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ABSTRACT

We explore the statistical and economic importance of restrictions on the dynamics of risk compen-
sation from the perspective of a real-time Bayesian learner who predicts bond excess returns using
dynamic term structure models (DTSMs). The question on whether potential statistical predictability
offered by such models can generate economically significant portfolio benefits out-of-sample, is
revisited while imposing restrictions on their risk premia parameters. To address this question, we
propose a methodological framework that successfully handles sequential model search and parameter
estimation over the restriction space in real time, allowing investors to revise their beliefs when
new information arrives, thus informing their asset allocation and maximising their expected utility.
Empirical results reinforce the argument of sparsity in the market price of risk specification since we
find strong evidence of out-of-sample predictability only for those models that allow for level risk to
be priced and, additionally, only one or two of these risk premia parameters to be different than zero.
Most importantly, such statistical evidence is turned into economically significant utility gains, across
prediction horizons, different time periods and portfolio specifications. In addition to identifying
successful DTSMs, the sequential version of the stochastic search variable selection (SSVS) scheme
developed can be applied on its own and also offer useful diagnostics monitoring key quantities over
time. Connections with predictive regressions are also provided.



Sequential Learning and Economic Benefits from Dynamic Term Structure Models

1 Introduction

1.1 Restrictions and out-of-sample Economic Benefits

Accurately estimating and forecasting bond risk premia, in real time, is of central economic importance for the
transmission mechanism of monetary policy as well as for investors’ portfolio strategies. Even more important is
understanding and identifying the contribution of risk premia to longer term interest rates, which largely depends on our
ability to accurately infer expectations for the future path of the short end of the yield curve1. To successfully do so, it
is essential to account for no-arbitrage, which implies restrictions on the cross-sectional and time series dynamics of
the term structure (see, Joslin et al. (2011) and Bauer (2018)). The latter are largely exploited in related literature by
dynamic term structure models (DTSMs), which impose tight restrictions on the dynamics of risk compensation, an
essential component of the models. Failure to impose such restrictions, as in the unrestricted maximally flexible model
widely used by almost all existing studies, leads to absence of no-arbitrage and, as such, to the generation of artificially
stable short rate expectations and highly volatile risk premia (Kim and Orphanides 2012, Bauer 2018).

The importance of the market price of risk specification, and the associated restrictions related to it, has been extensively
studied in earlier research (see, Dai and Singleton (2000), Duffee (2002), Ang and Piazzesi (2003), Kim and Wright
(2005)), which has mainly focused on imposing ad hoc2 zero restrictions on the parameters governing the dynamics
of the risk premia3. This practice, however, has been criticised (see, Kim and Singleton (2012) and Bauer (2018)),
since it raised concerns about, first, the joint significance of the constraints, second, the magnitude of the associated
standard errors4 and, third, the failure to provide meaningful economic justification for the estimated parameters and
the resulting state variables. Only recently, a few studies have investigated more systematic approaches to imposing
restrictions on the dynamics of risk compensation5. In particular, Cochrane and Piazzesi (2009) and Duffee (2011)
introduce tight restrictions, driven by prior empirical analysis, while Joslin et al. (2014) select zero restrictions. Bauer
(2018) promotes the use of Bayesian variable selection samplers to identify such restrictions on risk prices.

Although the literature has noted the importance of restrictions, yet, no study has, so far, addressed and quantified their
statistical and economic importance, out-of-sample6. Most importantly, there is no prior evidence as to how restrictions
’react’ to changes in the monetary environment, considering that existing studies on monetary policy effects (see, Piazzesi
et al. (2006), Ang and Longstaff (2011), and Orphanides and Wei (2012)) suggest that restrictions selected based on the
in-sample process may not be economically plausible around periods of monetary policy shifts, interventions, or under
fragile economic conditions. With this in mind, in this paper we study the out-of-sample performance of yields-only
DTSMs, in light of the alternative restrictions imposed on the dynamics of risk compensation and attempt to explore
whether a real-time Bayesian investor can actually exploit statistical predictability, when making investment decisions.
Are DTSMs, which utilise yield curve information only, capable of consistently predicting bond risk premia7 and
generating systematic economic gains to bond investors, out-of-sample?

1See, Kim and Wright (2005) and Cochrane and Piazzesi (2009), among others, for studies that attempt to decompose forward
rates into expectations of short rates and risk premia.

2Ad-hoc restrictions, are used in Dewachter and Lyrio (2006), and Rudebusch and Wu (2008), among others. Furthermore, the
route of imposing prior restrictions is followed by Ang et al. (2007).

3A common practice used is to, first, estimate an unrestricted maximally flexible model, and at a second step, to re-estimate it by
setting to zero those parameters that have large standard errors. According to Bauer (2018), such an approach often leads to the
wrong model.

4According to Kim and Singleton (2012), it is unclear how small these have to be in order to set a parameter to zero.
5See, Cochrane and Piazzesi (2009) for a 4-factor affine model, Joslin et al. (2014) for an unspanned macro-finance DTSM, and

Duffee (2011) and Bauer (2018) for yields-only versions of DTSMs. An alternative approach is followed by Chib and Ergashev
(2009), who impose strong prior restrictions such that the yield curve is (on average) upward sloping, an assumption that is empirically
and economically plausible.

6Empirical tests in Duffee (2011) suggest that the choice of no-arbitrage restrictions does not influence the out-of-sample
performance of the models, given that they produce forecasts with indistinguishable differences.

7Failure of the EH implies that bond returns are strongly predictable (see, Fama and Bliss (1987), Campbell and Shiller (1991)
and Cochrane and Piazzesi (2005), for studies that utilise information coming solely from the yield curve.). In particular, Fama
and Bliss (1987) and Campbell and Shiller (1991) propose forward and yield spreads as predictors and suggest that spreads have
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Some recent literature (e.g. Duffee (2011), Barillas (2011), Adrian et al. (2013), Joslin et al. (2014)), suggests that
yields-only DTSMs cannot capture the predictability of bond risk premia, since the required information to predict
premia is not spanned8 by the cross section of yields, implying that more (mainly unspanned) factors are needed. In
that respect, Duffee (2011) implements a five-factor yields-only DTSM aiming to capture hidden information in the
bonds market, while Wright (2011), Barillas (2011), Joslin et al. (2014) and Cieslak and Povala (2015) use measures
of macroeconomic activity to predict bond excess returns9. In contrast, Sarno et al. (2016) and Feunou and Fontaine
(2018), implement extended versions of yields-only DTSM and argue that their approaches help those models capture
the required predictability, thus, overturning prior evidence. A similar conclusion is reached by Bauer (2018), who
studies DTSMs under alternative risk price restrictions. In this study, we attempt to revisit evidently conflicting results
on bond excess return predictability based on DTSMs.

Importantly, the above-mentioned studies, either do not consider the out-of-sample economic performance (as in Duffee
(2011), Bauer (2018), Feunou and Fontaine (2018) and Giacoletti et al. (2021), etc.) or do not fully explore potential
economic benefits for bond investors when compared to the non-predictability (constant risk premia) Expectations
Hypothesis (EH) benchmark, which is the second empirical question we target in this paper. In fact, existing literature on
economic value finds evidence of statistical predictability, which nevertheless does not translate into positive economic
gains to bond investors (see, Della Corte et al. (2008), Sarno et al. (2016) and recently Andreasen et al. (2021)). In
particular, using a dynamic mean-variance allocation strategy, framed within a DTSM, Della Corte et al. (2008) and
Sarno et al. (2016) find that statistical predictability is not turned into superior portfolio performance when compared to
the EH benchmark. Consistent results are also presented in Andreasen et al. (2021), in the context of a regime-switching
macro-finance term structure model, who suggest that it is difficult to translate evidence of time-variation in expected
excess returns into economic benefits to investors. Qualitatively similar results are found in the literature on economic
value generated from predictive regression models10 on bond excess returns (see for example, Thornton and Valente
(2012), Gargano et al. (2019), Bianchi et al. (2021) and Wan et al. (2022)). As in the DTSMs case, the evidence from
such studies is conflicting, in some cases pointing towards a negative answer (as in Thornton and Valente (2012),
Ghysels et al. (2018)11 and Wan et al. (2022)), while in more recent studies (such as Gargano et al. (2019)12 and Bianchi
et al. (2021)) some economic value is retained even for the yields-only case. Motivated in part by the case of predictive
regression models, our aim in this paper is to explore, in the context of yields-only DTSMs, whether it is possible to
achieve both statistical predictability and economic value by imposing restrictions in the price of risk specification.

1.2 Sequential Learning and DTSMs with Sparsity

From a statistical or machine learning viewpoint, imposing restrictions may be thought of as guarding against overfit.
If more parameters than needed are used to extract the signal of the market price of risk, it becomes more likely to
capture noise rather than systematic patterns, thus leading to poor predictive performance. With this in mind, we
propose a novel methodological framework which successfully handles sequential model searches over the space
of all possible restrictions in real time, allowing investors to revise their beliefs when new information arrives, thus

predictive power on excess returns, while Cochrane and Piazzesi (2005) use a linear combination of five forward rates as predictors.
Such evidence, however, is purely statistical.

8The spanning hypothesis suggests that the yield curve contains all relevant information required to forecast future yields and
excess returns. Unspanned factors are not explained by the yield curve, while at the same time they are useful for predicting risk
premia (see, Cochrane and Piazzesi (2005), Duffee (2011), Joslin et al. (2014) and Cieslak (2018)).

9In a recent study however, Bauer and Hamilton (2018) cast doubt on prior conclusions, suggesting that the evidence on variables
other than the three yield factors predicting excess returns is not convincing.

10Such models are not directly comparable to DTSMs, as the latter make different and stronger modelling assumptions, such as
the absence of arbitrage, aiming to explicitly model several aspects of the market (e.g. accurately inferring short-rate expectations
and term premia) and obtain further insights on the term structure of risk premia.

11According to Ghysels et al. (2018) (and Wan et al. (2022)), economic benefits vanish when fully revised macroeconomic
information is replaced by real-time data. Our approach is not reliant on macroeconomic data and, as such, our analysis is
independent on the debate between ’fully-revised’ vs. ’real-time’ macros.

12In fact, Gargano et al. (2019) find some evidence of economic value for the Fama–Bliss (FB) predictive model. Concurrently,
the model by Cochrane–Piazzesi (CP) fails to offer any positive economic gains to bond investors.
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informing their asset allocation and maximising their expected utility. Setting up in the context of Bauer (2018), we
construct a sequential learning scheme following the principles of Chopin (2002) and Del Moral et al. (2006). The
modelling approach utilises Bayesian inference and forecasting simultaneously, while allowing for model and parameter
uncertainty to be incorporated in a sequential manner. We use the developed setup to predict bond excess returns and
explore the out-of-sample statistical and economic importance of restrictions.

Our approach differs from previous studies, allowing us to overcome a number of important challenges and offers several
advantages. First, in a similar style to Wan et al. (2022) but tailored to the context of DTSMs, it allows us to update the
estimates and predictive density as new data arrive, without the need to rerun everything from scratch. Second, it allows
for potentially more powerful prediction techniques, such as Bayesian model averaging, to be implemented. In this
paper, we develop a sequential version of the stochastic search variable selection (SSVS) scheme (can also be used for
Gibbs Variable Selection) that allows incorporating model and parameter uncertainty in a sequential manner. This is of
particular importance taking into account that investors often face model uncertainty, which highlights the need for
a framework that is capable of monitoring, identifying and adjusting models in real time. Third, it provides a more
robust alternative to the Markov Chain Monte Carlo (MCMC) sampler and model choice algorithms of Bauer (2018)
and Gargano et al. (2019), as its sequential setup naturally provides inference in a parallel way that can potentially
overcome issues such as poor mixing, slow convergence properties, and multi-modalities. While such issues do not
seem to arise for a given set of restrictions and under the canonical setup of Joslin et al. (2011) as in Bauer (2018), the
sequential scheme is useful in more challenging setups, such as the exploration of the restriction sets space.

Our evaluation framework consists of two stages. First, we evaluate the predictive performance using metrics such
as the out-of-sample R2 of Campbell and Thompson (2008) (R2

os) or the log score (LS) as in Geweke and Amisano
(2010). Second, to investigate the economic significance of the out-of-sample excess return forecasts generated by
alternative models, we construct a dynamically rebalanced portfolio as in Della Corte et al. (2008) and Thornton and
Valente (2012), for an investor with power utility preferences, and compute standard metrics (see, Johannes et al. (2014)
and Gargano et al. (2019), among others) in both univariate and multivariate asset allocation setups.

Our results lead to a host of interesting conclusions regarding the US market. Initially, we confirm Sarno et al. (2016) in
that yields-only DTSMs with some or no restrictions on the risk premia show evidence of statistical predictability which
nevertheless is not translated into systematic economic gains for bond investors. However, we also complement Sarno
et al. (2016) in that the situation is reversed when heavy restrictions are placed either by sequential model averaging
schemes introduced in this paper or by two specific models identified by our framework. The latter are in line with
Cochrane and Piazzesi (2009) and Duffee (2011) in that only level risk is priced, but place even heavier restrictions
allowing only one or two free risk premia parameters. Those schemes and models offer improved out-of-sample
portfolio performance and economically meaningful gains.

1.3 Outline

The remainder of this paper is organised as follows. Section 2 describes the modelling framework. Section 3 presents
the sequential learning and forecasting procedure along with the framework for assessing the predictive and economic
performance of models. Section 4 discusses the data and the sample period used and presents the best models inferred
through the sequential SSVS scheme. Section 5 discusses the results both in terms of predictive performance and
economic value. Section 6 provides connections with predictive regression models. Finally, Section 7 concludes the
paper by providing some relevant discussion.

2 Dynamic Term Structure Model, Likelihood, and Restrictions

In this section we briefly describe the adopted model and the associated likelihood function in order to set up the
notation and formulate our research question explicitly. More details can be found in Joslin et al. (2011) where this
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framework was introduced. The model belongs to the no-arbitrage class of Affine Term Structure Models (ATSMs)
(see, Ang and Piazzesi (2003) and Cochrane and Piazzesi (2005)), under which the one period risk-free interest rate
rt

13 is assumed to be an affine function of an N × 1 vector of state variables Xt, namely

rt = δ0 + δ′1Xt

where δ0 is a scalar and δ1 is a N × 1 vector. In Gaussian ATSMs, the physical probability measure P is assumed to be
a first-order Gaussian Vector Autoregressive (VAR) process

Xt −Xt−1 = µ+ΦXt−1 +Σεt (1)

where εt ∼ N(0, IN ), Σ is an N ×N lower triangular matrix, µ is a N × 1 vector and Φ is a N ×N matrix. Lack of
arbitrage implies the existence of a pricing kernel Mt+1, defined as

Mt+1 = exp(−rt −
1

2
λ′
tλt − λ′

tεt+1)

with λt being the time-varying market price of risk which is assumed to be affine in the state Xt
14

λt = Σ−1 (λ0 + λ1Xt)

where λ0 is a N × 1 vector and λ1 is a N × N matrix. Assuming that the pricing kernel Mt+1 prices all bonds in
the economy and we let Pn

t denote the time-t price of an n-period zero-coupon bond, then the price of the bond is
computed from Pn+1

t = Et

(
Mt+1P

n
t+1

)
and leads to the Q dynamics

Xt −Xt−1 = µQ +ΦQXt−1 +ΣεQt (2)

where µQ = µ− λ0, ΦQ = Φ− λ1 and εQt ∼ N(0, IN ). Define the observed time-t, n-period yield as

ynt = − logPn
t

n
. (3)

The J × 1 vector of the yields {ynt }Jn=1, denoted by yt, is also an affine function of the state vector

yt = An,X +B′
n,XXt, (4)

where the J × 1 loading vector An,X and the J ×N loading matrix Bn,X are calculated using the above recursions, as
An,X = −An/n and Bn,X = −Bn/n.

