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Abstract: The control of rehabilitation robots presents a formidable challenge owing to the myriad

of uncharted disturbances encountered in real-world applications. Despite the existence of several

techniques proposed for controlling and identifying such systems, many cutting-edge approaches

have yet to be implemented in the context of rehabilitation robots. This highlights the necessity

for further investigation and exploration in this field. In light of this motivation, we introduce a

pioneering algorithm that employs a finite estimator and Gaussian process to identify and forecast

the uncharted dynamics of a 2-DoF knee rehabilitation robot. The proposed algorithm harnesses the

probabilistic nature of Gaussian processes, while also guaranteeing finite-time convergence through

the utilization of the Lyapunov theorem. This dual advantage allows for the effective exploitation of

the Gaussian process’s probabilistic capabilities while ensuring reliable and timely convergence of

the algorithm. The algorithm is delineated and the finite time convergence is proven. Subsequently,

its performance is investigated through numerical simulations for estimating complex unknown and

time-varying dynamics. The results obtained from the proposed algorithm are then employed for

controlling the rehabilitation robot, highlighting its remarkable capability to provide precise estimates

while effectively handling uncertainty.

Keywords: knee rehabilitation robot; identification; dynamic estimation; Gaussian process;

finite-time estimator

MSC: 68T05; 93C95; 93C40; 62P30

1. Introduction

Rehabilitation robots have become an increasingly important area of research in
recent years due to their potential to provide personalized and effective rehabilitation for
individuals with mobility impairments resulting from neurological disorders such as stroke,
spinal cord injury, or brain injury [1,2]. The development of rehabilitation robots offers a
new approach to address the limitations of traditional rehabilitation methods. These robots
can provide more intensive and repetitive training, which is essential for the formation
of new neural pathways in the brain [3,4]. The importance of rehabilitation robots is
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underscored by their ability to address several challenges that traditional rehabilitation
methods cannot adequately address. For example, they can provide customized and
targeted training to specific areas of the body, which is difficult to achieve with traditional
methods [5–7]. Additionally, they can provide objective measurements of patient progress,
allowing clinicians to monitor progress and adapt treatment regimens to meet individual
needs [8]. Also, rehabilitation robots can offer a safe and controlled environment for
patients to exercise and recover, minimizing the risk of further injury [9,10].

Rehabilitation robots present a significant challenge for researchers due to their dy-
namic complexity. These systems involve numerous degrees of freedom and exhibit nonlin-
ear and time-varying behaviors, which can make them difficult to model and control [11].
Furthermore, they require real-time monitoring and control, which is essential for provid-
ing safe and effective rehabilitation. The complex nature of these systems also leads to
challenges in identifying and predicting unknown dynamics, which can limit the effective-
ness of control strategies [12,13]. In [14], a new method has been introduced for identifying
the dynamic parameters of robots with any number of degrees of freedom using Lie theory.
Traditional methods have been perceived as cumbersome and have not been considered
universally applicable. In this approach, the robot dynamics model has been represented as
a matrix equation, having been reorganized from the Newton–Euler formula. With the use
of the Kronecker product, important dynamics components like inertia tensors, masses, and
friction coefficients have been extracted. The Kronecker–Sylvester identification equation
has been presented as an optimization challenge and has been addressed using matrix
techniques based on various joint data. Although such methods show promise, there is
still room for improvement using new technologies. Hence, as technology continues to
advance, the potential for rehabilitation robots to provide even more personalized and
effective rehabilitation increases.

The presence of unknown dynamics in rehabilitation robots can negatively impact
the performance of the system and lead to safety concerns for the patient. Therefore,
the accurate identification and estimation of these disturbances are crucial for developing
effective control strategies that can mitigate their effects [15,16]. Estimating the disturbances
in rehabilitation robots can be challenging due to the complex and nonlinear nature of
the system. The identification of disturbances typically involves developing mathematical
models of the system and measuring the difference between the model prediction and
actual behavior of the system [17,18]. However, in rehabilitation robots, it can be difficult
to obtain accurate models due to the presence of uncertainties and unknown dynamics.

The importance of disturbance identification and estimation in rehabilitation robots
cannot be overstated. The accurate identification and estimation of disturbances are cru-
cial for ensuring safe and effective rehabilitation for patients. Despite the challenges,
conventional techniques have been widely used to estimate and predict disturbances in
rehabilitation robots. These techniques include adaptive control strategies [19,20], neural
networks [21,22], and Kalman filters [23,24]. While these methods can help to improve the
accuracy of disturbance estimation and lead to more effective control strategies that can
adapt to the dynamic behavior of the system, it is important to note that most of the existing
algorithms rely on conventional methods and do not incorporate state-of-the-art techniques.
Therefore, there is still room for improvement in the field of disturbance estimation in
rehabilitation robotics.

One of the state-of-the-art techniques that is barely used for identification in rehabilita-
tion robots is the Gaussian process. Gaussian process regression is a powerful statistical
technique that has shown promise in identifying and predicting unknown dynamics of
complex systems [25,26]. This technique is particularly useful in systems where mathe-
matical models are difficult to obtain due to uncertainties and nonlinearities. Gaussian
process regression can model complex functions without assuming a specific functional
form, making it well-suited for identifying unknown dynamics in rehabilitation robots. By
modeling the system’s response to various inputs, Gaussian process regression can identify
the unknown dynamics of the system and predict its behavior in response to new inputs.
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The sampling process is a critical issue in the dynamic identification of rehabilitation
systems, as obtaining accurate samples from the unknown dynamic of these systems is a
challenging task. Consequently, most studies in this field treat the unknown dynamics of
these systems as disturbances in control applications rather than identifying them [27,28].
However, with the advent of new techniques, it is possible to accurately estimate the
unknown dynamics of these systems, and the resulting information can be used in the
downstream tasks of these robots. Therefore, incorporating these advanced techniques
in dynamic identification can potentially enhance the control and overall performance of
rehabilitation robots.

