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ABSTRACT
We present solutions to some discounted nonzero-sum optimal
stopping games of two players related to the perpetual game-type
contingent claims with payoffs representing linear functions of the
running values of a geometric Brownian motion. It is assumed that
the underlying process can be stopped by the both players only at
certain random intervention times which coincide with the jump
times of the two appropriate independent Poisson processes. The
optimal stopping times forming a Nash equilibrium are shown to
be the first times at which the underlying process is either below
or above certain lower or upper constant boundaries at the jump
times of the appropriate Poisson processes. The proof is based on
the reductions of the original games to the associated coupled free-
boundary problems and the solutions to the latter problems by
means of the smooth-fit conditions at the optimal boundaries for
every player. We show that the optimal stopping constant lower
and upper boundaries are determined as (possibly multiple) solu-
tions to the equivalent coupled systems of arithmetic equations. The
obtained results can be interpreted as the rational valuation of some
perpetual randomized Bermudian game-type contingent claims in
the Black-Merton-Scholes model.
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1. Introduction

The main aim of this paper is to present solutions to the discounted nonzero-sum opti-
mal stopping game formulated in (3)–(5) for the geometric Brownianmotion X = (Xt)t≥0
defined in (1) and (2) observed by the two players at the jump times of two independent
Poisson processes. Here, for a precise formulation of the problem, let us consider a proba-
bility space (�,F ,P) with a standard Brownian motion B = (Bt)t≥0. We assume that the
process X = (Xt)t≥0 is a geometric Brownian motion defined by:

Xt = x exp
((
r − δ − σ 2/2

)
t + σBt

)
(1)

which solves the stochastic differential equation:

dXt = (r − δ)Xt dt + σXt dBt (X0 = x) (2)
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where r>0, δ > 0, and σ > 0 are given constants, and x>0 is fixed. Suppose that there
exist Poisson processesNi = (Ni

t)t≥0, for i = 1, 2, such thatN1 has the intensity λ > 0 and
N2 has the intensity κ > 0, which are independent of each other as well as of the driving
standard Brownian motion B. Denote by (τl)l∈N and (ζk)k∈N the sets of jump times of the
processes Ni, for i = 1, 2, so that the differences τ1, τ2 − τ1, . . . , τl − τl−1, . . . and ζ1, ζ2 −
ζ1, . . . , ζk − ζk−1, . . ., for l, k ∈ N, are independent exponential random variables with the
means 1/λ and 1/κ, respectively. We now define the filtrations (Gτl)l∈N and (Hζk)k∈N as
Gτl = σ(Xτ1 , . . . ,Xτl) and Hζk = σ(Xζ1 , . . . ,Xζk), for each l, k ∈ N, and denote by T(λ)
and Z(κ) the sets of stopping times with respect to the filtrations (Gτl)l∈N and (Hζk)k∈N,
respectively.

Assume that the process X represents the price of a risky asset in a financial market,
while the supremum and infimum in (8) and (9) as in the equivalent reformulation of the
nonzero-sum optimal stopping game of (3)–(5) are taken over all stopping times τ and
ζ from the sets T(λ) and Z(κ), as well as the expectations there are taken with respect
to the (unique) risk-neutral (or martingale) probability measure P. In this case, it fol-
lows from the natural extensions of the results of [30,33] that the values V∗(x) and U∗(x)
from (8) and (9) can be interpreted as the rational (or no-arbitrage) prices of a (randomised
Bermudian) game-type contingent claim described below with the strikes 0 < Li < Kj,
for every i, j = 1, 2, in the Black-Merton-Scholes model, respectively. Note that, when
L1 = L2 and K1 = K2 holds, the original nonzero-sum optimal stopping game degener-
ates into a zero-sum one, so that the equality V∗(x) = U∗(x) holds for the value functions
in (8) and (9). Such game-type contingent claims (but associated with some zero-sum
optimal stopping games) were introduced and studied by Kifer [33] and further devel-
oped by Kyprianou [36], Kühn and Kyprianou [35], Kallsen and Kühn [30], Baurdoux and
Kyprianou [1–3], Gapeev and Kühn [23], Gapeev [19], Ekström and Villeneuve [16], and
Baurdoux, Kyprianou, and Pardo [5] among others. We also refer to Shiryaev [52, Chap-
ter VIII; Section 2a], Peskir and Shiryaev [47, Chapter VII; Section 25], and Detemple [12]
for extensive overviews of the related to American option pricing problems as well as other
results on optimal stopping problems in financial mathematics.

The studies of stochastic differential games in which the participants look for their opti-
mal stopping timeswere initiated byDynkin [14]. Themartingale approach for the analysis
of such problems was developed in Neveu [42], Krylov [34], Bismut [9], Stettner [53], and
Lepeltier and Mainguenau [38] among others. The general analytic theory of nonzero-
sum stochastic differential games with stopping times was developed in Friedman [18]
and Bensoussan and Friedman [7,8] in Markovian diffusion models. The latter approach,
dealing with the analysis of the value functions and saddle points of such games, was
based on using the theory of nonlinear variational inequalities and free-boundary prob-
lems for partial differential equations. Cvitanić and Karatzas [11] established a connection
between the values of optimal stopping games and the solutions of (doubly) reflected back-
ward stochastic differential equations with general (random) coefficients and provided
a pathwise approach to these games. Karatzas and Wang [32] studied such games in a
more general non-Markovian setting and connected them with bounded-variation opti-
mal control problems. More recently, Ekström and Peskir [15] and Peskir [45,46] proved
that the value function of a general zero-sumoptimal stopping game for a right-continuous
(strong) Markov process is measurable, and found necessary and sufficient conditions for
the existence of Stackelberg and Nash equilibria in such a game. Bayraktar and Sîrbu [4]
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applied the stochastic Perron’smethod and verificationwithout smoothness using viscosity
comparisons for solving obstacle problems and optimal stopping (or Dynkin) games.

In the present paper, we derive solutions to the nonzero-sum optimal stopping game
associated with the problem of pricing of game-type contingent claims in the Black-
Merton-Scholes model under Poisson random intervention times on the infinite time
horizon. These results extend the solutions to the optimal stopping zero-sum games associ-
ated with the perpetual spread game options obtained in Gapeev [19] and Lerche and Stich
[40] as well as the nonzero-sum game associated with the perpetual double spread game
option recently derived in Gapeev [20]. We actually extend the arguments from Beibel and
Lerche [6] andGapeev and Lerche [24] developed for the solutions of systems of arithmetic
power equations arising from optimal stopping problems for one-dimensional diffusion
processes (particularly the perpetual American strangle option problem for geometric
Brownian motions). We also establish certain analytic properties of the value functions
associated with the nonzero-sum optimal stopping game for the case in which the stopping
is allowed only at the jump times of the Poisson processes but not at time zero. More pre-
cisely, we observe that the value functions turn out to be twice continuously differentiable
at the optimal exercise boundaries of the appropriate players but only once continuously
differentiable at the optimal boundaries of the counter players, when the exercise is not
allowed at time zero. We also show that the value functions and optimal exercise bound-
aries of the optimal stopping problem in the considered model with exercises at random
intervention times converge to the appropriate ones in the classical model with contin-
uous exercises given that the intensities of the Poisson processes tend to infinity. Note
that optimal stopping problems (or games of one player) as well as zero-sum optimal
stopping games (of two players) with reward functionals similar but different to the ones
considered in (8) and (9) below were studied in Gapeev [21,22] in the appropriate hidden
Markov extension of the classical Black-Merton-Scholes model without introducing the
intervention times.

The optimal stopping problems in which stopping can be made only at the times at
which (independent) Poisson processes have jumps have been considered in the previ-
ous literature. Rogers and Zane [49] studied the investment problem of an agent who may
invest in a riskless bank account and a share, but may only move money between the
two assets at the jump times of an independent Poisson process. Although closed-form
solutions could not be derived in that situation, the authors established certain qualita-
tive features and asymptotic expansions of the solutions in such a simplified model with
liquidity effects. Dupuis and Wang [13] and Guo and Liu [25] derived closed-form solu-
tions to the perpetual American standard call and lookback put option pricing problems
in a model with a geometric Brownian motion which can be stopped only at the times
of jumps of an independent Poisson process, respectively. The former authors observed
that the value function is only continuous across the optimal boundary when stopping is
allowed at time zero, but twice continuously differentiable otherwise, that contradicts the
usual necessary and sufficient smoothness conditions for the value functions at the optimal
stopping boundaries. They also provided the asymptotic expansions of the value function
and the optimal exercise boundary as the intensity of the Poisson process tends to infinity,
so that the model converges to the appropriate classical one with continuous observations.
The latter authors recognized the randomized Bermudian feature of the considered con-
tingent claim and established the property that the structure of the optimal exercise times
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may differ under various intensity values of the Poisson process. Some zero-sum optimal
stopping games with stopping under Poisson random intervention times were recently
studied in the literature. Liang and Sun [39] characterized the value function of such a
zero-sum optimal stopping game and the associated optimal stopping strategy as a solu-
tion to a backward stochastic differential equation. Lempa and Saarinen [37] gave a weak
and easily verifiable set of sufficient conditions underwhich a semi-explicit solution to such
a game was derived in terms of the minimal r-excessive functions of the diffusion. Hob-
son [29] studied the shape of the value function of the general optimal stopping problem
under Poisson random intervention times by means of stochastic coupling techniques. We
study the nonzero-sum optimal stopping stopping game equivalently reformulated in (8)
and (9) under Poisson random intervention times bymeans of the analysis of the associated
coupled free-boundary problem stated in (30)–(39).

