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A B S T R A C T

Nonlinear regression is frequently used to fit nonlinear relations between response variables and regressors,
for process data. The procedure involves the minimization of the square norm of the residuals with respect
to the model parameters. Nonlinear least squares may lead to parametric collinearity, multiple optima and
computational inefficiency. One of the strategies to handle collinearity is model reparameterization, i.e.
the replacement of the original set of parameters by another with increased orthogonality properties. In
this paper we propose a systematic strategy for model reparameterization based on the response surface
generated from a carefully chosen set of points. This is illustrated with the support points of locally K-optimal
experimental designs, to generate a set of analytical equations that allow the construction of a transformation
to a set of parameters with better orthogonality properties. Recognizing the difficulties in the generalization
of the technique to complex models, we propose a related alternative approach based on first-order Taylor
approximation of the model. Our approach is tested both with linear and nonlinear models. The Variance
Inflation Factor and the condition number as well as the orientation and eccentricity of the parametric
confidence region are used for comparisons.
1. Motivation

Multiple linear regression is a widely used and, statistically, well
understood method for modelling a response as a function of a set
of predictor variables. Nonlinear least squares is much used in the
pharmaceutical and other process industries to fit responses to the
nonlinear models that frequently arise from chemical kinetics. Although
the asymptotic properties of nonlinear least squares are also well un-
derstood, there remain problems, especially numerical, in the analysis
of finite data sets. These include (i) the difficulty in achieving the min-
imization of the LS when the covariance matrix is ill-conditioned; and
(ii) strong parameter collinearity found for some data and models. This
last drawback is commonly related with model identifiability issues
and may induce difficulties concerning model discrimination and the
uncertainty (or even the accuracy) of the estimated parameters. Under
these conditions, slight non-convergence of the minimizing algorithm
can compound the difficulties in model building. Seber and Wild [1]
provides a systematic summary of difficulties including plots of the
narrow twisting valleys of some least squares surfaces. López et al.
[2] provides a survey of more recent progress.
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Least Squares (LS) minimizes the sum of square errors between
observations and model predictions and implicitly relies on a set of
assumptions: (i) the errors are identically and independently distributed
(iid);(ii) the variance is constant; and (iii) the regressors are indepen-
dent. Common techniques for model fitting are described in standard
text books (see Seber and Wild [1] among others), and there is a broad
range of computational tools supporting their use [3,4].

Several techniques have been proposed for improving the robustness
of model fitting procedures in such situations. Among them are (i)
variable transformation [5,6] for dependent or independent variables
and the Box–Cox transformations of non-negative responses [7]; (ii)
variable separation [8]; and (iii) model reparameterization [9–11].
Recently, Atkinson et al. [12] extended the Box–Cox transformation to
responses that can be positive or negative; they can also be used for
variable transformation.

Our paper focuses on model reparameterizations which replace the
original set of parameters of the model by another set less correlated
(leaving, whenever possible, all parameters mutually uncorrelated) via
a transformation specific to the model. For models which are nonlinear
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in the parameters, these transformations use both a priori and a posteri-
ori information, derived from the original model and the experimental
design, including an estimate of the final values of the parameters, in
the case of nonlinear models (i.e., assuming a local design).

Typically, a priori methods use (i) moments of the data distribution
(see Schwaab and Pinto [13]); (ii) orthogonal polynomial analogies;
and (iii) a family of analytical curves constructed through a set of
judiciously chosen points in the domain of the regressors [14]. This
important third strategy has never been totally exploited as it can be
challenging to automate computationally; it requires a set of points
chosen from the domain of the regressors (in Ross et al. [14] they are
generally equally spaced) and a subsequent algebraic treatment of the
response predictions at these points. This task also becomes somewhat
specific for each atomic function that occurs in the model (e.g., ex-
ponential, logarithm, or polynomial functions). On the other hand,
for some atomic functions, including the transcendental functions, this
treatment can only be directly implemented approximately, leading
to transformations for which the set of parameters is not completely
orthogonal.