In theory, it is possible to specify the likelihood function based on (2) and (2) but, in practice, estimation and
identification of these formulations has been proven to be challenging (see, Ang and Piazzesi (2003), Ang et al. (2007),
Chib and Ergashev (2009), Duffee and Stanton (2012), Hamilton and Wu (2012), and Bauer (2018)), especially if
ATSMs are expressed in terms of an unobserved latent Xt. Additional restrictions need to be imposed to ensure
identifiability, such as the canonical setup of Joslin et al. (2011) that is adopted in this paper. More specifically, Xt is
assumed to be linearly related to the observed yields, and as such, perfectly priced by the no-arbitrage restrictions. We
rotate Xt to match the first N principal components (PCs) of the observed yields

Pt = Wyt = WAn,X +WBn,XXt, (5)

with W being the N × J matrix that contains the PCs’ loadings. Following common practice, we consider the case
of N = 3, noting that the first three extracted PCs are typically sufficient to capture most of the variation in the yield

13Working with monthly data implies that rt is the 1-month yield.
14This is the ‘essentially-affine’ specification introduced in Duffee (2002). Existing studies have proposed alternative specifications

for the market price of risk, such as the ‘completely-affine’ model of Dai and Singleton (2000), the ‘semi-affine’ model of Duarte
(2004), and the ‘extended-affine’ model of Cheridito et al. (2007). See Feldhütter (2016) for a useful comparison of the models.
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curve and often correspond to its level, slope, and curvature respectively (Litterman and Scheinkman 1991). Statistical
inference can proceed using the observations Y = {yt,Pt : t = 0, 1, . . . , T}. The likelihood factorises into two parts
stemming from the P and Q respectively. In order to specify the latter, henceforth denoted as Q likelihood, the affine
transformation of (2) is applied to (2) to obtain the dynamics of Pt under Q

Pt − Pt−1 = µQ
P +ΦQ

PPt−1 +ΣPε
Q
t (6)

and, similarly, the yield equation (2) can be rewritten as a function of Pt
15

yt = An,P +Bn,PPt, (7)

where µQ
P , ΦQ

P , ΣP , An,P and Bn,P are given in Online Appendix A. Note that in (2) and (2), yields are assumed to be
observed without any measurement error. Nevertheless, an N -dimensional observable state vector cannot perfectly
price J > N yields, and as such, we further assume that the J −N bond yields used in the estimation are observed
with independent N(0, σ2

e) measurement errors. An equivalent way to formulate this is to write

yt = An,P +Bn,PPt + et,n, ∀n, (8)

and to consider the dimension of et,n as effectively being J −N .

In order to specify the P likelihood we note that P dynamics of Pt are of equivalent form to (2) with µP
P = µQ

P + λ0P

and ΦP
P = ΦQ

P +λ1P , where λ0P is a N × 1 vector and λ1P is a N ×N matrix reflecting the market price of risk in Pt

terms. We also follow the identification scheme of Joslin et al. (2011) (proposition 1), where the short rate is the sum of
the state variables, namely rt = iXt with i being a vector of ones, and the parameters µQ and ΦQ of the Q-dynamics
are given as µQ = [kQ∞, 0, 0] and ΦQ = diag(gQ), where gQ denotes a N × 1 vector containing the real and distinct
eigenvalues of ΦQ 16. The joint likelihood (conditional on P0) can now be written as

f(Y |θ) =

{
T∏

t=0

fQ(yt|Pt, k
Q
∞, gQ,Σ, σ2

e)

}
×

{
T∏

t=1

fP (Pt|Pt−1, k
Q
∞, gQ, λ0P , λ1P ,Σ)

}
, (9)

where the Q-likelihood components, fQ(·), are given by (2) and capture the cross-sectional dynamics of the risk factors
and the yields, whereas P-likelihood components, fP (·), capture the time-series dynamics of the observed risk factors.
The parameter vector is set to θ = (σ2

e , k
Q
∞, gQ, λ0P , λ1P ,Σ).

Note that in the case of all entries in λ0P , λ1P being non-zero, also known as the maximally flexible model, the mapping
between θ and θ̃ = (σ2

e , k
Q
∞, gQ, µP

P ,Φ
P
P ,Σ) is 1-1. This allows for the following equivalent likelihood specification

f(Y |θ̃) =

{
T∏

t=0

fQ(yt|Pt, k
Q
∞, gQ,Σ, σ2

e)

}
×

{
T∏

t=1

fP (Pt|Pt−1, µ
P
P ,Φ

P
P ,Σ)

}
.

Hence, loosely speaking, under the maximally flexible model the parameters kQ∞, gQ are estimated mainly from the
Q likelihood, in other words based solely on cross-sectional information and without reference to the real-world
dynamics17. But if one or more entries of the λ0P , λ1P are set to zero, in other words if restrictions are imposed,
then the mapping from θ to θ̃ is no longer 1-1, allowing only the likelihood specification of (2) that directly links Q
parameters with time series information.

15According to Duffee (2011), outside of knife-edge cases, the matrix (WBn,x) is invertible, and as such, Pt contains the same
information as Xt.

16Alternative specifications for the eigenvalues are considered in Joslin et al. (2011); however, real eigenvalues are found to be
empirically adequate.

17According to Joslin et al. (2011), the ordinary least squares estimates of parameters µ and Φ are almost identical to those
estimated using maximum likelihood.
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Nevertheless, this raises the issue of how to choose between the 2N+N2

possible sets of restrictions in the λ0P , λ1P

matrices; e.g. in the case of N = 3 there are 4, 096 distinct sets of restrictions. Bauer (2018) suggests using Bayesian
model choice, aiming to maximise the model evidence of each restriction specification. In this paper we propose
choosing the restriction set with the optimal predictive performance among all possible restriction sets. Models that are
optimal in the Bayesian sense, i.e. achieving the highest model evidence, are typically parsimonious and therefore are
expected to exhibit good predictive performance. In a related argument, Fong and Holmes (2020) show that model
evidence is formally equivalent with exhaustive leave-p-out cross-validation combined with the log posterior predictive
scoring rule. Hence, it will not be surprising if the same set of restrictions was obtained from both approaches; in fact
this is the case in data from the US market as we illustrate in Section 4. Nevertheless, this is not always guaranteed to
be the case and, in situations where different answers are obtained, the predictive performance criterion may be more
relevant in the context of DTSMs from an investor’s point of view.

3 Sequential Estimation, Model Choice, and Forecasting

In this section we develop a sequential Monte Carlo (SMC) framework for Gaussian ATSMs. We draw from the work
of Chopin (2002, 2004) (see also Del Moral et al. (2006)), and make the necessary adaptations to tailor the methodology
to the data and models considered in this paper. Furthermore, we extend the framework to allow for sequential Bayesian
model choice by incorporating the SSVS algorithm that allows searching over 2N+N2

models; see Schäfer and Chopin
(2013) for some relevant work in the linear regression context. Overall, the developed framework allows the efficient
performance of tasks such as sequential parameter estimation, model choice, and forecasting. We begin by providing the
main skeleton of the scheme and then provide the details of its specific parts, such as the MCMC scheme for exploring
the model space, and the framework for obtaining and evaluating the economic benefits of predictions.

3.1 Sequential Framework

Let Y0:t = (Y0, Y1 . . . , Yt) denote all the data available up to time t, such that Y0:T = Y . Similarly, the likelihood
based on data up to time t is f(Y0:t|θ) and is defined in (2). Combined with a prior on the parameters π(θ), see Online
Appendix B.1 for details, it yields the corresponding posterior

π(θ|Y0:t) =
1

m(Y0:t)
f(Y0:t|θ)π(θ), (10)

where m(Y0:t) is the model evidence based on data up to time t. Moreover, the posterior predictive distribution, which
is the main tool for Bayesian forecasting, is defined as

f(Yt+h|Y0:t) =

∫
f(Yt+h|Yt, θ)π(θ|Y0:t)dθ (11)

where h is the prediction horizon. Note that the predictive distribution in (3.1) incorporates parameter uncertainty by
integrating θ out according to the posterior in (3.1). Usually, prediction is carried out by expectations with respect
to (3.1), e.g. E(Yt+h|Y0:t) but, since (3.1) is typically not available in closed form, Monte Carlo can be used in the
presence of samples from π(θ|Y0:t). This process may accommodate various forecasting tasks; for example forecasting
several points, functions thereof, and potentially further ahead in the future. A typical forecasting evaluation exercise
requires taking all the consecutive times t from the nearest integer of, say, T/2 to T − 1. In each of these times, Y0:t

serves as the training sample, and points of Y after t are used to evaluate the forecasts. Hence, carrying out such a task
requires samples from (3.1), and therefore from π(θ|Y0:t), for several times t. Note that this procedure can be quite
laborious and in some cases infeasible.

An alternative approach that can handle both model choice and forecasting assessment tasks is to use sequential Monte
Carlo (see, Chopin (2002) and Del Moral et al. (2006)) to sample from the sequence of distributions π(θ|Y0:t) for
t = 0, 1, . . . , T . A general description of the Iterated Batch Importance Sampling (IBIS) of Chopin (2002)’s algorithm,
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see also Del Moral et al. (2006) for a more general framework, is provided in Table 1. The degeneracy criterion is

Initialise Nθ particles by drawing independently θi ∼ π(θ) with importance weights ωi = 1, i = 1, . . . , Nθ . For t, . . . , T and each
time for all i:

(a) Calculate the incremental weights

ut(θi) = f(Yt|Y0:t−1, θi) = f
(
Yt|Yt−1, θi)

(b) Update the importance weights ωi to ωiut(θi).
(c) If some degeneracy criterion (e.g. ESS(ω)) is triggered, perform the following two sub-steps:

(i) Resampling: Sample with replacement Nθ times from the set of θis according to their weights ωi. The weights are
then reset to one.

(ii) Jittering: Replace θis with θ̃is by running MCMC chains with each θi as input and θ̃i as output.

Table 1: IBIS algorithm

usually defined through the Effective Sample Size (ESS) which is equal to

ESS(ω) =
(
∑Nθ

i=1 ωi)
2∑Nθ

i=1 ω
2
i

and is of the form ESS(ω) < αNθ for some α ∈ (0, 1), where ω is the vector containing the weights.

The IBIS algorithm provides a set of weighted θ samples, or else particles, that can be used to compute expectations
with respect to the posterior, E[g(θ)|Y0:t], for all t using the estimator

∑
i[ωig(θi)]/

∑
i ωi. Chopin (2004) shows

consistency and asymptotic normality of this estimator as Nθ → ∞ for all appropriately integrable g(·). The same
holds for expectations with respect to the posterior predictive distributions, f(Yt+h|Yt); the weighted θ samples can be
transformed into weighted samples from f(Yt+h|Yt) by simply applying f(Yt+h|Yt, θ). A very useful by-product of
the IBIS algorithm is the ability to compute m(Y0:t) = f(Y0:t), which is the criterion for conducting formal Bayesian
model choice. Computing the following quantity in step (a) in Table 1 yields a consistent and asymptotically normal
estimator of f(Yt|Y0:t−1)

Mt =
1∑Nθ

i=1 ωi

Nθ∑
i=1

ωiut(θi)

An additional benefit provided by sequential Monte Carlo is that it provides an alternative choice when MCMC
algorithms have poor mixing and convergence properties and, in general, is more robust when the target posterior is
challenging, e.g. multimodal. Finally, as we demonstrate in Section 4, the sequential nature of the algorithm allows it to
produce informative descriptive output to monitor the evolution of key parameters in time.

In order to apply the IBIS output to models and data in this paper, the following adaptations or extensions are needed.
First, the choice of defining the incremental weights in step (a) in Table 1, also known as data tempering, is suitable for
getting access to sequences of predictive distributions, needed to assess forecasting performance, but at the same time it
is quite prone to numerical stability issues and very low effective sample sizes, in particular early on, that is at the initial
time points. This is because the learning rate is typically higher at the beginning, especially when transitioning from a
vague prior. An alternative approach that guarantees a pre-specified minimum effective sample size level, and therefore
some control over the Monte Carlo error, is to use adaptive tempering; see, for example, Jasra et al. (2011). In order
to combine the benefits of both approaches we use a hybrid adaptive tempering scheme which we present in Online
Appendix B.2. The idea of this scheme is to use adaptive tempering within each transition between the posteriors based
on Y0:t and Y0:t+1 for each t. Similar ideas have been applied in Schäfer and Chopin (2013) and Kantas et al. (2014).
Second, and quite crucially in this paper, we extend the framework presented in Section 3.2 to handle sequential model
searches over the space of all possible risk price restrictions. Third, we note that the MCMC sampler, used in sub-step
(ii) of step (c) in Table 1, needs to be automated as it will have to be rerun for each time point and particle without the
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luxury of having initial trial runs, as it is often the case when running a simple MCMC on all the data. The problem
is intensified by the fact that the MCMC algorithm used here, developed in Bauer (2018), consists of independence
samplers that are known to be unstable. To address this, we utilise the IBIS output and estimate posterior moments to
obtain independence sampler proposals; see Online Appendix B.2 for details. Finally, we connect the IBIS output with
the construction of a model-driven dynamically rebalanced portfolio of bond excess returns and calculate its economic
value.

3.2 Sequential Model Choice Across Risk Price Restrictions

As mentioned in Section 2, the specification of the market price of risk is conducted via λ0P and λ1P . For brevity of
further exposition, let λP = [λ0P , λ1P ] and λ = λ1P . If all the entries in λP are free parameters we get the maximally
flexible model. Alternative models have also been proposed in the existing studies, e.g. Cochrane and Piazzesi (2009)
and Bauer (2018), where some of these entries are set to zero. More specifically, in most models the set of unrestricted
parameters is usually a subset of λP . A standard approach to facilitating Bayesian model choice is via assigning
spike-and-slab priors (Mitchell and Beauchamp 1988, George and McCulloch 1993, Madigan and Raftery 1994) on
each of the λP

ijs, via the following mixture

λP
ij ∼ (1− γij)N(0, τ

(0)
ij ) + γijN(0, τ

(1)
ij )

where γijs are Bernoulli random variables taking zero value if the corresponding λP
ij is small (almost equal to zero)

or non-zero value if it is large (significantly different from zero). Hence τ
(0)
ij is typically given a very small value,

thus forcing the underlying parameter towards zero, while τ
(1)
ij is set to a larger value so that the data determine the

value of the parameter in question. More specifically for τ (1)ij , we use the Zellner’s g-prior as in Bauer (2018), a rather
standard choice to prevent over-penalisation of complex models, an issue often referred to as the Lindley’s paradox;
see Online Appendix B.1 for more details. The γijs are also estimated using MCMC; see Online Appendix B.2 for
details. The proportion of the MCMC draws in which each γij is equal to one provides the posterior probability of the
corresponding λP

ij being non-zero, also known as posterior inclusion probability.

We consider two approaches to Bayesian model choice in order to explore its links with predictive performance. The
first approach is to implement the spike-and-slab approach on some data used for training purposes in order to select the
top models. The sequential algorithm in Table 1 is then applied to each of them, without using spike-and-slab priors
and with some λP

ij being exactly equal to zero, extracting their predictive distributions and contrasting them with the
observed data. Under the second approach, sequential inference on both the models and the parameters is drawn. This
is implemented by running a single instance of the sequential algorithm in Table 1, modified to incorporate the SSVS
algorithm based on the spike-and-slab priors. In this case, the parameter vector includes the γijs allowing us to calculate
the inclusion probabilities, using the particle weights, at each time t based on all the data up to and including t.