The paper is organized as follows. In Section 2, we formulate the nonzero-sum opti-
mal stopping game under Poisson random intervention times for the continuous Markov
processX and reduce it to the associated coupled ordinary differential free-boundary prob-
lem for the equivalent value functions V∗(x) andU∗(x) from (8) and (9), which satisfy the
smooth-fit conditions at the stopping boundaries a∗ and b∗, respectively. In Section 3, we
derive explicit expressions for the candidate value functions given the (unknown) optimal
stopping boundaries and obtain an equivalent system of arithmetic power equations for
the candidate stopping boundaries as solutions to the coupled free-boundary problem.We
particularly show that the candidates for the value functions V∗(x) and U∗(x) are twice
continuously differentiable at the optimal boundaries a∗ and b∗ of the appropriate players,
but just once continuously differentiable at the optimal boundaries b∗ and a∗ of the counter
players. In Section 4, by applying the local time-space formula from Peskir [44], it is veri-
fied that the resulting (possibly multiple) solutions to the coupled free-boundary problem
(whenever they exist) provide the value functions and the optimal stopping boundaries
for the underlying asset price process X in the original problem. In Section 5, it is shown
that, when the intensities of the Poisson processes λ and κ tend to infinity, the solution
of the nonzero-sum optimal stopping model with random intervention times converges to
the appropriate solution in the associated classical model with continuous observations.
In Section 6, we show that the equivalent system of arithmetic power equations for the
candidate stopping boundaries admits a unique solution in the case L1 = L2 and K1 = K2
(whenever it exists) in which the original nonzero-sum optimal stopping game degener-
ates into the appropriate zero-sum one. The main results of the paper are Theorem 4.1 and
Corollary 5.1.

2. Preliminaries

In this section, we give a setting and notation of the nonzero-sum optimal stopping game
under Poisson random intervention times arising from the problem of pricing of the
perpetual (randomised Bermudian) game options and formulate the associated coupled
ordinary differential free-boundary problem.

2.1. The optimal stopping game andNash equilibria

Suppose that a trader on a financial market issues a perpetual game-type contingent claim
which consists of two parts and has the following structure. The trader sells the first
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(convertable) part of the contract at time 0 to an investor (called holder), who collects
the cumulative coupon payments based on the firm value process X [up to time τ ∧ ζ ]
and receives the amount L1/r from the trader, when the holder exercises (converts) at time
τ [≤ ζ ] which they can choose. The same trader buys the second (defaultable) part of the
contract at time 0 from another investor (called writer), who also collects the same cumu-
lative coupon payments based on the firm value process X [up to time τ ∧ ζ ] and pays the
amount K2/r to the trader, when the writer exercises (defaults) at time ζ [≤ τ ] which they
can choose. Moreover, it is agreed the trader pays the amount K1/r to the holder, when
the writer exercises their part of the contract at time ζ [< τ ], and receives the amount L2/r
from the writer, when the holder exercises their part of the contract at time τ [< ζ ]. In this
respect, the holder and writer of the appropriate parts of the game-type contingent claim
formulated above look for the exercise times τ∗ and ζ∗ maximizing and minimizing the
total expected reward functionals received from and paid to the trader given by:

J1(τ , ζ ) = E
[∫ τ∧ζ

0
e−rsXs ds + e−rτ L1

r
I(τ ≤ ζ )+ e−rζ K1

r
I(ζ < τ)

]
(3)

and

J2(ζ , τ) = E
[∫ τ∧ζ

0
e−rsXs ds + e−rζ K2

r
I(ζ ≤ τ)+ e−rτ L2

r
I(τ < ζ)

]
(4)

which means that the inequalities:

J1(τ , ζ∗) ≤ J1(τ∗, ζ∗) and J2(ζ∗, τ∗) ≤ J2(ζ , τ∗) (5)

should hold, for any exercise times τ and ζ from the setsT(λ) and Z(κ), respectively. Here,
we assume that 0 < Li < Kj holds, for every i, j = 1, 2, and denote by I(·) the indicator
function. Such a couple τ∗ and ζ∗ satisfying the inequalities in (5) with (3) and (4) is called a
Nash equilibrium of the nonzero-sum optimal stopping game under Poisson random inter-
vention times (see, e.g. [8] as well as [15,45] for a precise definition of this notion also in the
context of nonzero-sum and zero-sum optimal stopping games in the associated classical
models under continuous observations). We further assume that the exercises (convertion
and default) are allowed only at the intervention times (τl)l∈N and (ζk)k∈N that assigns the
so-called randomized Bermudian feature to the game-type contingent claim formulated
above.

It follows from a standard application of Itô’s formula (see, e.g. [41, Chapter IV,
Theorem 4.4] or [50, Chapter IV, Theorem 3.3]) to the expressions in (1) and (2) that the
equality:

e−rt Xt

δ
= x
δ

−
∫ t

0
e−rsXs ds + σ

δ

∫ t

0
e−rsXs dBs (6)

holds, for all t ≥ 0. Then, inserting τ ∧ ζ in place of t in (6) and using the fact that
the stochastic integral there is a square integrable martingale, by means of Doob’s
optional sampling theorem (see, e.g. [41, Chapter III, Theorem 3.6] or [50, Chapter II,
Theorem 3.2]), we get:

E
[∫ τ∧ζ

0
e−rsXs ds

]
= x
δ

− E
[
e−r(τ∧ζ )Xτ∧ζ

δ

]
(7)
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for any stopping times τ and ζ with respect to (Gτl)l∈N and (Hζk)k∈N, respectively. Hence,
taking into account the expression in (7), we conclude that the problem formulated in (5)
with (3) and (4) is equivalent to the nonzero-sum optimal stopping game for the (time-
homogeneous strong) Markov process X under Poisson random intervention times with
the value functions V∗(x) ≡ V∗(x; ζ∗) and U∗(x) ≡ U∗(x; τ∗) given by:

V∗(x) = sup
τ∈T(λ)

Ex
[
e−rτ

(
L1
r

− Xτ
δ

)
I(τ ≤ ζ∗)+ e−rζ∗

(
K1

r
− Xζ∗

δ

)
I(ζ∗ < τ)

]
(8)

and

U∗(x) = inf
ζ∈Z(κ)Ex

[
e−rζ

(
K2

r
− Xζ

δ

)
I(ζ ≤ τ∗)+ e−rτ∗

(
L2
r

− Xτ∗
δ

)
I(τ∗ < ζ)

]
(9)

for some given constants 0 < Li < Kj, for every i, j = 1, 2. Here, the supremum and infi-
mum are taken over all stopping times τ and ζ from the sets T(λ) and Z(κ), respectively,
while τ∗ and ζ∗ from T(λ) and Z(κ) are the optimal stopping times such that the inequal-
ities of (5) with (3) and (4) are satisfied. We denote by Ex the expectation with respect
to the (unique) risk-neutral (or martingale) probability measure P (see, e.g. [52, Chap-
ter VII, Section 3g]), under the assumption that the process X defined in (1) and (2) starts
at x>0. For this reason, we may conclude that the value functions V∗(x) ≡ V∗(x; ζ∗) and
U∗(x) ≡ U∗(x; τ∗) in (8) and (9) represent rational (or no-arbitrage) prices of the appro-
priate parts of the game-type contingent claim described above. Observe that the functions
V∗(x) ≡ V∗(x; ζ∗) andU∗(x) ≡ U∗(x; τ∗) in (8) and (9) also represent the value functions
associated with the Nash equilibria of the non-zero sum stochastic differential game of (5)
with (3) and (4) for the case in which the optimal stopping times are sought among Poisson
random intervention times (see, e.g. [8, Subsection 1.5, Theorem 1.2] for the analogues
of such value functions for the nonzero-sum optimal stopping games in the associated
classical models under continuous observations as well as Section 5 below for further
explanations).

Alongwith the functions in (8) and (9), we further consider the following auxiliary value
functionsV∗(x) ≡ V∗(x; ζ∗) andU∗(x) ≡ U∗(x; τ∗) of the nonzero-sum optimal stopping
game of (5) with (3) and (4) given by:

V∗(x) = sup
τ∈T(λ)

Ex
[
e−rτ

(
L1
r

− Xτ
δ

)
I(τ ≤ ζ∗)+ e−rζ∗

(
K1

r
− Xζ∗

δ

)
I(ζ∗ < τ)

]
(10)

and

U∗(x) = inf
ζ∈Z(κ)

Ex
[
e−rζ

(
K2

r
− Xζ

δ

)
I(ζ ≤ τ∗)+ e−rτ∗

(
L2
r

− Xτ∗
δ

)
I(τ∗ < ζ)

]
(11)

where the supremum and infimum are taken over all stopping times from the setsT(λ) and
Z(κ), while τ∗ and ζ∗ from T(λ) and Z(κ) are the optimal stopping times such that the
inequalities in (5) with (3) and (4) are satisfied. Here, we denote by T(λ) and Z(κ) the sets
of stopping times with respect to the filtrations (Gτl)l∈N

and (Hζk)k∈N
, where we put τ0 =

ζ0 = 0 andG0 = H0 = {�, ∅} aswell asN = N ∪ {0}, respectively. Observe that in the case
in which L1 = L2 and K1 = K2 holds, the original nonzero-sum optimal stopping game
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of (8) and (9) with (10) and (11) degenerates into a zero-sum one, so that the equalities
V∗(x) = U∗(x) andV∗(x) = U∗(x) hold for the value functions in (8) and (11). Such zero-
sumoptimal stopping games with stopping under Poisson random intervention times were
recently studied in [37,39] among others.