This paper also relies on the strategy of using a family of curves
that pass through specific points for model reparameterization. The
construction of these curves can be automated through the use of
symbolic computational tools to generate the corresponding orthogonal
transformations. A simpler alternative is further considered, based on
the manipulation of a first-order Taylor approximation with respect
to the parameters. In both cases, instead of choosing a set of discre-
tionary domain points we reuse the support points of optimal designs
(namely K-optimal designs), obtained via Semidefinite Programming
(SDP), for a discretized design space. The K-optimal designs minimize
the condition number of the Fisher Information Matrix (FIM); thus, the
support points of these designs are obvious candidates for generating
transformations that lead to a set of orthogonal or nearly orthogonal
parameters, while simultaneously minimizing the condition of the FIM.
A helpful property of K-optimal designs in our context is that they
can reduce the Variance Inflation Factor and the error sensitivity for
the least squares estimator for the original set of parameters [15].
The designs that we find are locally optimal, since they are deter-
mined assuming reference values for the parameters. However, as is
illustrated in Section 5, the generated transformation is robust enough
to cope with parameters different from those initially postulated for
constructing the locally optimal design.

It should be stressed that the models with known untransformed pa-
rameters give identical relationships between response and regressors
to the models with the transformation of these values. This relationship
can be destroyed due to poor convergence of model fitting in the
presence of high correlation. Our purpose is to reduce the collinearity
of the parameter estimates together with the occurrence of multiple
optima and to improve the computational efficiency. The parameter es-
timates from the two models will then give virtually identical response
predictions.

1.1. Novelty statement and organization

This paper contains four elements of novelty: (i) a computationally
automated approach for model reparameterization based on the use of
families of curves that pass through a given set of points of the response
surface; (ii) a Semidefinite Programming based tool to construct K-
optimal designs, the support points of which are used to construct
the analytic curves; (iii) a first-order Taylor based approximation for
systematic handling of more complex models; and (iv) the application
of the algorithm to several problems that are considered benchmark
tests in model reparameterization.

The paper is organized as follows. Section 2 introduces the back-
ground and the notation used to formulate the model fitting problem as
well as the fundamentals of Semidefinite Programming used to compute
2

the support points and the nonlinear program (NLP) used to solve the
nonlinear least squares problem. Section 3 introduces the various steps
required by the tool and its test, specifically (i) the construction of
support points to generate transformations; (ii) the construction of the
transformations; (iii) the generation of data to test the parameterized
model using other alphabetic optimal experimental designs; (iv) the
fitting of the parameterized model via LS using previously generated
data; and (v) the calculation of numerical (and graphical) figures of
merit to compare the effects of reparameterization. Comparisons for
different univariate response models are presented in Section 4. In
Section 5 the robustness of the parameterized model is analysed with
respect to (i) the ‘‘real’’ parameters used to generate the data; and
(ii) the design space. Section 6 analyses the proposed tool in depth
focusing on its ability to find orthogonal spaces of parameters and the
effectiveness to handle ill-conditioned LS problems. Section 7 reviews
the formulation and offers a summary of the results obtained.

2. Notation and background

In our notation bold face lowercase letters represent vectors, bold
face capital letters stand for continuous domains, blackboard bold cap-
ital letters are used to denote discrete domains and capital letters are
adopted for matrices. Finite sets containing 𝜄 elements are compactly
represented by [[𝜄]] ≡ {1,… , 𝜄}. The transpose operation of a matrix or
vector is represented by ‘‘⊺’’. The cardinality of a vector is represented
by card(∙) and the trace of a matrix by tr(∙).

Next, we introduce the fundamentals of our conceptualization.
Then, the optimization tools used herein are briefly covered; in Sec-
tion 2.1 the basics of SDP are introduced, and Section 2.2 offers
the fundamentals about Nonlinear Programming used to solve the LS
problems.