Advancements in research and development in the area of rehabilitation robots hold
great potential for enhancing patients’ quality of life. With the goal of contributing to
this matter, our study proposes a novel algorithm that utilizes a finite-time estimator and
Gaussian process to identify the unknown dynamics of rehabilitation robots. By developing
more sophisticated and widely used rehabilitation robots, we can improve the effectiveness
of rehabilitation treatments and enhance the overall well-being of patients. The proposed
algorithm is a robust algorithm that takes samples of the model, and the accuracy of
samples is guaranteed through the Lyapunov stability theorem. The use of finite-time
observers in combination with Gaussian process regression further improves the accuracy
of estimation by providing real-time estimates of the system’s state. Also, the proposed
algorithm takes advantage of the probabilistic nature of Gaussian process regression in
disturbance estimation for rehabilitation robots, which is a promising area of research
that has the potential to significantly improve the accuracy and effectiveness of control
strategies for these complex systems.

The structure of the current study is outlined as follows. Section 2 provides an
overview of the dynamical model used for a 2-DoF knee rehabilitation robot. Section 3
presents a background on Gaussian processes to provide a comprehensive understanding of
the methodology utilized in this study. Then in Section 4, we propose a finite-time estimator
and an identification algorithm based on finite-time sampling and a Gaussian process for
the identification of the unknown dynamics of the rehabilitation robot. In Section 5, we test
the proposed algorithm in various scenarios and apply it to the system in combination with
feedback linearization control to demonstrate its excellent performance. Finally, Section 6
concludes the study by presenting our findings and future research directions.

2. Problem Formulation

The mathematical modeling of a rehabilitation robotic system consisting of n links is
given by [29]

I(ϕ)
..
ϕ + C

(

ϕ,
.
ϕ
) .

ϕ + Q(ϕ) + JT(ϕ) f (t) = τ(t) (1)

Here, ϕ represents the joint angles,
.
ϕ denotes the rate of change in these angles

(joint velocities), and
..
ϕ signifies the acceleration of the joints. The terms I(ϕ) and C

(

ϕ,
.
ϕ
)

encapsulate the inertia of the robot and the combined centripetal and Coriolis forces,
respectively. The vector Q(ϕ) stands for the gravitational torques acting on the robot’s
joints. On the other hand, τ(t) embodies the input torques that drive the robot’s motion.
Additionally, the Jacobian matrix J(ϕ) links the joint velocities to the velocity of the robot’s
end-effector. Lastly, f (t) signifies the external forces applied to the robot, such as those from
the user. This equation, grounded in standard robotic conventions, captures the intricate
interplay of various forces and responses in a robotic system. It is noteworthy that the I(ϕ)
matrix satisfies the conditions of symmetry [30] and the dynamic equation’s left-hand side
can be expressed as a linear parameterization:

I(ϕ)
..
ϕ + C(ϕ, ϕ)

.
ϕ + Q(ϕ) =G

(

ϕ,
.
ϕ,

..
ϕ
)

θ (2)

where θ is the vector of dynamic parameters of the system and G
(

ϕ,
.
ϕ,

..
ϕ
)

∈ Rn×p is the
regression matrix, which contains unknown functions of the signals ϕ(t),

.
ϕ(t), and

..
ϕ(t).

It is assumed that the constrained force f (t) is uniformly bounded. This assumption is
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deemed reasonable from an engineering standpoint since the time-varying constrained
force f (t) is expected to be bounded.

Figure 1 shows a 2-DoF knee rehabilitation robot with two revolute joints in the
vertical plane. The system consists of a mechanical structure that resembles a human leg,
with two degrees of freedom at the knee joint. Two motors actuate the joint through a
transmission system that includes a ball screw and a timing belt. The motors are controlled
by a computer, which receives feedback from sensors located at various points in the system.
The sensors measure joint position, velocity, and acceleration, as well as motor torque and
current. The computer calculates the desired torque inputs to achieve a desired trajectory
and sends them to the motors.

where 𝜃  is the vector of dynamic parameters of the system and 𝐺(𝜑, �̇�, �̈�) ∈  𝑅𝑛×𝑝 is the 
regression matrix, which contains unknown functions of the signals 𝜑(𝑡), �̇�(𝑡), and �̈�(𝑡). 
It is assumed that the constrained force 𝑓(𝑡) is uniformly bounded. This assumption is 
deemed reasonable from an engineering standpoint since the time-varying constrained 
force 𝑓(𝑡) is expected to be bounded.

Figure 1 shows a 2-DoF knee rehabilitation robot with two revolute joints in the ver-
tical plane. The system consists of a mechanical structure that resembles a human leg, with 
two degrees of freedom at the knee joint. Two motors actuate the joint through a trans-
mission system that includes a ball screw and a timing belt. The motors are controlled by 
a computer, which receives feedback from sensors located at various points in the system. 
The sensors measure joint position, velocity, and acceleration, as well as motor torque and 
current. The computer calculates the desired torque inputs to achieve a desired trajectory 
and sends them to the motors.

Figure 1. The structure of the 2-DoF knee rehabilitation robot.

To derive the equation of motion that yields the parameters of Equation (1), we utilize 
the Euler–Lagrange equations. We consider 𝜑 = [𝜑1𝜑2] as generalized coordinates. The ki-
netic energy can be expressed as:𝑇(𝜑, �̇�) = 12 𝑚1𝑙𝑜12 �̇�12  + 12 𝐼1�̇�12  + 12 𝑚2𝑙12�̇�12  +  𝑚2𝑙1𝑙𝑜2�̇�1(�̇�1 + �̇�2)cos(𝜑2)+ 12 𝑚2𝑙𝑐22 (�̇�1 + �̇�2)2  + 12 𝐼2(�̇�1 + �̇�2)2 (3)

where the distance between joint 𝑖 − 1 and the center of mass of link 𝑖 is represented by 𝑙𝑜𝑖. Furthermore, 𝐼𝑖 denotes the moment of inertia of link 𝑖 about an axis that extends out 
of the page and passes through the center of mass of link 𝑖, where 𝑖 takes on values of 1 
and 2. The potential energy is written as:𝑉𝑝(𝜑) = 𝑚1𝑔𝑙𝑜2 sin (𝜑1) + 𝑚2𝑔[𝑙1 sin (𝜑1) + 𝑙𝑜2 𝑠𝑖𝑛(𝜑1 + 𝜑2)]. (4)