It can be shown by means of arguments similar to the ones used for the proof of the
results in [17,28] based on the solutions of the associated systems of coupled reflected back-
ward stochastic differential equations that the game-type optimal stopping problems as (8)
and (9) with (10) and (11) with continuous observations have values. (Note that, in our set-
ting, we have the change in the killing measure, by adding the intensity of the appropriate
Poisson process to the exponent, rather than reflection for the associate backward stochas-
tic differential equations, since we consider stopping of the process X at the jump times of
the independent Poisson processes Ni, for i = 1, 2, of the intensity λ and κ, respectively.)
Similar results on the existence of values of zero-sum stochastic differential games with
stopping times as solutions of the associated (doubly) reflected backward stochastic differ-
ential equations were provided in [11,26,27] in the case of continuous observations. We
further establish the existence and describe the structure of the stopping times τ∗ and ζ∗
formingNash equilibria in the nonzero-sum optimal stopping game of (5) with (3) and (4)
which is equivalently reformulated as in (8) and (9) with (10) and (11).

Finally, we observe from the structure of the value functions in (8)-(9) and (10)-(11)
that the equalities:

V∗(x) =
{
L1/r − x/δ, if V∗(x) ≤ L1/r − x/δ
V∗(x), if V∗(x) > L1/r − x/δ

(12)

and

U∗(x) =
{
K2/r − x/δ, if U∗(x) ≥ K2/r − x/δ
U∗(x), if U∗(x) < K2/r − x/δ

(13)

as well as

V∗(x) = Ex
[
e−rτ1V∗(Xτ1)I(τ1 ≤ ζ∗)+ e−rζ∗

(
U∗(Xζ∗)− K2 − K1

r

)
I(ζ∗ < τ1)

]
(14)

and

U∗(x) = Ex
[
e−rζ1U∗(Xζ1)I(ζ1 ≤ τ∗)+ e−rτ∗

(
V∗(Xτ∗)− L1 − L2

r

)
I(τ∗ < ζ1)

]
(15)

should hold, for all x>0 (see also [13,25,49] among others for similar arguments). Here,
we recall that the random times τ1 and ζ1 are independent of each other as well as of the
driving standard Brownian motion B and exponentially distributed with the means 1/λ
and 1/κ, respectively.

2.2. The structure of optimal stopping times

Let us first determine the structure of the stopping times forming a Nash equilibrium in
the optimal stopping games of (8)-(9) and (10)-(11).
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(i) It follows from the general theory of optimal stopping problems for Markov pro-
cesses (see, e.g. [47, Chapter I, Section 2.2]) and optimal stopping games forMarkov
processes (see, e.g. [45,46]) that the optimal stopping times in the problems of (8)
and (9) as well as (10) and (11) are given by:

τ∗ = inf
{
τn ∈ T(λ)

∣∣∣∣V∗(Xτn) ≤ L1
r

− Xτn
δ

, for n ∈ N

}
(16)

and

ζ∗ = inf
{
ζn ∈ Z(κ)

∣∣∣∣U∗(Xζn) ≥ K2

r
− Xζn

δ
, for n ∈ N

}
(17)

as well as

τ ∗ = inf
{
τn ∈ T(λ)

∣∣∣∣V∗(Xτn) ≤ L1
r

− Xτn
δ

, for n ∈ N

}
(18)

and

ζ ∗ = inf
{
ζn ∈ Z(κ)

∣∣∣∣U∗(Xζn) ≥ K2

r
− Xζn

δ
, for n ∈ N

}
(19)

where we recall that τ0 = ζ0 = 0 and N = N ∪ {0}, so that the continuation and
stopping regions associated with the both problems of (8)-(9) and (10)-(11) have
the form:

C∗ =
{
x > 0

∣∣∣∣V∗(x) >
L1
r

− x
δ
and U∗(x) <

K2

r
− x
δ

}
(20)

and

D∗ =
{
x > 0

∣∣∣∣either V∗(x) ≤ L1
r

− x
δ
or U∗(x) ≥ K2

r
− x
δ

}
(21)

respectively. It is seen from the results of Theorem4.1 below that the value functions
V∗(x) and U∗(x) as well as V∗(x) and U∗(x) are continuous, so that the set C∗ is
open and the set D∗ is closed.

(ii) We first observe that, by means of straightforward computations, it is shown that
the expressions:

Ex
[
e−rτ

(
L1
r

− Xτ
δ

)
I(τ ≤ ζ )+ e−rζ

(
K1

r
− Xζ

δ

)
I(ζ < τ)

]
= L1

r
− x
δ

+ Ex
[∫ τ∧ζ

0
e−rs(Xs − L1) ds + e−rζ K1 − L1

r
I(ζ < τ)

]
(22)

and

Ex
[
e−rζ

(
K2

r
− Xζ

δ

)
I(ζ ≤ τ)+ e−rτ

(
L2
r

− Xτ
δ

)
I(τ < ζ)

]
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= K2

r
− x
δ

+ Ex
[∫ τ∧ζ

0
e−rs(Xs − K2) ds − e−rτ K2 − L2

r
I(τ < ζ)

]
(23)

hold, for any stopping times τ and ζ from the sets T(λ) and Z(κ). Then, it follows
from the expressions in (22) and (23) and the structure of the optimal stopping
times in (16) and (17) that the value functions of the optimal stopping game in (10)
and (11) admit the representations:

V∗(x) = L1
r

− x
δ

+ Ex

[∫ τ∗∧ζ ∗

0
e−rs(Xs − L1) ds + e−rζ ∗ K1 − L1

r
I(ζ ∗ < τ ∗)

]
(24)

and

U∗(x) = K2

r
− x
δ

+ Ex

[∫ τ∗∧ζ ∗

0
e−rs(Xs − K2) ds − e−rτ∗ K2 − L2

r
I(τ ∗ < ζ ∗)

]
(25)

for all x>0. Here, we denote by τ ∗ = τ ∗(x) and ζ ∗ = ζ ∗(x) the optimal stop-
ping times from T(λ) and Z(κ) forming a Nash equilibrium in (10) and (11) for
the starting point x of the process X. Hence, it is seen from the structure of the
integrands in the expressions of (24) and (25) that it is not optimal for the writer
(maximiser of their expected reward) to withdraw the contract when Xt > L1,
while it is not optimal for the holder (minimiser of their expected reward) to
exercise the contract when Xt < K2, for t ≥ 0. These facts mean that the points
x ∈ (L1,K2), for which the both inequalities x < K2 and x > L1 hold simultane-
ously, belong to the continuation regionC∗ in (20). On the other hand, the structure
of the integrands and payoffs in the expressions of (24) and (25) also implies that
the holder should exercise the contract at some timewhenXt ≤ L1, while thewriter
should withdraw the contract at some time when Xt ≥ K2, for t ≥ 0. These facts
mean that the points x ∈ (0, L1] ∪ [K2,∞) cover the stopping region D∗ in (21).

(iii) Let us now fix some x ∈ C∗ such that either x < L1 or x > K2 holds, and con-
sider the optimal stopping times τ ∗ = τ ∗(x) and ζ ∗ = ζ ∗(x) for the writer and
the holder of the option. Then, by means of the results of general optimal stopping
theory for Markov processes (see, e.g. [47, Chapter I, Section 2.2]), we conclude
from the structure of the continuation region C∗ in (20) and the form of the stop-
ping times in (16) and (17) as well as from the equalities in (24) and (25) that the
expressions:

V∗(x)− L1
r

+ x
δ

= Ex

[∫ τ∗∧ζ ∗

0
e−rs(Xs − L1) ds + e−rζ ∗ K1 − L1

r
I(ζ ∗ < τ ∗)

]
> 0 (26)

and

U∗(x)− K2

r
+ x
δ
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= Ex

[∫ τ∗∧ζ ∗

0
e−rs(Xs − K2) ds − e−rτ∗ K2 − L2

r
I(τ ∗ < ζ ∗)

]
< 0 (27)

hold. Hence, taking any x′ such that either x < x′ ≤ L1 or K2 ≤ x′ < x holds, and
using the properties that the functions V∗(x)− L1/r + x/δ and U∗(x)− K2/r +
x/δ are increasing in x>0, we obtain from the expressions in (26) and (27) that
the inequalities V∗(x′)− L1/r + x′/δ ≥ V∗(x)− L1/r + x/δ > 0 or the inequal-
ities U∗(x′)− K2/r + x′/δ ≤ U∗(x)− K2/r + x/δ < 0 are satisfied, respectively,
so that x′ ∈ C∗ too. On the other hand, if we assume that x ∈ D∗ such that either
x ≤ L1 or x ≥ K2 holds, then using arguments similar to the ones above, we
obtain that either V∗(x′′)− L1/r + x′′/δ ≤ V∗(x)− L1/r + x/δ = 0 holds, for all
x′′ ≤ x ≤ L1, or U∗(x′′)− K2/r + x′′/δ ≥ U∗(x)− K2/r + x/δ = 0 holds, for all
K2 ≤ x ≤ x′′, respectively, so that x′′ ∈ D∗. Therefore, we may conclude that there
exist points a∗ and b∗ satisfying the inequalities 0 < a∗ ≤ L1 and b∗ ≥ K2 such that
the continuation and stopping regions C∗ and D∗ in (20) and (21) have the form:

C∗ = {
x > 0

∣∣a∗ < x < b∗
}

and D∗ = {
x > 0

∣∣ either x ≤ a∗ or x ≥ b∗
}
.
(28)

2.3. The coupled free-boundary problem

By means of standard arguments based on the application of Itô’s formula (see, e.g. [31,
Chapter V, Section 5.1] or [43, Chapter VII, Section 7.3]), it is shown that the infinitesimal
operatorL of the process X acts on a functionW(x) from the class C2 on (0,∞) according
to the rule:

