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We define a model for the joint distribution of multiple continuous la-
tent variables, which includes a model for how their correlations depend on
explanatory variables. This is motivated by and applied to social scientific re-
search questions in the analysis of intergenerational help and support within
families, where the correlations describe reciprocity of help between genera-
tions and complementarity of different kinds of help. We propose an MCMC
procedure for estimating the model which maintains the positive definiteness
of the implied correlation matrices and describe theoretical results which jus-
tify this approach and facilitate efficient implementation of it. The model is
applied to data from the UK Household Longitudinal Study to analyse ex-
changes of practical and financial support between adult individuals and their
noncoresident parents.

1. Introduction. Many substantive research questions lead to modelling of multivariate
response data. Sometimes the focus of interest is then not just on the marginal distributions
of the response variables but also on how associations between them depend on explanatory
variables. In this paper we analyse intergenerational exchanges of family support, where cor-
relations between different types and directions of help correspond to questions about the
recriprocity and complementarity of support, and how they may depend on characteristics
of the individuals and their families. Other applications where such models for correlations
or covariances may be of interest include attitudes of different members of a family, inter-
rater agreement in educational and psychological studies, and associations between different
measures of health and well-being of an individual.

The methodological literature on such models for associations is much smaller than the
one on models for means or variances of individual responses. Specification of a model for
correlations or covariances faces a trade-off between two conflicting requirements: ease of
interpretation of the model parameters and ensuring that the association matrices implied by
the model are positive definite. In this paper we propose a new modelling framework where a
model is specified directly for individual correlations—and is thus easily interpretable—and
positive definiteness is monitored and ensured during estimation. We then use it to analyse
data on exchanges of help and support between adult individuals and their parents.

In contemporary low-mortality countries, population ageing has led to an increase in the
need for help and support for people with age-related functional limitations. At the same
time, the need for support may also be increasing among younger people as a result of de-
layed transitions to adulthood, unstable employment, high cost of living, and rises in divorce
and repartnership rates (Henretta, Voorhis and Soldo (2018), Lesthaeghe (2014)). With lim-
ited public resources available to meet these demands, there is a greater reliance on private
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transfers of support within families, especially between parents and their adult children. The
main “currencies” of such intergenerational exchanges are time (or practical support) and
money (Grundy (2005)). Another kind of intergenerational support is coresidence, but its
overall rate remains low in spite of a small increase in coresidence between young adults
and their parents (e.g., Stone, Berrington and Falkingham (2011)). Transfers of practical and
financial support between relatives living in different households are thus the key form of
family exchanges. Understanding the nature of these exchanges is important for anticipating
which population subgroups may be at risk of unmet need for support or experience a reduced
capacity to provide support due to changes in their circumstances.

Previous research highlights the importance of reciprocity (symmetry) in such exchanges,
either contemporaneously or over the life course (Albertini, Kohli and Vogel (2007), Grundy
(2005), Hogan, Eggebeen and Clogg (1993), Silverstein et al. (2002)), both as a motivating
factor for providing support and because of its association with other outcomes. For example,
there is evidence that overbenefitting (receiving more than giving) has negative consequences
for older parents’ well-being (Davey and Eggebeen (1998)) while balanced exchanges are
positively associated with parents’ mental health (Litwin (2004)). The extent of reciprocity is
likely to depend on individual characteristics. In a cross-national European study, Mudrazija
(2016) finds that net transfers from parents to adult children follow a similar age pattern
across the majority of countries, with declining positive transfers (parents giving more than
they receive) for parents aged 50-79, becoming negative from around age 80. There is also
evidence from Europe (Mudrazija (2016)) and the U.S. (Hogan, Eggebeen and Clogg (1993))
that reciprocity reflects the geographical proximity of parents and children and gender differ-
ences in family roles.

Another question of interest is whether practical and financial support serve as functional
substitutes or complements of each other (e.g., Mudrazija (2016)) and how their interdepen-
dence depends on individual characteristics. Among the factors that may play a role are in-
come and geographical distance, where better-off adult children or children living at a greater
distance from their parents may substitute money for time transfers to parents (e.g., Grundy
(2005)). Alternatively, time and money transfers may be positively associated, with a ten-
dency to give or to receive both or neither form of support.

Most previous substantive research has focused on the predictors of giving and receiving
support rather than their associations. Many studies have considered only one direction of
exchange, combined different types of exchange, or fitted separate models for different types
or directions, all of which preclude the study of reciprocity or complementarity. The studies
that have considered the associations have employed methods, such as modelling the differ-
ence between support given and support received, that are limited or inflexible in some way
(we discuss these approaches further in Section 7.2).

A more flexible way to quantify these interrelationships is as residual correlations in a
joint model, reciprocity between support given and received, and complementarity between
different types of help given or received. Early examples of this are Attias-Donfut, Ogg and
Wolff (2005) and Bonsang (2007) who analysed binary indicators of support using multivari-
ate probit models. Later research has extended this joint modelling approach in different ways
(Kuha, Zhang and Steele (2023), Steele and Grundy (2021), Steele et al. (2024)). No study,
however, has allowed the correlations among responses to depend on covariates. This is the
development on which we focus. We present a general joint modelling framework that can
be used to simultaneously investigate predictors of financial and practical support given and
received as well as predictors of the correlations among these different types of exchange.

We analyse cross-sectional data from the UK Household Longitudinal Study (UKHLS),
which contains 16 questions (“items”) about exchanges of help on dyads formed of a survey
respondent and their noncoresident parent(s). Seven of the items relate to whether or not
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different kinds of practical help are given to parents (e.g., assistance with shopping) and a
further seven items indicate forms of practical help received from parents. The remaining
two items indicate whether financial help is given and received. The practical help items are
treated as multiple binary indicators of two continuous latent variables, which are modelled
jointly with latent variables taken to underlie the two indicators of financial exchanges. The
data are thus “doubly multivariate” in that we aim to model the joint distribution of four latent
variables, which are themselves measured by sets of multiple items. We also account for zero
inflation, which arises from a high proportion of respondents who report giving or receiving
none of these types of support, by including in the model two binary latent variables for the
subpopulations with excess zeros.

Two previous papers have used different waves of the UKHLS data to examine questions
on intergenerational exchanges of support. Kuha, Zhang and Steele (2023) carry out a cross-
sectional analysis of tendencies to give and to receive help, treating items on practical and
financial help together. Steele et al. (2024) consider them separately but collapse the seven
items on practical help into one binary indicator; their focus is on longitudinal analysis, which
requires the specification of appropriate random effects to incorporate the complex multilevel
structure of these data. Both of these papers focus on models for mean levels of different types
of help given and received rather than for their correlations. Here we combine and extend el-
ements of these previous papers. Our analysis is cross-sectional. We start from the model of
Kuha, Zhang and Steele (2023) but separating practical and financial help (as in Steele et al.
(2024), but without collapsing the practical help items). The residual covariance matrix of
the four latent helping tendencies (for giving and receiving practical and financial help) is
decomposed into their standard deviations and correlation matrix. We then introduce a model
for how the residual correlations depend on predictors (covariates) and develop methods for
estimating this model. This is the main focus and contribution of this paper. It allows us to
answer questions not only about the predictors of the levels of different forms of support (the
mean structure) but also about the predictors of their correlation structure, that is, the sym-
metry of exchanges (correlations between giving and receiving help) and complementarity of
different forms of help (correlations between giving or receiving financial and practical help)
for different population subgroups.

Methodologically, this paper contributes to the literature on modelling correlation or co-
variance matrices, given covariates. A key technical challenge here is that the estimated ma-
trices should be positive definite. Broadly, two approaches may be taken to achieve this
(Pinheiro and Bates (1996)). “Unconstrained” methods specify a model for some transfor-
mation, which ensures that the fitted matrix will be positive definite, while “constrained”
methods enforce it during estimation. A disadvantage of the unconstrained approach is that
the parameters of the transformation are not easily interpretable. Constrained estimation, in
contrast, can use interpretable models for the covariances or correlations themselves, but it
faces the challenge of how to actually implement the constraint.

We employ a two-step approach of estimation where the parameters of the measurement
model of the latent variables are estimated first, followed by the model for the means and
correlations of the latent variables which is the focus of substantive interest. The second step
is carried out in the Bayesian framework, using a tailored MCMC algorithm. This uses a
constrained approach for estimating the correlation model where the parameters sampled at
each MCMC step can only be retained if they imply a positive definite correlation matrix at
all relevant values of the covariates. This builds on previously proposed methods (Barnard,
McCulloch and Meng (2000), Wong, Carter and Kohn (2003)), which we extend to models
that include covariates for the correlations.

The UKHLS data are introduced in Section 2, and the specification of the joint model is
described in Section 3. Section 4 reviews previous literature on modelling covariance and cor-
relation matrices. Section 5 gives theoretical results that provide the basis of our estimation
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of the model for the correlations, and estimation of the joint model is then described in Sec-
tion 6. Results of the analysis of intergenerational exchanges of family support are discussed
in Section 7, and a concluding discussion is given in Section 8. Some additional results are
given in Supplementary Material (Zhang, Kuha and Steele (2024)), as explained in relevant
places in the main text.

2. Data. We use data from the Understanding Society survey, also known as the UK
Household Longitudinal Study (UKHLS; University of Essex (2019)). This is a long-standing
household panel survey. We conduct a cross-sectional analysis of data from wave 9 of
UKHLS, collected in 2017–19. This included the “family network” module, which collected
information on exchanges of help with relatives living outside a respondent’s household.

