
Lumiere: Making Optimal BFT for Partial Synchrony Practical
Andrew Lewis-Pye

London School of Economics

United Kingdom

a.lewis7@lse.ac.uk

Dahlia Malkhi

UC Santa Barbara

USA

dahliamalkhi@ucsb.edu

Oded Naor

StarkWare

Israel

odednaor@gmail.com

Kartik Nayak

Duke University

USA

kartik@cs.duke.edu

ABSTRACT
The view synchronization problem lies at the heart of many Byzan-

tine Fault Tolerant (BFT) State Machine Replication (SMR) protocols

in the partial synchrony model, since these protocols are usually

based on views. Liveness is guaranteed if honest processors spend

a sufficiently long time in the same view during periods of syn-

chrony, and if the leader of the view is honest. Ensuring that these

conditions occur, known as Byzantine View Synchronization (BVS),
has turned out to be the performance bottleneck of many BFT SMR

protocols.

A recent line of work [7, 12] has shown that, by using an ap-

propriate view synchronization protocol, BFT SMR protocols can

achieve 𝑂 (𝑛2) communication complexity in the worst case after

GST, thereby finally matching the lower bound established by Dolev

and Reischuk in 1985 [9]. However, these protocols suffer from two

major issues, hampering praticality:

(i) When implemented so as to be optimistically responsive,
even a single Byzantine processor may infinitely often cause

Ω(𝑛Δ) latency between consecutive consensus decisions.

(ii) Even in the absence of Byzantine action, infinitely many

views require honest processors to send Ω(𝑛2) messages.

Here, we present Lumiere, an optimistically responsive BVS proto-

col which maintains optimal worst-case communication complex-

ity while simultaneously addressing the two issues above: for the

first time, Lumiere enables BFT consensus solutions in the partial

synchrony setting that have𝑂 (𝑛2) worst-case communication com-

plexity, and that eventually always (i.e., except for a small constant

number of “warmup” decisions) have communication complexity

and latency which is linear in the number of actual faults in the

execution.

CCS CONCEPTS
• Theory of computation → Distributed algorithms.

PODC ’24, June 17–21, 2024, Nantes, France
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0668-4/24/06.

https://doi.org/10.1145/3662158.3662787

KEYWORDS
Distributed Systems, Byzantine View Synchronization

ACM Reference Format:
Andrew Lewis-Pye, Dahlia Malkhi, Oded Naor, and Kartik Nayak. 2024.

Lumiere: Making Optimal BFT for Partial Synchrony Practical. In ACM
Symposium on Principles of Distributed Computing (PODC ’24), June 17–21,
2024, Nantes, France. ACM, New York, NY, USA, 10 pages. https://doi.org/10.

1145/3662158.3662787

1 INTRODUCTION
State machine replication (SMR) is a central topic in distributed

computing and refers to the task of implementing a fault-tolerant

service by replicating servers and coordinating client interactions

with server replicas [18]. Driven partly by high levels of invest-

ment in ‘blockchain’ technology, recent years have seen interest

in developing SMR protocols that work efficiently at scale [8]. In

concrete terms, this means looking to minimize the latency and the

communication complexity per consensus decision as a function of

the number of processors (participants) 𝑛.

SMR protocols typically aim to achieve Byzantine fault tolerance,

i.e., consensus among processors (server replicas) even if a bounded

proportion of the processors are Byzantine and behave arbitrar-

ily/maliciously. The partial synchrony model [10] is a common

networking model on which many of these protocols are based,

and this model can be seen as a practical compromise between

the synchronous and asynchronous communication models. This

model assumes a point in time called the global stabilisation time

(GST) such that any message sent at time 𝑡 must arrive by time

max{GST, 𝑡} + Δ. While Δ is known, the value of GST is unknown

to the protocol. Optimal resiliency in the partial synchrony com-

munication model means tolerating up to 𝑓 Byzantine processors

among 𝑛 processors, where 𝑓 is the largest integer less than 𝑛/3
[10].

The view-based paradigm and view synchronization in partial
synchrony. Many BFT SMR protocols [6, 11, 15, 20] in the partial

synchrony model employ a view-based paradigm. The instructions

for such protocols are divided into views, each view having a desig-

nated leader to drive progress. A consensus decision is guaranteed

to be reached during periods of synchrony whenever honest pro-

cessors spend a sufficiently long time together in any view with an

honest leader. The problem of ensuring that processors synchronize

for long enough in the same view is known as the Byzantine View
Synchronization (BVS) problem.

135

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3662158.3662787
https://doi.org/10.1145/3662158.3662787
https://doi.org/10.1145/3662158.3662787
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3662158.3662787&domain=pdf&date_stamp=2024-06-17


PODC ’24, June 17–21, 2024, Nantes, France Andrew Lewis-Pye, Dahlia Malkhi, Oded Naor, and Kartik Nayak

HotStuff [20] was the first BFT SMR protocol to decouple the

core consensus logic from a “Pacemaker” module that implements

BVS, but left the pacemaker implementation unspecified. The core

consensus logic in HotStuff requires quadratic communication com-

plexity in theworst case and linear latency, while each view requires

only linear complexity and a constant number of rounds. The task

of view synchronization therefore becomes the efficiency bottle-

neck and the key question becomes: Can we design a Byzantine view
synchronization protocol with optimal communication complexity
and latency?

The desired communication complexity and latency require-

ments need some elaboration. Worst-case complexity should be

𝑂 (𝑛2) to meet the Dolev-Reischuk bound [9]. However, when there

are fewer actual faults 𝑓𝑎 ≤ 𝑓 , one would hope for the worst-case

complexity between every pair of consensus decisions to be a func-

tion of 𝑓𝑎 such that complexity is 𝑜 (𝑛2) when 𝑓𝑎 = 𝑜 (𝑛). Likewise,
whereas worst-case latency is 𝑂 (𝑛Δ), one would hope for latency

𝑜 (𝑛Δ) in the face of a small number 𝑓𝑎 of actual faults. Furthermore,

given that the core consensus logic can provide optimistic respon-
siveness, such a property would be desirable in BVS also. Roughly,

this means that the protocol should function at ‘network speed’ if it

turns out that the actual number of faults 𝑓𝑎 ≤ 𝑓 is 0: if 𝑓𝑎 = 0, the

protocol should be live during periods when message delay is less

than the given bound Δ, and latency should be a function of the

actual (unknown) message delay 𝛿 . This is important because the

actual message delay 𝛿 may be much smaller than Δwhen the latter

value is conservatively set to ensure liveness under a wide range of

network conditions. More formally, we can say that a protocol is op-

timistically responsive if, subsequent to some finite time after GST,

the worst-case latency between synchronized views with honest

leaders (each of which will produce a consensus decision) is 𝑂 (𝛿)
in the case that 𝑓𝑎 = 0. Generalizing this, a protocol is smoothly
optimistically responsive if the corresponding bound is 𝑂 (Δ𝑓𝑎 + 𝛿)
for any value of 𝑓𝑎 ≤ 𝑓 .

Recent works have addressed the Byzantine view synchroniza-

tion problem and achieved some of the above described goals [3, 7,

12, 16, 17]: Cogsworth [16] is the first optimistically linear Byzan-

tine view synchronization protocol against a constant number of

benign failures, and NK20 [17] robustified it against constant Byzan-

tine failures, but both have non-optimal worst-case; LP22 [12] and

RareSync [7] require a large latency with fewer actual number of

faults, and Fever [13] stipulates the first view is already synchro-

nized which may be difficult to bootstrap in practice. Lumiere is

the first Byzantine view synchronization protocol in the partial

synchrony model to achieve all of these properties simultaneously.

They key result is the following:

Theorem 1.1. Lumiere is a BVS protocol for the partial synchrony
model with the following properties:

(1) Worst-case communication complexity 𝑂 (𝑛2).
(2) Worst-case latency 𝑂 (𝑛Δ).
(3) The protocol is smoothly optimistically responsive.
(4) Eventual worst case communication complexity 𝑂 (𝑓𝑎𝑛 + 𝑛).
All terms described in Theorem 1.1 are formally defined in Sec-

tion 2. Table 1 compares the relevant performance measures for

state-of-the-art protocols. The comparison is described in more

detail in Section 5.

We emphasize that Lumiere is the first BVS protocol for partial

synchrony that satisfies (1) and (2) from the statement of Theorem

1.1 while also satisfying either (3) or (4) (and, in fact, satisfies both of
these properties). The basic approach to describing a protocol that

is smoothly optimistically responsive while satisfying properties

(1) and (2) is to combine techniques from LP22 [12] and Fever [13].