(LW)(x) = (r − δ)xW ′(x)+ σ 2x2

2
W′′(x) (29)

for all x>0. In order to find analytic expressions for the unknown value functions V∗(x)
andU∗(x) from (8) and (9) and the unknown boundaries a∗ and b∗ from (28), let us build
on the results of general theory of optimal stopping problems for Markov processes (see,
e.g. [51, Chapter III, Section 8] and [47, Chapter IV, Section 8]).We can reduce the coupled
optimal stopping problem of (8) and (9) to the equivalent coupled free-boundary problem
for V∗(x) and U∗(x) with a∗ and b∗ given by:

(LV − (r + λ)V)(x)+ λL1
r

− λx
δ

= 0 for x < a and (30)

(LU − (r + κ)U)(x)+ κK2

r
− κx

δ
= 0 for x > b (31)

(LV − rV)(x) = 0 for a < x < b and (LU − rU)(x) = 0 for a < x < b (32)

V(a+) = L1
r

− a
δ

= V(a−) and U(b−) = K2

r
− b
δ

= U(b+) (33)

V ′(a+) = V ′(a−) and U ′(b−) = U ′(b+) (34)

V(b−) = K1

r
− b
δ

= V(b+) and U(a+) = L2
r

− a
δ

= U(a−) (35)
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(LV − (r + κ)V)(x)+ κK1

r
− κx

δ
= 0 for x > b and (36)

(LU − (r + λ)U)(x)+ λL2
r

− λx
δ

= 0 for x < a (37)

V(x) >
L1
r

− x
δ

for x > a and U(x) <
K2

r
− x
δ

for x < b (38)

V(x) <
L1
r

− x
δ

for x < a and U(x) >
K2

r
− x
δ

for x > b (39)

for 0 < a ≤ L1 < K2 ≤ b < ∞. Observe that the natural extension of the semiharmonic
characterization of the value function proved in [45, Theorem 2.1] (see also [47, Chap-
ter IV, Section 9] for the superharmonic characterization of the value functions of optimal
stopping problems in classical models with continuous observations) implies that V∗(x)
andU∗(x) are the largest and smallest functions satisfying (32)–(35) and (38)-(39) with the
boundaries a∗ and b∗, respectively. The variational systems of the same type as in (30)–(39)
above associated with other optimal stopping problems under Poisson random interven-
tion times were considered in [49, Sections 3-4], [13, Section 3] and [25, Section 2] among
others.

3. Solutions to the coupled free-boundary problem

We further derive solutions to the coupled free-boundary problem related to the nonzero-
sum optimal stopping game formulated in (8) and (9).

3.1. The candidate value functions.

Let us first note that the general solutions of the second-order ordinary differential
equations in (32) are given by:

V(x) = A1,1xα1 + A1,2xα2 and U(x) = A2,1xα1 + A2,2xα2 (40)

where Ai,j, for i, j = 1, 2, are some arbitrary constants, and αj, for j = 1, 2, are defined by:

αj = 1
2

− r − δ

σ 2 − (−1)j
√(

1
2

− r − δ

σ 2

)2
+ 2r
σ 2 (41)

so that α2 < 0 < 1 < α1 holds. Then, it follows from the expressions in (40) that the
instantaneous-stopping conditions of (33)+(35) take the form:

A1,1aα1 + A1,2aα2 = L1
r

− a
δ

and A2,1bα1 + A2,2bα2 = K2

r
− b
δ

(42)

as well as

A1,1bα1 + A1,2bα2 = K1

r
− b
δ

and A2,1aα1 + A2,2aα2 = L2
r

− a
δ

(43)

for 0 < a ≤ L1 < K2 ≤ b < ∞. Hence, by solving the left-hand and right-hand systems
of linear equations in (42) and (43), we obtain that the functions in (40) admit the



12 P. V. GAPEEV

representations:

V(x; a, b) = A1,1(a, b)xα1 + A1,2(a, b)xα2 (44)

and

U(x; a, b) = A2,1(a, b)xα1 + A2,2(a, b)xα2 (45)

for a< x<b, where we have:

Ai,j(a, b) = (Li/r − a/δ)bα3−j − (Ki/r − b/δ)aα3−j

aαjbα3−j − bαjaα3−j
(46)

for all 0<a<b and every i, j = 1, 2.
The general solutions of the second-order ordinary differential equations in (30)

and (31) as well as (36) and (37) are given by:

V(x) = C1,1xγ1 + C1,2xγ2 + λL1
(λ+ r)r

− λx
(λ+ δ)δ

(47)

and

U(x) = D1,1xβ1 + D1,2xβ2 + κK2

(κ + r)r
− κx
(κ + δ)δ

(48)

as well as

V(x) = C2,1xβ1 + C2,2xβ2 + κK1

(κ + r)r
− κx
(κ + δ)δ

(49)

and

U(x) = D2,1xγ1 + D2,2xγ2 + λL2
(λ+ r)r

− λx
(λ+ δ)δ

(50)

where Ci,j and Di,j, for j = 1, 2, are some arbitrary constants, while γj ≡ γj(λ) and βj ≡
βj(κ), for j = 1, 2, are defined by:

γj = 1
2

− r − δ

σ 2 − (−1)j
√(

1
2

− r − δ

σ 2

)2
+ 2(r + λ)

σ 2 (51)

and

βj = 1
2

− r − δ

σ 2 − (−1)j
√(

1
2

− r − δ

σ 2

)2
+ 2(r + κ)

σ 2 (52)

so that γ2 < 0 < 1 < γ1 and β2 < 0 < 1 < β1 holds. Observe that C1,2 = D1,1 = 0 as
well as C2,1 = D2,2 = 0 should hold in (47) and (48), since otherwise, we would have
V(x) → ±∞ andU(x) → ±∞ as x ↓ 0 and x ↑ ∞, thatmust be excluded by virtue of the
obvious fact that the value functions in (8) and (9) are bounded under x ↓ 0 and x ↑ ∞,
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respectively. Then, it follows from the expressions in (47) and (48) that the conditions
in (33) take the form:

C1,1aγ1 + λL1
(λ+ r)r

− λa
(λ+ δ)δ

= L1
r

− a
δ

(53)

and

D1,2bβ2 + κK2

(κ + r)r
− κb
(κ + δ)δ

= K2

r
− b
δ

(54)

as well as the conditions in (35) take the form:

C2,2bβ2 + κK1

(κ + r)r
− κb
(κ + δ)δ

= K1

r
− b
δ

(55)

and

D2,1aγ1 + λL2
(λ+ r)r

− λa
(λ+ δ)δ

= L2
r

− a
δ

(56)

for 0<a<b. Hence, solving the system of equations in (53) and (54), we obtain that the
functions:

V(x; a) =
(

L1
λ+ r

− a
λ+ δ

) (x
a

)γ1 + λL1
(λ+ r)r

− λx
(λ+ δ)δ

(57)

for 0< x<a, and

U(x; b) =
(

K2

κ + r
− b

κ + δ

) (x
b

)β2 + κK2

(κ + r)r
− κx
(κ + δ)δ

(58)

for x>b, satisfy the conditions in (33), respectively. Also, solving the system of equations
in (55) and (56), we obtain that the functions:

V(x; b) =
(

K1

κ + r
− b

κ + δ

) (x
b

)β2 + κK1

(κ + r)r
− κx
(κ + δ)δ

(59)

for x>b, and

U(x; a) =
(

L2
λ+ r

− a
λ+ δ

) (x
a

)γ1 + λL2
(λ+ r)r

− λx
(λ+ δ)δ

(60)

for 0< x<a, satisfy the conditions in (35), respectively.

3.2. The analytic properties of the candidate functions

It follows from the expressions in (40), (47) and (48) withC1,2 = D1,1 = 0 that the smooth-
fit conditions of (34) take the form:

A1,1α1aα1 + A1,2α2aα2 = C1,1γ1aγ1 − λa
(λ+ δ)δ

(61)
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and

A2,1α1bα1 + A2,2α2bα2 = D1,2β2bβ2 − κb
(κ + δ)δ

(62)

for 0 < a ≤ L1 < K2 ≤ b < ∞. Then, taking into account the expressions in (44), (45)
and (53), we obtain that the system of equations in (61) and (62) implies the one:

A1,1(a, b)α1aα1 + A1,2(a, b)α2aα2 = γ1L1
λ+ r

− (γ1δ + λ)a
(λ+ δ)δ

(63)

and

A2,1(a, b)α1bα1 + A2,2(a, b)α2bα2 = β2K2

κ + r
− (β2δ + κ)b

(κ + δ)δ
(64)

where the functions Ai,j(a, b), for every i, j = 1, 2, are given by the expressions in (46), for
0<a<b.