We consider exchanges from an adult child perspective. Respondents who had at least one
noncoresident parent were asked whether they “nowadays, regularly or frequently” gave each
of eight types of help to their parent(s): lifts in a car, help with shopping, providing or cooking
meals, help with basic personal needs (e.g., washing, ironing, or cleaning), personal affairs
(such as paying bills or writing letters), decorating, gardening, house repairs, or financial help.
These items are dichotomous, with the response options “Yes” and “No.” The same questions
were asked about receipt of support from parents but with personal needs replaced by help
with childcare. We will distinguish between financial help (measured by a single item in each
direction) and practical help (measured by the remaining seven items). Where a respondent
had both biological and step/adoptive parents alive, the respondents were asked to report on
the ones with whom they had most contact. Although respondents were asked about giving
parents a lift in their car “if they have one,” the recorded variable had no missing values
for this item. We used other survey information to set this item to missing for respondents
who did not have access to a car. Similarly, the childcare item was coded as missing for
respondents who did not have coresident dependent children aged 16 or under. For the item
on receiving lifts from parents, we do not have information on whether the parents have
access to a car, so responses of “No” to this item will include also cases where they do not.

A notable finding for these data is that less than half of the respondents report that they
give (44.4% of our analysis sample) or receive (38.2%) even one of these types of support.
This is a feature that we will want to allow for in the modelling of the data.

We consider as covariates a range of individual and household demographic and socioe-
conomic characteristics that aim to capture an adult child’s and their parents’ capacities to
give support and their potential need for support. Most variables in the survey refer to the
respondent, that is, the child in our analysis. Less information was collected on noncoresi-
dent relatives, but we also include a small set of characteristics of the parents. The following
respondent characteristics were included: age, gender, whether they have a coresident part-
ner, indicators of the presence and age of their youngest biological or adopted coresident
children, the number of siblings (as a measure of both alternative sources of support for
parents and competition for the receipt of parental support), whether they have a long-term
illness that limits their daily activities, employment status (classified as employed or nonem-
ployed [unemployed or economically inactive]), education (up to secondary school only or
postsecondary qualifications), household tenure (home-owner or social/private renter), and
household income (equivalised, adjusted for inflation using the 2019 Consumer Price Index,
and log transformed). The parental characteristics included were the age of the oldest living
parent and whether either parent lives alone. We also include the travel time to the nearest
parent, dichotomized as one hour or less vs. more than one hour.

An important limitation of the UKHLS data, shared by other large-scale national studies
with information on intergenerational exchanges, is the reliance on reports from one member
of each parent-child dyad. This is due to practical obstacles with collecting data from indi-
viduals living apart from the sample members. Studies that do collect data on parents and
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children from the same family include the German pairfam study (Huinink et al. (2011)),
the Netherlands Kinship Panel Study (Mandermakers and Dykstra (2008)), the Californian
Longitudinal Study of Generations (Bengtson (2001)), and several other U.S. studies (Suitor
et al. (2017)). Such multiactor data are not available for the U.K. It would be possible to use
UKHLS to study exchanges from the perspective of parent respondents (who would be from
different families than the child respondents in our study), in effect reversing the focus of our
analysis. This would allow analysis of the effects of a richer set of parental characteristics
on exchanges with children but with a correspondingly smaller set of child characteristics
(Steele et al. (2024)). Apart from the limited information on parents when considering ex-
changes from a child perspective, previous research suggests that single informant dyadic
data are subject to reporting biases, with a tendency to understate help received and overstate
help given (Kim et al. (2011), Shapiro (2004)). Although in a traditional dyadic design each
member of the pair would thus be interviewed, our data nevertheless have a dyadic structure
and can be analysed using methods for dyadic data.

The analysis sample was first restricted to the 15,825 respondents aged 18 or over who had
at least one noncoresident parent but no coresident parent. We excluded respondents whose
nearest parent lived or worked abroad (1830 of them), because the nature of their exchanges
is likely to differ from parents based in the U.K., and also omitted 1792 respondents who had
missing data on any covariate or on all the help items. The final sample size for analysis is n =
12,203. The UKHLS sample can include some respondents who are siblings to each other.
However, preliminary analysis indicated that their number was very small for our analysis
sample, so we ignore this feature and treat all the respondents as independent of each other.
Summary statistics for the helping items and the covariates for this sample are shown in
Section A of the Supplementary Material (Zhang, Kuha and Steele (2024)).

3. Latent variable model for multivariate dyadic data. Here we define the joint model
for the data. The specification builds on that of Kuha, Zhang and Steele (2023), but with two
extensions. First, tendencies to (give and receive) financial and practical help are represented
by separate latent variables so that the model includes four rather than two such variables
for each respondent. Second, the correlations between these variables are also modelled as
functions of covariates.

Let (Xi ,YGi,YRi) be observed data for a sample of units i = 1, . . . , n, where Xi is
a Q × 1 vector of covariates (including a constant 1) and YGi = (YT

GPi, YGFi)
T and

YRi = (YT
RP i, YRFi)

T are (J + 1) × 1 vectors of binary indicator variables (items). In our
application a unit is the dyad of a survey respondent and their noncoresident parent(s),
YGPi = (YGP i1, . . . , YGP iJ )T are the respondent’s answers to J = 7 items on different types
of practical help given to their parents, YRP i = (YRP i1, . . . , YRP iJ )T are the items on practi-
cal help received from the parents, and YGFi and YRFi are the single items on financial help
given and financial help received, respectively. Each item is coded 1 if that kind of help is
given or received and 0 if not. In other applications YGFi and YRFi could also be vectors of
multiple indicators, with obvious modifications of the specifications below.

3.1. Measurement model for the observed items. The items in YGPi , YRP i , YGFi , and
YRFi are regarded as measures of continuous latent variables ηGPi , ηRP i , ηGFi , and ηRFi ,
respectively. We interpret ηGPi and ηRP i as an individual’s underlying tendencies to give and
to receive practical help, respectively, and ηGFi and ηRFi as tendencies to give and receive
financial help.

The data that we analyse have a large number of responses where all the items in YGi or
YRi are zero (i.e., no help was given or received). The proportions of these all-zero responses
may be higher than can be well-accounted for by standard latent variable models, given the
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continuous latent variables alone. To allow for this multivariate zero inflation, the model also
includes two binary latent class variables, ξGi and ξRi , for each of which one class represents
individuals who are certain not to give (for ξGi ) or receive (for ξRi) any kind of help. For
giving help, the measurement model for the observed responses YGi , given the latent variables
(ηGP i, ηGFi, ξGi), is then

p(YGi = 0|ξGi = 0, ηGP i, ηGFi;φG) = p(YGi = 0|ξGi = 0) = 1 and(1)

p(YGi |ξGi = 1, ηGP i, ηGFi;φG) =
J∏

j=1

p(YGPij |ξGi = 1, ηGP i;φG)

(2)
× p(YGFi |ξGi = 1, ηGFi),

where p(·|·) denotes a conditional distribution and φG are measurement parameters. When
ξGi = 0, the respondent in dyad i is certain to answer “No” to all items related to giving help.
When ξGi = 1, the probabilities of responses to YGPij are determined by the continuous latent
variable ηGPi , and the response to YGFi is determined by ηGFi . Items YGPij (j = 1, . . . , J )
are assumed to be conditionally independent of each other, given ηGPi . If any items in YGi

are missing for respondent i, they are omitted from the product in (2). The measurement
models for the individual items are specified as

p(YGPij = 1|ξGi = 1, ηGP i;φG) = �(τGPj + λGPjηGP i) for j = 1, . . . , J, and(3)

p(YGFi = 1|ξGi = 1, ηGFi) = 1(ηGFi > 0),(4)

where �(·) is the cumulative distribution function of the standard normal distribution, 1(·)
is the indicator function, τGPj and λGPj are parameters, and we fix τGP 1 = 0 and λGP 1 = 1
for identification of the scale of ηGPi . Here (3) is a standard latent-variable (item response
theory) model for binary items, with probit measurement models, and (4), combined with
the normal distribution of ηGFi defined below, is a latent-variable formulation of a probit
model for the single item YGFi . Thus, φG = (τGP 2, . . . , τGPJ , λGP 2, . . . , λGPJ )T. The mea-
surement model for receiving help YRi , given (ηRP i, ηRFi, ξRi), is defined analogously to
(3)–(4), with parameters φR , and YGi , and YRi are assumed to be conditionally independent
of each other, given the latent variables. Let φ = (φT

G,φT
R)T.

3.2. Structural model for the latent variables given covariates. Let ηi = (ηGP i, ηRP i ,
ηGFi , ηRFi)

T and ξ i = (ξGi, ξRi)
T. Their conditional distribution p(ηi , ξ i |Xi;ψ) = p(ηi |Xi;

ψη) × p(ξ i |Xi;ψξ ) is the structural model for the latent variables, given the covariates.
Here ηi and ξ i are taken to be conditionally independent, given Xi , and ψ = (ψT

η,ψ
T
ξ )

T are
parameters. The distribution of the latent class variables ξ i is specified as multinomial, with
probabilities

log
[
πk1k2(Xi )

π00(Xi)

]
= γT

k1k2
Xi ,(5)

where πk1k2(Xi ) = p(ξGi = k1, ξRi = k2|Xi;ψξ ) for k1, k2 = 0,1 and γ 00 = 0 so that
ψξ = (γT

01,γ
T
10,γ

T
11)

T. In our application the coefficients ψξ describe how the covariates
are associated with the sizes of latent subpopulations of those who are certain not to give
and/or receive any kind of help. This could also be interpreted in substantive terms, but in our
analysis we use it primarily to allow for the multivariate zero inflation in the observed data.