LP22 achieves worst-case communication complexity 𝑂 (𝑛2) by
dividing the instructions into epochs, where each epoch consists

of 𝑓 + 1 views. By performing a heavy (Θ(𝑛2) communication

complexity) synchronization process only once at the beginning

of each epoch, one can avoid the need for synchronization within

epochs, thereby matching the Dolev-Reischuk bound [9]. LP22 also

achieves optimistic responsiveness, but suffers from the issue that

even a single faulty leader is then able to achieve Θ(𝑛Δ) delays.
Borrowing a technique from Fever, views with correct leaders can

advance at the speed of the network, rather than waiting for pre-set

synchronized slots within the epoch. This removes the large latency

of LP22 and thus, simultaneously achieve properties (1)–(3).

The most technically complex task is then to modify the protocol

so as to also ensure that the eventual worst case communication

complexity is 𝑂 (𝑓𝑎𝑛 + 𝑛) (property (4)). To do so requires estab-

lishing conditions that allow processors to stop carrying out heavy

epoch changes once sufficiently synchronized. This involves a num-

ber of substantial technical complexities that are discussed in depth

in Section 3.5.

Due to space limitations, the full proof of correctness has been

deferred to the online version of this paper [14].

2 THE SETUP
For simplicity, we assume 𝑛 = 3𝑓 + 1 and consider a set Π =

{𝑝1, . . . , 𝑝𝑛} of 𝑛 processors. At most 𝑓 processors may become

corrupted by the adversary during the course of the execution, and

may then display Byzantine (arbitrary) behaviour. We let 𝑓𝑎 denote

the actual number of processors that become corrupted. Processors

that never become corrupted by the adversary are referred to as

honest.

Cryptographic assumptions. Our cryptographic assumptions are

standard for papers on this topic. Processors communicate by point-

to-point authenticated channels. We use a cryptographic signature

scheme, a public key infrastructure (PKI) to validate signatures,

and a threshold signature scheme [1, 19]. The threshold signature

scheme is used to create a compact signature of𝑚-of-𝑛 processors,

as in other consensus and view synchronisation protocols [20]. In

this paper, either𝑚 = 𝑓 + 1 or𝑚 = 2𝑓 + 1. The size of a threshold

signature is 𝑂 (𝜅), where 𝜅 is a security parameter, and does not

depend on𝑚 or𝑛. We assume a computationally bounded adversary.

Following a common standard in distributed computing and for

simplicity of presentation (to avoid the analysis of negligible error

probabilities), we assume these cryptographic schemes are perfect,

i.e. we restrict attention to executions in which the adversary is

unable to break these cryptographic schemes.

The partial synchrony model. As noted above, processors com-

municate using point-to-point authenticated channels. We consider

the standard partial synchrony model, whereby a message sent at

time 𝑡 must arrive by time max{GST, 𝑡} +Δ. While Δ is known, the

136



Lumiere: Making Optimal BFT for Partial Synchrony Practical PODC ’24, June 17–21, 2024, Nantes, France

Protocol Cogsworth
NK20 LP22 Fever Lumiere

(this work)

Model Partial

Synchrony

Partial

Synchrony

Bounded

Clocks

Partial

Synchrony

Worst-case
Communication 𝑂 (𝑛3) 𝑂 (𝑛2) 𝑂 (𝑛2) 𝑂 (𝑛2)

Eventual Worst-case
Communication 𝑂 (𝑛 + 𝑛𝑓 2𝑎 ) 𝑂 (𝑛2) 𝑂 (𝑛𝑓𝑎 + 𝑛) 𝑂 (𝑛𝑓𝑎 + 𝑛)

Worst-case
Latency 𝑂 (𝑛2Δ) 𝑂 (𝑛Δ) 𝑂 (𝑓𝑎Δ + 𝛿) 𝑂 (𝑛Δ)

Eventual Worst-case
Latency 𝑂 (𝑓 2𝑎 Δ + 𝛿) 𝑂 (𝑛Δ) 𝑂 (𝑓𝑎Δ + 𝛿) 𝑂 (𝑓𝑎Δ + 𝛿)

Table 1: Summary of the results for state-of-the-art optimistically responsive protocols.

value of GST is unknown to the protocol. The adversary chooses

GST and also message delivery times, subject to the constraints

already defined. We let 𝛿 denote the actual (unknown) upper bound

on message delay after GST. Each processor 𝑝 also maintains a local

clock value lc(𝑝). We assume that each processor 𝑝 may join the

protocol with lc(𝑝) = 0 at any arbitrary time prior to GST, and that

processors may experience arbitrary clock drift prior to GST. For

simplicity we assume that, for honest 𝑝 after GST, lc(𝑝) advances
in real time, except when 𝑝 pauses lc(𝑝) or bumps it forward (ac-

cording to the protocol instructions). However, our analysis is easily

modified to deal with a scenario where local clocks have bounded

drift during any interval after GST in which they are not paused

or bumped forward. When we wish to make the dependence on 𝑡

explicit, we write lc(𝑝, 𝑡) to denote the value lc(𝑝) at time 𝑡 .

The underlying protocol. We suppose view synchronisation is

required for some underlying protocol (such as Hotstuff) with the

following properties:

• Views. Instructions are divided into views. Each view 𝑣 has

a designated leader, denoted lead(𝑣).
• Quorum certificates. The successful completion of a view

𝑣 is marked by all processors receiving a Quorum Certifi-
cate (QC) for view 𝑣 . The QC is a threshold signature of

length 𝑂 (𝜅) (for the security parameter 𝜅 that determines

the length of signatures and hash values) combining 2𝑓 + 1

signatures from different processors testifying that they have

completed the instructions for the view. In a chained imple-

mentation of Hotstuff, for example, the leader will propose a

block, processors will send votes for the block to the leader,

who will then combine those votes into a QC and send this

to all processors. Alternatively, one could consider a (non-

chained) implementation of Hotstuff, in which the relevant

QC corresponds to a successful third round of voting.

• Sufficient time for view completion. We suppose:

(⋄1) There exists some known 𝑥 ≥ 2 such that if lead(𝑣) is
honest, if (the global time) 𝑡 ≥ GST, and if at least 2𝑓 + 1

honest processors are in view 𝑣 from time 𝑡 until either

they receive a QC for view 𝑣 or until 𝑡 +𝑥𝛿 , then all honest

processors will receive a QC for view 𝑣 by time 𝑡 + 𝑥𝛿 , so

long as all messages sent by honest processors while in

view 𝑣 are received within time 𝛿 ≤ Δ.
(⋄2) No view 𝑣 produces a QC unless there is some non-zero

interval of time during which at least 2𝑓 + 1 processors all

act as if honest and in view 𝑣 .

The view synchronisation task. For 𝑥 as above, we must ensure:

(1) If an honest processor is in view 𝑣 at time 𝑡 and in view 𝑣 ′

at 𝑡 ′ ≥ 𝑡 , then 𝑣 ′ ≥ 𝑣 .

(2) There exists some honest lead(𝑣) and 𝑡 ≥ GST such that

each honest processor is in view 𝑣 from time 𝑡 until either it

receives a QC for view 𝑣 or until 𝑡 + 𝑥Δ.

Condition (1) above is required by standard view-based SMR proto-

cols to ensure consistency. Since GST is unknown to the protocol,

condition (2) suffices to ensure the successful completion of infin-

itely many views with honest leaders. By a BVS protocol, we mean

a protocol which determines when processors enters views and

which satisfies conditions (1) and (2) above.

Complexity measures. All messages sent by honest processors

will be of length 𝑂 (𝜅), where 𝜅 is the security parameter determin-

ing the length of signatures and hash values. Wemake the following

definitions. Given 𝑇 ≥ GST, let 𝑡∗
𝑇
be the least time > 𝑇 at which,

for some view 𝑣 , the underlying protocol has honest lead(𝑣) pro-
duce a QC for view 𝑣 (if there exists no such time, set 𝑡∗

𝑇
:= ∞).

Then:

• The worst-case communication complexity after 𝑇 , denoted
𝑊𝑇 , is the maximum number of messages sent by correct

processors (combined) between time 𝑇 and 𝑡∗
𝑇
.

• The worst-case communication complexity is the worst-case

communication complexity after GST+Δ.
• The eventual worst-case communication complexity is lim sup

𝑇→∞
𝑊𝑇 .

137



PODC ’24, June 17–21, 2024, Nantes, France Andrew Lewis-Pye, Dahlia Malkhi, Oded Naor, and Kartik Nayak

• The worst-case latency is the maximum possible value of

𝑡∗
GST

− GST.

