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We define a model for the joint distribution of multiple continuous la-
tent variables which includes a model for how their correlations depend on
explanatory variables. This is motivated by and applied to social scientific re-
search questions in the analysis of intergenerational help and support within
families, where the correlations describe reciprocity of help between genera-
tions and complementarity of different kinds of help. We propose an MCMC
procedure for estimating the model which maintains the positive definiteness
of the implied correlation matrices, and describe theoretical results which jus-
tify this approach and facilitate efficient implementation of it. The model is
applied to data from the UK Household Longitudinal Study to analyse ex-
changes of practical and financial support between adult individuals and their
non-coresident parents.

1. Introduction. Many substantive research questions lead to modelling of multivariate
response data. Sometimes the focus of interest is then not just on the means of the response
variables, but also on how associations between them depend on explanatory variables. In
this paper we analyse intergenerational exchanges of family support, where correlations be-
tween different types and directions of help correspond to questions about the recriprocity
and complementarity of support, and how they may depend on characteristics of the individ-
uals and their families. Other applications where such models for correlations or covariances
may be of interest include attitudes of different members of a family, inter-rater agreement in
educational and psychological studies, and associations between different measures of health
and well-being of an individual.

The methodological literature on such models for associations is much smaller than the
one on models for means or variances of individual responses. Specification of a model for
correlations or covariances faces a trade-off between two conflicting requirements: ease of
interpretation of the model parameters, and ensuring that the association matrices implied by
the model are positive definite. In this paper we propose a new modelling framework where
a model is specified directly for individual correlations — and is thus easily interpretable
— and positive definiteness is monitored and ensured during estimation. We then use it to
analyse data on exchanges of help and support between adult individuals and their parents.

In contemporary low-mortality countries, population ageing has led to an increase in the
need for help and support for people with age-related functional limitations. At the same
time, the need for support may also be increasing among younger people as a result of de-
layed transitions to adulthood, unstable employment, high cost of living, and rises in divorce
and re-partnership rates (Lesthaeghe, 2014; Henretta, Van Voorhis and Soldo, 2018). With
limited public resources available to meet these demands, there is a greater reliance on pri-
vate transfers of support within families, especially between parents and their adult children.
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The main ‘currencies’ of such intergenerational exchanges are time (or practical support)
and money (Grundy, 2005). Another kind of intergenerational support is coresidence but its
overall rate remains low, in spite of a small increase in coresidence between young adults
and their parents (e.g. Stone, Berrington and Falkingham, 2011). Transfers of practical and
financial support between relatives living in different households are thus the key form of
family exchanges. Understanding the nature of these exchanges is important for anticipat-
ing which population sub-groups may be at risk of unmet need for support or experience a
reduced capacity to provide support due to changes in their circumstances.

Previous research highlights the importance of reciprocity (symmetry) in such exchanges,
either contemporaneously or over the life course (Albertini, Kohli and Vogel, 2007; Hogan,
Eggebeen and Clogg, 1993; Grundy, 2005; Silverstein et al., 2002), both as a motivating fac-
tor for providing support and because of its association with other outcomes. For example,
there is evidence that overbenefitting (receiving more than giving) has negative consequences
for older parents’ well-being (Davey and Eggebeen, 1998) while balanced exchanges are
positively associated with parents’ mental health (Litwin, 2004). The extent of reciprocity is
likely to depend on individual characteristics. In a cross-national European study, Mudraz-
ija (2016) finds that net transfers from parents to adult children follow a similar age pattern
across the majority of countries, with declining positive transfers (parents giving more than
they receive) for parents aged 50-79, becoming negative from around age 80. There is also
evidence from Europe (Mudrazija, 2016) and the U.S. (Hogan, Eggebeen and Clogg, 1993)
that reciprocity reflects the geographical proximity of parents and children and gender differ-
ences in family roles.

Another question of interest is whether practical and financial support serve as functional
substitutes or complements of each other (e.g. Mudrazija, 2016), and how their interdepen-
dence depends on individual characteristics. Among the factors that may play a role are in-
come and geographical distance where better-off adult children or children living at a greater
distance from their parents may substitute money for time transfers to parents (e.g. Grundy,
2005). Alternatively time and money transfers may be positively associated, with a tendency
to give or receive both or neither form of support.

Most previous substantive research has focused on the predictors of giving and receiving
support rather than their associations. Many studies have considered only one direction of
exchange, combined different types of exchange, or fitted separate models for different types
or directions, all of which preclude the study of reciprocity or complementarity. The studies
that have considered the associations have employed methods, such as modelling the differ-
ence between support given and support received, that are limited or inflexible in some way
(we discuss these approaches further in Section 7.2).

A more flexible way to quantify these interrelationships is as residual correlations in a
joint model, reciprocity between support given and received, and complementarity between
different types of help given or received. Early examples of this are Attias-Donfut, Ogg and
Wolff (2005) and Bonsang (2007) who analysed binary indicators of support using multi-
variate probit models. Later research has extended this joint modelling approach in different
ways (Steele and Grundy, 2021; Kuha, Zhang and Steele, 2023; Steele et al., 2024), but no
study has allowed the correlations among responses to depend on covariates. This is the de-
velopment that we focus on. We present a general joint modelling framework that can be used
to simultaneously investigate predictors of financial and practical support given and received,
as well as predictors of the correlations among these different types of exchange.

We analyse cross-sectional data from the UK Household Longitudinal Study (UKHLS),
which contains 16 questions (‘items’) about exchanges of help on dyads formed of a survey
respondent and their non-coresident parent(s). Seven of the items relate to whether or not dif-
ferent kinds of practical help are given to parents (for example, assistance with shopping) and
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a further seven items indicate forms of practical help received from parents. The remaining
two items indicate whether financial help is given and received. The practical help items are
treated as multiple binary indicators of two continuous latent variables which are modelled
jointly with latent variables taken to underlie the two indicators of financial exchanges. The
data are thus ‘doubly multivariate’ in that we aim to model the joint distribution of four latent
variables which are themselves measured by sets of multiple items. We also account for zero
inflation, which arises from a high proportion of respondents who report giving or receiving
none of these types of support, by including in the model two binary latent variables for the
subpopulations with excess zeros.

Two previous papers have used different waves of the UKHLS data to examine ques-
tions on intergenerational exchanges of support. Kuha, Zhang and Steele (2023) carry out
a cross-sectional analysis of tendencies to give and receive help, treating items on practical
and financial help together. Steele et al. (2024) consider them separately, but collapse the
seven items on practical help into one binary indicator; their focus is on longitudinal analy-
sis, which requires the specification of appropriate random effects to incorporate the complex
multilevel structure of these data. Both of these papers focus on models for mean levels of
different types of help given and received, rather than for their correlations. Here we com-
bine and then extend elements of these previous papers. Our analysis is cross-sectional. We
start from the model of Kuha, Zhang and Steele (2023), but separating practical and financial
help (as in Steele et al. 2024, but without collapsing the practical help items). The residual
covariance matrix of the four latent helping tendencies (for giving and receiving practical
and financial help) is decomposed into their standard deviations and correlation matrix. We
then introduce a model for how the residual correlations depend on predictors (covariates),
and develop methods for estimating this model. This is the main focus and contribution of
this paper. It allows us to answer questions not only about the predictors of the levels of dif-
ferent forms of support (the mean structure) but also about the predictors of their correlation
structure, i.e. the symmetry of exchanges (correlations between giving and receiving help)
and complementarity of different forms of help (correlations between giving or receiving
financial and practical help) for different population sub-groups.

Methodologically, this paper contributes to the literature on modelling correlation or co-
variance matrices given covariates. A key technical challenge here is that the estimated ma-
trices should be positive definite. Broadly, two approaches may be taken to achieve this (Pin-
heiro and Bates, 1996). ‘Unconstrained’ methods specify a model for some transformation
which ensures that the fitted matrix will be positive definite, while ‘constrained’ methods en-
force it during estimation. A disadvantage of the unconstrained approach is that the param-
eters of the transformation are not easily interpretable. Constrained estimation, in contrast,
can use interpretable models for the covariances or correlations themselves, but it faces the
challenge of how to actually implement the constraint.

We employ a two-step approach of estimation where the parameters of the measurement
model of the latent variables are estimated first, followed by the model for the means and
correlations of the latent variables which is the focus of substantive interest. The second step
is carried out in the Bayesian framework, using a tailored MCMC algorithm. This uses a
constrained approach for estimating the correlation model where the parameters sampled at
each MCMC step can only be retained if they imply a positive definite correlation matrix at
all relevant values of the covariates. This builds on previously proposed methods (Barnard,
McCulloch and Meng, 2000; Wong, Carter and Kohn, 2003), which we extend to models that
include covariates for the correlations.

The UKHLS data are introduced in Section 2, and the specification of the joint model is
described in Section 3. Section 4 reviews previous literature on modelling covariance and
correlation matrices. Section 5 gives theoretical results that provide the basis of our estima-
tion of the model for the correlations, and estimation of the joint model is then described
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in Section 6. Results of the analysis of intergenerational exchanges of family support are
discussed in Section 7, and a concluding discussion is given in Section 8. Some additional
results are given in supplementary materials, as explained in relevant places in the main text.

2. Data. We use data from the Understanding Society survey, also known as the UK
Household Longitudinal Study (UKHLS; University of Essex, 2019). This is a long-standing
household panel survey. We conduct a cross-sectional analysis of data from wave 9 of
UKHLS, collected in 2017–19. This included the ‘family network’ module which collected
information on exchanges of help with relatives living outside a respondent’s household.

We consider exchanges from an adult child perspective. Respondents who had at least one
non-coresident parent were asked whether they ‘nowadays’ ‘regularly or frequently’ gave
each of eight types of help to their parent(s): lifts in a car; help with shopping; providing or
cooking meals; help with basic personal needs; washing, ironing or cleaning; personal affairs
such as paying bills or writing letters; decorating, gardening or house repairs; or financial
help. These items are dichotomous, with the response options Yes and No. The same ques-
tions were asked about receipt of support from parents, but with personal needs replaced by
help with childcare. We will distinguish between financial help (measured by a single item
in each direction) and practical help (measured by the remaining seven items). Where a re-
spondent had both biological and step/adoptive parents alive, the respondents were asked to
report on the ones that they had most contact with. Although respondents were asked about
giving parents a lift in their car ‘if they have one’, the recorded variable had no missing values
for this item. We used other survey information to set this item to missing for respondents
who did not have access to a car. Similarly, the childcare item was coded as missing for re-
spondents who did not have coresident dependent children aged 16 or under. For the item on
receiving lifts from parents, we do not have information on whether the parents have access
to a car, so responses of ‘No’ to this item will include also cases where they do not.

A notable finding for these data is that less than half of the respondents report that they
give (44.4% of our analysis sample) or receive (38.2%) even one of these types of support.
This is a feature that we will want to allow for in the modelling of the data.

We consider as covariates a range of individual and household demographic and socioe-
conomic characteristics that aim to capture an adult child’s and their parents’ capacities to
give support and their potential need for support. Most variables in the survey refer to the
respondent (the child in our analysis), as less information was collected on non-coresident
relatives, but we also include a small set of characteristics of the parents. The following
respondent characteristics were included: age, gender, whether they have a coresident part-
ner, indicators of the presence and age of their youngest biological or adopted coresident
children, the number of siblings (as a measure of both alternative sources of support for
parents and competition for the receipt of parental support), whether they have a long-term
illness that limits their daily activities, employment status (classified as employed or non-
employed [unemployed or economically inactive]), education (up to secondary school only,
or post-secondary qualifications), household tenure (home-owner or social/private renter),
and household income (equivalised, adjusted for inflation using the 2019 Consumer Price
Index, and log transformed). The parental characteristics included were the age of the oldest
living parent and whether either parent lives alone. We also include the travel time to the
nearest parent, dichotomized as 1 hour or less vs. more than 1 hour.

An important limitation of the UKHLS data, shared by other large-scale national studies
with information on intergenerational exchanges, is the reliance on reports from one member
of each parent-child dyad. This is due to practical obstacles with collecting data from indi-
viduals living apart from the sample members. Studies that do collect data on parents and
children from the same family include the German pairfam study (Huinink et al., 2011), the
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Netherlands Kinship Panel Study (Mandermakers and Dykstra, 2008), and the Californian
Longitudinal Study of Generations (Bengtson, 2001) and several other US studies (Suitor
et al., 2017). Such multi-actor data are not available for the UK. It would be possible to use
UKHLS to study exchanges from the perspective of parent respondents (who would be from
different families than the child respondents in our study), in effect reversing the focus of our
analysis. This would allow analysis of the effects of a richer set of parental characteristics
on exchanges with children, but with a correspondingly smaller set of child characteristics
(Steele et al., 2024). Apart from the limited information on parents when considering ex-
changes from a child perspective, previous research suggests that single informant dyadic
data are subject to reporting biases, with a tendency to understate help received and overstate
help given (Shapiro, 2004; Kim et al., 2011). Although in a traditional dyadic design each
member of the pair would thus be interviewed, our data nevertheless have a dyadic structure
and can be analysed using methods for dyadic data.

The analysis sample was first restricted to the 15,825 respondents aged 18 or over who
had at least one non-coresident parent but no coresident parent. We excluded respondents
whose nearest parent lived or worked abroad (1830 of them), because the nature of their
exchanges is likely to differ from parents based in the UK, and also omitted 1792 respondents
who had missing data on any covariate or on all the help items. The final sample size for
analysis is n= 12,203. The UKHLS sample can include some respondents who are siblings
to each other. However, preliminary analysis indicated that their number was very small for
our analysis sample, so we ignore this feature and treat all the respondents as independent
of each other. Summary statistics for the helping items and the covariates for this sample are
shown in supplementary Appendix A.

