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A B S T R A C T

Following the outbreak of the coronavirus epidemic in early 2020, municipalities, regional governments and
policymakers worldwide had to plan their Non-Pharmaceutical Interventions (NPIs) amidst a scenario of great
uncertainty. At this early stage of an epidemic, where no vaccine or medical treatment is in sight, algorithmic
prediction can become a powerful tool to inform local policymaking. However, when we replicated one
prominent epidemiological model to inform health authorities in a region in the south of Brazil, we found
that this model relied too heavily on manually predetermined covariates and was too reactive to changes in
data trends. Our four proposed models access data of both daily reported deaths and infections as well as take
into account missing data (e.g., the under-reporting of cases) more explicitly, with two of the proposed versions
also attempting to model the delay in test reporting. We simulated weekly forecasting of deaths from the period
from 31/05/2020 until 31/01/2021, with first week data being used as a cold-start to the algorithm, after
which we use a lighter variant of the model for faster forecasting. Because our models are significantly more
proactive in identifying trend changes, this has improved forecasting, especially in long-range predictions and
after the peak of an infection wave, as they were quicker to adapt to scenarios after these peaks in reported
deaths. Assuming reported cases were under-reported greatly benefited the model in its stability, and modelling
retroactively-added data (due to the ‘‘hot’’ nature of the data used) had a negligible impact on performance.
. Introduction

The World Health Organization (WHO) declared COVID-19 a global
andemic in mid-March 2020, prompting countries to take actions to
educe the spread of the virus in view of the serious respiratory prob-
ems that require specialised care in Intensive Care Units (ICU) [1,2].
ittle was known about this new strain of coronavirus that threatened
o overwhelm health systems, had forced several countries to lockdown
nd had already been rapidly spreading across Brazil [3].

In many countries, measures such as self-isolation, border closures,
esting and social distancing were proposed [4], and it was said that
‘these protective measures are crucial to managing this disease’’, al-
hough vaccines were considered to be critical [5]. With no drug
reatments or vaccines in sight at that time and in the face of a lack of
ational measures to prevent the spread of the disease [6,7], governors
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and mayors had to decide independently on the implementation of non-
pharmacological measures (NPI) [8]. Amid this scenario and despite the
harsh inherent challenges of epidemic modelling, mathematical models
offered a timely approach to help understand the regional dynamics
of contagion of the disease and to predict how this health crisis could
unfold in the weeks and months that followed [9–18]

The MRC Center for Global Infectious Disease Analysis group at
Imperial College London introduced a prominent mathematical model
in March 2020 [19,20], along with the source code and a technical
description of the equations. This model sought, above all, to estimate
the impact and effectiveness of NPI measures taken by European coun-
tries at that moment. Nonetheless, the model produces other results of
interest, such as an estimated number of people infected by SARS-CoV-2
and the variations in the reproduction number (𝑅𝑡) up until the current
date.
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1.1. Contributions

In this paper, we present four variations to the Flaxman et al.
model (here called base model) that forecast deaths by COVID-19
and overcome limitations we observed after replicating the model on a
weekly basis to the seven macro-regions that compose the state of Santa
Catarina, a southern state in Brazil. Work on this project started in
March 2020, and as we replicated the algorithm every week, we noticed
that the original model could not accurately identify the wave pattern
so characteristic in an epidemic death curve. The base model seemed
to assume a linear tendency when forecasting deaths; if deaths had been
increasing for the past couple of weeks, they would keep increasing
in the following weeks, and vice versa. We conjectured this happened
because the base model did not consider the reported infections, it
only used reported deaths as data input, and therefore it could not
anticipate the changes in the infection patterns that had led to the
reported deaths.

The covariates used in the model were also inadequate because
they limited the effective reproductive number 𝑅𝑡 to change only at
manually predetermined time points, where an NPI measure came
into effect [21]. Other obstacles not directly considered by the base
were the under-notification of infected cases [22], and the delays in
test reporting [23], all common problems at the early stage of the
pandemic. From the data available in the official database of Santa
Catarina state, we could estimate an average delay of 5 days from
RT-PCR test collection until the result was available. Consequently,
data from the previous week was guaranteed to be incomplete and
uninformative. Despite these limitations, the base model was used
elsewhere to estimate the impact of NPI measures in two Brazilian
states [24].

