

Should a central bank transfer its profits to the treasury?

LSE Research Online URL for this paper: http://eprints.lse.ac.uk/123214/

Version: Published Version

Article:

Lvarez-Parra, Fernando Á, Arreaza, Adriana and Zambrano, Eduardo (2018) Should a central bank transfer its profits to the treasury? Economía, 18 (2). 87 - 119. ISSN 1529-7470

10.31389/eco.60

Keuse

Items deposited in LSE Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the LSE Research Online record for the item.

FERNANDO ÁLVAREZ-PARRA

Development Bank of Latin America

ADRIANA ARREAZA

Development Bank of Latin America

EDUARDO ZAMBRANO

California Polytechnic State University

Should a Central Bank Transfer Its Profits to the Treasury?

ABSTRACT In this paper we show how two seemingly irrelevant accounting principles for central banks—namely, the choice of the unit of account for its balance sheet and the method of inventory valuation of foreign currency reserves—can overstate or understate profits transferred to the treasury and how this can threaten the ability of central banks to control inflation. We show the first point through Monte Carlo experiments calibrated for the Venezuelan economy and the second point in an infinitely lived representative agent model that illustrates the problem of the joint determination of the level of central bank assets and the size of profits transferred to the treasury when the objective of the central bank is to eliminate the possibility of hyperinflation.

JEL Codes: E58, E31

Keywords: Numeraire choice, monetary policy, central bank profits

here is a growing body of literature that explores the relationship between the financial strength of central banks and their ability to attain price stability. That this link exists is not obvious: since central banks have the monopoly to issue base money at virtually no cost and to benefit from seignorage revenues, in theory, their profitability, net worth, and financial strength should not affect their ability to attain their monetary policy objectives. Recent evidence, however, suggests that this may not be the case. Ize shows that there is a threshold level of capital for central banks consistent with a credible inflation target, which depends on, among other things, the level of international reserves, operating expenditures, and the inflation target. Ize later shows that central banks with negative structural profits tend to be

ACKNOWLEDGMENTS The authors thank Jose Guerra, Harold Zavarce, Carolina Pagliacci, Francisco Rodriguez, and Daniel Ortega for comments on previous versions of this work; and Carlos Rodriguez, Giorgio Cunto, and Robert Ferrer for excellent research assistance.

- 1. Stella (2005).
- 2. Ize (2005).

associated with higher inflation rates than central banks with positive structural profits that accumulate capital.³ Despite their negative structural profits, financially weaker banks transfer as much as central banks with positive structural profits. Using data for fifteen Latin American and Caribbean countries, Kluh and Stella provide econometric evidence indicative of a negative correlation between inflation and central bank financial strength.⁴ Adler, Castro, and Tovar find that central bank financial strength can explain large interest rate deviations from the optimal rule, thus affecting monetary policy effectiveness, based on data from a sample of forty-one economies.⁵ Benecka and others also find a statistically significant and potentially nonlinear negative relationship between several measures of central bank financial strength and inflation, although the link appears weaker and less robust when compared to other studies.⁶

There are a number of reasons why a central bank's balance sheet may deteriorate, such as the absorption of problem assets from the banking sector to deal with systemic crises, the need to collect the excess liquidity issued to address the systemic crisis through costly debt securities, quasi-fiscal losses related to fiscal dominance, and, in recent years, deficient reserve accumulation. Excessive transfers of profits to the treasury because of improper accounting practices may also be an important reason.

Ize stresses that governance matters are relevant since financially weaker central banks may be transferring profits they do not even have, a circumstance made possible by accounting practices that allow transfers of unrealized valuation gains on their international reserves, without benefiting from transfers in the opposite direction. Schwarz and others simulate the financial results for the European Central Bank (ECB) under alternative accounting, profit distribution, and loss coverage rules and under the Eurosystem accounting framework and the International Financial Reporting Standards (IFRS). They find that under IFRS, profits and profit distribution would have been higher and more volatile and the financial buffers substantially lower. This is

- 3. Ize (2007).
- 4. Klüh and Stella (2008).
- 5. Adler, Castro, and Tovar (2012).
- 6. Benecka and others (2012).
- 7. Ize (2007). The situation is different for financially stronger central banks, where valuation gains and losses account for 0.81 of the variance of retained profits, versus 0.45 for financially weaker central banks.
 - 8. Schwarz and others (2014).

largely due to the treatment of unrealized gains and losses and the buildup of risk provision funds under the ECB framework.⁹

In this paper, we address two related issues. The first is how the choice of the unit of account for central bank accounting purposes (the numeraire) and of the method of inventory valuation can affect the computed profits for central banks. The second is whether these profits should be transferred to the treasury and, strongly linked to this, what level of real assets (mostly held in the form of foreign currency reserves) a central bank should hold in order to keep inflation under control.

Two questions naturally arise in considering the matter of numeraire choice in a macroeconomic model. The first is whether model predictions depend on the choice of the numeraire. Economic theory suggests that, in the presence of market imperfections, results may not be neutral to the choice of the numeraire. For example, Gabszewicz and Vial find that alternative choices for numeraire entail large differences in real effects in models with imperfect competition. Likewise, in the presence of uncertainty and incomplete markets, the equilibrium allocation may also depend on the numeraire choice. The second question is whether the choice of the numeraire has quantitative implications that affect policy design. For instance, it matters for computing GDP growth. It is also important in cost-benefit analysis, as suggested in Brekke. Numeraire choice is also relevant for testing hypotheses like purchasing power parity, the law of demand, or the weak axiom.

This literature then suggests that a seemingly irrelevant issue, the choice of numeraire, may be crucial for the design of adequate profit transfer rules

- 9. Under the Eurosystem accounting framework, the treatment of unrealized results is asymmetric. Unrealized gains are transferred to a revaluation account, while unrealized losses affect the profit and loss account if they surpass revaluation account balances. Moreover, unrealized gains are not protected from distribution under the IFRS.
- 10. Along these lines, Srinivasan and Kletzer (1994) argue that the predictions of the Dixit-Stiglitz model of international trade are sensitive to issues regarding numeraire choice. This is so because while "changing the numeraire has no effect on Walrasian equilibria—since the objective function for profit-maximization firms is unaffected if all prices are taken as given—changing price normalization typically leads price-setting firms to choose different production plans."
 - 11. See Flemming, Turnovsky, and Kemp (1977) and Eichberger and Harper (1997)
- 12. To wit: "between the periods 2013–15 Eurozone GDP dropped 14 percent in US dollar terms but rose 2.7 percent in euro terms." See Obstfeld and others (2015).
- 13. Brekke (1997). The author argues that in the valuing of public goods, the choice of money as numeraire is systematically favorable to those who value money the least, relative to alternative numeraires.
 - 14. Papell and Theodoridis (2001); Zambrano and Vogelsang (2000); Nachbar (2002).

for central banks. Large positive profits under a certain numeraire may actually be zero or negative with a different one. Interestingly, this issue has not received much attention in the literature, so our paper is a contribution in this regard. In particular, we compare profit calculations made using local currency as numeraire, the standard approach, to those made using consumer price index (CPI) baskets, arguably the *proper* numeraire. The analysis is carried out for the three well-known inventory valuation methods, namely, first-in-first-out (FIFO), last-in-first-out (LIFO), and the weighted-average method. The analysis is based on Monte Carlo simulations calibrated to fit the Venezuelan economy to highlight the large differences stemming from different choices of numeraire and inventory valuation methods on the computation of central bank profits. We find that the improper choice of numeraire and inventory methods may lead to large profit transfers and a critical deterioration in the bank's net worth.

We then connect the issue of a central bank's net worth and its capacity to attain its inflation goals. To that end, we extend an infinitely lived representative agent model developed by Sims and show that there is a minimum level of initial real reserves in excess of real money holdings that allows the central bank to avoid an explosive price dynamic. ¹⁵ The larger the profit transfers to the treasury, the less likely the central bank is to attain positive net worth and credibly avoid price instability. Our analysis suggests that overestimation of profits of the size found in the Monte Carlo simulations would require a very large increase in the required level of real reserves.