• The eventual worst-case latency is lim sup

𝑇→∞
𝑡∗
𝑇
−𝑇 .

We note that Lumiere achieves its eventual worst-case communica-

tion complexity and latency for 𝑇 which is within expected 𝑂 (𝑛Δ)
time of GST.

3 OVERVIEW OF LUMIERE
In this section, we give an informal overview of the Lumiere proto-

col. Since the protocol itself is quite simple and hence practical to

implement, we start with a brief protocol synopsis in Section 3.1.

The insights behind Lumiere and its analysis are more involved.

Therefore, following the synopsis, we explain the ingredients that

make it work. First, in Section 3.2, we review the LP22 protocol,

and explain why it suffers from the two weaknesses described in

Section 1. Then, in Section 3.3, we review the basic idea behind

the Fever protocol. In Section 3.4, we describe how to combine the

techniques developed by LP22 and Fever so as to give a protocol

which has𝑂 (𝑛2) worst-case communication complexity and which

is smoothly optimistically responsive. Finally, in Section 3.5, we

describe how to remove the need for views with Ω(𝑛2) communi-

cation complexity within time 𝑂 (𝑛Δ) of GST.

3.1 Lumiere Synopsis
Borrowing from RareSync and LP22, Lumiere batches views into

epochs, and intertwines two synchronization procedures: a “heavy”

epoch synchronization procedure and a “light” non-epoch synchro-

nization procedure (throughout the paper, we enumerate views and

epochs starting from 0, so that the first view is view 0 and the first

epoch is epoch 0).

More specifically, at the start of some epochs, Lumiere employs

a two round all-to-all broadcast procedure whose quadratic com-

munication cost is amortized over all the views in the epoch. Impor-

tantly, Lumiere introduces a newmechanism that prevents perform-

ing such epoch synchronizations after a successful epoch generat-

ing QCs by 2𝑓 + 1 leaders. This guarantees that only an expected

constant-bounded number of heavy synchronizations will occur

after GST. This mechanism is explained in detail in Section 3.5.

Within each epoch, Lumiere employs a light view synchroniza-

tion procedure, which entails linear message complexity per view,

and which allows processors to ‘bump’ their clocks forward and

begin the instructions for the next view when they receive a QC –

this process of ‘bumping’ clocks is explained in detail in Sections

3.3 and 3.4. Bumping clocks in this way produces a protocol that is

smoothly optimistically responsive.

The above is the entire protocol. However, to make this work

we need to tune a parameter Γ of the protocol that determines the

view timers, so as to guarantee two things.

Firstly, we need that:

(a) If the 𝑓 +1 honest processors whose clocks aremost advanced

begin some view with an honest leader within time Γ of one

another after GST, the leader can generate a QC.

Second, because epoch synchronizations stop after a successful

epoch, we must also guarantee that, in that event, either the clocks

of honest processors are already sufficiently synchronized, or else

the production of QCs by honest leaders will reduce the gap be-

tween the clocks of honest processes so that they are sufficiently

synchronized soon after. To this end, we need that:

(b) The generation of QCs by honest leaders after GST “shrinks”

the gap between the clocks of the 𝑓 + 1 honest processors

whose clocks are most advanced (unless this gap is already

less than Γ).

It turns out that both (a) and (b) are accomplished simply by

tuning the parameter Γ, and we will discuss appropriate values for

Γ in the sections that follow.

The protocol is described in detail in Sections 3.4, 3.5 and 4.

3.2 Overview of LP22
Epochs. The core idea behind LP22 revolves around the concept

of epochs: For every 𝑒 , the sequence 𝑓 + 1 views [𝑒 (𝑓 + 1), . . . , 𝑒 (𝑓 +
1) + 𝑓 ] is referred to as epoch 𝑒 . We define 𝑉 (𝑒) := 𝑒 · (𝑓 + 1) and
𝐸 (𝑣) := ⌊𝑣/(𝑓 + 1)⌋, so that view 𝑉 (𝑒) is the first view of epoch

𝑒 and 𝐸 (𝑣) is the epoch to which view 𝑣 belongs. The first view

of each epoch is also called an epoch view, and all other views are

called non-epoch views. The leader of view 𝑣 is processor 𝑣 mod 𝑛.

The clock time corresponding to a view. Clock times are not really

necessary for specifying the LP22 protocol (which could equally be

presented using ‘timers’), but we wish to give a presentation here

which is as similar as possible to our presentation of Lumiere later

on.

As explained in Section 2, each processor maintains a local clock

value lc(𝑝). We also consider a clock time corresponding to each

view, denoted c𝑣 := Γ𝑣 . Here Γ should be thought of as the length

of time allocated to view 𝑣 , and (for LP22) can be set to Γ := 𝑥Δ + Δ
(where 𝑥 is as specified in Section 2). Roughly, the idea is that the

processor 𝑝 wishes to execute the instructions for view 𝑣 once its

local clock reaches c𝑣 .

The instructions for entering epoch views. Let 𝑣 := 𝑉 (𝑒). Processor
𝑝 wishes to enter epoch 𝑒 and view 𝑣 if it is presently in a lower view

and once its local clock reaches c𝑣 . At this point, it pauses its local
clock and sends an epoch view 𝑣 message to all processors,

1
indi-

cating that it wishes to enter epoch 𝑒 . Upon receiving epoch view 𝑣
messages from 2𝑓 + 1 distinct processors while in a view < 𝑣 , any

honest processor combines these into a single threshold signature,

which is called an Epoch Certificate (EC) for view 𝑣 , and sends the

EC to all processors. Upon seeing an EC for view 𝑣 while in any

lower view, any honest processor sets lc(𝑝) := c𝑣 , unpauses its
local clock if paused, and then enters epoch 𝑒 and view 𝑣 . Note that

this process involves honest processors sending Θ(𝑛2) messages

(combined). If 𝑡 ≥ GST is the first time at which an honest processor

enters epoch 𝑒 , then all honest processors see the corresponding

EC giving them permission to enter epoch 𝑒 by time 𝑡 + Δ.

The instructions for entering non-epoch views. If we did not re-

quire a protocol that is optimistically responsive, we could simply

have each processor enter non-epoch view 𝑣 when its local clock

1
It is convenient throughout to assume that when a processor sends a message to all

processors, this includes itself.

138



Lumiere: Making Optimal BFT for Partial Synchrony Practical PODC ’24, June 17–21, 2024, Nantes, France

reaches c𝑣 . To achieve optimistic responsiveness, LP22 uses a sim-

ple trick. Processor 𝑝 enters non-epoch view 𝑣 when the first of the

following events occurs:

• Its local clock reaches c𝑣 , or;
• Processor 𝑝 sees a QC for view 𝑣 − 1.

High level analysis of the protocol. The key insight is that, while

the process for entering epoch 𝑒 entails honest processors sending

Θ(𝑛2) messages (combined), no further message sending is then

required to achieve synchronization within the epoch. If the first

honest processor to enter epoch 𝑒 does so after GST, then all honest

processors will see the corresponding EC within time Δ of each

other. Suppose 𝑣 is the first view of epoch 𝑒 with an honest leader.

If no leader has already produced a QC for some view < 𝑣 in the

epoch, then view 𝑣 will produce a QC.

To see that the protocol is optimistically responsive, suppose

all leaders of an epoch are honest and let 𝛿 be the actual upper

bound on message delay after GST. If the first honest processor to

enter epoch 𝑒 does so after GST, then (according to the assumptions

of Section 2) the first leader will produce a QC in time 𝑂 (𝛿). All
honest processors will receive this QC within time 𝛿 of each other,

which means that the leader of the second view will then produce

a QC in time 𝑂 (𝛿), and so on.

It is also not difficult to see that the protocol suffers from the

two issues (i) and (ii) outlined in Section 1. First of all, we have

already noted that entering each epoch requires honest processors

to send Θ(𝑛2) messages (combined), meaning that the eventual

worst-case communication complexity is Θ(𝑛2). To see that even a

single Byzantine processor can cause a latency of 𝑂 (𝑛Δ) between
consensus decisions, consider what happenswhen the first 𝑓 leaders

of an epoch produce QCs very quickly. If the last leader of the epoch

is Byzantine, then honest processors must then wait for time almost

(𝑓 + 1)Γ before wishing to enter the next epoch. Figure 1 illustrates

a scenario with three good views producing 𝑄𝐶s quickly, a faulty

fourth view, and the fifth view suffering almost a 3Γ delay.

