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Abstract

In recent years, there has been a surge in research addressing the question which prop-

erties predictive algorithms ought to satisfy in order to be considered fair. Three of the most

widely discussed criteria of fairness are the criteria called equalized odds, predictive parity,

and counterfactual fairness. In this paper, we will present a new impossibility result involv-

ing these three criteria of algorithmic fairness. In particular, we will argue that there are

realistic circumstances under which any predictive algorithm that satisfies counterfactual

fairness will violate both other fairness criteria, that is, equalized odds and predictive parity.

As will be shown, this impossibility result forces us to give up one of four intuitively plau-

sible assumptions about algorithmic fairness. We will explain and motivate each of the four

assumptions and discuss which of them can plausibly be given up in order to circumvent

the impossibility.

Keywords: algorithmic fairness, causal modeling, machine learning, impossibility theorem, AI ethics

1 Introduction

Machine learning techniques are increasingly applied to inform decisions in the public and

economic sphere. Prominent examples are criminal sentencing, policing, hiring, and credit

lending decisions. Since decisions in these domains potentially have a large positive or negative

impact on individuals, they are subject to equality of opportunity and non-discrimination

norms. When algorithms are applied to decision-making in the public and economic sphere,
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it is, therefore, critical to ensure that they too do not produce discriminatory outcomes or

disproportionately harm specific social groups. Much recent research has gone into developing

and discussing fairness constraints for machine learning models with the aim of providing tools

for doing this.

In this paper, we consider the relation between three of the most popular fairness constraints:

counterfactual fairness, equalized odds, and predictive parity. Counterfactual fairness formalizes the

idea that in a given prediction, the protected characteristic (e.g. gender, ethnicity, or religion)

should not make a (causal) difference to the prediction (Kusner et al., 2017). Equalized odds,

in contrast, formalizes the idea that in a given population, the false positive and false negative

error rates of a predictive model should be independent of the protected characteristic (Hardt

et al., 2016). And lastly, predictive parity is concerned with the predictive value, that is, the

probability that the predicted property is indeed present (or absent), given that an individual

received a positive (or negative) prediction. Predictive parity formalizes the idea that in a

given population, the predictive value of a model should be independent of the protected

characteristic (Chouldechova, 2017).

The central contribution of this paper is an impossibility theorem with regard to the relation

between the three criteria. It establishes that whenever the protected characteristic has some

causal relevance to the variable that is to be predicted, a counterfactually fair predictive model

will with logical necessity violate both, equalized odds and predictive parity. The result forces

us to give up one of four individually plausible assumptions about algorithmic fairness. These

assumptions are (1) that fairness requires that either equalized odds or predictive parity is

satisfied, (2) that predictions should be counterfactually fair, (3) that protected characteristics

(like age, gender, etc.) can, in some cases, influence the variable of interest for the prediction,

and lastly, (4) that we can always find a fair way of making a prediction. A way to interpret

this impossibility result is that we either have to accept that counterfactual fairness is not a

requirement of fairness for predictive models, or that neither equalized odds nor predictive

parity are requirements of fairness. If none of these two interpretations seem plausible, we

either have to accept that there are situations for which no fair predictive models exist, or deny

that the type of situation in which the impossibility arises ever occurs.

Other works have explored impossibilities and trade-offs between other fairness criteria. Most

famously, Chouldechova (2017) and Kleinberg et al. (2016) have shown that under realistic
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conditions, equalized odds and predictive parity are mutually inconsistent. Attempts to

reconcile weaker or approximate versions of the criteria are discussed in (Pleiss et al., 2017),

who show that predictive parity and a weakened form of equalized odds can be reconciled

when using a randomized prediction scheme, (Celis et al., 2019), who present an algorithmic

approach that allows to satisfy approximate versions of multiple fairness criteria at the same

time, and (Beigang, 2023), who shows that causally reinterpreted versions of equalized odds

and predictive parity are mutually consistent.

Some earlier works have discussed the limitations of counterfactual fairness. A number of arti-

cles propose alternative causal fairness criteria which relax counterfactual fairness and would

potentially avoid the results discussed here. Chiappa (2017) and Loftus et al. (2018) provide

frameworks for analyzing whether individual causal paths in a model satisfy counterfactual

fairness, allowing for the possibility of some of those paths to not be subject to fairness con-

straints. Kilbertus et al. (2017) present an alternative causal fairness constraint in which causal

effects of the protected characteristic on the prediction that are not mediated by proxy vari-

ables are considered fair. Practical limitations of counterfactual fairness have been addressed

by Kilbertus et al. (2020), Wu et al. (2019) and Russell et al. (2017). To our knowledge, no

previous work discusses the incompatibilities presented in this article in depth.

The remainder of the paper is organized as follows. In section 2, we provide an introduction to

the mathematical framework used in defining the fairness criteria and the proof of the impos-

sibility theorem. In section 3, we introduce the three fairness criteria counterfactual fairness,

equalized odds, and predictive parity. In section 4, we state and prove the impossibility theo-

rem before then discussing ways to circumvent it in section 5. We close with a brief summary

in section 6.

2 Mathematical framework

We begin by specifying the mathematical framework in which the fairness criteria are defined.

This will moreover serve as a basis for the proof of the impossibility theorem presented in this

paper.

The notation we use is as follows. We denote random variables by capital letters, e.g. X,
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their values by lower-case letters, e.g. x, and the domain of a variable X by DX. A set of

variables X1,X2, ...,Xn is denoted in boldface by X with value x. The domain DX of a set of

n variables is defined as the Cartesian product of the domains of the individual variables in

the set, i.e. DX1 × DX2 × ... × DXn . The probability that a variable X takes value x, P(X = x),

will be abbreviated by P(x) when this is unambiguous. Two variables (and analogously sets

of variables) X and Y are said to be conditionally independent given variable Z (in probability

distribution P(·)) if and only if P( x | y, z ) = P( x | z ) for all x ∈ DX, y ∈ DY and z ∈ DZ. We

denote conditional independence by ( X ⊥⊥ Y | Z ).