3. Latent variable model for multivariate dyadic data. Here we define the joint model
for the data. The specification builds on that of Kuha, Zhang and Steele (2023), but with two
extensions. First, tendencies to (give as well as receive) financial and practical help are repre-
sented by separate latent variables, so that the model includes four rather than two such vari-
ables for each respondent. Second, the correlations between these variables are also modelled
as functions of covariates.

Let (Xi,YGi,YRi) be observed data for a sample of units i = 1, . . . , n, where Xi is
a Q × 1 vector of covariates (including a constant 1), and YGi = (YT

GPi, YGFi)
T and

YRi = (YT
RPi, YRFi)

T are (J + 1)× 1 vectors of binary indicator variables (items). In our
application, a unit is the dyad of a survey respondent and their non-coresident parent(s),
YGPi = (YGPi1, . . . , YGPiJ)

T are the respondent’s answers to J = 7 items on different types
of practical help given to their parents, YRPi = (YRPi1, . . . , YRPiJ)

T are the items on prac-
tical help received from the parents, and YGFi and YRFi are the single items on financial
help given and financial help received respectively. Each item is coded 1 if that kind of help
is given or received, and 0 if not. In other applications YGFi and YRFi could also be vectors
of multiple indicators, with obvious modifications of the specifications below.

3.1. Measurement model for the observed items. The items in YGPi, YRPi, YGFi and
YRFi are regarded as measures of continuous latent variables ηGPi, ηRPi, ηGFi and ηRFi

respectively. We interpret ηGPi and ηRPi as an individual’s underlying tendencies to give and
to receive practical help respectively, and ηGFi and ηRFi as tendencies to give and receive
financial help.

The data that we analyse have a large number of responses where all the items in YGi

or YRi are zero (no help given or received). The proportions of these all-zero responses
may be higher than can be well accounted for by standard latent variable models given the
continuous latent variables alone. To allow for this multivariate zero inflation, the model also
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includes two binary latent class variables ξGi and ξRi, for each of which one class represents
individuals who are certain not to give (for ξGi) or receive (for ξRi) any kind of help. For
giving help, the measurement model for the observed responses YGi given the latent variables
(ηGPi, ηGFi, ξGi) is then

p(YGi = 0|ξGi = 0, ηGPi, ηGFi;ϕG) = p(YGi = 0|ξGi = 0) = 1 and(1)

p(YGi|ξGi = 1, ηGPi, ηGFi;ϕG) =

J∏
j=1

p(YGPij |ξGi = 1, ηGPi;ϕG)(2)

× p(YGFi|ξGi = 1, ηGFi)

where p(·|·) denotes a conditional distribution and ϕG are measurement parameters. When
ξGi = 0, the respondent in dyad i is certain to answer ‘No’ to all items related to giving
help. When ξGi = 1, the probabilities of responses to YGPij are determined by the contin-
uous latent variable ηGPi and the response to YGFi is determined by ηGFi. Items YGPij

(j = 1, . . . , J ) are assumed to be conditionally independent of each other given ηGPi. If any
items in YGi are missing for respondent i, they are omitted from the product in (2). The
measurement models for the individual items are specified as

p(YGPij = 1|ξGi = 1, ηGPi;ϕG) = Φ(τGPj + λGPj ηGPi) for j = 1, . . . , J, and(3)

p(YGFi = 1|ξGi = 1, ηGFi) = 1(ηGFi > 0),(4)

where Φ(·) is the cumulative distribution function of the standard normal distribution, 1(·)
is the indicator function, τGPj and λGPj are parameters, and we fix τGP1 = 0 and λGP1 = 1
for identification of the scale of ηGPi. Here (3) is a standard latent-variable (item response
theory) model for binary items, with probit measurement models, and (4), combined with the
normal distribution of ηGFi defined below, is a latent-variable formulation of a probit model
for the single item YGFi. Thus ϕG = (τGP2, . . . , τGPJ , λGP2, . . . , λGPJ)

T. The measurement
model for receiving help YRi given (ηRPi, ηRFi, ξRi) is defined analogously to (3)–(4), with
parameters ϕR, and YGi and YRi are assumed to be conditionally independent of each other
given the latent variables. Let ϕ= (ϕT

G,ϕ
T
R)

T.

3.2. Structural model for the latent variables given covariates. Let ηi = (ηGPi, ηRPi,
ηGFi, ηRFi)

T and ξi = (ξGi, ξRi)
T. Their conditional distribution p(ηi,ξi|Xi;ψ) = p(ηi|Xi;ψη)×

p(ξi|Xi;ψξ) is the structural model for the latent variables given the covariates. Here ηi and
ξi are taken to be conditionally independent given Xi, and ψ = (ψT

η ,ψ
T
ξ )

T are parameters.
The distribution of the latent class variables ξi is specified as multinomial, with probabilities

log
[
πk1k2

(Xi)

π00(Xi)

]
= γTk1k2

Xi,(5)

where πk1k2
(Xi) = p(ξGi = k1, ξRi = k2|Xi;ψξ) for k1, k2 = 0,1 and γ00 = 0, so that

ψξ = (γT01,γ
T
10,γ

T
11)

T. In our application, the coefficients ψξ describe how different co-
variates are associated with the sizes of latent sub-populations of those are certain not to give
and/or receive any kind of help. This could also be interpreted in substantive terms, but in our
analysis we use it primarily to allow for the multivariate zero inflation in the observed data.

The main focus of substantive interest is on the structural model for the continuous helping
tendencies ηi given the covariates Xi. Here ηi ∼N(µi,Σi) is taken to follow a four-variate
normal distribution with covariance matrix Σi and mean vector

(6) µi =E(ηi|Xi;β) = β
TXi
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where β = [βGP , βRP , βGF , βRF ] is a Q× 4 matrix of coefficients, specifying a separate
linear model for each element of µi. For the covariance matrix, we first decompose it as

(7) Σi = cov(ηi|Xi;α,σ) = SiRiSi,

whereα are parameters of the correlation matrix Ri and σ = (σGP , σRP )
T are parameters of

Si = diag(σGP , σRP ,1,1), a diagonal matrix of standard deviations where those of ηGFi and
ηRFi are fixed at 1 to identify the measurement model (4) for ηGFi and the corresponding
model for ηRFi. Here σ do not depend on covariates, but they could also be included.

For the correlation matrix, we consider the specification

(8) Ri =R(Xi;α) =


1
ρ1i 1
ρ2i ρ4i 1
ρ3i ρ5i ρ6i 1

=


1

ρ(Xi;α1) 1
ρ(Xi;α2) ρ(Xi;α4) 1
ρ(Xi;α3) ρ(Xi;α5) ρ(Xi;α6) 1

 ,

where only the L= 6 distinct correlations in the lower triangular part are shown. We specify
separate linear models ρli = ρ(Xi;αl) =α

T
l Xi for each l= 1, . . . ,L, i.e.

(9) ρi =α
TXi

where ρi = (ρ1i, . . . , ρLi)
T, and α = [α1, . . . ,αL] are coefficients. Some variables in Xi

may be included in only one of the models (6) and (9), in which case the correspond-
ing elements of β or α are zero. The parameters of the structural model for ηi are thus
ψη = (vec(β)T,σT,vec(α)T)T, where vec(·) denotes the vectorization of a matrix. We note
also that it will be necessary to further constrain the space of α if we want to ensure that
correlation matrices defined by (8)–(9) will be positive definite. Our specifications to achieve
this are described in the sections below.

Let Y = [Y1, . . . ,Yn]
T denote all the observed data on the items, where Yi = (YT

Gi,Y
T
Ri)

T,
and X = [X1, . . . ,Xn]

T the data on the covariates. Define Gi = 1(YGi ̸= 0) and Ri =
1(YRi ̸= 0), the indicators for whether responses on giving and on receiving help are not all
zero for respondent i. Assuming the observations for different respondents to be independent,
the log likelihood function of the model is

log p(Y|X;ϕ,ψ)

=

N∑
i=1

log
{
π11(Xi;ψξ)

[∫
p(YGi|ξGi = 1, ηGPi, ηGFi;ϕG)p(YRi|ξRi = 1, ηRPi, ηRFi;ϕR)

× p(ηi|Xi;ψη) dηGPi dηRPi dηGFi dηRFi

]
+ (1−Ri)π10(Xi;ψξ)

[∫
p(YGi|ξGi = 1, ηGPi, ηGFi;ϕG)p(ηGPi, ηGFi|Xi;ψη) dηGPi dηGFi

]
+ (1−Gi)π01(Xi;ψξ)

[∫
p(YRi|ξRi = 1, ηRPi, ηRFi;ϕR)p(ηRPi, ηRFi|Xi;ψη) dηRPi dηRFi

]
+ (1−Gi)(1−Ri)π00(Xi;ψξ)

}
.

Estimation of this model is described in Section 6, after some further discussion of ques-
tions related to the model for the correlations.
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4. Models for correlation and covariance matrices given covariates: Existing ap-
proaches. There is a substantial literature on modelling association structures of multivari-
ate distributions. We review here those parts of it that are most relevant to our work, focusing
on different ways of specifying models for correlation or covariance matrices given covari-
ates. These approaches can be combined with different specifications for the joint distribution
as a whole, and with different methods of estimating its parameters. Our modelling uses a
parametric specification of a multivariate normal distribution and Bayesian estimation of the
parameters, but the review here is not limited to that case.

We focus on approaches which consider associations directly in terms of pairwise co-
variances or correlations. This excludes models for conditional associations of some of the
variables given the others, such as log-linear models for categorical data or covariance selec-
tion models for the inverse covariance matrix of a multivariate normal distribution. We also
exclude specifications where the associations are determined indirectly via further latent vari-
ables, such as random effects models and common factor models. The multivariate response
variable whose covariance or correlation matrix is modelled may itself be a latent variable,
as it is in our analysis where we model the correlations of the latent ηi, but we still focus on
models that are specified directly for their associations or transformations of the associations.

Models for associations may have two broad goals. One of them is to define a patterned
structure on the associations which is more parsimonious than an unstructured matrix that
has separate parameters for each pair of variables. This is the case, for example, when an
autocorrelation model is specified for responses that are ordered in time. An extreme version
of this occurs in very high-dimensional problems where parsimonious specification is essen-
tial for consistent estimation of covariance matrices. We do not consider such regularisation
methods here (see Pourahmadi 2011 and Fan, Liao and Liu 2016 for reviews). The second
broad type of model specification considers instead an unstructured matrix of associations but
allows the correlations or covariances in it to depend on covariates that describe the units of
analysis, such as the survey respondents in our application. This is the goal of our modelling.

When the goal is to model covariances or correlations in this way, a key question is how
to ensure that the estimated matrices of them will be positive definite. Pinheiro and Bates
(1996) pointed out a key distinction between two approaches: unconstrained ones where the
models are specified for parametrizations (transformations) of the association matrix which
are guaranteed to imply a positive definite matrix, and constrained ones where positive def-
initeness is imposed in the estimation process. Our approach is an instance of constrained
estimation, but we list first the most important unconstrained methods (see Pourahmadi 2011
and Pan and Pan 2017 for more detailed reviews). They differ in what transformation they
use. The most common is the modified Cholesky decomposition of the covariance matrix.
It was introduced by Pourahmadi (1999), and general models for it were proposed by Pan
and MacKenzie (2006). Other possible transformations include the matrix logarithm (Chiu,
Leonard and Tsui, 1996) and the ‘alternative Cholesky decomposition’ of the covariance ma-
trix (Chen and Dunson, 2003), a variant of the modified Cholesky decomposition proposed by
Zhang and Leng (2012), parametrizations of the correlation matrix in terms of partial autocor-
relations (Wang and Daniels, 2013) or hyperspherical co-ordinates of its standard Cholesky
decomposition (Zhang, Leng and Tang, 2015), and the matrix logarithm of the correlation
matrix (Archakov and Hansen, 2021; Hu et al., 2021).

The natural advantage of the unconstrained methods is that they ensure positive definite-
ness at any values of the covariates. The corresponding disadvantage is that because the mod-
els are not specified for the individual association parameters, the model parameters are not
easily interpretable. All of the interpretations that are available apply only when the response
variables have a natural ordering, most obviously in longitudinal data where they are ordered
in time. Then the parameters of the modified Cholesky decomposition can be interpreted in
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terms of an autoregressive model for each variable given its predecessors, those of the alter-
native Cholesky decomposition and of Zhang and Leng (2012) in terms of a moving average
representation of each variable given residuals of the previous ones (Pourahmadi, 2007; Pan
and Pan, 2017), those of Wang and Daniels (2013) as partial autocorrelations of two variables
given all the intervening ones, and the hyperspherical co-ordinate parametrization in terms of
semi-partial correlations (Ghosh, Mallick and Pourahmadi, 2021).

Turning now to approaches that model individual pairwise association parameters directly,
for correlations we could use transformations of them (e.g. Fisher’s z) to ensure that the fitted
correlations are constrained to (−1,1). This, however, is not sufficient to ensure that the cor-
relation matrix as a whole is positive definite, except for a bivariate response (for this case,
see e.g. Wilding et al. 2011 and references therein). One possible pragmatic approach would
be to simply employ such models anyway, ignoring the possibility of some non-positive defi-
nite matrices (see e.g. Yan and Fine 2007). This could work well in some applications, in the
best case that the fitted correlation matrices end up being positive definite at all relevant val-
ues of the covariates. However, it is not a satisfactory general approach. Luo and Pan (2022)
suggest post-hoc adjustments to fitted correlation models to make them positive definite; this,
however, is unhelpful when the focus is on interpreting coefficients of the model. A different
solution is provided by Hoff and Niu (2012) who propose a model where covariances depend
on quadratic functions of covariates and the matrix is automatically positive definite.

