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Abstract
Active learning can improve the efficiency of training prediction models by identi-
fying the most informative new labels to acquire. However, non-response to label 
requests can impact active learning’s effectiveness in real-world contexts. We con-
ceptualise this degradation by considering the type of non-response present in the 
data, demonstrating that biased non-response is particularly detrimental to model 
performance. We argue that biased non-response is likely in contexts where the 
labelling process, by nature, relies on user interactions. To mitigate the impact of 
biased non-response, we propose a cost-based correction to the sampling strategy–
the Upper Confidence Bound of the Expected Utility (UCB-EU)–that can, plausibly, 
be applied to any active learning algorithm. Through experiments, we demonstrate 
that our method successfully reduces the harm from labelling non-response in many 
settings. However, we also characterise settings where the non-response bias in the 
annotations remains detrimental under UCB-EU for specific sampling methods and 
data generating processes. Finally, we evaluate our method on a real-world data-
set from an e-commerce platform. We show that UCB-EU yields substantial per-
formance improvements to conversion models that are trained on clicked impres-
sions. Most generally, this research serves to both better conceptualise the interplay 
between types of non-response and model improvements via active learning, and to 
provide a practical, easy-to-implement correction that mitigates model degradation.

Keywords Active learning · Non-response · Missing data · E-commerce · CTR 
prediction

1 Introduction

Many real-life machine learning (ML) system deployments contain a human-in-the-
loop component where the model is continuously or periodically updated based on 
new batches of labelled data. These new labels are typically obtained either by a 
pool of human annotators (e.g., through crowdsourcing) or originate from users’ 

Responsible editor: Rita P. Ribeiro.

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-024-01026-x&domain=pdf


 T. S. Robinson et al.

1 3

interactions with an application. Active Learning (AL) (Settles 2009) is a research 
field focused on optimizing the efficiency of this labeling, by directing efforts 
towards instances whose labels are deemed most informative.

Most AL approaches make the critical assumption that every query (i.e., an 
attempt to acquire the label of an unlabelled example) receives a response. This 
assumption may not always hold in practice. For example, consider a fraud detection 
setting (Tax et al. 2021; Carcillo et al. 2018) where AL selects which items are to 
be sent for human review to be investigated for potential fraud or an integrity viola-
tion. The responses obtained from the human reviewer are then incorporated into the 
training data for an automated detection system. In practice, a reviewer may struggle 
to identify fraud in some instances more so than in others; for instance, emails solic-
iting payment details may be easier to review than emails containing phishing links. 
In the harder cases, where the reviewer is unsure, they may avoid returning a label 
(or deliberately mark it null to indicate that they were unable to reach a conclusion). 
Beyond highlighting the possibility of non-response, this example also underscores 
that non-response can be biased, i.e., non-response may be more likely for some 
unlabelled examples than for others.

Annotations may also arise as an implicit byproduct of users’ interactions with an 
application, rather than from annotators whose main focus is to provide labels (and 
who are the predominant focus in the AL literature). In implicit labelling cases, AL 
methods can be used to provide an exploration component to ML applications (Elahi 
et al. 2016). As an example, consider a recommender system that uses AL to present 
an item to a user that may improve the recommender system’s future ability to sug-
gest relevant items if we obtain a label for that user-item pair. In such an application, 
a label may, for example, be obtained only if the user clicks on the recommendation. 
If, however, the user gets recommended the item but scrolls past it without interact-
ing, this is plausibly an instance of non-response to an AL label request. In such 
contexts, non-response can be both substantial and also dependent on the user-item 
pair (i.e., biased). In Sect. 7 we present a real-life example of this scenario, where 
labels arise from the actions of users and non-response stems from failures to inter-
act with advertised items.

Some works study AL with abstention feedback (Fang et al. 2012; Yan et al. 2015; 
Amin et al. 2021; Nguyen et al. 2022), which accounts for scenarios where the anno-
tator provides no label. However, these studies often overlook the potential conse-
quences of non-response bias in the abstention mechanism. While non-response 
bias is a well-studied problem in statistics, in Sect. 6 we show that its presence in 
the context of AL with abstention feedback yields new and unique challenges. To 
illustrate these challenges, consider again the recommender system example. An AL 
recommender system may query an item for which the model has high uncertainty 
about the item’s relevance to the user. However, the uncertainty for this query may 
stem from the fact that users rarely interact with this item. Consequently, and in 
practice, the AL system’s attempts to learn about the user’s preferences may end up 
being wasteful as the item likely continues to receive little interaction, which contra-
dicts the goal of AL to maximise model improvement efficiency.

In this paper, we introduce how biased non-response can affect the perfor-
mance of AL, and demonstrate these mechanisms empirically. We then present an 
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algorithm to adjust AL to account for non-response, demonstrating both experimen-
tal and applied contexts in which it improves model performance. We also show 
specific contexts where model performance is still impacted negatively. In summary, 
we make three contributions to AL research:

• We conceptualise a mechanism for how biased non-response can undermine 
the supposed benefits of AL and consider important contexts where the non-
response probabilities are very high.

• We propose a simple algorithmic correction for incorporating a model of non-
response into AL.

• We demonstrate how the mechanics of AL can lead to reinforcing negative 
behaviour due to the unavailability of labels in specific regions of the possible 
feature space.

2  Background

This section introduces the theoretical framework on which our argument rests. We 
use lowercase letters to denote scalars (e.g., a), lowercase bold letters to denote vec-
tors (e.g., a ), and uppercase bold letters to denote matrices (e.g., A).

We consider the case where a researcher faces a common modelling problem: 
given a vector of features x , what is the corresponding label y? To answer this ques-
tion, typically the researcher fits a target model M on a training set DTrain = {X, y} , 
and uses the resulting model to predict labels for new observations �′:

AL extends this logic by making iterative attempts to acquire new labelled exam-
ples to improve model performance efficiently. Let X ⊆ ℝ

d be a dataset of all 
instances that can potentially be labelled. At each point in time t, we have a train-
ing set DTrain = {(xi, yi)}

|T|
i=1

 , where each xi ∈ X and yi ∈ {0, 1} . The subset of X that 
is unlabelled at time t is the “pool" ( XPool ). Given this context, AL first identifies 
which unlabelled example ( xt ∈ XPool ) to query:

where � is some AL querying strategy given the pool of unlabelled examples and the 
previous state of the model. Common criteria include uncertainty sampling (Lewis 
1995) (i.e., identifying the next query include the entropy of the model output), or 
Query-by-Committee (QbC) (Seung et al. 1992; Freund et al. 1997) (i.e., maximis-
ing the disagreement between members of an ensemble).

Once the example has been chosen, an annotator (be it a human reviewer or other 
process) labels this datapoint. In conventional settings, we assume that we receive 
the observed value of every requested label, yt . More formally, let Ω(⋅) be some 
(unknown) function that determines the probability of receiving a response, such 
that pt = Ω(xt) is the response probability for a specific datapoint. Consequently, 
let rt ∼ B(pt) , be a draw from the Bernoulli distribution, which indicates whether a 

ŷ� = M(�� ∣ DTrain).

xt ∼ �(XPool,Mt−1),
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response was received for that example. In the conventional setting, therefore, AL 
assumes that Ω(xt) = 1, ∀xt.