3.3 Overview of Fever
As noted previously, Fever makes stronger assumptions regarding

clock synchronization than are standard (the assumptions of this

paper are standard and are outlined in Section 2). However, we

will show that the techniques developed by Fever can be combined

with the LP22 protocol to give a protocol that is smoothly optimisti-

cally responsive. The fundamental idea behind Fever stems from

consideration of what we refer to as the honest gap:

Definition 3.1 (Defining the honest gaps). At any time 𝑡 , we

let 𝑝𝑖,𝑡 be the honest processor whose local clock is the 𝑖th most

advanced, breaking ties arbitrarily. So, 𝑝1,𝑡 is the honest processor

whose local clock is most advanced. For 𝑖 ∈ [1, 2𝑓 + 1], we define
the 𝑖th honest gap at time 𝑡 to be hg𝑖,𝑡 := lc(𝑝1,𝑡 , 𝑡) − lc(𝑝𝑖,𝑡 , 𝑡). In
particular, hg𝑓 +1,𝑡 is the gap between the local clock of the most

advanced honest processor and the local clock of the (𝑓 + 1)st most

advanced honest processor.

Recall that, in Section 3.2, Γ was the maximum length of time

allotted to each view, and that we set Γ := (𝑥 + 1)Δ (where 𝑥 is as

specified in Section 2). For Fever, we set Γ := 2(𝑥 + 1)Δ. We note

that this change in Γ will not impact protocol performance in the

optimistic case that leaders are honest. We also observe below that

this factor of 2 can also be decreased to arbitrarily close to 1 by

making a simple change to the protocol.

The non-standard clock assumption. The assumption that Fever

rests on is that, at the start of the protocol execution, hg𝑓 +1,0 ≤ Γ.
The protocol also assumes that an honest processor’s local clock

progresses in real time unless ‘bumped forward’ (according to the

protocol instructions). Given this assumption, the protocol is then

designed so that, even though processors often bump their clocks

forward:

(a) hg𝑓 +1,𝑡 ≤ Γ for all 𝑡 ≥ 0.

(b) If hg𝑓 +1,𝑡 ≤ Γ at 𝑡 ≥ GST which is the first time an honest

processor enters the initial view 𝑣 with honest leader, then

the leader will produce a QC.

Since the instructions are very simple, we just state them, and then

show that they function as intended.

Initial and non-initial views. Fever does not consider any notion

of epochs. The leader for view 𝑣 is processor ⌊𝑣/2⌋ mod 𝑛. If 𝑣

is even, then 𝑣 is called ‘initial’, otherwise 𝑣 is ‘non-initial’. The

reason we consider initial and non-initial views will become clear

when we come to verify (b) above. As in Section 3.2, the clock-time

corresponding to view 𝑣 is c𝑣 := Γ𝑣 .

When processors enter views. If 𝑣 is initial, then 𝑝 enters view

𝑣 when lc(𝑝) = c𝑣 . If 𝑣 is not initial, then 𝑝 enters view 𝑣 if it

is presently in a view < 𝑣 and it receives a QC (formed by the

underlying protocol) for view 𝑣 − 1.

View Certificates. When an honest processor 𝑝 enters a view 𝑣

which is initial, it sends a view 𝑣 message to lead(𝑣). This message

is just the value 𝑣 signed by 𝑝 . Once lead(𝑣) receives 𝑓 + 1 view 𝑣
messages from distinct processors, it combines these into a single

threshold signature, which is a View Certificate (VC) for view 𝑣 ,

and sends this VC to all processors.

When processors bump clocks. At any point in the execution, if

an honest processor 𝑝 receives a QC for view 𝑣 − 1 (formed by the

underlying protocol) or a VC for view 𝑣 , and if lc(𝑝) < c𝑣 , then 𝑝

instantaneously bumps their local clock to c𝑣 .

Verifying the claim (a) above. Since the local clocks of honest
processors only ever move forward, it follows that at any point

in an execution, if an honest processor 𝑝 has already contributed

to a QC or a VC for view 𝑣 , then lc(𝑝) ≥ c𝑣 . To prove the claim,

suppose towards a contradiction that there is a first point of the

execution, 𝑡 say, at which the claim fails to hold. Then it must be

the case that some honest 𝑝 bumps its clock forward at 𝑡 , and that

𝑝 = 𝑝1,𝑡 after bumping its clock forward, with lc(𝑝) strictly greater
than the value of any honest clock at any time < 𝑡 .

There are two possibilities:

(1) 𝑝 bumps its clock because it receives a VC for some view

𝑣 with c𝑣 > 𝑐 (𝑝). In this case, there must exist at least one

honest processor 𝑝′ ≠ 𝑝 which contributed to the VC for

view 𝑣 . This contradicts the fact that 𝑝 = 𝑝1,𝑡 .

(2) 𝑝 bumps its clock because it sees a QC for some view 𝑣 −1. In

this case, 𝑝 bumps its clock to c𝑣 . At least 𝑓 +1 honest proces-
sors must have contributed to the QC, which directly gives

139



PODC ’24, June 17–21, 2024, Nantes, France Andrew Lewis-Pye, Dahlia Malkhi, Oded Naor, and Kartik Nayak

All-to-all synchronization

at the beginning of epoch 𝑒

lc(𝑝)

𝑉 (𝑒) · Γ +Γ +Γ +Γ +Γ

QCs for views

𝑉 (𝑒),𝑉 (𝑒) + 1,𝑉 (𝑒) + 2

Enter view 𝑉 (𝑒) + 4

after no progress

in view 𝑉 (𝑒) + 3

Figure 1: LP22: Epoch-synchronization and optimistically responsive QC generation

the required contradiction because each of those processors

𝑝′ must have lc(𝑝′) ≥ c𝑣−1 = c𝑣 − Γ.

Verifying the claim (b) above. Suppose that hg𝑓 +1,𝑡 ≤ Γ at 𝑡 which
is the first time an honest processor enters an initial view 𝑣 with

honest leader. Then lead(𝑣) will receive 𝑓 + 1 view 𝑣 messages by

time 𝑡 + Γ + Δ, and all honest processors will be in view 𝑣 by time

𝑡 + Γ + 2Δ (if the leader has not already produced a QC for view

𝑣 by this time). Note that processors do not enter view 𝑣 + 1 until

seeing a QC for view 𝑣 because view 𝑣 + 1 is not initial: this is key

to ensuring all honest processors will be in view 𝑣 (and not any

higher view) by time 𝑡 + Γ + 2Δ. All processors will then receive a

QC for view 𝑣 by time 𝑡 + 2Γ − 𝑥Δ and will be in view 𝑣 + 1 by this

time (unless the leader has already produced a QC for view 𝑣 + 1).

All processors will then receive a QC for view 𝑣 + 1 by time 𝑡 + 2Γ.
Although we do not give a formal proof here (we give a formal

proof for Lumiere in the online version of the paper at [14]), it is

also clear that the protocol is smoothly optimistically responsive

because the delay caused by each faulty leader is at most Γ per

view.

Reducing Γ. It is not difficult to see that Γ can be made arbitrarily

close to (𝑥 + 1)Δ by increasing the number of consecutive views

allocated to each leader (and altering the definition of initial and

non-initial views accordingly): doing so increases worst-case la-

tency, but proportionally decreases the total time that can be wasted

by faulty leaders.

3.4 Basic Lumiere Solution
To describe the full version of Lumiere, we break the presentation

down into two steps. In this section, we show how to combine the

techniques developed by LP22 and Fever to give a protocol called

Basic Lumiere, which maintains 𝑂 (𝑛2) worst-case communication

complexity while also being smoothly optimistically responsive.

Then, in Section 3.5, we describe how to modify the protocol to

remove the need for views with Ω(𝑛2) communication complexity

within time 𝑂 (𝑛Δ) of GST (this last step turns out to be the one

that is complicated).

The basic idea. The idea behind combining LP22 and Fever is

simple. Fever requires the assumption that hg𝑓 +1,𝑡 ≤ Γ at the start

of the protocol execution. While we do not wish to make this

assumption, the ‘heavy’ synchronization process that LP22 employs

at the start of each epoch does ensure hg𝑓 +1,𝑡 is bounded by Δ < Γ

at the start 𝑡 of any epoch that begins after GST. We can therefore

employ the Fever protocol within epochs. Doing so ensures that

hg𝑓 +1,𝑡 ′ remains bounded by Γ for 𝑡 ′ ≥ 𝑡 within each epoch. All

honest leaders therefore produce QCs, and the protocol is smoothly

optimistically responsive because each faulty leader can only cause

Γ delay per view.