2.1 Causal models and counterfactuals

We next introduce a number of central concepts from the mathematical framework of causal

modeling as developed by Pearl (2009). A causal model is defined as a triple (U,V,F) such that

(i) U is a set of variables whose values are determined by factors outside the present model,

(ii) V is a set {V1,V2, ...,Vn} of variables whose values are determined by other variables in

the model, that is, by a subset of the variables in U and V, and (iii) F is a set of structural

equations { f1, f2, ..., fn} such that each structural equation fi is a mapping from DPAi to DVi , with

PAi ⊆ U ∪ (V \ Vi) (Pearl, 2009, p. 203). This means, a causal model encodes for each variable

Vi how it functionally depends on the other variables in V and U, or, in other words, what its

direct causes are.

L
(Lamp on or off)

(Lamp intact or not)

U1
S (Light switch on or off)

U2 (Time of day)

Figure 1: An example of a causal model (represented by its causal structure).

To illustrate this definition, take for example the causal model (U,V,F) depicted in Figure 1,

which represents the causal mechanism of a lamp. In this example, U contains the binary

variables U1 and U2, which represent whether the lamp is intact or whether it is broken, and

which time it is, respectively. V contains the variables L and S, which represent whether the
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light switch is in the ”On” or in the ”Off” position, and whether the lamp is on or off. F contains

two structural equations:

l = f1(s,u1) = min(s,u1)

s = f2(u2) =

 1 if u2 > 17

0 if u2 ≤ 17

First, it contains f1, which specifies that the lamp is on whenever it is intact and the light switch

is in the ”On” position. This is formalized as min(s,u1): whenever the lamp is intact, u1 = 1,

and whenever the light switch is on, s = 1, and consequently, L = min(s,u1) = min(1, 1) = 1 – the

lamp is on. Whenever one of u1 or s takes the value 0, representing that either the light switch

is off or that the lamp is not intact, l = min(s,u1) = 0 – the lamp is off. Secondly, f2 specifies

that whether the light switch is on depends on the time of day, in particular, whether it is after

17:00. There are no structural equations for the variables U1 and U2, as their respective values

are determined by factors that are not represented in our model.

L
(Lamp on or off)

(Lamp intact or not)

U1
S = 1 (Light switch set to ”on”)

U2 (Time of day)

Figure 2: Submodel of the original causal model. By setting S = 1, the initial link from U2 to S is deleted.

On the basis of the above definition of a causal model, we can introduce the notion of a

submodel. A submodel of a causal model M is itself a causal model MX=x = (U,V,FX=x) where

FX=x = { fi : Vi < X}∪ {X = x} for a particular realization X = x of a set of variables X ⊆ V. Figure

2 illustrates this. Here, we have replaced the structural equation for the variable S by the value

1. This can be interpreted as an external actual or hypothetical intervention on this variable.

An intervention of this kind deletes all functional dependencies on other variables. In our

example, this means that when we decide to artificially intervene in the system by turning the

light switch on, the position of the switch does not depend on the time of day anymore.
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Next, we need to introduce the notion of a potential response. A potential response YX=x(U = u)

represents the value that the variable Y takes according to the set of equations Fx and a particular

realization u of the background variables U (Pearl, 2009, p. 204). In our example, we can for

instance think of how the lamp would potentially respond to the intervention of setting the

light switch to ”on”, assuming that the lamp happens to be intact. According to the structural

equations above, this would lead to the lamp being on. Consequently, this potential response

would be formalized as LS=1(U1 = 1) = 1. For the sake of simplicity, we will henceforth leave

the background variables implicit and denote the potential response by YX=x. Moreover, where

it is unambiguous which variable we refer to, we will abbreviate this by Yx.

The notion of a potential response now allows to define counterfactual statements of the form

”The value that Y would have obtained, had X been x” (for X,Y ⊆ V) as the potential response

Yx. Given a causal model M and a probability distribution P(u) over DU, the conditional

probability of a counterfactual ”If it were the case that X = x, then it would be the case that

Y = y” given evidence e can be evaluated by (1) updating P(u) by conditioning on evidence e

in order to obtain P∗(u) = P( u | e) , (2) generating the submodel Mx of M obtained by removing

the structural equation for X from M and replacing it by a constant x, (3) using the submodel

Mx and the updated probability distribution P∗(u) to compute the probability of Y = y. This

probability of the counterfactual statement is denoted by P( Yx = y | e ).

Let us again illustrate this with our example. Assume we attempt to determine the probability

of the counterfactual ”If the light switch had been turned on, then the lamp would be on”,

knowing that the lamp is actually not on. The formalization of this is P( LS=1 = 1 | L = 0 ).

Now we simply have to run through the three steps. First, we update the relevant background

variables. In general, this would be both, U1 and U2, but here only U1 is relevant1. Let us assume

that initially, we would think that it 90% likely that the lamp is intact, i.e. P( U1 = 1) = 0.9. After

learning that the lamp is currently off (L = 0), we update the probability assignment to, say,

P( U1 = 1 | L = 0 ) = P∗(U1 = 1) = 0.8, reflecting the fact that the lamp being off is weak evidence

for the lamp being broken. Next, we have to generate a submodel (see Figure 2) by replacing

s = f2(u2) with s = 1. Using the updated probability assignment and the submodel, we can

now calculate P( LS=1 = 1 | L = 0 ) = P∗(min(s,u1) = 1) = P∗(min(1,u1) = 1) = P∗(U1 = 1) = 0.8.