This approach offers several advantages in exploring the landscape of the risk price restriction space as we can monitor
potential changes in the importance of different λP

ijs over time. Moreover, the global search nature of sequential Monte
Carlo may be helpful in exploring this landscape across different models. Each θ particle contains a set of γijs and
corresponds to a particular model. The set of θ particles therefore contains instances of the leading models among the
2N+N2

possible ones. Every time resampling and jittering take place, the list of models can be potentially updated
giving more focus to the cases with higher weights, or else posterior probability, and potentially depleting the ones with
lower weights. Hence it is now less likely to get trapped in local modes when exploring the model space. Finally, this
scheme allows combining different models and incorporating model uncertainty into forecasting via model averaging in
a sequential manner.
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3.3 Assessing Predictive Performance and Economic Value

Failure of the EH implies that bond returns are strongly predictable (see, Fama and Bliss (1987), Campbell and Shiller
(1991), Cochrane and Piazzesi (2005), and Ludvigson and Ng (2009), among others). In this section, we attempt to
revisit conflicting results reported in the existing studies (e.g. Duffee (2011), Barillas (2011), Adrian et al. (2013),
Joslin et al. (2014), Sarno et al. (2016) and Feunou and Fontaine (2018)) on the ability of yields-only DTSMs to capture
the predictability of risk premia in the US Treasury market. This is done while exploring sequentially the space of
restrictions imposed on the dynamics of risk compensation. Furthermore, we attempt to explore whether statistical
predictability, if any, can be turned into economic benefits for bond investors.

3.3.1 Bond Excess Returns:

The observed continuously compounded excess return of an n-year bond is defined as the difference between the
holding period return of the n-year bond, expressed above in terms of log prices, and the h-period yield as

rxn
t,t+h = −(n− h)yn−h

t+h + nynt − hyht ,

where ynt is defined in (2). If, instead of taking the observed one, we take the model-implied yield ynt , from equation
(2), we arrive at the predicted excess returns r̃xn

t,t+h

r̃x
n
t,t+h = An−h −An +Ah +B′

n−hP̃t+h − (Bn −Bh)
′Pt, (12)

where Pt is observed and P̃t+h is a prediction from the model. Our developed framework, see Table 1, allows drawing
from the predictive distribution of (P̃t+h, r̃x

n
t,t+h) based on all information available up to time t. More specifically,

for each θi particle equation (2) can be used to obtain a particle of P̃t+h, which can then be transformed into a particle
of r̃xn

t,t+h via equation (3.3.1).

The predictive accuracy of bond excess return forecasts is measured in relation to an empirical benchmark. We follow
related literature and adopt the EH as this benchmark, which essentially uses historical averages as the optimal forecasts
of bond excess returns. This empirical average is

rxn
t+h =

1

t− h

t−h∑
j=1

rxn
j,j+h

We consider two metrics to assess the predictive ability of models considered. First, following Campbell and Thompson
(2008), we compute the out-of-sample R2 (R2

os) as

R2
os = 1−

∑t
s=t0

(rxn
s,s+h − r̂x

n
s,s+h)

2∑t
s=t0

(rxn
s,s+h − rxn

s+h)
2

for r̂xn
s,s+h being the mean of the predictive distribution. Positive values of this statistic mean that model-implied

forecasts outperform the empirical averages and suggest evidence of time-varying return predictability. Second, in
order to assess the entire predictive distribution offered by our scheme, rather than just point predictions, we use the
log score18; a standard choice among scoring rules with several desirable properties, such as being strictly proper, see
for example Dawid and Musio (2014). These metrics are aggregated over all prediction times (t0 to t) and maturities.
In order to get a feeling for how large the differences from the EH benchmark are, we report the p-values from the
Diebold-Mariano test (see, Gargano et al. (2019)) noting that these are viewed as indices rather than formal hypothesis
tests. They are based on t-statistics computed taking into account potential serial correlations in the standard errors (see,
Newey and West (1987)).

18The computational details, results and discussion of the log predictive score are presented in Online Appendix D.
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3.3.2 Economic Performance of Excess Return Forecasts:

From a bond investor’s point of view it is of paramount importance to establish whether the predictive ability of a
model can generate economically significant portfolio benefits, out-of-sample. The portfolio performance may also
serve as a metric to compare models that impose different sets of restrictions on the price of risk specification. In that
respect, our approach is different from Thornton and Valente (2012) and Sarno et al. (2016), who test the economic
significance for an investor with mean-variance preferences19 and conclude that statistical significance is not turned
into better economic performance, when compared to the EH benchmark. It is more in line with Gargano et al. (2019)
and Bianchi et al. (2021), who arrive at similar conclusions for models which utilise information coming solely from
the yield curve (e.g. yields, forwards, etc.). Computationally, it is quite similar to the approach of Wan et al. (2022),
tailored to the context of our paper.

We consider a Bayesian investor with power utility preferences,

U(Wt+h) = U(wn
t , rx

n
t+h) =

W 1−γ
t+h

1− γ

where Wt+h is an h-period portfolio value and γ is the coefficient of relative risk aversion. If we let wn
t be a portfolio

weight on the risky n-period bond and (1− wn
t ) be a portfolio weight of the riskless h-period bond, then the portfolio

value h periods ahead is given as

Wt+h = (1− wn
t ) exp(r

f
t ) + wn

t exp(rft + rxn
t,t+h)

where rft is the risk-free rate, here synonymous with the h-period yield. Such an investor maximises her expected utility
over h-periods in the future, based on x1:t = {rxn

1:t,P1:t}

Et[U(Wt+h)|x1:t] =

∫
U(Wt+h)f(Wt+h|x1:t)dWt+h =

∫
U(wn

t , rx
n
t+h)f(rx

n
t+h|x1:t)drx

n
t+h,

where f(rxn
t+h|x1:t) is the predictive density described earlier. At every time t, our Bayesian learner solves an asset

allocation problem getting optimal portfolio weights by numerically solving

ŵn
t = argmax

1∑Nθ

i=1 ωi

Nθ∑
j=1

ωj

{
[(1− wn

t ) exp(r
f
t ) + wn

t exp(rft + r̃x
n,j
t,t+h)]

1−γ

1− γ

}
,

with Nθ being the number of particles from the predictive density of excess returns, weighted using importance weights
ωi, i = 1, ..., Nθ, which come from the IBIS algorithm.

To obtain the economic value generated by each model, we use the resulting optimum weights to compute the CER
as in Johannes et al. (2014) and Gargano et al. (2019). In particular, for each model, we define the CER as the value
that equates the average utility of each model against the average utility of the EH benchmark specification. Denoting
realised utility from the predictive model as Ût = U

(
ŵn

t , {r̃x
n,j
t,t+h}

Nθ
j=1

)
and realised utility from the EH benchmark

as U t, we get

CER =

(∑t
s=t0

Ûs∑t
s=t0

Us

) 1
1−γ

− 1

The above can be extended to multi-asset portfolio allocation by taking wn
t to be a vector.

19In fact, Sarno et al. (2016), also use an approximation of the power utility solution. Furthermore, they allow for the variance to
be constant (or rolling window) and in-sample, in line with Thornton and Valente (2012).
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4 Data and Models

The yield data set contains monthly observations of zero-coupon US Treasury yields with maturities of
(1, 2, 3, 4, 5, 7, 10)-years, spanning the period from January 1985 to the end of 2018. In particular, yields used
are the unsmoothed Fama-Bliss yields constructed by Le and Singleton (2013)20. We consider two samples, one ending
at the end of 2007 and that, as such, precludes the ensuing financial crisis, and a second one which includes the period
after the end of 2007, a period determined by, first, different monetary actions and establishment of unconventional
policies and, second, interest rates hitting the zero-lower bound. The first sample has been used by most of the existing
studies (see, Joslin et al. (2011), Joslin et al. (2014), Bauer (2018), and Bauer and Hamilton (2018)). Following
related literature, we choose the starting date avoiding the early 1980s, a period with evidence of the Fed changing its
monetary policy. The post-2007 global financial crisis period is excluded from our first sample due to concerns about
the capability of Gaussian ATSMs to deal with the zero-lower bound (see, Kim and Singleton (2012) and Bauer and
Rudebusch (2016)). These concerns are explored in the second sample, spanning the period from January 1990 to end
of 2018, as in Bauer and Hamilton (2018). The post 2007 period of the second sample coincides with the vast majority
of the recent bond predictability literature (see, Bianchi et al. (2021), Wan et al. (2022), Borup et al. (2021) and Li
et al. (2022)), thus allowing direct comparisons. Overall, the data contain different market conditions and monetary
policy actions. In the analyses of the two samples the data are split into a warm-up period, where the data are used
only for estimation purposes, and a testing period, starting immediately afterwards, where we start evaluating the
model predictions while incorporating additional information as the data become available. Specifically, the training
periods are 1985− 1996 and 1990− 2007 respectively. The data processing involves extracting the first three principal
components from the yield curve, depicted in Figure 1 of Online Appendix C.

In terms of models, as mentioned in Section 2, there are 4, 096 possible distinct sets of risk price restrictions in the case
of three factors driving the state variables. The first model considered is the previously mentioned maximally flexible
model, (M0), in line with previous empirical studies (e.g. Duffee (2011), Sarno et al. (2016), and Bauer (2018), among
others), which places no restrictions on the risk premia parameters. The next three models were the ones suggested
by our developed sequential SSVS scheme, as the models with the highest posterior probability, when it was run in
the first warm-up period 1985-1996. The outcome of this run, confirmed the argument of sparsity in the market price
of risk specification, since the best models only freed one or two risk price parameters. Specifically, the model with
the highest posterior probability is the one that allows a single free parameter, λ1,2, which we denote as M1. This
is the parameter which drives variation in the price of level risk due to changes in the slope of the yield curve. The
next model, denoted by M2, has two free risk price parameters, λ1,2 as M1 and also λ1,1, whereas under M3 only λ1,1

is free. This suggests that the variation in the price of level risk is driven by changes in the level factor. Finally, we
consider Bayesian model averaging with model weights obtained from our developed sequential SSVS scheme. We
explore three formulations: the first one (M4) assumes uniform prior distribution over models, where each element of
λP is independently Bernoulli distributed with success probability 0.5, as in Bauer (2018). The second one (M5) uses a
hierarchical prior, namely Beta(1, 1)-Binomial; see for example Wilson et al. (2010) and Consonni et al. (2018). The
list of models is completed with M6, a constrained version of M4 with only λ1,1 and λ1,2 allowed to be non-zero.

5 Empirical Results

This section presents the main results on the statistical and economic performance of excess return forecasts. In
particular, we assess models based on different sets of restrictions and explore the evident puzzling behaviour between
statistical predictability and meaningful out-of-sample economic benefits for bond investors. Furthermore, we monitor
how the optimum set of restrictions behaves around periods of monetary policy shifts, interventions, and fragile
economic conditions.

20We are grateful to Anh Le for generously providing the data set.
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5.1 Yield Curve and Risk Price Dynamics

The yield curve behaviour through time (see Online Appendix C for more details) is captured from the sequential setup
developed in this paper, which allows monitoring variations across time in the estimates of parameters, restrictions,
and the importance thereof. Figure 1 contains the results obtained from fitting the model M6 on the two previously
mentioned samples, focusing on the testing periods. The plots depict information for the parameters λ1,1, λ1,2, their
posterior inclusion probabilities, the associated posterior model probabilities, as well as the highest eigenvalue of ΦP

P
and kQ∞ which is linked to the long-run mean of the short rate rt under Q. From the restrictions parameters, we chose to
report only λ1,1 and λ1,2 as these were the only parameters with posterior inclusion probabilities not close to zero. In
fact, based on the median probability principle that recommends keeping only variables with inclusion probabilities
above 0.5, perhaps only the λ1,2 parameter should be allowed to be free, thus pointing to model M1. Nevertheless, as
we discuss in the remainder of the paper, it may be helpful to consider freeing λ1,1.

The posterior inclusion probabilities of the risk premia parameters are rather stable in the second sample, whereas they
vary slightly in the first one in line with the changes in policy actions. During the conundrum period, the inclusion
probability for λ1,1 increases while at the same time that for λ1,2 deteriorates. This suggests that the parameter, which
links compensation for level risk to the slope factor, becomes more important during periods of yield curve steepening
than periods when the curve flattens. Similarly, the parameter λ1,1 is more likely to be important during periods where
the level of the term structure increases. In terms of model probabilities, M1 performs better than M3, as follows from
the posterior inclusions probabilities of λ1,2 and λ1,1, respectively. In the second sample the picture is clearer, as the
model selection procedure suggest that only the λ1,2 parameter should be left free, and consequently M1 is the clear
winner.

It is also interesting to look at the long-run mean of the short rate rt under Q, over time, the posterior trajectory of
which follows interest rate expectations and yield curve fluctuations. In the first sample, it starts at a high level and
progressively moves down to zero until 2005. This is followed by an increase during and after the conundrum period
of 2004-2006, due to the substantial increase of the federal funds rate. Qualitatively similar conclusions are made
when looking at the second sample, where the long-run mean level starts slightly increasing after 2008, reflecting
the steepening of the curve due to the Fed’s policies. The increase is more pronounced during and peaks around the
2013 ’taper tantrum’ events, reflecting and capturing the sharp increase in medium-to-long maturity yields, and drops
afterwards. Finally, we monitor the largest eigenvalue of the feedback matrix ΦP

P + I , where I denotes the identity
matrix. Its posterior mean remains nearly constant and very close to unity over the entire sample period, indicating
a generally high P-persistence, implied by the restrictions imposed on the risk-price parameters. This also reflects
an enhanced time variation of short rate expectations and more stable risk premiums, implying a larger role of the
expectation component over the risk premium component, in line with policy making and interventions.

5.2 Bond Return Predictability

This subsection presents results on the predictive performance exercise described in Section 3.3.1. Table 2 reports
R2

os values for all models across bond maturities, prediction horizons and sub-periods. Results for the first sample
(1985-2007), suggest that the maximally flexible model M0, widely used in the vast majority of prior studies, performs
rather poorly out-of-sample compared to the EH benchmark, as showcased by predictive R2

os that are mostly negative,
especially at the longer maturities (beyond 5-year). This is not the case for the second sample (1990-2018) where
M0 offers evidence of predictability for investment horizons bigger than 1 month, generating scores which are mostly
positive and highly significant, especially at the short end of the maturity spectrum and at longer prediction horizons.

Results are generally better when heavy restrictions are imposed on the risk price dynamics (models M1 − M6),
generating more accurate forecasts, as showcased by positive R2

os values, suggesting strong evidence of out-of-sample
bond return predictability. Models M1 and M2 perform quite well in the second sample, which could be partly explained
by the parameter λ1,2 being helpful when the curve steepens. On the other hand model M3, which does not contain
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λ1,2, does better in the first sample. This reveals that shocks to the level of the yield curve, captured through λ1,1, are
important components of time-varying risk premia, mainly, during high yield and low uncertainty periods. In terms of
the sequential model averaging schemes, they all perform consistently well doing slightly better in the second sample
and at long prediction horizons.

Furthermore, we confirm that predictability is substantially higher following the post-crisis recession period, when the
US market experienced high uncertainty and low interest rates, compared to the pre-crisis low volatility and high yield
period, where R2

os are substantially lower. This finding is robust across models tested and methodologies applied.

These observations are in contrast to prior literature (see, Duffee (2011), Barillas (2011), Adrian et al. (2013), and
Joslin et al. (2014)), which suggests that yields-only DTSMs are not capable of capturing the predictability of bond risk
premia, and are more in line with the results of Sarno et al. (2016) and Feunou and Fontaine (2018) who argue that their
modelling approaches help models to capture the required predictability of excess returns, in the context of DTSMs.
Another message coming out of the analysis, despite the very good performance of models M1-M3, is that sequential
model averaging can provide a reliable solution in both time periods. The results based on LS are also qualitatively
similar and can be found in Online Appendix D.