The results of this process are then combined with existing training examples 
from previous periods:

and finally, using the updated training set, a new target model is trained.

3  Related literature

Problems associated with missing data have long been documented in the economet-
rics literature (Rubin 1976). In practice, data can be missing for a variety of reasons, 
including imperfect measurement, dataset corruption, and partial responses. In the 
survey sampling literature, non-response refers to the failure of individuals to reply 
to a questionnaire or survey (Hansen and Hurwitz 1946), and hence non-response is 
a particular form of missing data. This longstanding sampling problem has a clear 
analogue to AL in the form of failed attempts to query a label.

Theoretical work in this area has largely focused on how “missingness” in the 
data can bias parameter estimates (Rubin 1976; Mohan et al. 2013; Little and Rubin 
2019). In particular, this work has yielded a typology of missingness: data missing 
completely at random (MCAR), where missing values are independent of observed 
and unobserved features of the data generating process (DGP) including the out-
come; data missing at random (MAR), where missing values are independent of 
unobserved features but related to observed features of the DGP; and, data missing 
not at random (MNAR), where missing values are related to unobserved features of 
the DGP.

Our focus differs from the econometric treatment of missing data because AL 
is inherently biased by the deliberate acquisition of training data (Farquhar et  al. 
2021). By selecting the most informative labels, the data will not follow the underly-
ing population distribution. Thus, our interest is not squarely on the inferential valid-
ity of the model, but rather on the relative performance of a model afflicted with 
missingness compared to the counterfactual context where there is no probability 
of non-response. Our work is, therefore, more aligned with work on missing data in 
machine learning contexts, where the goal is to account for missingness to ensure 
datasets are complete, rather than ascertain unbiased parameter estimates (Stek-
hoven and Buhlmann 2012).

A recent corpus of work has considered non-response in AL contexts (Fang et al. 
2012; Yan et al. 2015; Amin et al. 2021; Nguyen et al. 2022). Of these contributions, 
two provide algorithmic improvements aimed at handling the sorts of non-response 
described above. Yan et al. (2015) propose repeatedly querying examples with non-
response, which may be costly if a null label is highly likely for some informative 

DTrain
t

=

{
DTrain

t−1
∪ {xt, yt}, if rt = 1

DTrain
t−1

, otherwise,
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regions of the feature space. More recent work has sought, therefore, to incorporate 
the posterior predictive rate of abstention in the objective function (Nguyen et  al. 
2022). The Bayesian aspect of this work is, however, computationally taxing, and 
in practice requires approximate methods using maximum a posteriori estimation 
and regularised regression models. It is unclear, given these constraints, whether 
this method can be applied to ensemble-based AL strategies, like QbC, which can 
be more performant than single-hypothesis methods like uncertainty sampling. In 
contrast, the method proposed in this paper simply requires weighting the sampling 
“score" from any strategy.

Moreover, these works do not formalise directly how differences in the types of 
missingness that determine non-response impact the performance of AL. Work in 
this area has noted “knowledge blind-spots’" (Fang et al. 2012) and differences when 
non-response is close and far from the decision boundary (Nguyen et  al. 2022), 
but not compared more general, theoretically derived mechanisms of missingness. 
Finally, we consider AL contexts where a non-response model can be trained sepa-
rately, and often in advance, which may be especially beneficial in production sys-
tems and/or where the rate of non-response is particularly high.

One other proximal research area within AL research focuses on noisy or imper-
fect labels (Yan et  al. 2016). Here, like in the case of non-response, model per-
formance may be affected by differences between the returned and the true label. 
However, unlike noisy labels, we know when we get non-response (a null value is 
returned), whereas we often do not know which labels are noisy, leading to system-
atic differences in how these complications are handled. Work explicitly on noisy 
labels has focused on identifying instances where we are unsure about the label 
value, and re-labelling these points (Sheng et al. 2008; Zhao et al. 2011; Lin et al. 
2016; Nguyen et al. 2020).

Finally, there are conceptual similarities between AL with non-response and 
research on multi-armed bandits  (Lattimore and Szepesvári 2020), i.e., a class of 
algorithms that study the setting where an agent iteratively takes an action that 
results in an observed reward, where the goal is to maximise the total reward over 
a time window. Bandit algorithms face the choice of exploring actions where cur-
rently little is known, and exploiting existing knowledge. There is a strong connec-
tion between the AL problem and best arm identification (BAI)   (Audibert et  al. 
2010), a bandit context where one is solely concerned with maximising the knowl-
edge about an arm’s (potentially context-dependent) reward distribution. One nota-
ble difference is that BAI is concerned with exploration for the sake of learning the 
reward distribution over actions depending on context while AL is concerned with 
exploration for the sake of minimising expected future prediction errors. Moreo-
ver, the partial monitoring literature (Bartók et al. 2014) considers bandit settings 
where for some actions the reward is never observed. This setting has similarities 
to an active learning context with zero response probability in certain regions of 
covariate space.
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4  The impact of (biased) non‑response

Labelling takes different forms, which can lead to different non-response mecha-
nisms. First, consider the conventional context where an unlabelled example is sent 
to a human annotator who explicitly returns a value for that instance. Non-response 
in these contexts can arise for several reasons. Annotators may have capacity to 
review a fixed number of labels, smaller than the number requested, and thus some 
queries remain unreviewed. Or, the annotator may be unsure over the example’s 
label and, rather than guess, abstain or return a null value. Similarly, if there are 
multiple annotators, a value may not be assigned if there is not majority agreement 
or consensus.

Not all labelling is explicit, however: annotations can be based on some 
implicit (user) behaviour. AL is a well-documented method for improving the 
performance of recommendation systems (Elahi et  al. 2016). Real-life rank-
ing systems often factorize the target prediction into several components  (Ma 
et  al. 2018). For example, video streaming services often train two models 
that separately estimate a click-through rate (CTR), P(click = 1) , and some 
quantity that depends on the user behavior after the click such as watch time 
( �[watch time ∣ click = 1] ). This second model is referred to as the post-click 
model. A final ranking is created by sorting on the result of their multiplication: 
�[watch time] = �[watch time ∣ click = 1] × P(click = 1) (Lin et al. 2023).

Similarly, advertisement ranking systems often estimate conversion probabili-
ties of ads by factoring this quantity into a CTR model and a post-click model, i.e., 
P(conversion) = P(conversion ∣ click = 1)P(click = 1) , where the post-click model 
estimates the conversion probabilities of clicked ads  (Barbieri et al. 2016; Rosales 
et al. 2012; Ma et al. 2018). In the ranking systems of these examples we may seek 
to employ active learning to make the exploration of post-click models estimating 
P(click = 1) and �[watch time ∣ click = 1] more efficient. We discuss a practical 
example in more depth in Sect. 7.