In words, the probability that the lamp would have been on, if the switch had been on, is

simply the probability of the lamp being intact, given we observe that actually the lamp is off.

1This is because after the intervention on S, L is screened off from U2.
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This is due to the fact that the lamp is only on if both, the switch is on and the lamp is intact.

2.2 Causal structures and the projection theorem

If we strip a causal model of its parameters (i.e. the information on the coefficients of the struc-

tural equations in F), we obtain a causal structure (Pearl, 2009, p. 203). A causal structure can be

represented as a directed acyclic graph in which each node corresponds to a variable in U∪V,

and in which there is a directed edge pointing toward Vi ∈ V from every node corresponding to

a variable that occurs in fi. A directed edge from one node to another consequently represents

a direct causal link between the corresponding variables. More intuitively speaking, the causal

structure contains purely qualitative information about the causal relations between the vari-

ables in the model. Figures 1 and 2 are examples of causal structures: each figure represents

the qualitative information about causal dependencies between variables in a qualitative way.

It is not apparent from the graph what functional form the causal dependencies between the

variables exactly take. To denote the causal structure of a causal model M, we will henceforth

write GM.

In order to establish a connection between a causal structure and an associated probability

distribution over the variables represented as nodes, we need to introduce the notion of d-

separation. Two variables X and Y are said to be d-separated by Z in a causal structure GM

if and only if each path between the nodes representing X and Y contains either (i) a chain

(i→ m→ j) or a fork (i← m→ j), and m is a node representing a variable in Z, or (ii) a collider

(i→ m← j) and m is a node representing a variable not in Z (Pearl, 2009, pp. 16-17). In figure

1, for example, the nodes U1 and S are d-separated by the empty set, as are U2 and S, while L

and U2 are d-separated by S.

We say that a probability distribution P(·) is Markov relative to a causal structure GM if for any

X, Y, and Z, it is the case that if Z d-separates X and Y, it is also the case that ( X ⊥⊥ Y | Z )

(Pearl, 2009, p. 26). Conversely, we say that P(·) is faithful to GM if ( X ⊥⊥ Y | Z ) implies that Z

d-separates X and Y. In a probability distribution that is Markov compatible with the causal

structure in Figure 1, the following conditional independencies have to hold: ( U1 ⊥⊥ U2 | ∅ ),

( U1 ⊥⊥ U2 | S ), ( U1 ⊥⊥ S | ∅ ), and ( L ⊥⊥ U2 | S ). For the probability distribution to be faithful

to the causal structure, there must not be any other (conditional) independencies between the
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variables. Henceforth, we will generally assume that a probability distribution P(·) is both

faithful and Markov relative to its associated causal structure GM. 2

The above notions now allow us to describe a theorem which will later help us construct

an economical proof of the impossibility theorem presented in this paper. We will call this

theorem the projection theorem. It states the following: For every set of observed variables O,

there exists a causal structure with a node Ui j for each pair of variables Oi,O j ∈ O, representing

their (potential) latent common cause, which is (Markov) compatible with the joint probability

distribution over DO (Verma, 1993). More intuitively speaking, whenever we have a set of

variables and a joint probability distribution over these variables but no information about their

causal dependencies, we are guaranteed to be able to represent the ”correct” causal structure

of these variables, if, in addition, for each pair of observed variables we assume the existence

of a hidden variable which potentially influences both observed variables simultaneously.

O1 U13

O2

U12

O3

U23

Figure 3: Representation of all the possible causal structures between O1, O2, and O3.

If, for example, we are interested in the variables O1 (which stands for, say, ”diabetes”), O2

(”sugar consumption”) and O3 (”weekly amount of exercise”), and know their joint probability

distributions but not what the causal relations between the variables are, we can assume there
2For a discussion and defense of the two assumptions, see Pearl (2009, pp. 61-64) and Zhang & Spirtes (2016).Note,

that some authors occassionally use an assumption weaker than faithfulness, namely causal minimality (Zhang &

Spirtes, 2011). The argument in this paper, however, relies on inferential steps in both directions: from (conditional)

independencies to properties of the causal graph, as well as from properties of the causal graph to (conditional) inde-

penencies. The minimality condition alone would not suffice to allow for these steps under all possible probabilistic

parameters in the causal model (if, say, the effect of one causal path were to exactly undo the effect along another one

in terms of a change in the probability distribution).
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is a causal structure (i.e. directed acyclic graph) of O1, O2, O3 and three hidden variables

U12,U23, and U13, to which their probability distribution is Markov compatible. U12 would,

in this structure, stand for any unobserved background factor which could simultaneously

influence whether a person has diabetes and what their level of sugar consumption is - for

instance, some genetic disposition. Figure 3 illustrates this: the projection theorem guarantees

that, if we choose the right arrows (among the possible, dashed arrows), we obtain a graph

that depicts the correct causal structure between O1, O2, and O3.

3 Fairness in predictive models

Let us now turn back to the topic of predictive models in algorithmic decision-making. Pre-

dictive models can exhibit discriminatory bias. That is, the predictions of a machine learning

model can be such that decisions based on them would constitute cases of discrimination

relative to a given protected characteristic. Protected characteristics are typically traits such

as ethnicity, gender, religion, or disability. In recent years, several fairness constraints have

been proposed with the aim of ensuring that, provided a predictive model satisfies the fairness

constraint, the model is guaranteed to not exhibit such discriminatory bias. Each of these

different constraints interprets the notion of discriminatory bias in a different way. While

different proposals for fairness constraints abound, three constraints are at the center of the

debate: counterfactual fairness, equalized odds, and predictive parity.