We finally observe that, taking into account the system of arithmetic equations in (42)
and (43), it can be deduced by means of straightforward calculations from the systems
in (63) and (64) that the equalities:

A1,1(a, b)α1(α1 − 1)aα1 + A1,2(a, b)α2(α2 − 1)aα2 = γ1(γ1 − 1)
(

L1
λ+ r

− a
λ+ δ

)
(65)

and

A2,1(a, b)α1(α1 − 1)bα1 + A2,2(a, b)α2(α2 − 1)bα2 = β2(β2 − 1)
(

K2

κ + r
− b

κ + δ

)
(66)

as well as

A1,1(a, b)α1bα1 + A1,2(a, b)α2bα2 = β2K1

κ + r
− (β2δ + κ)b

(κ + δ)δ
(67)

and

A2,1(a, b)α1aα1 + A2,2(a, b)α2aα2 = γ1L2
λ+ r

− (γ1δ + λ)a
(λ+ δ)δ

(68)

are satisfied, where the functionsAi,j(a, b), for every i, j = 1, 2, are given by the expressions
in (46), for 0 < a < b. It thus follows from the expressions in (65)–(68) that the analytic
properties:

V ′′(a+; a, b) = V ′′(a−; a) and U ′′(b−; a, b) = U ′′(b+; b) (69)

as well as

V ′(b−; a, b) = V ′(b+; b) and U ′(a+; a, b) = U ′(a−; a) (70)

hold, for the functions V(x; a, b) and U(x; a, b) from (44) and (45) as well as for V(x; a),
U(x; b) from (57) and (58) and V(x; b), U(x; a) from (59) and (60), for 0<a<b.
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3.3. The candidate stopping boundaries

Let us now study the system of arithmetic equations in (63) and (64) with the functions
Ai,j(a, b), for every i, j = 1, 2, given by the expressions in (46), for 0<a<b.Wefirst observe
that it can be shown by means of straightforward calculations that the system in (63)
and (64) is equivalent to the system of equations:

F1(a)
(
b
a

)α1
+ F2(a)

(
b
a

)α2
= K1

r
− b
δ

and

G1(b)
(a
b

)α1 + G2(b)
(a
b

)α2 = L2
r

− a
δ

(71)

with

Fj(a) = α3−j(L1/r − a/δ)− R(a)
α3−j − αj

and Gj(b) = α3−j(K2/r − b/δ)− Q(b)
α3−j − αj

(72)

for j = 1, 2, where we set:

R(a) = γ1L1
λ+ r

− (γ1δ + λ)a
(λ+ δ)δ

and Q(b) = β2K2

κ + r
− (β2δ + κ)b

(κ + δ)δ
(73)

for 0<a<b. In order to provide an analysis of the system of arithmetic power equations
in (71) with (72) and (73), we extend the appropriate arguments from [24, Example 4.2].
For this purpose, we will search for the solution of the system in (71) with (72) and (73) in
the form: (

b
a

)α1
= η(a, b)+ ϕ(a, b) and

(
b
a

)α2
= ξ(a, b)+ ψ(a, b) (74)

where η(a, b) and ξ(a, b) satisfy the system of equations:

F1(a)η(a, b)+ F2(a)ξ(a, b) = K2

r
− b
δ

and G1(b)
1

η(a, b)
+ G2(b)

1
ξ(a, b)

= L1
r

− a
δ

(75)

for 0<a<b. It follows from the result of [24, Example 4.2] (see also [48, Theorem 1]) that
the system of arithmetic power equations in (75) admits a unique solution:

η(a, b) = α2(K2/r − b/δ)− Q(b)
α2(L1/r − a/δ)− R(a)

and ξ(a, b) = α1(K2/r − b/δ)− Q(b)
α1(L1/r − a/δ)− R(a)

(76)

for 0<a<b. Then, it can be shown by means of straightforward calculations that the
functions ϕ(a, b) and ψ(a, b) from (74) should satisfy the system of equations:

F1(a)ϕ(a, b)+ F2(a)ψ(a, b) = K1 − K2

r
(77)

and

H1(a, b)
1

ϕ(a, b)
+ H2(a, b)

1
ψ(a, b)

= L2
r

− a
δ

(78)
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with

H1(a, b) = G1(b)−
(
L2
r

− a
δ

+ F2(a)
L2 − L1
K1 − K2

η(a, b)
)
ξ(a, b) (79)

and

H2(a, b) = G2(b)−
(
L2
r

− a
δ

+ F1(a)
L2 − L1
K1 − K2

ξ(a, b)
)
η(a, b) (80)

for 0<a<b. Hence, it is shown by means of straightforward calculations that the solution
of the system in (77) and (78) with (79) and (80) takes the form:

ϕj(a, b) = (K1 − K2)/r − F2(a)ψj(a, b)
F1(a)

(81)

and

ψj(a, b) = F2(a)H2(a, b)− F1(a)H1(a, b)+ (L2/r − a/δ)(K1 − K2)/r − (−1)j
√
�(a, b)

2F2(a)(L2/r − a/δ)
(82)

for j = 1, 2, whenever the constants 0 < Li < Kj, for i, j = 1, 2, are such that the
inequality:

�(a, b) ≡
(
F1(a)H1(a, b)− F2(a)H2(a, b)−

(
L2
r

− a
δ

)
K1 − K2

r

)2

− 4F2(a)H2(a, b)
(
L2
r

− a
δ

)
K1 − K2

r
≥ 0 (83)

holds, for 0<a<b. Thus, we can substitute the resulting expressions of (81) and (82)
with (83) for ϕj(a, b) and ψj(a, b), for j = 1, 2, in order to obtain the system of power
equations in (74) for the candidate stopping boundaries 0<a<b. We further consider the
couples a∗ and b∗ as (possibly multiple) solutions to the resulting system of power equa-
tions in (74), whenever such solutions exist, which satisfy the inequalities 0 < a∗ ≤ L1
and b∗ ≥ K2, for such admissible constants 0 < Li < Kj, for every i, j = 1, 2, for which the
inequality in (83) holds.

3.4. Fugures

At this stage, let us present some computer drawings of the candidate value functions
V(x; a∗, b∗), U(x; a∗, b∗) from (44) and (45), V(x; a∗), U(x; b∗) from (57) and (58), and
V(x; b∗), U(x; a∗) from (59) and (60), as well as of the candidate stopping boundaries a∗
and b∗ satisfying the equations of (74) in Figures 1–4 above.

4. Main results and verification

In this section, being based on the facts proved above, we formulate and prove the main
result of the paper concerning the nonzero-sum optimal stopping games of (8) and (9)
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Figure 1. A computer drawing of the value functions V∗(x) and U∗(x) and the optimal exercise bound-
aries a∗ and b∗ in the case L1 < L2 < K1 < K2.

with (10) and (11) in the model defined in (1) and (2) under Poisson random intervention
times. For this purpose, we extend the arguments from [13,25,49] to the case of nonzero-
sum optimal stopping games.

Theorem 4.1: Let the process X be defined in (1) and (2), where r>0, δ > 0, and σ > 0 are
some given constants. Assume that the couple a∗ and b∗ provides a (possiblymultiple) solution
of the systemof arithmetic power equations in (74) on the intervals 0 < a∗ ≤ L1 and b∗ ≥ K2,
whenever such a solution exists, for the admissible constants 0 < Li < Kj, for i, j = 1, 2, such
that the inequality in (83) is satisfied. Then, the value functions in (8)-(9) and (10)-(11) of
the perpetual (randomised Bermudian) game-type contingent claim described above with the
strikes 0 < Li < Kj, for every i, j = 1, 2, take the form:

V∗(x) =

⎧⎪⎨⎪⎩
V(x; a∗), if 0 < x ≤ a∗
V(x; a∗, b∗), if a∗ < x < b∗
V(x; b∗), if x ≥ b∗

(84)
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Figure 2. A computer drawing of the value functions V∗(x) and U∗(x) and the optimal exercise bound-
aries a∗ and b∗ in the case L1 < L2 < K2 < K1.

and

U∗(x) =

⎧⎪⎨⎪⎩
U(x; a∗), if 0 < x ≤ a∗
U(x; a∗, b∗), if a∗ < x < b∗
U(x; b∗), if x ≥ b∗

(85)

as well as

V∗(x) =

⎧⎪⎨⎪⎩
L1/r − x/δ, if 0 < x ≤ a∗
V(x; a∗, b∗), if a∗ < x < b∗
V(x; b∗), if x ≥ b∗

(86)

and

U∗(x) =

⎧⎪⎨⎪⎩
U(x; a∗), if 0 < x ≤ a∗
U(x; a∗, b∗), if a∗ < x < b∗
K2/r − x/δ, if x ≥ b∗

(87)

respectively. Here, the functions V(x; a, b) andU(x; a, b) are given by (44) and (45)with (46),
V(x; a) and U(x; b) are given by (57) and (58), and V(x; b) and U(x; a) are given by (59)
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Figure 3. A computer drawing of the value functions V∗(x) and U∗(x) and the optimal exercise bound-
aries a∗ and b∗ in the case L2 < L1 < K1 < K2.

and (60) above. Moreover, the optimal exercise times forming Nash equilibria in the games of
(8)-(9) and (10)-(11) are given by:

τ∗ = inf
{
τn ∈ T(λ)

∣∣Xτn ≤ a∗, n ∈ N
}

and ζ∗ = inf
{
ζn ∈ Z(κ)

∣∣Xζn ≥ b∗, n ∈ N
}

(88)

as well as

τ ∗ = inf
{
τn ∈ T(λ)

∣∣Xτn ≤ a∗, n ∈ N
}

and ζ ∗ = inf
{
ζn ∈ Z(κ)

∣∣Xζn ≥ b∗, n ∈ N
}

(89)

respectively.

Proof: In order to verify the assertion stated above, it remains for us to show that the
functions defined in (84)-(85) and (86)-(87) coincide with the value functions in (8)-(9)
and (10)-(11), respectively, while the stopping times τ∗ and ζ∗ in (88) as well as τ ∗ and ζ ∗
in (89) form a Nash equilibrium there with the boundaries a∗ and b∗ specified in the pre-
vious section. For this purpose, let us denote by V(x) and U(x) as well as V(x) and U(x)
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Figure 4. A computer drawing of the value functions V∗(x) and U∗(x) and the optimal exercise bound-
aries a∗ and b∗ in the case L2 < L1 < K2 < K1.

the right-hand sides of the expressions in (84) and (85) as well as (86) and (87) associated
with these boundaries a∗ and b∗, respectively.