Active learning systems that aim to improve post-click/interaction models are 
particularly affected by non-response since labels in these settings are contingent 
upon user interactions such as clicks. In such contexts, the probability of receiving 
a valid label may be very low as users only interact with a tiny share of the items. 
Consequently, the costs of AL may be considerably higher and outweigh the ben-
efits of purposefully serving new advertisements or recommendations in order to 
improve the post-click model.

Beyond the labelling costs of non-response, the presence of missing or null val-
ues across both explicit and implicit AL contexts can affect model training, poten-
tially introducing additional sources of bias into the model framework (Cortes et al. 
2018). More formally, let RΩ(x) be a random binary variable that denotes whether 
the labelling process returns a valid response (1) or non-response (0). Wherever the 
query is clear from the context, we will refer to this random variable as RΩ , for sim-
plicity. We assume that a query can be repeated in subsequent rounds if a label is not 
returned in the current round. As a result, the prediction model becomes conditional 
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not only on the AL-identified training set but also on the success of the labelling 
process itself, i.e.,

Hypothetically, we can quantify the impact that non-response has by considering 
the differential model performance (using some metric like the ROC AUC score) 
between (i) a model trained only on the data with responses and (ii) a full-response 
baseline where all queried examples are labelled. There are two pathways through 
which non-response may impact this performance: 

1. Non-response leads to a reduction in the number of training samples for any 
round t. We call this the “volume effect”. Since new examples are only added to 
the training data when there is a non-null label, the reduction in the volume of 
examples will reduce the ability of the model to improve, compared to the full-
response AL model.

2. Non-response alters the distribution of training examples, relative to the full-
response model, leading to an “imbalance effect”. This imbalance affects the 
performance of the model at time t, though at the most general level it is unclear 
how it would do so: bias in the non-response could even (partially) cancel out the 
inherent selection bias of AL frameworks that we noted earlier.

Crucially, both the volume and imbalance mechanisms have knock-on effects on 
model performance in subsequent rounds of labelling, since the state of the model 
in period t determines the selection of new target labels in t′>t . Where non-response 
induces poor model performance on certain regions of the feature space, the query-
ing function may seek to address this deficiency by oversampling this area in future 
rounds. For example, in a video recommender model, we only observe the watch 
time of a video when the user clicks it. The non-response rate, therefore, will be 
higher for items with low CTR. Oversampling these regions to try to get better data 
on watch time, by upranking these videos, simply results in low response rates in 
future queries.

Figure 1 summarises the hypothesised impact that non-response has on the AL 
framework. In short, a combination of volume and imbalance effects alters the selec-
tion of new unlabelled examples, which in turn leads to degradation in model per-
formance. Given the sequential nature of AL training, this loss of performance has 
the potential to compound over multiple steps of the AL sequence.

4.1  Types of non‑response

We contend that the mechanism(s) of non-response itself can impact how and the 
extent to which these two non-response dynamics – the training and selection effects 
– impact model performance. Here we focus on two types of non-response, applying 
intuitions from the wider inferential literature on missing data (Rubin 1976).

�̂� =

{
Mt(�

� ∣ DTrain
t

), if RΩ = 1,

Mt(�
� ∣ DTrain

t−1
) otherwise.
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Missing completely at random (MCAR) In the simplest case, the labelling pro-
cess may be prone to corruption that is random in nature. For example, data loss 
incurred when streaming data due to unreliable networks or input errors made by 
human annotators may mean that labels are not always returned. Crucially, in these 
cases non-response is induced in ways unrelated to the subject of the measurement.

If non-response is MCAR, then:

That is, the probability of missingness is distributed uniformly across the entire 
feature space and orthogonal to which unlabelled examples are queried. Therefore, 
while non-response will reduce the size of the training set, we would not expect any 
substantial imbalance effect as a result of non-response.

There are many reasons why AL may suffer from MCAR non-response. Con-
sider the human annotator example discussed previously. If any requested labels 
are not logged by the end of the working day, suppose they are left unlabelled. 
If the order of labels given to the annotator is random, then this non-response is 
unrelated to feature values.

Missing at random (MAR) Alternatively, it may be that the non-response mech-
anism is related to X and/or y . In these instances, the probability of non-response 
is not uniform across the feature space. Instead, and assuming non-response is 
explainable by observed features present in X, then:

P(RΩ = 1 ∣ X, y,�) = P(RΩ = 1).

P(RΩ = 1 ∣ X, y,�) = P(RΩ = 1 ∣ X) ≠ P(RΩ = 1).

Fig. 1  The knock-on consequences of non-response on AL. From the same initial model, non-response 
leads to volume and imbalance effects in the AL sequence. Here, the result of these effects is the repeated 
querying of a non-responsive example. Colored blocks refer to data values and the red cross indicates a 
non-response label
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For example, consider the CTR and post-click setting described earlier. Our “query" 
might be an advertisement placed in a video carousel, where a label is assigned only 
if users click through from the advert to the product page. Importantly, features of 
the user may determine both whether the advert is shown (i.e., the user is queried) 
and whether the user clicks.

As Table  1 summarises, MAR non-response does not immediately introduce 
problematic bias into the model. Rather, the effect of missingness on model per-
formance will depend on the interaction between the distribution of informative 
datapoints (at time t) and the (unknown) distribution of non-response.

On the one hand, the probability of non-response could be negatively related to 
the probability of being queried. In other words, some portion of the feature space 
may be more likely to return missing values, but also have low informativeness from 
an AL perspective. For example, younger users may be less likely to click through 
adverts, but given their age, the model is already confident about predicting these 
conversion outcomes. As a result, AL would favour requesting labels from other por-
tions of the dataset, which are less likely to be affected by non-response. In which 
case, while there may be some limited volume effect due to a small number of non-
responses, we would not expect a substantial biasing imbalance effect.

On the other hand, and perhaps more naturally, if some examples are both highly 
informative and have high rates of non-response, then both a volume and bias effect 
will impact model performance. This case can be acutely relevant to e-commerce 
and other content platforms. For example, if one set of items in the advertising 
model never gets clicked, then the model is likely to be uncertain about their conver-
sion probabilities due to a lack of training examples, but to refine these estimates 
would exactly require recording clicks. More generally, higher non-response may be 
precisely why there is uncertainty in these regions, which over the course of sam-
pling iterations leads to reduced informativeness in all parts of the feature space 
except here.

As in the MCAR case, non-response reduces the size of the training set, but 
now this effect is compounded by non-response occurring precisely for those unla-
belled examples AL has identified as being most important for model improvement. 
In the case where the model is able to learn from other parts of the feature space, 
then over subsequent rounds the relative weight placed on querying this space will 
increase. Hence, the selection effect may force the model into repeatedly sampling 
from a region with high non-response rates, which may stall or degrade model 
improvement.