We consider a general univariate nonlinear model with the form

𝑦 = 𝑓 (𝑥,𝜽) + 𝜖, (1)

where 𝑦 is the response, 𝑥 is a regression factor, 𝑓 (∙) a twice differ-
entiable function, 𝜽 the vector of parameters and 𝜖 ≈  (0, 𝜎) is the
observational noise which has zero mean and standard deviation 𝜎.
Let the number of parameters of the model be 𝑛𝜃 , each of them being
constrained to a compact domain, i.e. 𝜃𝑖 ∈ [𝜃𝐿𝑖 , 𝜃

𝑈
𝑖 ], where 𝜃𝐿𝑖 is the

lower bound for parameter 𝑖, and 𝜃𝑈𝑖 the upper bound. Consequently,
the Cartesian domain containing all the combinations of parameters is
Θ ≡ ⊗𝑛𝜃

𝑖=1[𝜃
𝐿
𝑖 , 𝜃

𝑈
𝑖 ] ⊂ R𝑛𝜃 . To distinguish between the generic vector

and a singleton vector of Θ, the latter is designated by 𝐩0. In turn,
∈ 𝐗 ⊂ R where 𝐗 is the closed domain containing all the possible

values of the regressors.
For comparison, a standard univariate linear model

𝑦′ = 𝑋𝜽′ + 𝜖 (2)

ith design matrix 𝑋 is also considered, since some of the features of
he approach are also applicable and are easier to illustrate in this case.
he model structure (2) can be used to describe a local approximation
f the original model (1) around (𝑥0,𝐩0), using in this case the variable
eplacements 𝑦′ → 𝑦− 𝑦(𝐱0,𝐩0), 𝜽′ → 𝜽−𝐩0, with the sensitivity matrix:

=
𝜕𝑓 (𝐱,𝜽)
𝜕𝜽

|

|

|

|𝐱0 ,𝐩0

As standard and in both cases, the ranges of the variables 𝐱 and 𝐲
are assumed to have been previously scaled from the original domain
variables to comparable magnitudes (e.g., around unity) so that their
relative effects can be easily compared, leading also to more scaled
parameter values and matrix coefficients. Although this is an usually
implicit step, this scaling is required for the success of the numerical
implementation of the algorithm and for a meaningful interpretation of
the some of the performance indicators considered in Section 3.6.

The corresponding global FIM of model (1) at a singleton point
𝐩 ∈ 𝜣 for optimal design 𝜉 is

(𝜉|𝐱,𝜽) = −E
[

𝜕
𝜕𝜽

(

𝜕(𝜉|𝐩)
𝜕𝜽⊺

)]

=
𝑛𝑥
∑

𝑤𝑗 𝑀(𝐱𝑗 |𝐩) =

𝑗=1
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𝑛𝑥
∑

𝑗=1
𝑤𝑗

𝜕𝑓 (𝐱,𝜽)
𝜕𝜽⊺

|

|

|

|𝐱𝑗 ,𝐩

𝜕𝑓 (𝐱,𝜽)
𝜕𝜽

|

|

|

|𝐱𝑗 ,𝐩
, (3)

where 𝐰 is the vector of weights of the support points in the design, 𝑛𝑥
is the number of discrete (candidate) points, previously set by the user,
𝑀(𝐱𝑗 |𝐩) is the elemental FIM at 𝐱𝑗 , and E[∙] stands for the expectation.

Now, we introduce two definitions that are to be used in the
remaining parts of the paper.

Definition 1. Parametric transformation — a vector of functions, desig-
nated by  , that maps the original vector of parameters 𝜽 into another
one, say 𝝑 ∈ R𝑛𝜃 , i.e.  ∶ 𝜽 ↦ 𝝑.

We note that in our context, Definition 1 might include linear and
nonlinear functions, and the domain of the transformed vector 𝝑 is
closed but might be non-Cartesian.

Definition 2. Stable parameter vector — a set of parameters that,
after transformation (see Definition 1), is, for a given design and
response model, less intercorrelated than the estimates of the original
model structure, as measured, for example, by the conditioning of the
dispersion matrices, or graphically by the orientation and eccentricity
of the likelihood contours [9].

Specifically, 𝝑 is a stable parameter vector with respect to 𝜽 if the
parameters 𝜗𝑖, 𝑖 ∈ [[𝑛𝜃]] are less intercorrelated than 𝜃𝑖. In practice,
they are closer to orthogonality, where the degree of orthogonality is
strongly related to the condition number of the parametric covariance
matrix, see Xu [16].

2.1. Semidefinite programming

In this Section, we introduce the fundamentals of Semidefinite
Programming. This class of (convex) mathematical programming is
employed to solve the optimal experimental design problems, given the
discrete design domain X[[𝑛𝑥]] populated with 𝑛𝑥 experimental candidate
points.