Most of the literature on constrained estimation considers linear models for covariances
or correlations. This is not a limitation even for correlations, because positive definiteness of
the matrix also implies that all the correlations in it will be in (−1,1). The most developed
results here are for the linear covariance model for multivariate normal distribution (Ander-
son, 1973), in which the covariance matrix takes the form Σ =

∑
k νkGk where νk are pa-

rameters and Gk are known, linearly independent symmetric matrices. Zwiernik, Uhler and
Richards (2017) show that although the log-likelihood for this model typically has multiple
local maxima, any hill climbing method initiated at the least squares estimator will converge
to its global maximum with high probability. Zou et al. (2017) consider the case where the
Gk are similarity matrices between the response variables, and propose maximum likelihood
estimates and constrained least squares estimators for this model. In these formulations, Σ
is the same for all units i. This is relaxed by Zou et al. (2022), who allow the values of the
similarity matrices in Zou et al. (2017) to depend on unit-specific covariates.

We will also consider a linear model, as shown in (9), but for the correlations and given
general unit-specific covariates. We estimate it in the Bayesian framework and using Markov
chain Monte Carlo (MCMC) methods. Here it is convenient to employ the decomposition (7)
and model the standard deviations and correlations separately, as has also been done in most
previous literature that has used a Bayesian approach. MCMC also provides an obvious way
to implement constrained estimation, at least in principle. This can be done at each sampling
step of the estimation, by constraining the prior distribution, the proposal distribution from
which the parameters are drawn, or the acceptance probabilities of the sampled values in a
way which rules out parameter values that imply non-positive definite matrices. But although
the principle is obvious, implementing it is not necessarily easy. Two instances of this ap-
proach that we will draw on in particular are those of Barnard, McCulloch and Meng (2000)
and Wong, Carter and Kohn (2003), as discussed further below. Other methods of this kind
have been proposed by Chib and Greenberg (1998) and Liechty, Liechty and Müller (2004).

What is missing from existing Bayesian implementations is the inclusion of unit-specific
covariates in the models for the correlations, which is our focus. In Section 6 we propose an
MCMC estimation procedure which accommodates them. This in turn requires some further
consideration of the constraint of positive definiteness of the correlation matrix, because it
now has to hold at different values of the covariates. This is discussed in the next section.
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5. Ensuring a positive definite correlation matrix. The key challenge in our con-
strained estimation is to ensure that the estimated correlation matrices remain positive definite
at all relevant values of the covariates X. To achieve this, we specify the set of values for X
for which this should hold, and define the parameter space for α as the set of values for α for
which the correlation matrix will be positive definite for all such X. The prior distribution of
α will be zero outside this set, and the Markov chain defined by the MCMC estimation pro-
cedure should never transition outside it. In this section we describe some further theoretical
results which establish when and how this can be achieved.

Let R = R(ρ) denote a symmetric matrix where all the diagonal elements equal 1 and
the distinct off-diagonal elements ρ= (ρ1, . . . , ρL)

T are all in (−1,1). Let Cρ denote the set
of ρ such that R(ρ) is positive definite, and thus a correlation matrix, for all ρ ∈ Cρ. It is a
convex subset of the hypercube [−1,1]L (for the shape of Cρ in the cases L= 3 and L= 6,
i.e. for 3× 3 and 4× 4 correlation matrices, see Rousseeuw and Molenberghs, 1994).

We consider model (9) where ρ=αTX (in this section we omit the unit subscript i, and
take X to include only those covariates that are included in the model for ρ rather than only
for µ). It is clear that this ρ cannot be in Cρ for all values of the parameters α and covariates
X. What we need to do is to decide first what values of X are substantively relevant, and then
ensure that the estimated models do imply ρ ∈ Cρ for all these X. It is useful to introduce
here some additional notation. Let Z be the smallest vector of distinct variables, including
a constant term 1, which determines X = X(Z). Here Z may be shorter than X if some
variables in X are functions of Z, e.g. polynomials or product terms (interactions). Suppose
that Z is a p× 1 vector and X a q × 1 vector. Below we denote sets SZ ⊂ Rp and SX ⊂ Rq

of Z and X respectively with appropriate subscripts.
A combination of values (X,α) is said to be feasible if ρ = αTX ∈ Cρ, and (Z,α) to

be feasible if ρ = αTX(Z) ∈ Cρ. We aim to identify known sets of Z and α such that all
combinations of values from them are feasible. This will involve the following steps:

(1) Choose a set SZ for Z for which the correlation matrices should be positive definite.
(2) Specify a test set SXT = {X1, . . . ,XT } of values for X, which will be used for checking

positive definiteness during MCMC estimation. The choice of SXT depends on SZ .
(3) Carry out MCMC estimation which samples values of α (and the other model parame-

ters). At each iteration, carry out checks to ensure that the value of α that is retained is fea-
sible with all X ∈ SXT . In the end, this produces an MCMC sample Sα = {α1, . . . ,αM}.

(4) Conclude that (Z,α) is feasible for all combinations of any Z ∈ SZ and any α in the
convex hull of Sα.

Step (3) is the computational one where the constraint is enforced. It alone is not enough,
however: We can only check feasibility directly for a finite number of values of X and α, but
the sets that we want to draw conclusions on are infinite for at least α. So some additional
results are needed to motivate steps (1) and (2) and to justify the conclusion in step (4).

In step (1), SZ should include the substantively relevant and interesting values of
the covariates for which we want our estimated model to imply valid correlation matri-
ces. For example, this could be a finite set SZN = {Z1, . . . ,ZN}, normally including at
least all the distinct values among the Zi, i = 1, . . . , n, in the observed data. SZ is al-
ways of this form when all the variables in Z are categorical. If Z includes continuous
variables, we may also expand SZN to an infinite set, such as its convex hull SZh =
{
∑N

j=1 λjZj |
∑N

j=1 λj = 1;λj ≥ 0 for all j = 1, . . . ,N} or the hyperrectangle SZr =

{(Z1, . . . ,Zp) | Zs ∈ [ls, us] for all s= 1, . . . , p} , for specified ls ≤min{Zjs | j = 1, . . . ,N}
and us ≥max{Zjs | j = 1, . . . ,N} for each s= 1, . . . , p. Here SZN ⊂ SZh ⊆ SZr .

For step (2), consider the set Cα,SX
= {α ∈ RL×q |ρ = αTX ∈ Cρ for all X ∈ SX} of

values of α which are feasible when combined with any X in a set SX . Basic properties of
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Cα,SX
are given by Proposition 1, which is included in supplementary Appendix B. Parts (i)

and (ii) of it explain how Cα,SX
depends on SX . In particular, they show that if a parameter

value α is feasible when combined with any X in SX , it is also feasible with any value of X
in the convex hull of SX . This in turn allows us to choose the test set SXT so that feasibility
for it also implies feasibility for all Z in the set of interest SZ . For a finite SZ = SZN we can
choose SXT as all the distinct values of X implied by Z ∈ SZN . If SZ is infinite, SXT can
be chosen so that its convex hull implies coverage of all of SZ . These choices are discussed
in more detail in supplementary Appendix B.

We can thus define the support of α as Cα,SXT
. Step (3) above refers to the implementa-

tion of the MCMC algorithm, where we need to ensure that all accepted values of α are in
Cα,SXT

. Here the brute-force approach would be to check the whole proposed vector α —
i.e. the correlation matrices implied by it — at each MCMC iteration. This, however, would
be computationally demanding and likely to lead to high rates of rejection. What we do in-
stead is sample and check one scalar element of α at a time. This is justified by the following
proposition, the proof of which is given in supplementary Appendix C:

PROPOSITION 2. Consider a finite set SXT = {Xj = (Xj1, . . . ,Xjq)
T | j = 1, . . . , T}

and any fixed value α = [α1, . . . ,αL]
T ∈ Cα,SXT

. Denote here α = (αlm,αT
−lm)T where

αlm is the coefficient of Xjm in the model for correlation ρl, for any m = 1, . . . , q and l =
1, . . . ,L, and α−lm denotes all other elements of α, ρ = (ρl,ρ

T
−l)

T where ρ−l denotes all
other elements of the distinct correlations ρ except ρl, and R(ρl,ρ−l) the correlation matrix
implied by ρ. Let ρ(j)−l denote the value of ρ−l for ρj =α

TXj , for j = 1, . . . , T .

Let fjl(ρ′l) = |R(ρ′l,ρ
(j)
−l )|, treated as a function of ρ′l, where | · | denotes the determinant

of a matrix. If Xjm ̸= 0, let

(10)

a
(j)
lm =

gjl −
∑

k ̸=mαlkXjk − sgn(Xjm)hjl

Xjm
,

b
(j)
lm =

gjl −
∑

k ̸=mαlkXjk + sgn(Xjm)hjl

Xjm

for each j = 1, . . . , T , where gjl =−djl/(2cjl) and hjl = [(d2jl−4cjlejl)/(4c
2
jl)]

1/2 for cjl =
[fjl(1) + fjl(−1)− 2fjl(0)]/2, djl = [fjl(1)− fjl(−1)]/2 and ejl = fjl(0). If Xjm = 0, set
a
(j)
lm =−∞ and b

(j)
lm =+∞.

Define the interval (alm, blm) = ∩T
j=1(a

(j)
lm, b

(j)
lm). Then (alm, blm) = {α′

lm | (α′
lm,αT

−lm)T ∈
Cα,SXT

}. This interval is non-empty because it contains at least the current value αlm.

In other words, the values of αlm that imply a positive definite correlation matrix, holding
other elements ofα at their previous values, are a continuous non-empty interval with known
end points, which are calculated using all the values of X in the test set SXT . We thus
need to check only that a proposed value of an αlm is in this interval. This builds on results
by Barnard, McCulloch and Meng (2000) and Wong, Carter and Kohn (2003) for models
without covariates, which we extend here to apply to the individual coefficients in α and
multiple values of the covariates X. Even for one scalar αlm at a time this procedure is still
computationally non-trivial, and it needs to be carried out efficiently. Our implementation of
it is described in Section 6 below and in supplementary Appendix E.

When step (3) is completed, we thus know that all the values of α in the MCMC sample
Sα = {α1, . . . ,αM} are feasible when combined with any value of Z in the target set SZ .
Finally, we can extend this conclusion to other values ofα that were not sampled, specifically
to the convex hull of Sα. This is justified by parts (iii)–(v) of Proposition 1 in supplementary
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Appendix B, thus completing step (4) above. In particular, the convex hull of the MCMC
sample includes the summary statistics that we would use for estimation of the parameters in
α, such as their (posterior) means and quantile-based interval estimates. These estimates are
thus also guaranteed to imply positive definite correlation matrices given any values of the
covariates in the pre-specified set of interest SZ .

6. Estimation of the model. We use a two-step procedure to estimate the latent variable
model defined in Section 3. In it, the parameters of the measurement model are estimated
first, and they are then fixed at their estimated values in the second step where the structural
model is estimated. The same approach was used by Kuha, Zhang and Steele (2023) in their
analysis which focused on models for the mean levels of intergenerational support.

The general idea of two-step estimation of latent variable models has been described for
different types of models by Bakk and Kuha (2018), Rosseel and Loh (2022), and Kuha and
Bakk (2023). As discussed there, the motivation of the approach is twofold. Practically, it
can substantially simplify the estimation of complex models. Conceptually, it clarifies the
meaning of such models by separating the definition of the latent variables from their use. In
our analysis the practical simplification means that sampling of the measurement parameters
is not included in the MCMC procedure that is used for the second step. This is convenient,
but for us the more important motivation is the conceptual one. In essence, the estimates from
the first step provide the operational definition of the latent variables, which then remains
fixed even if several different structural models are subsequently considered — for example
if we compare models with different predictors for the correlations.

In our analysis the first step was done using maximum likelihood estimation, as explained
in Section 6.1, while the second step was carried out in the Bayesian framework, using
MCMC estimation as described in Section 6.2. The choice for the first step was determined
by the convenient availability of standard software for estimating latent variable measurement
models. This hybrid approach does not affect the interpretation of the results of the second
step, because it treats the measurement parameters as fixed parameters. In other words, what
we obtain from the second step is a sample from the posterior distribution of the parameters
of the structural model for the specific latent variables whose scales and meaning are defined
and fixed by the values of the measurement parameters estimated from the first step.

6.1. Estimation of the measurement model. In the first step, the measurement parameters
ϕG and ϕR are estimated separately. For ϕG, the data are YGi, the measurement model is
specified by (1)–(4), and the structural model for ξGi and ηGi = (ηGPi, ηGFi)

T is obtained
from (5)–(8) by omitting ηRi and Xi. The log likelihood for ϕG is then

logp(YG|ϕG, πG, µηGP
, µηGF

, σ2
ηGP

, ρηG
)

=

n∑
i=1

log
[
πG

∫
p(YGi|ξGi = 1, ηGPi, ηGFi;ϕG)p(ηGi;µηGP

, µηGF
, σ2

ηGP
, ρηG

)dηGPi dηGFi

+ (1−Gi)(1− πG)
]

(11)

where πG = p(ξGi = 1) and p(ηGi;µηGP
, µηGF

, σ2
ηGP

, ρηG
) is a bivariate normal den-

sity with E(ηGPi) = µηGP
, Var(ηGPi) = σ2

ηGP
, E(ηGFi) = µηGF

, Var(ηGFi) = 1 and
Corr(ηGPi, ηGFi) = ρηG

. The estimates ϕ̃G of ϕG are obtained by maximizing (11), while
the estimates of µηGP

, µηGF
, σ2

ηGP
and ρηG

from this step are discarded. We have used Mplus
6.12 software (Muthén and Muthén, 2010) to carry out this step. The estimates ϕ̃R of ϕR are
obtained analogously, using the data on YRi.
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6.2. Estimation of the structural model. In the second step, the structural parameters ψ
are estimated. Let ζ = (ξ,η), where ξ denotes all the values of the latent ξi for the units i
in the sample, and η all the values of ηi. We use a Bayesian approach to estimation, using
MCMC methods to draw a sample of ψ and ζ from their posterior distribution

(12) p(ψ,ζ |Y,X; ϕ̃)∝ p(Y |X,ζ; ϕ̃)p(ζ |X;ψ)p(ψ)

given the observed data Y and X. What we use from this are the values of ψ, which are a
sample from the posterior p(ψ |Y,X; ϕ̃). This is conditional on the estimated values ϕ̃ =

(ϕ̃
T
G, ϕ̃

T
R)

T of the measurement parameters from the first step. They are treated as known and
fixed numbers, as discussed above, and for simplicity we omit ϕ̃ from the notation below.