Our proposed methods aim at overcoming the limitations mentioned
above, allowing this mathematical model to be used more effectively
for forecasting. Additional equations and algorithmic strategies allow
the model to use reported cases to estimate deaths by COVID-19.

2. Literature review

In this section, we comment on related literature to our work.
The Covid-19 pandemic brought the research community together, and
many predictive analytics methods were tested to help solve different
problems in the pandemic. One can find statistical and algorithmic
solutions to various related logistic and forecasting problems related to
the spread of the disease, such as vaccine allocation [5], metaheuris-
tic feature selection methods for detecting Covid-19 [25], Covid-19
detection with medical images [26], to name a few. In our literature
review, however, we focus on three research areas that we consider the
most relevant to our study. In Section 2.1 we talk about non-Bayesian
methods for Covid-19 forecasting; Section 2.2 focuses on describing
Bayesian approaches for forecasting and the main differences between
them and our model; finally, in Section 2.3 we describe recent related
methods that attempt to perform missing case imputation, as a way to
overcome under-reporting and/or delays in test reporting.

2.1. Deterministic forecasting

Traditionally, modelling and forecasting in epidemiology are in-
formed by the use of compartmental models (e.g. SIR, SEIR), where
individuals are placed in compartments according to their status (Sus-
ceptible, Infectious, Exposed, Recovered, etc.). A recent review, which
assessed multiple studies of such type of methods during the COVID-
19 pandemic, identified most of these to be ‘‘(...) deterministic in
nature, by default’’, with ‘‘extensions to stochastic models’’ being pos-
sible [27]. Furthermore, it found that the use of stochastic models
was considered to be ‘‘more realistic than deterministic models’’ since
deterministic models are valid only where there is a sufficiently large

population [28].
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But one can also find studies of deterministic approaches that
are outside the traditional compartmental literature. For example, the
established field of time-series forecasting [29] inspired the models
of Parbat and Chakraborty [30] and Sharin et al. [31]. Upon closer
look, however, these methods still have room for improvement in their
methodology. The cross-validation employed therein was a simple k-
fold, whereas standard practice for time series forecasting is to employ
some temporally-aware train vs test splitting, such as Walk-forward
testing [32,33] or last-block evaluation [34]. In fact, our models use
a variation of last-block evaluation, to avoid providing unrealistic
predictions and to provide a more grounded model validation [34].

Given the general limitations of deterministic models and the issues
we highlighted above, we give more attention in our review of the
literature to models that are stochastic in nature or to those in which
uncertainty is an integral assumption.

2.2. Bayesian forecasting

We also found compartmental models that use Bayesian inference as
part of their solution, the same methodological framework used in our
method. In it, prior distributions describe the initial assumptions about
the values of random variables in the model. Then, with the foundation
of Bayes’s Theorem, an optimisation algorithm – typically a variation of
a Markov Chain Monte Carlo (MCMC) algorithm – finds solutions to the
problem that fit the available data while considering the priors plus any
extra custom equations that govern the model [35]. In Roda et al. [11],
the authors proposed SIR and SEIR Bayesian compartmental models
solved by MCMC, and argued that their simpler SIR model was the most
accurate. Whereas this method only uses reported cases as data to fit
the model, our models consider previous reported cases and deaths, the
patterns of mobility in the geographic region during the period, and it
also contains variables to account for missing data and under-reporting.
A few other similar models also attempt to model the pandemic without
explicitly providing periodic forecasting (e.g., [14,15]).

Many Bayesian models were developed with the intent to measure
the impact of public policies on the reproduction rate of virus [10,
18,24], or on the economy [16]. Assessing the effectiveness of public
policies is not a goal of our study. Instead, we aim to improve forecasting
of deaths by COVID-19, even where such policy information is not
readily available or unreliable, and therefore we do not compare our
proposed models with these in detail. The closest of these models to
our case would be [24], which still attempts to measure the impact of
NPIs in Brazil using the model made available in Flaxman et al. [20].
Thus, we chose these as baselines and explained them in more detail
in Section 2.4

2.3. Missing data imputation

None of the abovementioned work tackle two problems central to
COVID forecasting in a low-resource country such as Brazil, namely
the under-notification of infected cases [22] and delays in test report-
ing [23]. These problems, common at the early stage of the pandemic,
persisted throughout most of the time in our case study . Although vast,
the literature on data imputation is geared mainly towards imputing
tabular data (e.g., [36]), which is not directly applicable to our case.
Hence, we opted for a data-driven approach that explicitly considers
under-notification, delays in test reporting, or both when imputing
missing data.