Let S𝑛𝜃+ be the space of 𝑛𝜃 × 𝑛𝜃 symmetric positive semidefinite
matrices, and S𝑛𝜃 the space of 𝑛𝜃 × 𝑛𝜃 symmetric matrices. A convex
set 𝐒 ∈ R𝑛𝜃 is semidefinite representable (SDr) if proj𝐒exp (𝜻), ∀𝜻 ∈ 𝐒,
interpreted as the projection 𝜻 on to a higher dimensional set 𝐒exp, can
be described by Linear Matrix Inequalities (LMIs).

In turn, a convex (or concave) function 𝜑 ∶ R𝑚1 ↦ R is SDr if and
only if the epigraph of 𝜑, {(𝑡, 𝜻) ∶ 𝜑(𝜻) ≤ 𝑡}, or the hypograph, {(𝑡, 𝜻) ∶
𝜑(𝜻) ≥ 𝑡}, respectively, are SDr and can be casted by LMIs [17,18]. The
optimal values, 𝜻 , of SDr functions are then formulated as semidefinite
programs of the form [18, §4.6.2]:

max
𝜻

𝐝⊺ 𝜻 (4a)

s.t.
𝑚1
∑

𝑖=1
𝜁𝑖 𝑀𝑖,𝑗 +𝑀0,𝑗 ⪯ 0, 𝑗 ∈ [[𝑘]] (4b)

𝑀0 𝜻 ⪯ ℎ (4c)

𝑀𝑖,𝑗 ∈ S𝑘+, 𝑖 ∈ {0,… , 𝑚1}, 𝑗 ∈ [[𝑘]]. (4d)

In our design context, 𝐝 is a vector of known constants that depends
on the design problem, and semidefinite positive matrices 𝑀𝑖,𝑗 , 𝑖 ∈
{0,… , 𝑚1}, 𝑗 ∈ [[𝑘]] contain local FIMs and other matrices produced
by the reformulation of the functions 𝜑(𝜻) into LMIs. The decision
variables in vector 𝜻 are the weights 𝑤𝑖, 𝑖 ∈ [[𝑛𝑥]], of the optimal design
and other auxiliary variables required. The problem of calculating a
design for a pre-specified set of candidate experiments X[[𝑛𝑥]] of points
𝐱𝑖, ∀𝑖 ∈ [[𝑛𝑥]], is solved with the formulation (4) complemented by the
linear constraints on 𝐰: (i) 𝐰 ≥ 0, and (ii) 𝟏⊺𝑛𝑥 𝐰 = 1, where 𝟏⊺𝑛𝑥 is
a unitary column vector with 𝑛𝑥 lines. The problem (4) is the classic
Semidefinite Programming problem which includes LMIs representing
conic constraints.
3

Ben-Tal and Nemirovski [17] provide a list of SDr functions useful
for solving continuous optimal design problems with SDP formulations,
see Boyd and Vandenberghe [18, Sec. 7.3]. Recently, Sagnol [19]
showed that each criterion in the Kiefer class of optimality criteria
is SDr for all rational values of 𝛿 ∈ (−∞, 0[ and general Semidefinite
Programming formulations exist for them. Notice that A-optimality
corresponds to 𝛿 = −1, E-optimality to 𝛿 → −∞ and D-optimality to
𝛿 → 0. Practically, the problem of finding optimal approximate plans
of experiments for the most common convex (or concave) criteria can
be formulated as a Semidefinite Programming problem falling into the
general representation, see Vandenberghe and Boyd [20] and Duarte
and Wong [21] among others.

2.2. Nonlinear programming

In this Section we introduce the fundamentals of Nonlinear Pro-
gramming. NLP is used to solve the LS problem, and seeks to find
the global optimum of a convex or nonconvex nonlinear function 𝜓 ∶
𝐗 ↦ R in a compact domain 𝐗 with possibly nonlinear constraints. The
general structure of the NLP problems is

min
𝐱∈𝐗

𝜓(𝐱) (5a)

s.t. 𝐠(𝐱) ≤ 𝟎 (5b)

𝐡(𝐱) = 𝟎 (5c)

where (5b) represents a set of 𝑟𝑖 inequalities, and (5c) represents a set of
𝑟𝑒 equality constraints. The functions 𝜓(𝐱), 𝐠(𝐱) and 𝐡(𝐱) are assumed
to be twice differentiable. In our context, the variable 𝐱 ∈ 𝐗 are the
parameters to be estimated, the objective function (5a) corresponds to
the log-likelihood. If unconstrained LS are used the sets 𝑟𝑖 and 𝑟𝑒 are
empty, but the decision variables can be bounded to [𝜃𝐿𝑖 , 𝜃

𝑈
𝑖 ]. When

additional constraints are included in the problem, they populate the
set of inequalities (5b) or the set of equalities (5c).