Table 1  Summary of 
hypothesised effects of non-
response in AL

Effect

Non-response Cor(Informativeness, RΩ) Volume Imbalance

MCAR – Yes No
MAR Negative Limited No
MAR Positive Yes Yes
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There is one form of missing data we do not consider in detail: data missing 
not-at-random (MNAR), where non-response is a result of unobserved features of 
the DGP. One particular manifestation of this phenomenon may be where the CTR 
model has features that the post-click model does not have. This case is particularly 
problematic as it would not be possible to model these relationships in the post-
click model. We leave this case, as any correction applied to AL sequences will be 
dependent on the missing relationship being congenial with the data observed.

4.2  Performance difference effects under MAR and MCAR 

In both the MAR and MCAR contexts, fewer responses from the querying function will 
impair the performance of the model (holding constant the number of training rounds). 
In the MAR case, however, the presence of local regions of non-response can further 
impact the model by unbalancing the training data (relative to the full-response model). 
The presence of this additional source of degradation, therefore, suggests that AL per-
formance can be worse under MAR non-response compared to MCAR non-response.

The extent of this divergence, we hypothesise, depends on how skewed the non-
response distribution is, and thus the extent to which the model is able to explore cer-
tain areas of the feature space. In the extreme case, suppose that there are inaccessible 
regions of the data that, if queried, never return a label – they act like “black holes” 
that absorb the entire exploration budget without returning any labels. In this case, the 
imbalance effect will be large, because despite the high informativeness of this region, 
the model is totally prohibited from improving in this area. As a result, holding con-
stant the unconditional rate of non-response, we would expect a large differential in 
model performance between MAR and MCAR missingness.

This case can be contrasted against one where there is still imbalance in the non-
response distribution, but where there is nevertheless some possibility of returning a 
label, and so some chance for model improvement. As the imbalance in the distribution 
of non-response lessens, and thus approaches the distribution under MCAR, then this 
differential should disappear. We demonstrate this expectation in the next section.

5  Adjusting for the probability of non‑response

General approach In AL contexts without non-response, the “utility" of a label is 
its informativeness to subsequent model training, i.e., Uy,t+1 = I(x ∣ Mt) . For exam-
ple, in uncertainty sampling contexts, the most informative labels are defined as 
those from regions of the feature space which the model is most uncertain about. 
When there is the possibility of (random) non-response, however, the query utility 
should be conditional on both the probability of response and the resulting label’s 
informativeness.

Hence, we propose a simple adjustment to how query targets are selected, by 
optimizing the expected utility (EU) of the informativeness score:
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where b is the total budgeted number of queries and �′ are the query targets. Algo-
rithm 1 details the implementation of this expected utility sampling strategy.1 Note 
that non-response is realised “by nature”.
Algorithm 1  Expected Utility Active Learning

By incorporating the cost of querying non-responsive regions of the feature 
space, this adaptation should prevent the model from “wasting” its budget on areas 
where labels are informative but the likelihood of observing one is very small.

The economic aspect of this correction has one further advantage: with suffi-
cient training steps, the model will saturate in regions of the feature space where 
responses are likely. In these instances, the informativeness (however defined) will 
be so minimal that, despite high non-response rates, the model is able to switch to 
sampling solely from highly missing regions.

By design, therefore, this adjustment still grants the AL model leeway to explore 
regions of the feature space: as the model becomes more confident over regions with 
higher response rates, it becomes useful, and relatively less costly, to sample from 
low response regions. Model progress at this point will, clearly, be slow, but it may 
yield informative examples with a sufficient budget (and willingness to pay).

Non-response prediction error In practice, calculating the expected utility 
involves an estimate of the probability of response. In many settings, it may be pos-
sible to train or develop such a model before the active learning process. Note, for 
the purpose of training a CTR model, impressions without a click have a (negative) 
label. Therefore, the CTR model has more data available than the post-click model 

(1)EU =
∑

x∈��

I(x ∣ Mt) × P(RΩ ∣ x), s.t.|��| = b,

1 Following Lattimore (Lattimore and Szepesvári (2020) p.418), we use the TopM(a,m) operator to 
denote the largest m values in vector a . This step has complexity O(n logm) for choosing m largest out of 
an array of length n, when implemented with a MinHeap. Note also line 5 sums the logged scores, which 
is equivalent to multiplying the estimates but more numerically stable.
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that we target in active learning. Hence, the CTR model may be accurate in regions 
where the post-click model is not.

That said, the non-response probabilities from such a model are nevertheless esti-
mates. In some cases, these estimates may have (considerable) uncertainty. We may 
therefore want to explore these areas optimistically. This trade-off will be especially 
important, for example, where the non-response model is trained on a small number 
of observations, or where the non-response model is retrained iteratively during AL. 
We can address this issue by replacing the predicted probability of response p in 
Algorithm 1 with:

where Q(⋅, 0.95) returns the 95th quantile of the distribution of predictions for each 
x ∈ Xpool . This strategy resembles upper confidence bound (UCB) sampling, a 
common bandit algorithm. It requires an estimator that is capable of returning an 
(approximate) posterior distribution, like a Gaussian Process model or bootstrapped 
ensemble. For well-trained (i.e., precise) non-response models, note also that we 
would expect (and find) limited changes incorporating UCB, as the 95th quantile 
will be close to the predicted probability.

We refer to the final correction as the “Upper Confidence Bound of the Expected Util-
ity” (UCB-EU). One major advantage of this strategy is that it is deliberately compatible 
with different base AL sampling strategies. Plausibly, any informativeness metric I and 
non-response estimator P can be plugged into Algorithm 1. As a result, the overall com-
plexity class depends on the choices of I and P . In our experiments, we demonstrate this 
approach using QbC, uncertainty, and random sampling strategies.

6  Empirical evidence of AL model degradation under non‑response

6.1  Experimental setup

Synthetic data We focus on four synthetic data scenarios, as illustrated in Fig.  2. 
Synthetic 1 simulates a linear decision boundary with clusters offset in one dimen-
sion, such that �[Y] = 0.1 . Synthetic 2 and 3 are based on DGPs presented in (Huang 
et al. 2014), which have been demonstrated to prove challenging for AL strategies 

p = Q(Xpool, 0.95),

Fig. 2  Illustration of synthetic datasets used in AL experiments. Note: MAR-1 is a restricted view of the 
data, and only shows two of the five X dimensions
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like uncertainty sampling (Yang and Loog 2018). In Synthetic 2, the data contain 
six normally distributed clusters in two dimensions, with �[Y] = 0.5 . In Synthetic 
3, the data are distributed in a rotated U-shape where the distribution of positive 
cases intersects the tails of the two other sides. Finally, King et al’s MAR-1 data-
set 2001 considers a multivariate normal distribution with moderate correlations 
between five dimensions, based on a simulation design used in inference-focused 
missing data studies (King et al. 2001; Lall and Robinson 2022). We convert this 
final scenario into a classification problem by implementing a non-linear decision 
boundary: yi ←� 5X0 − 4X1 + 3X2 − 2X3 + X4 + 0.5X2