The main focus of substantive interest is on the structural model for the continuous helping
tendencies ηi , given the covariates Xi . Here ηi ∼ N(μi ,�i ) is taken to follow a four-variate
normal distribution with covariance matrix �i and mean vector

(6) μi = E(ηi |Xi;β) = βTXi ,
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where β = [βGP ,βRP ,βGF ,βRF ] is a Q × 4 matrix of coefficients, specifying a separate
linear model for each element of μi . For the covariance matrix, we first decompose it as

(7) �i = cov(ηi |Xi;α,σ ) = SiRiSi ,

where α are parameters of the correlation matrix Ri and σ = (σGP ,σRP )T are parameters in
Si = diag(σGP ,σRP ,1,1), a diagonal matrix of standard deviations where those of ηGFi and
ηRFi are fixed at 1 to identify the measurement model (4) for ηGFi and the corresponding
model for ηRFi . Here σ do not depend on covariates, but that could also be included.

For the correlation matrix, we consider the specification

(8) Ri = R(Xi;α) =

⎡
⎢⎢⎣

1
ρ1i 1
ρ2i ρ4i 1
ρ3i ρ5i ρ6i 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1
ρ(Xi;α1) 1
ρ(Xi;α2) ρ(Xi;α4) 1
ρ(Xi;α3) ρ(Xi;α5) ρ(Xi;α6) 1

⎤
⎥⎥⎦ ,

where only the L = 6 distinct correlations in the lower triangular part are shown. We specify
separate linear models ρli = ρ(Xi;αl) = αT

l Xi for each l = 1, . . . ,L, that is,

(9) ρi = αTXi ,

where ρi = (ρ1i , . . . , ρLi)
T, and α = [α1, . . . ,αL] are coefficients. Some variables in Xi

may be omitted from some of the models (6) and (9) in which case the correspond-
ing elements of β or α are zero. The parameters of the structural model for ηi are thus
ψη = (vec(β)T,σT,vec(α)T)T, where vec(·) denotes the vectorization of a matrix. We note
also that it will be necessary to further constrain the space of α if we want to ensure that
correlation matrices defined by (8)–(9) will be positive definite. Our specifications to achieve
this are described in the sections below.

Let Y = [Y1, . . . ,Yn]T denote all the observed data on the items, where Yi = (YT
Gi,YT

Ri)
T,

and X = [X1, . . . ,Xn]T the data on the covariates. Define Gi = 1(YGi �= 0) and Ri =
1(YRi �= 0), the indicators for whether responses on giving and on receiving help are not
all zero for respondent i. Assuming the observations for different respondents to be indepen-
dent, the log-likelihood function of the model is

logp(Y|X;φ,ψ)

=
N∑

i=1

log
{
π11(Xi;ψξ )

×
[∫

p(YGi |ξGi = 1, ηGP i, ηGFi;φG)p(YRi |ξRi = 1, ηRP i, ηRFi;φR)

× p(ηi |Xi;ψη) dηGP i dηRP i dηGFi dηRFi

]

+ (1 − Ri)π10(Xi;ψξ )

×
[∫

p(YGi |ξGi = 1, ηGP i, ηGFi;φG)p(ηGP i, ηGFi |Xi;ψη) dηGP i dηGFi

]

+ (1 − Gi)π01(Xi;ψξ )

×
[∫

p(YRi |ξRi = 1, ηRP i, ηRFi;φR)p(ηRP i, ηRFi |Xi;ψη) dηRP i dηRFi

]

+ (1 − Gi)(1 − Ri)π00(Xi;ψξ )

}
.

Estimation of this model is described in Section 6, after some further discussion of ques-
tions related to the model for the correlations.
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4. Models for correlation and covariance matrices given covariates: Existing ap-
proaches. There is a substantial literature on modelling association structures of multivari-
ate distributions. We review here those parts of it that are most relevant to our work, focusing
on different ways of specifying models for correlation or covariance matrices, given covari-
ates. These approaches can be combined with different specifications for the joint distribution
as a whole and with different methods of estimating its parameters. Our modelling will use a
parametric specification of a multivariate normal distribution and Bayesian estimation of the
parameters, but the review here is not limited to that case.

We focus on approaches which consider associations directly in terms of pairwise co-
variances or correlations. This excludes models for conditional associations of some of the
variables, given the others, such as log-linear models for categorical data or covariance selec-
tion models for the inverse covariance matrix of a multivariate normal distribution. We also
exclude specifications where the associations are determined indirectly via further latent vari-
ables, such as random effects models and common factor models. The multivariate response
variable, whose covariance or correlation matrix is modelled, may itself be a latent variable,
as it is in our analysis where we model the correlations of the latent ηi , but we still focus on
models that are specified directly for their associations or transformations of the associations.

Models for associations may have two broad goals. One of them is to define a patterned
structure on the associations, which is more parsimonious than an unstructured matrix that
has separate parameters for each pair of variables. This is the case, for example, when an
autocorrelation model is specified for responses that are ordered in time. An extreme version
of this occurs in very high-dimensional problems where parsimonious specification is essen-
tial for consistent estimation of covariance matrices. We do not consider such regularisation
methods here (see Pourahmadi (2011) and Fan, Liao and Liu (2016) for reviews). The second
broad type of model specification considers instead an unstructured matrix of associations but
allows the correlations or covariances in it to depend on covariates that describe the units of
analysis, such as the survey respondents in our application. This is the goal of our modelling.

When the goal is to model covariances or correlations in this way, a key question is how to
ensure that the estimated matrices of them will be positive definite. Pinheiro and Bates (1996)
pointed out a key distinction between two approaches: unconstrained ones, where the models
are specified for parametrizations (transformations) of the association matrix which are guar-
anteed to imply a positive definite matrix, and constrained ones where positive definiteness is
imposed in the estimation process. Our approach is an instance of constrained estimation, but
we list first the most important unconstrained methods (see Pourahmadi (2011) and Pan and
Pan (2017) for more detailed reviews). They differ in what transformation they use. The most
common is the modified Cholesky decomposition of the covariance matrix. It was introduced
by Pourahmadi (1999), and general models for it were proposed by Pan and MacKenzie
(2006). Other possible transformations include the matrix logarithm (Chiu, Leonard and Tsui
(1996)) and the “alternative Cholesky decomposition” of the covariance matrix (Chen and
Dunson (2003)), a variant of the modified Cholesky decomposition proposed by Zhang and
Leng (2012), parametrizations of the correlation matrix in terms of partial autocorrelations
(Wang and Daniels (2013)) or hyperspherical coordinates of its standard Cholesky decom-
position (Zhang, Leng and Tang (2015)), and the matrix logarithm of the correlation matrix
(Archakov and Hansen (2021), Hu et al. (2021)).

The natural advantage of the unconstrained methods is that they ensure positive definite-
ness at any values of the covariates. The corresponding disadvantage is that, because the
models are not specified for the individual association parameters, the model parameters are
not easily interpretable. All of the interpretations that are available apply only when the re-
sponse variables have a natural ordering, most obviously in longitudinal data where they are
ordered in time. Then the parameters of the modified Cholesky decomposition can be inter-
preted in terms of an autoregressive model for each variable given its predecessors, those of
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the alternative Cholesky decomposition and of Zhang and Leng (2012) in terms of a moving
average representation of each variable given residuals of the previous ones (Pan and Pan
(2017), Pourahmadi (2007)), those of Wang and Daniels (2013) as partial autocorrelations of
two variables given all the intervening ones, and the hyperspherical coordinate parametriza-
tion in terms of semipartial correlations (Ghosh, Mallick and Pourahmadi (2021)).

Turning now to approaches that model individual pairwise association parameters directly,
for correlations we could use transformations of them (e.g., Fisher’s z) to ensure that the
fitted correlations are constrained to (−1,1). This, however, is not sufficient to ensure that
the correlation matrix as a whole is positive definite, except for a bivariate response (for that
case, see, e.g., Wilding et al. (2011) and references therein). One possible pragmatic approach
would be to simply employ such models anyway, ignoring the possibility of some nonpositive
definite matrices (see, e.g., Yan and Fine (2007)). This could work well in some applications,
in the best case that the fitted correlation matrices end up being positive definite at all relevant
values of the covariates, but it is not a satisfactory general approach. Luo and Pan (2022)
suggest post hoc adjustments to fitted correlation models to make them positive definite; this,
however, is unhelpful when the focus is on interpreting coefficients of the model. A different
solution is provided by Hoff and Niu (2012) who propose a model where covariances depend
on quadratic functions of covariates and the matrix is automatically positive definite.

Most of the literature on constrained estimation considers linear models for covariances
or correlations. This is not a limitation, even for correlations, because positive definiteness
of the matrix also implies that all the correlations in it will be in (−1,1). The most devel-
oped results here are for the linear covariance model for multivariate normal distribution
(Anderson (1973)) in which the covariance matrix takes the form � = ∑

k νkGk where νk are
parameters and Gk are known, linearly independent symmetric matrices. Zwiernik, Uhler and
Richards (2017) show that although the log-likelihood for this model typically has multiple
local maxima, any hill climbing method initiated at the least squares estimator will converge
to its global maximum with high probability. Zou et al. (2017) consider the case where the
Gk are similarity matrices between the response variables, and propose maximum likelihood
estimates and constrained least squares estimators for this model. In these formulations, � is
the same for all units i. This is relaxed by Zou et al. (2022), who allow the values of the
similarity matrices in Zou et al. (2017) to depend on unit-specific covariates.