The p(ψ) in (12) denotes the prior distribution of the structural parameters. We take it
to be of the form p(ψ) = p(ψη)p(ψξ) = p(β)p(σ)p(α)p(ψξ) where the different blocks
of parameters are a priori independent of each other (and individual parameters within the
bloks are also independent, as explained in the further details below and in supplementary
Appendix D). The prior distribution of the parameters α of the correlation model is a joint
uniform distribution p(α) ∝ 1(α ∈ Cα,SXT

) over the set Cα,SXT
which defines the support

of α as explained in Section 5.
The estimation algorithm has a data augmentation structure which alternates between im-

puting the latent variables given the observed variables and the parameters, and sampling the
parameters from their posterior distributions given the observed and latent variables:

• Sampling of the latent variables: At MCMC iteration t, sample ζ(t) from the distribu-
tion p(ζ|Y,X,ψ(t−1)) ∝ p(Y|ζ)p(ζ|X,ψ(t−1)) given the observed data (Y,X) and the
values of ψ(t−1) of the parameters from the previous iteration.

• Sampling of the parameters: Sample ψ(t) from the posterior distribution p(ψ|ζ(t),X) ∝
p(ζ(t)|X,ψ)p(ψ), given X and ζ(t). This divides into

p(ψ|ζ(t),X) = p(ψη|η(t),X)p(ψξ|ξ(t),X) ∝ [p(η(t)|X;ψη)p(ψη)] [p(ξ
(t)|X;ψξ)p(ψξ)],

i.e. into separate posteriors for ψη and ψξ .

These steps split further into separate steps for different components of ζ and ψ. For ζ and
all the parameters except for α, the algorithm is similar to the one in Kuha, Zhang and Steele
(2023), with adjustments to allow for the differences that here ηi has four variables and that
their correlations vary by unit i. These steps are described in supplementary Appendix D.

What is new here is sampling the coefficients α of the model for the conditional correla-
tions of ηi, in such a way that they imply positive definite correlation matrices at all relevant
values of X. Here all the other parameters in ψ and all the latent variables ηi are taken as
known and fixed at their most recently sampled values. The latent variables are thus also
treated as observed response variables in this model for their correlations. The other param-
eters β and σ in ψη are omitted from the notation here, so that the posterior distribution that
we need is written as p(α|X,η) ∝ p(η|X;α)p(α). As explained in Section 5, we need to
ensure that all the sampled values are in a convex and bounded set Cα,SXT

, where SXT is a
finite test set of values for X . The prior p(α) and thus also the posterior are non-zero only
in Cα,SXT

.
We propose a tailored Metropolis-Hastings (MH) sampling procedure to implement this

step efficienctly. This samples one element of α at a time, relying on the result in Proposi-
tion 2 in Section 5 that the feasible values for any such parameter given the rest are a known
interval. Let αlm denote a single element of α, for l = 1, . . . ,L, m = 1, . . . , q. The sam-
pling algorithm updates αlm, taking all the other elements α−lm fixed at their most recently
sampled values. Denote Ri(αlm) =R(Xi;αlm,α−lm) and define the standardized residuals
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ϵ = [ϵ1, . . . ,ϵn]
T = S−1 (η −Xβ) where η = [η1, . . . ,ηn]

T and S = diag(σGP , σRP ,1,1).
The conditional posterior distribution from which αlm should be drawn is then

p(αlm|α−lm,ϵ,X) ∝
n∏

i=1

p(ϵi|α,X)p(αlm|α−lm)

∝
n∏

i=1

|Ri(αlm)|−
1

2 exp

(
−1

2
ϵTi Ri(αlm)−1ϵi

)
1(alm <αlm < blm),(13)

where (alm, blm) is the range of αlm in the subset of Cα,SXT
given α−lm. This involves n

matrix determinants and inverses, plus further determinants to obtain the interval (alm, blm)
as described in Proposition 2. This would be computationally demanding. However, these
demands are reduced because the sampling updates only one parameter αlm at a time. The
determinant and inverse of Ri(αlm) can then be updated using numerically cheap rules rather
than calculated from scratch, reducing the computational complexity from O(K3) to O(K2)
where K is the dimension of R. These features are included in the general elementwise
MH procedure that we propose. It is given in Algorithm 1, together with Remarks 1–4 in
supplementary Appendix E.

Based on results of Tierney (1994, 1996), certain regularity conditions — irreducibil-
ity, aperiodicity, and positive Harris recurrence — ensure a unique stationary distribution
for Markov chains. The Markov chain constructed by our estimation procedure adheres to
these conditions as a special case of random walk Metropolis algorithm (Gelman, Gilks and
Roberts, 1997). Moreover, through the design of the acceptance probability, the detailed bal-
ance condition holds for the chain, thereby ensuring that the desired posterior distribution
serves as its unique stationary distribution. This convergence extends to all structural model
parameters, as they are sampled from desired conditional distributions within a blockwise
Gibbs sampling framework.

7. Analysis of child-parent exchanges of support.

7.1. Introduction and research questions. The model defined in Section 3 was fitted to
the UKHLS data on exchanges of support between respondents and their non-coresident par-
ents that were introduced in Section 2, using the method of estimation described in Section 6.
Receiving and giving help are modelled jointly, treating practical and financial support as
distinct but correlated outcomes. We investigate three broad research questions: (a) What
individual characteristics are associated with higher or lower levels of giving help to the par-
ents, and receiving help from them? (b) To what extent are exchanges reciprocated and how
does reciprocity vary by individual characteristics? (c) Are practical and financial support
substitutes for one another or are they complementary, and how does this depend on indi-
vidual characteristics? Questions (b) and (c) refer to within-person correlations between the
helping tendencies. For (b), higher levels of reciprocity would correspond to positive correla-
tions between giving and receiving help. For (c), positive correlations between the tendencies
to give (or to receive) practical and financial help would suggest that the two types of support
are complementary (i.e. given together), and negative correlations that they are substitutes.

7.2. Alternative approaches to the analysis. Before we describe the results of our models
below, in this section we briefly discuss other possible methods that could be employed to
try to answer the research questions. These methods are ostensibly simpler than the joint
modelling approach that we use, but they are ultimately limited and inflexible in ways which
make them inadequate for our goals. We discuss them with reference to previous studies that
have applied such methods to questions on intergenerational support, but the same ideas could
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Algorithm 1: Elementwise Metropolis-Hastings procedure for sampling α. Further
information is given in Remarks 1–4 in supplementary Appendix E.

1. Input: Current parameters α= (αlm) for l= 1, . . . ,L, m= 1, . . . , q.
For units i= 1, . . . , n: Standardized residuals ϵi = S−1 (ηi −βTXi);

R−1
i and |Ri| for correlation matrices Ri =R(Xi;α).

For a test set SXT = {Xj | j = 1, . . . , T}: Upper triangular matrices Γj from

the Cholesky decompositions Rj = ΓTj Γj of Rj =R(Xj ;α).
2. Metropolis-Hastings sampling:
for l= 1, . . . ,L do

for m= 1, . . . , q do
Proposal generation:
Calculate (alm, blm) based on Γ1, . . . ,ΓT . See Remark 1 for more on this.
Generate α′lm from a proposal distribution g(α′lm|αlm). See Remark 2 for more on how the

proposal can be created.
Rejection:
Calculate Ri(α

′
lm)−1 by updating Ri(αlm)−1 and |Ri(α

′
lm)| by updating |Ri(αlm)|, for

i= 1, ..., n; see Remark 3.
Calculate the acceptance probability

π(αlm → α′lm) =min

{
1,

p(α′lm|α−lm,ϵ,X)g(αlm|α′lm)

p(αlm|α−lm,ϵ,X)g(α′lm|αlm)

}
where p(αlm|α−lm,ϵ,X) is given by equation (13).

Sample u∼ U(0,1).
if u > π(αlm → α′lm) then

Reject α′lm;
continue

end
Accept α′lm and update

αlm → α′lm, Ri(αlm)−1 →Ri(α
′
lm)−1, |Ri(αlm)| → |Ri(α

′
lm)|.

Update Γj(αlm)→ Γj(α
′
lm) for j = 1, . . . , T ; see Remark 4.

end
end
3. Output: Updated α, R−1

i , |Ri| and Γj .

be used to examine associations in any context. We are not aware of research that has used
these methods to explicitly model the complementarity of financial and practical support, so
the studies that are mentioned here concern reciprocity of exchanges. We discuss two simple
approaches: (i) reducing two variables on giving and receiving into one, and (ii) using an
indicator of one type of exchange as a predictor of another type of exchange.

The most common version of approach (i) operationalises reciprocity as the net balance of
transfers between parents and children, with the direction of the difference between giving
and receiving indicating whether exchanges are from the older to younger generation, or
the reverse. Previous research has calculated such difference scores from overall indices of
giving and receiving help that combine different types of support after monetarising non-
financial transfers (Litwin et al., 2008; Mudrazija, 2016). This approach cannot really be
used when, as in our analysis, helping tendencies are treated as continuous latent variables.
A different version of the same idea uses latent class analysis of indicators of support given
and received to derive a joint categorical outcome for whether exchanges are mutual or one-
way (e.g. Hogan, Eggebeen and Clogg, 1993; Silverstein and Bengtson, 1997). Both of these
methods allow the modelling of the association between giving and receiving to some extent,
but without clear quantification of its strength. Another limitation of this approach is that
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because it first combines the two variables, it rules out a separate analysis of the predictors
of giving and receiving themselves.

A basic version of approach (ii) has been the most widely used in previous research (e.g.
Silverstein et al., 2002; Grundy, 2005; Albertini, Kohli and Vogel, 2007; Deindl and Brandt,
2011; Cheng et al., 2015; Evandrou et al., 2018). Here a measure of, say, giving support is
included in a model for a measure of receiving support, together with other predictors. The
coefficient of giving in this model, possibly suitable standardised, can then be interpreted as
a measure of conditional association between giving and receiving (and the coefficients of
other predictors of receiving support are also conditional on the level of giving).

This basic version of approach (ii) does not yet provide a model for how the associations
depend on predictors. To get that, we would need to include interactions between a helping
variable and other covariates. We have found no examples of this approach in previous re-
search on intergenerational support, but it is easy to see how it could be done. For example,
an interaction between giving support and a respondent’s age would provide a measure of
how the association between giving and receiving depends on age. Doing this, however, is
not appealing for our purposes, because it would reduce the interpretability of the results
without any compensating simplification of the modelling. The model would need to include
multiple interaction terms, one for each covariate that was a predictor of an association. In
our application the implementation would be further complicated because the helping vari-
ables in these interactions would be latent variables and because we would need to do this
for six different associations. A further, conceptual problem with this approach is that it is
asymmetric: a model for giving conditional on receiving and covariates estimates a different
conditional association than one for receiving conditional on giving and covariates. For these
reasons it is preferable to model the correlations and means directly and separately, rather
than mix them up in an interaction specification.

We note, finally, that another way to explore variation in correlations would be to simply
split the data into subsets by levels of covariates (by age group, for example) and estimate the
correlations separately for each of them. This, however, would only allow us to consider small
numbers of categorical variables, but not to examine multiple categorical and continuous
explanatory variables for the correlations together.

7.3. Estimation of the models. Estimates ϕ̃ of the parameters of the measurement model
were obtained first, as explained in Section 6.1. They are shown in supplementary Ap-
pendix F. The loading parameters are positive, meaning that the latent variables ηGP and
ηRP are defined in such a way that larger values of them imply higher tendencies to give and
receive practical help (and the same is true by construction for the financial help variables
ηGF and ηRF ). The measurement parameters were then fixed at ϕ̃ in the estimation of the
rest of the model below.

The structural model for the joint distribution of the latent variables was estimated using
the MCMC algorithm described in Section 6.2 and supplementary Appendices D and E.
Estimated parameters and some predicted values for these models are shown in Tables 1-
4 and in supplementary Appendix G. They are based on 380,000 draws of the parameters
ψ, obtained by pooling two MCMC chains of 200,000 iterations, with a burn-in sample of
10,000 omitted from each chain. Convergence was assessed by visual inspection of trace
plots of the two chains which suggested adequate mixing. In the role of the target set SZ for
the covariates, we used the simple choice of all the n observed values of Zi in the data, and
as the test set SXT all the distinct values of Xi =X(Zi) implied by them.

Estimated parameters of model (5) for the binary latent class variables (ξG, ξR), and fit-
ted class probabilities p(ξG = 1) and p(ξR = 1) from it, are shown in supplementary Ap-
pendix G. This model component is included primarily to allow for zero-inflation in the
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observed item responses, so it is not our main focus. We could, however, also interpret the
classes defined by ξG = 1 and ξR = 1 as latent sub-populations of potential ‘givers’ and ‘re-
ceivers’ of help respectively. The estimated overall proportions of these classes, averaged
over the sample distribution of the covariates, are 0.67 for ‘givers’ and 0.62 for ‘receivers’.

The focus of interest is the model for the joint distribution of η = (ηGP , ηGF , ηRP , ηRF )
T,

which we interpret as continuous latent tendencies for the adult respondents to give and to
receive practical and financial help, after accounting for the zero-inflation. We consider first
results for the model (6) for the means of η, which is used to answer research question (a)
stated in Section 7.1, and then model (8)–(9) for their correlations, corresponding to questions
(b) and (c).