Initial, non-initial, and epoch views. The leader for view 𝑣 is

processor ⌊𝑣/2⌋ mod 𝑛. If 𝑣 is even, then 𝑣 is called initial: otherwise

𝑣 is non-initial. If 𝑣 mod 2(𝑓 + 1) = 0, then 𝑣 is called an epoch view.

We set 𝑉 (𝑒) := 2(𝑓 + 1)𝑒 . The clock-time corresponding to view 𝑣

is c𝑣 := Γ𝑣 .

When processors enter initial non-epoch views. If 𝑣 is initial and
is not an epoch view, then 𝑝 enters view 𝑣 when lc(𝑝) = c𝑣 .

When processors enter non-initial views. If 𝑣 is not initial, then 𝑝

enters view 𝑣 if it is presently in a view < 𝑣 and it receives a QC

for view 𝑣 − 1.

When processors enter epoch views. Processor 𝑝 enters the epoch

view 𝑣 if it is presently in a lower view and if 𝑝 receives an EC for

view 𝑣 .

View Certificates. When an honest processor 𝑝 enters a view 𝑣

which is initial and which is not an epoch view, it sends a view 𝑣
message to lead(𝑣). This message is just the value 𝑣 signed by 𝑝 .

Once lead(𝑣) receives 𝑓 + 1 view 𝑣 messages from distinct proces-

sors, it combines these into a single threshold signature, which is a

view certificate (VC) for view 𝑣 , and sends this VC to all processors.

Epoch certificates. Let 𝑣 := 𝑉 (𝑒). Processor 𝑝 wishes to enter

epoch 𝑒 and view 𝑣 if it is presently in a lower view and once its

local clock reaches c𝑣 . At this point, it pauses its local clock and

sends an epoch view 𝑣 message to all processors. Upon receiving

epoch view 𝑣 messages from 2𝑓 + 1 distinct processors while in

a view < 𝑣 , any honest processor combines these into a single

threshold signature, which is called an EC for view 𝑣 , and sends the

EC to all processors.

When processors bump clocks. At any point in the execution, if

a correct processor 𝑝 receives a QC for view 𝑣 − 1 (formed by the

underlying protocol) or a VC or EC for view 𝑣 , and if lc(𝑝) <

c𝑣 , then 𝑝 instantaneously bumps their local clock to c𝑣 . Upon
receiving an EC for view 𝑣 while in a lower view, 𝑝 unpauses its

local clock (if paused).

140



Lumiere: Making Optimal BFT for Partial Synchrony Practical PODC ’24, June 17–21, 2024, Nantes, France

3.5 Removing Epoch Synchronisations for the
Steady State

The idea behind removing the need for repeated ‘heavy’ (Θ(𝑛2)
communication) epoch view changes after GST is that, once the

first has been carried out, honest processors are already sufficiently

synchronised. Since GST is unknown, however, processors cannot

know directly when synchronization has occurred. Instead, they

should look to see when some ‘success criterion’ has been satisfied.

For example, one might wait to see an epoch which has produced a

QC or a certain number of QCs, and then temporarily pause heavy

view changes until one sees an epoch which does not satisfy the

success criterion. Unfortunately, taking this approach immediately

introduces some complexities, described below. We note that the

following discussion considers an as yet unspecified ‘success cri-

terion’: we will define an appropriate criterion once the relevant

issues have been explained.

Some processors may see the success criterion satisfied, while others
do not. In the case that the success criterion is satisfied due to QCs

produced by faulty leaders, it may be the case that some honest

processors fail to see the success criterion satisfied. Since they will

then require an EC to enter the next epoch, those processors who

do see the success criterion satisfied will still need to contribute to

the EC. On the other hand, we do not wish Byzantine processors

alone to be able to trigger EC formation, otherwise the Byzantine

players will be able to cause every epoch to begin with a heavy

view change. To deal with this, we have to modify the epoch change

process slightly:

• If an honest processor sees the success condition satisfied

for an epoch 𝑒 , then they view 𝑉 (𝑒 + 1) as a standard ini-

tial view (meaning that they enter the view when their lo-

cal clock reaches c𝑉 (𝑒+1) ) and do not immediately send an

epoch view 𝑉 (𝑒 + 1) message (nor pause their local clock).

• Any honest processor who reaches the end of epoch 𝑒 and

does not see the success criterion satisfied pauses its local

clock and sends an epoch view 𝑉 (𝑒 + 1) message to all pro-

cessors Any set of 𝑓 + 1 epoch view𝑉 (𝑒 + 1) messages from

distinct processors is referred to as a TC for view 𝑣 .

• When any honest processor in an epoch ≤ 𝑒 +1 sees a TC for

view𝑉 (𝑒 + 1), they send an epoch view𝑉 (𝑒 + 1) message to

all processors.

• Any processor that does not see the success criterion for

epoch 𝑒 satisfied enters epoch 𝑒 + 1 upon seeing an EC for

view 𝑉 (𝑒 + 1), and unpauses its local clock at that point.

• An EC for view 𝑉 (𝑒 + 1) is now defined to be a set of

epoch view𝑉 (𝑒+1) messages from 2𝑓 +1 distinct processors.

The success criterionmight be satisfied for all epochs after GSTwith-
out synchronization actually occurring. Since QCs may be formed

with the help of Byzantine processors, the formation of QCs does

not actually imply that the (𝑓 + 1)st honest gap is less than Γ (or

even small). One is therefore potentially presented with a scenario

where the success criterion continues to be satisfied for every epoch

after GST with the help of Byzantine processors. If epochs involve

2(𝑓 + 1) views, and if the success condition is seeing a single leader

in the epoch produce two QCs, then this would represent highly

sub-optimal behaviour. The situation can be improved by increasing

the length of an epoch by a constant factor to 2𝑛 views (meaning

each processor gets two successive views as leader) and by setting

the success criterion to be 2𝑓 + 1 leaders each producing two QCs

(for views in the epoch). If every epoch after GST produces the

success criterion, this might now look like a reasonable outcome.

Unfortunately, it still represents sub-optimal behaviour because 𝑓

honest leaders may fail to produce QCs in each epoch if 𝑓 Byzantine

leaders each produce two QCs (in this case, the adversary is highly

over-represented in QC generation).

To remedy this issue, the basic idea is to set Γ so that each honest

leader who produces QCs is able to shrink the (𝑓 + 1)st honest
gap. If the success criterion continues to be satisfied, meaning that

multiple honest leaders are shrinking the (𝑓 + 1)st honest gap, then
the aim is that, within expected time 𝑂 (𝑛Δ) of GST, the (𝑓 + 1)st
honest gap should come down below Γ.

Setting Γ to shrink the honest gap. For technical reasons we set
Γ := 2(𝑥 + 2)Δ, but the following argument would also work for

the value of Γ used in Section 3.3. We insist that honest leaders

only produce a QC for view 𝑣 if they can do it within time Γ/2− 2Δ
of sending the VC for view 𝑣 , or within that time of sending the

QC for the previous view if 𝑣 is not initial. Note that this bound is

on the time at which the QC is produced, rather than the time at

which it is received.

To see that an honest leaderwho produces aQC after GST shrinks

the (𝑓 + 1)st honest gap, we can reason as follows: a more formal

proof is given in the full proof of correctness in the online version of

the paper at [14]. Let 𝑡 be such that lc(𝑝 𝑓 +1,𝑡 , 𝑡) = 𝑐𝑣 and suppose

𝑝 := lead(𝑣) is honest. The instructions ensure that 𝑝 receives

𝑓 + 1 view 𝑣 messages by 𝑡 + Δ and sends a VC to all processors

by this time. The QC is then produced by time 𝑡 + Γ/2 − Δ and is

received by all processors by time 𝑡 + Γ/2. Upon receiving this QC,

honest processors whose local clocks are less than c𝑣+1 forward
their clocks to this value. This reduces the (𝑓 + 1)st honest gap (and
also the (2𝑓 + 1)st) by at least Γ/2 or to a value below Γ unless,

for some 𝑡 ′ ∈ [𝑡, 𝑡 + Γ/2], some honest processor bumps its honest

clock forward upon seeing a QC at 𝑡 ′ and becomes 𝑝1,𝑡 ′ upon doing

so. In the latter case the (𝑓 + 1)st honest gap is anyway reduced to

below Γ.