0
+ 3X1X2 >= c , setting c such 

that �[Y] = 0.1.
Non-response mechanisms As noted in Sect. 4, we consider three non-response 

mechanisms. First, that there is no non-response and so we observe the full data 
(i.e., RΩ = 1 across the entire feature space). This mechanism is the benchmark, 
or ideal, data generating context and yields the full-response model. Second, that 
the data is MCAR. This mechanism helps understand the volume effect of training 
(relative to the full data mechanism), since there is no correlation between the prob-
ability of non-response and the feature space. To model MCAR missingness, we 
randomly induce non-response uniformly across the feature space. Third, that the 
data is MAR, where missingness is a function of the observed data. In our experi-
ments, we partition each DGP’s feature space into two regions at some threshold 
value along its first explanatory dimension. Therefore, the missingness is correlated 
with the value of this dimension. On one side of this threshold, the “low response 
region", we impose a high probability of non-response, P(RΩ = 1) = 0.001 , and 
on the other side we impose a high probability of response. We hold constant the 
unconditional missingness probability (to match the MCAR mechanism), by adjust-
ing the specific threshold for the two missing regions.2

Simulations For each scenario and non-response mechanism, we simulate 50 
rounds of AL. Each model is seeded with two random examples. In each round, the 
model queries the 10 most informative unlabelled examples. We repeat each simu-
lation 200 times to calculate the expected performance and 95% confidence inter-
vals for each step of training, assessed using the ROC-AUC score on 1000 holdout 
examples.

We run identical versions of the experiment using QbC, uncertainty, and ran-
dom sampling strategies. QbC is a commonly used query strategy, and it largely 
addresses documented deficiencies of simpler methods like uncertainty sampling 
(Settles 2009). Our QbC model uses a random forest classifier as the ensemble. We 
also benchmark uncertainty sampling as a simple form of AL strategy. The uncer-
tainty sampler uses a linear support vector machine (SVM) as the learning algo-
rithm. Finally, we include random sampling as a naive acquisition strategy to dem-
onstrate the generality of our correction.3

2 Given some defined probability of response in the first region, p1 , and targeted unconditional response 
probability p ∗ , we assign a response probability p2 = 1 − p1(1 − p ∗) to the other region.
3 All simulations were run on a single server instance, using GPU processing equivalent to an NVIDIA 
Tesla P100 GPU with 16GB memory. The total time taken to run 200 simulations for every combina-
tion of missing mechanism, strategy, and DGP was 12 h. The non-response model for each DGP took 
approximately 5 min to train.
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Non-response corrections We implement our proposed algorithm, for each AL 
strategy, as follows:

• For QbC sampling, we use McCallum et al. (McCallum et al. 1998)’s modified 
acquisition function, which is based on the log of the maximum Kullback–Lei-
bler divergence for each label to the log of the UCB predicted probability of 
response

• For uncertainty sampling, we add the log entropy of the predictions over the pool 
examples to the log of the UCB predicted probability of response

• For random sampling, we generate the UCB predicted upper confidence bound 
and softmax these values so the scores sum to 1. n new observations are then 
randomly selected according to this vector of sampling probabilities

To model the probability of non-response, and to perform UCB sampling of a poste-
rior, we pre-train Gaussian Process (GP) models for each simulation DGP.4

6.2  Results

We first consider the uncorrected impact of non-response on AL performance 
(Sect.  6.2.1). We then demonstrate how our solution improves on these results 
(Sect. 6.2.2), before exploring in more detail cases where non-response poses par-
ticularly acute problems for active learning (Sect. 6.3).

6.2.1  Uncorrected impacts of non‑response

Figure  3 plots the simulation results without any correction. Across all four syn-
thetic DGPs, we see that it is the MAR form of missingness that is more harmful to 
active learning than other non-response mechanisms. Over sequential training steps, 
the MAR-affected model either fails to improve or its performance even deteriorates 
as we collect more data. This effect is particularly clear in the Synthetic 3 scenario, 
where the inability to query parts of the feature space biases the model and leads 
to worse performance over sequential training, under both uncertainty and random 
sampling.

Across all scenarios, sequential steps yield model improvements under MCAR 
non-response, but the extent of the difference between this model and the full data 
model, on average, differs considerably. We do observe the effect of having a lower 
volume of training data under both the Synthetic 1 and MAR-1 DGPs, with MCAR 
performance significantly worse than the full data model. This difference is less 
pronounced under QbC, which is relatively less affected by MCAR non-response. 
In Synthetic 3, MCAR performance is substantially poorer, by 50 steps all three 

4 We implemented the GP models using GPyTorch (Gardner et al. 2018). We fit a constant prior mean 
function and scaled RBF kernel for the covariance matrix, using a Bernoulli Likelihood function. Since 
our MAR mechanism is relatively simple, we find these models prove to be very effective classifiers: all 
models have ROC-AUC values above 0.995 and mean absolute errors at or below 0.04.
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sampling strategies see similar performance to the full data model, although there 
are distinguishable differences earlier in training.

We also hypothesised that the difference in model performance between MAR 
and MCAR non-response mechanisms results from an imbalance effect. In the most 
extreme case, when regions of the feature space preclude label acquisition entirely, 
AL strategies simply cannot learn about these regions and thus may perform poorly.

We test this hypothesis by adjusting the probabilities of non-response either 
side of the non-response threshold. To hold constant the volume effect inherent to 
increased missingness, we adjust the cut-off position to maintain the same uncon-
ditional probability of response ( �[R] = 0.3 ). We run 200 simulations per miss-
ingness mechanism for each of the five different non-response probability tuples. 
Where the severity of the non-response threshold is most acute (i.e., fully observed 
on one side, and never-observed on the other) we would expect the largest difference 
in performance. Conversely, as the severity of this threshold decreases, such that the 
non-response probabilities approach uniformity, we would expect MCAR and MAR 
models to converge in performance.

Figure 4 reports the average results over these simulations, using an uncertainty 
sampling strategy. The MCAR-afflicted model improves (slowly) because the miss-
ingness probability is constant across the entire feature space. By contrast, under 
MAR missingness it is impossible to learn about some portion of the feature space. 

Fig. 3  AL model performance in the presence of non-response, using different sampling strategies. 
�[R] = 0.3 across all simulations. Observations in the missing region had a 0.001 probability of response. 
Shaded areas show the 95% confidence interval over 200 separate simulations (per non-response mecha-
nism)
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This becomes increasingly pronounced for low values of P(RΩ = 1 ∣ X) in the 
low-response region, in which case it results in flat learning curves and large gaps 
between MAR and MCAR. As we increase P(RΩ = 1 ∣ X) the MAR/MCAR gap 
decreases, such that in the final panel, where the probability of response in the low 
response region is the same as the marginal rate of response, MAR and MCAR per-
formance are similar.