3. Algorithm for model reparameterization and testing

In this Section we introduce the framework proposed for model
reparameterization and testing. First, the complete algorithm is dis-
cussed, then each of the steps is analysed in depth, see Section 3.1–
Section 3.6.

Fig. 1 illustrates the basic sequence of steps of the proposed tool.
We note that Step 2 is to discretize the design space and construct
experimental candidate points which are used in Step 3 to find optimal
designs of experiments for various alphabetic criteria. Then, the optimal
designs are employed for two purposes: (i) the support points of the
K-optimal design are used to construct a transformation to a stable
vector of parameters (see Step 4); (ii) all the optimal designs found
are used to generate data samples to test the parameterized model by
fitting the stable set of parameters via LS (see Step 5). Step 6 is to fit
the parameterized model using various data sets. Finally, Step 7 is to
compute a set of numerical and graphical indicators to compare the
performance of the reparameterization technique introduced.

3.1. Discretization of the design space

We consider the regression model (1). A uniformly spaced grid is
used for discretization purposes, where 𝛥𝑥 is the step. Consequently,
the continuous design space 𝐗 of the regressors is approximated by a
(finite) discrete set of candidate points, X[[𝑛𝑥]]. Here, 𝑛𝑥 = 1 + (𝑥𝑈 −
𝐿)∕𝛥𝑥 where 𝑥𝑈 and 𝑥𝐿 are the upper bound and lower bounds of 𝐗,

respectively. After discretizing the design space the local FIMs at each
candidate point are constructed. When nonlinear models are considered
the singleton vector of parameters used to construct the FIMs is 𝐩 .
0
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Fig. 1. Algorithm for model reparameterization and testing.
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.2. Finding alphabetic locally optimal designs of experiments via semidef-
nite programming

This Section presents the formulations for finding locally optimal
lphabetic designs via SDP (Step 3 of the Algorithm). We notice that
he Semidefinite Programming can be computationally challenging if
he number of candidate experiments is large, although it ensures that
he global optimum is found for a grid of discrete candidate points.
he Semidefinite Programming formulations for all the criteria are of
he general form (4). The formulations for D-, A-, E-optimality criteria
re currently state of art and appear in Appendix A. The formulation
or K-optimality is less familiar and therefore is analysed here in more
etail.

The K-optimality criterion minimizes the condition number of the
IM by choice of the experimental design points. The condition number
s defined as the ratio 𝛾[(𝜉|𝐱,𝜽)] = 𝜆max[(𝜉|𝐱,𝜽)]∕𝜆min[(𝜉|𝐱,𝜽)],

where 𝜆max[∙] is the maximum eigenvalue and 𝜆min[∙] the minimum
eigenvalue of the FIM. Then 𝛾[∙] can be used as a bound on the ampli-
fication factor between relative changes in the vector of experimental
observations and their effects on the parameter estimates, in terms of
norms of these quantities. Thus, by minimizing the condition number,
we minimize the potential impact of the observational noise on the
estimated parameters. The design problem can be represented by

𝜉𝐾 = argmin
𝜉∈𝛯

𝜆max[(𝜉|𝐱,𝐩)]
𝜆min[(𝜉|𝐱,𝐩)]

, (6)

here 𝛯 is the space of feasible K-optimal designs.
The formulation for K-optimal designs was firstly considered in Ye

nd Zhou [22] where the authors proved that the condition number of
he Fisher Information Matrix, which is by nature positive semidefinite,
s a smooth function for polynomial regression models and design
ntervals limited to [−1,+1]. Consequently, finding K-optimal designs
an be represented by a Semidefinite Programming problem in the
omain of the regressors. Herein, we also adopt a formulation similar
o that of Ye and Zhou [22]. The SDP formulation for K-optimal designs
s

pt ≡ min 𝑠 (7a)
4

𝑠,𝑡,𝐳
s.t. 𝑠𝐼𝑛𝜃 −𝑀(𝜉) ⪰ 0𝑛𝜃 (7b)