The honest gap must be brought below Γ within a single epoch.
While the (𝑓 + 1)st honest gap cannot be increased (except to a

value below Γ) within an epoch, the same is not true of the (2𝑓 +1)st
honest gap. Unfortunately, the fact that some honest processors

may see epoch 𝑒 produce the success criterion, while others do not,

means that the process of moving to epoch 𝑒 + 1 may significantly

increase the (𝑓 + 1)st honest gap: If only 𝑓 honest processors see

the success criterion, then some honest processors will have to wait

to see an EC for view𝑉 (𝑒 + 1) before entering the next epoch. This
means that the (𝑓 + 1)st honest gap can increase to become equal

to the (2𝑓 + 1)st honest gap.
If the first honest processor to enter epoch 𝑒 ≥ 0 does so after

GST, then we will be able to show that the (𝑓 + 1)st honest gap is

less than (4𝑓 +2)Γ at the start of the epoch. The difficulty described

above can therefore be addressed by increasing the length of an

epoch by a constant factor, so that a single epoch that produces

the success criterion brings the (𝑓 + 1)st honest gap to within

Γ by the end of the epoch: since the (𝑓 + 1)st honest gap is <

141



PODC ’24, June 17–21, 2024, Nantes, France Andrew Lewis-Pye, Dahlia Malkhi, Oded Naor, and Kartik Nayak

(4𝑓 +2)Γ at the start of the epoch, decreasing it by Γ/2 at least 8𝑓 +2
times suffices. We note that increasing the length of the epoch does

represent a slight tradeoff. While Basic Lumiere outperforms LP22

on all measures, the cost for Lumiere of significantly decreasing

the eventual worst-case communication complexity is a constant

factor increase in the worst-case latency, i.e. the time to the first
consensus decision after GST. Latency in the steady state is still

significantly decreased when compared to LP22, because Lumiere

is smoothly optimistically responsive.

Two further complexities. Extending the length of an epoch allows
us to ensure that the (𝑓 + 1)st honest gap is brought down to below

Γ by the last view of the epoch. If the (2𝑓 + 1)st honest gap is still

large at that point, however, there remains the danger that the

process of changing epoch will substantially increase the (𝑓 + 1)st
honest gap: We wish to ensure that the (𝑓 +1)st honest gap remains

small thereafter, so that all honest leaders from QCs from that point

on. To ensure that the epoch change does not increase the (𝑓 + 1)st
honest gap (or at least not by more than Δ), it suffices that the last

leader of the epoch and the first leader of the next are both honest,

since then they will be able to reduce the (2𝑓 + 1)st honest gap to

below Γ. To make things simple, we can also ensure that these two

views have the same leader.

To describe a final complexity that needs to be dealt with, let us

suppose that the (𝑓 +1)st honest gap is less than Γ at the beginning of
an epoch 𝑒 , so that all honest leaders produce QCs during the epoch.

If time less than Δ passes after the success criterion is satisfied and

before the clocks of some honest processors reach c𝑉 (𝑒+1) (because
a long sequence of QCs are produced in time less than Δ), then
it is possible that honest processors will not have seen the QCs

produced by some honest leaders when their local clock reaches

c𝑉 (𝑒+1) , and will therefore send epoch view𝑉 (𝑒 + 1) messages. To

remedy this obstacle, we have processors wait timeΔ before sending

an epoch view 𝑉 (𝑒 + 1) message when they do not immediately

see satisfaction of the success criterion.

4 THE FORMAL SPECIFICATION
It is convenient to assume that, whenever any processor sends a

message to all processors, it also sends this message to itself (and

this message is immediately received).

Local clocks. Recall that each processor 𝑝 has a local clock value,

denoted lc(𝑝). Initially, 𝑝 sets lc(𝑝) := 0. For simplicity, we sup-

pose lc(𝑝) advances in real time (with zero drift after GST), except

when 𝑝 pauses lc(𝑝) or bumps it forward. As noted in Section 2,

our analysis is easily modified to deal with a scenario where local

clocks have bounded drift during any interval after GST in which

they are not paused or bumped forward. Recall also Definition 3.1,

which applies unaltered to this section.

Leaders and the clock time corresponding to each view. To deter-

mine the leader of view 𝑣 , let (𝑔0, . . . , 𝑔𝑧−1) be a random ordering of

the permutations of {1, . . . , 𝑛} subject to the condition that, if 𝑖 ≤ 𝑧

is odd, then𝑔𝑖 and𝑔𝑖+1 mod 𝑧 are reverse orderings.
2
Wewish to give

each leader two consecutive views, and to order leaders according

to 𝑔0, then 𝑔1, and so on, cycling back to 𝑔0 once we have ordered

2
The latter condition on reverse orderings is stipulated so that, for 𝑒 ≥ 0, the last

leader of epoch 𝑒 is the same as the first leader of epoch 𝑒 + 1.

according to 𝑔𝑧−1. To achieve this, set 𝑗 := ⌊𝑣/(2𝑛)⌋ mod 𝑧. The

leader for view 𝑣 , denoted lead(𝑣), is processor 𝑔 𝑗 (⌊𝑣/2⌋ mod 𝑛).

Initial and non-initial views. If 𝑣 is even, then view 𝑣 is called

initial. Otherwise, 𝑣 is non-initial. The clock time corresponding

to view 𝑣 is c𝑣 := Γ𝑣 . We set Γ := 2(𝑥 + 2)Δ, and insist that honest

leaders only produce a QC for view 𝑣 if they can do it within time

Γ/2−2Δ of sending the VC for view 𝑣 , or within that time of sending

the QC for the previous view if 𝑣 is not initial. The operational

distinction between initial and non-initial views is expanded on

below.

Epochs and epoch views. Epoch 𝑒 consists of the 10𝑛 views in

the interval [5(2𝑛)𝑒, 5(2𝑛) (𝑒 + 1)). The first view of each epoch is

called an epoch view, while other views are referred to as non-epoch
views. We define 𝑉 (𝑒) := 10𝑛𝑒 and 𝐸 (𝑣) := ⌊𝑣/(10𝑛)⌋, so that 𝑉 (𝑒)
is the first view of epoch 𝑒 and 𝐸 (𝑣) is the epoch to which view 𝑣

belongs.

When processors enter initial views. A processor 𝑝 enters the

initial view 𝑣 when lc(𝑝) == c𝑣 if its local clock is not paused.

Upon doing so, 𝑝 sends a view 𝑣 message to lead(𝑣).

Forming VCs. Suppose 𝑣 is an initial (epoch or non-epoch) view.

If lead(𝑣) is presently in view 𝑣 ′ ≤ 𝑣 and receives view 𝑣 messages

from 𝑓 + 1 distinct processors, then lead(𝑣) forms a threshold

signature which is a VC for view 𝑣 and sends this to all processors.

The instructions upon receiving a VC. If 𝑝 is presently in view

𝑣 ′ < 𝑣 and receives a VC for initial view 𝑣 , then 𝑝 sets lc(𝑝) := c𝑣 .

When processors enter non-initial views. A processor 𝑝 enters the

non-initial view 𝑣 if it is presently in a lower view and if it sees a

QC for view 𝑣 − 1.

The instructions upon receiving a QC. If 𝑝 is presently in view

𝑣 and sees a QC for view 𝑣 ′ ≥ 𝑣 , then it sets lc(𝑝) := c𝑣′+1 if

lc(𝑝) < c𝑣′+1.
The operational distinction between initial and non-initial views

is this. Upon their local clocks reaching c𝑣 , where 𝑣 is an initial

non-epoch view, processors perform light view synchronization to

bring others into view 𝑣 . Namely, they enter view 𝑣 and immediately

send a view message. On the other hand, processors do not enter

the non-initial view 𝑣 + 1 unless they obtain a QC for view 𝑣 ; view

𝑣 + 1 serves as sort of a “grace period” allowing the initial view

𝑣 preceding it to produce a QC even after some local clocks have

reached c𝑣+1. Note that, upon obtaining a QC for view 𝑣 , processors

bump their local clocks (if lower) to c𝑣+1 and proceed to enter view
𝑣 + 1 immediately if in a lower view. If a processor receives a QC for

the non-initial view 𝑣+1 while in a view ≤ 𝑣+1, then it immediately

enters view 𝑣 + 2 (unless, perhaps, 𝑣 + 2 is an epoch view – see

below).

The success criterion. Each processor 𝑝 maintains a local variable

success(𝑒), initially 0. Processor 𝑝 sets success(𝑒) := 1 upon

seeing at least 2𝑓 + 1 distinct processors each produce 10 QCs for

views in the epoch. We say that epoch 𝑒 ‘produces the success

criterion’ if at least 2𝑓 + 1 distinct processors each produce 10 QCs

for views in the epoch.

