred IV procedure is not known when the exclusion
estriction is violated. For instance, is recentring guaranteed to reduce bias in some situations
ven if the network spillovers embedded in x i are misspecified? Finally, open questions remain
n how recentring can relax the assumptions of more elaborate econometric methods, such as
tructural models for differentiated product demand. On these and other issues we expect many
nteresting developments in the growing literature on formula instruments. 
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