6.2.2  MAR impacts with UCB‑EU correction

Compared to the uncorrected results, the modified algorithm shows better perfor-
mance for many combinations of strategy and DGP. As shown in Fig. 5, implement-
ing a cost to searching low response regions improves the ability of the QbC strategy 
to refine its selection of unlabelled examples to query. In all but the Synthetic 3 
DGP, using the UCB-EU correction leads to substantially better model performance.

Figure  6 plots the results of using the UCB-EU correction for uncertainty and 
random sampling strategies, respectively. In the case of random sampling, the UCB-
EU correction also yields considerably better model performance, although the 
naivety of the baseline strategy appears to add additional noise to the learning pro-
cess early in training. By around 30 steps of AL training, and similar to the more 
performant QbC strategy, the UCB-EU corrected models outperform the baseline 
model under the Synthetic 1, 2, and MAR-1 DGPs.

In the case of uncertainty sampling, the performance improvements are less pro-
nounced. However, we observe that uncertainty sampling consistently underper-
forms random sampling on these datasets. This result is not surprising given existing 

Fig. 4  The effect of imbalance on model performance between MAR and MCAR non-response mecha-
nisms. The probabilities above each panel indicate the probability of response in the low response region 
of the feature space. Shaded areas show 95% confidence intervals over 200 simulations

Fig. 5  Comparison of Query-by-Committee AL performance with and without UCB-EU correction, 
under MAR non-response. The DGP is identical to the results presented in Fig. 3
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literature: it is widely documented that uncertainty sampling does not always outper-
form random sampling (Attenberg and Provost 2011; Settles 2012; Yang and Loog 
2018; Jin et al. 2022; Tifrea et al. 2023). We cannot expect UCB-EU non-response 
corrections to make a sampling strategy sample efficient under non-response set-
tings, if that sampling strategy is not sample efficient without non-response to start 
with. Therefore, we believe this is failure of uncertainty sampling itself rather than a 
failure of the UCB-EU adjustment.

6.3  Where should the model query?

MAR non-response on Synthetic 3 leads to worse performance under our modified 
algorithm. This result is most pronounced in the case of uncertainty sampling. We 
conjecture that the degradation in performance observed under the Synthetic 3 DGP 
is a result of non-response forcing the model to fit on a low non-response part of 
feature subspace that is non-representative of the general population (and hence, of 
the test set distribution). In other words, modifying the AL sequence to discount the 
utility of low-response regions may narrow the model’s focus too much, therefore 
learning a “local" decision boundary that is optimised only for the low non-response 
parts. This boundary is quite different from the global optimal boundary that would 
result in performance similar to the full data model.

We can illustrate this point in two ways. First, we abstract away from AL and 
simply assume areas of the feature space are fully observed ( RΩ(x) = 1 ) or never 
observed ( RΩ(��) = 0 ). We take a large N sample and train a target model on this 
data, which should approximate the long-run performance of the AL model with 
many queries from the pool. We conduct this exercise four times, varying where the 
non-response threshold is applied, which has the effect of varying the proportion of 
the DGP that is observable.

Fig. 6  Comparison of Uncertainty and Random AL performance with and without UCB-EU correction, 
under MAR non-response. The DGP is identical to the results presented in Fig. 3
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Figure  7 plots the DGP and the estimated decision boundaries in each case. 
The leftmost panel displays the optimal linear decision boundary with zero 
non-response. The dashed vertical line indicates the boundary between the low-
response (left) and full-response (right) regions of covariate space. While a linear 
boundary cannot perfectly distinguish labels under this DGP’s distribution, the 
ROC AUC score is nevertheless high with a 100% response rate. As the response 
rate decreases, the decision boundary rotates as it fits to the narrower set of points 
in the high-response region on the right side of the dashed line. The optimal deci-
sion boundary, conditional on the observed data, becomes increasingly different 
from the “true" decision boundary as the proportion of non-response increases. 
By the third panel, the decision boundary is mis-classifying the entire bottom 
wing of the DGP distribution. By the final panel, moreover, the classification 
boundary has inverted. Unsurprisingly, the ROC AUC scores decline substan-
tially as non-response affects more of the area. These results confirm our conjec-
ture that in the “ideal" world where an AL sequence focuses only on observable 
examples, this myopia can lead UCB-EU to exacerbate the selection bias effects 
that are always present when using active learning. When response probabilities 

Fig. 7  The effect of non-response on estimated decision boundaries in Synthetic 3 DGP. Dashed vertical 
lines indicate the threshold between low-response (left) and full-response (right) regions of the covariate 
space. Blurred datapoints indicate specific examples of the underlying DGP that are not available to the 
model during fitting. All models are trained on 6000 observations, to minimise uncertainty over the deci-
sion boundary

Fig. 8  Query history using the QbC strategy and UCB-EU correction with Synthetic 3 DGP. The model 
is trained for 500 steps with a batch size of 10 and two initial labelled examples (black daggers). The 
underlying DGP is shown as a faint distribution of grey dots in the background. Blue crosses indicate the 
queried label was observed, and red circles indicate non-response. Each facet shows the (binned) queries 
within the sequence of AL iterations
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become infinitesimally small, the harm from this selection bias may outweigh the 
benefits of UCB-EU that are obtained from increased annotation volume relative 
to uncorrected AL.

Next, we verify this expectation by tracking the query targets in our AL experi-
mentation setup, using the UCB-EU correction and QbC sampling strategy. Fig-
ure  8 plots each individual query attempt and whether the resulting label was 
observed. We bin the AL iterations into sequential facets, to show when in the 
sequence each query was made. In early iterations of training, the AL model pays 
almost exclusive attention to the high response region of the feature space. In 
particular, in steps 1 to 125, it focuses on the top-right section (right of where the 
dashed line was). This is the result of the UCB-EU correction: when the model 
has few observations, the most informative queries, and those with the highest 
response probabilities, are in this region. As the model reaches the point where it 
has exhausted the learning potential in this region, it switches its focus to attempt 
to learn in the low-response parts of covariate space where the model does not 
yet have much training data. Consistent with Fig.  7, we now observe selection 
bias induced by non-response. The UCB-EU correction prevents the AL sequence 
from “wasting" early queries on parts of the feature space where the probability 
of getting a valid label are very small, but which would ultimately yield a differ-
ent (and better) decision boundary if observed.

7  Case study: taobao shopping behaviour modelling

Consider an e-commerce platform that ranks products that are presented as a list of 
items on its homepage. A click on an item in this ranking brings the user to a product 
details page with a checkout button. The aim is to rank products in a way that max-
imises the conversions on the platform. Imagine that the product ranking system is 
designed to factorize the estimation task of conversion probabilities into two separate 
machine learning models: P(conversion) = P(click = 1)P(conversion ∣ click = 1) , 
i.e., a CTR  model that estimates the probability that a user will click on a product 
in the ranking, and a so-called post-click model that estimates the probability that a 
user who clicked on the product and lands on the product details page will proceed 
to purchase the item. Factorization into separate CTR and post-click models is com-
mon in the e-commerce and online advertising industry (Ma et al. 2018; Lin et al. 
2023; Barbieri et al. 2016; Rosales et al. 2012). The resulting quantity P(conversion) 
yields the probability that a user will purchase an item in the ranking, and serves as 
our sorting criterion for ranking purposes. The CTR model can be trained on a data-
set of all items that users viewed, while the post-click model can only be trained on 
a data set of page loads of the product details page (hence, on clicked items).