5.3 Economic Performance

In this subsection, we concentrate on performance in terms of economic value, as described in Section 3.3. We therefore
ask whether the predictive ability of models can be exploited by a real-time Bayesian investor when making investment
decisions. We initially consider a univariate asset allocation setup which, then is extended to a multivariate allocation
framework, where investor jointly models bond excess returns across maturities. To assess the robustness of our results
and establish a better link with existing literature, we investigate the economic evidence considering three different
scenarios for investors. The first two prevent them from taking extreme positions, while the third relaxes restrictions and
allows for maximum leveraging and short-selling. In particular, in the first scenario we follow Thornton and Valente
(2012), Sarno et al. (2016) and Gargano et al. (2019) and restrict portfolio weights to range in the interval [−1, 2], thus
imposing maximum short-selling and leveraging of 100% respectively. Second, we follow Huang et al. (2020) and
restrict portfolio weights to the interval [−1, 5] which keeps maximum short-selling at 100% while increasing the upper
bound, which now amounts to a maximum leveraging of 400%21. Third, we follow Bianchi et al. (2021) and Wan
et al. (2022) and impose no allocation restrictions to investors, allowing for portfolio weights to be unbounded. Finally,
to make our results directly comparable to previous studies, we set the coefficient of risk aversion to γ = 5, across
scenarios.

Table 3 reports results for the annualised CER values, generated using out-of-sample forecasts of bond excess returns
across maturities and prediction horizons in the first sample. Panel A presents evidence under the first investment
scenario. Results show evidence of positive out-of-sample economic benefits, mainly at longer maturities. In particular,
we find that, in most models, corresponding CERs are positive and non-negligible, indicating that yields-only models
with heavy restrictions on the dynamics of risk compensation, not only provide statistical evidence of out-of-sample
predictability, but also generate valuable economic gains for bond investors relative to the EH benchmark. Concurrently,
the maximally flexible model M0, fails to offer any positive out-of-sample economic benefits compared to the EH
benchmark, generating CER values which are consistently negative across the maturity spectrum and investment
horizons. Furthermore, consistent with the conclusions coming from the predictability analysis in Section 5.2, such
models are identified to be the exact same ones, suggesting that only models which allocate one or two non-zero
risk price parameters solely to the level factor are able to generate meaningful economic gains for investors who
dynamically rebalance their portfolio when new information arrives. Finally, the developed sequential SSVS scheme,
which only searches among the best models available, attains very good performance, generating CER values which
are quantitatively similar, compared to model M1. Those findings are in contrast to the conclusions of Thornton and

21The results and discussion of this allocation scenario are presented in Online Appendix E.1.
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Valente (2012) and Sarno et al. (2016), who argue that bond investors who utilise information from the yield curve only
are not able to systematically earn any economic premium out-of-sample.

Importantly, our results suggest larger gains from predictability at longer maturities (beyond 5-years) and investment
horizons (beyond 6-months), reflecting substantially higher and statistically significant CER values and consequently
more profitable investments. This is in line with prior empirical evidence (see, Bianchi et al. (2021)) which states
that long-dated yields contain substantial predictive power beyond the first five years. For example, for model M1 at
the 6-month investment horizon, CER is 1.20% (1.73%) for a 7-year (10-year) maturity bond, while at the 12-month
horizon, corresponding CER is 1.13% (1.70%) and highly significant for a 7-year (10-year) maturity bond. Qualitatively
similar gains are generated for most of the models. In turn, for the sequential SSVS model M6, which searches only
among the best models available, at the 6-month investment horizon, CER is 1.20% (1.63%) for a 7-year (10-year)
maturity bond, while at the 12-month prediction horizon, corresponding CER is 1.08% (1.50%) and highly significant
for a 7-year (10-year) maturity bond. In fact, during the first sub period, those two models appear to outperform all
other models tested.

Comparing the performance of alternative model specifications over time sheds light on the importance of particular
restrictions across monetary policy actions and market conditions. Table 4 displays CER values for the period ending in
2018, which covers the aftermath of the recession of 2007-2009 as well as the most interesting phases of the unfolding
of the Fed’s policy responses to it. Results reveal that economic benefits are even more pronounced compared to the
pre-crisis period. Such an upturn in CER values occurs across the maturity spectrum with a tendency for substantially
larger gains at the long end of the curve, where investments on the 10-year maturity bond remain the most profitable.
In particular, looking at all models, other than M0 and M3, CER values for a 10-year maturity bond almost double
when compared to the pre-crisis period. For example, for model M1 at the 6-month investment horizon, CER is up to
2.44% for a 10-year maturity bond, while at the 12-month horizon, corresponding CER is 2.22% and highly significant.
Qualitatively similar results are observed for other models tested, as displayed in Table 4. Importantly, positive and
significant gains are now generated at shorter maturities and investment horizons. For example, for model M1 at the
1-month investment horizon, CER is 1.55% and significant for a 7-year maturity bond, while for model M4 at the
3-month horizon, CER is 0.36% and significant for a 4-year maturity bond. Finally, models that have been inferred
via the sequential SSVS scheme developed (e.g. model M4) do very well offering qualitatively similar CER values to
model M1.

Next, we move to investigate asset allocation using the scenario where no allocation restrictions are imposed on investors.
Panels B in Tables 3 and 4 present results for the annualised CER values. Our results in this case, are even more
pronounced compared to the constrained allocation scenario of Panel A, since CER values increase substantially, across
the maturity spectrum. More specifically, we find that for model M1, at the 3-month investment horizon, CERs increase
up to 3.41% and significant for a 10-year maturity bond, while for model M4, at the 9-month horizon, CER value
jumps to 3.15%. Importantly, models with some or no restrictions on the risk price dynamics, such as the maximally
flexible model M0, still fail to offer any positive out-of-sample economic benefits compared to the EH benchmark. No
matter the bond maturity, the investment horizon and the period considered, generated CERs are consistently negative,
revealing no benefits to investors, in line with Thornton and Valente (2012) and Sarno et al. (2016).

Turning to the multi-asset allocation exercise, results are presented in Table 5. Panel A reports annualised CER values
for the first sample, while Panel B for the second sample. Our results remain qualitatively similar to the univariate
allocation setup. In particular, results reveal that the maximally flexible model M0 continues to fail offering any
out-of-sample benefits to investors, generating CERs which are consistently negative across investment horizons and
sub-periods. The situation is reversed for models with heavy restrictions on the dynamics of risk compensation (e.g.
models M1 and M2) as well as for models inferred via the developed SSVS scheme (e.g. model M6). In particular,
results reveal larger gains from predictability at longer investment horizons (beyond 6-months), where CERs are positive
and significant compared to the EH benchmark. In fact, corresponding CERs are higher (in some cases on the order of
1% per annum) compared to the univariate case, suggesting that gains are not limited to specific maturities, as evidenced
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also in Bianchi et al. (2021). Similar conclusions, yet more pronounced are revealed during the second sample where
economic benefits are substantially higher. Interestingly, model M3, which offers positive gains during the first sample,
fails to produce any benefits to investors during the second sample, in line with the univariate allocation case.

6 Connections with Predictive Regression Models

Given the improved performance offered by the use of the sequential SSVS approach in DTSMs, it is natural to ask the
question whether it can also be of help in similar contexts such as predictive regression models (see, Fama and Bliss
(1987), Cochrane and Piazzesi (2005), Gargano et al. (2019), Bianchi et al. (2021), Wan et al. (2022), among many
others). We consider inputs from yields-only data, in fact the Pts (PCs) are viewed as the only inputs, thus leading to
the following model

rxn
t,t+h = ah + b′

hPt + σhϵt (13)

where ah, σh are scalars, and bh is N × 1 vector of the regression coefficients. Connecting with relevant literature,
e.g. Gargano et al. (2019), these inputs are closer to the CP factor as they are linear combinations of the yield
across maturities; in that paper the FB factors are maturity-specific whereas the LN factor contains macroeconomic
information. To maximise relevance with our approach to DTSMs, we consider a variant of the model in (6) paired with
a VAR model

Pt − Pt−1 = µ+ΦPt−1 +Σεt (14)

rxn
t,t+h = ah + b′

hPt+h−1 + σhϵt (15)

where µ, Φ and Σ are defined as before. The above model can provide forecasts for any h; in the case of h = 1 a
forecast is obtained directly from (6) whereas, for h > 1, a prediction of Pt+h−1 is drawn first from (6). In other words,
for h = 1 we get a standard predictive regression model and, for h > 1, we incorporate the VAR dynamics present in
DTSMs. This allows us to take advantage of potential benefits from sparse VAR formulations while sparsity can also
be imposed on the predictive regression coefficients. The exercise is quite challenging from a predictive regression
perspective given the yields-only inputs and the time-constant parameters and volatility; e.g. in Gargano et al. (2019)
such models based on the CP factor fail to generate economic value.

For a given h and information up to time T , the model defined by (6) and (6) can be estimated from the data {Pt}Tt=0,
{rxn

t,t+h}
T−h
t=0 . Since the {Pt}Tt=0 are assumed to be directly observed, the overall likelihood is given by the product of

VAR and predictive regression likelihoods obtained from (6) and (6) respectively. We proceed by assigning spike and
slab priors to all the elements µ, Φ, ah and bh, as well as some standard conjugate priors on the remaining parameters,
so that a Gibbs sampler is obtained; see Online Appendix F for details. In the presence of that Gibbs sampler, the IBIS
algorithm can then be applied as before. It is worth noting that this algorithm is searching over 215 models for each h

exploring both predictive regression coefficients and VAR parameters.

Table 6 contains figures concerning the economic values generated by the model in (6) and (6), using the sequential
SSVS approach. In Panel B, corresponding to the second sample, the model succeeds in generating substantial economic
value, mostly for large prediction horizons and small maturities, with results being more pronounced for the case
of no portfolio weight restrictions. Nevertheless, in Panel A covering the first sample, the results models fail to
generate economic value, except for a couple of cases corresponding to unconstrained portfolio weights. Overall, these
preliminary results are encouraging and suggest that it would be worthwhile to explore this methodology further, with
alternative inputs, time-varying parameters and volatility.
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7 Discussion

In this paper we focused on the DTSMs, explored their predictability and whether it can translate into economic benefits
for investors. Our findings complement Sarno et al. (2016) suggesting that economic value can only be obtained, in
addition to predictability, if extreme and specific restrictions are placed on their market price of risk specification. In
order to implement this approach, we adapted Bayesian variable selection, as in Bauer (2018), to a sequential setting
that allows identifying the optimal set of restrictions in real time. The sequential version of the SSVS scheme developed
successfully identifies such restrictions either directly, as it can be applied on its own, or indirectly by suggesting
specific restrictions that set all risk premia parameters to zero, except for one or two of them (λ1,2 and potentially λ1,1).
The results are robust to several portfolio allocation scenarios and different time periods, with the performance in the
post-2008 recession period with no portfolio allocation restrictions being more pronounced, and are driven mostly by
long prediction horizons and larger maturities.

From a statistical viewpoint the problem may be viewed as imposing sparsity. Standard approaches to sparsity include
ridge and Lasso regression. However the former is equivalent to assigning normal priors on the risk premia parameters
of the maximally flexible model and was implemented without success, whereas the Bayesian versions of the latter,
which are essential to conduct portfolio allocation, are generally not associated with sparsity. Instead the use of spike
and slab priors is one of the default approaches to impose sparsity in the Bayesian context. It may be useful to explore
alternative options; see for example Polson and Scott (2011) and the references therein. In terms of identified optimal
restrictions, our findings are in line with Cochrane and Piazzesi (2009) and Duffee (2011) in that only the level risk is
priced, but our adopted models impose further restrictions. The findings of the empirical analysis suggest that these
additional restrictions are necessary to produce economic value. An alternative market price of risk specification would
be the reduced rank approach of Joslin et al. (2011), perhaps not directly, being less strict than the restrictions implied
Duffee (2011), but paired with spike and slab priors. The sequential SSVS approach may also be useful in the context
of predictive regressions, aiming to offer improved economic value to existing approaches.

Furthermore, our results reveal some evidence of time variation in the parameters and restrictions; for the latter this is
only viewed in the first sample. The sequential SSVS approach can capture such variations to some extent but this is
also closely linked to the choice of the data window. Using an expanding window, as in this paper, could work well for
small and perhaps moderate changes, but is unlikely to capture extreme shocks such as the Covid-19 period where a
shorter window would be more appropriate. Going forward, it would be interesting to consider DTSM models with
time varying parameters, for example the mean under the pricing measure appears to be time varying as suggested from
the output offered by the IBIS algorithm, or regime switching approaches tailoring for example Andreasen et al. (2021)
to the context of DTSMs. Another promising future direction is to incorporate spanned or unspanned macroeconomic
variables in the models; see, for example, Joslin et al. (2014).
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Figure 1: Output from model M6 fitted on the first sample (January 1985 to end of 2007), left panel, and the second sample (January 1990 to end of 2018), right
panel. Focus is given on the periods between January 1997 to end of 2007 and January 2008 to end of 2018 for which predictions of the model were evaluated, but the
estimates are based on all the data from January 1985 and January 1990, respectively. The first row contains posterior model probabilities for models M1, M2 and M3.
The second row contains posterior probabilities of corresponding λ1,j , j ∈ 1, 2, being non-zero (i.e. inclusion probabilities). The third and fourth rows present posterior
means (solid line) and 95% credible intervals (dashed line) for the market price of risk parameters λ1,1 and λ1,2, respectively. Further rows plot real-time estimates of
kQ
∞, which is linked to the long-run mean of the short rate, rt, under Q, and the posterior mean of persistence measured via the largest eigenvalue of the feedback matrix.
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Table 2: Out-of-sample statistical performance of Bond excess return forecasts measured via R2
os.

Panel A: Period - 1985 - 2007 Panel B: Period - 1990 - 2018

h 2Y 3Y 4Y 5Y 7Y 10Y h 2Y 3Y 4Y 5Y 7Y 10Y

M0

1m 0.03*** 0.01** 0.00** -0.02* -0.03 -0.08 1m -0.02* -0.02 -0.03 -0.02 -0.01 -0.02*
3m 0.06** 0.02** 0.01** -0.04** -0.06** -0.22 3m 0.08*** 0.05** 0.02** 0.02** -0.01* -0.02**
6m 0.09** 0.04** 0.01** -0.04** -0.14* -0.35 6m 0.26*** 0.20*** 0.13*** 0.10** 0.06** 0.03**
9m 0.07* 0.02* -0.02* -0.07* -0.20 -0.43 9m 0.39*** 0.28*** 0.19** 0.16** 0.14** 0.09**
12m 0.08* 0.02 -0.03 -0.06 -0.22 -0.43 12m 0.48*** 0.40*** 0.28** 0.25** 0.21** 0.16**

M1

1m 0.05*** 0.04*** 0.03*** 0.03** 0.02** 0.03** 1m 0.03*** 0.05*** 0.04*** 0.04** 0.03** 0.04***
3m 0.07** 0.06** 0.06** 0.04* 0.06** 0.05** 3m 0.10*** 0.12*** 0.10*** 0.10*** 0.09*** 0.12***
6m 0.10** 0.09* 0.10** 0.09* 0.09* 0.08** 6m 0.19*** 0.23*** 0.20*** 0.18*** 0.17*** 0.20***
9m 0.08 0.08 0.10* 0.10* 0.11* 0.09* 9m 0.28*** 0.35*** 0.34*** 0.32*** 0.28*** 0.32***
12m 0.07 0.06 0.08 0.08 0.09* 0.08** 12m 0.20** 0.36*** 0.40*** 0.39*** 0.37*** 0.40***

M2

1m 0.04*** 0.03** 0.03** 0.02* 0.02* 0.03** 1m 0.04*** 0.05*** 0.04*** 0.03*** 0.03** 0.03***
3m 0.07** 0.06** 0.06** 0.04* 0.05* 0.05** 3m 0.12*** 0.12*** 0.09*** 0.09*** 0.08*** 0.11***
6m 0.09** 0.08* 0.09* 0.08* 0.08* 0.07* 6m 0.24*** 0.25*** 0.21*** 0.18*** 0.16*** 0.18***
9m 0.07 0.07 0.09 0.08 0.08* 0.06* 9m 0.35*** 0.39*** 0.36*** 0.33*** 0.28*** 0.30***
12m 0.05 0.04 0.05 0.05 0.06* 0.03* 12m 0.30*** 0.42*** 0.43*** 0.42*** 0.38*** 0.38***