We will also consider a linear model, as shown in (9), but for the correlations and given
general unit-specific covariates. We estimate it in the Bayesian framework and using Markov
chain Monte Carlo (MCMC) methods. Here it is convenient to employ the decomposition (7)
and model the standard deviations and correlations separately, as has also been done in most
previous literature that has used a Bayesian approach. MCMC also provides an obvious way
to implement constrained estimation, at least in principle. This can be done at each sampling
step of the estimation by constraining the prior distribution, the proposal distribution from
which the parameters are drawn, or the acceptance probabilities of the sampled values in a
way which rules out parameter values that imply nonpositive definite matrices. But although
the principle is obvious, implementing it is not necessarily easy. Two instances of this ap-
proach that we will draw on in particular are those of Barnard, McCulloch and Meng (2000)
and Wong, Carter and Kohn (2003), as discussed further below. Other methods of this kind
have been proposed by Chib and Greenberg (1998) and Liechty, Liechty and Müller (2004).

What is missing from existing Bayesian implementations is the inclusion of unit-specific
covariates in the models for the correlations, which is our focus. In Section 6 we propose an
MCMC estimation procedure which accommodates them. This in turn requires some further
consideration of the constraint of positive definiteness of the correlation matrix, because it
now has to hold at different values of the covariates. This is discussed in the next section.
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5. Ensuring a positive definite correlation matrix. The key challenge in our con-
strained estimation is to ensure that the estimated correlation matrices remain positive definite
at all relevant values of the covariates X. To achieve this, we specify the set of values for X
for which this should hold and define the parameter space for α as the set of values for α for
which the correlation matrix will be positive definite for all such X. The prior distribution of
α will be zero outside this set, and the Markov chain defined by the MCMC estimation pro-
cedure should never transition outside it. In this section we describe some further theoretical
results which establish when and how this can be achieved.

Let R = R(ρ) denote a symmetric matrix where all the diagonal elements equal 1 and the
distinct off-diagonal elements ρ = (ρ1, . . . , ρL)T are all in (−1,1). Let Cρ denote the set of ρ
such that R(ρ) is positive definite, and thus a correlation matrix, for all ρ ∈ Cρ . It is a convex
subset of the hypercube [−1,1]L (for the shape of Cρ in the cases L = 3 and L = 6, i.e., for
3 × 3 and 4 × 4 correlation matrices, see Rousseeuw and Molenberghs (1994)).

We consider model (9), where ρ = αTX (in this section we omit the unit subscript i, and
take X to include only those covariates that are included in the model for ρ). It is clear
that this ρ cannot be in Cρ for all values of the parameters α and covariates X. What we
need to do is to decide first what values of X are substantively relevant and then ensure that
the estimated models do imply ρ ∈ Cρ for all these X. It is useful to introduce here some
additional notation. Let Z be the smallest vector of distinct variables, including a constant
term 1, which determines X = X(Z). Here Z may be shorter than X if some variables in X
are functions of Z, for example, polynomials or product terms (interactions). Suppose that Z
is a p × 1 vector and X a q × 1 vector. Below we denote sets SZ ⊂ R

p and SX ⊂ R
q of Z

and X, respectively, with appropriate subscripts.
A combination of values (X,α) is said to be feasible if ρ = αTX ∈ Cρ , and (Z,α) to

be feasible if ρ = αTX(Z) ∈ Cρ . We aim to identify known sets of Z and α such that all
combinations of values from them are feasible. This will involve the following steps:

(1) Choose a set SZ for Z for which the correlation matrices should be positive definite.
(2) Specify a test set SXT = {X1, . . . ,XT } of values for X, which will be used for check-

ing positive definiteness during MCMC estimation. The choice of SXT depends on SZ .
(3) Carry out MCMC estimation which samples values of α (and the other model pa-

rameters). At each iteration, carry out checks to ensure that the value of α that is retained is
feasible with all X ∈ SXT . In the end this produces an MCMC sample Sα = {α1, . . . ,αM}.

(4) Conclude that (Z,α) is feasible for all combinations of any Z ∈ SZ and any α in the
convex hull of Sα .

Step (3) is the computational one where the constraint is enforced. It alone is not enough,
however: We can only check feasibility directly for a finite number of values of X and α, but
the sets that we want to draw conclusions on are infinite for at least α. So some additional
results are needed to motivate steps (1) and (2) and to justify the conclusion in step (4).

In step (1) SZ should include the substantively relevant and interesting values of the co-
variates for which we want our estimated model to imply valid correlation matrices. For
example, this could be a finite set SZN = {Z1, . . . ,ZN }, normally including at least all the
distinct values among the Zi , i = 1, . . . , n, in the observed data. SZ is always of this form
when all the variables in Z are categorical. If Z includes continuous variables, we may also
expand SZN to an infinite set, such as its convex hull SZh = {∑N

j=1 λj Zj |∑N
j=1 λj = 1;λj ≥

0 for all j = 1, . . . ,N} or the hyperrectangle SZr = {(Z1, . . . ,Zp)|Zs ∈ [ls, us] for all s =
1, . . . , p}, for specified ls ≤ min{Zjs |j = 1, . . . ,N} and us ≥ max{Zjs |j = 1, . . . ,N} for
each s = 1, . . . , p. Here SZN ⊂ SZh ⊆ SZr .

For step (2), consider the set Cα,SX
= {α ∈ R

L×q |ρ = αTX ∈ Cρ for all X ∈ SX} of values
of α, which are feasible when combined with any X in a set SX . Basic properties of Cα,SX

are
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given by Proposition 1, which is given in Section B of the Supplementary Material (Zhang,
Kuha and Steele (2024)). Parts (i) and (ii) of it explain how Cα,SX

depends on SX . In par-
ticular, they show that if a parameter value α is feasible when combined with any X in SX ,
it is also feasible with any value of X in the convex hull of SX . This in turn allows us to
choose the test set SXT so that feasibility for it also implies feasibility for all Z in the set of
interest SZ . For a finite SZ = SZN , we can choose SXT as all the distinct values of X implied
by Z ∈ SZN . If SZ is infinite, SXT can be chosen so that its convex hull implies coverage of
all of SZ . These choices are discussed in more detail in Supplementary Material Section B.

We can thus define the support of α as Cα,SXT
. Step (3) above refers to the implementa-

tion of the MCMC algorithm, where we need to ensure that all accepted values of α are in
Cα,SXT

. Here the brute-force approach would be to check the whole proposed vector α—that
is, the correlation matrices implied by it—at each MCMC iteration. This, however, would
be computationally demanding and likely to lead to high rates of rejection. What we do in-
stead is sample and check one scalar element of α at a time. This is justified by the following
proposition, the proof of which is given in Section C of the Supplementary Material.

PROPOSITION 2. Consider a finite set SXT = {Xj = (Xj1, . . . ,Xjq)
T|j = 1, . . . , T } and

any fixed value α = [α1, . . . ,αL]T ∈ Cα,SXT
. Denote here α = (αlm,αT−lm)T, where αlm is the

coefficient of Xjm in the model for correlation ρl , for any m = 1, . . . , q and l = 1, . . . ,L, and
α−lm denotes all other elements of α, ρ = (ρl,ρ

T−l)
T, where ρ−l denotes all other elements

of the distinct correlations ρ except ρl , and R(ρl,ρ−l) the correlation matrix implied by ρ.

Let ρ
(j)
−l denote the value of ρ−l for ρj = αTXj , for j = 1, . . . , T .

Let fjl(ρ
′
l ) = |R(ρ′

l ,ρ
(j)
−l )|, treated as a function of ρ ′

l , where | · | denotes the determinant
of a matrix. If Xjm �= 0, let

(10)

a
(j)
lm = gjl − ∑

k �=m αlkXjk − sgn(Xjm)hjl

Xjm

,

b
(j)
lm = gjl − ∑

k �=m αlkXjk + sgn(Xjm)hjl

Xjm

for each j = 1, . . . , T , where gjl = −djl/(2cjl) and hjl = [(d2
j l − 4cjlejl)/(4c2

j l)]1/2 for
cjl = [fjl(1) + fjl(−1) − 2fjl(0)]/2, djl = [fjl(1) − fjl(−1)]/2 and ejl = fjl(0). If

Xjm = 0, set a
(j)
lm = −∞ and b

(j)
lm = +∞.

Define the interval (alm, blm) = ⋂T
j=1(a

(j)
lm , b

(j)
lm ). Then (alm, blm) = {α′

lm|(α′
lm,αT−lm)T ∈

Cα,SXT
}. This interval is nonempty because it contains at least the current value αlm.

In other words, the values of αlm that imply a positive definite correlation matrix, holding
other elements of α at their previous values, are a continuous nonempty interval with known
end points, which are calculated using all the values of X in the test set SXT . We thus need
to check only that a proposed value of an αlm is in this interval. This builds on results by
Barnard, McCulloch and Meng (2000) and Wong, Carter and Kohn (2003) for models with-
out covariates, which we extend here to apply to the individual coefficients in α and multiple
values of the covariates X. Even for one scalar αlm at a time this procedure is still compu-
tationally nontrivial, and it needs to be carried out efficiently. Our implementation of it is
described in Section 6 below and in Section E of the Supplementary Material.

When step (3) is completed, we thus know that all the values of α in the MCMC sample
Sα = {α1, . . . ,αM} are feasible when combined with any value of Z in the target set SZ .
Finally, we can extend this conclusion to other values of α that were not sampled, specifically
to the convex hull of Sα . This is justified by parts (iii)–(v) of Proposition 1 in Section B of
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the Supplementary Material, thus completing step (4) above. In particular, the convex hull of
the MCMC sample includes the summary statistics that we would use for estimation of the
parameters in α, such as their (posterior) means and quantile-based interval estimates. These
estimates are thus also guaranteed to imply positive definite correlation matrices, given any
values of the covariates in the prespecified set of interest SZ .