Imagine a setting where we aim to improve the post-click model component 
through AL exploration, and to achieve this exploration we can intervene in what 
products we display in the product ranking. In this setting, whether a user clicks the 
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item or not constitutes the non-response mechanism, i.e., we do not obtain a label 
for the post-click model if the user does not click.5

We use the large-scale Taobao (Tianchi 2018) dataset that consists of product 
impressions, clicks, and conversions like in the setup that we described above. We 
set out to assess whether our proposed method helps correct for the potential non-
response bias in this context. This data includes a random sample of 1.1 million 
users and their corresponding behaviours on the platform between 6-13 July 2017 
( n=700 million behaviour logs). We use a combination of the user, product, and 
behaviour data so that we can record which users clicked which product (the label-
ling process) and which users purchased the product (the post-click target model).

To simulate the AL process, we initialise a random forest model with 50 random 
observations. We conduct 25 steps of AL, and at each step query 5000 new examples 
from the pool ( n=12.3 million user-product-behaviour triples), to simulate impres-
sions by users. We realise non-response using the observed CTR indicator from the 
data. At the end of each step, all queried observations are removed from the pool to 
mimic the temporary nature of the impression. We also test a version of this simu-
lation, approximating the re-querying strategy of Yan et al. (2015), where queried 
observations with non-response are replaced in the pool rather than removed. We 
holdout a test set of 10,000 observations (post-click user-item pairs).

Finally, to assess how the performance of the non-response (i.e., CTR) model 
affects the improvement produced by UCB-EU, we run our simulation multiple 
times, implementing a series of “synthetic” CTR models where we deliberately 
vary the model’s ROC-AUC score across simulations. These CTR models use, as 
their base prediction, the true click-through scores (from the pool). We then corrupt 
this vector, by inverting 1 − ROC-AUC labels randomly, to generate CTR models of 

Fig. 9  Target model performance of UCB-EU AL-trained models compared to other algorithms. Lines 
plot the mean ROC-AUC at each step and the shaded areas plot the 95% confidence intervals

5 The absence of a click should be interpreted as missing data for the P(conversion ∣ click = 1) estimator 
and not as a negative label. Including non-clicked impressions as negative labels would result in a direct 
estimation of the marginal P(conversion) . Our aim here, instead, is to estimate the conditional probability 
P(conversion ∣ click = 1) and then estimate P(conversion) by multiplying the conditional quantity by the 
estimated CTR, as is common in industry.
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varying performance. We compare our general method to the average case Bayesian 
Active Learning with Abstention Feedbacks (BALAF) proposed by Nguyen et  al. 
(2022). This approach uses L2-regularised logistic regression models to approximate 
learning the posterior of the target and non-response models, using maximum a pos-
teriori estimation, and we pre-train the missing model using the entire pool.

Figure 9 displays the results of each scenario, averaged over 100 independent 
simulations of each AL process. Compared to the uncorrected QbC model, using 
UCB-EU for 25 steps of AL can yield up to a 10% improvement in the model’s 
ROC-AUC relative to AL without the UCB-EU correction. However, the quality 
of the non-response model matters: less accurate non-response models result in 
smaller gains from UCB-EU as the adjustments become noisy.

Replacing queried datapoints has very little impact on model performance, and 
is still markedly worse than the UCB-EU correction. The average-case BALAF 
strategy results are also largely indistinguishable from the uncorrected AL model 
as the confidence intervals largely overlap. We believe that this result is unsur-
prising: as the authors themselves note, the performance of BALAF breaks down 
when the rate of non-response is high.

8  Discussion and conclusion

Non-response in the feature space limits model performance. In this paper, we 
extend our understanding of this process by demonstrating that the form of non-
response, and its potentially correlated relation with the underlying DGP, leads to 
differential impacts on model performance, and can even degrade model perfor-
mance over time. Biased non-response of this type may be particularly common 
where AL involves user interactions. We demonstrate that we can mitigate this 
loss in performance by adjusting the utility of querying labels by the estimated 
probability of non-response.

Importantly, we find, however, that non-response distributions can lead to local 
decision boundaries inconsistent with the theoretically global optima. This is a 
challenging problem for AL methods, which deserves attention in future research. 
It is also worth noting that, at any given step, our correction may yield labels 
that are less intrinsically informative but which avoid the model learning nothing 
by receiving a null label. Therefore, while our approach should have improved 
performance relative to a naive AL model, it faces the hard constraint that non-
response may ultimately curtail the informativeness of the data available to the 
model.

Finally, our experiments use a high non-response probability. This severity 
creates a sharp threshold in the feature space, and likely contributes to the lim-
ited effect our correction has in some contexts (relative to random non-response). 
As we demonstrate, separately, where the probability of response is higher (even 
under MAR conditions), the imbalance effect on model performance becomes 
relatively less substantial. We do, however, think that contexts of high (or even 
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total) non-response are common in areas where, for example, labelling requires 
costly user behaviour.

Funding No funding was received to assist with the preparation of this manuscript.

Availability of data and materials All simulation data-generating processes are described in the paper. All 
data used in Sect. 7 is available at https:// tianc hi. aliyun. com/ datas et/ 56.

Declarations 

 Competing interest The authors have no relevant financial/non-financial interests.

Ethics approval and consent to participate There are no ethical issues. This research was considered and 
approved by the London School of Economics’ research ethics procedure (ref. 183654).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative 
Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

Amin K, DeSalvo G, Rostamizadeh A (2021) Learning with labeling induced abstentions. In: Advances 
in Neural Information Processing Systems, pp 12576–12586

Attenberg J, Provost F (2011) Inactive learning? difficulties employing active learning in practice. ACM 
SIGKDD Explorations Newsl 12(2):36–41

Audibert JY, Bubeck S, Munos R (2010) Best arm identification in multi-armed bandits. In: COLT, pp 
41–53

Barbieri N, Silvestri F, Lalmas M (2016) Improving post-click user engagement on native ads via survival 
analysis. In: Proceedings of the 25th International Conference on World Wide Web, pp 761–770

Bartók G, Foster DP, Pál D et al (2014) Partial monitoring-classification, regret bounds, and algorithms. 
Math Oper Res 39(4):967–997

Carcillo F, Le Borgne YA, Caelen O et al (2018) Streaming active learning strategies for real-life credit 
card fraud detection: assessment and visualization. Int J Data Sci Anal 5:285–300

Cortes C, DeSalvo G, Gentile C, et al (2018) Online learning with abstention. In: International confer-
ence on machine learning, pp 1059–1067