A recent paper by de Nicola et al. [37] used Generalised Additive
Models (GAMs) [38] implemented in the mgcv R package [39] to
explicitly model delays in test-reporting. However, this approach only
models delays in test reporting while our model models both delays
in test reporting as well as under-reporting. Furthermore, their model
is too different to what we propose, as it is not a Bayesian statistical
model, nor does it consider other covariates, such as mobility patterns,
while our proposed methods model the impact of mobility patterns
directly.
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Fig. 1. A high-level depiction of the models proposed and reported in this study, including the baseline model (base) and all our four proposed models (base-ron, base-rnn,
base-ror and base-rnr). Data and fixed parameters passed to the models are represented by the boxes with dashed-line borders, whereas the coloured boxes represent the
variables inferred by the models in the middle of the diagram. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
2.4. Baseline

Due to the abovementioned reasons, we chose Flaxman et al.’s
previously-proposed [20] model as our main baseline, referred to us
as base. This baseline model is almost identical to the MCMC-based
model made available by Flaxman et al. [20], except for the covariates
used. Instead of manually curated non-pharmaceutical intervention
measures, we used Google Mobility data as covariates to the model
since our primary goal is to forecast new infections and not measure
the effect of NPIs on the reproduction rate of the pandemic.

This strategy also counteracts an implicit confirmation bias of the
model [21] and have been used by the original group in a subsequent
work [40,41]. In contrast to European countries targeted by the orig-
inal base model, the State of Santa Catarina did not impose strict
state-wide measures consistently during this period. Local governments
(cities and regional associations of municipalities) were responsible for
independently deciding on their social distancing measures [8], which
rendered changes in legislation impractical.

3. Proposed models

In this section, we describe the equations and modifications of
our proposed models, base-ron, base-rnn, base-ror and base-
rnr. The reader is referred to Fig. 1 for a high level depiction of the
fixed parameters, data and variables used in this section. Each weekly
run, all methods receive the same information: the reported cases
and deaths, fatality rate, infection-to-death probability distribution,
fixed parameters (population size and serial interval), and the Google
Mobility covariates. What distinguishes each model is how they treat
this data. Whereas the base model implicitly treats reported cases as
‘‘ground-truth’’, our proposed variations all ‘‘augment’’ (i.e., impute)
the reported data to account for delays in test reporting or under-
notification of infections by adding variables to the Bayesian inference
model. Table 1 offers for a more technical comparison between base
model and our proposals.

3.1. Proposed models

Since our Bayesian models rely on the same distributions as the
base model, we will use the same symbols to mean the same distri-
butions whenever possible. We refer the reader to the original paper
3

for a full description of the symbols [20]. In mathematical terms, we
observe daily deaths 𝐷𝑡,𝑚 and daily cases 𝐶𝑡,𝑚 for days 𝑡 ∈ {1,… , 𝑛} and
geographical regions 𝑚 ∈ {1,… ,𝑀}. These values might be augmented
(i.e., imputed) in some models (e.g. base-ror and base-rnr) to a
𝐷∗

𝑡,𝑚 and 𝐶∗
𝑡,𝑚, which are explained later in this section.

Deaths by COVID-19 are statistically modelled as:

𝐷∗
𝑡,𝑚 ∼ NegativeBinomial

(

𝑑𝑡,𝑚, 𝑑𝑡,𝑚 +
𝑑2𝑡,𝑚
𝛷

)

, (1)

where 𝑑𝑡,𝑚 represents the number of modelled cases, following:

𝑑𝑡,𝑚 = xfr∗𝑚
𝑡−1
∑

𝜏=0
𝑐𝜏,𝑚𝜋𝑡−𝜏 , (2)

where xfr is either the region-specific case-fatality rate cfr (in models
base-rnn and base-rnr) or the infection-fatality rate if r ≈ 0.0076
estimated for Brazil in [40,41] (in models base, base-ron, and
base-ror). All models have an uncertainty factor added in the same
way as in the original model.