6. Estimation of the model. We use a two-step procedure to estimate the latent variable
model defined in Section 3. In it the parameters of the measurement model are estimated
first, and they are then fixed at their estimated values in the second step where the structural
model is estimated. The same approach was used by Kuha, Zhang and Steele (2023) in their
analysis, which focused on models for the mean levels of intergenerational support.

The general idea of two-step estimation of latent variable models has been described for
different types of models by Bakk and Kuha (2018), Rosseel and Loh (2022), and Kuha
and Bakk (2023). The motivation of the approach is twofold. Practically, it can substantially
simplify the estimation of complex models. Conceptually, it clarifies the meaning of such
models by separating the definition of the latent variables from their use. In our analysis the
practical simplification means that sampling of the measurement parameters is not included
in the MCMC procedure that is used for the second step. This is very convenient, but for us
the even more important motivation is the conceptual one. In essence, the estimates from the
first step provide the operational definition of the latent variables, which then remains fixed
even if several different structural models are subsequently considered—for example, if we
compare models with different predictors for the correlations.

In our analysis the first step was done using maximum likelihood estimation, as explained
in Section 6.1, while the second step was carried out in the Bayesian framework, using
MCMC estimation, as described in Section 6.2. The choice for the first step was determined
by the convenient availability of standard software for estimating latent variable measurement
models. This hybrid approach does not affect the interpretation of the results of the second
step, because it treats the measurement parameters as fixed parameters. In other words, what
we obtain from the second step is a sample from the posterior distribution of the parameters
of the structural model for the specific latent variables whose scales and meaning are defined
and fixed by the values of the measurement parameters estimated from the first step.

6.1. Estimation of the measurement model. In the first step, the measurement parameters
φG and φR are estimated separately. For φG, the data are YGi , the measurement model is
specified by (1)–(4), and the structural model for ξGi and ηGi = (ηGP i, ηGFi)

T is obtained
from (5)–(8) by omitting ηRi and Xi . The log-likelihood for φG is then

logp
(
YG|φG,πG,μηGP

,μηGF
, σ 2

ηGP
, ρηG

)

=
n∑

i=1

log
[
πG

∫
p(YGi |ξGi = 1, ηGP i, ηGFi;φG)

× p
(
ηGi;μηGP

,μηGF
, σ 2

ηGP
, ρηG

)
dηGP i dηGFi

+ (1 − Gi)(1 − πG)

]
,

(11)

where πG = p(ξGi = 1) and p(ηGi;μηGP
,μηGF

, σ 2
ηGP

, ρηG
) is a bivariate normal den-

sity with E(ηGP i) = μηGP
, E(ηGFi) = μηGF

, Var(ηGP i) = σ 2
ηGP

, Var(ηGFi) = 1, and

Corr(ηGP i, ηGFi) = ρηG
. The estimates φ̃G of φG are obtained by maximizing (11), while the

estimates of (μηGP
,μηGF

, σ 2
ηGP

, ρηG
) from this step are discarded. We have used Mplus 6.12

software (Muthén and Muthén (2010)) to carry out this step. The estimates φ̃R of φR are
obtained analogously, using the data on YRi .
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6.2. Estimation of the structural model. In the second step, the structural parameters ψ

are estimated. Let ζ = (ξ ,η), where ξ denotes all the values of the latent ξ i for the units i

in the sample and η all the values of ηi . We use a Bayesian approach to estimation, using
MCMC methods to draw a sample of ψ and ζ from their posterior distribution

(12) p(ψ, ζ |Y,X; φ̃) ∝ p(Y|X, ζ ; φ̃)p(ζ |X;ψ)p(ψ),

given the observed data Y and X. What we use from this are the values of ψ , which are
a sample from the posterior p(ψ |Y,X; φ̃). This is conditional on the estimated values φ̃ =
(φ̃

T
G, φ̃

T
R)T of the measurement parameters from the first step. They are treated as known and

fixed numbers, as discussed above, and for simplicity we omit φ̃ from the notation below.
The p(ψ) in (12) denotes the prior distribution of the structural parameters. We take it

to be of the form p(ψ) = p(ψη)p(ψξ ) = p(β)p(σ )p(α)p(ψξ ) where the different blocks
of parameters are a priori independent of each other (and individual parameters within the
blocks are also independent, as explained in the further details below and in Section D of
the Supplementary Material (Zhang, Kuha and Steele (2024))). The prior distribution of the
parameters α of the correlation model is a joint uniform distribution p(α) ∝ 1(α ∈ Cα,SXT

)

over the set Cα,SXT
which defines the support of α, as explained in Section 5.

The estimation algorithm has a data augmentation structure which alternates between im-
puting the latent variables, given the observed variables and the parameters, and sampling the
parameters from their posterior distributions given the observed and latent variables:

• Sampling of the latent variables: At MCMC iteration t , sample ζ (t) from the distribution
p(ζ |Y,X,ψ (t−1)) ∝ p(Y|ζ )p(ζ |X,ψ (t−1)), given the observed data (Y,X) and the values
of ψ (t−1) of the parameters from the previous iteration.

• Sampling of the parameters: Sample ψ (t) from the posterior distribution p(ψ |ζ (t),X) ∝
p(ζ (t)|X,ψ)p(ψ), given X and ζ (t). This divides into

p
(
ψ |ζ (t),X

) = p
(
ψη|η(t),X

)
p

(
ψξ |ξ (t),X

)

∝ [
p

(
η(t)|X;ψη

)
p(ψη)

][
p

(
ξ (t)|X;ψξ

)
p(ψξ )

]
,

that is, into separate posteriors for ψη and ψξ .

These steps split further into separate steps for different components of ζ and ψ . For ζ and
all the parameters except for α, the algorithm is similar to the one in Kuha, Zhang and Steele
(2023), with adjustments to allow for the differences that here ηi has four variables and
that their correlations vary by unit i. These steps are described in Supplementary Material
Section D.

What is new here is sampling the coefficients α of the model for the conditional correla-
tions of ηi in such a way that they imply positive definite correlation matrices at all relevant
values of X. Here all the other parameters in ψ and all the latent variables ηi are taken as
known and fixed at their most recently sampled values. The latent variables are thus also
treated as observed response variables in this model for their correlations. The other param-
eters β and σ in ψη are omitted from the notation here so that the posterior distribution that
we need is written as p(α|X,η) ∝ p(η|X;α)p(α). As explained in Section 5, we need to
ensure that all the sampled values are in the convex and bounded set Cα,SXT

, where SXT is
a finite test set of values for X. The prior p(α) and thus also the posterior are nonzero only
in Cα,SXT

.
We propose a tailored Metropolis–Hastings (MH) sampling procedure to implement this

step efficienctly. This samples one element of α at a time, relying on the result in Proposi-
tion 1 in Section 5 that the feasible values for any such parameter, given the rest, are a known
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interval. Let αlm denote a single element of α, for l = 1, . . . ,L, m = 1, . . . , q . The sam-
pling algorithm updates αlm, taking all the other elements α−lm fixed at their most recently
sampled values. Denote Ri (αlm) = R(Xi;αlm,α−lm), and define the standardized residuals
ε = [ε1, . . . , εn]T = S−1(η − Xβ), where η = [η1, . . . ,ηn]T and S = diag(σGP ,σRP ,1,1).
The conditional posterior distribution from which αlm should be drawn is then

p(αlm|α−lm, ε,X) ∝
n∏

i=1

p(εi |α,X)p(αlm|α−lm)

∝
n∏

i=1

∣∣Ri(αlm)
∣∣− 1

2 exp
(
−1

2
εT
i Ri(αlm)−1εi

)
1(alm < αlm < blm),

(13)

where (alm, blm) is the range of αlm in the subset of Cα,SXT
, given α−lm. This involves n

matrix determinants and inverses, plus further determinants to obtain the interval (alm, blm),
as described in Proposition 2. This would be computationally demanding. However, these
demands are reduced because the sampling updates only one parameter αlm at a time. The
determinant and inverse of Ri (αlm) can then be updated using numerically cheap rules rather
than calculated from scratch, reducing the computational complexity from O(K3) to O(K2)

where K is the dimension of R. These features are included in the general elementwise MH
procedure that we propose. It is given in Algorithm 1, together with Remarks 1–4 in Section E
of the Supplementary Material.

Based on results of Tierney (1994, 1996), certain regularity conditions—irreducibility,
aperiodicity, and positive Harris recurrence—ensure a unique stationary distribution for
Markov chains. The Markov chain constructed by our estimation procedure adheres to these
conditions as a special case of random walk Metropolis algorithm (Gelman, Gilks and
Roberts (1997)). Moreover, through the design of the acceptance probability, the detailed
balance condition holds for the chain, thereby ensuring that the desired posterior distribution
serves as its unique stationary distribution. This convergence extends to all structural model
parameters, as they are sampled from desired conditional distributions within a blockwise
Gibbs sampling framework.

7. Analysis of child-parent exchanges of support.

7.1. Introduction and research questions. The model defined in Section 3 was fitted to
the UKHLS data on exchanges of support between respondents and their noncoresident par-
ents that were introduced in Section 2, using the method of estimation described in Section 6.
Receiving and giving help are modelled jointly, treating practical and financial support as
distinct but correlated outcomes. We investigate three broad research questions: (a) What
individual characteristics are associated with higher or lower levels of giving help to the par-
ents, and receiving help from them? (b) To what extent are exchanges reciprocated, and how
does reciprocity vary by individual characteristics? (c) Are practical and financial support
substitutes for one another or are they complementary, and how does this depend on indi-
vidual characteristics? Questions (b) and (c) refer to within-person correlations between the
helping tendencies. For (b), higher levels of reciprocity would correspond to positive correla-
tions between giving and receiving help. For (c), positive correlations between the tendencies
to give (or to receive) practical and financial help would suggest that the two types of support
are complementary (i.e., given together) and negative correlations that they are substitutes.