7.4. Predictors of levels of giving and receiving help. Table 1 shows the estimated co-
efficients of the predictors of the means of practical (ηGP ) and financial (ηGF ) help given
by respondents to parents. There is little evidence that the respondent’s partnership status or
the presence or age of their children are associated with the tendency to give help. Women
tend to give more practical help than men, but there is no gender difference in giving finan-
cial help. Indicators of lower socioeconomic status or a more difficult economic situation of
the respondent (lower education, not being a homeowner, lower household income, and not
being employed) are associated with a higher tendency to give practical help, while having
more education and higher household income predict a higher tendency to give financial help.
These results are consistent with a pattern where children give help to the best of their ability,
with the less well-off children giving, on average, relatively more practical support and less
financial support. However, the results for household tenure and employment status (where
home owners and the employed also tend to give less financial help) deviate from this pattern,
after controlling for education and income. There is also some evidence that respondents with
one sibling give less help than those with none, which could suggest some sharing of support
between the siblings (although there is no similar reduction for those with more siblings).

Having a parent who lives alone and older parental age are positively associated with
giving both forms of help, with the positive association with financial help emerging when
the oldest parent reaches their early 70s. These findings are consistent with children giving
help according to parental need. After controlling for parental age, respondent’s age has an
inverse U-shaped relationship with giving help, with highest levels of giving by respondents
aged in their 40s. Finally, respondents who live more than an hour away from the nearest
parent have a lower tendency to give practical help, but a higher tendency to give financial
help. As for the effects of socioeconomic status, the different directions of these associations
suggest differences in the mix of the two types of help related to the giver’s circumstances,
in this case according to how feasible it is to provide practical help.

Covariate effects on levels of practical and financial help that the respondents receive from
their parents (variables ηRP and ηRF ) are shown in Table 2. Women tend to receive more
of both types of support than men. Expected levels of help from parents are also higher for
respondents who are not employed, have less education, or have no coresident partner, all
of which can be taken to indicate higher levels of need for support. Respondents with two
or more siblings tend to receive less of either form of help than those from one or two-child
families, which may reflect greater competition for parental resources in larger families. For
financial help, the tendency to receive it is higher for respondents who have lower household
income or who rent rather than own their homes, as well as for those with very young or
secondary school age children. These associations are also consistent with parents providing
more financial assistance to children who are most in need.

Levels of both practical and financial help received decline with the respondent’s age,
which is consistent with reduced need by respondents. As a function of the oldest parent’s
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age, receipt of practical help also declines from age 67 onwards, but the tendency to receive
financial help increases with parental age. This may be interpreted as another instance of the
balance of different types of help depending on the giver’s capacities, in this case with older
parents being more able to give financial than practical support. Finally, longer travel time
between the respondent and their nearest parent is associated with less practical and more
financial help, as it was also for help from respondents to parents.

7.5. Models for the correlations. Estimated coefficients (α̂) of model (8)–(9) for the
residual correlations of η = (ηGP , ηGF , ηRP , ηRF ) are shown in Table 3. Here we included
as covariates the respondent’s age, age squared, gender, household income, and travel time
to the nearest parent. Whereas the models in Section 7.4 concern the expected level of each
helping tendency separately, these correlations focus on their joint distribution for a given
child-parent dyad, over and above the levels predicted by the mean models.

For ease of interpretation we focus on some fitted correlations from these models, as shown
in Table 4. The figures on its first row are the fitted correlations (for each of the six pairs of
helping tendencies) averaged over the parameter values in the MCMC sample and over the
respondents in the analysis sample. The other fitted values in the table are obtained similarly,
except that one covariate at a time is fixed at specific value (e.g. age at 35 years) while leaving
the other covariates at their sample values.

The four correlations between the tendencies to give and receive help (of the same or dif-
ferent type) are measures of reciprocity or symmetry in exchanges between children and their
parents (research question (b) above). Results for them are given in the first four columns of
each table. Focusing on Table 4, consider first the fitted correlations on its first row, averaged
over the sample distribution of all the covariates. There is a moderate positive correlation of
0.38 between giving and receiving practical help (GP ↔ RP). In other words, when a child
has a high tendency to give practical help to their parent(s), relative to what would be pre-
dicted by their own and the parents’ characteristics, they also tend to receive a relatively high
level of support from the parents. This suggests a fair amount of reciprocity in practical help.
The other three correlations are weaker, indicating little dyad-level reciprocity in anything
other than practical help. What is not observed here are any substantial negative correlations.
They would indicate that when the tendency to help is high in one direction it is low in the
other, as would happen for example if help was given only in the direction of greater need.
This is not seen here even for giving and receiving financial help, even though we might
expect financial exchanges to be largely unidirectional. A possible explanation of this is that
the single financial support item covers also small sums of money, which may be exchanged
more frequently and symmetrically than large ones.

The (GP ↔ RP) correlation is also the one for which we see the clearest covariate effects,
as illustrated by the other rows of Table 4. It declines sharply with age, and is significantly
higher for men than for women and among parents and children who live farther apart. Reci-
procity in practical support is highest at younger ages of the adult children. This captures a
different aspect of the effects of age than the mean models in Section 7.4. There respondent’s
age was negatively associated with tendency to give practical help and positively associated
(up to age around 43) with receiving it. Thus younger individuals tend to give less practical
help and receive more of it, and the expected balance of support is more toward help from
parents to children, than is the case at older ages (comparable conclusions were reached in
a different way by Mudrazija 2016, who considered net financial values of the differences
between these two directions). The residual correlations, however, show that, around these
expected levels, for younger respondents the level of practical help that they do (or do not)
give is particularly strongly predictive of how much support they receive. Similarly, the gen-
der difference in the correlation suggests that men are more likely than women to engage in
two-way exchanges or not exchange practical help at all.
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TABLE 1
Estimated parameters of the linear model for the expected value of the tendency to give practical help (ηGP )

and to give financial help (ηGF ) to individuals’ non-coresident parents. The estimates are posterior means from
MCMC samples (with posterior standard deviations in parentheses).

Giving Giving
practical help financial help
Estimate (s.d.) Estimate (s.d.)

Estimated coefficients: β̂GP β̂GF

Intercept −0.70∗∗∗ (0.18) −2.35∗∗∗ (0.31)

Respondent (child) characteristics
Age† (×10) 0.03 (0.03) 0.12∗∗∗ (0.04)

Age squared† (×103) −0.60∗∗∗ (0.12) −0.70∗∗∗ (0.19)

Gender
Female (vs. Male) 0.41∗∗∗ (0.03) 0.03 (0.04)

Partnership status
Partnered (vs. Single) −0.04 (0.03) 0.01 (0.05)

Age of youngest coresident child (vs. No children):
0–1 years −0.08 (0.06) −0.05 (0.09)
2–4 years 0.01 (0.05) 0.03 (0.08)
5–10 years 0.02 (0.04) 0.09 (0.07)
11–16 years −0.04 (0.05) −0.10 (0.07)
17– years 0.03 (0.04) −0.03 (0.06)

Number of siblings (vs. None)
1 −0.08∗ (0.04) −0.12∗ (0.07)
2 or more 0.00 (0.04) 0.06 (0.07)

Longstanding illness (vs. No) 0.07∗ (0.04) 0.07 (0.06)

Employment status (vs. Employed)
Not employed 0.21∗∗∗ (0.03) 0.11∗∗ (0.05)

Education (vs. Secondary or less)
Post-secondary −0.05∗∗ (0.03) 0.12∗∗∗ (0.04)

Household tenure (vs. Renter)
Own home outright or with mortgage −0.17∗∗∗ (0.03) −0.19∗∗∗ (0.05)

Logarithm of household equivalised income −0.04∗∗ (0.02) 0.09∗∗∗ (0.03)

Parent characteristics
Age of the oldest living parent† (×10) 0.28∗∗∗ (0.02) −0.02 (0.04)

Age of the oldest parent squared† (×103) 0.52∗∗∗ (0.11) 0.63∗∗∗ (0.17)

At least one parent lives alone (vs. No) 0.33∗∗∗ (0.03) 0.24∗∗∗ (0.04)

Child-parent characteristics
Travel time to the nearest parent

More than 1 hour (vs. 1 hour or less) −0.43∗∗∗ (0.04) 0.14∗∗ (0.05)

Residual s.d.: σ̂GP
0.73 (0.01) 1

The posterior credible interval excludes zero at level 90% (*), 95% (**) or 99% (***).
† Age of respondent is centered at 40, and age of oldest living parent at 70.
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TABLE 2
Estimated parameters of the linear model for the expected value of the tendency to receive practical help (ηRP )
and to receive financial help (ηRF ) from individuals’ non-coresident parents. The estimates are posterior means

from MCMC samples (with posterior standard deviations in parentheses).

Receiving Receiving
practical help financial help
Estimate (s.d.) Estimate (s.d.)

Estimated coefficients: β̂RP β̂RF

Intercept −2.17∗∗∗ (0.23) 1.03∗∗∗ (0.34)

Respondent (child) characteristics
Age† (×10) −0.26∗∗∗ (0.03) −0.28∗∗∗ (0.04)

Age squared† (×103) −0.16 (0.18) −0.46∗ (0.23)

Gender
Female (vs. Male) 0.27∗∗∗ (0.03) 0.15∗∗∗ (0.04)

Partnership status
Partnered (vs. Single) −0.35∗∗∗ (0.04) −0.30∗∗∗ (0.05)

Age of youngest coresident child (vs. No children):
0–1 years 0.02 (0.05) 0.14∗ (0.07)
2–4 years −0.03 (0.05) 0.07 (0.06)
5–10 years −0.09∗∗ (0.04) −0.02 (0.06)
11–16 years −0.11∗ (0.06) 0.18∗∗ (0.07)
17– years −0.12 (0.07) 0.02 (0.09)

Number of siblings (vs. None)
1 0.00 (0.05) −0.07 (0.07)
2 or more −0.14∗∗∗ (0.05) −0.25∗∗∗ (0.06)

Longstanding illness (vs. No) 0.03 (0.05) 0.06 (0.06)

Employment status (vs. Employed)
Not employed 0.21∗∗∗ (0.04) 0.14∗∗ (0.05)

Education (vs. Secondary or less)
Post-secondary −0.06∗∗ (0.03) −0.06 (0.04)

Household tenure (vs. Renter)
Own home outright or with mortgage 0.08∗∗ (0.03) −0.34∗∗∗ (0.05)

Logarithm of household equivalised income 0.01 (0.02) −0.14∗∗∗ (0.03)

Parent characteristics
Age of the oldest living parent† (×10) −0.03 (0.03) 0.22∗∗∗ (0.04)

Age of the oldest parent squared† (×103) −0.44∗∗∗ (0.15) 0.28 (0.19)

At least one parent lives alone (vs. No) −0.05 (0.03) 0.04 (0.04)

Child-parent characteristics
Travel time to the nearest parent

More than 1 hour (vs. 1 hour or less) −0.42∗∗∗ (0.05) 0.27∗∗∗ (0.06)

Residual s.d.: σ̂RP
0.68 (0.02) 1

The posterior credible interval excludes zero at level 90% (*), 95% (**) or 99% (***).
† Age of respondent is centered at 40, and age of oldest living parent at 70.
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TABLE 3
Estimated coefficients (α̂) of the model for the residual correlations of the tendencies to give and receive

practical help (GP and RP) and to give and receive financial help (GF and RF). The estimates are posterior
means from MCMC samples (with posterior standard deviations in parentheses).

Correlation
GP↔RP GP↔RF GF↔RP GF↔RF GP↔GF RP↔RF

Intercept 0.087 0.166 −0.133 −0.126 0.475∗∗∗ 0.148
(0.171) (0.186) (0.220) (0.159) (0.174) (0.197)

Age of respondent† −0.014∗∗∗ 0.004∗ 0.003 −0.001 −0.002 −0.009∗∗∗

(0.002) (0.002) (0.003) (0.003) (0.002) (0.002)

Age squared† (×103) −0.277∗∗ −0.137 0.001 0.159 −0.112 −0.251∗

(0.124) (0.149) (0.178) (0.184) (0.129) (0.133)

Female −0.151∗∗∗ −0.025 −0.119∗ −0.103∗ −0.080∗ 0.044
(0.044) (0.047) (0.063) (0.062) (0.043) (0.046)

Travel time to 0.141∗∗∗ −0.206∗∗∗ −0.119 −0.226∗∗∗ −0.273∗∗∗ −0.252∗∗∗

nearest parent > 1hr (0.051) (0.058) (0.080) (0.076) (0.056) (0.055)

Log(household income) 0.044∗∗∗ 0.007 0.025 0.017 0.003 0.017
(0.017) (0.019) (0.022) (0.016) (0.018) (0.020)

The posterior credible interval excludes zero at level 90% (*), 95% (**) or 99% (***).
† Age of respondent is centered at 40.

TABLE 4
Fitted residual correlations calculated using the parameter estimates in Table 3, averaged over parameter values
in the MCMC samples and over covariate values in the analysis sample. The ‘Overall’ values are averaged over
sample values of all the covariates, and the other fitted values over the sample values of all the covariates except

for the one fixed at the specified value.