An important lesson that can be drawn from the analysis is that the magnitude of profit transfers and the level of real reserves should be jointly determined. In particular, there is a *critical* level of real reserves that eliminates the technical feasibility of a hyperinflationary crisis. When foreign currency sales, or the sale of other assets, drive real reserves below this critical level, central bank profits should not be transferred because they are necessary to avoid an erosion of the net worth of the central bank that could impede attaining price stability. On the other hand, when reserves are above the critical level, central bank profits can safely be transferred to the treasury without undermining price stability.

The rest of the paper is organized as follows. The next section discusses accounting frameworks used by central banks internationally. We then discuss the impact of the numeraire choice and inventory valuation methods

on the computation of central bank profits, which we illustrate with Monte Carlo experiments calibrated for the Venezuelan economy. Subsequently, we develop a model to examine the connections between price stability, transfer of profits to the treasury, and the desired level of real reserves. We present our conclusions in the final section.

Accounting Principles and Central Banking

We next present a brief summary of central banks' foreign-reserve-related accounting practices worldwide, with an emphasis on Latin American countries. Our main goal here is to identify valuation change practices—whether such changes are recognized as income, the size of transfers to the treasury, loss coverage procedures, and practices. We take advantage of some recent surveys. In particular, we use the European Central Bank (ECB) survey, the KPMG survey, and, to provide the Latin American perspective, the Center for Latin American Monetary Studies (CEMLA) survey. 16

One must begin with a clarification: there is no such a thing as an accounting standard for central banks. In fact, there is a vast heterogeneity in terms of the accounting principles they employ. In general, central banks tend to apply a combination of principles from four types of sources: (1) International Financial Reporting Standards (IFRS), (2) national generally accepted accounting principles (GAAP), (3) central-bank-specific rules, and (4) the Eurosystem framework in the case of central banks of the European Union. As reported in the CEMLA survey, central banks in Latin America seem to partially follow either international or local financial reporting standards (IFRS or GAAP), together with either internally defined central-bank-specific principles or principles determined by the financial sector supervising authority. Despite this variability, the use of IFRS is extensive: twelve out of sixteen

16. The ECB survey is one of the most comprehensive surveys covering fifty-seven central banks worldwide. The survey includes eight central banks from Latin America: Brazil, Chile, Costa Rica, Dominican Republic, Guatemala, Mexico, Peru, and Uruguay. See Bunea and others (2016) for a more detailed analysis of this survey. The KPMG survey covers eighteen central banks, including Australia, Brazil, Bulgaria, Canada, Chile, England, France, Germany, Israel, Kenya, Mauritius, New Zealand, Russia, South Africa, and the United States. See KPMG International Cooperative (2012). The CEMLA survey was carried out between February and April of 2012. The central banks providing information were from Argentina, Bolivia, Brazil, Costa Rica, Chile, Colombia, El Salvador, Guatemala, Honduras, Mexico, Peru, Spain, and Uruguay. See CEMLA (2012).

92

surveyed banks report partially following them. Similar results are found in the KPMG survey, where more than half of banks use IFRS or a financial reporting framework based on IFRS, while the remainder reported local GAAP or their own specific legislation. Finally, the ECB survey reports that 21 percent of banks fully adopt IFRS, while 25 percent partially adopt it, 40 percent follow the Eurosystem framework (given the large sample of European banks), 10 percent use GAAP, and 5 percent use their own regulation.

Regarding the valuation of assets and liabilities and the treatment of valuation gains and losses, there are three approaches.¹⁷ One approach is to measure assets and liabilities at fair value and to recognize valuation changes as revenues as reflected in the profit and loss (P&L) statement. In other words, under this income approach, realized and unrealized valuation gains are incorporated in the P&L statement. Alternatively, assets and liabilities may be measured at fair value, but only accrued and realized gains and losses are included in the P&L statement. Under this second approach, unrealized valuation changes are recorded either directly in a revaluation account (balance sheet items that effectively constitute part of equity) or as "other comprehensive income," which goes into the reporting entity's equity. Finally, in the third approach, assets and liabilities are instead recorded at their face value, with no recognition whatsoever of revenues from changes in market values.

With regard to the specific treatment of foreign currency reserves, the CEMLA survey reports that all central banks in Latin America use the market exchange rate when converting to local currency those items denominated in foreign currency. The CEMLA survey also finds that fourteen central banks (out of sixteen) include realized profits in their P&L statement, while the remaining four reflect them as change in equity. Regarding unrealized profits due to monetary items, ten central banks reflect them in the P&L statement, while seven reflect them as a change in equity. Moreover, CEMLA surveys document that 81 percent of banks transfer realized profits and 31 percent of them transfer unrealized profits as well. Transfers are typically made in single payments (81 percent) during the first quarter of each year. Similar results are found in the KPMG survey: eleven out of eighteen banks (that is, 61 percent) adopt the so-called income approach for foreign reserves revaluation. In contrast, according to the ECB survey, unrealized gains from assets are not distributable profits for the majority of banks (forty-two out of fifty-six),

^{17.} See Archer and Moser-Boehm (2013).

^{18.} One bank partially reflects them in the P&L and partially as a change in equity.

possibly owing to the stricter Eurosystem rules in that sample. Only ten of the banks in the sample distributed unrealized foreign exchange valuation gains, thirteen distributed unrealized security price valuation gains, and ten distributed unrealized gold valuation gains. There is a relatively important fraction of central banks transferring unrealized gains, even though this is not considered a good practice. ¹⁹ This may be an outcome of following IFRS, where revaluation must be considered profit or loss and reflected in the P&L statement. ²⁰

Regarding the size of transfers, the ECB survey reports that for the selected period (2007–13), transfers were, on average, 56 percent of reported profits, excluding banks with negative profits. There is some variability, though. For instance, in 2013, twenty-three out of fifty-six banks did not transfer profits to the treasury (mainly due to losses), ten distributed between 50 percent and 75 percent of their profits, sixteen banks transferred between 75 and 100 percent of their profits, and two transferred more than their reported profits.²¹ Eight central banks made transfers in years when they experienced losses.

There are five ways to treat losses.²² These strategies are typically adopted sequentially, depleting one source before moving to the next. First, losses can be covered using specific buffers (defined for specific purposes). The ECB survey finds that thirty-one central banks incorporate this strategy. A typical second step is to cover losses from general reserves. In the ECB survey, forty-three central banks adopt this strategy. A third strategy is to carry the loss forward against future profits; twenty-eight central banks in the ECB survey adopt this practice. Central banks can also have claims on governments with no effect on equity. In the ECB survey, nine central banks use this strategy. Finally, there is the option of direct capitalization. This is the case for twenty central banks in the ECB survey. Likewise, in the CEMLA survey around half of the central banks reported that they cover their losses with reserves, while the other half reported that the government covers the losses either in cash or (more commonly) in claims.

Up to this point, we have discussed the de jure strategies. In practice, though, the treatment of net losses is generally not as transparent. For instance, in the KPMG survey only four banks clearly disclosed what happens in the event of a net loss. Moreover, central banks recognize a *distribution asymmetry*, in the sense that net profits are usually distributed whereas net losses are normally

- 19. Bunea and others (2016).
- 20. KPMG International Cooperative (2012).
- 21. See Bunea and others (2016).
- 22. See Bunea and others (2016).

not compensated.²³ Furthermore, central banks are even less likely to draw from external resources to cover losses in the presence of fiscal dominance.