(i) It follows from the straightforward calculations presented in the previous section
that the functions V(x) and U(x) solve the system of (30)–(39). We also observe from the
constructions of the previous section that the function V(x) is C2 in (0, b∗] and [b∗,∞) as
well as C1 at the point b∗, while the function U(x) is C2 in [a∗,∞) and (0, a∗] as well as
C1 at the point a∗. Then, by applying the local time-space formula from [44] (see also [47,
Chapter II, Section 3.5] for a summary of the related results and further references) to the
processes e−(r+λ)tV(Xt) and e−(r+κ)tU(Xt), we obtain:

e−(r+λ)tV(Xt) = V(x)+
∫ t

0
e−(r+λ)u(LV − (r + λ)V)(Xu)I(Xu �= b∗) du + M1

t (90)

and

e−(r+κ)tU(Xt) = U(x)+
∫ t

0
e−(r+κ)u(LU − (r + κ)U)(Xu)I(Xu �= a∗) du + M2

t (91)

for all t ≥ 0. Here, by virtue of the properties indicated in the previous section that the
functions V(x) and U(x) are at least C1 on (0,∞), there are no local time terms in the
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expressions of (90) and (91), while the processesMi = (Mi
t)t≥0, for i = 1, 2, defined by:

M1
t =

∫ t

0
e−(r+λ)uV ′(Xu)σXu dBu and M2

t =
∫ t

0
e−(r+κ)uU ′(Xu)σXu dBu (92)

are continuous local martingales under the probability measure Px. Observe from the
arguments of the previous section that the derivatives V ′(x) and U ′(x) are bounded
functions, so that the processes Mi, for i = 1, 2, from (92) are continuous square inte-
grable martingales. Note that, since the time spent by the process X at the boundaries
a∗ and b∗ is of the Lebesgue measure zero (see, e.g. [10, Chapter II, Section 1]), the
indicators in the formulas of (90) and (91) can be set equal to one. Moreover, it also
follows from the straightforward calculations of the previous section that the equality
(LV − (r + λ)V)(x) = −λV(x) holds, for all x>0 such that x �= b∗, while the equality
(LU − (r + κ)U)(x) = −κU(x) holds, for all x>0 such that x �= a∗. Hence, by apply-
ing the Lebesgue dominated convergence theorem to the expressions in (90) and (91), we
obtain that the equalities:

V(x) = Ex
[
e−rτ1V(Xτ1)I(τ1 ≤ ζ∗)+ e−rζ∗

(
U(Xζ∗)− K2 − K1

r

)
I(ζ∗ < τ1)

]
(93)

and

U(x) = Ex
[
e−rζ1U(Xζ1)I(ζ1 ≤ τ∗)+ e−rτ∗

(
V(Xτ∗)− L1 − L2

r

)
I(τ∗ < ζ1)

]
(94)

hold, for all x>0.
(ii) Let us now show that the candidate functionsV(x) andU(x) coincide with the value

functionsV∗(x) andU∗(x) and the stopping times τ ∗ and ζ ∗ from (89) are optimal (form-
ing a Nash equilibrium) in the problem of (10) and (11). For this purpose, we first observe
that the inequalities:

V(x) ≥ V(x) = Ex
[
e−rτ1V(Xτ1)I(τ1 ≤ ζ∗)+ e−rζ∗

(
U(Xζ∗)− K2 − K1

r

)
I(ζ∗ < τ1)

]
(95)

and

U(x) ≤ U(x) = Ex
[
e−rζ1U(Xζ1)I(ζ1 ≤ τ∗)+ e−rτ∗

(
V(Xτ∗)− L1 − L2

r

)
I(τ∗ < ζ1)

]
(96)

hold, where τ1 and ζ1 are independent of each other and of the driving standard Brownian
motion B exponential random variables with the means 1/λ and 1/κ, respectively. These
facts imply that the processes (e−r(τl∧ζ∗)V(Xτl∧ζ∗))l∈N

and (e−r(τ∗∧ζk)U(Xτ∗∧ζk))k∈N
are

discrete-time nonnegative bounded supermartingale and submartingale under the prob-
ability measure Px, respectively. Then, taking into account the strong Markov property of
the process X as well as stationarity and independence of increments of the processes Ni,
for i = 1, 2, it follows from Doob’s optional sampling theorem that the inequalities:

V(x) ≥ Ex
[
e−rτV(Xτ )I(τ ≤ ζ∗)+ e−rζ∗

(
U(Xζ∗)− K2 − K1

r

)
I(ζ∗ < τ)

]
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≥ Ex
[
e−rτ

(
L1
r

− Xτ
δ

)
I(τ ≤ ζ∗)+ e−rζ∗

(
K1

r
− Xζ∗

δ

)
I(ζ∗ < τ)

]
(97)

and

U(x) ≤ Ex
[
e−rζU(Xζ )I(ζ ≤ τ∗)+ e−rτ∗

(
V(Xτ∗)− L1 − L2

r

)
I(τ∗ < ζ)

]
≤ Ex

[
e−rζ

(
K2

r
− Xζ

δ

)
I(ζ ≤ τ∗)+ e−rτ∗

(
L2
r

− Xτ∗
δ

)
I(τ∗ < ζ)

]
(98)

hold, for any stopping times τ and ζ with respect to the filtrations (Gτl)l∈N
and (Hζk)k∈N

,
respectively. Hence, after taking the supremum and infimum over τ and ζ from the sets
T(λ) and Z(κ), we get that the inequalities V(x) ≥ V∗(x) and U(x) ≤ U∗(x) hold, for all
x>0. On the other hand, let us recall that the well-known property:

Ex
[
sup
t≥0

e−rtXt

]
< ∞ (99)

holds, for all x>0 (see, e.g. [52, ChapterVIII, Section 2a]). In this respect, wemay conclude
that the processes (e−r(τl∧τ∗∧ζ∗)V(Xτl∧τ∗∧ζ∗))l∈N

and (e−r(τ∗∧ζk∧ζ ∗)U(Xτ∗∧ζk∧ζ ∗))k∈N
are

discrete-time nonnegative bounded uniformly integrablemartingales. Therefore, by apply-
ing the Lebesgue dominated convergence theorem to the expressions in (97) and (98), we
obtain that the equalities:

V(x) = Ex
[
e−rτ∗

(
L1
r

− Xτ∗
δ

)
I(τ ∗ ≤ ζ∗)+ e−rζ∗

(
K1

r
− Xζ∗

δ

)
I(ζ∗ < τ ∗)

]
(100)

and

U(x) = Ex
[
e−rζ ∗

(
K2

r
− Xζ ∗

δ

)
I(ζ ∗ ≤ τ∗)+ e−rτ∗

(
L2
r

− Xτ∗
δ

)
I(τ∗ < ζ ∗)

]
(101)

are attained, for the stopping times τ ∗ and ζ ∗ from (89), thus proving the claim.
(iii) Finally, we show that the candidate functionsV(x) andU(x) coincide with the value

functions V∗(x) and U∗(x) and the stopping times τ∗ and ζ∗ from (88) are optimal (form-
ing a Nash equilibrium) in the problem of (8) and (9). For this purpose, we use the fact
similar to the one proved in Part (ii) above that the processes (e−r(τl∧ζ∗)V(Xτl∧ζ∗))l∈N

and (e−r(τ∗∧ζk)U(Xτ∗∧ζk))k∈N are discrete-time nonnegative bounded supermartingale
and submartingale under the probability measure Px, respectively. Then, we have that the
equalities:

V(x) = Ex
[
e−rτ1V(Xτ1)I(τ1 ≤ ζ∗)+ e−rζ∗

(
U(Xζ∗)− K2 − K1

r

)
I(ζ∗ < τ1)

]
≥ Ex

[
e−rτ

(
L1
r

− Xτ
δ

)
I(τ ≤ ζ∗)+ e−rζ∗

(
K1

r
− Xζ∗

δ

)
I(ζ∗ < τ)

]
(102)

and

U(x) = Ex
[
e−rζ1U(Xζ1)I(ζ1 ≤ τ∗)+ e−rτ∗

(
V(Xτ∗)− L1 − L2

r

)
I(τ∗ < ζ1)

]
(103)
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≤ Ex
[
e−rζ

(
K2

r
− Xζ

δ

)
I(ζ ≤ τ∗)+ e−rτ∗

(
L2
r

− Xτ∗
δ

)
I(τ∗ < ζ)

]
(104)

hold, for any stopping times τ and ζ with respect to the filtrations (Gτl)l∈N and (Hζk)k∈N,
respectively. Hence, after taking the supremum and infimum over τ and ζ from the sets
T(λ) and Z(κ), we get that the inequalities V(x) ≥ V∗(x) and U(x) ≤ U∗(x) hold, for all
x>0. However, conditioning on the first jump times τ1 and ζ1 of the processes Ni, for
i = 1, 2, by virtue of the strongMarkov property of the processX as well as stationarity and
independence of increments of the processesNi, for i = 1, 2, we obtain that the equalities:

V(x) = Ex
[
e−rτ1V(Xτ1)I(τ1 ≤ ζ∗)+ e−rζ∗

(
U(Xζ∗)− K2 − K1

r

)
I(ζ∗ < τ1)

]
= Ex

[∫ ∞

0
e−rtEXt

[
e−rτ∗

(
L1
r

− Xτ∗
δ

)
I(τ ∗ ≤ ζ∗)

+e−rζ∗
(
K1

r
− Xζ∗

δ

)
I(ζ∗ < τ ∗)

]
λe−λt dt

]
=

∫ ∞

0
Ex

[
e−rτ∗

(
L1
r

− Xτ∗
δ

)
I(τ∗ ≤ ζ∗)

+e−rζ∗
(
K1

r
− Xζ∗

δ

)
I(ζ∗ < τ∗)