Covariate Correlation
setting GP↔RP GP↔RF GF↔RP GF↔RF GP↔GF RP↔RF

Overall 0.38 0.16 0.02 −0.06 0.36 0.20

Age of respondent
35 years 0.53 0.14 0.00 −0.07 0.39 0.31
45 years 0.39 0.18 0.03 −0.08 0.37 0.22
55 years 0.20 0.19 0.06 −0.06 0.32 0.08

Gender
Female 0.31 0.14 −0.03 −0.10 0.32 0.22
Male 0.47 0.17 0.09 0.00 0.40 0.18

Travel time to the nearest parent
> 1 hr 0.48 0.01 −0.06 −0.22 0.16 0.02
≤ 1 hr 0.34 0.21 0.05 0.00 0.43 0.27

Logarithm of household equivalised income
25th percentile 0.37 0.15 0.02 −0.06 0.36 0.20
50th percentile 0.38 0.16 0.02 −0.06 0.36 0.20
75th percentile 0.39 0.16 0.03 −0.05 0.36 0.21

The only other clearly significant covariate effects that relate to reciprocity are those be-
tween within-dyad distance and the (GP ↔ RF), (GF ↔ RF) and (GP ↔ RP) correlations.
Recall that the models for the means showed that the balance of the expected levels of differ-
ent types of help moves towards more financial and less practical support when the child and
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the parent(s) live further apart. Of the residual correlations here, (GP ↔ RP) is quite strongly
positive when the distance is longer vs. less positive when it is shorter, while (GP ↔ RF) is
near zero vs. moderately positive and (GF ↔ RF) moderately negative vs. near zero similarly
(and GF ↔ RP is always small). One possible interpretation of these different patterns is
that among children and parents who live further apart providing practical support requires
a greater effort and the tendency to give such support may be higher when reciprocated. For
dyads at a longer distance, financial help may also more often involve one-way (and perhaps
larger) transfers which are less often and less easily reciprocated by practical help.

The two remaining correlations, between the tendencies to give financial and practical
help, and between the tendencies to receive them, relate to whether one form of help that a
person may give serves as a substitute for the other or whether they are complementary, and
whether this varies according to individual characteristics (research question (c)). The mean
models in Section 7.4 also give information about one version of this question, when they
show that the expected balance of the two types of help is, on average, different for different
types of dyads. This is most obvious when the coefficient of a covariate has different signs
for practical and financial help, as it does for example for the distance between respondent
and their parents (a similar result for expected levels of financial vs. time assistance given
distance was found by Bonsang 2007 in a cross-national European study). However, this is
again not the same as the question of substitution for a person, i.e. whether the level of one
kind of help that he or she gives predicts higher or lower levels of the other kind of help.

Results for the correlations that address this question are given in the final two columns of
Tables 3 and 4. The fitted correlations are positive overall and in all sub-groups defined by the
covariates. This indicates clearly that within a person the types of help are complementary
rather than substitutes of each other: a child or parent (or parents) who has a high tendency
to give one kind of help (relative to what would be expected given the characteristics of their
dyad) also has a high tendency to give the other kind of help. The most noticeable covariate
effect that holds for both children and the parents is that the degree of complementarity
in practical and financial help is greater when the child-parent distance is small. For help
received from the parents, complementarity also declines with the respondent’s (and thus in
effect also the parents’) age. This suggests that at older ages the parents more often tend to
limit the support that they give to one of these types (most often financial help, in light of the
results in Table 2) rather than both of them.

In conclusion, we return to the research questions that were stated in Section 7.1. The first
question was addressed by the models for the mean levels of helping tendencies in Section
7.4. Their results may be summarised in terms of two broad types of characteristics: the
capacities of a giver of support and the level of need of the recipient. The model results
indicate clearly that recipients with higher level of need (such as children with less privileged
socioeconomic status or parents who are older or live alone) tend to receive more support.
For capacities of giving, the results are more subtle. There is no strong evidence that lower
capacity is associated with less help given in some overall sense. Instead, different types of
individuals tend to give the types of help that they are best able to give, e.g. with less wealthy
children giving, on average, relatively more practical than financial help to their parents, and
older parents providing relatively more financial help to their children.

The other two research questions correspond to the models for residual correlations in this
section. The results show evidence of reciprocity between children and parents in practical
help, and of within-person complementarity in giving different types of help. A prominent
covariate effect here was that the patterns of correlations between helping tendencies of dif-
ferent types and directions where somewhat different for children who live far from rather
than close to their parents.
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8. Conclusions. We have proposed methods for modelling joint distributions of mul-
tivariate continuous variables, including models for how their correlations depend on co-
variates. A linear model was specified for each correlation, and we developed an estimation
procedure that ensures that the estimated model implies positive definite correlation matrices
over a relevant set of values of the covariates. This builds on literature on such ‘constrained’
methods of estimation for models for correlations, which are here extended to include unit-
level covariates. The estimation is carried out using a tailored MCMC algorithm which in-
cludes an efficient Metropolis-Hastings sub-procedure for estimating the correlation model.

These methods were motivated by substantive research questions on the levels and cor-
relations of intergenerational family support. There the model was defined for the joint dis-
tribution of latent variables which represent individuals’ tendencies of giving and receiving
different types of support. We applied it to study exchanges of support between adult individ-
uals and their non-coresident parents in the UK, using survey data from the UK Household
Longitudinal Study. We modelled the conditional means and correlations of different helping
tendencies. The mean levels are positively associated with many characteristics of the recip-
ients that indicate higher need, and with characteristics of givers that indicate their higher
capacity to give help. These results are, arguably, fairly encouraging about patterns of in-
tergenerational support in this population. Less positively, large proportions of both adult
individuals and their parents do not typically give any of the kinds of help considered here.
The estimated correlations indicate reciprocity, where those who tend to give high levels of
practical help also tend to receive much of it, and complementarity, where those who tend
to give high levels of one kind of help (practical or financial) also tend to give much of the
other kind. This suggests a picture of a general culture of helpfulness within some families,
and general lack of it in others, rather than a sort of zero-sum game where help would flow
only in one direction at a time and one kind of help would reduce the amount of other kinds.

This work could be extended in a number of ways. Methodologically, the proposed mod-
elling approach for the correlation matrix could be embedded into other covariance modelling
tasks, such as the copula model. (Hoff, 2007; Murray et al., 2013). The computational effi-
ciency and mixing rates of the simple element-wise Metropolis-Hastings MCMC sampler that
was used here could perhaps be improved by using other approaches, for example adaptive
MCMC (Haario, Saksman and Tamminen, 2001; Andrieu and Thoms, 2008) which proposes
multiple parameters from an adaptive proposal in each iteration.

Substantively, the choices of this analysis were constrained by the available data. Although
we considered practical and financial support separately, the single indicator of financial sup-
port leaves us unable to examine varieties of it in more detail. Because we analyse data col-
lected from the adult children only, we have limited information about their parents. Another
promising direction would be to extend the models to longitudinal data. This would allow
us to examine reciprocity and complementarity of help not only contemporaneously, using
models for correlations as described in this paper, but also over time, using predictive mod-
els for types of help at one time given help at earlier times. These areas of further research
remain to be pursued.
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SUPPLEMENTARY MATERIAL

Pseudodata and code for data analysis. The supplement includes a representative pseudo
version of the data and R package and code for its analysis, together with information about
access to the actual data used in the paper.

Additional results. The supplementary materials also include supplementary Appendices
A–G which provide some additional tables and theoretical results. They are referred to in
appropriate places in the main text of the paper above.
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A Summary statistics for the analysis sample of data from UK Household Longitu-
dinal Study (UKHLS)

TABLE A1
Estimated parameters (measurement loadings and intercepts) of the measurement models for survey items on

help given by respondents to their parents and on help received from the parents.

Giving Receiving
practical help practical help

Item loading intercept loading intercept
Lifts in car 1.12 0.83 1.14 1.54
Shopping 2.38 1.02 1.70 2.08
Providing or cooking meals 1.24 -0.28 1.15 1.57
Basic personal needs (to parent only) 1.32 -1.32 – –
Looking after children (from parents only) – – 0.89 2.25
Washing, ironing or cleaning 1.32 -0.77 1.15 0.82
Personal affairs 1.00 0.00 1.00 0.00
Decorating, gardening or house repairs 0.57 -0.22 0.74 0.37
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TABLE A2
Descriptive statistics of the covariates used in the analysis.

Variable n %
Respondent (child) characteristics:
Age (years) Mean=43.7 SD=11.4
Gender

Female 7060 57.9
Male 5143 42.1

Partnership status
Partnered 9373 76.8
Single 2830 23.2

Age of youngest coresident child
No children 5002 41.0
0− 1 years 910 7.5
2− 4 years 1231 10.1
5− 10 years 1910 15.7
11− 16 years 1548 12.7
17− years 1602 13.1

Number of siblings
None 1235 10.1
1 4325 35.4
2 or more 6643 54.4

Longstanding illness
Yes 1533 12.6
No 10670 87.4

Employment status
Employed 9688 79.4
Not employed 2515 20.6

Education (highest qualification)
Secondary or less 6024 49.4
Post-secondary 6179 50.6

Household tenure
Own home outright or with mortgage 8817 72.3
Other (private or social renter) 3386 27.7

Logarithm of household equivalised income Mean=9.9 SD=0.79

Parent characteristics:
Age of the oldest living parent (years) Mean=72.1 SD=11.2
At least one parent lives alone

Yes 4641 38.0
No 7562 62.0

Child–parent characteristics:
Travel time to the nearest parent

1 hour or less 8851 72.5
More than 1 hour 3352 27.5

Data from UKHLS, 2017-19 (Wave 9). The sample size for all covariates is n= 12,203.
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B Properties of set Cα,SX
— Proposition 1 discussed in Section 5, with discussion

Denote SX =X(SZ) = {X(Z) |Z ∈ SZ} and let

Cα,SX
= {α ∈RL×q |ρ=αTX ∈Cρ for all X ∈ SX}

be the set of values of α which are feasible when combined with any X in SX . Proposition
1 gives basic properties of Cα,SX

.

PROPOSITION 1. Properties of Cα,SX
:

(i) If SX2
⊆ SX1

, then Cα,SX1
⊆Cα,SX2

.
(ii) Cα,Conv(SX) =Cα,SX

, where Conv(SX) denotes the convex hull of SX .
(iii) 0 ∈Cα,SX

.
(iv) Suppose further that there exist q linearly independent elements in SX . Then Cα,SX

is
bounded.

(v) Cα,SX
is a convex set.

PROOF OF PROPOSITION 1.

(i) Let α ∈ Cα,SX1
, so that αTX ∈ Cρ for all X ∈ SX1

. Since SX2
⊆ SX1

, in particular, for
all X ∈ SX2

⊆ SX1
, αTX ∈Cρ, and thus α ∈Cα,SX2

.
(ii) Since SX ⊆ Conv(SX), we have Cα,Conv(SX) ⊆Cα,SX

by (i). So we just need to prove the
other direction. Suppose thatα ∈Cα,SX

, for any X′ ∈ Conv(SX), there exist a finite num-
ber of points X1, ...,Xr ∈ SX and λ1, . . . , λr ≥ 0,

∑
j λj = 1, such that X′ =

∑
j λjXj .

We then have αTX′ = αT(
∑

j λjXj) =
∑

j λj (α
TXj) ∈ Cρ, i.e., α ∈ Cα,Conv(SX),

which holds because αTXj ∈Cρ for all j = 1, . . . , r, and Cρ is a convex set.
(iii) α= 0 gives ρ= 0. This implies the identity correlation matrix, which is in Cρ.
(iv) Under the further assumption stated in (iv), we can find a set SX∗ = {X1, . . . ,Xq} ⊆ SX

such that the matrix X∗ = [X1, . . . ,Xq] is non-singular. Suppose that α ∈Cα,SX∗
, and let

αTX∗ = [ρ1, . . . ,ρq]. ThenαT = [ρ1, . . . ,ρq]X
−1
∗ . This is bounded, because all elements

of ρ1, . . . ,ρq are bounded (moreover, ρ ∈ [−1,1]L). Finally, since SX∗ ⊆ SX , we have
Cα,SX

⊆Cα,SX∗
by (ii), and thus Cα,SX

is also bounded.
(v) Suppose that α1, α2 ∈ Cα,SX

and that 0 ≤ λ ≤ 1. Then (λα1 + (1 − λ)α2)
TX =

λαT
1X + (1 − λ)αT

2X = λρ1 + (1 − λ)ρ2 ∈ Cρ, where the last equation holds since
Cρ is a convex set. Thus λα1 + (1− λ)α2 ∈Cα,SX

.

Parts (i) and (ii) of Proposition 1 explain how Cα,SX
depends on the set SX of values for

X. When step (3) (as discussed in Section 5) is discussed, we know that α ∈ Cα,SXT
for all

α ∈ Sα. Then also α ∈ Cα,Conv(SXT ) by (ii). Even though feasibility was checked only for
a finite number of values of X, we thus know that it holds also for the infinite set of their
convex hull.

We then need to translate this result for X back to Z. This is simple if X = Z, so that
we can denote SXT = SZT . Here SZT should be chosen so that SZ ⊆ Conv(SZT ), i.e. that
its the convex hull covers SZ . Then, for any α ∈ Sα, we have α ∈ Cα,Conv(SZT ) by (ii) and
α ∈ Cα,SZ

by (i), as required. In terms of the possible target sets SZ defined in Section 5,
the test set SZT could be SZN , which ensures feasibility also for all Z in SZh, or SZT could
consist of the vertices of SZr , which ensures feasibility in all of SZr , SZh and SZN .
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Some more care is needed when X=X(Z) includes non-linear functions of Z. If SZ =
SZN is finite, a simple pragmatic choice is to set SXT =X(SZ) = {X(Z) | Z ∈ SZ}, and
check all of their values. Otherwise, the forms of these functions should be considered. This
can be seen even for a single correlation ρ, e.g. for a quadratic model ρ= α0 +α1Z +α2Z

2

given a single Z . Here X(Z) = (X1,X2,X3)
T = (1,Z,Z2)T. Suppose that SZ = [Z1,Z2].

It is not enough to check just X1 = X(Z1) and X2 = X(Z2), because we may still have
ρ /∈ (−1,1) for some values between Z1 and Z2. It is sufficient to consider one more point
X3 = (1,X23,X33)

T such that the convex hull of SXT = {X1,X2,X3} covers X(SZ). For
example, this can be the intersection point of the tangents of f(Z) = Z2 drawn at Z1 and Z2,
i.e. X23 = (Z1+Z2)/2 and X33 = Z1Z2. Note that such a choice depends only on the forms
of SZ and X(Z), so it can be used with any value of α and for any number of correlations ρl.