An issue absent from these surveys is the inventory valuation method for foreign currency assets. As we discuss next, this has important implications for the size of profits. In principle, there should be a tendency to move away from LIFO on the basis of what is prescribed by IFRS. However, central banks do not necessarily follow this prescription. One reference, from the scant literature on the matter, suggests that "most central banks use a form of modified weighted average for determining the cost of their currency sales." Only the central bank of Venezuela explicitly mentions the use of FIFO as the valuation method for realized exchange rate valuation changes. ²⁵

A final aspect in this section is how profits should be computed. In particular, we want to address the issue of the numeraire. For accounting purposes, the universal practice is to use the local currency.²⁶ There is virtually no discussion as to whether this is appropriate and, if not, what the consequences are. In the next section we address this issue.

The Computation of Central Bank Profits

A central bank typically keeps a stock of assets (such as foreign currency and other liquid foreign and domestic assets) that produce real returns (such as interest paid by bonds) and may generate profits when sold or when they appreciate in value. Profits due to sales arise when the central bank sells the asset at a price higher than the one it takes to replace it (the opportunity cost). Profits due to asset appreciation arise when the price at which one may replace the asset exceeds the price one paid for the asset. Finally, the profits due to the intrinsic return of the asset are self-explanatory.

There is ample debate among central bank economists about the proper size of the profits due to foreign assets valuation.²⁷ One view is that because

- 23. See Bunea and others (2016); Archer and Moser-Boehm (2013).
- 24. Sullivan (2016).
- 25. See BCV resolution of 06/30/2004 (www.bcv.org.ve/c4/comunicados.asp).
- 26. However, other numeraires may be used for reserve management decisions. Borio, Galati, and Heath (2008) recognize that the local currency is invariably the numeraire for accounting purposes. But for reserve management, around one-third of central banks used the domestic currency, one-fifth a basket of currencies, and the remaining set a single foreign currency. This information comes from a BIS survey of central banks representing 80 percent of global foreign exchange reserves at the end of 2006.
 - 27. See, for example, the discussion in Baltensperger and Jordan (1998).

the worth of a unit of hard currency is, in its own terms, always equal to one, profits from foreign asset appreciation are purely accounting profits and therefore should not be transferred to the treasury. This point of view is unwarranted. The implicit assumption here is that what matters for the public is the net worth measured in units of hard currency. However, there are other plausible options for the unit of account, and they all yield different values for the change in central bank net worth as prices fluctuate. Real exchange depreciations (or appreciations), for example, produce no change in the net worth of a portfolio of foreign assets measured in units of foreign goods but produce a positive (or negative) change in the same net worth when it is calculated in units of domestic goods. This example, simple as it is, clearly illustrates that the sign and magnitude of certain comparative static exercises may critically depend on the numeraire choice.²⁸ What, then, is the proper numeraire? A consideration of the opportunity cost of the resources given to a central bank provides an answer to this question: even when profits are a residual of central bank operations, what is relevant for society is the amount of overall consumption sacrificed to keep the central bank in operation. The proper numeraire is therefore the basket of goods that the typical member of society consumes. In the next subsection we show the discrepancies that may arise from using other numeraires, in particular, the local currency, which is virtually the universal practice.

The Cost of an Improper Computation of Central Bank Profits

In this section, we assess the quantitative importance of the choice of the numeraire and inventory valuation methods for central bank accounting outcomes. To that end, we perform Monte Carlo experiments. The parameters of the data-generating process of the variables are calibrated for the Venezuelan economy. In particular, based on our simulations, we compute (1) profits from buying and selling reserves, hereafter *realized foreign profits*; (2) the differences between income and expenditures from domestic operations, hereafter *realized domestic profits*; and (3) the variation in the value of the stock of remaining reserves, hereafter *unrealized foreign profits*. Realized (both domestic and foreign) and unrealized profits are measured using two numeraires: local currency (bolívares) and CPI baskets. In addition, the computations of profits from foreign assets (realized and unrealized) are calculated for three

^{28.} See, for example, McCauley (2008) for an evaluation of this principle in the context of foreign reserve management and Mas-Colell (1991), Grodal and Dierker (1999), Zambrano and Vogelsang (2000), and Nachbar (2002) for applications of the same principle.

well-known inventory valuation methods: LIFO, FIFO, and weighted average. The details are presented in the appendix.

The estimation delivers an average inflation rate of 17.8 percent and an average depreciation of 16 percent for the nominal exchange rate. As expected, both series are positively correlated, with a correlation coefficient of 0.47. Likewise, inflation is quite persistent: the correlation coefficient of inflation and its first lag is 0.54. Regarding domestic operations, income is about 0.1 percent of the level of foreign reserves, while expenditure is about 2.5 percent.

Taking the estimated parameterization as a benchmark, we introduce some counterfactual perturbations in the data-generating process in order to understand the role of some key parameters. Hence, the insights from these exercises are relevant beyond the case of Venezuela. Table 1 presents summary statistics corresponding to the simulations of one-period realized (top) and unrealized profits (bottom). Values are expressed as percentages of foreign reserves.

The lessons derived from the simulations can be summarized as follows:

- 1. Regardless of the numeraire, the choice of the inventory valuation methods does not affect **the sum** of realized and unrealized profits from foreign operations. Therefore, transfers to the treasury—linked to foreign profits—will depend on the inventory method, as long as there are differences in the propensity to transfer realized and unrealized profits. In the case that reserve valuation gains are not considered profits, FIFO would imply larger transfers to the treasury.
- 2. Regardless of the inventory valuation method, realized and unrealized foreign profits will be overestimated when the numeraire is the local currency. Inflation is the cause. In our benchmark simulation, the overestimation is quite large for foreign reserve operations. For instance, total foreign profit overestimation (realized plus unrealized)—relative to the CPI numeraire case—is about 78 percent of foreign reserves, while the overestimation when one focuses on realized profits (under the weighted-average valuation method) is about 32.5 percent of foreign reserves.
- 3. When the numeraire is the local currency, the inventory valuation method is of great importance. FIFO maximizes the reported size of the realized foreign profits, while LIFO minimizes them. The dispersion of realized foreign profits is also higher under FIFO. The opposite occurs with unrealized foreign profits, with LIFO maximizing their reported value and dispersion. The fact that the nominal exchange rate has a positive trend is responsible for this pattern. The differences are sizable. For example, the estimated expected

TABLE 1. Profits under Benchmark Parameterization Percent of foreign reserves

		Foreign operations						
		Numeraire: Bol	lívar		Numeraire: CPI b	asket	Domesti	c operations
Statistic	FIFO	LIFO	Weighted avg.	FIF0	LIF0	Weighted avg.	Bolívar	CPI basket
Realized profits (from rese	rve sales and domes	stic operations)						
Mean	47.8	3.8	24.9	-14.5	-0.1	-7.7	-2.3	-1.9
Std. deviation	52.8	10.9	30.4	39.4	7.6	21.6	1.9	1.5
Prob. (variable \leq 0)	12.9	58.4	15.2	69.2	76.6	70.7	88.8	88.8
5th percentile	-13.2	-2.9	-8.1	-76.9	-10.0	-41.0	-5.4	-4.3
95th percentile	150.2	23.2	84.5	48.4	9.7	27.6	0.8	0.7
Unrealized profits (from re	serve revaluation)							
Mean	10.2	54.2	33.1	-5.4	-19.8	-12.2		
Std. deviation	20.8	57.8	36.1	16.7	44.8	28.2		
Prob. (variable \leq 0)	32.5	14.7	15.0	68.8	71.2	70.9		
5th percentile	-11.6	-20.1	-12.7	-36.1	-88.4	-56.7		
95th percentile	48.1	162.9	100.3	16.4	56.4	34.1		

value of central bank realized foreign profits measured in local currency is more than twelve times higher when FIFO is used than when LIFO is used. The results regarding the weighted-average method are somewhere in between, as expected.