7.2. Alternative approaches to the analysis. Before we describe the results from our
models, in this section we briefly discuss other possible methods that could be employed
to try to answer the research questions. These methods are ostensibly simpler than the joint
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Algorithm 1: Elementwise Metropolis–Hastings procedure for sampling the parame-
ters α of the model for correlations. Further information is given in Remarks 1–4 in
Section E of the Supplementary Material (Zhang, Kuha and Steele (2024))

1. Input: Current parameters α = (αlm) for l = 1, . . . ,L, m = 1, . . . , q .
For units i = 1, . . . , n: Standardized residuals εi = S−1(ηi − βTXi );

R−1
i and |Ri | for correlation matrices Ri = R(Xi;α).

For a test set SXT = {Xj |j = 1, . . . , T }: Upper triangular matrices �j from
the Cholesky decompositions Rj = �T

j�j of Rj = R(Xj ;α).
2. Metropolis–Hastings sampling:
for l = 1, . . . ,L do

for m = 1, . . . , q do
Proposal generation:
Calculate (alm, blm) based on �1, . . . ,�T . See Remark 1 for more on this.
Generate α′

lm from a proposal distribution g(α′
lm|αlm). See Remark 2 for more

on how the proposal can be created.
Rejection:
Calculate Ri (α

′
lm)−1 by updating Ri(αlm)−1 and |Ri (α

′
lm)| by updating

|Ri (αlm)|, for i = 1, . . . , n; see Remark 3.
Calculate the acceptance probability

π
(
αlm → α′

lm

) = min
{

1,
p(α′

lm|α−lm, ε,X)g(αlm|α′
lm)

p(αlm|α−lm, ε,X)g(α′
lm|αlm)

}

where p(αlm|α−lm, ε,X) is given by equation (13).
Sample u ∼ U(0,1).
if u > π(αlm → α′

lm) then
Reject α′

lm:
continue

end
Accept α′

lm and update
αlm → α′

lm, Ri(αlm)−1 → Ri(α
′
lm)−1, |Ri (αlm)| → |Ri (α

′
lm)|.

Update �j (αlm) → �j (α
′
lm) for j = 1, . . . , T ; see Remark 4.

end
end
3. Output: Updated α, R−1

i , |Ri | and �j .

modelling approach that we use, but they are ultimately limited and inflexible in ways which
make them inadequate for our goals. We discuss them with reference to previous studies
that have applied such methods to questions on intergenerational support, but the same ideas
could be used to examine associations in any context. We are not aware of research that has
used these methods to explicitly model the complementarity of financial and practical sup-
port, so the studies that are mentioned here concern reciprocity of exchanges. We discuss two
simple approaches: (i) reducing two variables on giving and receiving into one and (ii) using
an indicator of one type of exchange as a predictor of another type of exchange.

The most common version of approach (i) operationalises reciprocity as the net balance of
transfers between parents and children, with the direction of the difference between giving
and receiving indicating whether exchanges are from the older to younger generation, or the
reverse. Previous research has calculated such difference scores from overall indices of giving
and receiving help that combine different types of support after monetarising nonfinancial
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transfers (Litwin et al. (2008), Mudrazija (2016)). This approach cannot really be used when,
as in our analysis, helping tendencies are treated as continuous latent variables. A different
version of the same idea uses latent class analysis of indicators of support given and received
to derive a joint categorical outcome for whether exchanges are mutual or one-way (e.g.,
Hogan, Eggebeen and Clogg (1993), Silverstein and Bengtson (1997)). Both of these methods
allow the modelling of the association between giving and receiving to some extent, but
without clear quantification of its strength. Another limitation of this approach is that, because
it first combines the two variables, it rules out a separate analysis of the predictors of levels
of giving and receiving themselves.

A basic version of approach (ii) has been the most widely used in previous research (e.g.,
Albertini, Kohli and Vogel (2007), Evandrou et al. (2018), Silverstein et al. (2002), Grundy
(2005), Deindl and Brandt (2011), Cheng et al. (2015)). Here a measure of, say, giving sup-
port is included in a model for a measure of receiving support, together with other predictors.
The coefficient of giving in this model, possibly suitably standardised, can then be interpreted
as a measure of conditional association between giving and receiving (and the coefficients of
other predictors of receiving support are also conditional on the level of giving).

This basic version of approach (ii) does not yet provide a model for how the associations
may depend on predictors. To get that, we would need to include interactions between a help-
ing variable and other covariates. We have found no examples of this approach in previous
research on intergenerational support, but it is easy to see how it could be done. For exam-
ple, an interaction between giving support and a respondent’s age would provide a measure
of how the association between giving and receiving depends on age. Doing this, however,
is not appealing for our purposes, because it would reduce the interpretability of the results
without any compensating simplification of the modelling. The model would need to include
multiple interaction terms, one for each covariate that was a predictor of an association. In
our application the implementation would be further complicated because the helping vari-
ables in these interactions would be latent variables and because we would need to do this
for six different associations. A further, conceptual problem with this approach is that it is
asymmetric: a model for giving conditional on receiving and covariates estimates a different
conditional association than one for receiving conditional on giving and covariates. For these
reasons it is preferable to model the correlations and means directly and separately, rather
than mix them up in an interaction specification.

We note, finally, that another way to explore variation in correlations would be to simply
split the data into subsets by levels of covariates (by age group, e.g.) and estimate the cor-
relations separately for each of them. This, however, would only allow us to consider small
numbers of categorical variables but not to examine multiple categorical and continuous ex-
planatory variables for the correlations together.

7.3. Estimation of the models. Estimates φ̃ of the parameters of the measurement model
were obtained first, as explained in Section 6.1. They are shown in Section F of the Sup-
plementary Material (Zhang, Kuha and Steele (2024)). The loading parameters are positive,
meaning that the latent variables ηGP and ηRP are defined in such a way that larger values of
them imply higher tendencies to give and receive practical help (and the same is true by con-
struction for the financial help variables ηGF and ηRF ). The measurement parameters were
then fixed at φ̃ in the estimation of the rest of the model below.

The structural model for the joint distribution of the latent variables was estimated using
the MCMC algorithm described in Section 6.2 and Supplementary Material Sections D and E.
Estimated parameters and some predicted values for these models are shown in Tables 1–4
and in Supplementary Material Section G. They are based on 380,000 draws of the parame-
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ters ψ , obtained by pooling two MCMC chains of 200,000 iterations, with a burn-in sample
of 10,000 omitted from each chain. Convergence was assessed by visual inspection of trace
plots of the two chains, which suggested adequate mixing. In the role of the target set SZ for
the covariates, we used all the n observed values of Zi in the data and as the test set SXT all
the distinct values of Xi = X(Zi ) implied by them.

Estimated parameters of model (5) for the binary latent class variables (ξG, ξR) and fitted
class probabilities p(ξG = 1) and p(ξR = 1) from it are shown in Supplementary Material
Section G. This model component is included primarily to allow for zero inflation in the
observed item responses, so it is not our main focus. We could, however, also interpret the
classes defined by ξG = 1 and ξR = 1 as latent subpopulations of potential “givers” and
“receivers” of help, respectively. The estimated overall proportions of these classes, averaged
over the sample distribution of the covariates, are 0.67 for “givers” and 0.62 for “receivers.”

The focus of interest is the model for the joint distribution of η = (ηGP ,ηGF ,ηRP , ηRF )T,
which we interpret as continuous latent tendencies for the adult respondents to give and to
receive practical and financial help, after accounting for the zero inflation. We consider first
results for the model (6) for the means of η, which is used to answer research question (a),
stated in Section 7.1, and then model (8)–(9) for their correlations, corresponding to questions
(b) and (c).

7.4. Predictors of levels of giving and receiving help. Table 1 shows the estimated co-
efficients of the predictors of the means of practical (ηGP ) and financial (ηGF ) help given
by respondents to parents. There is little evidence that the respondent’s partnership status or
the presence or age of their children are associated with the tendency to give help. Women
tend to give more practical help than men, but there is no gender difference in giving finan-
cial help. Indicators of lower socioeconomic status or a more difficult economic situation
of the respondent (lower education, not being a homeowner, lower household income, and
not being employed) are associated with a higher tendency to give practical help, while hav-
ing more education and higher household income predict a higher tendency to give financial
help. These results are consistent with a pattern where children give help to the best of their
ability, with the less well-off children giving, on average, relatively more practical support
and less financial support. However, the results for household tenure and employment status
(where home owners and the employed also tend to give less financial help) deviate from this
pattern, after controlling for education and income. There is also some evidence that respon-
dents with one sibling give less help than those with none, which could suggest some sharing
of support between the siblings (although there is no similar reduction for those with more
siblings).

Having a parent who lives alone and older parental age are positively associated with
giving both forms of help, with the positive association with financial help emerging when
the oldest parent reaches their early 70 s. These findings are consistent with children giving
help according to parental need. After controlling for parental age, respondent’s age has an
inverse U-shaped relationship with giving help, with highest levels of giving by respondents
aged in their 40 s. Finally, respondents who live more than an hour away from the nearest
parent have a lower tendency to give practical help but a higher tendency to give financial
help. As for the effects of socioeconomic status, the different directions of these associations
suggest differences in the mix of the two types of help related to the giver’s circumstances,
in this case according to how feasible it is to provide practical help.