Reported infections, on the other hand, are modelled as in the
original model:

𝑐𝑡,𝑚 = 𝑆𝑡,𝑚𝑅𝑡,𝑚

𝑡−1
∑

𝜏=0
𝑐𝜏,𝑚𝑔𝑡−𝜏 , (3)

where number of reported cases (𝑐𝑡,𝑚) depends on the number of
susceptible individuals 𝑆, reproduction rate 𝑅, and the generation
distribution 𝑔, a fixed polynomial that is also usually referred to as
‘‘serial interval’’ [42].

A key component in all variations of the proposed algorithm is that
we do not use 𝑐𝑡,𝑚 directly, but instead, we ‘‘augment’’ (i.e., impute)
it. Thus, rather than relying solely on the death-based data to model
the pandemic – arguably the most reliable source – we also use the
reported infections data as a way to make the model less reactive.
In some model variations, we assume that the number of reported
infections 𝐶𝑡,𝑚 is under-reported and we model this by adding a nor-
mally distributed overestimate variable overestimate𝑚 ∼  (11.5, 2.0) to
model under-reporting explicitly, following estimates that the number
of COVID-19 cases in Brazil was about 11 times higher than what was

officially being reported [22].
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Table 1
The models differ mainly in which objectives they optimise and how one can interpret the model. For our proposed models, we use infection data (with and without an estimate
of under-reporting) to try to make the model less reactive, since data depending on deaths may only reflect the situation from a few weeks back. 𝑑𝑡,𝑚 represents the number of
predicted deaths and 𝐷∗

𝑡,𝑚 is the number of deaths used as an input to the model, in the same fashion 𝑐𝑡,𝑚 and 𝐶∗
𝑡,𝑚 are the number of predicted cases and the number used as an

nput to the model.
Model name Description Optimisation objectives Model interpretation Model inputs

𝑑𝑡,𝑚 ∝ 𝑘𝑑 ∗ 𝐷∗
𝑡,𝑚 𝑐𝑡,𝑚 ∝ 𝑘𝑐 ∗ 𝐶∗

𝑡,𝑚 𝑑𝑡,𝑚 ∝ 𝑋𝐹𝑅 ∗ 𝑐𝑡,𝑚 𝑐𝑡,𝑚 𝐶∗
𝑡,𝑚 , 𝐷

∗
𝑡,𝑚

base Baseline model 𝑘𝑑 = 1 Not Used 𝑋𝐹𝑅 = 𝐼𝐹𝑅 Real Cases As reported

base-ron Includes reported cases and overestimate
infections

𝑘𝑑 ≈ 1a 𝑘𝑐 ∼  (11.5, 2.0)a,b 𝑋𝐹𝑅 = 𝐼𝐹𝑅 Real Casesc Augmentedd

base-rnn Includes reported cases but does not
attempt to overestimate infections

𝑘𝑑 ≈ 1a 𝑘𝑐 ≈ 1a 𝑋𝐹𝑅 = 𝐶𝐹𝑅 Reported Cases Augmentedd

base-ror Includes reported cases, model
retroactive data and overestimate
infections

𝑘𝑑 ≈ 1a 𝑘𝑐 ∼  (11.5, 2.0)a,b 𝑋𝐹𝑅 = 𝐼𝐹𝑅 Real Casesc As reported

base-rnr Includes reported cases, model
retroactive data but does not attempt to
overestimate infections

𝑘𝑐 ≈ 1a 𝑘𝑑 ≈ 1a 𝑋𝐹𝑅 = 𝐶𝐹𝑅 Reported Cases As reported

aThese values may not be exact, since the model has to take into consideration the number of both cases and deaths.
b (11.5, 2.0) follows from estimates that the number of COVID-19 cases in Brazil was about 11 times higher than officially reported [22].
cThese cases are interpreted as the number of real cases as long as all the assumptions of the model hold true, which most likely they do not.
dCases 𝐶𝑡,𝑚 and deaths 𝐷𝑡,𝑚 from the last week of a data snapshot are augmented (i.e., imputed) according to how historically these values had been retroactively changed, by
having 𝐶∗

𝑡,𝑚 ≈ 𝐶𝑡,𝑚𝑘𝑐,𝑡,𝑚 and 𝐷∗
𝑡,𝑚 ≈ 𝐷𝑡,𝑚𝑘𝑑,𝑡,𝑚.
Hence, in addition to Eq. (1), we also rely on Eq. (4) below to
calibrate our model:

𝐶∗
𝑡,𝑚 ∼ NegativeBinomial

(

𝑝𝑡,𝑚, 𝑝𝑡,𝑚 +
𝑝2𝑡,𝑚
𝛷

)

, (4)

where 𝐶∗
𝑡,𝑚 is the new (augmented) number of reported infections and

𝑝𝑡,𝑚 = 𝑐𝑡,𝑚
overestimate𝑚

estimates the actual number of people infected
at time 𝑡 considering an overestimate. That is, the augmented case
number is where our model performs imputation due to delayed case
notification, while the overestimate parameters is where our method
imputes missing data due to under-reporting.