We will now introduce the three formal definitions and their underlying rationales. In order

to define the criteria in a rigorous fashion, let X ⊆ U ∪V be a set of input variables, Y ∈ V the

target variable, i.e. the variable representing the presence or absence of the property of interest

which is unknown at the time of prediction, and A ∈ U the protected characteristic relative to

which we aim to evaluate or constrain the predictive model. For the sake of simplicity, we will

assume Y to be a binary variable taking the values 0 or 1. If, for a given individual, it is the case

that Y = 1, we will say that the individual belongs to the positive class. We will moreover assume

that A is a binary variable with values a1 and a2, which represent the presence and the absence

of the protected characteristic, respectively. When we refer to protected groups, we refer to the

groups constituted by individuals with property A = a1 and individuals with property A = a2.

Finally, let us denote the causal model representing the mechanisms of the real world situation
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within which the (sets of) variables X,Y and A are situated as Mbase = (Ubase,Vbase,Fbase).

Let us next turn to the representation of predictive models. To this end, let Ŷ be a binary variable

which is interpreted as an attempt to predict the value of the target variable Y. Whenever Ŷ = 1,

we will speak of a positive prediction. Generally, we will take predictive models to be functions

of the form g : DX → DŶ, that is, functions from a vector of input values x to a prediction ŷ.

This is a simplifying assumption since many predictive models provide a probability estimate

of the presence of a property instead of an outright prediction of the property’s presence or

absence. To keep the discussion simple, however, we will in this paper assume that predictions

are binary. This means, we assume that the model either predicts that the property y is present

or that it is absent. This simplification does not affect the generality of the result presented

here.

For given X,Y and A in a causal model Mbase, a predictive model g can be represented within

an augmented causal model Maug = (Ubase,Vaug,Faug), where Vaug = Vbase∪ Ŷ, and where Faug is

the extension of Fbase obtained by adding the function g representing the predictive model as a

structural equation to Fbase. We here interpret the function g as the causal relation between the

predictive model’s input variables X and the prediction Ŷ. For every predictive model, there

consequently is a specific augmented causal model representing the causal relations between

relevant variables and the prediction. Since g is a deterministic function of X, which is a subset

of U ∪ V, the joint probability distribution over the variables in the augmented causal model

is readily obtained from the set of structural equations Fbase and the probability distribution

over the exogenous variables P(u). Subsequently, when we speak about causal relations we

will always do so relative to a specific predictive model g, hence referring to causal relations

within an augmented causal model as outlined above.

3.1 Equalized odds

The first fairness constraint we introduce is equalized odds (Hardt et al., 2016). It formalizes

the requirement that a predictive model produce equal false positive and false negative error

rates across protected groups. The underlying idea here is that a disparity in error rates across

protected groups indicates that the model is biased with regard to a group in that it takes the

protected characteristic (or proxies thereof) to be more predictive of the target variable than it
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actually is. If, for example, a predictive model is applied to predict whether a defendant is at risk

of reoffending or not, and it has a higher false positive rate for African-American defendants

than for white defendants, this means that a greater proportion of low-risk African-American

defendants will be falsely predicted to be at high risk than is the case for white defendants.

Implicitly, the model seems to overestimate how predictive the trait of being African-American

(or information closely linked to it, like for instance living in a certain neighborhood, or having

a certain name) is of recidivism. Overestimating how predictive a person’s ethnicity is of some

other property can clearly be considered a form of bias against (or towards) people of this

ethnicity.

In practical terms, different error rates reflect that a different standard is applied to one pro-

tected group than to the other, or so the argument goes. In the recidivism example, individuals

of the group with a higher false positive rate are held to a higher standard - on average, they

have to satisfy stricter conditions (as reflected in the information that serves as input to the

model) in order to be deemed to be at low risk of recidivism than individuals of the other

group. Equalized odds can be formalized as follows:

Definition 1 (Equalized odds). A predictive model g satisfies equalized odds (relative to A) if

and only if for all ŷ ∈ DŶ and y ∈ DY

P( ŷ | a1, y ) = P( ŷ | a2, y ) (1)

This formalization can be understood as requiring that the value of the prediction Ŷ be inde-

pendent of the value of the protected characteristic A, once we control for the actual value of

the target variable Y. Applied to the above example, it means that the probability of being

deemed to be at high risk of recidivism (or low risk, respectively) should be equal across low

risk African-American and low risk white defendants (and, analogously, it should be equal

across high risk African-American and high risk white defendants).

By the axioms of probability and the definition of conditional independence, equalized odds

is equivalent to ( Ŷ ⊥⊥ A | Y ). This, in turn, is equivalent to Ŷ and A being d-separated by Y in

the associated causal structure, due to the assumption that P(·) is Markov and faithful.
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3.2 Predictive parity

Next, we introduce the fairness constraint called predictive parity (Chouldechova, 2017). The

central metric used in this constraint is positive (and negative) predictive value. The positive

predictive value of a predictive model is the proportion of instances that actually belong in

the positive class among those that received a positive prediction. Analogously, the negative

predictive value is the proportion of instances that actually do not belong in the positive class

among those that did not receive a positive prediction. Predictive parity requires that these

two metrics be equal across protected groups.

In our running example, this would mean that the proportion of defendants who go on

to reoffend among those who received a high recidivism risk prediction should be equal for

African-American and white defendants (and, of course, analogously for negative predictions).