- 4. When the numeraire is the basket of goods represented in the CPI, we observe losses rather than profits in the majority of the simulations. Real exchange rate appreciation is responsible for this result. Inventory valuation methods affect only the magnitude of the loss. For example, the estimated expected realized losses are much larger under FIFO than under LIFO (more than 14 percentage points).
- 5. On average, the net profits from domestic monetary policy are negative, around 2 percent of the value of foreign reserves. Profits from domestic operations are nonnegative only in around 12 percent of the realizations. The absolute value of profits from domestic operations is around 20 percent smaller when the CPI basket is used as numeraire. Regarding the size of profits from domestic versus foreign operations, as expected, when the local currency is used as numeraire, the latter dominates. For instance, under the weightedaverage inventory method, the absolute value of net profits from domestic operations is less than 10 percent of realized foreign profits and less than 4 percent of total foreign profits.²⁹ When the domestic basket is used as the unit of account, realized profits from local and foreign operations are closer (and both are negative), but they are larger in magnitude for the foreign-related operations.

We now discuss the role of certain parameters in the simulations. First, suppressing the dynamic structure of the data-generating process does not have a significant impact (see the appendix). Reducing the high correlation between contemporaneous inflation and nominal exchange rate depreciation does not alter our main conclusions either, although the variance of profits increases (see the appendix). The main driver of our simulation results is the fact that inflation is positive and higher than nominal depreciation.

In the appendix, we study the role of nominal depreciation. When there is no depreciation and when local currency is the numeraire, profits from foreign reserve operations are naturally zero for all inventory methods, while

^{29.} Based on information from Argentina (2000–14), Chile (2000–15), Colombia (2005–15), Costa Rica (2008–13), Mexico (2013–15), Peru (2008–15), Dominican Republic (2004–15), Uruguay (2004–15), and Venezuela (2000–14); we found that foreign reserves represent more than 70 percent of total assets, while gains from foreign reserve appreciation represent almost 90 percent of total income.

profits from domestic operation are still negative, at around -2 percent. Depreciation makes FIFO > Average > LIFO when computing realized foreign profits and LIFO < Average < FIFO when computing unrealized foreign profits. This exercise also illustrates that when the numeraire is the CPI basket, real appreciation implies negative profits for the three inventory methods, while real depreciation implies positive profits. Nominal depreciation does not significantly affect the size of the loss from domestic operations regardless of the unit of account.

Finally, the appendix also evaluates the role of inflation. Clearly, the inflation rate determines the degree of overvaluation due to the *improper* choice of numeraire. No inflation means that both numeraires produce equal-sized profits, while positive inflation yields an overestimation of foreign profits when local currency is used as the numeraire. The higher the inflation, the higher the overestimation. This is true even with no exchange rate appreciation (see table A4 in the appendix). The magnitude of domestic profits is also smaller as inflation grows, and the same is true of the profit discrepancies across numeraires.

Central banks routinely measure the changes in their net worth in terms of domestic currency. The simulations reveal that in an inflationary environment, this implies overestimation of profits and, in the event they are transferred to the treasury, excessive transfers. Employing the LIFO inventory valuation method reduces the size of *realized* profits, but not enough to compensate the overestimation associated with the choice of an improper numeraire. Moreover, the valuation method choice is completely irrelevant when unrealized profits may also be subject to transfers. Hence, LIFO (or any other method) does not really protect the net worth of the central bank in an inflationary environment when the numeraire is the domestic currency.

The above discussion reveals that different methods for estimating central bank profits have substantial consequences for their sign and magnitude. In the next section, we examine the macroeconomic implications of excessive transfers that arise from using improper methods to compute central bank profits.

Macroeconomic Implications: Required Foreign Reserve Levels, Central Bank Profit Transfer Rules, and Price Stability

In the previous section, we showed that in an inflationary context, the typical numeraire for computing profits (local currency) implies a significant overestimation of real profits and, in consequence, excessive transfers from

the central bank to the treasury. The direct implication of this is a tendency toward low equity, which may compromise the ability of the central bank to attain its price stabilization goal.

We now provide some perspective on the problems that could arise from improper profit transfers from the central bank to the treasury. We extend a model by Sims in which the balance sheet of the treasury and of the central bank are not consolidated.³⁰ We use the model to study the effect of alternative central bank profit transfer rules on several macroeconomic variables. The model allows a better understanding of the appropriateness of transferring central bank profits to the treasury in a country with weak fiscal institutions.

The Model

The economy is composed of infinitely lived agents who face the following problem:

(1)
$$\max \int e^{\beta t} \log C(t) dt.$$

They choose C, F_p , B, and M subject to

(2)
$$C(1 + \psi(v)) + \dot{F}_{p} + \frac{\dot{M} + \dot{B}_{p}}{P} = \rho F_{p} + r \frac{B_{p}}{P} + \tau.$$

The interpretation is as follows: at every instant, the representative agent must choose how much to consume (C), how much to save in domestic bonds (B_p) , how much to save in real assets (F_p) , and how much wealth to keep in the form of money (M).

At every instant the sources of funds are equal to the sum of the agents' real income (Y), the return on the agents' real investments (ρF_p , where ρ is the real interest rate), the return on domestic bond holdings (rB_p/P , where r is the nominal interest rate and P is the price level), and government transfers (τ).

All agents use their real resources in accumulating real assets (\dot{F}_p) , domestic bonds (\dot{B}_p/p) , and real money balances (\dot{M}/P) , in consuming, and in facilitating consumption. Facilitating consumption is defined as follows: if the agent wishes to consume an amount C of goods, it must purchase an amount

equal to $C(1 + \psi(v))$ of goods. The expression $\psi(v)$ captures the cost of making transactions in the economy, and it is an increasing function of the velocity of money (v), defined here as v = PC/M. Hence, the higher the agent's money holdings, the lower the transaction costs incurred by the agent given a certain level of desired consumption.

The solution to this problem can be summarized in the following expressions:

$$(3) r = \rho + \frac{\dot{P}}{P};$$

$$(4) r = \psi' v^2;$$

(5)
$$\rho - \beta = \frac{\dot{C}}{C} + \frac{\left(2\psi' + \psi''\nu\right)\dot{\nu}}{1 + \psi + \psi'\nu}.$$

In this economy, the central bank uses an interest rate rule given by

(6)
$$\dot{r} = \theta_0 + \theta_1 \frac{\dot{P}}{P} - \theta_2 r.$$

Assume for simplicity that the real assets of the government are being held by the central bank. Then the central bank's budget constraint is given by

(7)
$$\dot{F}_{G} + \frac{\dot{B}_{G}}{P} = \rho F_{G} + r \frac{B_{G}}{P} + \frac{\dot{M}}{P} - \tau_{B}.$$

The interpretation is as follows. The central bank obtains real resources through base money issuance, \dot{M}/P , and through the return obtained from its asset holdings ($\rho F_G + rB_G/P$). Those resources are used to accumulate more assets ($\dot{F}_G + \dot{B}_G/P$) and to transfer profits to the treasury (τ_B). The sum $F_G + B_G/P$ thus constitutes the stock of real reserves held by the central bank.

The specific contribution of this section is that we use this model to explore the macroeconomic implications of three profit transfer rules: a zero transfer rule, a rule by which only the real return of the reserves $\rho(F_G + B_G/P)$ is transferred to the treasury, and a rule by which, in addition,

the central bank transfers the amount $\dot{P}/P(F_G + B_G/P)$, that is, the amount of goods corresponding to the nominal appreciation of $F_G + B_G/P$. This is the size of central bank profits under the domestic currency numeraire and constitutes the case of improper transfer that we study in this section. Like Sims, we assume that the transfer becomes zero when seignorage revenue is negative.³¹

Analysis

This economy has two equilibria: one with stable inflation and one with an explosive inflation path (given by an arbitrarily high velocity of money and real money balances equal to zero). This has the following interpretation: even in an environment of price stability, there are shocks that could trigger the economy to move from the stable equilibrium into an unstable equilibrium. The crux of the analysis is that this cannot occur if there is a way to make it impossible for the explosive inflation situation to be an equilibrium. Sims suggests that this can be the case if the central bank is prepared to redeem the entire stock of money at a given upper bound P^* for the price level.³² This promise is credible only if the central bank has enough real reserves $F_G + B_G/P^*$ so that $M/P^* < F_G + B_G/P^*$, which would prevent agents from demonetizing the economy, leading to hyperinflation. Notice that $M/P^* < F_G + B_G/P^*$ if and only if $P^*F_G + B_G - M > 0$, that is, if the central bank has positive net worth at the critical price level.