Using the Lagrange equation, the dynamic of the system is obtained by:𝐼(𝜑) = [𝑚1𝑙𝑐12 + 𝑚2(𝑙12 + 𝑙𝑜22 + 2𝑙1𝑙𝑐2 cos 𝜑2) + 𝐼1 + 𝐼2 𝑚2(𝑙𝑜22 + 𝑙1𝑙𝑜2 cos 𝜑2) + 𝐼2𝑚2(𝑙𝑜22 + 𝑙1𝑙𝑜2 cos 𝜑2) + 𝐼2 𝑚2𝑙𝑜22 + 𝐼2 ]
𝑄(𝜑) = [(𝑚1𝑙𝑜2 + 𝑚2𝑙1)𝑔 cos 𝜑1 + 𝑚2𝑙𝑜2𝑔 cos(𝜑1 + 𝜑2) 𝑚2(𝑙𝑜22 + 𝑙1𝑙𝑜2 cos 𝜑2) + 𝐼2 ] (5)

Figure 1. The structure of the 2-DoF knee rehabilitation robot.

To derive the equation of motion that yields the parameters of Equation (1), we utilize

the Euler–Lagrange equations. We consider ϕ =

[

ϕ1

ϕ2

]

as generalized coordinates. The

kinetic energy can be expressed as:

T
(

ϕ,
.
ϕ
)

= 1
2 m1l2

o1

.
ϕ

2
1 +

1
2 I1

.
ϕ

2
1 +

1
2 m2l2

1

.
ϕ

2
1 + m2l1lo2

.
ϕ1

( .
ϕ1 +

.
ϕ2

)

cos(ϕ 2)

+ 1
2 m2l2

c2

( .
ϕ1 +

.
ϕ2

)2
+ 1

2 I2

( .
ϕ1 +

.
ϕ2

)2 (3)

where the distance between joint i − 1 and the center of mass of link i is represented by loi.
Furthermore, Ii denotes the moment of inertia of link i about an axis that extends out of the
page and passes through the center of mass of link i, where i takes on values of 1 and 2.
The potential energy is written as:

Vp(ϕ) = m1glo2sin(ϕ1) + m2g[l1sin(ϕ1) + lo2sin(ϕ1 + ϕ2)]. (4)

Using the Lagrange equation, the dynamic of the system is obtained by:

I(ϕ) =

[

m1l2
c1 + m2

(

l2
1 + l2

o2 + 2l1lc2cos ϕ2

)

+ I1 + I2 m2

(

l2
o2 + l1lo2cos ϕ2

)

+ I2

m2

(

l2
o2 + l1lo2cos ϕ2

)

+ I2 m2l2
o2 + I2

]

Q(ϕ) =

[

(m1lo2 + m2l1)gcos ϕ1 + m2lo2gcos(ϕ1 + ϕ2)
m2

(

l2
o2 + l1lo2cos ϕ2

)

+ I2

]

C
(

ϕ,
.
ϕ
)

=

[

−m2l1lo2
.
ϕ2sin(ϕ2) −m2l1lo2

( .
ϕ1 +

.
ϕ2

)

sin ϕ2

m2l1l2
.
ϕ1sin ϕ2 0

]

(5)
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The kinematics of the robot and the Jacobian matrix are given by:

φ(ϕ) =

[

l1cos ϕ1 + l2cos(ϕ1 + ϕ2)
l1sin ϕ1 + l2sin(ϕ1 + ϕ2)

]

J(ϕ) =

[

−l1sin ϕ1 + l2sin(ϕ1 + ϕ2) −l2sin(ϕ1 + ϕ2)
−l1cos ϕ1 + l2cos(ϕ1 + ϕ2) l2cos(ϕ1 + ϕ2)

] (6)

Remark 1. In evaluating robotic complexity, it is intuitive to assume that a 2-DoF robot offers
fewer challenges than its 6-DoF counterpart. However, when contextualized within the domain of
rehabilitation robotics, this perspective demands a more detailed interpretation by considering the
following factors: (1) Direct human–robot interactions impose inherently unpredictable dynamics,
necessitating rigorous safety protocols to mitigate potential harm. (2) The heterogeneity in indi-
vidual human physiological responses compels the need for robots to possess extensive adaptability
mechanisms. (3) Contrary to interfaces with rigid substrates, rehabilitation robots engage with the
multifaceted dynamics of human soft tissues, muscles, and joints. (4) A concurrent challenge is the
requisite integration with broader health-monitoring frameworks, introducing additional layers of
operational complexity. Consequently, the intricacies inherent to a 2-DoF rehabilitation robot, given
its symbiotic relation with human biomechanics, can arguably rival the complexities encountered in
high-DoF industrial robotic applications.

3. Gaussian Processes

Simulators, which are frequently used to model intricate real-world phenomena in
various fields of science and technology, often rely on mathematical models. However,
these models can be computationally demanding due to the complexity of the systems
being simulated. Emulators, which aim to construct a mathematical representation of these
systems and processes, offer a potential solution to this problem. Among the methods used
to create emulators, Gaussian processes are widely employed due to their effectiveness and
popularity [31–33].

3.1. Gaussian Processes Formulation

Data obtained from laboratory experiments or computer simulations may be subject
to noise. This can result in variations in the input–output relation, which can be viewed as
a single realization from a random process GP(ϕ):

GP(ϕ) = b(ϕ)µ + n(ϕ) (7)

In this context, the inputs in the training data are represented by vector ϕ = [ϕ1, ϕ2, . . . , ϕd]
T.

The mean function is defined using a pre-determined set of basis functions and
the unknown coefficient of the mean function which respectively are denoted by

b(ϕ) = [b1(ϕ), . . . , bw(ϕ)] and µ = [µ1, . . . , µw]
T . A zero-mean Gaussian process (n(x)) is

also involved, and its parametric covariance function is defined by

cov
(

n(ϕ), n
(

ϕ′
))

= cc

(

ϕ, ϕ′
)

= σ2k
(

ϕ, ϕ′
)

(8)

The variance of the process is denoted by σ2, and the correlation function is repre-
sented by k(·), where k

(

ϕ*, ϕ′
)

, is a measure of similarity between ϕ* and ϕ′. Numerous
correlation functions have been put forward in scholarly works; however, the Gaussian cor-
relation function stands as the most frequently utilized one. This function can be expressed
as follows:

k(ϕ, ϕ′) = exp
{

−(ϕ − ϕ′)T
Ω(ϕ − ϕ′)

}

Ω =







Ω1 · · · 0
...