At this point, after the MCMC step (3), we know that α ∈ Cα,X(SZ) for all α ∈ Sα, i.e.
that all the values in the MCMC sample Sα = {α1, . . . ,αM} are feasible when combined
with any value of Z in the target set SZ . But we still need to extend this conclusion to other
values of α that were not sampled, specifically to the convex hull Conv(Sα) of Sα. This is
justified by parts (iii)–(v) of Proposition 1, which concern the values of α in Cα,SX

given
a fixed SX . Part (iii) shows that this set is non-empty, so some feasible α always exist, and
(iv) states that feasible α will not drift away, as long as SX is not degenerate. Finally, part
(v) shows that α ∈ Cα,X(SZ) for all α ∈ Conv(Sα) as required, thus completing step (4) in
Section 5.

We note that part (v) of Proposition 1 would not necessarily hold if the individual correla-
tions were modelled using a nonlinear transformation, for example Fisher’s z transformation
where ρ = tanh(αTX). Such transformations are used to ensure that the fitted correlations
will be in the range (−1,1). That, however, is not needed here, because positive definiteness
of the matrix as a whole already implies that all of the correlations are in the valid range.
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C Feasible intervals for individual parameters of the model for correlations — Proof
of Proposition 2 discussed in Section 5

The proof of Proposition 2 builds on the key ideas of Barnard, McCulloch and Meng
(2000), extended to the case of models with covariates that we consider.

LEMMA 1. Let R(ρ) =R(ρl,ρ−l) be the positive definite correlation matrix defined by
distinct correlations ρ= (ρl,ρ

T
−l)

T. Consider fl(ρ′l) = |R(ρ′l,ρ−l)| as a univariate function
of ρ′l ∈ [−1,1]. Then fl(ρ

′
l) is a quadratic function of ρ′l with negative second order coeffi-

cient. The matrix Rl =R(ρ′l,ρ−l) is positive definite if and only if fl(ρ′l)> 0.

PROOF OF LEMMA 1. Rl is a symmetric matrix where ρ′l appears once in both its upper
and lower triangles, so fl(ρ

′
l) is a quadratic function. Suppose that Rl is a K ×K matrix.

Without loss of generality, assume that ρ′l is in its Kth row, first column (and first row, Kth
column), as we can always swap both row and column without changing the positive definite-
ness and determinant value. Thus, the coefficient of (ρ′l)

2 in fl(ρ
′
l) is cl = (−1)2K+1|R(l)|,

where R(l) is the submatrix of Rl obtained by deleting the first and last rows and columns.
Here R(l) is a correlation matrix, obtained by deleting from R(ρ) all those correlations
which involve either of the two variables whose correlation is ρl. Thus R(l) is positive defi-
nite, |R(l)|> 0, and cl < 0.

Rl is positive definite if and only if |Rlk|> 0 for all k = 1, . . . ,K, where Rlk is the kth
primary submatrix of Rl (Sylvester’s criterion). Here ρ′l only affects |RlK |= |Rl|. Because
Rl1, . . . ,Rl,K−1 are equal to the corresponding submatrices of the positive definite correla-
tion matrix R(ρ), we have |Rlk|> 0, for k = 1, . . . ,K − 1. So Rl =R(ρ′l,ρ−l) is positive
definite if and only if fl(ρ′l) = |Rl|> 0.

PROOF OF PROPOSITION 2.
From Lemma 1 we know that Rjl =R(ρ′l,ρ

(j)
−l ) is positive definite if and only if fjl(ρ′l) =

|Rjl| > 0. We can write fjl(ρ
′
l) = cjl(ρ

′
l)
2 + djlρ

′
l + ejl, where cjl = [fjl(1) + fjl(−1) −

2fjl(0)]/2, djl = [fjl(1) − fjl(−1)]/2 and ejl = fjl(0). The set of values for ρ′l for which
fjl(ρ

′
l) > 0 is a finite interval because cjl < 0, fjl(0) = |R(0,ρ−l)| > 0, and fjl(ρ

′
l) is a

continuous function. Let us denote the roots of fjl(ρ′l) = 0 by xjl1 > xjl2, and define

(C1)

gjl =
xjl1 + xjl2

2
=−

djl
2cjl

,

hjl =
xjl1 − xjl2

2
=

√√√√d2jl − 4cjlejl

4c2jl
.

Rjl is positive definite when ρ′l ∈ (gjl − hjl, gjl + hjl).
Consider now ρj = α

TXj as specified by model (9), as functions of coefficients α and
covariates Xj . Consider ρ′l = α′

lmXjm +
∑

k ̸=mαlkXjk as implied by this model, treating
α′
lm for a single m= 1, . . . , q as the argument of the function and fixing all the other elements

of α and Xj at the values which defined ρj . Solving the end points of the feasible interval of
ρ′l for α′

lm, and taking into account the sign of Xjm gives the feasible interval for α′
lm with

end points a
(j)
lm and b

(j)
lm as shown in equation (10) in Proposition 2, when Xjm ̸= 0. When

Xjm = 0, fjl(ρ′l) does not depend on α′
lm and the interval can be taken to be infinite. The

interval for αlm which is feasible for all of the Xj ∈ SXT is then (alm, blm) = ∩j(a
(j)
lm, b

(j)
lm).

Computationally the most demanding part of using this result is the calculation of the nec-
essary determinants. Efficient methods for obtaining them, and other elements of the compu-
tations, are described in Section 6.2 and Appendix E.
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D MCMC algorithm for the latent variables and for the parameters except for the
correlation parameters α

Here we describe the MCMC sampling algorithm for estimating the structural-model pa-
rameters of the model which was introduced in Section 3 of the paper. The general idea of this
estimation was outlined in Section 6.2. As discussed there, the steps for the other elements
of the model other than the parameters α of the correlation model (which is considered sep-
arately in Section 6.2 and Appendix E) are the same or very similar to the ones proposed in
Kuha, Zhang and Steele (2022). Their details are given here in order to keep the description
of the full MCMC algorithm self-contained in this paper.

The algorithm has been packed into an R (R Core Team, 2020) package [which will be
included in the supplementary materials and made available open source on an author’s
GitHub page]. The algorithm was programmed in R with core functions implemented in
C++, where two techniques are used to speed up the procedure. First, for sampling steps with
non-standard distributions, adaptive rejection sampling (Gilks, Best and Tan, 1995) is used,
exploiting log-concavity of the posterior density functions. Second, parallel sampling is used
within each MCMC iteration where possible. The parallelization is implemented through the
OpenMP C++ API (Dagum and Menon, 1998).

Different elements of ζ and ψ are sampled one at a time, as scalars or vectors as appro-
priate. In the notation below, those quantities that are not being sampled in a given step are
taken to be observed and fixed at their most recently sampled values.

Sampling the latent variables: Generate values for the latent variables ζi = (ξTi ,η
T
i )

T,
given the observed data and current values of the parameters ψ. This can be parallelised,
because ζi for different units i are conditionally independent.

(1) Sampling ξ from p(ξ|η,Y,X,ψ): Draw ξi = (ξGi, ξRi)
T independently for i =

1, . . . , n, from multinomial distributions with probabilities

p(ξG = j, ξR = k|η,Yi,Xi,ψ)(D1)

∝ p(YGi|ξG = j, ηGi)p(YRi|ξR = k, ηRi)p(ξG = j, ξR = k|Xi;ψξ)

for j, k = 0,1, where the measurement model is specified by equations (1)–(4) in the paper
for YGi and similarly for YRi, and the structural model for ξi is specified by (5).

(2) Sampling η from p(η|ξ,Y,X,ψ): Draw ηi = (ηGPi, ηRPi, ηGFi, ηRFi)
T indepen-

dently for i= 1, . . . , n, from

p(ηGP |η−GPi,ξi,Yi,Xi,ψ)∝ p(YGPi|ξGi, ηGP )p(ηGP |η−GPi,Xi;ψη)(D2)

p(ηGF |η−GFi,ξi,Yi,Xi,ψ)∝ p(YGFi|ξGi, ηGF )p(ηGF |η−GFi,Xi;ψη)(D3)

p(ηRP |η−RPi,ξi,Yi,Xi,ψ)∝ p(YRPi|ξRi, ηRP )p(ηRP |η−RPi,Xi;ψη)(D4)

p(ηRF |η−RFi,ξi,Yi,Xi,ψ)∝ p(YRFi|ξRi, ηRF )p(ηRF |η−RFi,Xi;ψη).(D5)

Here η−GPi denotes (ηGFi, ηRPi, ηRFi) and η−GFi, η−RPi and η−RFi are defined similarly.
The conditional distributions for the η-variables on the right hand sides of (D2)–(D5) are the
univariate conditional normal distributions implied by the joint normal distribution given by
(6)–(8) in the paper. The sampling distributions depend on the values of the ξ-variables. When
ξGi = 0, in which case always YGi = 0, we have p(YGPi|ξGi, ηGP ) = p(YGFi|ξGi, ηGF ) = 1
and ηGPi and ηGFi are drawn directly from the conditional normal distributions. When ξGi =
1, adaptive rejection sampling is used for ηGPi and truncated normal sampling for ηGFi. The
sampling of ηRPi and ηRFi is analogous.

Sampling the parameters of the structural model: Generate values for the parametersψ
from their distributions given the observed variables and current imputed values of the latent
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variables ζ. These have the form of posterior distributions of these structural parameters
when both ζ and X are taken to be observed data (this step does not depend on Y). The
prior distributions are taken to be of the form p(ψ) = p(ψξ)p(β)p(σ)p(α), i.e. independent
for different blocks of parameters; their specific forms are given below. The sampling steps
for ψξ and ψη do not depend on each other, so they can be carried out in either order or in
parallel.

(3) Sampling ψξ = (γT01,γ
T
10,γ

T
11)

T from p(ψξ|X,ξ) ∝ p(ξ|X;ψξ)p(ψξ). This is the
posterior distribution of the coefficients of the multinomial logistic model (5) for ξi given Xi.
Define γ = (γT00,γ

T
01,γ

T
10,γ

T
11)

T, where γ00 = 0. Let γjkr demote the coefficient of Xjkr in
the model for p(ξχ = j, ξRi = k|Xi;ψξ), and γ−jkr denote the vector obtained by omitting
γjkr from γ. We take the prior distributions of each non-zero γjkr to be independent of
each other, with p(γjkr)∼N(0, σ2

γ) with σ2
γ = 100. The sampling is done using conditional

Gibbs sampling, one parameter at a time. We cycle over all r = 1 . . . ,Q and over (j, k) =
(0,1), (1,0), (1,1) to draw γjkr from

(D6) p(γjkr|γ−jkr,X,ξ)∝

[
n∏

i=1

∏
r,s=0,1 exp(γTrsXi)

δijk∑
r,s=0,1 exp(γTrsXi)

]
p(γjkr)

where δijk = 1(ξGi = j, ξRi = k). These are sampled using adaptive rejection sampling.
(4) Sampling ψη = (vec(β)T,σT,vec(α)T)T from p(ψη|X,η) ∝ p(η|X;ψη)p(ψη).

Here the sampling of α will be described in Appendix E below. For β, the sampling
is from the posterior distribution p(vec(β)|X,η) ∝ p(η|X;ψη)p(vec(β)) where σ and
α are regarded as known. This means that the conditional covariance matrices Σi =
cov(ηi|Xi;σ,α) are also known here. We specify p(vec(β)) ∼ N(0, σ2

β I4Q) with σ2
β =

100. The sampling is done separately for each of the four subvectors of β. Let β1 de-
note one of them, say β1 = βGP , and β2 the rest of them, say β2 = [βRP , βGF , βRF ],
and let ψη(β1) denote all the elements of ψη other than β1. Let ηi be partitioned cor-
respondingly into η1i and η2i, and Σi into the blocks Σ11i, Σ12i and Σ22i. The con-
ditional distribution p(η1i|η2i,Xi;ψη) is then univariate normal with mean βT1Xi + d2i,
where d2i = Σ12iΣ

−1
22i(η2i − β

T
2Xi), and variance σ2

1i = Σ11i −Σ12iΣ
−1
22iΣ

T
12i. Let V1 =

diag(σ2
1i, . . . , σ

2
1n) and e1 = (η11 − d21, . . . , η1n − d2n)

T. The value of β1 is then sam-
pled from p(β1|X,η,ψη(β1)) ∼ N(Vβ1

(XTV−1
1 e1), Vβ1

) where Vβ1
= (XTV−1

1 X +

IQ/σ
2
β)

−1. This is repeated with each of the four subvectors of β in turn in the role of β1.
For sampling of the standard deviation parameters σ, denote here σ1 = σGP and σ2 =

σRP . For both of them we use the prior distribution Inv-Gamma(α0, β0) with α0 = β0 =
10−5, independently for σ2

1 and σ2
2 . This implies the priors p(σk) ∝ σ−2α0−1

k exp(β0/σ
2
k) for

k = 1,2. Denote by ψη(σ) all other parameters in ψη apart from σk. Recall that this means
that in Σi = SRiS, where S = diag(σ1, σ2,1,1), the correlation matrix Ri =R(Xi;α) is
also treated as known here. Let ei = (ei1, ei2, ei3, ei4)

T = ηi − βTXi. The parameter σk is
then drawn from
(D7)

p(σk|X,η,ψη(σ)) ∝
n∏

i=1

p(ηi|Xi;ψη)p(σk) ∝
n∏

i=1

σ−1
k exp

(
−1

2
eTi Σ

−1
i ei

)
p(σk)

∝ σ−α−1
k exp

(
−β1/σ

2
k − 2β2/σk

)
,

where α= n+2α0, β1 = β0+(
∑n

i=1 e
2
ikwkki)/2, β2 =

∑n
i=1 eik(

∑
j ̸=kwkjieij/σj)/2, and

wkji is the (k, j)th element of R−1
i . Then random-walk Metropolis sampler or the adaptive

rejection Metropolis sampler (ARMS, Gilks, Best and Tan, 1995) can be used to sample σ1
and σ2.
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E Further information on the MCMC algorithm for the correlation parameters α
discussed in Section 6.2 — Remarks 1–4

Remark 1: Calculating feasible interval for αlm by Cholesky decomposition.
Proposition 2 (in Section 5) and Lemma 1 (in Appendix D) descibe one way of calculating

the interval (alm, blm). This requires the calculation of 3T determinants of correlation matri-
ces. An alternative, more efficient procedure for its first steps can be obtained by adapting a
method proposed by Wong, Carter and Kohn (2003). Let Rj = ΓT

jΓj as defined in the Input

statement of Algorithm 1, where Γj = (γ
(j)
k1,k2

). Recall that K denotes the dimension of Rj ,
and assume that ρl in Lemma 1 corresponds to the (K,K − 1)th element of Rj . We then
have gjl =

∑K−2
k=1 γ

(j)
k,K−1γ

(j)
k,K and hjl = γ

(j)
K−1,K−1(1−

∑K−2
k=1 (γ

(j)
k,K)2)1/2, and (alm, blm)

can be obtained by plugging in gjl and hjl into equation (10) in Proposition 2 as before. If
ρl is not the (K,K − 1)th element of Rj , we can permute the indices with a permutation
matrix P so that it is the (K,K − 1)th element of the matrix PTRjP= (ΓjP)T(ΓjP), fol-
lowed by a Givens rotation by an orthogonal matrix Q such that QΓjP = Γ̃j , where Γ̃j is
upper-triangular and PTRjP= Γ̃T

j Γ̃j . Then apply the calculation above to Γ̃j .