∣∣∣∣τ1 = t
]
λe−λt dt

= Ex
[
e−rτ∗

(
L1
r

− Xτ∗
δ

)
I(τ∗ ≤ ζ∗)+ e−rζ∗

(
K1

r
− Xζ∗

δ

)
I(ζ∗ < τ∗)

]
(105)

and

U(x) = Ex
[
e−rζ1U(Xζ1)I(ζ1 ≤ τ∗)+ e−rτ∗

(
V(Xτ∗)− L1 − L2

r

)
I(τ∗ < ζ1)

]
= Ex

[∫ ∞

0
e−rtEXt

[
e−rζ ∗

(
K2

r
− Xζ ∗

δ

)
I(ζ ∗ ≤ τ∗)

+e−rτ∗
(
L2
r

− Xτ∗
δ

)
I(τ∗ < ζ ∗)

]
κe−κt dt

]
=

∫ ∞

0
Ex

[
e−rζ∗

(
K2

r
− Xζ∗

δ

)
I(ζ∗ ≤ τ∗)

+e−rτ∗
(
L2
r

− Xτ∗
δ

)
I(τ∗ < ζ∗)

∣∣∣∣ζ1 = t
]

κe−κt dt

= Ex
[
e−rζ∗

(
K2

r
− Xζ∗

δ

)
I(ζ∗ ≤ τ∗)+ e−rτ∗

(
L2
r

− Xτ∗
δ

)
I(τ∗ < ζ∗)

]
(106)

are attained, at the stopping times τ∗ and ζ∗ from (88), thus proving the claim. �

5. Convergence to the classical case

In this section, we will show that the solution to the nonzero-sum optimal stopping game
under random Poisson intervention times presented in (84)-(85) with (86)-(87) and (88)-
(89) converges to the solution of the associated nonzero-sum optimal stopping game under
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continuous observations as the intensities of the Poisson processes tend to infinity. For this
purpose, we first formulate the associated nonzero-sum optimal stopping games with the
same total expected reward functionals from (3) and (4) and such that the inequalities:

J1(τ , ζ̂ ) ≤ J1(̂τ , ζ̂ ) and J2(̂ζ , τ̂ ) ≤ J2(ζ , τ̂ ) (107)

should hold, for any stopping times τ and ζ from the set S of all stopping times with
respect to the filtration (Ft)t≥0 generated by the processX. Such a couple τ̂ and ζ̂ satisfying
the inequalities in (107) with (3) and (4) is called a Nash equilibrium of the nonzero-sum
optimal stopping game under continuous observations.

Again, taking into account the expression in (7), we conclude that the problem formu-
lated in (107) with (3) and (4) is equivalent to the nonzero-sum optimal stopping game for
the (time-homogeneous strong) Markov process X under continuous observations with
the value functions V̂(x) ≡ V̂(x; ζ̂ ) and Û(x) ≡ Û(x; τ̂ ) given by:

V̂(x) = sup
τ∈S

Ex
[
e−rτ

(
L1
r

− Xτ
δ

)
I(τ ≤ ζ̂ )+ e−r̂ζ

(
K1

r
− Xζ̂

δ

)
I(̂ζ < τ)

]
(108)

and

Û(x) = inf
ζ∈S Ex

[
e−rζ

(
K2

r
− Xζ

δ

)
I(ζ ≤ τ̂ )+ e−rτ̂

(
L2
r

− Xτ̂
δ

)
I(̂τ < ζ )

]
(109)

for some given constants 0 < Li < Kj, for every i, j = 1, 2. Here, the supremum and infi-
mum are taken over all stopping times τ and ζ from the set S, while τ̂ and ζ̂ stopping
times such that the inequalities of (107) with (3) and (4) are satisfied. In this case, we
may conclude that the value functions V̂(x) ≡ V̂(x; ζ̂ ) and Û(x) ≡ Û(x; τ̂ ) represent ratio-
nal (or no-arbitrage) prices of the appropriate parts of the game-type contingent claim
introduced above. Recall that the value functions as V̂(x) ≡ V̂(x; ζ̂ ) and Û(x) ≡ Û(x; τ̂ )
in (108) and (109) were introduced and studied in [8, Subsection 1.5, Theorem 1.2] in rela-
tion to Nash equilibria in a non-zero sum stochastic differential game with stopping times
such as formulated in (107) with (3) and (4) in the case of continuous observations.

It is shown by means of arguments from Subsection 2.2 that the optimal stopping times
in the problem of (108) and (109) have the form:

τ̂ = inf
{
t ≥ 0

∣∣∣∣V̂(Xt) = L1
r

− Xt

δ

}
and ζ̂ = inf

{
t ≥ 0

∣∣∣∣Û(Xt) = K2

r
− Xt

δ

}
(110)

while the associated continuation and stopping regions are given by:

Ĉ =
{
x > 0

∣∣∣∣V̂(x) > L1
r

− x
δ
and Û(x) <

K2

r
− x
δ

}
(111)

and

D̂ =
{
x > 0

∣∣∣∣ either V̂(x) = L1
r

− x
δ
or Û(x) = K2

r
− x
δ

}
(112)
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so that take the form:

Ĉ = {
x > 0|̂a < x < b̂

}
and D̂ = {

x > 0
∣∣ either x ≤ â or x ≥ b̂

}
. (113)

In order to find analytic expressions for the unknown value functions V̂(x) and Û(x)
from (108) and (109) and the unknown boundaries â and b̂ from (113), we reduce the cou-
pled optimal stopping problem of (108) and (109) to the equivalent coupled free-boundary
problem for V̂(x) and Û(x) with â and b̂ given by:

(LV − rV)(x) = 0 for a < x < b and (LU − rU)(x) = 0 for a < x < b (114)

V(a+) = L1
r

− a
δ

and U(b−) = K2

r
− b
δ

(115)

V ′(a+) = −1
δ

and U ′(b−) = −1
δ

(116)

V(b−) = K1

r
− b
δ

and U(a+) = L2
r

− a
δ

(117)

V(x) = L1
r

− x
δ

for x < a and U(x) = K2

r
− x
δ

for x > b (118)

V(x) = K1

r
− x
δ

for x > b and U(x) = L2
r

− x
δ

for x < a (119)

V(x) >
L1
r

− x
δ

for x > a and U(x) <
K2

r
− x
δ

for x < b (120)

(LV − rV)(x) < 0 for x < a and (LU − rU)(x) > 0 for x > b (121)

for 0 < a ≤ L1 < K2 ≤ b < ∞. The superharmonic characterization of the value func-
tions (see, e.g. [47, Chapter IV, Section 9]) implies that V̂(x) and Û(x) are the largest
functions satisfying (114)–(117) and (120) and (121) with the boundaries â and b̂, respec-
tively.

In order to find solutions to the free-boundary problem formulated in (114)–(121), we
first recall that the general solutions of the second-order ordinary differential equations
in (114) are given by (40), where Ai,j, for i, j = 1, 2, are some arbitrary constants, and
αj, for j = 1, 2, are defined in (41). Then, it follows from the expressions in (40) that the
instantaneous-stopping conditions of (115)+(117) take the form of (42) and (43) for 0 <
a ≤ L1 < K2 ≤ b < ∞. Hence, by solving the left-hand and right-hand systems of linear
equations in (42) and (43), we obtain that the functions in (40) admit the representations
of (44) and (45), for a < x < bwith (46) for all 0<a<b and every i, j = 1, 2. It also follows
from the expressions in (40) that the smooth-fit conditions of (116) take the form:

A1,1α1aα1 + A1,2α2aα2 = −a
δ

and A2,1α1bα1 + A2,2α2bα2 = −b
δ

(122)

for 0 < a ≤ L1 < K2 ≤ b < ∞, where the functions Ai,j(a, b), for every i, j = 1, 2, are
given by the expressions in (46), for 0<a<b.

We finally observe that, taking into account the system of arithmetic equations in (42)
and (43), it can be deduced by means of straightforward calculations from the system
in (122) that the equalities:

A1,1(a, b)α1(α1 − 1)aα1 + A1,2(a, b)α2(α2 − 1)aα2 = 0 (123)
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and

A2,1(a, b)α1(α1 − 1)bα1 + A2,2(a, b)α2(α2 − 1)bα2 = 0 (124)

as well as

A1,1(a, b)α1bα1 + A1,2(a, b)α2bα2 = −b
δ

(125)

and

A2,1(a, b)α1aα1 + A2,2(a, b)α2aα2 = −a
δ

(126)

are satisfied, where the functionsAi,j(a, b), for every i, j = 1, 2, are given by the expressions
in (46), for 0 < a < b. It thus follows from the expressions in (123)–(126) that the analytic
properties:

V ′(a+; a, b) = −1
δ

and U ′(b−; a, b) = −1
δ

(127)

as well as

V(b−; a, b) = K1

r
− b
δ

and U(a+; a, b) = L2
r

− a
δ

(128)

hold, for 0<a<b.
Taking into account the arguments presented above, we are now ready to formulate

the assertion concerning the solution of the nonzero-sum optimal stopping game of (107)
with (3) and (4) in the case of continuous observations, which can be either deduced from
the result of Theorem 4.1 formulated above or proved by means of standard verification
arguments such as in [20].