The rationale behind this is that predictions should be equally informative and reliable across

different protected groups. If the positive predictive value is much lower for one protected

group than for another, this means that positive predictions for individuals of this group are

less trustworthy, and are less indicative of the individual actually being in the positive class,

than for individuals of a different protected group. More intuitively speaking, a prediction of

being at high risk of recidivating should mean the same for an African American and a white

defendant. This idea can be expressed as the following mathematical constraint:

Definition 2 (Predictive parity). A predictive model g satisfies predictive parity (relative to A)

if and only if for all ŷ ∈ DŶ and y ∈ DY

P( y | a1, ŷ ) = P( y | a2, ŷ ) (2)

Analogously to equalized odds, predictive parity can be expressed in terms of conditional

independence by stating that the value of the target variable Y should be independent of the

protected characteristic A, once we control for the value of the prediction Ŷ. Formally, this can

be expressed as ( Y ⊥⊥ A | Ŷ ). For the associated causal structure, this means that Y and A are

d-separated by Ŷ.
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3.3 Counterfactual fairness

The third and most complex fairness constraint we introduce is counterfactual fairness (Kusner

et al., 2017). It formalizes the requirement that an individual with a given value of a protected

characteristic would have received the same prediction as they actually received, had their

protected characteristic A taken a different value, while everything else that is not causally

downstream of the protected characteristic had stayed the same. In other words, if the pre-

dictive model is fair, the change in the value of the protected characteristic does not make a

difference to the prediction for an otherwise identical individual. Whether a predictive model

is counterfactually fair is not determined by the probability distribution P(·) alone, but requires

a fully specified causal model. Otherwise, the probability of the counterfactual statement could

not be calculated. Given such a model M, counterfactual fairness can be defined as follows:

Definition 3 (Counterfactual fairness). A predictive model g satisfies counterfactual fairness

(relative to a1) if and only if for all ŷ ∈ DŶ and x ∈ DX

P( Ŷa1 = ŷ | x, a1 ) − P( Ŷa2 = ŷ | x, a1 ) = 0 (3)

Note that, other than equalized odds and predictive parity, counterfactual fairness is defined

relative to a specific trait a1, rather than the variable A. For example, equalized odds might

determine whether error rates are equally distributed among, say, different religious groups,

but counterfactual fairness determines whether one specific group’s trait, say being Muslim as

opposed to being Christian, makes a difference to a given prediction. This, however, does not

mean that counterfactual fairness has to be used in a trait-relative way. If a given context calls

for it, one could require that counterfactual fairness be satisfied for all a ∈ DA, rather than just

for a specific trait a1. Here, we will only assume the weaker version of counterfactual fairness,

as this will strengthen the impossibility result.

The above definition of counterfactual fairness implies that there is no causal chain from A to Ŷ

in the causal structure GM. To see this, note that by the semantics of counterfactuals we need to

consider the submodel Ma1 (in which the structural equation for A was replaced by the constant

a1) in order to determine the probability of the counterfactual statement. With regard to the

graph, this means that all the incoming edges into A are removed. Any outgoing edges from A
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remain intact. Counterfactual fairness then requires that (given a specific assignment of a joint

probability distribution to the latent variables in U) in the resulting probability distribution Pa1

associated with the submodel Ma1 , Ŷ is independent of A, i.e. ( Ŷ ⊥⊥a1 A ). By the assumption of

faithfulness, this entails that A and Ŷ are d-separated by the empty set in the causal structure

GMa1
. In particular, this means that there is no causal chain from A to Ŷ. Since any outgoing

edges from A would have remained intact in the submodel and would hence also exist in Ma1 ,

we can conclude that there is also no causal chain from A to Ŷ in the causal structure GM of the

original causal model M.

4 An impossibility theorem

As it turns out, there are circumstances under which counterfactual fairness is incompatible

with both, equalized odds and predictive parity. In particular, we will show that the following

four individually plausible propositions are jointly inconsistent:

(1) If a predictive model is fair, it satisfies equalized odds or predictive parity.

(2) If a predictive model is fair, it satisfies counterfactual fairness.

(3) There are some morally relevant prediction contexts where the protected characteristic

has some (possibly mediated) causal relevance to the target variable.

(4) For every morally relevant prediction context there exists a fair predictive model.

We will briefly explain each of the four propositions in turn. Proposition (1) states that it

is necessary for a fair predictive model to at least satisfy one of the two fairness constraints

equalized odds and predictive parity. While both are prima facie plausible, they were shown to

be mutually incompatible whenever the base rate prevalence of the predicted property differs

among protected groups (Kleinberg et al., 2016; Chouldechova, 2017). Hence, we cannot

require that a fair model generally satisfy both, but it seems like a relatively weak desideratum

to require that a fair model satisfy at least one of the two. Proposition (2) simply states that it

is necessary for a fair predictive model to satisfy counterfactual fairness.
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Proposition (3) contains a number of concepts that require explaining. First, by prediction

context we mean a situation in which a specific property is being predicted, for instance,

whether a given applicant would be a profitable employee for the hiring company. We say

that a prediction context is morally relevant when the prediction and the subsequent decision

are subject to moral norms, like for instance non-discrimination or equality of opportunity

norms. To make precise what it means that a protected characteristic is causally relevant to

the target variable, we have to refer to the causal modeling framework outlined in section 2.

Using this framework, we can say that the protected characteristic is causally relevant to the

target variable if there is a (hypothetical) intervention on the former that results in a change

of the probability distribution of the latter. In other words, it is possible that there is a causal

link, direct or indirect, from the protected characteristic to the target variable. Formally, this

means that in those contexts there exists a y ∈ DY, and x ∈ DX such that

P( Ya1 = y | x, a1 ) − P( Ya2 = y | x, a1 ) > 0 (4)

With regard to the causal structure, this means that there is a sequence of edges originating in

A toward Y in the graph.

Lastly, (4) states that for every prediction context that is subject to moral norms, there is some

way of predicting the target variable in question. This means, there always exists some kind

of evidence that would warrant a judgment about the target variable.