Covariate effects on levels of practical and financial help that the respondents receive from
their parents (variables ηRP and ηRF ) are shown in Table 2. Women tend to receive more of
both types of support than men. Levels of help from parents are also higher for respondents
who are not employed, have less education, or have no coresident partner, all of which can
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TABLE 1
Estimated parameters of the linear model for the expected value of the tendency to give practical help (ηGP ) and

to give financial help (ηGF ) to individuals’ noncoresident parents. The estimates are posterior means from
MCMC samples (with posterior standard deviations in parentheses)

Giving practical help Giving financial help

Estimate (s.d.) Estimate (s.d.)

Estimated coefficients: β̂GP β̂GF

Intercept −0.70∗∗∗ (0.18) −2.35∗∗∗ (0.31)

Respondent (child) characteristics
Age† (×10) 0.03 (0.03) 0.12∗∗∗ (0.04)

Age squared† (×103) −0.60∗∗∗ (0.12) −0.70∗∗∗ (0.19)

Gender
Female (vs. Male) 0.41∗∗∗ (0.03) 0.03 (0.04)

Partnership status
Partnered (vs. Single) −0.04 (0.03) 0.01 (0.05)

Age of youngest coresident child (vs. No children):
0–1 years −0.08 (0.06) −0.05 (0.09)

2–4 years 0.01 (0.05) 0.03 (0.08)

5–10 years 0.02 (0.04) 0.09 (0.07)

11–16 years −0.04 (0.05) −0.10 (0.07)

17– years 0.03 (0.04) −0.03 (0.06)

Number of siblings (vs. None)
1 −0.08∗ (0.04) −0.12∗ (0.07)

2 or more 0.00 (0.04) 0.06 (0.07)

Longstanding illness (vs. No) 0.07∗ (0.04) 0.07 (0.06)

Employment status (vs. Employed)
Not employed 0.21∗∗∗ (0.03) 0.11∗∗ (0.05)

Education (vs. Secondary or less)
Post-secondary −0.05∗∗ (0.03) 0.12∗∗∗ (0.04)

Household tenure (vs. Renter)
Own home outright or with mortgage −0.17∗∗∗ (0.03) −0.19∗∗∗ (0.05)

Logarithm of household equivalised income −0.04∗∗ (0.02) 0.09∗∗∗ (0.03)

Parent characteristics
Age of the oldest living parent† (×10) 0.28∗∗∗ (0.02) −0.02 (0.04)

Age of the oldest parent squared† (×103) 0.52∗∗∗ (0.11) 0.63∗∗∗ (0.17)

At least one parent lives alone (vs. No) 0.33∗∗∗ (0.03) 0.24∗∗∗ (0.04)

Child-parent characteristics
Travel time to the nearest parent

More than one hour (vs. one hour or less) −0.43∗∗∗ (0.04) 0.14∗∗ (0.05)

Residual s.d.: σ̂GP

0.73 (0.01) 1

The posterior credible interval excludes zero at level 90% (∗), 95% (∗∗), or 99% (∗∗∗).
† Age of respondent is centered at 40 and age of oldest living parent at 70.

be taken to indicate higher levels of need for support. Respondents with two or more siblings
tend to receive less of either form of help than those from one or two-child families, which
may reflect greater competition for parental resources in larger families. For financial help
the tendency to receive it is higher for respondents who have lower household income or who
rent rather than own their homes, as well as for those with very young or secondary school
age children. These associations are also consistent with parents providing more financial
assistance to children who are most in need.
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TABLE 2
Estimated parameters of the linear model for the expected value of the tendency to receive practical help (ηRP )
and to receive financial help (ηRF ) from individuals’ noncoresident parents. The estimates are posterior means

from MCMC samples (with posterior standard deviations in parentheses)

Receiving practical help Receiving financial help

Estimate (s.d.) Estimate (s.d.)

Estimated coefficients: β̂RP β̂RF

Intercept −2.17∗∗∗ (0.23) 1.03∗∗∗ (0.34)

Respondent (child) characteristics
Age† (×10) −0.26∗∗∗ (0.03) −0.28∗∗∗ (0.04)

Age squared† (×103) −0.16 (0.18) −0.46∗ (0.23)

Gender
Female (vs. Male) 0.27∗∗∗ (0.03) 0.15∗∗∗ (0.04)

Partnership status
Partnered (vs. Single) −0.35∗∗∗ (0.04) −0.30∗∗∗ (0.05)

Age of youngest coresident child (vs. No children):
0–1 years 0.02 (0.05) 0.14∗ (0.07)

2–4 years −0.03 (0.05) 0.07 (0.06)

5–10 years −0.09∗∗ (0.04) −0.02 (0.06)

11–16 years −0.11∗ (0.06) 0.18∗∗ (0.07)

17– years −0.12 (0.07) 0.02 (0.09)

Number of siblings (vs. None)
1 0.00 (0.05) −0.07 (0.07)

2 or more −0.14∗∗∗ (0.05) −0.25∗∗∗ (0.06)

Longstanding illness (vs. No) 0.03 (0.05) 0.06 (0.06)

Employment status (vs. Employed)
Not employed 0.21∗∗∗ (0.04) 0.14∗∗ (0.05)

Education (vs. Secondary or less)
Postsecondary −0.06∗∗ (0.03) −0.06 (0.04)

Household tenure (vs. Renter)
Own home outright or with mortgage 0.08∗∗ (0.03) −0.34∗∗∗ (0.05)

Logarithm of household equivalised income 0.01 (0.02) −0.14∗∗∗ (0.03)

Parent characteristics
Age of the oldest living parent† (×10) −0.03 (0.03) 0.22∗∗∗ (0.04)

Age of the oldest parent squared† (×103) −0.44∗∗∗ (0.15) 0.28 (0.19)

At least one parent lives alone (vs. No) −0.05 (0.03) 0.04 (0.04)

Child-parent characteristics
Travel time to the nearest parent

More than one hour (vs. one hour or less) −0.42∗∗∗ (0.05) 0.27∗∗∗ (0.06)

Residual s.d.: σ̂RP

0.68 (0.02) 1

The posterior credible interval excludes zero at level 90% (∗), 95% (∗∗), or 99% (∗∗∗).
† Age of respondent is centered at 40 and age of oldest living parent at 70.

Levels of both practical and financial help received decline with the respondent’s age,
which is consistent with reduced need by respondents. As a function of the oldest parent’s
age, receipt of practical help also declines from age 67 onward, but the tendency to receive
financial help increases with parental age. This may be interpreted as another instance of the
balance of different types of help depending on the giver’s capacities, in this case with older
parents being more able to give financial than practical support. Finally, longer travel time
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TABLE 3
Estimated coefficients (α̂) of the model for the residual correlations of the tendencies to give and to receive

practical help (GP and RP) and to give and to receive financial help (GF and RF). The estimates are posterior
means from MCMC samples (with posterior standard deviations in parentheses)

Correlation

GP ↔ RP GP ↔ RF GF ↔ RP GF ↔ RF GP ↔ GF RP ↔ RF

Intercept 0.087 0.166 −0.133 −0.126 0.475∗∗∗ 0.148
(0.171) (0.186) (0.220) (0.159) (0.174) (0.197)

Age of respondent† −0.014∗∗∗ 0.004∗ 0.003 −0.001 −0.002 −0.009∗∗∗
(0.002) (0.002) (0.003) (0.003) (0.002) (0.002)

Age squared† (×103) −0.277∗∗ −0.137 0.001 0.159 −0.112 −0.251∗
(0.124) (0.149) (0.178) (0.184) (0.129) (0.133)

Female −0.151∗∗∗ −0.025 −0.119∗ −0.103∗ −0.080∗ 0.044
(0.044) (0.047) (0.063) (0.062) (0.043) (0.046)

Travel time to 0.141∗∗∗ −0.206∗∗∗ −0.119 −0.226∗∗∗ −0.273∗∗∗ −0.252∗∗∗
nearest parent > 1 hr (0.051) (0.058) (0.080) (0.076) (0.056) (0.055)

Log(household income) 0.044∗∗∗ 0.007 0.025 0.017 0.003 0.017
(0.017) (0.019) (0.022) (0.016) (0.018) (0.020)

The posterior credible interval excludes zero at level 90% (∗), 95% (∗∗), or 99% (∗∗∗).
† Age of respondent is centered at 40.

between the respondent and their nearest parent is associated with less practical and more
financial help, as it was also for help from respondents to parents.

7.5. Models for the correlations. Estimated coefficients (α̂) of model (8)–(9) for the
residual correlations of η = (ηGP ,ηGF ,ηRP , ηRF ) are shown in Table 3. Here we included
as covariates the respondent’s age, age squared, gender, household income, and travel time
to the nearest parent. Whereas the models in Section 7.4 concern the expected level of each
helping tendency separately, these correlations focus on their joint distribution for a given
child-parent dyad, over and above the levels predicted by the mean models.

For ease of interpretation, we focus on some fitted correlations from these models, as
shown in Table 4. The figures on its first row are the fitted correlations (for each of the six
pairs of helping tendencies) averaged over the parameter values in the MCMC sample and
over the respondents in the analysis sample. The other fitted values in the table are obtained
similarly, except that one covariate at a time is fixed at specific value (e.g., age at 35 years)
while leaving the other covariates at their sample values.