M3

1m 0.03** 0.02* 0.02* 0.02* 0.02* 0.02* 1m 0.03*** 0.00* 0.00 0.00 0.00 -0.02
3m 0.05** 0.05** 0.05** 0.03** 0.05** 0.04** 3m 0.10*** 0.03** 0.01* 0.01 0.00 -0.05
6m 0.09** 0.07** 0.07** 0.06** 0.06*** 0.05*** 6m 0.19*** 0.07*** 0.03** 0.01* 0.01 -0.04
9m 0.13** 0.12** 0.11** 0.10*** 0.10*** 0.07*** 9m 0.29*** 0.12*** 0.02** 0.00* -0.01 -0.06
12m 0.16** 0.13** 0.13** 0.11*** 0.11*** 0.08*** 12m 0.41*** 0.22*** 0.07** 0.03* 0.00 -0.06

M4

1m 0.05** 0.03*** 0.03** 0.02** 0.02** 0.02** 1m 0.04** 0.05*** 0.04*** 0.03** 0.03** 0.04***
3m 0.08** 0.07** 0.07** 0.05** 0.07** 0.06** 3m 0.13*** 0.13*** 0.10*** 0.10*** 0.09*** 0.11***
6m 0.10** 0.09** 0.10** 0.09** 0.09** 0.08* 6m 0.26*** 0.27*** 0.23*** 0.20*** 0.18*** 0.20***
9m 0.09 0.09* 0.10* 0.10* 0.11* 0.11* 9m 0.37*** 0.42*** 0.39*** 0.35*** 0.31*** 0.33***
12m 0.08 0.06 0.08 0.08* 0.10* 0.10** 12m 0.31** 0.45*** 0.46*** 0.45*** 0.41*** 0.42***

M5

1m 0.05*** 0.04*** 0.03*** 0.03** 0.03** 0.02** 1m 0.03** 0.04** 0.03** 0.03** 0.03** 0.03***
3m 0.07** 0.06** 0.06** 0.04* 0.06** 0.05* 3m 0.11*** 0.12*** 0.10*** 0.10*** 0.09*** 0.11***
6m 0.08* 0.07* 0.08* 0.07* 0.08* 0.07* 6m 0.20*** 0.24*** 0.21*** 0.19*** 0.17*** 0.19***
9m 0.08 0.08 0.09 0.09 0.09 0.10 9m 0.30*** 0.37*** 0.35*** 0.33*** 0.29*** 0.32***
12m 0.08 0.05 0.06 0.07 0.08 0.09 12m 0.22*** 0.38*** 0.41*** 0.41*** 0.39*** 0.41***

M6

1m 0.04*** 0.04*** 0.03*** 0.03** 0.02** 0.03*** 1m 0.04** 0.05*** 0.04*** 0.04*** 0.04** 0.04***
3m 0.08** 0.07** 0.07** 0.05* 0.06** 0.06** 3m 0.10*** 0.12*** 0.09*** 0.10*** 0.09*** 0.11***
6m 0.10** 0.10** 0.10** 0.09* 0.09** 0.09** 6m 0.20*** 0.23*** 0.20*** 0.18*** 0.17*** 0.19***
9m 0.10* 0.10* 0.11* 0.11* 0.11* 0.10* 9m 0.28*** 0.34*** 0.33*** 0.31*** 0.28*** 0.31***
12m 0.09 0.08 0.09 0.09* 0.10* 0.08** 12m 0.21** 0.36*** 0.39*** 0.39*** 0.37*** 0.40***

This table reports R2
os across alternative models, at different prediction horizons, of h= 1-month, 3-month, 6-month, 9-month and 12-month. The seven forecasting

models used are ATSMs with alternative risk price restrictions. The values are generated using the R2
os measure of Campbell and Thompson (2008). In particular,

R2
os measures the predictive accuracy of bond excess return forecasts relative to the EH benchmark. The EH implies the historical mean being the optimal forecast of

excess returns. Positive values of this statistic imply that the forecast outperforms the historical mean forecast and suggests evidence of time-varying return predictability.
Statistical significance is measured using a one-sided Diebold-Mariano statistic computed with Newey-West standard errors. * denotes significance at 10%, ** significance
at 5% and *** significance at 1% level. The in-sample period for results in Panel A is January 1985 to end of 1996, and the out-of-sample period starts in January 1997
and ends at the end of 2007. The in-sample period for results in Panel B is January 1990 to end of 2007, and the out-of-sample period starts in January 2008 and ends at
the end of 2018.
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Table 3: Out-of-sample Economic performance of Bond excess return forecasts across prediction horizons - Period:
January 1985 - end of 2007.

Panel A: w= [−1, 2] Panel B: w= [−∞,+∞]

h 2Y 3Y 4Y 5Y 7Y 10Y h 2Y 3Y 4Y 5Y 7Y 10Y

M0

1m 0.07 -0.39 -0.48 -1.20 -2.01 -7.13 1m -0.31 -1.54 -1.25 -2.11 -2.61 -7.19
3m -0.40 -0.91 -1.11 -1.51 -2.60 -6.42 3m -0.86 -1.61 -1.38 -1.81 -2.86 -6.50
6m -0.51 -1.15 -1.46 -1.74 -2.74 -4.65 6m -0.87 -1.40 -1.42 -1.65 -2.83 -4.72
9m -0.59 -1.12 -1.48 -1.72 -2.62 -3.84 9m -1.89 -2.07 -1.89 -1.91 -2.77 -3.85
12m -0.41 -0.83 -1.17 -1.32 -2.32 -3.32 12m -2.12 -1.98 -1.69 -1.48 -2.44 -3.33

M1

1m 0.04 0.03 0.01 0.17 1.06 0.96 1m 1.27 0.37 0.61 0.94 1.20 1.05
3m 0.00 0.00 -0.11 0.06 0.69 0.69 3m 1.15 0.75 0.89 1.05 1.02 0.82
6m 0.00 0.02 0.00 0.17 1.20* 1.73** 6m 1.41* 1.49* 1.65** 1.75** 1.91** 1.87**
9m 0.00 0.00 -0.03 0.10 1.28** 1.97** 9m 0.77 1.31* 1.69** 1.83*** 2.15*** 2.08***
12m 0.00 0.00 -0.02 0.07 1.13*** 1.70*** 12m 0.03 0.75 1.17* 1.47** 1.82*** 1.81***

M2

1m 0.00 0.00 0.02 0.27 1.15 0.37 1m 1.06 0.01 0.17 0.58 0.70 0.66
3m 0.00 -0.01 -0.10 0.15 0.74 0.61 3m 1.35 0.98 1.05 1.17 0.97 0.74
6m 0.00 0.00 -0.05 0.02 1.08** 1.59** 6m 1.21* 1.35* 1.51** 1.58** 1.69** 1.69**
9m 0.00 0.00 -0.03 -0.08 1.11*** 1.78*** 9m 0.65 1.15* 1.50** 1.58*** 1.87*** 1.84***
12m 0.00 0.00 -0.02 -0.11 0.90*** 1.51*** 12m -0.10 0.62 1.03* 1.27** 1.58*** 1.58***

M3

1m 0.00 0.03 0.26 0.60 1.84 1.02 1m 1.02 1.30 1.65 2.01 1.99 1.00
3m 0.00 0.00 0.20* 0.55* 0.95 0.24 3m 0.99 1.08* 1.31* 1.44** 1.02* 0.24
6m 0.00 0.00 0.04 0.12 0.75** 0.70** 6m 0.74 0.91* 0.93** 0.90** 0.84** 0.70**
9m 0.00 0.00 0.01 0.02 0.67** 0.68** 9m 0.70 0.91* 0.93** 0.76** 0.79** 0.68**
12m 0.00 0.00 0.01* 0.09** 0.66** 0.63 12m 0.38 0.89 0.95** 0.83* 0.80** 0.63

M4

1m 0.09 -0.05 -0.44 -0.25 0.71 -0.57 1m 0.94 0.12 0.18 0.34 0.35 -0.57
3m 0.04 -0.02 -0.08 0.15 0.72 0.22 3m 1.26 0.91 1.07 1.24* 1.02 0.22
6m 0.03 0.04 -0.01 0.18 1.00 1.02 6m 1.03 1.00 1.13* 1.20* 1.24 1.02
9m 0.00 -0.01 -0.10 0.08 1.12* 1.22** 9m 0.67 0.93* 1.15** 1.20** 1.35* 1.22**
12m 0.00 -0.05 -0.14 0.00 0.95* 1.01** 12m 0.17 0.58 0.79* 0.96** 1.09* 1.01**

M5

1m 0.05 0.20* 0.02 -0.05 0.80 0.17 1m 0.79 0.33 0.61 0.87 1.24 0.15
3m 0.00 -0.01 -0.06 0.11 0.57 -0.23 3m 0.65 0.33 0.45 0.61 0.52 -0.23
6m 0.00 0.01 -0.10 -0.03 0.65 0.58 6m 0.55 0.52 0.57 0.67 0.71 0.58
9m 0.00 0.00 -0.10 -0.02 0.70 0.71 9m 0.46 0.57 0.61 0.62 0.74 0.71
12m 0.00 0.00 -0.08 0.00 0.59 0.58 12m 0.35 0.53 0.50 0.60 0.62 0.58

M6

1m 0.00 0.00 -0.01 0.12 1.32* 1.21 1m 1.41 0.76 1.00 1.33 1.42 1.22
3m 0.00 0.00 -0.01 0.28 0.93 0.70 3m 1.51* 1.08 1.16 1.28 1.11 0.78
6m 0.00 0.00 -0.01 0.15 1.20** 1.63** 6m 1.45** 1.44** 1.54** 1.59** 1.69** 1.66**
9m 0.00 0.00 0.00 0.08 1.29*** 1.81*** 9m 0.95 1.34** 1.62*** 1.67*** 1.91*** 1.82***
12m 0.00 0.00 0.00 0.01 1.08*** 1.50*** 12m 0.19 0.80 1.12** 1.32*** 1.57*** 1.52***

This table reports annualised certainty equivalent returns (CERs) across alternative models, at different prediction horizons, of h= 1-month, 3-month, 6-month, 9-month
and 12-month. The coefficient of risk aversion is γ = 5. Panel A presents CERs under the scenario where investors are prevented from extreme investments and as such,
portfolio weights are restricted to range in the interval [−1, 2], thus imposing maximum short-selling and leveraging of 100% respectively. Panel B, reports CER values
under the scenario where no allocation restrictions are imposed to investors and, as such, portfolio weights are unbounded, thus allowing for maximum leveraging and
short-selling. CERs are generated by out-of-sample forecasts of bond excess returns and are reported in %. At every time step, t, an investor with power utility preferences,
evaluates the entire predictive density of bond excess returns and solves the asset allocation problem, thus optimally allocating her wealth between a riskless bond and
risky bonds with maturities 2, 3, 4, 5, 7 and 10-years. CER is, then, defined as the value that equates the average utility of each alternative model against the average utility
of the EH benchmark. The seven forecasting models used are ATSM with alternative risk price restrictions. Positive values indicate that the models perform better than the
EH benchmark. Statistical significance is measured using a one-sided Diebold-Mariano statistic computed with Newey-West standard errors. * denotes significance at
10%, ** significance at 5% and *** significance at 1% level. The in-sample period is January 1985 to end of 1996, and the out-of-sample period starts in January 1997 and
ends at the end of 2007.
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Table 4: Out-of-sample Economic performance of Bond excess return forecasts across prediction horizons - Period:
January 1990 - end of 2018.

Panel A: w= [−1, 2] Panel B: w= [−∞,+∞]

h 2Y 3Y 4Y 5Y 7Y 10Y h 2Y 3Y 4Y 5Y 7Y 10Y

M0

1m -0.91 -1.41 -2.45 -2.85 -2.23 -5.12 1m -4.27 -4.68 -4.39 -3.79 -2.31 -5.92
3m -0.21 -0.18 -0.59 -0.69 -0.77 -2.25 3m -0.82 -1.12 -1.01 -0.54 -0.56 -2.03
6m 0.08 0.31 0.11 0.03 0.02 -0.32 6m 0.53 0.21 -0.09 0.17 0.26 -0.26
9m 0.09 0.23 0.05 -0.01 -0.15 0.00 9m 0.54 -0.02 -0.49 -0.31 0.02 0.02
12m 0.09 0.15 0.04 0.01 -0.11 0.11 12m 1.11 0.56 -0.22 -0.06 -0.02 0.11

M1

1m 0.00 0.00 0.07 0.26 1.55** 1.68 1m 1.81* 1.65 1.81 1.40 2.59 2.28
3m 0.00 0.00 0.03 0.24 1.45** 2.66* 3m 2.63** 2.48* 2.44** 2.47** 2.78** 3.41**
6m 0.00 0.00 0.01* 0.21* 1.09** 2.44** 6m 3.26*** 3.06*** 2.53*** 2.47*** 2.42*** 3.02***
9m 0.00 0.00 0.00 0.09* 0.76** 2.53*** 9m 3.47*** 3.22*** 2.81*** 2.73*** 2.65*** 3.19***
12m 0.00 0.00 0.00 0.03* 0.56** 2.22*** 12m 2.98*** 3.09*** 2.66*** 2.65*** 2.45*** 2.84***

M2

1m 0.00 0.00 0.10 0.31 1.74** 1.13 1m 1.74* 1.52 1.67 1.37 2.54* 1.70
3m 0.00 0.00 0.04 0.31* 1.39** 2.32 3m 1.99* 1.82 1.85* 1.96* 2.32** 2.81*
6m 0.00 0.00 0.01 0.18* 1.02** 2.13** 6m 2.72*** 2.45*** 1.93*** 1.93** 1.90** 2.48**
9m 0.00 0.00 0.00 0.07* 0.73*** 2.20** 9m 2.94*** 2.63*** 2.21*** 2.17*** 2.13*** 2.64**
12m 0.00 0.00 0.00 0.03 0.60** 2.00*** 12m 2.56*** 2.61*** 2.16*** 2.19*** 2.02*** 2.42***

M3

1m -0.05 -0.09 -0.61 -1.11 0.40 -2.57 1m -2.38 -3.51 -2.28 -2.03 0.83 -2.73
3m -0.03 -0.14 -0.60 -0.95 -0.57 -2.75 3m -1.89 -2.28 -1.60 -1.17 -0.36 -2.70
6m -0.01 -0.08 -0.43 -0.77 -0.79 -1.52 6m -1.50 -1.89 -1.78 -1.28 -0.63 -1.52
9m 0.00 -0.08 -0.39 -0.88 -1.37 -1.56 9m -1.12 -1.68 -1.96 -1.75 -1.28 -1.55
12m 0.00 -0.03 -0.27 -0.69 -1.34 -1.47 12m -0.33 -0.87 -1.52 -1.36 -1.32 -1.46

M4

1m 0.08 0.19 0.27 0.35 1.88** 1.87 1m 1.89 1.61 1.82 1.34 2.65* 2.20
3m 0.01 0.09* 0.36** 0.64* 1.56* 2.50 3m 2.72** 2.39* 2.37** 2.37* 2.65** 3.00*
6m 0.00 0.05 0.27* 0.59** 1.34** 2.53** 6m 3.52*** 3.24*** 2.67*** 2.59*** 2.48** 2.93**
9m 0.00 0.03 0.15* 0.43** 1.12** 2.71** 9m 3.65*** 3.32*** 2.83*** 2.75*** 2.68*** 3.15***
12m 0.00 0.02 0.07* 0.26* 0.89** 2.43*** 12m 3.28*** 3.18*** 2.62*** 2.62*** 2.41*** 2.80***

M5

1m 0.00 0.02 0.20* 0.45 1.81** 2.36 1m 1.68* 1.39 1.50 1.28 2.60* 2.48
3m 0.00 0.00 0.11* 0.40* 1.40** 2.61* 3m 2.45** 2.43* 2.32** 2.37** 2.69** 3.09*
6m 0.00 0.00 0.02* 0.28* 1.10** 2.44** 6m 3.42*** 3.14*** 2.53*** 2.42*** 2.29** 2.87***
9m 0.00 0.00 0.01 0.15* 0.82** 2.52*** 9m 3.42*** 3.13*** 2.70*** 2.61*** 2.54*** 3.00***
12m 0.00 0.00 0.00 0.07* 0.63** 2.25*** 12m 3.08*** 3.09*** 2.62*** 2.59*** 2.38*** 2.72***