To show that (1)-(4) are jointly inconsistent, assume (2), (3), and (4). Imagine, as warranted

by accepting (3), a prediction context in which the protected characteristic has some causal

relevance to the target variable. By (4), there exists a fair predictive model for the given

prediction context. By (2), the fair model satisfies counterfactual fairness. The following

theorem implies the negation of (1):

Theorem 1. Every counterfactually fair predictive model necessarily violates equalized odds

and predictive parity if the protected characteristic A has a (possibly mediated) causal effect

on the target variable Y.

Before presenting the formal proof of Theorem 1, we first specify the framework and the

assumptions applied in the proof. Generally, the idea is to construct a graphical proof of the
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theorem which shows that in any causal structure that incorporates our assumptions, A and Ŷ

are not d-separated by Y, and A and Y are not d-separated by Ŷ. This entails that equalized odds

and predictive parity are violated in any context represented by a causal structure compatible

with the assumptions. We will take the following as premises of our argument:

Premise 1 (Predictive model). We assume that a predictive model is a function g : DX → DŶ

that maps a set of input values x to a prediction ŷ. This implies that in a causal structure, the

only edge into node Ŷ is a directed edge from X.

Premise 2 (Relation between target and input variables). We assume that either of three causal

relations holds between the target variable Y and the input variables X on the basis of which a

prediction of Y is to be made:

• there is an edge from X into Y,

• there is an edge from Y into X, or

• there is an unobserved node with outgoing edges into both, Y and X (i.e. the node

represents a latent common cause).

Premise 3 (Protected characteristic). We assume that the protected characteristic A is such that

it is not caused by either the target variable Y, the prediction Ŷ, or the input features X. This

implies that in a causal structure there are no outgoing edges (or chains) from Y, Ŷ, or X into

A.

Premise 4 (Counterfactual fairness). As argued above, counterfactual fairness implies that

there is no outgoing edge (or chain) from A into Ŷ.

Premise 5 (Effect of protected characteristic on target variable). The protected characteristic

having a (possibly mediated) causal effect on the target variable implies that there is a directed

edge (or chain thereof) from A into Y. For the sake of simplicity, we can ignore the case in

which it is a chain without loss of generality.

The proof strategy we pursue here is a proof by cases. We show that in any possible causal

structure representing the relations between Y, Ŷ, X, and A that satisfies the premises, equalized

odds and predictive parity are not satisfied. To this end, we can exploit the projection theorem.

Recall that the theorem states that any causal structure with unobserved latent variables can
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Ŷ

Y A

(a) (b)

Figure 4: The two possible causal structures involving Y, Ŷ,A, and X.

be represented as a causal structure where the only latent variables are the potential common

causes of each pair of observed variables.

This restricts the number of possible causal structures significantly. It leaves us with exactly

two classes of structures. Note that we will consider classes of rather than individual causal

structures because we can summarize a number of possible causal structures by indicating

the possible presence of latent common causes. As we only need to show that in each such

class there exists one path which is unblocked for the relevant nodes in order to show that

equalized odds and predictive parity are violated, the presence or absence of latent common

causes remains irrelevant as long as we find another path that is unblocked. We will represent

the possible presence of an unobserved common cause by a dashed bidirectional arrow. Actual

but unobserved common causes are depicted by unnamed, hollow circles.

Proof. We consider all the causal structures that represent different possible causal relations

among Y, Ŷ, X, and A compatible with premises 1-5. The two resulting classes of graphs are

depicted in Figure 4.

Let us first show that equalized odds is violated. Recall that equalized odds is equivalent to

Ŷ and A being d-separated by Y. This is not the case in either of the two classes of causal

structures. In (a), the path A → Y ← X → Ŷ is not blocked by Y, hence in this class of causal

structures, Ŷ and A are not d-separated by Y. Whether the potential latent common causes
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are actually present or not does not matter, since we have already found an unblocked path.

It is similar in (b), where the path A → Y ← ◦ → X → Ŷ is not blocked by Y, and hence in

this class of causal structures Ŷ and A are also not d-separated by Y. We conclude that in any

possible causal structure compatible with the premises, equalized odds is violated. It follows

that equalized odds is not compatible with the premises.

Let us next show that predictive parity is violated as well. Predictive parity is equivalent to Y

and A being d-separated by Ŷ. As in both causal structures, there is, by hypothesis, an edge

from A to Y, they cannot be d-separated by Ŷ. Therefore, in any possible causal structure

compatible with the premises, predictive parity is violated as well and is hence itself not

compatible with the premises. □

This shows that the four individually plausible propositions about algorithmic fairness intro-

duced at the beginning of this section are jointly inconsistent. Note, that this generalizes to

models that provide a score rather than a binary classification in the following way: A model

that provides a score can be decomposed into an array of binary classifiers. Say, we consider

a scoring model that assigns a score between 1 and 10. Then, for each value, we can derive a

binary classifier (e.g. to classify into scores of x or more, and less than x, where x is a number

between 2 and 10). Relevant fairness criteria should hold at each level of the score, hence they

should hold for each of these binary classifiers. Since we have shown the impossibility for

binary classifiers, at each level of the scoring model the impossibility will hold as well.

5 Escaping the impossibility

We will now consider how we can potentially circumvent the impossibility established in the

previous section. While propositions (1)-(4) were shown to be jointly inconsistent, it is easy

to see that every combination of three of the four propositions is consistent. This means the

impossibility can be avoided by giving up or adequately relaxing one of the four propositions.

For each of the four propositions, we will consequently explore whether this is a plausible route

to take. We will work through the propositions in reverse order, beginning with proposition

(4).