The four correlations between the tendencies to give and receive help (of the same or dif-
ferent type) are measures of reciprocity or symmetry in exchanges between children and their
parents (research question (b) above). Results for them are given in the first four columns of
each table. Focusing on Table 4, consider first the fitted correlations on its first row, averaged
over the sample distribution of all the covariates. There is a moderate positive correlation of
0.38 between giving and receiving practical help (GP ↔ RP). In other words, when a child
has a high tendency to give practical help to their parent(s), relative to what would be pre-
dicted by their own and the parents’ characteristics, they also tend to receive a relatively high
level of support from the parents. This suggests a fair amount of reciprocity in practical help.
The other three correlations are weaker, indicating little dyad-level reciprocity in anything
other than practical help. What is not observed here are any substantial negative correlations.
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TABLE 4
Fitted residual correlations calculated using the parameter estimates in Table 3, averaged over parameter values
in the MCMC samples and over covariate values in the analysis sample. The “Overall” values are averaged over
sample values of all the covariates and the other fitted values over the sample values of all the covariates, except

for the one fixed at the specified value

Correlation

Covariate setting GP ↔ RP GP ↔ RF GF ↔ RP GF ↔ RF GP ↔ GF RP ↔ RF

Overall 0.38 0.16 0.02 −0.06 0.36 0.20
Age of respondent

35 years 0.53 0.14 0.00 −0.07 0.39 0.31
45 years 0.39 0.18 0.03 −0.08 0.37 0.22
55 years 0.20 0.19 0.06 −0.06 0.32 0.08

Gender
Female 0.31 0.14 −0.03 −0.10 0.32 0.22
Male 0.47 0.17 0.09 0.00 0.40 0.18

Travel time to the nearest parent
> 1 hr 0.48 0.01 −0.06 −0.22 0.16 0.02
≤ 1 hr 0.34 0.21 0.05 0.00 0.43 0.27

Logarithm of household equivalised income
25th percentile 0.37 0.15 0.02 −0.06 0.36 0.20
50th percentile 0.38 0.16 0.02 −0.06 0.36 0.20
75th percentile 0.39 0.16 0.03 −0.05 0.36 0.21

They would indicate that when the tendency to help is high in one direction it is low in the
other, as would happen, for example, if help was given only in the direction of greater need.
This is not seen here, even for giving and receiving financial help and even though we might
expect financial exchanges to be largely unidirectional. A possible explanation of this is that
the single financial support item covers also small sums of money, which may be exchanged
more frequently and symmetrically than large ones.

The (GP ↔ RP) correlation is also the one for which we see the clearest covariate effects,
as illustrated by the other rows of Table 4. It declines sharply with age, and is significantly
higher for men than for women and among parents and children who live farther apart. Reci-
procity in practical support is highest at younger ages of the adult children. This captures a
different aspect of the effects of age than the mean models in Section 7.4. There respondent’s
age was negatively associated with tendency to give practical help and positively associated
(up to age around 43) with receiving it. Thus younger individuals tend to give less practical
help and receive more of it, and the expected balance of support is more toward help from
parents to children, than is the case at older ages (comparable conclusions were reached in
a different way by Mudrazija (2016), who considered net financial values of the differences
between these two directions). The residual correlations, however, show that, around these
expected levels, for younger respondents the level of practical help that they do (or do not)
give is particularly strongly predictive of how much support they receive. Similarly, the gen-
der difference in the correlation suggests that men are more likely than women to engage in
two-way exchanges or not exchange practical help at all.

The only other clearly significant covariate effects that relate to reciprocity are those be-
tween within-dyad distance and the (GP ↔ RP), (GF ↔ RF), and (GP ↔ RF) correlations.
Recall that the models for the means showed that the balance of the expected levels of differ-
ent types of help moves toward more financial and less practical support when the child and
the parent(s) live further apart. Of the residual correlations here, (GP ↔ RP) is quite strongly
positive when the distance is longer vs. less positive when it is shorter, while (GP ↔ RF) is
near zero vs. moderately positive and (GF ↔ RF) moderately negative vs. near zero similarly
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(and GF ↔ RP is always small). One possible interpretation of these different patterns is
that among children and parents who live further apart providing practical support requires
a greater effort and the tendency to give such support may be higher when reciprocated. For
dyads at a longer distance, financial help may also more often involve one-way (and perhaps
larger) transfers, which are less often and less easily reciprocated by practical help.

The two remaining correlations, between the tendencies to give financial and practical help
and between the tendencies to receive them, relate to whether one form of help that a person
may give serves as a substitute for the other or whether they are complementary and whether
this varies according to individual characteristics (research question (c)). The mean models in
Section 7.4 also give information about one version of this question, when they show that the
expected balance of the two types of help is, on average, different for different types of dyads.
This is most obvious when the coefficient of a covariate has different signs for practical and
financial help, as it does, for example, for the distance between respondent and their parents
(a similar result for expected levels of financial vs. time assistance, given distance, was found
by Bonsang (2007) in a cross-national European study). However, this is again not the same
as the question of substitution for a person, that is, whether the level of one kind of help that
he or she gives predicts higher or lower levels of the other kind of help.

Results for the correlations that address this question are given in the final two columns of
Tables 3 and 4. The fitted correlations are positive overall and in all subgroups defined by the
covariates. This indicates clearly that within a person the types of help are complementary
rather than substitutes of each other: a child or parent (or parents) who has a high tendency
to give one kind of help (relative to what would be expected given the characteristics of their
dyad) also has a high tendency to give the other kind of help. The most noticeable covariate
effect that holds for both children and the parents is that the degree of complementarity in
practical and financial help is greater when the child-parent distance is small. For help re-
ceived from the parents, complementarity also declines with the respondent’s (and thus in
effect also the parents’) age. This suggests that at older ages the parents more often tend to
limit the support that they give to one of these types (most often financial help, in light of the
results in Table 2) rather than both of them.

In conclusion, we return to the research questions that were stated in Section 7.1. The
first question was addressed by the models for the mean levels of helping tendencies in Sec-
tion 7.4. Their results may be summarised in terms of two broad types of characteristics: the
capacities of a giver of support and the level of need of the recipient. The model results in-
dicate clearly that recipients with higher level of need (such as children with less privileged
socioeconomic status or parents who are older or live alone) tend to receive more support.
For capacities of giving, the results are more subtle. There is no strong evidence that lower
capacity is associated with less help given in some overall sense. Instead, different types of
individuals tend to give the types of help that they are best able to give, for example, with
less wealthy children giving, on average, relatively more practical than financial help to their
parents and older parents providing relatively more financial help to their children.

The other two research questions correspond to the models for residual correlations in this
section. The results show evidence of reciprocity between children and parents in practical
help and of within-person complementarity in giving different types of help. A prominent
covariate effect here was that the patterns of correlations between helping tendencies of dif-
ferent types and directions were somewhat different for children who live far from rather than
close to their parents.

8. Conclusions. We have proposed methods for modelling joint distributions of mul-
tivariate continuous variables, including models for how their correlations depend on co-
variates. A linear model was specified for each correlation, and we developed an estimation
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procedure that ensures that the estimated model implies positive definite correlation matrices
over a relevant set of values of the covariates. This builds on literature on such “constrained”
methods of estimation for models for correlations, which are here extended to include unit-
level covariates. The estimation is carried out using a tailored MCMC algorithm, which in-
cludes an efficient Metropolis–Hastings subprocedure for estimating the correlation model.

These methods were motivated by substantive research questions on the levels and corre-
lations of intergenerational family support. Models for them were defined for the joint dis-
tribution of latent variables, which represent individuals’ tendencies of giving and receiving
different types of support. We applied them to study exchanges of support between adult in-
dividuals and their noncoresident parents in the U.K., using survey data from the UK House-
hold Longitudinal Study. We modelled the conditional means and correlations of different
helping tendencies. The mean levels are positively associated with many characteristics of
the recipients that indicate higher need and with characteristics of givers that indicate their
higher capacity to give help. These results are, arguably, fairly encouraging about patterns of
intergenerational support in this population. Less positively, large proportions of both adult
individuals and their parents do not typically give any of the kinds of help considered here.
The estimated correlations indicate reciprocity, where those who tend to give high levels of
practical help also tend to receive much of it, and complementarity, where those who tend
to give high levels of one kind of help (practical or financial) also tend to give much of the
other kind. This suggests a picture of a general culture of helpfulness within some families,
and general lack of it in others, rather than a sort of zero-sum game where help would flow
only in one direction at a time and one kind of help would reduce the amount of other kinds.

This work could be extended in a number of ways. Methodologically, the proposed mod-
elling approach for the correlation matrix could be embedded into other covariance modelling
tasks, such as the copula model. (Hoff (2007), Murray et al. (2013)). The computational ef-
ficiency and mixing rates of the simple elementwise Metropolis–Hastings MCMC sampler
that was used here could perhaps be improved by using other approaches, for example, adap-
tive MCMC (Andrieu and Thoms (2008), Haario, Saksman and Tamminen (2001)), which
proposes multiple parameters from an adaptive proposal in each iteration.

Substantively, the choices of this analysis were constrained by the available data. Although
we considered practical and financial support separately, the single indicator of financial sup-
port leaves us unable to examine varieties of it in more detail. Because we analyse data col-
lected from the adult children only, we have limited information about their parents. Another
promising direction would be to extend the models to longitudinal data. This would allow us
to examine reciprocity and complementarity of help not only contemporaneously, using mod-
els for correlations as described in this paper, but also over time, using predictive models for
types of help at one time given help at earlier times. These areas of further research remain
to be pursued.
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SUPPLEMENTARY MATERIAL

Additional results (DOI: 10.1214/24-AOAS1921SUPPA; .pdf). Sections A–G of the Sup-
plementary Material provide some additional tables and theoretical results. They are referred
to in appropriate places in the main text of the paper above, as Zhang, Kuha and Steele (2024).

https://doi.org/10.1214/24-AOAS1921SUPPA
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Pseudodata and code for data analysis (DOI: 10.1214/24-AOAS1921SUPPB; .zip). The
Supplementary Material also include a representative pseudo version of the data and R pack-
age and code for its analysis, together with information about access to the actual data used
in the paper.
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