. . .
...

0 · · · Ωd







(9)
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The hyperparameters are denoted by σ2 and Ω in which σ2 is a scalar and Ω is a
diagonal matrix. To perform Gaussian process modeling, the estimation of parameters µ, Ω,
and σ2 is essential. This can be performed through maximum likelihood estimation [34–36].
Maximum likelihood estimation is a statistical method used to estimate the parameters of a
model by maximizing the likelihood function. In the case of Gaussian process modeling,
the multivariate Gaussian likelihood function is used. This function is defined as the
probability density function of a multivariate Gaussian distribution, which is determined
by the mean vector and the covariance matrix. The likelihood function is expressed
as follows:

[

µ̂, σ̂2, Ω̂
]

= argmin
µ,σ2,Ω

(

d

2
log
(

σ2
)

+
1

2
log(|K|) +

1

2σ2
(y − Bµ)TK−1(y − Bµ)

)

(10)

Using the natural logarithm represented by log(.), the correlation matrix, K with
elements Kij = k

(

ϕi, ϕj

)

for i, j = 1, . . . , d, and the outputs of the training data are denoted

by the vector y = [y(ϕ1), . . . , y(ϕd)]
T . Also, B is the d × w matrix with the (i, j)th element

Bij = bj(xi).

In order to obtain an estimate of the hyperparameters µ̂, σ̂2, and Ω̂, one can minimize
Equation (10) using numerical optimization techniques. Many global optimization meth-
ods have been utilized for this purpose, such as particle swarm optimization, the genetic
algorithm (GA), pattern searches, and gradient-based optimization [37–41]. Nevertheless,
gradient-based optimization methods are often the preferred choice for maximum like-
lihood estimation in Gaussian process models due to their computational efficiency and
ability to efficiently optimize the many model parameters involved in these models.

Applying Gaussian process modeling enables us to obtain the mean and variance of
the predicted probability distribution at any input point x*. Specifically, the mean prediction
is given by the posterior mean function, which is a linear combination of the training data
with weights determined by the covariance between the training data and the test point.
The variance of the prediction, on the other hand, is determined by the posterior covariance
function, which measures the uncertainty in the prediction due to the noise in the data and
the choice of the kernel function. The mean and variance of the prediction are respectively
given by

E
(

y*
)

= b
(

ϕ*
)

µ̂ + cT
n

(

ϕ*
)

L−1(y − Bµ̂), (11)

cov
(

y*, y′
)

= cc

(

ϕ*, ϕ′
)

− cT
n

(

ϕ*
)

L−1cn(ϕ′)

+
(

b
(

ϕ*
)

− BT L−1cn

(

ϕ*
))T(

BT L−1B
)−1

(b(ϕ′)
−BT L−1cn(ϕ′)

)

(12)

where for each training data point ϕi, we compute a value σ̂2k
(

ϕ*, ϕi

)

, and collecting these
values for all n training data points, we obtain a column vector cn

(

ϕ*
)

which measures
the similarity of ϕ* with all training data. Also, using the similarity values between the

training data points, we can construct a covariance matrix L, where the (i, j)th element is
given by σ̂2k

(

ϕi, ϕj

)

.

3.2. Comparison with Other Techniques

In the realm of algorithmic methodologies, GPs stand apart from techniques like
neural networks, deep learning, particle swarm optimization (PSO), and genetic algorithms
(GAs) not necessarily in novelty but in their foundational approaches and areas of applica-
bility. While deep learning methods excel in tasks involving high-dimensional data and
have revolutionized domains such as image processing, GPs, being non-parametric, offer
a probabilistic lens to both supervised and unsupervised learning scenarios. Conversely,
optimization strategies like PSO and GA shine in environments characterized by com-
plex, non-continuous search spaces, where traditional gradient-based techniques might
be inadequate.
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The main benefits of Gaussian processes include (1) Interpretability: GPs inherently
furnish an interpretative framework, elucidating uncertainties associated with predictions.
(2) Data efficiency: owing to their probabilistic nature, GPs can render credible predictions
with limited data, circumventing the voluminous data prerequisites often seen with deep
architectures. (3) Optimization synergy: in contexts such as Bayesian optimization, the
inherent uncertainty quantification of GPs renders them particularly effective. (4) Resilience
to overfitting: with judicious kernel and hyperparameter selection, GPs demonstrate a
reduced predisposition to overfit, especially in scenarios where data might be scarce.

4. The Proposed Identification Algorithm

In this section, we propose a finite-time estimator for the rehabilitation robot and
prove its convergence based on the Lyapunov stability theory. Then, we introduce our
algorithm to identify the time-varying unknown dynamics of the rehabilitation robot.

4.1. Finite-Time Estimator

To reformulate the equation of motion of a multi-input multi-output rehabilitation

robot with 2-DoF in the state space form, we define x1= [ϕ1, ϕ2]
T and x2=

[ .
ϕ1,

.
ϕ2

]T
as

.
ϕ,

and the robot dynamics can be described as follows:

.
x1 = x2,
.
x2 = p(t) + I(x)−1τ(t) + h(t, x1)

(13)

in which, based on Equation (1), one can obtain:

p(t, x1, x2) = I(x1)
−1(−C(x1, x2)x2 − Q(x1)) (14)

h(t, x1) = −I(x)−1 JT(x1) f (t) (15)

To account for both the uncertain terms of the system and the unknown dynamic as a
single term, we use h(t) which should be estimated.

Lemmas 1 and 2 are utilized to introduce the finite-time estimator for the nonlinear
rehabilitation robot.