This means that price stability indeed requires a minimal real reserve level, which can be computed in such a way to ensure a positive net worth at the critical price level. This minimal reserve level depends not only on the size of the shock to which the economy is subject but also on the transfer size, which, as we discuss, depends on accounting principles and in particular on the unit of measure.

Below we show a parameterization of the model that clearly illustrates this. Consider the case where transaction costs are given by

$$\psi(v) = \frac{\gamma v}{1 + \phi v},$$

- 31. Sims (2005).
- 32. Sims (2005). The parameterization follows Sims (2005).

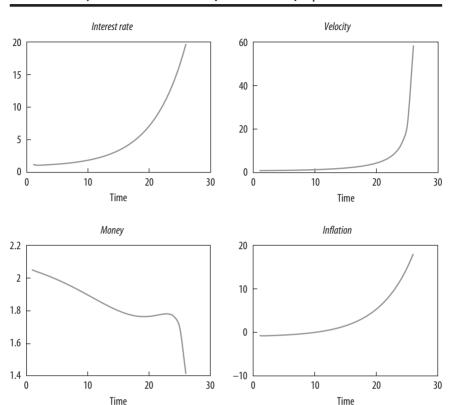
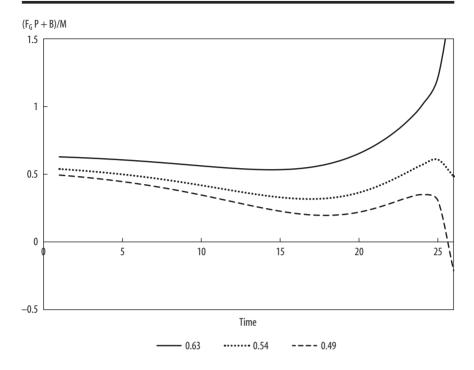
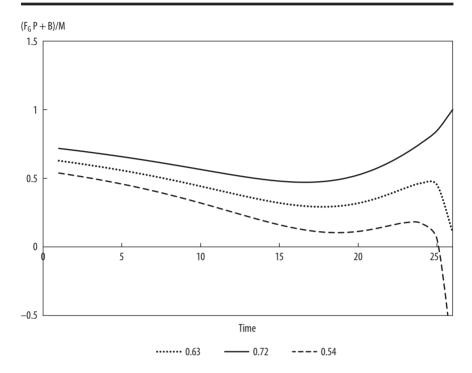



FIGURE 1. Dynamics with Insufficient Response of r to a Drop in p

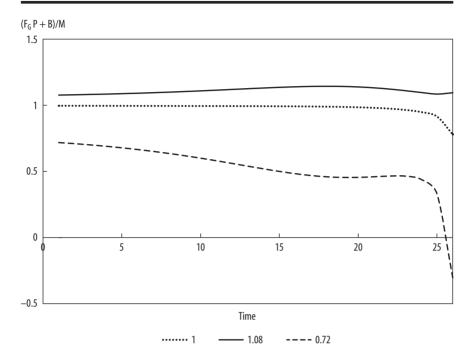
and the economy is initially in a steady state with zero inflation and real interest rate equal to 2 percent. We use this scenario to study the effect of varying the profit transfer rule on the minimal reserve level that is required to eliminate the explosive inflation equilibrium. The policy rule for this experiment is defined by $\theta_0 = 0.02$, $\theta_1 = 1.2$, and $\theta_2 = 1$. The transaction technology is defined by $\gamma = 0.02$ and $\phi = 0.03$.

Consider an unexpected drop in the real interest rate to 1.8 percent. The new stable equilibrium would require a drop in the nominal interest rate to a new level equal to 0.8 percent. Imagine, however, that following the drop in the real interest rate, the nominal interest rate adjustment is incomplete as it falls only to 1 percent. In this case, the resulting price level is above the price level consistent with the stable equilibrium. This leads to policy actions that steadily drive the interest rate upward. Figure 1 shows the evolution of


FIGURE 2. Ratio of Real Reserves to Real Money: Zero Profit Transfers

interest rates, the velocity of money, the log of money holdings, and inflation in this economy.

Whether the central bank can avoid this explosive price path depends on its initial net worth and its profit transfer rules. Figure 2 shows the ratio of reserves to real money balances for the case where the central bank transfers zero profits to the treasury for different initial levels of $F_GP + B_G/M$. (This ratio is above one for a positive net worth for the central bank.) As the figure shows, there is an initial level of $F_GP + B_G/M$ such that, even if the central bank initially has negative net worth, it is only a matter of time before the accumulation of profits drives net worth to the point where the central bank can cut inflation by announcing that it can redeem the entire stock of money at the current price level. When the ratio of reserves to real money balances is not high enough, positive net worth can never be achieved, and it is only a matter of time before the central bank runs out of assets. This, in turn, would make it impossible for the bank to perform open market operations. In this

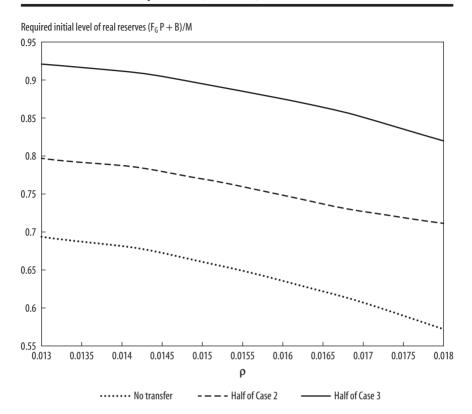

example, the initial reserve level cannot be below 63 percent of real money balances to guarantee price stability.

When the profit transfer rule is that of giving the government the real returns yielded by the real reserves (our case of proper transfers), the initial reserve level necessary to avoid the explosive inflation equilibrium increases. Figure 3 shows that an initial ratio of reserves to real money holdings of 63 percent is no longer sufficient to avoid the explosive inflation equilibrium. In this example, the initial reserve level cannot be below 72 percent of real money holdings if the explosive equilibrium is to be avoided.

Consider now the case where the central bank also transfers the nominal appreciation of the stock of real reserves (our case of improper transfer). Here, reaching a ratio of real reserves to real money holdings equal to one is no longer enough to avoid the explosive inflation equilibrium. In this case, the ratio must be at least equal to 108 percent (leading to a seemingly excessive

106

FIGURE 4. Ratio of Real Reserves to Real Money: Improper Transfers



central bank capitalization) for the central bank to avoid the explosive inflation equilibrium, as figure 4 shows.

The above analysis indicates that there is a connection between the transfer scheme and the minimum level of real reserves required in excess of real money holdings to avoid hyperinflation. Obviously, the size of the shocks to which the economy is exposed also plays a role. The connection between these three factors is clearly shown in figure 5. The figure shows the minimum level of real reserves required to avoid hyperinflation for different values of the real interest rate for three different transfer schemes, namely, case 1 (zero-transfer schemes), as well as 50 percent of the computed profits according to the case 2 rule and according to the case 3 rule. It assumes incomplete adjustment in nominal interest rate at the same level as before, $r_o = 1$ percent.

The larger the shock (that is, the farther away ρ is from its initial level of 2 percent), the higher the initial real reserves required to avoid an unstable path for prices. Likewise, given the shock (a fixed level of ρ), the more lax

the accounting framework is in terms of maximizing profits to distribute, the higher the required initial level of real reserves.