Elahi M, Ricci F, Rubens N (2016) A survey of active learning in collaborative filtering recommender 
systems. Comput Sci Rev 20:29–50

Fang M, Zhu X, Zhang C (2012) Active learning from oracle with knowledge blind spot. In: Twenty-
Sixth AAAI Conference on Artificial Intelligence

Farquhar S, Gal Y, Rainforth T (2021) On statistical bias in active learning: How and when to fix it. arXiv 
preprint arXiv: 2101. 11665

Freund Y, Seung HS, Shamir E et al (1997) Selective sampling using the query by committee algorithm. 
Mach Learn 28(2–3):133

Gardner J, Pleiss G, Weinberger KQ, et al (2018) GPyTorch: Blackbox matrix-matrix Gaussian process 
inference with GPU acceleration. In: Advances in neural information processing systems

Hansen MH, Hurwitz WN (1946) The problem of non-response in sample surveys. J Am Stat Assoc 
41(236):517–529

https://tianchi.aliyun.com/dataset/56
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2101.11665


1 3

Active learning with biased non-response to label requests  

Huang SJ, Jin R, Zhou ZH (2014) Active learning by querying informative and representative examples. 
IEEE Trans Pattern Anal Mach Intell 36(10):1936–1949

Jin Q, Yuan M, Li S et al (2022) Cold-start active learning for image classification. Inf Sci 616:16–36
King G, Honaker J, Joseph A et  al (2001) Analyzing incomplete political science data: an alternative 

algorithm for multiple imputation. Am Polit Sci Rev 95(1):49–69
Lall R, Robinson T (2022) The midas touch: Accurate and scalable missing-data imputation with deep 

learning. Polit Anal 30(2):179–196
Lattimore T, Szepesvári C (2020) Bandit algorithms. Cambridge University Press
Lewis DD (1995) A sequential algorithm for training text classifiers: Corrigendum and additional data. 

In: ACM SIGIR Forum, pp 13–19
Lin C, Mausam M, Weld D (2016) Re-active learning: Active learning with relabeling. In: Proceedings of 

the AAAI Conference on Artificial Intelligence
Lin X, Chen X, Song L, et al (2023) Tree based progressive regression model for watch-time prediction 

in short-video recommendation. arXiv preprint arXiv: 2306. 03392
Little RJ, Rubin DB (2019) Statistical analysis with missing data, vol 793. John Wiley & Sons
Ma X, Zhao L, Huang G, et  al (2018) Entire space multi-task model: An effective approach for esti-

mating post-click conversion rate. In: Proceedings of the International ACM SIGIR Conference on 
Research & Development in Information Retrieval, pp 1137–1140

McCallum A, Nigam K, et al (1998) Employing EM and pool-based active learning for text classification. 
In: ICML, pp 350–358

Mohan K, Pearl J, Tian J (2013) Graphical models for inference with missing data
Nguyen CV, Ho LST, Xu H et al (2022) Bayesian active learning with abstention feedbacks. Neurocom-

puting 471:242–250
Nguyen VA, Shi P, Ramakrishnan J, et al (2020) CLARA: confidence of labels and raters. In: Proceed-

ings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 
pp 2542–2552

Rosales R, Cheng H, Manavoglu E (2012) Post-click conversion modeling and analysis for non-guaran-
teed delivery display advertising. In: Proceedings of the fifth ACM international conference on Web 
search and data mining, pp 293–302

Rubin DB (1976) Inference and missing data. Biometrika 63(3):581–592
Settles B (2009) Active learning literature survey technical report. University of Wisconsin-Madison 

Department of Computer Sciences
Settles B (2012) Uncertainty sampling. In: Active Learning. Springer, p 11–20
Seung HS, Opper M, Sompolinsky H (1992) Query by committee. In: Proceedings of the fifth annual 

workshop on Computational learning theory, pp 287–294
Sheng VS, Provost F, Ipeirotis PG (2008) Get another label? improving data quality and data mining 

using multiple, noisy labelers. In: Proceedings of the 14th ACM SIGKDD international conference 
on knowledge discovery and data mining, pp 614–622

Stekhoven DJ, Bühlmann P (2012) Missforest-non-parametric missing value imputation for mixed-type 
data. Bioinformatics 28(1):112–118

Tax N, de Vries KJ, de Jong M et al (2021) (2021) Machine learning for fraud detection in e-commerce: 
A research agenda. Deployable Machine Learning for Security Defense: Second International Work-
shop, MLHat 2021, Virtual Event, August 15. Springer, pp 30–54

Tianchi (2018) Ad display/click data on taobao.com. https:// tianc hi. aliyun. com/ datas et/ dataD etail? 
dataId= 56

Tifrea A, Clarysse J, Yang F (2023) Margin-based sampling in high dimensions: When being active is 
less efficient than staying passive. In: International Conference on Machine Learning (ICML), vol 
202. PMLR, pp 34222–34262

Yan S, Chaudhuri K, Javidi T (2015) Active learning from noisy and abstention feedback. In: 53rd 
Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp 1352–1357

Yan S, Chaudhuri K, Javidi T (2016) Active learning from imperfect labelers. In: Advances in Neural 
Information Processing Systems

Yang Y, Loog M (2018) A benchmark and comparison of active learning for logistic regression. Pattern 
Recogn 83:401–415

Zhao L, Sukthankar G, Sukthankar R (2011) Incremental relabeling for active learning with noisy crowd-
sourced annotations. In: 2011 IEEE third international conference on privacy, security, risk and trust 
and 2011 IEEE third international conference on social computing, IEEE, pp 728–733

http://arxiv.org/abs/2306.03392
https://tianchi.aliyun.com/dataset/dataDetail?dataId=56
https://tianchi.aliyun.com/dataset/dataDetail?dataId=56


 T. S. Robinson et al.

1 3

Authors and Affiliations

Thomas S. Robinson1,2 · Niek Tax2 · Richard Mudd2 · Ido Guy3

 * Thomas S. Robinson 
 t.robinson7@lse.ac.uk

 Niek Tax 
 niek@meta.com

 Richard Mudd 
 rmudd@meta.com

 Ido Guy 
 idoguy@meta.com

1 Department of Methodology, The London School of Economics and Political Science, London, 
UK

2 Central Applied Science, Meta, London, UK
3 Central Applied Science, Meta, Tel Aviv, Israel

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.


	Active learning with biased non-response to label requests
	Abstract
	1 Introduction
	2 Background
	3 Related literature
	4 The impact of (biased) non-response
	4.1 Types of non-response
	4.2 Performance difference effects under MAR and MCAR

	5 Adjusting for the probability of non-response
	6 Empirical evidence of AL model degradation under non-response
	6.1 Experimental setup
	6.2 Results
	6.2.1 Uncorrected impacts of non-response
	6.2.2 MAR impacts with UCB-EU correction

	6.3 Where should the model query?

	7 Case study: taobao shopping behaviour modelling
	8 Discussion and conclusion
	References