Lemma 1. Consider a continuously differentiable positive definite function V(t) that satisfies the
following inequality:

.
V(t) + aV(t) + bVc ≤ 0, ∀t > t0 (16)

Given that 0 < c < 1, and b > 0 while a > b, the function V(t) exhibits convergence to the
equilibrium point within a finite time duration.

Lemma 2. The triangle inequality holds if 0 < n < 1 and β∆ > 0 > 0 for ∆ = 1, 2, . . . , m, then:

(

m

∑
∆=1

β∆

)n

≤
m

∑
∆=1

βn
∆ (17)

In order to develop a finite-time estimator for the rehabilitation robot, we introduce the following
auxiliary variables:

ψ = ξ − x (18)

where the variable z is defined as follows:

.
ξ = −kdψ − νsign(ψ)− εψp0/q0 − |p(t, x1, x2)|sign(ψ) + I(q)−1τ(t) (19)

The variable µ is expressed using the design parameters kd and ε, which are positive, and ν is
greater than the 1-norm of vector h, denoted as ‖h‖1. Here, the symbol ‖.‖ represents the 1-norm.
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Additionally, we have odd positive integers p0 and q0, where p0 is less than q0. The estimated value
of the uncertain dynamic (N̂) is then determined as follows:

ĥ = −kdψ − νsign(ψ)− εψp0/q0 − |p(t, x)|sign(ψ)− p(t, x) (20)

By taking into account Equations (13), (18), and (19), we arrive at the following equation:

.
ψ =

.
ξ −

.
x2 = −kdψ − νsign(ψ)− εψp0/q0 − |p(t, x1, x2)|sign(ψ)− p(t, x1, x2)− h(t, x1) (21)

Based on Equations (13), (20), and (21), we obtain:

∼
h = ĥ − h = −kdψ −νsign(ψ)− εψ

p0
q0 − |p(t, x1, x2)|sign(ψ)− p(t, x1, x2)

−h(t, x1)

= −kψ − νsign(ψ)− εsd

p0
q0 − |p(t, x1, x2)|sign(ψ)

−p(t, x1, x2)−
.
x + p(t, x1, x2) + I(q)−1τ(t)

= −kψ − νsign(ψ)− εψ
p0
q0 − |p(t, x1, x2)|sign(ψ)

+I(q)−1τ(t)−
.
x2 =

.
ξ −

.
x =

.
ψ

(22)

Theorem 1. By applying the proposed estimator, defined by Equations (18)–(20), to the MIMO
uncertain nonlinear system expressed by Equation (14), the error of estimation, denoted by the

variable
∼
N, converges to zero within a finite time.

Proof. Let us consider the positive definite Lyapunov function candidate as follows:

V0 =
1

2
ψTψ (23)

The time derivative of the function V0 can be expressed as:

.
V0 = ψT

.
ψ = sd

T (−kdψ − νsign(ψ)− εψ
p0
q0 − ‖p(t, x1, x2)‖1sign(ψ)

−p(t, x1, x2)− h(t, x1))

≤ −kdψTψ − νψTsign(ψ)− εsd
Tψ

p0
q0

−‖p(t, x1, x2)‖1ψTsign(ψ)− ψT p(t, x1, x2)− ψTh(t, x)

≤ −kdψTψ − ν
∥

∥ψT
∥

∥

1
−εψTψ

p0
q0 − ‖p(t, x1, x2)‖1

∥

∥ψT
∥

∥

1

−ψT p(t, x) +
∥

∥ψT
∥

∥

1‖h(t, x1)‖1 ≤ −kdψTψ−εψTψ
p0
q0

≤ −2kV0 − 2(p0+q0)/2q0 εV
(p0+q0)/2q0

0

(24)

Lemma 3 was used to derive the final line of Equation (24).

Lemma 3. Taking the following function

V0 = 1
2 sd

Tsd = 1
2

(

ψ2
1 + ψ2

2 + · · ·+ ψ2
n

)

V
(p0+q0)/2q0

0 =
(

1
2

(

ψ2
1 + ψ2

2 + · · ·+ ψ2
n

)

)(p0+q0)/2q0

≤ 1

2(p0+q0)/2q0

(

ψ
(p0+q0)/2q0

1 + ψ
(p0+q0)/2q0

2 + · · ·

+ψ
(p0+q0)/2q0
n

)

(25)

the following equation is obtained

2(p0+q0)/2q0 V
(p0+q0)/2q0

0 ≤ ψ
(p0+q0)/q0

1 + ψ
(p0+q0)/q0

2 + · · ·+ ψ
(p0+q0)/q0
n (26)
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As we know ψ
(p0+q0)/q0

1 + ψ
(p0+q0)/q0

2 + · · ·+ ψ
(p0+q0)/q0
n = ψTψp0/q0 , we obtain the fol-

lowing as a result:

2(p0+q0)/2q0 V
(p0+q0)/2q0

0 ≤ ψTψ
p0
q0

yields
→ −εψTψp0/q0 ≤ −ε2(p0+q0)/2q0 V

(p0+q0)/2q0

0

(27)

Accordingly, the finite-time convergence of the estimation error
∼
h to zero has been

proven for the proposed disturbance estimator using Lemmas 1, 2, and 3 along with
Equation (27), which satisfies the Lyapunov condition. �

4.2. The Algorithm

In the previous section, we discussed the use of Gaussian processes to predict the
value of dynamic uncertainties in rehabilitation robots. However, there is a significant
challenge in obtaining samples from these uncertainties and unknown dynamics in reality.
This challenge must be addressed in order to make any meta-modeling technique like
Gaussian processes or neural networks practical in real-world applications.

For rehabilitation robots, we have inputs and outputs, and if we design the system’s
states in an observable manner, we can obtain the system’s states as well. However, these
meta-modeling techniques can only model the relationship between the given input and
output and cannot model a part of the system. Furthermore, they only work perfectly under
ideal conditions. This is a major obstacle and an open question in the field of robotics and
identification. To address this challenge, we propose a Gaussian process based on a finite-
time estimator. We propose a finite-time estimator and prove its finite-time convergence
using the Lyapunov theorem. As delineated in Section 3.1, we define the estimator to only
identify the unknown and unmodeled dynamics. Then, using the samples and information
obtained from the estimator, we fit a Gaussian process and model the unknown dynamics
of the system.