M6

1m 0.00 0.01 0.09 0.28 1.79** 2.13 1m 2.38** 2.22* 2.29* 1.85 2.99* 2.46*
3m 0.00 0.00 0.03 0.30* 1.38** 2.66* 3m 2.71** 2.57** 2.46** 2.48** 2.73** 3.22*
6m 0.00 0.00 0.01 0.18* 0.97** 2.31** 6m 3.15*** 2.92*** 2.41*** 2.36*** 2.28*** 2.79***
9m 0.00 0.00 0.00 0.08* 0.73** 2.44*** 9m 3.26*** 3.04*** 2.65*** 2.58*** 2.50*** 2.99***
12m 0.00 0.00 0.00 0.03* 0.57** 2.17*** 12m 2.87*** 2.97*** 2.54*** 2.55*** 2.36*** 2.77***

This table reports annualised certainty equivalent returns (CERs) across alternative models, at different prediction horizons, of h= 1-month, 3-month, 6-month, 9-month
and 12-month. The coefficient of risk aversion is γ = 5. Panel A presents CERs under the scenario where investors are prevented from extreme investments and as such,
portfolio weights are restricted to range in the interval [−1, 2], thus imposing maximum short-selling and leveraging of 100% respectively. Panel B, reports CER values
under the scenario where no allocation restrictions are imposed to investors and, as such, portfolio weights are unbounded, thus allowing for maximum leveraging and
short-selling. CERs are generated by out-of-sample forecasts of bond excess returns and are reported in %. At every time step, t, an investor with power utility preferences,
evaluates the entire predictive density of bond excess returns and solves the asset allocation problem, thus optimally allocating her wealth between a riskless bond and
risky bonds with maturities 2, 3, 4, 5, 7 and 10-years. CER is, then, defined as the value that equates the average utility of each alternative model against the average utility
of the EH benchmark. The seven forecasting models used are ATSM with alternative risk price restrictions. Positive values indicate that the models perform better than the
EH benchmark. Statistical significance is measured using a one-sided Diebold-Mariano statistic computed with Newey-West standard errors. * denotes significance at
10%, ** significance at 5% and *** significance at 1% level. The in-sample period is January 1990 to end of 2007, and the out-of-sample period starts in January 2008 and
ends at the end of 2018.
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Table 5: Out-of-sample Economic performance of Bond excess return forecasts across prediction horizons - Multivariate
Asset Allocation

Panel A: Period - 1985 - 2007 Panel B: Period - 1990 - 2018

1m 3m 6m 9m 12m 1m 3m 6m 9m 12m

M0 -4.35 -4.22 -3.43 -3.43 -3.40 M0 -7.09 -2.86 -0.24 0.61 0.57
M1 0.48 0.13 2.05** 2.14** 1.59** M1 -0.94 1.44 2.12** 3.61*** 3.20***
M2 0.63 0.40 1.84** 1.84** 1.36* M2 -1.26 0.89 1.65* 3.03*** 2.70***
M3 0.77 0.67 1.21** 0.82* 0.47 M3 -3.46 -3.18 -1.47 -0.71 -0.91
M4 -0.76 0.11 1.25 1.26* 0.79 M4 2.56 1.57 2.33** 3.60*** 3.13***
M5 0.61 -0.12 0.97 0.82 0.43 M5 0.67 1.08 2.11** 3.45*** 3.07***
M6 1.67 0.19 1.85** 1.87** 1.35** M6 -0.06 0.84 1.91* 3.37*** 3.10***

This table reports annualised CERs across alternative models, at different prediction horizons, of h= 1-month, 3-month, 6-month, 9-month and 12-month. The coefficient
of risk aversion is γ = 5. CERs are generated by out-of-sample forecasts of bond excess returns and are reported in %. At every time step, t, an investor with power
utility preferences, evaluates the entire predictive density of bond excess returns and solves the asset allocation problem, thus optimally allocating her wealth across bonds
with maturities 2, 3, 4, 5, 7 and 10-years. The seven forecasting models used are DTSMs with alternative risk price restrictions. Positive values indicate that the models
perform better than the EH benchmark. Portfolio weights are restricted to range in the interval [−1, 2], thus imposing maximum short-selling and leveraging of 100%
respectively. Panels A and B cover the periods (1985 - 2007) and (1990 - 2018) respectively. Statistical significance is measured using a one-sided Diebold-Mariano
statistic computed with Newey-West standard errors. * denotes significance at 10%, ** significance at 5% and *** significance at 1% level.

Table 6: Out-of-sample Economic performance of Bond excess return forecasts across prediction horizons - Predictive
Regressions

Panel A: Period - 1985 - 2007

Panel A.1: w= [−1, 2] Panel A.2: w= [−∞,+∞]

h 2Y 3Y 4Y 5Y 7Y 10Y h 2Y 3Y 4Y 5Y 7Y 10Y

SSVS Predictive Regressions combined with VAR dynamics

1m -0.38 -1.92 -0.25 -1.98 -1.76 -2.40 1m -2.36 -3.16 -0.11 -2.15 -1.73 -2.42
3m -0.06 -0.04 -0.25 -0.47 0.65 -0.79 3m -0.40 0.40 0.44 -0.17 0.59 -0.79
6m 0.24 0.05 0.21 0.54 0.46 1.23 6m 1.97 1.53 1.80 1.80 0.43 1.24
9m 0.26 0.32 0.36 0.50 1.36 1.71 9m 3.56 3.43 2.89 2.81 2.09 1.74
12m 0.23 0.35 0.29 0.51 1.12 1.87 12m 3.72 4.58* 3.26 3.34 2.56 2.02

Panel B: Period - 1990 - 2018

Panel B.1: w= [−1, 2] Panel B.2: w= [−∞,+∞]

h 2Y 3Y 4Y 5Y 7Y 10Y h 2Y 3Y 4Y 5Y 7Y 10Y

SSVS Predictive Regressions combined with VAR dynamics

1m -0.24 -0.55 -0.35 -2.17 -0.59 1.17 1m -4.03 -4.27 -0.65 -3.13 -0.17 1.68*
3m 0.42 0.61 0.39 0.75 0.98 1.82 3m 2.14 2.96 2.37 2.34 -0.01 2.22
6m 0.54 0.75 0.80 0.86 1.53 2.56 6m 2.52 3.45* 2.77 2.55 2.45 2.47
9m 0.55** 0.97** 1.30* 1.55 1.98 2.97 9m 1.92* 4.08** 4.34** 4.52* 3.71 3.28
12m 0.54*** 1.07*** 1.45** 1.73 2.19 3.12 12m 2.99** 5.29*** 5.08*** 6.18** 4.08 3.51

This table reports annualised CERs, at different prediction horizons, of h= (1,3,5,9,12)-month. The coefficient of risk aversion is γ = 5. CERs are generated by
out-of-sample forecasts of bond excess returns and are reported in %. At every time step, t, an investor with power utility preferences, evaluates the entire predictive
density of bond excess returns and solves the asset allocation problem, thus optimally allocating her wealth between a riskless bond and risky bonds with maturities 2, 3, 4,
5, 7 and 10-years. Positive values indicate that the models perform better than the EH benchmark. Panels A.1 and B.1 present CERs under the scenario of portfolio
weights being restricted to range in the interval [−1, 2], thus imposing maximum short-selling and leveraging of 100% respectively. Panels A.2 and B.2, report CER
values under the second scenario, where no allocation restrictions are imposed to investors. Panel A and B cover the periods (1985 - 2007) and (1990 - 2018) respectively.
Statistical significance is measured using a one-sided Diebold-Mariano statistic computed with Newey-West standard errors. * denotes significance at 10%, ** significance
at 5% and *** significance at 1% level.
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Appendix A: Model Specification Details

Given Pn+1
t = Et

(
Mt+1P

n
t+1

)
, it follows that bond prices are exponentially affine functions of the state vector (see,

Duffie and Kan (1996))
Pn
t = exp(An +B′

nXt), n = 1, . . . , J

with An being a scalar and Bn a N × 1 vector satisfying the following recursions

An+1 = An +B′
n(µ− λ0) +

1

2
B′

nΣΣ
′Bn − δ0

Bm+1 = B′
n(Φ− λ1)− δ1

with A0 = 0 and B0 = 0, leading to the Q dynamics of equation (2) of the main paper

Xt −Xt−1 = µQ +ΦQXt−1 +ΣεQt

To derive expressions for the parameters in equation (6) and (7) in the main body of the paper, we apply the transforma-
tion of (5) to the model of (1) as shown below:

µQ
P = WBn,xµ

Q − ΦQ
PWAn,X

ΦQ
P = WBn,xΦ

Q(WBn,x)
−1

ΣP = (WBn,x)Σ

In a similar manner we can also obtain the matrices in the Ricatti recursions:

An,P = An,X −Bn,X(WBn,X)−1(WAn,X)

Bn,P = Bn,X(WBn,X)−1

Appendix B: Prior Specification and Algorithmic Details

B.1: Prior Specification

As mentioned in the main body of the paper, the prior on the elements of the λP are specified by the spike and slab
formulation

λP
ij ∼ (1− γij)N(0, τ

(0)
ij ) + γijN(0, τ

(1)
ij ),

where the slab variances are specified by the Zellner g-prior, where the variance takes the form of gV̂ . For the calculation
of V̂ , we follow the procedure in the appendix C.3 of Bauer (2018) and set g = max(T, p2) (p denoting the number of
parameters), which in our case reduces to T that is always larger.

In order to explore the robustness of the results to the choice of g we implemented versions of the corresponding
sequential SSVS algorithms, based on g = T and g = p2, in the period (1990-2018) and calculated annualised CERs,
across different maturities and prediction horizons. Portfolio weights constrained to [−1, 2]. Table 7 contains the
relevant results, which are quite similar, thus suggesting a minimal impact of g as long as it is set to a reasonable value.

For the remaining parameters, for which we are not seeking restrictions and have therefore no concerns on issues such
as the Lindley paradox, low informative priors were assigned, although some relevant information is available in this
context (see, Chib and Ergashev (2009)). We first transform all restricted range parameters so that they have unrestricted
range and scale parameters which typically take very small values. Specifically, we consider a Cholesky factorization of
ΣP where the diagonal elements are transformed to the real line and off-diagonal elements are scaled by 106. In order
to preserve the ordering of the eigenvalues gQ we apply a reparametrisation and work with their increments that are
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Table 7: Out-of-sample economic performance of bond excess return forecasts for model M4 across different prior
specifications with portfolio weights restricted to [−1, 2]: multiple prediction horizons and maturities - Period: 1990-
2018.

h 2Y 3Y 4Y 5Y 7Y 10Y Joint

g = T

1m 0.08 0.19 0.27 0.35 1.88** 1.87 2.56
3m 0.01 0.09* 0.36** 0.64* 1.56* 2.50 1.57
6m 0.00 0.05 0.27* 0.59** 1.34** 2.53** 2.33**
9m 0.00 0.03 0.15* 0.43** 1.12** 2.71** 3.60***
12m 0.00 0.02 0.07* 0.26* 0.89** 2.43*** 3.13***

g = p2

1m 0.03 0.16* 0.27 0.35 1.55* 0.75 0.55
3m 0.04 0.20* 0.49** 0.72* 1.63* 2.51 1.49
6m 0.04 0.16* 0.41* 0.71* 1.38* 2.49** 2.12*
9m 0.02 0.09 0.28* 0.59** 1.22** 2.72** 3.42***
12m 0.01 0.04 0.17* 0.40* 0.97** 2.41*** 3.03***

again transformed to the real line. Finally, we scale kQ∞ by 106 as well. Independent Normal distributions with zero
means and large variances are then assigned to each transformed or scaled parameter. Finally, for σ2

e , we assign the
conjugate Inverse-Gamma prior as in Bauer (2018).

B.2: Information on Sequential Monte Carlo Implementation

The IBIS algorithm was implemented with the following specifications. The number of particles Nθ was set to 2000,
see subsection B.3 for some justification on this choice. The resampling and jittering steps were triggered in cases
where the effective sample size (ESS) was lower than 1400. In order to ensure good quality, in the sense of Monte Carlo
error, in the posterior and predictive distribution estimates, we used adaptive tempering such that the ESS is always at
least 1400. Adaptive tempering serves the purpose of smoothing peaked likelihoods. It is achieved by bridging two
successive targets via an intermediate target sequence. The idea is to modify the sequence of target distributions so that
it evolves from the prior to the posterior more smoothly (see Jasra et al. (2011) and Kantas et al. (2014) for details).
Implementation of the IBIS algorithm with hybrid adaptive tempering steps is outlined in Table 8.

Initialize Nθ particles by drawing independently θi ∼ π(θ) with importance weights ωi = 1, i = 1, . . . , Nθ . For t, . . . , T and each
time for all i:

1 Set ω′
i = ωi.

2 Calculate the incremental weights ut(θi) = f
(
Yt|Yt−1, θi).

3 Update the importance weights ωi to ωiut(θi).
4 If degeneracy criterion ESS(ω) is triggered, perform the following sub-steps:

(a) Set ϕ = 0 and ϕ′ = 0.
(b) While ϕ < 1

i. If degeneracy criterion ESS(ω′′) is not triggered, where ω′′
i = ω′

i[ut(θi)]
1−ϕ′

, set ϕ = 1, otherwise find
ϕ ∈ [ϕ′, 1] such that ESS(ω′′′) is greater than or equal to the trigger, where ω′′′

i = ω′
i[ut(θi)]

ϕ−ϕ′
, for example

using bisection method, see Kantas et al. (2014).
ii. Update the importance weights ωi to ω′

i[ut(θi)]
ϕ−ϕ′

.
iii. Resample: Sample with replacement Nθ times from the set of θis according to their weights ωi.
iv. Jitter: Replace θis with θ̃is by running MCMC chains with each θi as input and θ̃i as output, using likelihood

given by f(Y0:t−1|θi)[f
(
Yt|θi)]ϕ.

v. Calculate the incremental weights ut(θi) = f
(
Yt|Yt−1, θi).

vi. Set ω′
i = ωi and ϕ′ = ϕ.

Table 8: IBIS algorithm with hybrid adaptive tempering
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For the jittering step, the MCMC sampler used was very similar to Bauer (2018). This algorithm adopts a Gibbs scheme
splitting the parameters into the blocks consisting of σ2

e , γijs, λ0P and λ1P , ΣP , and the Q parameters. For the first
three blocks the full conditional posteriors can be identified, whereas for ΣP , and the Q parameters independence
samplers may be constructed, using the maximum likelihood estimate as the mean in respective proposal density
and negative inverse of the corresponding Hessian as its covariance. In some cases we deviated from Bauer (2018)
and obtained the proposal distributions of the independence samplers for updating ΣP and the Q parameters, based
on estimates of their mean and variance from the IBIS output, thus taking advantage of synergies between the two
approaches. The MCMC algorithm is generally quite efficient in terms of mixing and therefore can quickly drift off
from its initial values. For this reason we observed that a low number of MCMC iterations per particle in the jittering
step is sufficient; we ended up using 5 iterations for each particle. It is good practice to monitor the acceptance rate
of the independence samples across particles as well as correlations of particles for each parameter before and after
jittering. In our case these were quite reasonable with acceptance rates being at least 40% and most correlations being
at most 0.2.