142



Lumiere: Making Optimal BFT for Partial Synchrony Practical PODC ’24, June 17–21, 2024, Nantes, France

Algorithm 1 The instructions for processor 𝑝

1: Local variables
2: lc(𝑝 ) , initially 0 ⊲ This is the value of 𝑝’s local-clock
3: 𝑣𝑖𝑒𝑤 (𝑝 ) , initially -1 ⊲ The present view of 𝑝 .

4: 𝑒𝑝𝑜𝑐ℎ (𝑝 ) , initially -1 ⊲ The present epoch of 𝑝 .

5: success(𝑒 ) , 𝑒 ∈ Z≥−1 , initially 0 ⊲ Updated as described above

6:

7: ⊲ ——— Epoch Synchronization Instructions (start) ———————————-

8:

9: Upon first seeing lc(𝑝 ) == c𝑣 for epoch view 𝑣 > 𝑣𝑖𝑒𝑤 (𝑝 ) and success(𝐸 (𝑣) − 1) == 0:

10: Pause local-clock lc(𝑝 ) until seeing an EC, QC or VC for a view ≥ 𝑣 or a TC for a view > 𝑣, or until success(𝐸 (𝑣) − 1) == 1 ;

11: If local clock is still paused time Δ after pausing, send an epoch view 𝑣 message to all processors;

12:

13: Upon first seeing lc(𝑝 ) == c𝑣 for epoch view 𝑣 > 𝑣𝑖𝑒𝑤 (𝑝 ) and success(𝐸 (𝑣) − 1) == 1:

14: Set 𝑒𝑝𝑜𝑐ℎ (𝑝 ) := 𝐸 (𝑣) and 𝑣𝑖𝑒𝑤 (𝑝 ) := 𝑣;
15:

16: Upon first seeing a TC for epoch view 𝑣 with 𝐸 (𝑣) ≥ 𝑒𝑝𝑜𝑐ℎ (𝑝 ) :
17: If lc(𝑝 ) < c𝑣 then:
18: For each initial view 𝑣′ with 𝑣𝑖𝑒𝑤 (𝑝 ) ≤ 𝑣′ < 𝑣 send a view 𝑣′ message to lead(𝑣′ ) if not already sent;

19: Set lc(𝑝 ) := c𝑣 ;
20: If 𝑣𝑖𝑒𝑤 (𝑝 ) < 𝑣 − 1 then set 𝑣𝑖𝑒𝑤 (𝑝 ) := 𝑣 − 1 and 𝑒𝑝𝑜𝑐ℎ (𝑝 ) := 𝐸 (𝑣) − 1;

21: Send an epoch view 𝑣 message to all processors if not already sent;

22:

23: Upon first seeing an EC for epoch view 𝑣 with 𝐸 (𝑣) > 𝑒𝑝𝑜𝑐ℎ (𝑝 ) :
24: Set 𝑣𝑖𝑒𝑤 (𝑝 ) := 𝑣 and 𝑒𝑝𝑜𝑐ℎ (𝑝 ) := 𝐸 (𝑣) ;
25: ⊲ ——— Epoch Synchronization Instructions (end) —————–

26: ⊲ ——— View Synchronization Instructions (start) ———————————–

27:

28: Upon lc(𝑝 ) == c𝑣 for 𝑣 initial and 𝑒𝑝𝑜𝑐ℎ (𝑝 ) == 𝐸 (𝑣) :
29: If 𝑣𝑖𝑒𝑤 (𝑝 ) < 𝑣, set 𝑣𝑖𝑒𝑤 (𝑝 ) := 𝑣;

30: Send a view 𝑣 message to lead(𝑣) ;
31:

32: If 𝑝 == lead(𝑣) for initial view 𝑣 ≥ 𝑣𝑖𝑒𝑤 (𝑝 ) :
33: Upon first seeing view 𝑣 messages from 𝑓 + 1 distinct processors:

34: Form a VC for view 𝑣 and send to all processors;

35:

36: Upon first seeing a VC for initial view 𝑣 > 𝑣𝑖𝑒𝑤 (𝑝 ) ;
37: If lc(𝑝 ) < c𝑣 then:
38: For each initial view 𝑣′ with 𝑣𝑖𝑒𝑤 (𝑝 ) ≤ 𝑣′ < 𝑣 send a view 𝑣′ message to lead(𝑣′ ) if not already sent;

39: Set lc(𝑝 ) := c𝑣 ;
40: Set 𝑣𝑖𝑒𝑤 (𝑝 ) := 𝑣, 𝑒𝑝𝑜𝑐ℎ (𝑝 ) := 𝐸 (𝑣) ;
41: ⊲ ——— View Synchronization Instructions (end) ——————

42: ⊲ ——— bump local-clock forward on QC ————————————————-

43:

44: Upon first seeing a QC for view 𝑣 ≥ 𝑣𝑖𝑒𝑤 (𝑝 ) :
45: If lc(𝑝 ) < c𝑣+1 then:
46: For each initial view 𝑣′ with 𝑣𝑖𝑒𝑤 (𝑝 ) ≤ 𝑣′ < 𝑣 send a view 𝑣′ message to lead(𝑣′ ) if not already sent;

47: Set lc(𝑝 ) := c𝑣+1 .
48: If 𝑣 + 1 is a non-epoch view then set 𝑣𝑖𝑒𝑤 (𝑝 ) := 𝑣 + 1 and 𝑒𝑝𝑜𝑐ℎ (𝑝 ) := 𝐸 (𝑣 + 1) ;
49: If 𝑣 + 1 is an epoch view and 𝑣𝑖𝑒𝑤 (𝑣) < 𝑣 then set 𝑣𝑖𝑒𝑤 (𝑝 ) := 𝑣 and 𝑒𝑝𝑜𝑐ℎ (𝑝 ) := 𝐸 (𝑣) ;

ECs and TCs. Suppose 𝑣 = 𝑉 (𝑒). An EC for view 𝑣 is a set of

2𝑓 + 1 epoch view 𝑣 messages, signed by distinct processors. A TC

for view 𝑣 is a set of 𝑓 +1 epoch view 𝑣 messages, signed by distinct

processors.

The instructions for entering epoch views. Suppose 𝑣 = 𝑉 (𝑒).
When lc(𝑝) = c𝑣 , there are two cases:

• Upon first seeing lc(𝑝) = c𝑣 and success(𝐸 (𝑣) − 1) = 0:

– 𝑝 pauses its local-clock until seeing an EC, QC or VC for a

view ≥ 𝑣 , or a TC for a view > 𝑣 , or until success(𝐸 (𝑣) −
1) = 1 ;

– If its local clock is still paused time Δ after pausing, then

𝑝 sends an epoch view 𝑣 message to all processors.

• Upon first seeing lc(𝑝) = c𝑣 and success(𝐸 (𝑣) − 1) = 1

(and also under other conditions already stated in the bullet

point above), 𝑝 enters epoch 𝑒 and view 𝑉 (𝑒).

Forming ECs. Suppose 𝑣 = 𝑉 (𝑒). As stipulated above, 𝑝 sends

an epoch view 𝑣 message to all processors Δ time after its local

clock reaches lc(𝑝) = c𝑣 if success(𝑒) = 0 at this time. We further

stipulate that if 𝑝 is in epoch 𝑒′ ≤ 𝑒 and receives a TC for view 𝑣 ,

then 𝑝 sets lc(𝑝) = c𝑣 if lc(𝑝) < c𝑣 and sends an epoch view 𝑣

message to all processors.

The pseudocode is shown in Algorithm 1.

The proof of correctness can be found in the online version of

the paper at [14].

5 RELATEDWORK
HotStuff [20] was the first BFT SMR protocol to separate the view

synchronization module and the core consensus logic. HotStuff

named the view synchronization module the “PaceMaker” and left

its implementation unspecified. While HotStuff requires 3 round

trips within each view, HotStuff-2 [15] reduces this number to 2

round trips.

Cogsworth [16] was the first to formalize BVS as a separate prob-

lem, and provided an algorithmwith expected𝑂 (𝑛) communication

complexity and expected𝑂 (1) latency in runs with benign failures,

but with sub-optimal performance in the worst case. Naor and Kei-

dar [17] improved Cogsworth to runs with Byzantine faults and,

when combined with Hotstuff, produced the first BFT SMR protocol

with expected linear message complexity in partial synchrony. Both

protocols suffer from sub-optimal cubic complexity in the worst

case.

Several papers by Bravo, Chockler, and Gotsman [2, 4, 5] define

a framework for analyzing the liveness properties of SMR protocols.

143



PODC ’24, June 17–21, 2024, Nantes, France Andrew Lewis-Pye, Dahlia Malkhi, Oded Naor, and Kartik Nayak

These papers do not attempt to optimize performance, but rather

introduce a general framework in the partial synchrony model to

allow better comparison of protocols. For example, they describe

PBFT [6] within this framework.