The strength of our model lies in its finite-time guaranteed convergence, which ensures
the existence of trustworthy samples for the Gaussian process. In summary, our approach
uses a Gaussian process based on a finite-time estimator to model the unknown and un-
modeled dynamics of rehabilitation robots. Our method provides trustworthy samples for
the Gaussian process, ensuring practical applicability in real-world settings. Our approach
addresses an open question in the field of robotics and identification and contributes to the
development of rehabilitation robots.

4.3. Feedback Linearization Augmented by the Proposed Algorithm

In this part, we provide feedback linearization control for rehabilitation robots aug-
mented by our proposed approach. By integrating a robust estimator with feedback
linearization, we are essentially combining model-based control with model-free learning,
aiming for the best of both worlds.

Using feedback linearization, the control objective is to cancel out the nonlinearities
and derive a control input τ to stabilize the system. The system dynamics are presented in
Equations (13)–(15), where h (t, x1 ) is estimated using the proposed algorithms as ĥ(t, x1 )
and represents the uncertain and unknown dynamics. To linearize the system, we define
the control input τ as:

τ = I(x1)
(

u − p(t, x1, x2)− ĥ(t, x1)
)

(28)

here u is the auxiliary control input which will be designed to stabilize the linearized
system. Inserting this into the system dynamics, we obtain:

.
x1 = x2,

.
x2 = u

(29)
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which resembles a double integrator system. A common choice for u in the feedback
linearization technique is:

u = −k1 x1 − k2 x2 (30)

where k1 and k2 are positive constants. To prove stability, we can use a Lyapunov function.
A common choice for a double integrator system is:

V(x1, x2) = 0.5 k1x2
1 + 0.5 x2

2 ++0.5kh

∼
h

2

(31)

Taking its time derivative:

.
V (x1, x2) = k1x1x2 + x2u + 0.5kh

∼
hd

d
∼
h

dt
(32)

Theorem 1 guarantees the fact that the estimation error
∼
h = ĥ − h converges to zero in

a finite time. Therefore, after a finite time we have

.
V (x1, x2) = k1x1x2 + x2u (33)

Inserting the proposed control law in Equation (33), we have:

.
V (x1, x2) = −k2 x2

2 (34)

This derivative is negative definite, implying that the origin is stable and the system
asymptotically converges to it.

4.4. Details for Implementing the Proposed Algorithm

The process initiates with the acquisition of electromyographic (EMG) signals. These
signals are captured using advanced EMG sensors, which are part of a comprehensive data
acquisition system specifically designed for biomechanical applications. The sensors are
strategically positioned on the lower limb to ensure optimal signal capture. The positioning
takes into account muscle groups of primary interest, and the sensors are usually attached
to the skin using hypoallergenic adhesive pads to maintain stable contact throughout
the procedure.

To ensure the fidelity of the captured signals, the data acquisition system is equipped
with high-resolution analog-to-digital converters and signal filtering mechanisms, and it is
synchronized with a computer interface for real-time data visualization and storage. This
setup not only guarantees accurate data collection but also enables immediate feedback
and calibration if required.

Once these EMG signals are acquired and pre-processed, they are sent to a meticulously
calibrated transformer. This transformer converts the EMG signals into the desired positions
to which the rehabilitation robot’s limbs should navigate. Following this transformation
phase, a controller—outfitted with the proposed identifier—actively drives the links of
the robotic system to align with these predetermined desired values. This methodology
ensures precision and ease of application, and it optimizes the robot’s performance in
rehabilitation contexts.

5. Numerical Results

In this section, we evaluate the effectiveness of the proposed algorithm through three
different examples. Specifically, in Examples 1 and 2, we illustrate the performance of the
proposed method in the identification of the unknown complex dynamics of the system. In
Example 3, we utilize the information obtained from the algorithm for control purposes.
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5.1. Identifying Time-Varying Continuous Dynamic

In this example, we aim to investigate the effectiveness of the proposed algorithm
in estimating the unknown dynamics of a system. Specifically, the unknown dynamic is
given by:

h(ϕ, t) = J(ϕ) f (t)

=

[

−l1sin ϕ1 + l2sin(ϕ1 + ϕ2) −l2sin(ϕ1 + ϕ2)
−l1cos ϕ1 + l2cos(ϕ1 + ϕ2) l2cos(ϕ1 + ϕ2)

][

sin(t) + 1
2cos(t) + 0.5

]

(35)

where f (t) is the constrained force exerted by the user and J(q) is the Jacobian matrix of
the system and is defined in Equation (6). Figures 2 and 3 depict the states of the system
and the applied torque of the rehabilitation robot under the proposed algorithm. As shown
in Figure 2, the proposed finite-time estimator extracted accurate samples and the Gaussian
process was able to learn the complex unknown dynamics effectively, and its performance
in predicting the test set was remarkable. Also, Figure 3 demonstrates that the applied
torque remains within a practical range, which guarantees the effectiveness of the proposed
method. Therefore, it is evident that the proposed algorithm can efficiently enhance the
down-stream tasks in rehabilitation robots.

ℎ(𝜑, 𝑡) = 𝐽(𝜑)𝑓(𝑡)= [−𝑙1 sin 𝜑1 + 𝑙2 sin(𝜑1 + 𝜑2) −𝑙2 sin(𝜑1 + 𝜑2)−𝑙1 cos 𝜑1 + 𝑙2 cos(𝜑1 + 𝜑2) 𝑙2 cos(𝜑1 + 𝜑2) ] [ sin(𝑡)  +  1 2 cos(𝑡) +  0.5 ] (35)

where 𝑓(𝑡) is the constrained force exerted by the user and 𝐽(𝑞) is the Jacobian matrix of 
the system and is defined in Equation (6). Figures 2 and 3 depict the states of the system 
and the applied torque of the rehabilitation robot under the proposed algorithm. As 
shown in Figure 2, the proposed finite-time estimator extracted accurate samples and the 
Gaussian process was able to learn the complex unknown dynamics effectively, and its 
performance in predicting the test set was remarkable. Also, Figure 3 demonstrates that 
the applied torque remains within a practical range, which guarantees the effectiveness of 
the proposed method. Therefore, it is evident that the proposed algorithm can efficiently 
enhance the down-stream tasks in rehabilitation robots.