18



5.1 Relaxing proposition (4)

We begin by considering whether it is reasonable to relax the proposition that for every morally

relevant prediction context there exists a fair predictive model. In light of the impossibility

result, it might be tempting to conclude that in situations in which at best one of the three

fairness criteria equalized odds, predictive parity, and counterfactual fairness can be satisfied,

there simply exists no (fully) fair predictive model. In these prediction contexts, we have to

abstain from making algorithmic predictions.

This, however, has strong counterintuitive consequences. Recall that we defined predictive

models as functions from some input features to a prediction of the value of the target variable

in question. This is a very general definition that allows representing any systematic procedure

of moving from evidence to a prediction of the target variable’s value as a predictive model.

So, if there is a fair systematic procedure for a human agent to come to a judgment about

the target variable’s value, then there is a fair predictive model to predict the target variable’s

value. And, on the other hand, it means that if there is no fair predictive model, there is also

no fair systematic way for humans to make such a judgment.

Consequently, if we give up proposition (4), we have to accept that there are some situations

in which we have to suspend judgment about a particular proposition on moral grounds, no

matter what evidence we have. This seems hard to accept. Intuitively, it seems that for every

proposition, there exists some type of evidence that would warrant a judgment on it. It would,

for instance, be hard to accept that there are propositions where even in the presence of direct

observational evidence the only morally permissible doxastic attitude is to suspend judgment.

Relaxing or giving up proposition (4) hence does not seem to be the most promising way of

circumventing the impossibility result. We will next consider whether we can reasonably relax

proposition (3) instead.

5.2 Relaxing proposition (3)

Giving up proposition (3) means to accept that there are no morally relevant prediction contexts

in which the protected characteristic has some, possibly mediated, causal relevance to the target
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variable. Different lines of argument can be pursued to defend this claim. First, one could

argue that it is conceptually impossible that in a morally relevant prediction context, protected

characteristics can be causally relevant to the target variable. One could either do so by

arguing that protected characteristics are by definition those that are not causally relevant to a

given target variable, or by arguing that when they are, the prediction context is not morally

relevant. Secondly, one could argue that empirically this type of case simply never occurs, or

is so unlikely to occur that it is not worth considering it morally relevant.

None of the defenses are tenable. Let us consider each in turn. First, we will consider the claim

that protected characteristics are by definition irrelevant to a given target variable. Protected

characteristics are most commonly defined as socially salient traits that indicate an individual’s

membership in a specific social group. Social salience of a trait can be understood as the fact

that the trait is well perceivable and that the trait plays a role in the structure of social relations

(Lippert-Rasmussen, 2014, pp. 30ff). The US law, for instance, considers being of a particular

religion, ethnicity, or gender as protected, as well as being disabled or belonging to a certain

age group3. All of these traits are, to some degree, perceivable - significant age differences

are visible, many religious groups are clearly distinguishable by clothing or accessories, as are

some physical disabilities. Moreover, they do, to some degree, structure social interaction -

some people might act differently towards a woman than they would towards a man, or to

someone with a disability than to someone without a disability. So, this definition of protected

characteristics seems to indicate that protected characteristics can have causal effects on social

interactions. Moreover, the definition does not rule out that protected characteristics have

further causal effects. Depending on how the target variable is chosen, it might well be the

case that a protected characteristic has a causal effect on it. The claim that by definition

protected characteristics are causally inefficacious traits is hence clearly wrong.

Secondly, we will consider the claim that when protected characteristics are causally relevant

to the target variable, the prediction context is not morally relevant. In other words, this claim

states that in prediction contexts in which there is some causal link from the protected char-

acteristic to the target variable, no moral norms apply. Indeed, there is a family of theories of

discrimination according to which the main constitutive component of wrongful discrimina-

tion is that people are treated differently on the basis of an irrelevant trait (Halldenius, 2017).

3See, e.g., Title VII of the Civil Rights Act of 1964, the Age Discrimination in Employment Act of 1967, the

Rehabilitation Act of 1973, and the Americans with Disabilities Act of 1990.
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Treating people differently on the basis of irrelevant traits lacks rational justification (see, e.g.,

Flew, 1993). But acknowledging that in a given situation the protected characteristic is, to

some degree, causally relevant to the target variable does certainly not imply that no moral

norms apply at all. At best, it implies that the causal relevance of a protected attribute renders

a certain, rationally justified, degree of differential treatment morally permissible. It does not

imply that it renders arbitrarily differential treatment permissible. So this line of argument

fails, too.

Lastly, we will consider the claim that as a contingent matter of empirical fact, these types of

cases never occur, or are sufficiently unlikely to occur to be a matter of moral concern. This

claim, too, can be easily refuted. To see this, we can consider a number of common, morally

relevant examples. One domain that is certainly bound to fairness constraints is hiring. The

target variable in a prediction for a hiring decision might be whether an applicant would

be productive (in the sense of generating profit for their company) in their role if they were

hired. Depending on the role at issue, the productivity might well be influenced by a protected

characteristic. Think, for instance, of the role of a salesperson for the Spanish-speaking market

- being of Hispanic ethnicity will likely contribute to being productive in this role, simply

for the fact that it might explain why someone speaks Spanish fluently. This entails that a

Hispanic person who is in fact productive in their role as a Spanish-market salesperson would

not have been as productive as they are, had they not been of Hispanic ethnicity. To provide

another example, consider the health insurance domain. Imagine an insurer wishes to predict

how many claims an applicant will likely make on their health insurance policy. Here, age

will certainly have an effect, since age is a factor that influences one’s health. Consequently,

it might be the case that an older person would not have made as many insurance claims as

they actually did, had they been younger. These examples should suffice to refute the claim

that cases in which protected characteristics have a causal effect on the target variable are too

unlikely to be of moral concern.