Corollary 5.1: Let the process X be defined in (1) and (2), where r>0, δ > 0, and σ > 0 are
some given constants. Assume that the couple â and b̂ provides a (possiblymultiple) solution of
the system of arithmetic power equations in (125) and (126), where the functions Ai,j(a, b), for
every i, j = 1, 2, are given by the expressions in (46), on the intervals 0 < â ≤ L1 and b̂ ≥ K2,
whenever such a solution exists, for the admissible constants 0 < Li < Kj, for i, j = 1, 2, such
that the inequality in (83) is satisfied, as λ → ∞ and κ → ∞. Then, the value functions
in (108) and (109) of the nonzero-sum optimal stopping game with the strikes 0 < Li < Kj,
for every i, j = 1, 2, take the form:

V̂(x) =

⎧⎪⎨⎪⎩
L1/r − x/δ, if 0 < x ≤ â
V(x; â, b̂), if â < x < b̂
K1/r − x/δ, if x ≥ b̂

(129)

and

Û(x) =

⎧⎪⎨⎪⎩
L2/r − x/δ, if 0 < x ≤ â
U(x; â, b̂), if â < x < b̂
K2/r − x/δ, if x ≥ b̂

(130)
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respectively, where the functions V(x; a, b) andU(x; a, b) are given by (44) and (45)with (46)
above. Moreover, the optimal exercise times forming Nash equilibria in the game of (108)
and (109) are given by:

τ̂ = inf
{
t ≥ 0

∣∣Xt ≤ â
}

and ζ̂ = inf
{
t ≥ 0

∣∣Xt ≥ b̂
}

(131)

respectively.

Proof: It is seen that the right-hand sides of the expressions in (63) and (64) converge
(pointwise) to the right-hand sides of (122) aswell as the right-hand sides of the expressions
in (57)–(60) converge (pointwise) to the functions L1/r − x/δ, K2/r − x/δ and K1/r −
x/δ, L2/r − x/δ, as λ and κ tend to ∞, respectively. Getting together all these observa-
tions, wemay conclude that there exist (sub)sequences of functionsVn∗ (x) = Vn∗ (x; λn,κn)

and Un∗ (x) = U∗(x;κn, λn), for n ∈ N, in (84) and (85), which converge (pointwise) to
the appropriate functions V̂(x) and Û(x) in (129) and (130), as well as the associated
(sub)sequences of the boundaries an∗ = a∗(λn,κn) and bn∗ = b∗(κn, λn), for n ∈ N, as solu-
tions to the system in (63) and (64), converge to the appropriate boundaries â and b̂ as the
associated solutions to the system in (122), as λn and κn tend to ∞, where the functions
Ai,j(a, b), for every i, j = 1, 2, are given by (46), for 0<a<b. These facts directly imply the
desired assertion. �
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Appendix

In this section, we further extend the arguments from [24, Example 4.2] (see also [19, Section 3] and
[48, Theorem 1]) to show that the system of arithmetic power equations:

F1(a)
(
b
a

)α1
+ F2(a)

(
b
a

)α2
= K2

r
− b
δ

and G1(b)
(a
b

)α1 + G2(b)
(a
b

)α2 = L1
r

− a
δ

(A1)

admits a unique solution, where the functions Fj(a) and Gj(b), for j = 1, 2, are given by the expres-
sions in (72), for 0< a< b. For this purpose, by virtue of straightforward calculations, we first
observe that the system of equations in (A1) is equivalent to the one:

�j(a) ≡ α3−j(L1/r − a/δ)− R(a)
aαj

= α3−j(K2/r − b/δ)− Q(b)
bαj

≡ �j(b) for j = 1, 2 (A2)

where the functions R(a) and Q(b) are given by the expressions in (73), for all 0 < a ≤ L1 < K2 ≤
b < ∞.

In order to show the existence and uniqueness of a solution of the system of arithmetic power
equations in (A2), we develop the idea of proof of the existence and uniqueness of solutions applied
to the systems of arithmetic power equations in [24, Example 4.2] (see also the systems (4.73)–(4.74)
in [51, Chapter IV, Section 2], the system (55)–(56) in [19, Section 3], and [48, Theorem 1]). For this
purpose, we observe that, for the derivatives of the functions �j(a) and �j(b), for j = 1, 2, defined
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in (A2), the expressions:

�′
j(a) = 1 − αj

aα3−j−1

(
γ1δ + λ

(λ+ δ)δ
− α3−j

δ

)
+ αjL1

aα3−j

(
γ1

λ+ r
− α3−j

r

)
(A3)

and

� ′
j (b) = 1 − αj

bα3−j−1

(
β2δ + κ

(κ + δ)δ
− α3−j

δ

)
+ αjK2

bα3−j

(
β2

κ + r
− α3−j

r

)
(A4)

hold, for all 0 < a < Lj < Kj < b < ∞, and every j = 1, 2. Then, it is seen from the expressions
in (A3) and (A4) that the inequalities:

�′
1(a) > 0 for a < L1 and �′

2(a) > 0 for a < L2 (A5)

as well as

� ′
1(b) < 0 for b > K1 and � ′

2(b) < 0 for b > K2 (A6)

hold, where we set:

Lj = αjL1
αj − 1

γ1/(λ+ r)− α3−j/r
(γ1δ + λ)/((λ+ δ)δ)− α3−j/δ

(A7)

and

Kj = αjK2

αj − 1
β2/(κ + r)− α3−j/r

(β2δ + κ)/((κ + δ)δ)− α3−j/δ
(A8)

for j = 1, 2. Hence, we may conclude that the function �1(a) increases on the interval (0, L1) with
�1(0+) = 0 and �1(L1) > 0, so that the range of its values is given by the interval (0,�1(L1)).
The function�1(b) decreases on the interval (K1,∞)with�1(K1) > 0 and�1(∞) = −∞, so that
the range of its values is given by the interval (−∞,�1(K1)). The function �2(a) increases on the
interval (0, L2) with �2(0+) = −∞ and �2(L2) > 0, so that the range of its values is given by the
interval (−∞,�2(L2)). The function�2(b) decreases on the interval (K2,∞)with�2(K2) > 0 and
�2(∞) = 0, so that the range of its values is given by the interval (0,�2(K2)).

We now observe that, when�1(L1) ≤ �1(K1) holds, one can determine some b1 ≥ K1 from the
equation�1(L1) = �1(b1), while when�1(L1) ≥ �1(K1) holds, one can determine some a1 ≤ L1
from the equation�1(a1) = �1(K1). Hence, it follows from the first equation in (A2) that, for each
a ∈ (0, a1 ∧ L1), there exists a unique number b ∈ (K1 ∨ b1, b̂). Similarly, when �2(L2) ≤ �2(K2)

holds, one can determine some b2 ≥ K2 from the equation�2(L2) = �2(b2), while when�2(L2) ≥
�2(K2) holds, one can determine some a2 ≤ L2 from the equation �2(a2) = �2(K2). Hence, it
follows from the second equation in (A2) that, for each a ∈ (̂a, a2 ∧ L2), there exists a unique number
b ∈ (K2 ∨ b2,∞). Here, the numbers â and b̂ defined by:

â = α2L1
α2 − 1

δ

r
≡ (α1 − 1)L1

α1
< L1 and b̂ = α1K2

α1 − 1
δ

r
≡ (α2 − 1)K2

α2
> K2 (A9)

are the optimal stopping boundaries for the cases of K2 = ∞ and L1 = 0 as well as λ = κ = 0,
respectively (see [21, Subsection 5.3]). In other words, we may conclude that the first and second
equations in (A2) uniquely determine the function b1(a) on (0, a1 ∧ L1)with the range (K1 ∨ b1, b̂)
and the function b2(a) on (̂a, a2 ∧ L2) with the range (K2 ∨ b2,∞), respectively. These arguments,
together with the additional assumptions that the inequalities a1 ∧ L1 ≥ a2 ∧ L2 and K1 ∨ b1 ≥
K2 ∨ b2 hold, imply that the expression K1 ∨ b1 < b1(0+) ≡ b̂ < ∞ ≡ b2(̂a) holds too. Moreover,
the same arguments and assumptions directly yield that there exists exactly one intersection point
with the coordinates a∗ and b∗ of the curves associated with the functions b1(a) and b2(a) on
the interval a ∈ (̂a, a2 ∧ L2) such that K1 ∨ b1 < b1(a∗) ≡ b∗ ≡ b2(a∗) < b̂ holds (see Figure A1
above).

More precisely, let us assume that there exists at least two intersection points (a∗, b∗) and (̃a, b̃) of
the curves b1(a) and b2(a) such that â < ã < a∗ ≤ L2 ∧ a2 andK1 ∨ b1 ≤ b̃ < b∗ < b̂ [or â < a∗ <
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Figure A1. A computer drawing of the boundary functions b1(a) and b2(a).

ã ≤ L2 ∧ a2 and K1 ∨ b1 ≤ b∗ < b̃ < b̂] as well as b2(a) > b1(a), for a ∈ (̃a, a∗) [or a ∈ (a∗, ã)].
Observe that, by virtue of assumptions made above and according to the implicit function theorem,
it follows from the representations in (A3) and (A4) that the expressions:

b′
j(a) = �′

j(a)

� ′
j (b)

< 0 for j = 1, 2 (A10)

hold, for a ∈ (̃a, a∗) and b ∈ (̃b, b∗), from where it directly follows that the inequality:

b′
2(a)
b′
1(a)

> 1 (A11)

is satisfied, for all a ∈ (̃a, a∗). Since the derivatives b′
j(a), for j = 1, 2, from (A10) are continuous

functions on (̃a, a∗), we may conclude that there exists an open interval (̃a − ε, ã + ε), for some
relatively small ε > 0, such that the inequality b′

2(a) > b′
1(a) holds, so that the inequality b2(a) >

b1(a) should hold, for a ∈ (̃a − ε, ã + ε), too. However, the latter fact contradicts the assumption
that the equality b1(̃a) = b2(̃a) holds, which means that the curves b1(a) and b2(a) may have only
one intersection point, and thus, it completes the proof of the claim.
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