It is noteworthy that despite the presence of noise in the estimated data, the Gaussian 
process successfully eliminated the noise and yielded precise data predictions. Notably, 
the outcomes demonstrate an excellent agreement with the actual value of the unknown 
dynamic of the systems, as evidenced by the close alignment between the red line and the 
blue line in Figure 2. An additional benefit of the proposed algorithm is the uncertainty 
bounds provided by Gaussian processes. These bounds can be highly advantageous in the 
design of controllers and the determination of their stable ranges for system parameters. 
The estimated uncertainties can help to address the challenge of determining the stability 
range for system control in practice.

Figure 2. The results of the identification of unknown dynamics presented in Equation (28).
Figure 2. The results of the identification of unknown dynamics presented in Equation (28).

It is noteworthy that despite the presence of noise in the estimated data, the Gaussian
process successfully eliminated the noise and yielded precise data predictions. Notably,
the outcomes demonstrate an excellent agreement with the actual value of the unknown
dynamic of the systems, as evidenced by the close alignment between the red line and the
blue line in Figure 2. An additional benefit of the proposed algorithm is the uncertainty
bounds provided by Gaussian processes. These bounds can be highly advantageous in the
design of controllers and the determination of their stable ranges for system parameters.
The estimated uncertainties can help to address the challenge of determining the stability
range for system control in practice.

5.2. Identifying Time-Varying Discontinuous Dynamic

Traditional methods have difficulty in identifying discontinuous dynamics that in-
volve sudden changes, but our proposed method can handle such dynamics due to its
probabilistic nature. This makes it possible to accurately predict unknown dynamic func-
tions that are not possible to identify using traditional methods. To further demonstrate
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the effectiveness of our proposed algorithm, we consider an example with a discontinuous
unknown dynamic function as follows:

h(ϕ, t) = J(ϕ) f (t)

=

[

−l1sin ϕ1 + l2sin(ϕ1 + ϕ2) −l2sin(ϕ1 + ϕ2)
−l1cos ϕ1 + l2cos(ϕ1 + ϕ2) l2cos(ϕ1 + ϕ2)

][

sign(sin(t)− cos(2t) + 1)
sign(2cos(t) + 0.5)

]

(36)

where the sign function generates discontinuous signals which are hard to estimate.
Figures 4 and 5 show the identification results and applied torque to the system. The
results presented in Figure 4 highlight the outstanding performance of the proposed algo-
rithm in dynamic identification. Despite the highly discontinuous nature of the unknown
dynamic, characterized by sudden changes resulting from the sign function, the proposed
algorithm demonstrated an exceptional ability to learn the system’s complex and unknown
dynamics accurately.

 

Figure 3. The applied torque to the system for identifying unknown dynamics presented in Equa-
tion (28).

5.2. Identifying Time-Varying Discontinuous Dynamic
Traditional methods have difficulty in identifying discontinuous dynamics that in-

volve sudden changes, but our proposed method can handle such dynamics due to its 
probabilistic nature. This makes it possible to accurately predict unknown dynamic func-
tions that are not possible to identify using traditional methods. To further demonstrate 
the effectiveness of our proposed algorithm, we consider an example with a discontinuous 
unknown dynamic function as follows:ℎ(𝜑, 𝑡) = 𝐽(𝜑)𝑓(𝑡)= [−𝑙1 sin 𝜑1 + 𝑙2 sin(𝜑1 + 𝜑2) −𝑙2 sin(𝜑1 + 𝜑2)−𝑙1 cos 𝜑1 + 𝑙2 cos(𝜑1 + 𝜑2) 𝑙2 cos(𝜑1 + 𝜑2) ] [sign(sin(𝑡) − cos (2𝑡) +  1 )sign(2 cos(𝑡) +  0.5 ) ] (36)
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known dynamics accurately.
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Figure 5. The applied torque to the system for identifying unknown dynamics presented in Equa-
tion (29).

Moreover, the ability of the algorithm to maintain the system states and applied 
torque within practical ranges further highlights its effectiveness. The fact that the algo-
rithm was able to achieve such accurate identification and prediction even in the presence 
of complex and variable dynamics is a testament to its robustness and reliability.

5.3. Using Identified Dynamic for Control of the Rehabilitation Robot
Now, we use the information obtained from the proposed algorithm and apply a 

feedback linearization controller to control the system. In light of the challenges posed by 
uncertainties, the suitability of a feedback linearization controller for controlling rehabili-
tation robots may be compromised. However, thanks to the effectiveness of the proposed 
algorithm in accurately estimating uncertainties, as demonstrated in the previous 

Figure 4. The results of the identification of unknown dynamics presented in Equation (29).
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Figure 4. The results of the identification of unknown dynamics presented in Equation (29).
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Moreover, the ability of the algorithm to maintain the system states and applied 
torque within practical ranges further highlights its effectiveness. The fact that the algo-
rithm was able to achieve such accurate identification and prediction even in the presence 
of complex and variable dynamics is a testament to its robustness and reliability.

5.3. Using Identified Dynamic for Control of the Rehabilitation Robot
Now, we use the information obtained from the proposed algorithm and apply a 

feedback linearization controller to control the system. In light of the challenges posed by 
uncertainties, the suitability of a feedback linearization controller for controlling rehabili-
tation robots may be compromised. However, thanks to the effectiveness of the proposed 
algorithm in accurately estimating uncertainties, as demonstrated in the previous 

Figure 5. The applied torque to the system for identifying unknown dynamics presented in Equation (29).

Moreover, the ability of the algorithm to maintain the system states and applied torque
within practical ranges further highlights its effectiveness. The fact that the algorithm was
able to achieve such accurate identification and prediction even in the presence of complex
and variable dynamics is a testament to its robustness and reliability.