Two recent protocols, RareSync [7] and LP22 [12], both solve

BVS with optimal 𝑂 (𝑛2) communication complexity in the worst

case (providing cryptographic assumptions hold), thereby finally

matching the lower bound established by Dolev and Reischuk in

1985 [9]. LP22 also achieves optimistic responsiveness. However,

both of these protocols suffer from two major issues. First, neither

protocol is smoothly optimistically responsive. RareSync is not

optimistically responsive. While LP22 is optimistically responsive,

even a single Byzantine processor may infinitely often cause Ω(𝑛Δ)
latency between consecutive consensus decisions. Second, even in

the absence of Byzantine action, infinitely many views require hon-

est processors to send Ω(𝑛2) messages. Albeit this communication

overhead being amortized across 𝑂 (𝑛) decisions, it may cause peri-

odic slowdowns. Ideally, one would hope for worst-case complexity

between every pair of consensus decisions which is (after some

finite time after GST) 𝑂 (𝑓𝑎𝑛 + 𝑛). For LP22 and RareSync, the fact

that infinitely many views require honest processors to send Ω(𝑛2)
messages means that the corresponding bound is 𝑂 (𝑛2).

Fever [13] is another recent protocol, which operates in a differ-

ent model than RareSync and LP22. While Fever makes standard

assumptions regarding message delivery in the partial synchrony

model, the protocol requires stronger than standard assumptions

on clock synchronization. Specifically, Fever assumes that there is a

known bound on the gap between the clocks of honest processors

at the start of the protocol execution, and that the clocks of honest

processors suffer bounded drift prior to GST. Under these stronger

and non-standard assumptions, Fever achieves optimal 𝑂 (𝑛2) com-

munication complexity in the worst case and also addresses the

two issues raised above. In comparison, Lumeiere achieves these

results under standard clock assumptions.

6 FINAL COMMENTS
Lumiere introduces two fundamental innovations. The first of these

combines techniques from [13] and [7, 12] to give a protocol with

𝑂 (𝑛2) worst-case communication complexity and which has even-

tual worst-case latency 𝑂 (𝑓𝑎Δ + 𝛿).
The second innovation removes the need for repeated heavy

epoch changes, and results in a protocol with eventual worst-case

communication complexity 𝑂 (𝑛𝑓𝑎 + 𝑛). Since implementing this

second change requires a constant factor increase in epoch length,

it is most practically useful in contexts where periods of asynchrony

are expected to be occasional and where synchrony reflects the

standard network state.

We leave it as an open question as to whether it is possible

to achieve a protocol with the same worst case communication

complexity, eventual worst-case communication complexity and

eventual worst-case latency as Lumiere, but which also achieves

better than 𝑂 (𝑛Δ) worst-case latency.

REFERENCES
[1] Dan Boneh, Ben Lynn, and Hovav Shacham. 2001. Short signatures from the Weil

pairing. In International conference on the theory and application of cryptology
and information security. Springer, 514–532.

[2] Manuel Bravo, Gregory Chockler, and Alexey Gotsman. 2020. Making Byzantine

Consensus Live. In 34th International Symposium on Distributed Computing.
[3] Manuel Bravo, Gregory Chockler, and Alexey Gotsman. 2022. Liveness and

Latency of Byzantine State-Machine Replication. In 36th International Sympo-
sium on Distributed Computing (DISC 2022) (Leibniz International Proceedings
in Informatics (LIPIcs), Vol. 246), Christian Scheideler (Ed.). Schloss Dagstuhl

– Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 12:1–12:19. https:

//doi.org/10.4230/LIPIcs.DISC.2022.12

[4] Manuel Bravo, Gregory Chockler, and Alexey Gotsman. 2022. Liveness and

latency of Byzantine state-machine replication. In 36th International Symposium
on Distributed Computing (DISC 2022). Schloss Dagstuhl-Leibniz-Zentrum für

Informatik.

[5] Manuel Bravo, Gregory Chockler, and Alexey Gotsman. 2022. Making byzantine

consensus live. Distributed Computing 35, 6 (2022), 503–532.

[6] Miguel Castro, Barbara Liskov, et al. 1999. Practical byzantine fault tolerance. In

OsDI, Vol. 99. 173–186.
[7] Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Vincent Gramoli, Rachid

Guerraoui, Jovan Komatovic, and Manuel Vidigueira. 2022. Byzantine Consensus

Is Θ(n2): The Dolev-Reischuk Bound Is Tight Even in Partial Synchrony!. In 36th
International Symposium on Distributed Computing, DISC 2022, October 25-27,
2022, Augusta, Georgia, USA (LIPIcs, Vol. 246), Christian Scheideler (Ed.). Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 14:1–14:21. https://doi.org/10.4230/

LIPIcs.DISC.2022.14

[8] Shir Cohen, Idit Keidar, and Oded Naor. 2021. Byzantine agreement with less

communication: Recent advances. ACM SIGACT News 52, 1 (2021), 71–80.
[9] Danny Dolev and Rüdiger Reischuk. 1985. Bounds on information exchange for

Byzantine agreement. Journal of the ACM (JACM) 32, 1 (1985), 191–204.
[10] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus in the

Presence of Partial Synchrony. J. ACM 35, 2 (apr 1988), 288–323. https://doi.org/

10.1145/42282.42283

[11] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund

Wong. 2007. Zyzzyva: speculative byzantine fault tolerance. In Proceedings of
twenty-first ACM SIGOPS symposium on Operating systems principles. 45–58.

[12] Andrew Lewis-Pye. 2022. Quadratic worst-case message complexity for State

Machine Replication in the partial synchrony model. CoRR abs/2201.01107 (2022).

arXiv:2201.01107 https://arxiv.org/abs/2201.01107

[13] Andrew Lewis-Pye and Ittai Abraham. 2023. Fever: Optimal Responsive View

Synchronisation. arXiv preprint arXiv:2301.09881 (2023).
[14] Andrew Lewis-Pye, Dahlia Malkhi, Oded Naor, and Kartik Nayak. 2024. Lumiere:

Making Optimal BFT for Partial Synchrony Practical. arXiv:2311.08091 [cs.DC]

Full version of this paper.

[15] Dahlia Malkhi and Kartik Nayak. 2023. HotStuff-2: Optimal Two-Phase Respon-

sive BFT. Cryptology ePrint Archive (2023).
[16] Oded Naor, Mathieu Baudet, Dahlia Malkhi, and Alexander Spiegelman. 2021.

Cogsworth: Byzantine View Synchronization. Cryptoeconomic Systems 1, 2
(oct 22 2021). https://cryptoeconomicsystems.pubpub.org/pub/naor-cogsworth-

synchronization.

[17] Oded Naor and Idit Keidar. 2020. Expected Linear Round Synchronization: The

Missing Link for Linear Byzantine SMR. In 34th International Symposium on
Distributed Computing, DISC 2020, October 12-16, 2020, Virtual Conference (LIPIcs,
Vol. 179), Hagit Attiya (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

26:1–26:17. https://doi.org/10.4230/LIPIcs.DISC.2020.26

[18] Fred B Schneider. 1990. Implementing fault-tolerant services using the state

machine approach: A tutorial. ACM Computing Surveys (CSUR) 22, 4 (1990),

299–319.

[19] Victor Shoup. 2000. Practical threshold signatures. In International Conference on
the Theory and Applications of Cryptographic Techniques. Springer, 207–220.

[20] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abra-

ham. 2019. Hotstuff: Bft consensus with linearity and responsiveness. In Pro-
ceedings of the 2019 ACM Symposium on Principles of Distributed Computing.
347–356.

144

https://doi.org/10.4230/LIPIcs.DISC.2022.12
https://doi.org/10.4230/LIPIcs.DISC.2022.12
https://doi.org/10.4230/LIPIcs.DISC.2022.14
https://doi.org/10.4230/LIPIcs.DISC.2022.14
https://doi.org/10.1145/42282.42283
https://doi.org/10.1145/42282.42283
https://arxiv.org/abs/2201.01107
http://arxiv.org/abs/2311.08091
https://doi.org/10.4230/LIPIcs.DISC.2020.26

	Abstract
	1 Introduction
	2 The Setup
	3 Overview of Lumiere
	3.1 Lumiere Synopsis
	3.2 Overview of LP22
	3.3 Overview of Fever
	3.4 Basic Lumiere Solution
	3.5 Removing Epoch Synchronisations for the Steady State

	4 The formal specification
	5 Related Work
	6 Final comments
	References