Remark 2: Generating proposal values for αlm.
We have used a simple random walk Metropolis sampler. It generates the proposal through

an independent Gaussian increment to the previous value, as α′
lm = αlm + γmδ, where δ is

drawn from the standard normal distribution. Thus αlm|α′
lm ∼N(α′

lm, γ2m). The step size γm
should be chosen to achieve a good balance between rejection rate and mixing efficiency. We
have used γm = C(

√
n||(X1m, . . . ,Xnm)T||∞)−1, where || · ||∞ is the infinity norm and C

is a chosen constant, the same for all γm, which is used to control rejection rates in the range
0.7–0.8. The sampler was efficient enough in our real data analysis when the step sizes were
chosen appropriately.

An alternative would be to use the ARMS algorithm (Gilks, Best and Tan, 1995) to adap-
tively construct the proposal function of αlm in (alm, blm). This can improve the acceptance
rate but the algorithm may require the likelihood function p(ϵ|α,X) to be evaluated multiple
times based on the rejection condition, whereas in the random walk Metropolis method it
needs to be calculated at most once in each iteration. Other methods for improving the ac-
ceptance rate exist (Chib and Greenberg, 1998), but their implementation is more complex
and relies heavily on tuning.

Remark 3: Updating the determinant and inverse of correlation matrix.
Here we want to update the determinant and inverse of Ri(αlm) to those of Ri(α

′
lm).

Suppose that the correlation parameter ρl corresponds to the (k1, k2)th element of Ri(αlm).
Let εilm = (α′

lm − αlm)Xim, and denote by w1 and w2 the K × 1 vectors which are zero
except that the k1th element of w1 and the k2th element of w2 are

√
|εilm|. Then

Ri(α
′
lm) =

[
Ri(αlm) + (sgn(εilm)w1)w

T
2

]
+w2(sgn(εilm)w1)

T.

Since this is of the form (A+uvT)+vuT, Ri(α
′
lm)−1 can be computed efficiently with two

rank-1 updates by applying twice the Sherman-Morrison formula

(A+ uvT)−1 =A−1 − A−1uvTA−1

1 + vTA−1u
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and |Ri(α
′
lm)| can be calculated by updating |Ri(αlm)| through two applications of |A +

uvT| = (1 + vTA−1u) |A|, the second of which employs the first update of the inverse.
These steps reduce the computation complexity of p(ϵi|α,X) from O(K3) to O(K2).

Remark 4: Updating the Cholesky decomposition of a correlation matrix.
Let εjlm = (α′

lm − αlm)Xjm. Let w1 and w2 be defined as in Remark 3, and define w as
the K × 1 vector where the k1th and k2th elements are

√
|εjlm| and the other elements are

zero. Then we can write

Rj(α
′
lm) =

[(
Rj(αlm) + sgn(εjlm)wwT

)
− sgn(εjlm)w1w

T
1

]
− sgn(εjlm)w2w

T
2 .

The Cholesky decomposition of Rj(α
′
lm) can be computed efficiently from this, with three

rank-1 updates for the Cholesky decomposition of the form A+ uuT or A− uuT(Seeger,
2008); built-in functions for this are available in Matlab and linear algebra libraries like Eigen
(Guennebaud et al., 2010). This updating rule reduces the computation complexity of the
Cholesky decomposition Rj = ΓT

jΓj from O(K3) to O(K2).

Alternatives to Algorithm 1 in Section 6.2 could also be considered. In cases when X =
X(Z) is a complex function such as a cubic spline, for better efficiency the element-wise
MH algorithm could be replaced with a blockwise algorithm where subvectors of α can
be proposed and rejected together. Apart from the MH algorithm we use in this paper, we
note that the “griddy Gibbs” sampler discussed in Barnard, McCulloch and Meng (2000)
also works here in principle, where the feasible intervals for each αlm can be discretized
into grids. However, the computational efficiency for evaluating posterior function over these
grids may suffer.
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F Estimated measurement models for the analysis in Section 7

TABLE F1
Estimated parameters (measurement loadings and intercepts) of the measurement models for survey items on

help given by respondents to their parents and on help received from the parents.

Giving Receiving
practical help practical help

Item loading intercept loading intercept
Lifts in car 1.12 0.83 1.14 1.54
Shopping 2.38 1.02 1.70 2.08
Providing or cooking meals 1.24 -0.28 1.15 1.57
Basic personal needs (to parent only) 1.32 -1.32 – –
Looking after children (from parents only) – – 0.89 2.25
Washing, ironing or cleaning 1.32 -0.77 1.15 0.82
Personal affairs 1.00 0.00 1.00 0.00
Decorating, gardening or house repairs 0.57 -0.22 0.74 0.37
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G Estimated multinomial logistic model for the latent class variables ξ in the analysis
in Section 7

TABLE G1
Estimated coefficients of the multinomial logistic model for the zero-inflation latent classes (ξG, ξR). The

coefficients γ00 are fixed at 0 for identification. The estimates are posterior means from MCMC samples (with
posterior standard deviations in parentheses).

γjk(ξG = j, ξR = k)
Covariate γ01 γ10 γ11
Intercept −3.98∗∗∗ (0.76) −1.73∗ (1.08) 1.50∗∗∗ (0.52)

Respondent (child) characteristics
Age (centered at 40) (×10) −0.13 (0.21) −0.44∗ (0.24) −0.44∗∗∗ (0.09)

Age squared (×103) −2.63 (1.72) 1.34 (0.93) 1.54∗∗∗ (0.46)

Gender
Female (vs. Male) 1.47∗∗∗ (0.30) 0.21 (0.17) 0.06 (0.09)

Partnership status
Partnered (vs. Single) 0.13 (0.22) 0.71∗∗∗ (0.20) −0.05 (0.10)

Age of youngest coresident child (vs. No children):
0–1 years 0.51 (0.35) −0.60 (0.53) −0.01 (0.17)
2–4 years 0.50 (0.32) 0.10 (0.40) 0.45∗∗∗ (0.16)
5–10 years 0.43∗ (0.26) −1.69∗∗∗ (0.66) 0.16 (0.14)
11–16 years −0.59∗ (0.30) −0.03 (0.22) −0.32∗∗ (0.14)
17– years −0.24 (0.39) −0.20 (0.24) −0.11 (0.17)

Number of siblings (vs. None)
1 −0.11 (0.28) −0.49∗∗ (0.23) 0.02 (0.15)
2 −0.70∗∗ (0.27) −0.41∗ (0.22) −0.23 (0.15)

Long standing illness (vs. No) 0.00 (0.23) −0.37∗ (0.21) −0.27∗∗ (0.11)

Employment status (vs. Employed)
Not employed −0.25 (0.21) 0.36∗ (0.19) −0.34∗∗∗ (0.10)

Education (vs. Secondary or less)
Post-secondary 0.63∗∗∗ (0.18) −0.05 (0.16) 0.20∗∗ (0.09)

Household tenure (vs. Renter)
Own home outright or by mortgage −0.23 (0.21) 0.36∗ (0.22) 0.06 (0.10)

Logarithm of household equivalised income 0.37∗∗∗ (0.09) 0.01 (0.11) −0.01 (0.05)

Parent characteristics
Age of the oldest living parent

(centered at 70) (×10) 0.37∗ (0.20) 1.58∗∗∗ (0.42) 0.17∗∗ (0.07)

Squared Age of the oldest parent (×103) −12.72∗∗∗ (2.41) −2.91∗∗ (1.50) −0.37 (0.37)

At least one parent lives alone (vs. No) −0.84∗∗∗ (0.21) 1.13∗∗∗ (0.17) 0.25∗∗∗ (0.09)

Child-parent characteristics
Travel time to the nearest parent

More than 1 hour (vs. 1 hour or less) −1.65∗∗∗ (0.24) −1.73∗∗∗ (0.20) −1.99∗∗∗ (0.10)
The posterior credible interval excludes zero at level 90% (*), 95% (**) or 99% (***).
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TABLE G2
Fitted membership probabilities of the zero-inflation latent classes (ξG, ξR), from the estimated model in Table
S2. The fitted probabilities are averaged over parameter values in MCMC samples and over covariate values in
the observed sample (for all covariates for the “Overall” figures, and for all but the fixed covariate for the rest.

The odds ratios (OR) calculated from these averages are also shown.

Marginal probabilities
Covariate p(ξG = j, ξR = k) [with difference (and its SD)]
setting (0,0) (0,1) (1,0) (1,1) OR p(ξG = 1) p(ξR = 1)
Overall .24 .09 .14 .53 10.6 .67 .62
Respondent (child) characteristics
Age

35 years .22 .09 .16 .54 9.1 .70 .63
45 years .28 .10 .14 .48 9.5 .62 −.07∗∗∗ (.02) .58 −.05∗∗ (.02)
55 years .31 .07 .14 .48 18.2 .62 −.07∗∗ (.03) .55 −.08∗ (.04)

Gender
Female .23 .13 .14 .50 6.5 .65 .63
Male .26 .04 .13 .56 30.0 .70 +.05∗∗∗ (.02) .60 −.03 (.02)

Partnership status
Single .25 .08 .09 .57 19.7 .66 .65
Partnered .24 .09 .15 .52 9.1 .67 +.01 (.02) .61 −.05∗∗ (.02)

Age of youngest coresident child
No children .24 .08 .15 .52 10.5 .68 +.05 (.03) .60 −.05 (.04)
0-1 years .25 .12 .10 .53 13.1 .63 .65
2-4 years .19 .10 .13 .59 9.7 .72 +.09∗∗∗ (.03) .68 +.03 (.04)
5-10 years .24 .11 .04 .60 51.0 .64 +.02 (.03) .71 +.06∗ (.04)
11-16 years .29 .06 .18 .48 13.8 .65 +.02 (.03) .54 −.11∗∗∗ (.04)
17– years .26 .07 .14 .52 14.6 .66 +.03 (.04) .59 −.06 (.05)

Number of siblings
No sibling .21 .11 .17 .51 6.3 .68 .62
1 sibling .23 .10 .12 .55 10.3 .67 −.01 (.02) .65 +.03 (.03)
2 or more .26 .07 .14 .52 13.0 .66 −.01 (.02) .59 −.03 (.03)

Longstanding illness
Yes .28 .10 .13 .49 11.4 .62 .60
No .24 .09 .14 .53 10.4 .67 +.05∗∗∗ (.02) .62 +.02 (.02)

Employment status
Not employed .27 .09 .18 .46 8.3 .65 .55
Employed .24 .09 .13 .55 11.8 .67 +.03 (.02) .64 +.09∗∗∗ (.02)

Education
Secondary or less .26 .07 .15 .52 13.4 .67 .59
Post-secondary .23 .10 .13 .54 9.6 .67 −.00 (.01) .64 +.05∗∗∗ (.02)

Household tenure
Own home .24 .08 .15 .53 10.7 .68 .61
Renter .25 .10 .12 .53 11.5 .64 −.03∗ (.02) .63 +.02 (.02)

Logarithm of household equivalised income
25 percentile .25 .08 .14 .53 12.0 .67 .61
50 percentile .24 .09 .14 .53 10.7 .67 −.01∗∗ (.00) .62 +.00 (.00)
75 percentile .24 .10 .14 .52 9.6 .66 −.01∗∗ (.01) .62 +.00 (.01)

Parent characteristics
Age of the oldest living parent

65 years .29 .11 .04 .56 46.3 .60 .67
70 years .25 .15 .08 .52 12.6 .60 .00 (.01) .67 +.00 (.01)
80 years .22 .06 .20 .52 9.7 .72 +.12∗∗∗ (.02) .58 −.10∗∗∗ (.03)

At least one parent lives alone
Yes .22 .05 .19 .55 14.5 .74 .59
No .27 .11 .09 .53 14.0 .62 −.11∗∗∗ (.01) .64 +.05∗∗ (.02)

Child-parent characteristics
Travel time to the nearest parent
> 1 hour .51 .07 .11 .31 22.7 .42 .38
≤ 1 hour .15 .10 .15 .61 6.2 .76 +.34∗∗∗ (.02) .70 +.32∗∗∗ (.02)

The posterior credible interval excludes zero at level 90% (*), 95% (**) or 99% (***).
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