A number of lessons can be extracted from the above discussion. First, reserves are not really necessary in the stable equilibrium. Second, to avoid the explosive inflation equilibrium, the central bank needs to hold a minimum level of real reserves so that profit accumulation eventually leads to positive net worth. The reserves are, in the end, a form of contingent backing of the stock of money in circulation in a country with weak fiscal institutions. Third, routine transfers of central bank profits increase the minimum level of reserves required to avoid the explosive inflation equilibrium. Fourth, larger shocks require a higher level of initial reserves or, alternatively, more conservative accounting methods in terms of the size and distribution of profits. Fifth, excessive central bank profit transfers (such as the ones implied by an

improper choice of numeraire) require the central bank to keep a higher net worth and hence a fairly high level of real reserves to avoid the explosive inflation. In short, there is a direct relationship between the minimum reserve level, shock size, and the profit transfer rule. The more aggressive the profit transfer rule, the more reserves (both domestic and foreign) are necessary to avoid the explosive inflation.

Finally, the analysis allows us to derive a clear criterion to follow regarding central bank profit transfers to the treasury: given the critical or target level of real reserves, asset sales should trigger profit transfers to the treasury only when real reserves, net of sales, are above the critical level. When real reserves, net of sales, are below the target real reserve level, central bank profits should not be transferred, as those profits are necessary to attain a net worth consistent with a credible strategy to avoid hyperinflation. The level and sign of these transfers would be irrelevant if the treasury were committed to assist the central bank, through additional taxation, to avoid a balance sheet crisis, should one become imminent. But the presence of fiscal dominance and weak fiscal institutions do not lend credibility to this possibility.³³

We close our analysis with an exercise that combines the insights obtained from the Monte Carlo simulations of central bank profits with those obtained from the macroeconomic model just discussed. Specifically, we wish to evaluate—in the context of our very simple model—the economic costs of the profit miscalculations in the Monte Carlo simulations. Our measure of economic cost is the excess of minimum initial reserves $(F_GP + B_G)/M$ needed to avoid hyperinflation, following a real interest rate shock (as before, a drop in p to 1.8 percent) with incomplete adjustment in the nominal interest rate. Recall that when focusing on the weighed average inventory method, the simulation suggests an overestimation of realized profits on the order of 16 percent of foreign reserves and of total profits on the order of 38 percent of foreign reserves. In scenario 1 we set profits as the so-called proper profits $\rho(F_G + B_G/P)$ plus $0.16(F_G + B_G/P)$, while in scenario 2 we set profits as the proper level plus $0.38(F_G + B_G/P)$. Transfers to the treasury are defined as a fraction δ of distributable profits. As before, we assume partial adjustment in the nominal interest rate. Results for different values of δ are presented in table 2.

Delta	Scenario 1	Scenario 2	
0	1.0000	1.0000	
0.0600	1.0245	1.0599	
0.1200	1.0501	1.1268	
0.1800	1.0767	1.2019	
0.2400	1.1050	1.2862	
0.3000	1.1344	1.3265	
0.3600	1.1654	1.3613	
0.4200	1.1975	1.3983	
0.4800	1.2318	1.4375	
0.5400	1.2677	1.4783	

TABLE 2. Excess of Relative Equity Due to Miscalculation of Profits

Clearly if $\delta = 0$ the size of profits is irrelevant. In contrast, consider the case in which the central bank transfers 54 percent of its profits (close to the value of 56 percent discussed earlier). The exercise suggests that consistently overestimating profits by 16 percent of the reserve level (scenario 1) implies maintaining a ratio of real reserves to real money holdings $(F_GP + B_G)/M$ that would be 27 percent higher than it would absent that overestimation of profits. This is a considerable amount.

Conclusions

In this article, we show the importance of the numeraire choice and inventory valuation methods for the proper computation and distribution of central bank profits. We also study the relation between the desired level of profit transfers to the treasury and the desired level of real reserves. We show that an improper numeraire choice can dramatically alter the sign and magnitude of central bank profits. We also show that there is a trade-off between profit transfers and real reserve levels if the central bank wishes to avoid hyperinflation. Because real reserve levels can serve as contingent backing for the stock of money in circulation, an improper choice of numeraire can lead to excessive profit transfers and low central bank capitalization levels, and this can become a serious threat to the prospect of price stability if the treasury is not committed to helping the central bank solve any potential balance sheet problems. Such are the subtle implications of numeraire choice for monetary policy.

Appendix: Monte Carlo Experiments on the Size of Central Bank Profits for the Venezuelan Economy

The simulations were carried out as follows. We first define a vector,

$$\mathbf{x} \equiv (v_t, c_t, \hat{e}_{t-4}, \hat{e}_{t-3}, \hat{e}_{t-2}, \hat{e}_{t-1}, \hat{e}_t, \boldsymbol{\pi}_{t-4}, \boldsymbol{\pi}_{t-3}, \boldsymbol{\pi}_{t-2}, \boldsymbol{\pi}_{t-1}, \boldsymbol{\pi}_t, Y_d, X_d)$$

where v_i , c_i , \hat{e}_i , π_i , X_d , Y_d represent, respectively, central banks' sales and purchases of foreign currency for the current period, t, the (gross) depreciation and inflation rates for period i, and income and expenditure from central bank domestic operations.³⁴

We set the time period to be a half year, assume that x follows a multivariate normal distribution with mean μ_x and variance-covariance matrix Ω_x , and estimate the parameters (μ_x, Ω_x) using data from 1990 to 2003. Due to data availability, we are able to assess the role of inventory valuation methods only for foreign-reserve-related accounting items and not for the stock of domestic assets; however, we also consider in our simulation incomes and expenditures from central bank domestic operations under their actual accounting principles. Incomes are measured as net gains from repos and repurchase operations of bonds denominated in domestic currency. Expenditures include the interest paid for required and excess reserves of financial institutions at the central bank, losses related to open market operations, and interest paid on securities issued by the central bank. Based on these data, we get values for the means, the standard deviations, and the correlations of the relevant variables. These statistics are shown in table A1.

We normalize to one the nominal exchange rate and the price level at t-5. In addition, we set to one the level of reserves (at time t). We assume that this stock comes entirely from the four previous halves, according to the distribution $\Theta = \{\theta_{t-4}, \theta_{t-3}, \theta_{t-2}, \theta_{t-1}\}$ with θ_i being the fraction of the reserve inventory purchased at period i. Clearly $\Sigma_i \theta_i = 1$. To simulate Θ , we take four realizations of a random variable, c, coming from a normal distribution with mean 0.6677 and standard deviation 0.123 and then compute

^{34.} Variables c_t , v_t , X_d , Y_d are measured in terms of the value of foreign reserves.

^{35.} Data after that date are not suitable because of the exchange rate controls established by the Venezuelan government since 2003. For the variables (X_d, Y_d) we have information from the second half of 1992.

TABLE A1. Correlation Matrix, Means, and Standard Deviations

	C_t	V_t	\hat{e}_t	\hat{e}_{t-1}	$\hat{\boldsymbol{e}}_{t-2}$	\hat{e}_{t-3}	$\hat{\boldsymbol{e}}_{t-4}$	π_{t}	π_{t-1}	$\pi_{\scriptscriptstyle t-2}$	$\pi_{\scriptscriptstyle t-3}$	$\pi_{\scriptscriptstyle t\!-\!4}$	Y_d	X_d
C_t	1.00													
V_t	0.60	1.00												
\hat{e}_t	0.27	0.57	1.00											
ô -t−1	0.11	-0.17	-0.01	1.00										
6 t-2	-0.22	-0.22	-0.28	-0.02	1.00									
5 t−3	-0.06	0.14	0.09	-0.28	-0.02	1.00								
\hat{e}_{t-4}	0.03	0.10	0.20	0.16	-0.30	0.02	1.00							
π_t	0.11	0.21	0.47	0.59	0.05	-0.05	0.59	1.00						
π_{t-1}	-0.10	-0.06	0.00	0.46	0.59	0.05	0.01	0.54	1.00					
π_{t-2}	-0.19	-0.03	-0.02	-0.01	0.46	0.59	0.07	0.31	0.55	1.00				
π_{t-3}	0.21	0.01	-0.03	-0.04	-0.01	0.28	0.58	0.35	0.23	0.42	1.00			
π_{t-4}	-0.10	-0.04	-0.05	-0.04	-0.04	-0.03	0.37	0.20	0.34	0.22	0.40	1.00		
Y_d	0.16	0.25	0.20	-0.10	0.58	-0.06	-0.05	0.14	0.15	0.02	-0.08	-0.25	1.00	
X_d	-0.13	0.18	0.01	0.25	0.17	0.16	0.24	0.48	0.52	0.50	0.43	0.39	0.07	1.00
Mean	0.667	0.687	1.160	1.165	1.165	1.161	1.141	1.178	1.179	1.179	1.195	1.200	0.001	0.025
Std. dev.	0.123	0.258	0.253	0.251	0.251	0.254	0.228	0.114	0.113	0.113	0.137	0.137	0.002	0.019

 $\theta_i = c_i/c_1 + c_2 + c_3 + c_4$. This stock, together with reserves purchased at t, c_t , represents the inventory available to be sold.