5.3. Using Identified Dynamic for Control of the Rehabilitation Robot

Now, we use the information obtained from the proposed algorithm and apply a
feedback linearization controller to control the system. In light of the challenges posed by
uncertainties, the suitability of a feedback linearization controller for controlling rehabilita-
tion robots may be compromised. However, thanks to the effectiveness of the proposed
algorithm in accurately estimating uncertainties, as demonstrated in the previous examples,
we can now confidently apply the feedback linearization controller to the rehabilitation
robot. By leveraging the precise estimation of uncertainties provided by the algorithm,
we can harness the benefits of the feedback linearization controller, enabling an improved
control performance in the presence of uncertainties.

The proposed feedback linearization control discussed in Section 4.3 is applied with
k1 = 30 and k2 = 10. The unknown dynamic of the system here is considered the same
as Equation (28), and the identified dynamic using the proposed algorithm is used in the
feedback linearization control. We consider the following desired trajectories.

[

q1d

q2d

]

=

[

0.1sin(2t)
0.1sin(2t)

]

(37)

Figures 6 and 7 depict the state of the system. Despite the considerable unknown
dynamic in the control of the system, the proposed algorithm provides crucial information
that enables feedback realization control to rapidly drive the system’s states toward the
desired values. In addition, Figure 8 illustrates the applied control torque, which exhibits
an appropriate bound. Overall, the study’s outcomes provide compelling evidence that the
proposed algorithm is remarkably efficient in identifying and predicting variable orders in
the rehabilitation system, which makes it a valuable tool for developing advanced control
strategies for this system.
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examples, we can now confidently apply the feedback linearization controller to the reha-
bilitation robot. By leveraging the precise estimation of uncertainties provided by the al-
gorithm, we can harness the benefits of the feedback linearization controller, enabling an 
improved control performance in the presence of uncertainties.

The proposed feedback linearization control discussed in Section 4.3 is applied with 𝑘1  =  30 and 𝑘2  =  10. The unknown dynamic of the system here is considered the same 
as Equation (28), and the identified dynamic using the proposed algorithm is used in the 
feedback linearization control. We consider the following desired trajectories.[𝑞1𝑑𝑞2𝑑] = [0.1 sin(2𝑡)0.1 sin(2𝑡)] (37)

Figures 6 and 7 depict the state of the system. Despite the considerable unknown 
dynamic in the control of the system, the proposed algorithm provides crucial information 
that enables feedback realization control to rapidly drive the system’s states toward the 
desired values. In addition, Figure 8 illustrates the applied control torque, which exhibits 
an appropriate bound. Overall, the study’s outcomes provide compelling evidence that 
the proposed algorithm is remarkably efficient in identifying and predicting variable or-
ders in the rehabilitation system, which makes it a valuable tool for developing advanced 
control strategies for this system.

 

Figure 6. Values of 𝜑1 and �̇�1 obtained by applying the feedback linearization controller based on 
the information obtained using the proposed algorithm.

Figure 6. Values of ϕ1 and
.
ϕ1 obtained by applying the feedback linearization controller based on

the information obtained using the proposed algorithm.

 

Figure 7. Values of 𝜑2 and �̇�2 obtained by applying the feedback linearization controller based on 
the information obtained using the proposed algorithm.

Figure 8. The applied torque to the system using the feedback linearization controller based on the 
proposed algorithm.

6. Conclusions
In this study, we introduced a novel method for identifying the unknown dynamic 

of rehabilitation robots. Our proposed algorithm is a combination of finite-time estimators 
and a Gaussian process, which takes advantage of the probabilistic strength of Gaussian 
processes. We present the mathematical equations of a 2-DoF knee rehabilitation robot. 
Then, the proposed algorithm is presented and the accuracy of the sampling process is 
guaranteed using the Lyapunov theorem. After that, the proposed algorithm is applied to 
a 2-DoF knee rehabilitation robotic through three different examples. We illustrate the 
performance of the proposed method in identifying continuous and discontinuous un-
known dynamics. The numerical results demonstrate that the proposed algorithm is able 

Figure 7. Values of ϕ2 and
.
ϕ2 obtained by applying the feedback linearization controller based on

the information obtained using the proposed algorithm.
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proposed algorithm.
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In this study, we introduced a novel method for identifying the unknown dynamic 

of rehabilitation robots. Our proposed algorithm is a combination of finite-time estimators 
and a Gaussian process, which takes advantage of the probabilistic strength of Gaussian 
processes. We present the mathematical equations of a 2-DoF knee rehabilitation robot. 
Then, the proposed algorithm is presented and the accuracy of the sampling process is 
guaranteed using the Lyapunov theorem. After that, the proposed algorithm is applied to 
a 2-DoF knee rehabilitation robotic through three different examples. We illustrate the 
performance of the proposed method in identifying continuous and discontinuous un-
known dynamics. The numerical results demonstrate that the proposed algorithm is able 

Figure 8. The applied torque to the system using the feedback linearization controller based on the

proposed algorithm.

6. Conclusions

In this study, we introduced a novel method for identifying the unknown dynamic of
rehabilitation robots. Our proposed algorithm is a combination of finite-time estimators
and a Gaussian process, which takes advantage of the probabilistic strength of Gaussian
processes. We present the mathematical equations of a 2-DoF knee rehabilitation robot.
Then, the proposed algorithm is presented and the accuracy of the sampling process is
guaranteed using the Lyapunov theorem. After that, the proposed algorithm is applied to
a 2-DoF knee rehabilitation robotic through three different examples. We illustrate the per-
formance of the proposed method in identifying continuous and discontinuous unknown
dynamics. The numerical results demonstrate that the proposed algorithm is able to handle
both continuous and discontinuous unknown dynamics effectively, indicating the potential
for this approach to be applied in various rehabilitation settings. Finally, we utilize the
information obtained from the proposed algorithm for feedback linearization control. The
numerical results of our study provide clear evidence of the excellent performance of our
proposed algorithm. Overall, our approach has a great potential to significantly improve
the performance of rehabilitation technologies, ultimately improving patient outcomes
and quality of life. In control systems, uncertainty bounds are crucial for stability. Our
GP-based framework offers these bounds, which are key for enhanced control. To continue
advancing this field, we plan to leverage these bounds in our future work. Furthermore,
the proposed method can be implemented in an experimental setup.
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