Our models have 𝐾 = 7 covariates. Six of them are the Google Mo-
bility indicators (described in Section 4.1), and the remaining covariate
is the percentage of the population of a region Susceptible to infection
𝑆𝑡,𝑚. The reproduction rate 𝑅𝑡,𝑚 is assumed to vary with the covariates:

𝑅𝑡,𝑚 = 𝑅0,𝑚 exp−
∑𝐾

𝑘=1 𝐼𝑘,𝑡,𝑚(𝛼𝑘,𝑚+𝛼
∗
𝑘 )−𝑆𝑡,𝑚(𝛼𝑝𝑜𝑝,𝑚+𝛼∗𝑝𝑜𝑝), (5)

where the percentage of the population that is susceptible to the
disease 𝑆𝑡,𝑚 (the seventh covariate) was modelled with a similar impact
measure 𝛼𝑝𝑜𝑝 as the mobility data. On both the 𝚋𝚊𝚜𝚎 and our proposed

odels we use an extra-region impact measure 𝛼𝑘 as well as a per-
egion impact measure 𝛼𝑘,𝑚. To consistently simulate the baseline
lgorithm, our simulations with 𝚋𝚊𝚜𝚎 model did not include 𝑆𝑡,𝑚 as a
ovariate, and we also used the same way of weighting these covariates,
ith both a state-wide 𝛼𝑘 and a per-region 𝛼𝑘,𝑚.

Some of our models (base-ror and base-rnr) also try to take
nto account the delay between PCR test collection and test result
otification. At any given week, we expect the number of people getting
nfected to be higher than reported. When we look back at the tally of
nfections for the same week a few weeks later, we will notice that
nfections can generally be between 2.5x to 7.5x higher than their
nitial reported values, and from 60% up to more than 85% of cases are
eported with 5 days of delay. See Figures S1 and S2 for a comparison
f the delay in the number of reported cases and reported deaths,
espectively. Deaths follow a similar but less volatile pattern, rarely
assing values 2x higher than their initial reports and possibly having
0% of the data reported after this period. While this confirms that
eaths are the most reliable source of information, this also shows an
ssue in using such ‘‘hot’’ data for modelling: it can often be incomplete
nd lead to a false decrease in the number of cases and deaths.

In the models mentioned above, we compensate for this delay by
ugmenting the number of cases and deaths of the past week by a per-
entage, Δretroactive and Δretroactive , respectively. These values
𝑐,𝑡,𝑚 𝑑,𝑡,𝑚

4

vary per region and were calculated every week based on historical
data up until that point. A sample of their distributions can be seen in
Figures S3 and S4. This gives us the augmented values:

𝐶∗
𝑡,𝑚 = 𝐶𝑡,𝑚(1 + Δretroactive𝑐,𝑡,𝑚) (6)

and

𝐷∗
𝑡,𝑚 = 𝐷𝑡,𝑚(1 + Δretroactive𝑑,𝑡,𝑚) (7)

Another minor modification was that the original model assumed
the onset-to-death distribution to follow the distribution Gamma(17.8,
0.45). We kept modelling this as a gamma function but we estimated the
average and deviation from the data at each snapshot. For reference,
this value was close to Gamma(20.67, 0.76) on the latest simulated weeks
and the distribution of onset-to-death in Santa Catarina can be seen in
Figure S7.

3.2. Test workflow and validation

Our main goal is to assess which combination of equations would
most accurately forecast the curve of deaths by COVID-19 for the seven
demographic macro-regions within Santa Catarina. We ran the models
as close as possible to what happened in real life. For every week, we
only used the data available at that point in time, akin to the last-block
evaluation methods normally used for time series forecasting [34].
Forecasts of the regions were then aggregated to compose the overall
prediction for the entire state.