Our experiment has 10,000 realizations of (x, Θ) , and for each of them, we calculate period t central bank profits from reserve sales (realized foreign profits) and the change in valuation of the remaining stock of foreign reserves (unrealized foreign profits). We also compute the realized domestic profits $Y_d - X_d$. We carry out calculations for two numeraires: the local currency and the CPI basket. For foreign-reserve-related operations, we compute profits using three well-known methods of inventory valuation: FIFO, LIFO, and weighted average. Table 1 in the main text shows the summary statistics.

Counterfactuals

To explore the role of certain parameters, we carry out some simulations for alternative values of μ_r and Ω_r .

ROLE OF THE DYNAMIC STRUCTURE. In this experiment, we impose the following structure for Ω_x : $\operatorname{cov}(\pi_{i-j}, x_i) = \operatorname{cov}(\hat{e}_{i-j}, x_i) = 0$ for all $(j, x) \in \{1, 2, 3, 4\} \times \{c, v, \pi, \hat{e}_i\}$. This essentially implies taking away the dynamic structure of the process. The remaining elements of Ω_x are as in the benchmark parameterization. Table A2 presents the summary statistics for the simulation. There are no significant changes, and all of our main conclusions hold.

ROLE OF CONTEMPORANEOUS CORRELATION BETWEEN π_r , AND $\hat{\mathbf{e}}_r$. As expected, the contemporaneous inflation rate and the nominal exchange rate depreciation are highly correlated. To evaluate the role of this fact, in this simulation we further set $\rho(\pi_{t-i}, \hat{e}_{t-i}) = 0$ for all $j \in \{0, 1, 2, 3, 4\}$.

In table A3, we show the summary statistics for this simulation. The most significant change is an increase in the dispersion of profits when using the CPI basket numeraire. However, our main conclusions still hold.

ROLE OF NOMINAL EXCHANGE DEPRECIATION. We now allow \hat{e}_t to vary from 1 to 1.35. In all cases we set $\sigma_{\hat{e}} = 0$. Profits are displayed in figure A1.

With no depreciation ($\hat{e}_i = 1$) and when local currency is used as numeraire, foreign profits equal zero for the three inventory methods. Depreciation makes FIFO > Average > LIFO when computing realized profits and LIFO < Average < FIFO when computing unrealized profits. When the numeraire

^{36.} These are precisely the mean and standard deviation of the purchases of foreign currency reserves over the time horizon under analysis.

^{37.} In addition, as in the previous exercise, we set $cov(\pi_{i-j}, x_i) = cov(\hat{e}_{i-j}, x_i) = 0$ for all $(j, x) \in \{1, 2, 3, 4\} \times \{c, v, \pi, \hat{e}\}.$

TABLE A2. Removing the Dynamic Structure: Variables Are Only Correlated Contemporaneously Percent of foreign reserves

95th percentile

52.5

180.9

110.3

	Numeraire: Bolívar				Numeraire: CPI bo	Domestic operations		
Statistic	FIF0	LIFO	Weighted avg.	FIFO	LIF0	Weighted avg.	Bolívar	CPI basket
Realized profits (from rese	rve sales and domes	tic operations)						
Mean	50.3	3.4	26.4	-14.6	-1.3	-8.0	-2.4	-2.0
Std. deviation	60.8	11.9	34.9	52.3	9.6	28.9	1.9	1.5
Prob. (variable \leq 0)	16.0	60.1	17.0	66.6	79.1	67.0	89.3	89.3
5th percentile	-18.2	-3.9	-10.2	-94.7	-14.9	-52.6	-5.5	-4.4
95th percentile	166.5	21.7	91.9	73.5	7.2	39.1	0.7	0.7
Unrealized profits (from re	serve revaluation)							
Mean	11.2	58.1	35.1	-3.9	-17.2	-10.5		
Std. deviation	22.0	65.2	40.3	18.0	57.5	35.1		
Prob. (variable \leq 0)	32.9	16.2	16.6	67.2	67.0	67.2		
5th percentile	-10.8	-23.8	-15.0	-34.5	-101.6	-61.9		

21.4

84.2

51.1

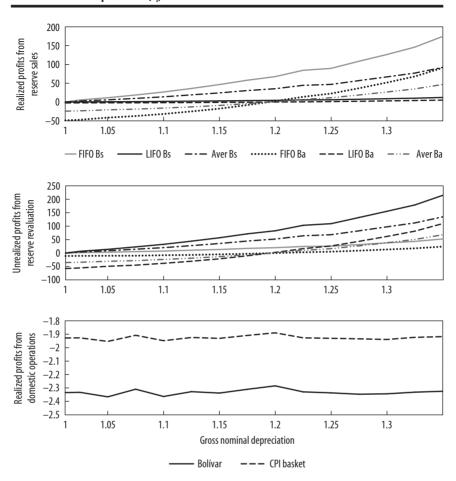
TABLE A3. Removing the Remaining Contemporaneous Correlation between Inflation and Exchange Rate Depreciation
Percent of foreign reserves

111.7

54.9

95th percentile

181.0

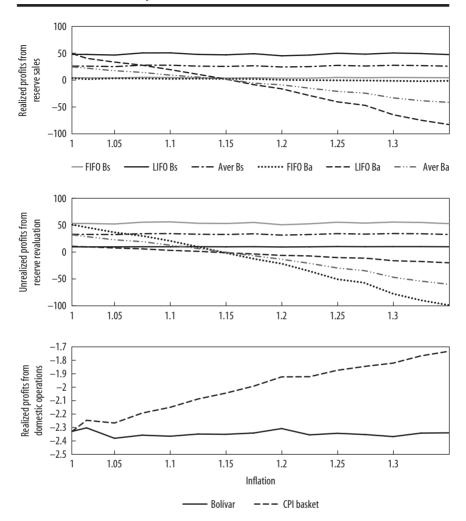

		Numeraire: Bolís	var		Numeraire: CPI bas	ket	Domesti	ic operations
Statistic	FIF0	LIFO	Weight. avg.	FIFO	LIFO	Weight. avg.	Bolívar	CPI basket
Realized profits (from rese	rve sales and domes	tic operations)						
Mean	49.4	3.4	26.0	-14.6	-1.2	-8.0	-2.3	-1.9
Std. deviation	60.7	11.0	34.5	61.7	10.5	33.9	1.9	1.5
Prob. (variable \leq 0)	16.2	60.1	17.4	63.8	78.1	64.4	89.4	89.4
5th percentile	-19.6	-3.8	-10.7	-110.6	-16.9	-60.9	-5.4	-4.4
95th percentile	168.0	21.9	93.4	90.0	10.0	48.6	0.7	0.7
Unrealized profits (from re	serves revalorizatioi	1)						
Mean	11.6	57.5	35.0	-4.4	-17.7	-11.0		
Std. deviation	22.4	65.3	40.3	21.8	68.5	41.9		
Prob. (variable \leq 0)	32.7	16.7	17.0	66.0	64.5	64.5		
5th percentile	-10.8	-24.7	-15.2	-40.3	-119.0	-72.7		

27.0

103.4

62.9

FIGURE A1. Depreciation (ê,) and Profits



is the CPI basket, real appreciation $\hat{e}_t < \pi_t = 1.183$ implies negative foreign profits for the three inventory methods, while real depreciation implies positive profits.