So it seems that giving up proposition (3) is no attractive way to circumvent the impossibility

result either. Next, we consider whether one or more of the fairness criteria can reasonably be

relaxed without allowing for intuitively unfair cases of algorithmic prediction.
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5.3 Relaxing proposition (2)

Can we give up or relax counterfactual fairness as a requirement for fair predictive mod-

els? To explore this possibility, let us first consider the normative theory that motivates the

counterfactual fairness constraint. It is plausible to interpret counterfactual fairness as an anti-

discrimination constraint. Discrimination is typically defined as unjustified disadvantageous

treatment of one individual as compared with another, that can be (causally) explained by

the fact that the former individual possesses a protected characteristic that the latter does not

possess (see, e.g., Eidelson, 2015; Lippert-Rasmussen, 2014; Moreau, 2010). In other words,

discrimination occurs when a protected characteristic makes an unjustified difference to how

someone is treated.

This definition can be applied to predictive models. If an individual unjustifiedly receives a

worse prediction than another because the former individual possesses a sensitive character-

istic that the latter does not possess, then the prediction exhibits discriminatory bias. And this,

conversely, means that in a non-discriminatory prediction, the protected characteristic does

not make a difference to the prediction, unless this is justified in some way. Counterfactual

fairness formalizes exactly that, except for the proviso that an influence on the prediction is

unjustified.

This suggests a straightforward way of relaxing counterfactual fairness, namely to allow for

certain conditions under which the protected characteristic can have an influence on the pre-

diction. While there is some disagreement in the philosophical and legal literature about when

exactly disadvantageous treatment on the basis of a protected characteristic is unjustified, a

widely held view is that such differential treatment is unjustified when the protected char-

acteristic is irrelevant to the goal at hand (Halldenius, 2017; Eidelson, 2015). If, for instance,

someone is not granted a loan because of their religion, this constitutes a case of discrimination

because religion is irrelevant to whether someone will pay back their loan or not. By the same

token, ethnicity and race are irrelevant to an individual’s risk of violent crime, as well as gen-

der to hiring decisions for, say, a managerial role. Hence, using these traits in such decisions

constitutes discrimination. But there are some situations in which the protected characteristic

is relevant, and in which disadvantageous treatment would typically not count as discrimina-

tion. For example, when deciding whom to grant a driving license, it seems justified to take
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into account whether a person is visually impaired because their visual ability is relevant for

driving safely. So, we might say that counterfactual fairness is too strict in those cases in which

the protected characteristic is relevant to the prediction at issue.

Consequently, we might give up proposition (2) in its universal form. It seems that counter-

factual fairness is a necessary requirement for fair predictive models only when the protected

attribute is causally irrelevant to the target variable in question. In at least some of the cases in

which the protected characteristic is relevant to the target variable, it does not seem reasonable

to require that the predictive model satisfy counterfactual fairness in order to be considered

fair. A somewhat weaker non-discrimination criterion would suffice. Hence, this provides a

promising way of escaping the impossibility.

5.4 Relaxing proposition (1)

Let us now explore whether we can forgo or soften the claim that a model must satisfy either

equalized odds or predictive parity to be fair. This means accepting that a model can be fair

even without satisfying these conditions. We first argue against predictive parity as a universal

fairness criterion, followed by arguments against equalized odds.

Predictive parity means that a predictive model’s positive and negative predictive values -

the truthfulness of a prediction - are equal for all protected groups. Therefore, predictions are

equally informative for different protected groups on average. If the informativeness differs

across protected groups, it motivates unequal treatment based on the protected attribute, which

is undesirable as it unfairly disadvantages individuals from one protected group.

Consider a company using a hiring algorithm to predict a potential employee’s profitability. If

the algorithm’s positive predictive value is lower for female than male applicants, the employer

is incentivized to prefer male applicants predicted as profitable since the probability of this

prediction being true is higher. This occurs despite an equal likelihood of male and female

applicants being profitable.

If one agrees that situations like these aren’t morally problematic, predictive parity isn’t uni-

versally required for fairness. Hellman (2019, p. 833) argues that while equal predictive values

seem desirable, not having them doesn’t necessarily constitute discriminatory bias. She ques-
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tions whether individuals truly have a right to the ”best available decision-making tool,” in

which case we can abandon predictive parity as a universal fairness criterion. Moreover, it

seems that there can be undeniably fair predictive algorithms which do not satisfy predictive

parity, which implies that equalized odds might not be a necessary condition of algorithmic

fairness (Eva, 2022).

Could we argue against (or for relaxing) equalized odds as a fairness requirement? From a

decision-making perspective, violating equalized odds implies holding different standards for

different protected groups, suggesting unfairness. However, in some cases, like when com-

pensating for past injustices or pursuing diversity, it’s morally permissible to have different

standards for different protected groups. For example, affirmative action policies for disad-

vantaged minorities can be justified on the basis of compensatory justice. Similarly, lowering

standards for certain groups may be justified to enhance diversity. If we agree that everyone

should not be held to the same standards, then these arguments can challenge equalized odds

as a universal fairness requirement for predictive models. Similar to Eva’s argument, Hedden

(2021) shows that certain intuitively fair prediction algorithms do not satisfy equalized odds,

making it an unlikely necessary criterion of fairness.

6 Conclusion

To summarize, we have shown that four intuitively plausible propositions about algorithmic

fairness are jointly incompatible. After discussing different ways of escaping this impossibility

by giving up one or more of the propositions, we concluded that there are two reasonable

ways of doing this. First, it seems plausible to relax counterfactual fairness as a universal

requirement of algorithmic fairness and replace it with a weaker criterion - a path implicitly

taken by, for instance, Chiappa (2017) and Loftus et al. (2018). Secondly, one could give up

predictive parity and either only require equalized odds in specific situations, or replace it with

a weaker criterion that captures the intuitive idea of discriminatory bias more adequately.
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