The models produce an average prediction which we compare to
the ‘‘ground-truth’’ number of deaths using Root Mean Squared Error
(RMSE) and the Mean Average Error (MAE) metrics. To validate our
results, we selected the data snapshot from 07/03/2021 to represent
the ‘‘ground-truth’’ – 1 month after the last run simulation – to account
for the notification delays discussed in the previous section. We also cal-
culated RMSE and MAE of the upper and lower confidence intervals and
took their average. The resulting metrics, RMSE_conf and MAE_conf,
provide a measure of how distant the borders of the confidence interval
are from the truth values.

Another important aspect of our testing procedure is how we set
up the priors for the weekly simulations (a summary can be seen
in Algorithm 1). At any given week, except the first one, posteriors
inferred from the previous week were used as starting points for the
current models. This practice of updating the priors with previous esti-
mations is known as Sequential Bayesian Updating, or simply Bayesian
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Algorithm 1 Test Workflow
1: procedure Test
2: last−date ← NULL
3: for current−date 𝑖𝑛 dates do
4: if last−date 𝑖𝑠NULL then
5: run−and−save−model(current−date, initial−hyperparameters)
6: else
7: run−and−save−model(current−date, hyperparameters, load−last−model(last−date))
8: last−date ← current−date
9: end if

10: end for
11: end procedure
.
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Updating [43], and has been used for similar purposes in related
literature [44], as well as in other academic fields [45,46].

This strategy allowed the inference optimisation to converge much
faster in our experiments, so we were able to run fewer iterations of
the algorithm than if we had to build the model from the ground
up every week. The number of iterations (see Table S1) was chosen
after a preliminary test phase where we analysed the trade-off between
reliability and execution time. While this sequential nature of the
experiments means that we only report a single run of the model for
each week, we still believe the sample size produced is more than
enough to allow us to identify which models are better.

4. Data and results

4.1. Data

We were granted access to the state government big data platform
Plataforma BoaVista [47], from where we obtained anonymised data
on every confirmed case of COVID-19 in SC along with the date of
onset of first symptoms, date of PCR test collection, date of death and
municipality of residence. We collected data every week, starting from
31/05/2020 – when daily snapshots of data became available in the
official database system of the state – until 31/01/2021. We also down-
loaded mobility data from Google Mobility community reports [48].
This data describes how people’s mobility has changed during the
pandemic and were available per day and in six categories: Grocery
& pharmacy, Parks, Transit stations, Retail & Recreation, Residential,
and Workplaces. In practice, when simulating the weekly runs, Google
Mobility data from the past week onward was unavailable; therefore,
we assumed that these covariates would remain constant from one
week before the snapshot date.

The state of Santa Catarina has over 7 million inhabitants or-
ganised in 297 municipalities organised in 6 distinct geographical
macro-regions distributed across 95 square kilometres of land area.
Estimated population in each of the seven regions of Santa Catarina
were obtained from the Brazilian Institute of Geography and Statistics,
IBGE [49]. The state government imposed suspensions of many eco-
nomic activities after the first deaths were confirmed in SC in March
2020 but ended up relaxing social distancing measures, eventually
leading to a decree in June 2020 after which municipal governments
would be responsible for most decisions regarding NPI measures. By
24 March 2021, when we completed this study, over 764,000 cases
and over 9800 deaths by COVID-19 had been confirmed, hospitals were
fully occupied, and local news reported that at least 397 people were
on the waiting list for ICU beds [50].

4.2. Results

Results of our simulations of the base model and the four variations
of our proposed model, (base-ron, base-rnn, base-ror, base-
nr) is presented here. All of our models add the newly reported
nfections to the equations but they differ in how the number of infec-

ions is augmented (i.e., imputed) and whether an estimated percentage d
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Table 2
This table shows the test error values (RMSE and 𝑎𝑣𝑔(±𝑠𝑡𝑑) MAE) for the predicted
value and their confidence interval counterparts in a 7 and 30-day forecasting window

Model RMSE7 RMSE30

pred conf pred conf

base 2.55 2.46 5.79 3.57
base-ron 2.29 2.55 2.92 3.06
base-rnn 2.48 2.55 3.14 3.10
base-ror 2.28 2.20 3.05 2.82
base-rnr 2.31 2.43 3.02 3.01