B.3: Monte Carlo Error and Number of Particles

As the IBIS algorithm is used to generate Monte Carlo estimates of the economic value quantities such as certainty
equivalent returns (CER) and utilities, it is important to monitor the Monte Carlo error in these estimates and ensure it
is small compared to the other sources of variability. A user-specified parameter that can be used to reduce the amount
of Monte Carlo error is the number of particles in the IBIS algorithm. It is also important to note that in the tables with
indices on economic value, each cell provides the CER, which is mainly determined by the ratio of the cumulative
utility of the model in question against the benchmark model. However, the stars that indicate the significance are
determined by Diebold-Mariano test on the difference between the utilities of these two models. In order to assess the
impact of the Monte Carlo error we focus on the variance of the difference between these utilities and in particular the
amount of which can be attributed to Monte Carlo error.

To explore the above we ran 20 independent instances of the IBIS algorithm using the M1 model on data from the time
period between 1985 and the end of 2007, where the out-of-sample period is from 1997. The process was repeated for
all prediction horizons and across maturities, whereas we also considered 1000, 2000 and 5000 as choices regarding the
number of particles. In each of these combinations the variance of the Monte Carlo estimator, of utility differences, can
be estimated as the sample variance of the Monte Carlo estimates taken over these 20 samples. On the other hand, the
overall variance can be estimated as the sample mean of the variances, calculated at each run, again taken over these 20

samples. Table 9 shows the percentage or the Monte Carlo variance against the total variance for each of the previously
mentioned combinations.

As shown in this table, the Monte Carlo variance is at most 0.31% of the total variance and this refers to the case of
1000 particles. This value is quite low and offers reassurance that the Monte Carlo error is not substantial. Increasing
to 2000 particles seems to more or less halve these percentages that are now below 0.1%. A further increase to 5000

particles reduced these percentages even more, as expected. Nevertheless, since these numbers were already quite low
we decided to set the number of particles to 2000.
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Table 9: Monte Carlo errors in % for M1 model across 1000, 2000 and 5000 particles - Period: January 1985 - end of
2007.

h\n 2Y 3Y 4Y 5Y 7Y 10Y

% 1000 particles

1m 0.19 0.27 0.19 0.13 0.13 0.31
3m 0.13 0.18 0.16 0.11 0.15 0.09
6m 0.08 0.10 0.06 0.06 0.06 0.07
9m 0.08 0.09 0.09 0.11 0.04 0.06

12m 0.06 0.06 0.07 0.03 0.05 0.07

% 2000 particles

1m 0.07 0.09 0.08 0.07 0.10 0.08
3m 0.03 0.05 0.03 0.03 0.05 0.07
6m 0.07 0.06 0.03 0.06 0.03 0.03
9m 0.05 0.06 0.04 0.05 0.05 0.02

12m 0.05 0.07 0.08 0.04 0.03 0.02

% 5000 particles

1m 0.04 0.04 0.05 0.05 0.03 0.03
3m 0.01 0.01 0.02 0.01 0.02 0.01
6m 0.02 0.01 0.02 0.01 0.01 0.02
9m 0.01 0.01 0.01 0.02 0.02 0.01

12m 0.03 0.01 0.01 0.01 0.02 0.01

Out-of-sample period is from 1997.

Appendix C: Information on Data and extraction of Principal Components

Extracting the first three principal components from the yield curve can be done either by calculating the principal
component loadings from the warm-up or the entire period; the differences in the resulting principal component time
series are depicted in Figure 2. The correlations between these series reach levels above 0.99, suggesting negligible
differences. Nevertheless, in order to prevent any data leaking issues when assessing the predictive performance, the
loadings from the warm-up period only are used.
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Figure 2: Principal Components (PCs) extracted from the yield curve for the two periods where the predictions were
evaluated (January 1997 - end of 2007 and January 2008 - end of 2018). The dashed lines correspond to principal
components based on loadings calculated from the entire sub-samples (January 1980 - end of 2007 and January 1985 -
end of 2018). The solid lines, which are the ones used for the data analysis, were based on loadings calculated from the
warm-up periods only (January 1980 - end of 1996 and January 1985 - end of 2007).

The data also covers the two recession periods of 2001-2002 and 2008-2009, where the yield curve shared qualitatively
similar characteristics. Both episodes started from a flat yield curve during the pre-recession periods, following an
inversion of the curve that reflects an increase in short rates due to expectations about the Fed tightening its policy, and
then a steepening as a reaction to policy adjustments by the Fed reflecting strong growth and inflation expectations.
This is reflected in the two principal components, with PC1 decreasing and PC2 increasing during the recession periods.

The data contain several important events and it is interesting to examine the trajectories of the principal components
during these periods, provided by Figure 2. More specifically, during the period between 2004 and 2006, referred to by
former Fed Chairman Greenspan as the ‘conundrum period’, the Federal Reserve applied a tight monetary policy by
substantially increasing its target federal funds rate by 4%, reaching a value of 5.25% by mid-2006. At the same time,
long-term yields actually declined, directly affecting the shape of the yield curve, which flattened pronouncedly. This
episode is captured by the first two implied PCs, as shown in Figure 2. In particular, PC1 increased substantially during
the aforementioned period, reflecting the increase in the level of the term structure, while PC2 decreased to very low
levels, reflecting the flattening of the curve.
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Appendix D: Assessing Predictive Performance via log predictive score

The out-of-sample R2 measure, used to assess the predictive ability of the models, only focused on a point summary of
the predictive distribution and may ignore important information. To assess the entire predictive distribution offered by
our scheme, rather than just point predictions, we use the log score (LS); a standard choice among scoring rules with
several desirable properties, such as being strictly proper, see for example Dawid and Musio (2014). The log score of
the predictive distribution can be approximated numerically using kernel methods. For the EH case, this evaluation can
be done analytically. Similarly to out-of-sample R2, LS is aggregated over all prediction times (t0 to t) and maturities.
In order to get a feeling for how large the differences from the EH benchmark are, we report the p-values from the
Diebold-Mariano test (see, Gargano et al. (2019)) noting that these are viewed as indices rather than formal hypothesis
tests. They are based on t-statistics computed taking into account potential serial correlations in the standard errors (see,
Newey and West (1987)).

Tables 10 and 11 report out-of-sample LS across models, maturities, and prediction horizons. Table 10 summarises the
results of the first sub-sample (i.e. 1985 - 2007), while Table 11 reports results associated with the second sub-sample
(i.e. 1990 - 2018). The main conclusions remain unchanged since results are qualitatively similar to those reported for
the R2

os in the main body of the paper, showing evidence in favour of statistical predictability for all models regardless
of the restrictions imposed. Results are more pronounced during the second sub-sample. In particular, in most cases,
corresponding LS are positive and non-negligible, indicating statistical evidence of out-of-sample predictability. During
the first sub-sample, the only model that performs poorly out-of-sample compared to the EH benchmark is the maximally
flexible model, M0, where LS are mostly negative, especially at longer maturities. This is not the case for the second
sub-sample, where M0 offers evidence of predictability, generating scores which are mostly positive, especially at
the short end of the maturity spectrum and at longer prediction horizons. M1 is performing very well in the second
sub-sample but its superiority is challenged by M3 in the first sub-sample. The sequential SSVS model that combines
these two, M6, does very well on both occasions although the differences between these models are quite small.
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Table 10: Out-of-sample statistical performance of Bond excess return forecasts measured via log predictive score -
Multiple prediction horizons - Period: January 1985 - end of 2007.

(h\n − h) 2Y 3Y 4Y 5Y 7Y 10Y

M0

1m -0.01 0.00 0.00 -0.01 -0.02 -0.03
3m 0.05 0.04 0.04 0.01 -0.01 -0.07
6m 0.06 0.03 0.04 0.02 -0.04 -0.09
9m 0.01 0.00 0.01 0.00 -0.04 -0.07
12m -0.05 -0.05 -0.03 -0.02 -0.06 -0.08

M1

1m 0.01 0.00 0.02** 0.00 0.00 0.01
3m 0.04** 0.04** 0.04*** 0.03* 0.02* 0.01
6m 0.05 0.05* 0.06** 0.05* 0.04* 0.03*
9m 0.03 0.05 0.06* 0.05 0.04 0.05*
12m 0.01 0.03 0.05 0.05 0.05 0.05*

M2

1m -0.01 0.01 0.02* 0.00 -0.01 -0.01
3m 0.04** 0.04** 0.05** 0.02 0.02 0.01
6m 0.06** 0.06** 0.06** 0.03* 0.03 0.03
9m 0.04 0.06 0.06* 0.03 0.03 0.03
12m -0.01 0.03 0.04 0.05 0.03 0.03

M3

1m -0.01 0.00 0.01 0.00 -0.01 0.00
3m 0.05** 0.04* 0.04** 0.03** 0.01 0.01
6m 0.05 0.05 0.05** 0.05*** 0.03** 0.03***
9m 0.06 0.07* 0.08** 0.06** 0.05** 0.04***
12m 0.05 0.06 0.08* 0.07** 0.06*** 0.06***

M4

1m 0.00 0.01 0.00 0.00 -0.01 0.00
3m 0.05** 0.03* 0.05*** 0.04*** 0.03** 0.00
6m 0.06* 0.07** 0.06*** 0.04* 0.05** 0.04**
9m 0.05 0.06 0.07** 0.06** 0.05* 0.04**
12m 0.03 0.03 0.05 0.05 0.05 0.05*

M5

1m 0.00 0.00 0.01 -0.01 -0.01 0.00
3m 0.04* 0.03* 0.04** 0.03*** 0.02* 0.01
6m 0.05 0.04 0.04 0.02 0.03 0.03
9m 0.03 0.04 0.05 0.05 0.04 0.03
12m 0.00 0.02 0.03 0.05 0.03 0.04*

M6

1m 0.01 0.02** 0.01 0.00 0.00 0.00
3m 0.04** 0.04** 0.04*** 0.02* 0.03* 0.01
6m 0.04 0.05** 0.06*** 0.05** 0.04** 0.04**
9m 0.05 0.06* 0.07** 0.06** 0.06** 0.05**
12m 0.02 0.04 0.06* 0.06* 0.05* 0.05*

This table reports out-of-sample log predictive score (LS) across alternative models, at different prediction horizons, of h= 1-month,
3-month, 6-month, 9-month and 12-month. The seven forecasting models used are ATSM with alternative risk price restrictions.
The EH implies the historical mean being the optimal forecast of excess returns. Positive values of this statistic imply that the
forecast outperforms the historical mean forecast and suggests evidence of time-varying return predictability. Statistical significance
is measured using a one-sided Diebold-Mariano statistic computed with Newey-West standard errors. * denotes significance at 10%,
** significance at 5% and *** significance at 1% level. The in-sample period is January 1985 to end of 1996, and the out-of-sample
period starts in January 1997 and ends in end of 2007.
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Table 11: Out-of-sample statistical performance of Bond excess return forecasts measured via log predictive score -
Multiple prediction horizons - Period: January 1990 - end of 2018.

(h\n − h) 2Y 3Y 4Y 5Y 7Y 10Y

M0

1m -0.01 -0.01 0.00 -0.01 0.01 -0.05
3m 0.10*** 0.05 0.03 0.01 -0.03 -0.02
6m 0.18*** 0.12** 0.06 0.05 0.05 0.01
9m 0.23*** 0.13** 0.06 0.03 0.03 0.02
12m 0.31*** 0.20** 0.10 0.07 0.05 0.04

M1

1m 0.00 0.00 -0.01 -0.01 -0.01 -0.03
3m 0.10*** 0.09*** 0.06*** 0.05*** 0.05** 0.04*
6m 0.16*** 0.13*** 0.09*** 0.08** 0.07*** 0.08***
9m 0.21*** 0.15*** 0.11*** 0.09*** 0.09*** 0.11***
12m 0.20*** 0.18*** 0.15*** 0.13*** 0.12*** 0.14***

M2

1m 0.00 -0.01 0.00 0.01 0.00 -0.02
3m 0.11*** 0.08*** 0.06*** 0.04** 0.04** 0.04*
6m 0.18*** 0.14*** 0.09*** 0.08** 0.07*** 0.08**
9m 0.22*** 0.16*** 0.12*** 0.09*** 0.08** 0.10***
12m 0.24*** 0.21*** 0.16*** 0.12*** 0.12*** 0.13***

M3

1m 0.00 -0.01 -0.02 -0.02 -0.01 -0.05
3m 0.11*** 0.06** 0.04* 0.01 0.00 -0.03
6m 0.17*** 0.09** 0.04 0.02 0.01 -0.02
9m 0.26*** 0.13** 0.05 0.01 0.01 -0.03
12m 0.35*** 0.19*** 0.10* 0.05 0.00 -0.04

M4

1m 0.00 -0.01 0.00 -0.01 0.00 -0.04
3m 0.10*** 0.08*** 0.06*** 0.05*** 0.05*** 0.04*
6m 0.17*** 0.13*** 0.11*** 0.09*** 0.08*** 0.09**
9m 0.23*** 0.16*** 0.12*** 0.11*** 0.10*** 0.12***
12m 0.25*** 0.20*** 0.16*** 0.13*** 0.12*** 0.14***

M5

1m 0.00 0.00 0.00 -0.02 -0.02 -0.04
3m 0.11*** 0.10*** 0.06*** 0.04*** 0.05** 0.03
6m 0.17*** 0.14*** 0.09*** 0.08*** 0.08*** 0.09**
9m 0.21*** 0.16*** 0.11*** 0.10*** 0.10*** 0.11***
12m 0.21*** 0.18*** 0.15*** 0.13*** 0.13*** 0.14***

M6

1m 0.01 -0.01 0.00 -0.01 0.00 0.02*
3m 0.10*** 0.09*** 0.07*** 0.05*** 0.04*** 0.05**
6m 0.16*** 0.13*** 0.09*** 0.09*** 0.07** 0.09**
9m 0.21*** 0.15*** 0.11*** 0.09*** 0.09** 0.11**
12m 0.21*** 0.19*** 0.14*** 0.11*** 0.12*** 0.14***

This table reports out-of-sample log predictive score (LS) across alternative models, at different prediction horizons, of h= 1-month,
3-month, 6-month, 9-month and 12-month. The seven forecasting models used are ATSM with alternative risk price restrictions.
The EH implies the historical mean being the optimal forecast of excess returns. Positive values of this statistic imply that the
forecast outperforms the historical mean forecast and suggests evidence of time-varying return predictability. Statistical significance
is measured using a one-sided Diebold-Mariano statistic computed with Newey-West standard errors. * denotes significance at 10%,
** significance at 5% and *** significance at 1% level. The in-sample period is January 1990 to end of 2007, and the out-of-sample
period starts in January 2008 and ends at the end of 2018.
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Appendix E: Assessing Economic Performance - Additional Tests

E.1: Investment Allocation Scenarios

We investigate the economic evidence presented in the main body of the paper (see subsection 5.3) considering one
more allocation scenario for investors. In this scenario, we follow Huang et al. (2020) and restrict portfolio weights to
the interval [−1, 5] which sets maximum short-selling at 100% while increasing the upper bound which now amounts
to a maximum leveraging of 400%, thus relaxing the restriction associated with leveraging.