ROLE OF INFLATION. We now allow π_i to vary from 1 to 1.35. In all cases, we set $\sigma_{\pi} = 0$. Profits are displayed in figure A2. Clearly, π_i determines the degree of overvaluation due to the improper choice of numeraire. The higher π_i , the higher the overestimation.

We further stress that overestimation of foreign profits does not arise because of real exchange rate appreciation but because of inflation, as seen

FIGURE A 2. Inflation (π_i) and Profits

in a final exercise in which we set $\pi_t = \hat{e}_t$ and move them from one to 1.35 (see table A4). This implies no tendency toward appreciation or depreciation.³⁸ No change in the real exchange rate implies no real foreign profits (that is, measured as the CPI basket), but the higher π , and \hat{e} , the higher the overvaluation due to the improper choice of numeraire.

38. To guarantee that the real exchange rate does not vary across simulations, we further set $\sigma_{\pi} = \sigma_{\ell} = 0$. The rest of the parameters of Ω_{x} are as in the benchmark parameterization.

TABLE A4. Moving Depreciation and Inflation at the Same Rate Percent of foreign reserves

			Foreign op	perations				
$\Delta \pi_{\scriptscriptstyle T} = \hat{e}_{\scriptscriptstyle T}$		Numeraire: Bolívar			Numeraire: CPI	Domestic operations		
	FIF0	LIFO	Weighted avg.	FIFO	LIF0	Weighted avg.	Bolívar	CPI basket
Realized profits (from reserve sales ar	nd domestic operation	ns)					
1.00	0.0	0.0	0.0	0.0	0.0	0.0	-2.3	-2.3
1.07	17.6	1.0	9.1	0.0	0.0	0.0	-2.4	-2.2
1.14	41.3	2.6	21.5	0.0	0.0	0.0	-2.3	-2.0
1.21	73.6	4.7	38.5	0.0	0.0	0.0	-2.3	-1.9
1.28	118.5	7.7	62.0	0.0	0.0	0.0	-2.4	-1.8
1.35	172.0	12.2	91.4	0.0	0.0	0.0	-2.3	-1.7
Unrealized profit	ts (from reserve reval	uation)						
1.00	0.0	0.0	0.0	0.0	0.0	0.0		
1.07	4.5	21.1	13.1	0.0	0.0	0.0		
1.14	11.7	50.4	31.5	0.0	0.0	0.0		
1.21	20.8	89.7	55.9	0.0	0.0	0.0		
1.28	33.9	144.8	90.5	0.0	0.0	0.0		
1.35	52.4	212.1	133.0	0.0	0.0	0.0		

References

- Adler, Gustavo, Pedro Castro, and Camilo E. Tovar. 2012. "Does Central Bank Capital Matter for Monetary Policy?" Working Paper 12/60. Washington: International Monetary Fund.
- Archer, David, and Paul Moser-Boehm. 2013. "Central Bank Finances." BIS Paper 71. Basel: Bank for International Settlements.
- Baltensperger, Ernst, and Thomas J. Jordan. 1998. "Seigniorage and the Transfer of Central Bank Profits to the Government." *Kyklos* 51(1): 73–88.
- Benecka, Sofia, and others. 2012. "Central Bank Financial Strength and Inflation: Is There an Empirical Link?" Working Paper 3/2012. Prague: Czech National Bank.
- Borio, Claudio, Gabriele Galati, and Alexandra Heath. 2008. "FX Reserve Management: Trends and Challenges." BIS Paper 40. Basel: Bank for International Settlements.
- Brekke, Kjell A. 1997. "The Numeraire Matters in Cost-Benefit Analysis." *Journal of Public Economics* 64(1): 117–23.
- Bunea, Daniela, and others. 2016. "Profit Distribution and Loss Coverage Rules for Central Banks." Occasional Paper Series 69. Frankfurt: European Central Bank.
- CEMLA (Centro de Estudios Monetarios Latinoamericano). 2012. "Resultados de la encuesta sobre contabilidad de banca central." Technical Report. Mexico City.
- Eichberger, Jürgen, and Ian R. Harper. 1997. *Financial Economics*. Oxford University Press.
- Flemming, John S., Stephen J. Turnovsky, and Murray C. Kemp. 1977. "On the Choice of Numeraire and Certainty Price in General Equilibrium Models of Price Uncertainty." *Review of Economic Studies* 44(3): 573–83.
- Gabszewicz, Jean, and Jean-Philippe Vial. 1972. "Oligopoly 'à la Cournot' in a General Equilibrium Analysis." *Journal of Economic Theory* 4(3): 381–400.
- Grodal, Birgit, and Egbert Dierker. 1999. "The Price Normalization Problem in Imperfect Competition and the Objective of the Firm." *Economic Theory* 14(2): 257–84.
- Ize, Alain. 2005. "Capitalizing Central Banks: A Net Worth Approach." IMF Staff Papers 52(2): 289–310.
- ——. 2007. "Spending Seigniorage: Do Central Banks Have a Governance Problem?" *IMF Staff Papers* 54(3): 563–89.
- Klüh, Ulrich, and Peter Stella. 2008. "Central Bank Financial Strength and Policy Performance: An Econometric Evaluation." Working Paper 8-176. Washington: International Monetary Fund.
- KPMG International Cooperative. 2012. "Current Trends in Central Bank Financial Reporting Practices." Amstelveen, Netherlands.
- Mas-Colell, Andreu. 1991. "On the Uniqueness of Equilibrium Once Again." In *Equilibrium Theory and Applications: Proceedings of the Sixth International Symposium in Economic Theory and Econometrics*, edited by William A. Barnett and others, chap. 12. Cambridge University Press.

- McCauley, Robert N. 2008. "Choosing the Currency Numeraire in Managing Official Foreign Exchange Reserves." In *RBS Reserve Management Trends*, edited by Robert Pringle and Nick Carver. London: Central Banking Publications.
- Nachbar, John H. 2002. "General Equilibrium Comparative Statics." *Econometrica* 70(5): 2065–74.
- Obstfeld, Maurice, and others. 2015. "The Choice of Numeraire Matters When Calculating World GDP Growth." VoxEU.
- Papell, David H., and Hristos Theodoridis. 2001. "The Choice of Numeraire Currency in Panel Tests of Purchasing Power Parity." *Journal of Money, Credit, and Banking* 33(3): 790–803.
- Reis, Ricardo. 2013. "Central Bank Design." *Journal of Economic Perspectives* 27(4): 14–44.
- Schwarz, Claudia, and others. 2014. "Why Accounting Matters: A Central Bank Perspective." Occasional Paper 153. Frankfurt: European Central Bank.
- Sims, Christopher A. 2005. "Limits to Inflation Targeting." In *The Inflation-Targeting Debate*, edited by Ben S. Bernanke and Michael Woodford, pp. 283–309. University of Chicago Press.
- ———. 2013. "Paper Money." *American Economic Review* 103(2): 563–84.
- Srinivasan, T. N., and Kenneth Kletzer. 1994. "Price Normalization and Equilibria in General Equilibrium Models of International Trade under Imperfect Competition." Working Paper 710. Yale University, Economic Growth Center.
- Stella, Peter. 2005. "Central Bank Financial Strength, Transparency, and Policy Credibility." *IMF Staff Papers* 52(4): 335–65.
- Sullivan, Kenneth. 2016. "Working towards a Common Accounting Framework for Gold." Discussion Paper 16/06. London: World Gold Council.
- Zambrano, Eduardo, and Timothy Vogelsang. 2000. "A Simple Test of the Law of Demand for the United States." *Econometrica* 68(4): 1011–20.