Model MAE7 MAE30

pred conf pred conf

base 2.19 (±1.05) 2.09 (±1.05) 4.77 (±2.71) 2.96 (±1.60)
base-ron 1.96 (±0.95) 2.21 (±1.01) 2.40 (±1.32) 2.51 (±1.38)
base-rnn 2.13 (±0.98) 2.18 (±1.06) 2.56 (±1.45) 2.54 (±1.41)
base-ror 1.97 (±0.92) 1.86 (±0.96) 2.52 (±1.36) 2.27 (±1.32)
base-rnr 1.97 (±0.96) 2.07 (±1.01) 2.48 (±1.37) 2.45 (±1.38)

of cases and deaths are added retroactively in the data before running
the model to account for delay in test reporting.

On average, all models had a similar prediction accuracy on the
first 7–10 days of forecast (𝑃 -value > 0.05, One-way ANOVA) but our
proposed models outperformed the base model in the medium term
(𝑃 -value < 10−14, One-way ANOVA). This is illustrated in Fig. 2, where
we show the average residual errors for all weekly forecasts aggregated
to the entire state of SC. Notice how the margin of prediction errors
made by base model grew wider over time while our models main-
tained a more stable error throughout the forecasting period. Table 2
also provide a numerical comparison of these errors for a window of
7 and 30 days, respectively. In terms of both RMSE and MAE for a
30-day forecasting window, all of our models were considered to be
significantly different from the base model (𝑃 -value < 10−5, indepen-
ent T-test), while for a 7-day window all models except base-rnn
ere individually considered significantly different (𝑃 -value < 0.01,

ndependent T-test). On Table S2, one could also inspect the predictive
erformance of the models for each of the seven individual geographic
egions that compose the state of Santa Catarina.

The gap between the baseline model and the proposed method over
ime is most noticeable at particular points in time, as indicated by
MSE plots for 7-day and 30-day forecasting windows of the models

n Fig. 3. The base model showed the largest short-term error in the
iddle of August 2020 and at the end of November 2020. On the
0-day window, the baseline algorithm is clearly making the worst
redictions, particularly during August 2020 and the beginning of 2021
Fig. 3(b)). The dates where we observe higher errors on base models
orrespond to predictions made on dates during or immediately after
he peaks in the daily number of deaths, as highlighted in Fig. 4.
iagnostic graphs produced by the model for these dates confirm that
ase was unable to reflect major changes in the trend of death data.
he model predicted that the number of infections was growing even
hough data regarding new reported infections already displayed a

ownward trend (Figures S5a–S5c). One could contrast the diagnostic
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Fig. 2. Average absolute prediction error of baseline and proposed models, aggregated to the entire state of SC over all (35) weeks encompassed in the study. The lines and areas
show the average and standard deviation of absolute prediction error produced by the forecast of the models for a time window of 30 days.
plots above to the ones obtained by base-ron model for the same
dates in Figures S6a–S6c, where this misdirection in predicting death
trend was not present in our proposed models.

Another way to visualise these results is by comparing the graph
of cumulative deaths with predictions made by base and one of
the best performing models base-ron (Fig. 5). Scenarios 01 and 03
show models’ 95% confidence interval around the average prediction
indicated as Scenario 02. It is clear that our model has improved the
predictions, providing a narrower confidence interval which was closer
to the real value.

5. Discussion

Our methods outperform the baseline in nearly all runs, with
the best algorithms being the ones with the ‘‘overestimate’’ variable:
base-ron and base-ror. These methods yielded the most sta-
ble predictions over both forecasting periods examined. Interestingly,
the posterior distribution of the ‘‘overestimate’’ parameter in these
models resulted in values much smaller compared to the priors we
set (overestimate𝑚 ∼  (11.5, 2.0)) – see Figure S8. For example, the
mean value of overestimate𝑚 for the macro-region ‘‘Foz do Rio Itajai’’
was close to 7.5, and lower than 2.5 for the ‘‘Grande Oeste’’ macro-
region. The fact that the MCMC inference algorithm automatically
converged to smaller values consistently across macro-regions suggests
that, although present and significant, the sub-notification in the state
of Santa Catarina was not as high as we had assumed. On the other
hand, base-rnn and base-rnr exhibited larger errors in predictions
for certain periods in time, for example the middle of July 2020, later
August 2020 or at the end of December 2020 (Fig. 3(a)).