Tables 12 and 13 present annualised CER values across models developed, at different maturities and investment
horizons. In particular, Table 12 presents evidence under the first sub-sample (1985-2007), while Table 13 under the
second sub-sample (1990-2018). Results remain qualitatively similar, yet more pronounced, compared to the main
allocation scenario considered in the main body of the paper (i.e. w = [-1, 2]). In particular, results reveal that the
maximally flexible model M0 continues to fail offering any out-of-sample benefits to investors, generating CERs which
are consistently negative across investment horizons and sub-periods. The situation is reversed for models with heavy
restrictions on the dynamics of risk compensation (e.g. models M1 and M2) as well as for models inferred via the
developed SSVS scheme (e.g. model M6). Similar conclusions, yet more pronounced are revealed during the second
sub-sample where economic benefits are substantially higher. In all, results reveal that economic value can only be
exploited if extreme and specific restrictions are imposed on the market price of risk specification. As such, results are
robust to several allocation scenarios implemented.
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Table 12: Out-of-sample Economic performance of Bond excess return forecasts across prediction horizons - Investment
scenario: w = [-1, 5] - Period: January 1985 - end of 2007.

h 2Y 3Y 4Y 5Y 7Y 10Y

M0

1m 0.05 0.22 0.43 -0.58 -1.96 -7.14
3m -0.50 -0.25 -0.28 -1.00 -2.61 -6.42
6m -0.80 -0.76 -0.92 -1.37 -2.74 -4.65
9m -0.91 -0.79 -1.07 -1.45 -2.62 -3.84
12m -0.58 -0.21 -0.57 -0.91 -2.32 -3.32

M1

1m 0.10 0.23 0.50 0.94 1.20 1.05
3m -0.12 0.35 0.80 1.05 1.02 0.82
6m 0.00 0.76 1.37* 1.74** 1.91** 1.87**
9m -0.02 0.70* 1.47** 1.83*** 2.15*** 2.08***
12m 0.00 0.65** 1.04* 1.46** 1.82*** 1.81***

M2

1m -0.04 0.43 -0.10 0.58 0.70 0.66
3m -0.15 0.52 0.90 1.17 0.97 0.74
6m -0.05 0.59 1.32** 1.58** 1.69** 1.69**
9m -0.01 0.46* 1.34** 1.58*** 1.87*** 1.84***
12m 0.00 0.34* 0.91* 1.26** 1.58*** 1.58***

M3

1m 0.21 1.24 1.65 2.01 1.99 1.00
3m 0.12 0.95 1.31* 1.44** 1.02* 0.24
6m 0.02 0.74* 0.93** 0.90** 0.84** 0.70**
9m 0.00 0.59* 0.93** 0.76** 0.79** 0.68**
12m 0.00 0.62** 0.95** 0.83* 0.80** 0.63

M4

1m -0.21 0.10 0.18 0.34 0.35 -0.57
3m 0.01 0.49 1.07 1.24* 1.02 0.22
6m 0.05 0.66 1.13* 1.20* 1.24 1.02
9m -0.03 0.58 1.14** 1.20** 1.35* 1.22**
12m -0.05 0.51* 0.77 0.96** 1.09* 1.01**

M5

1m 0.06 0.10 0.60 0.87 1.24 0.15
3m -0.06 0.29 0.45 0.61 0.52 -0.23
6m -0.06 0.39 0.57 0.67 0.71 0.58
9m -0.01 0.43 0.61 0.62 0.74 0.71
12m 0.00 0.51 0.50 0.60 0.62 0.58

M6

1m -0.06 0.53 0.80 1.33 1.42 1.22
3m -0.02 0.64 0.98 1.28 1.11 0.78
6m 0.00 0.82* 1.41** 1.59** 1.69** 1.66**
9m 0.00 0.72** 1.50*** 1.67*** 1.91*** 1.82***
12m 0.00 0.56*** 1.03** 1.32*** 1.57*** 1.52***

This table reports annualized certainty equivalent returns (CERs) across alternative models, at different prediction horizons, of h= 1-month, 3-month, 6-month, 9-month
and 12-month. The coefficient of risk aversion is γ = 5. CERs are generated by out-of-sample forecasts of bond excess returns and are reported in %. At every time
step, t, an investor with power utility preferences, evaluates the entire predictive density of bond excess returns and solves the asset allocation problem, thus optimally
allocating her wealth between a riskless bond and risky bonds with maturities 2, 3, 4, 5, 7 and 10-years. CER is, then, defined as the value that equates the average utility
of each alternative model against the average utility of the EH benchmark. The seven forecasting models used are ATSM with alternative risk price restrictions. Positive
values indicate that the models perform better than the EH benchmark. In this scenario, portfolio weights are restricted to range in the interval [-1, 5], which amounts to
maximum short-selling of 100% and a maximum leveraging of 400%. Statistical significance is measured using a one-sided Diebold-Mariano statistic computed with
Newey-West standard errors. * denotes significance at 10%, ** significance at 5% and *** significance at 1% level. The in-sample period is January 1985 to end of 1996,
and the out-of-sample period starts in January 1997 and ends at the end of 2007.

35



Online Appendix: Sequential Learning and Economic Benefits from Dynamic Term Structure Models

Table 13: Out-of-sample Economic performance of Bond excess return forecasts across prediction horizons - Investment
scenario: w = [-1, 5] - Period: January 1990 - end of 2018.

h 2Y 3Y 4Y 5Y 7Y 10Y

M0

1m -1.97 -2.79 -3.00 -2.88 -1.77 -5.23
3m -0.56 -0.59 -0.46 -0.20 -0.46 -2.07
6m 0.02 -0.03 -0.08 0.18 0.26 -0.30
9m 0.13 -0.20 -0.46 -0.30 0.02 0.02
12m 0.20 0.18 -0.18 -0.06 -0.02 0.11

M1

1m -0.01 0.22 1.31 1.45 2.59 2.28
3m 0.00 0.63 1.68* 2.41** 2.78** 3.41**
6m 0.00 0.67** 1.86*** 2.42*** 2.42*** 3.02***
9m 0.00 0.43** 2.00*** 2.63*** 2.65*** 3.19***
12m 0.00 0.30*** 1.79*** 2.53*** 2.45*** 2.84***

M2

1m 0.06* 0.31 1.02 1.29 2.54* 1.70
3m 0.00 0.58 1.38 1.94* 2.32** 2.81*
6m 0.00 0.59** 1.50** 1.92** 1.90** 2.48**
9m 0.00 0.40** 1.68*** 2.13*** 2.13*** 2.64**
12m 0.00 0.26*** 1.57*** 2.13*** 2.02*** 2.42***

M3

1m -0.68 -3.12 -2.28 -2.03 0.83 -2.73
3m -0.65 -2.26 -1.60 -1.17 -0.36 -2.70
6m -0.36 -1.88 -1.78 -1.28 -0.63 -1.52
9m -0.17 -1.61 -1.97 -1.75 -1.28 -1.55
12m -0.06 -0.93 -1.52 -1.36 -1.32 -1.46

M4

1m 0.22 0.42 1.48 1.30 2.65* 2.20
3m 0.28* 0.83 1.84* 2.36* 2.65** 3.00*
6m 0.16* 1.12** 2.12*** 2.58*** 2.48** 2.93**
9m 0.08 0.93** 2.25*** 2.72*** 2.68*** 3.15***
12m 0.03 0.74** 2.02*** 2.58*** 2.41*** 2.80***

M5

1m 0.06 0.42 1.36 1.29 2.60* 2.48
3m 0.02* 0.70 1.77* 2.35** 2.69** 3.09*
6m 0.00 0.76** 1.89*** 2.37*** 2.29** 2.87***
9m 0.00 0.55** 2.04*** 2.57*** 2.54*** 3.00***
12m 0.00 0.39*** 1.85*** 2.53*** 2.38*** 2.72***

M6

1m 0.04 0.32 1.87** 1.74 2.99* 2.46*
3m 0.00 0.61 1.79** 2.42** 2.73** 3.22*
6m 0.00 0.61** 1.77*** 2.32*** 2.28*** 2.79***
9m 0.00 0.39** 1.93*** 2.50*** 2.50*** 2.99***
12m 0.00 0.28*** 1.76*** 2.44*** 2.36*** 2.77***

This table reports annualized certainty equivalent returns (CERs) across alternative models, at different prediction horizons, of h= 1-month, 3-month, 6-month, 9-month
and 12-month. The coefficient of risk aversion is γ = 5. CERs are generated by out-of-sample forecasts of bond excess returns and are reported in %. At every time
step, t, an investor with power utility preferences, evaluates the entire predictive density of bond excess returns and solves the asset allocation problem, thus optimally
allocating her wealth between a riskless bond and risky bonds with maturities 2, 3, 4, 5, 7 and 10-years. CER is, then, defined as the value that equates the average utility
of each alternative model against the average utility of the EH benchmark. The seven forecasting models used are ATSM with alternative risk price restrictions. Positive
values indicate that the models perform better than the EH benchmark. In this scenario, portfolio weights are restricted to range in the interval [-1, 5], which amounts to
maximum short-selling of 100% and a maximum leveraging of 400%. Statistical significance is measured using a one-sided Diebold-Mariano statistic computed with
Newey-West standard errors. * denotes significance at 10%, ** significance at 5% and *** significance at 1% level. The in-sample period is January 1990 to end of 2007,
and the out-of-sample period starts in January 2008 and ends at the end of 2018.
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E.2: Different Sets of Restrictions

In this subsection we seek to assess the robustness of our results and the set of restrictions that have been inferred
through the SSVS scheme developed. To that end we consider the possibility of using alternative benchmarks based on
the market price of risk specifications in Cochrane and Piazzesi (2009) and Duffee (2011). These recent studies have
investigated systematic approaches to imposing restrictions on the dynamics of risk compensation, in an attempt to
improve upon the maximally flexible model. Hence, setting these models as benchmarks also allows comparisons with
state-of-the-art approaches in the DTSM literature. The first model used has been suggested by Cochrane and Piazzesi
(2009) and is also one of the models with the highest posterior probability in Bauer (2018). According to this model,
only the elements [λ1]2,1 (λ1,1 in our formulation) as well as the second element of vector λ0 (the first element of
vector λ0P in our formulation), are left unrestricted, reflecting that risk premia are earned as compensation for exposure
to level shocks only. The second set of restrictions we consider as benchmark, are the ones proposed in Duffee (2011),
allowing all parameters in the first row of matrix λ1 (λ in our formulation) as well as the first and second elements of
vector λ0 (of vector λ0P in our formulation) to be unrestricted, suggesting that investors require compensation for level
risk to all factors.

Table 14: Out-of-sample Economic performance of Bond excess return forecasts across prediction horizons

Time Period: 1990 - 2018

Panel 1: w= [-1,2] Panel 2: w= [-∞,+∞]

h 2Y 3Y 4Y 5Y 7Y 10Y h 2Y 3Y 4Y 5Y 7Y 10Y

Restrictions as in Cochrane and Piazzesi (2009)

1m -0.18 -0.62 -1.27 -1.96 -0.97 -3.77 1m -2.85 -3.95 -3.01 -2.88 -0.54 -3.93
3m -0.04 -0.05 -0.31 -0.81 -0.66 -2.86 3m -1.55 -1.91 -1.37 -1.04 -0.45 -2.82
6m -0.01 -0.06 -0.30 -0.68 -0.85 -1.58 6m -1.28 -1.69 -1.62 -1.21 -0.69 -1.58
9m 0.00 -0.06 -0.33 -0.74 -1.28 -1.51 9m -1.08 -1.59 -1.83 -1.64 -1.18 -1.50
12m 0.00 -0.03 -0.22 -0.57 -1.20 -1.34 12m -0.32 -0.80 -1.38 -1.23 -1.18 -1.33

Restrictions as in Duffee (2011)

1m -0.94 -1.44 -2.04 -2.73 -1.27 -2.67 1m -3.06 -2.68 -3.32 -3.41 -0.54 -1.68
3m -0.37 -0.81 -1.37 -1.63 -1.10 -1.66 3m -0.75 -1.24 -1.81 -1.38 -0.53 -1.05
6m -0.14 -0.49 -0.95 -1.06 -0.93 -0.62 6m 0.49 -0.34 -1.14 -0.73 -0.41 -0.21
9m -0.09 -0.36 -0.85 -0.93 -1.06 -0.41 9m 0.61 -0.31 -1.21 -0.80 -0.52 -0.06
12m 0.02 -0.17 -0.66 -0.70 -0.85 -0.23 12m 1.25 0.26 -0.96 -0.51 -0.39 0.11

This table reports annualized certainty equivalent returns (CERs), at different prediction horizons, of h= 1-month, 3-month, 6-month, 9-month and 12-month. The
coefficient of risk aversion is γ = 5. CERs are generated by out-of-sample forecasts of bond excess returns and are reported in %. At every time step, t, an investor with
power utility preferences, evaluates the entire predictive density of bond excess returns and solves the asset allocation problem, thus optimally allocating her wealth
between a riskless bond and risky bonds with maturities 2, 3, 4, 5, 7 and 10-years. CER is, then, defined as the value that equates the average utility of each alternative
model against the average utility of the EH benchmark. The two forecasting models used are the ATSM with sets of risk price restrictions as in Cochrane and Piazzesi
(2009) and Duffee (2011) respectively. Positive values indicate that the models perform better than the EH benchmark. Panel 1 presents CERs under the first scenario,
where, portfolio weights are restricted to range in the interval [-1, 2], thus imposing maximum short-selling and leveraging of 100% respectively, such that investors
are prevented from extreme investments. Panel 2, reports CER values under the second scenario, where no allocation restrictions are imposed to investors and, as such,
portfolio weights are unbounded, thus allowing for maximum leveraging and short-selling. Statistical significance is measured using a one-sided Diebold-Mariano statistic
computed with Newey-West standard errors. * denotes significance at 10%, ** significance at 5% and *** significance at 1% level. The in-sample period for results in
Panel A is January 1985 to end of 1996, and the out-of-sample period starts in January 1997 and ends at the end of 2007. The in-sample period for results in Panel B is
January 1990 to end of 2007, and the out-of-sample period starts in January 2008 and ends at the end of 2018.

Table 14 reports results of annualised CERs for the two alternative market price of risk specifications. The coefficient of
risk aversion is γ = 5, while portfolio weights are restricted to be in the interval [−1, 2], thus imposing maximum short-
selling and leveraging of 100% respectively. There is clear evidence that neither of the two specifications/approaches
are capable to offer any positive economic gains, out-of-sample, generating CER values that are consistently negative
across the maturity spectrum and investment horizons. This is not the case, however, for DTSM models we have
implemented which consistently deliver sizable economic gains especially at longer maturities. It seems more evident,
that only with specific and extreme restrictions, as in M1, it is possible to obtain some economic value from DTSMs.
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Online Appendix: Sequential Learning and Economic Benefits from Dynamic Term Structure Models

Appendix F: Sequential Learning on a Predictive Regression Model

Here we provide more details for the predictive regression model of Section 6, which can be written as

Pt − Pt−1 = µ+ΦPt−1 +Σεt (16)

rxn
t,t+h = ah + b′

hPt+h−1 + σhϵt (17)

where µ, Φ and Σ are defined as before, ah, σh are scalars, and bh is (N × 1) vector of the regression coefficients.
For a given h and information up to time T , the model defined by (7) and (7) can be estimated from the data {Pt}Tt=0,
{rxn

t,t+h}
T−h
t=0 . Since the {Pt}Tt=0 are assumed to be directly observed, the overall likelihood is given by the product of

VAR and predictive regression likelihoods obtained from (7) and (7) respectively. Hence we can view this model as
running two independent models in parallel, a linear regression and a VAR model.

We assign conjugate g−priors on the elements of µ, Φ, ah and bh, i.e. zero mean Normal priors with covariance
matrices estimated being of the form gV̂ where V̂ is either σ2

h(X
TX)−1 in the case of the predictive regression, with X

denoting the relevant design matrix, whereas for the VAR model it is estimated as in the online appendix C.3 of Bauer
(2018). Following standard recommendations in the literature, g is set to max(T, p2), where p denotes the number of
parameters. In our analyses, this translates to T , the length of the time series, in all cases. The choice of g-priors aims
to guard against the Lindley paradox that affects the model evidences and therefore the posterior model probabilities. In
order to impose sparsity we use the spike and slab priors on these parameters with slab variances being determined by
the g−prior variances, whereas the spike variances are 104 times smaller.

For the remaining parameters σ2
h and Σ we use low informative inverse gamma IG(0.01, 0.01) and inverse Wishart

IW (Σ̂, N + 1) distributions, where Σ̂ is the MLE of Σ.

Given the priors above, it is possible to construct separate Gibbs samplers for each model, see online appendix C2 for
the VAR case noting also that the full conditional of Σ is another inverse Wishart distribution. A full sweep over both of
these Gibbs samplers can then be used to sample from the posterior of the model defined by (7) and (7). This Gibbs
sampler can also be used for the jittering step of the IBIS algorithm operating on that model.
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