One interesting finding of is that augmenting the number of in-
fections by a percentage of estimated retroactive data did not seem
to contribute much to the predictive accuracy, as this feature was
present both in one of the best-performing models (base-ror) and
in one of the less predictive ones, base-rnr. We refer the reader to
Section 3 and in Table 1 for other assumptions embedded in each model
variation.

There is evidence in the literature that COVID-19 models are ineffi-
cient for long-range forecasting [51]. However, these results show that
one can use ‘‘hot’’ data (i.e., the most recent data that is constantly
being updated and might still not be complete) to update a model
every week and achieve higher accuracy. Although we concede that
such ‘‘hot’’ data come with some issues, such as unreliability and delays
in updating, when forecasting epidemic outbreaks, one has to address
6

real-time uncertainties and changes as closely as possible. A model
which does not take into account the fast pace production of data is
bound to underperform in a real-time setting.

6. Conclusions

In this paper, we propose Bayesian inference models to overcome
some limitations of the original algorithm in Flaxman et al. [20], mostly
by introducing original equations that allow the model to access data
regarding daily reported infections and letting to account for under-
reporting in a more explicit way. We show that these changes increase
the predictive accuracy of forecasting, not only in the near future
(a week) but even in the medium term (thirty days). We have also
tested some variations in the algorithm to account for the delay within
test collection and notification but these did not prove as useful in
predicting the death curve in the state of Santa Catarina.

These alternative models, however, are not without their failings,
of course. While predictions have improved and some assumptions of
the model could be confirmed by inspection of the data – for example,
the onset-to-death indeed seems to follow a gamma distribution with
parameters very close to what the original model assumed – there
are just too many assumptions in the original model that have not
been thoroughly validated [52] (for example, the value of initial re-
production number, the 𝑅0 parameter). Another issue is that, from the
point of view of the optimisation algorithm, estimated 𝑅𝑡 values and
estimated number of people infected daily are interchangeable. That is,
the algorithm could reach two opposing configurations that are equally
valid and optimal: one where the reproduction rate is low, but there is
a large pool of infected people in the population, and another separate
solution in which the number of infected people is small but 𝑅𝑡 is larger.

Also, even though adding infection data into the model has given it
more adaptability, the same data could make the model more fragile
in the future. If the dynamics of infections change (e.g. because of
new, more transmissible strains of the virus), the model might be
biased to readjust its fitting of the historical data to compensate. In
theory, this could be counteracted by more reliable epidemiological
data from other sources (i.e., tracking the prevalence of new virus
strains, information about age, or information on entry and exit into
ICU) or by including even more granular mobility data, at the expense
of the citizens’ privacy, all of which are generally more expensive or
infeasible to obtain. One could also consider adding assumptions to the
model, such as the cultural orientation of the population [53] or the
peculiarities of the test strategy in place in the modelled region [54].
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Fig. 3. Comparison of Root Mean Square Error (RMSE) of predictions made by the models at each weekly snapshot.

Fig. 4. The curve of daily deaths by COVID-19 in the state of Santa Catarina. Highlighted are the dates in which prediction made by base model were worse.
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Fig. 5. The forecast scenarios produced by base vs base-ron in 07/09 and the four following weeks. Scenarios 01 and 03 are the models’ 95% confidence interval around the
average prediction indicated as Scenario 02. Our model clearly improved the predictions, providing a narrower confidence interval much closer to the real value.
New or data of higher resolution can alleviate some challenges in
epidemic modelling but, importantly, new observations can help us
revise assumptions of existing models in search of a more accurate
description of real-world cases [51,55]. Our proposed model is one
step in that direction of scientific inquiry. We show that a model can
become more accurate by adding one more data source and a new
assumption about under-reporting the tests, and therefore more useful
for forecasting and decision making. As more immediate plans for
future works, we also want to extend our models to account for the
geographical spread of disease using concepts from network analysis
in a principled way [56]. We plan to adapt algorithms our group
has previously developed to analyse other types of networks in tasks
involving regression, clustering and temporal data [57–59]. We also
intend to review the other assumptions built into the original model
and continue to investigate how much the changes we have introduced
are sustained in the face of new epidemic waves, new variants of the
virus and new political measures that affect the dynamics of contagion.
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