𝑀(𝜉) − 𝐼𝑛𝜃 ⪰ 0𝑛𝜃 (7c)

𝑀(𝜉) =
𝑛𝑥
∑

𝑖=1
𝑧𝑖 M(𝑥𝑖,𝐩0) (7d)

𝑛𝑥
∑

𝑖=1
𝑧𝑖 = 𝑡 (7e)

𝑧𝑖 ≥ 0, 𝑖 ∈ [[𝑛𝑥]], 𝑡 > 0, (7f)

where (7b) is the upper bound of the set of eigenvalues of the FIM, (7c)
is to constrain the set of eigenvalues to positive values, (7d) constructs
the global FIM from local FIMs at candidate points 𝑥𝑖, 𝑖 ∈ [[𝑛𝑥]]
designated by M(𝑥𝑖,𝐩0) where the notation 𝐩0 is to make explicit the
ependence on the parameters when nonlinear models are considered),
7e) computes the sum of values 𝐳, and Opt is the optimal objective
alue (designated as the optimum). After obtaining the solution, the
eights of the optimal design are calculated by normalizing the vector

:

𝑖 = 𝑧𝑖∕𝑡, 𝑖 ∈ [[𝑛𝑥]] (8)

In our work, we solved the Semidefinite Programming problems
using the cvx environment combined with the solver Mosek that uses
an efficient Interior Point algorithm [23]. The relative and absolute
tolerances used to solve the SDP problem were set to 1 × 10−5.

3.3. Construction of parametric transformations that lead to stable
parameters

This Section describes the techniques used to construct parametric
transformations that lead to stable vectors of parameters (Step 4 of
the Algorithm), see Definition 2. We consider the reparameterization
technique based on a family of curves constructed such that they
pass through a set of previously chosen points in the domain of the
regressors, see Ross [24]. The sought parametric transformation maps
the original set of parameters into an equivalent orthogonal (or nearly
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orthogonal) set — the set of stable parameters. Here, instead of using
equispaced points, we use the support points of the chosen optimal de-
sign, since they can provide the exact number of equations required by
the method, and ensure that each transformed parameter is individually
expressed in the model response, when the model is latter sampled at
these design points. In this paper, the K-optimal design is used due
to its distinguishing properties, although other optimal designs (such
as the ones provided by the D-, A-, E-optimality criteria) could also
be used, since they also yield similar orthogonality properties. Two
distinct approaches are considered for the practical construction of
these parametric transformations.

Approach 1. Let 𝐱𝑠 be the vector of size 𝑛𝑠 containing the support
points of the K-optimal design obtained solving the corresponding prob-
lem (7) where 𝑛𝑠 ≥ 𝑛𝜃 . The first approach used to find  , here denoted
as Approach 1, consists of formulating a set of algebraic equations where
the vector of stable parameters represent the response surface at the
support points, i.e.

𝜗𝑖 = 𝑓 (𝑥𝑖,𝜽), 𝑖 ∈ [[𝑛𝜃]] (9)

where the components 𝜗𝑖, 𝑖 ∈ [[𝑛𝜃]] appear individually in each equa-
tion. For the case where 𝑛𝑠 > 𝑛𝜃 , the question of which of the 𝑛𝑠 support
points should be selected to be used in (9) arises. This situation is not
very common, even with nonlinear models, since optimal designs are
typically saturated, i.e., they tend to produce 𝑛𝑠 = 𝑛𝜃 . But even if this
does not happen, for the purpose of the use of the transformation (9)
any subset of 𝑛𝜃 support points is feasible to be selected. The possible
additional effects of having designs with 𝑛𝑠 > 𝑛𝜃 is discussed in
Section 6.

A rearrangement of (9) allows expressing 𝜽 as a function of 𝝑

𝜽 = 𝐠(𝐱𝑠,𝝑) (10)

where 𝐠(∙) is a vector of functions forming the parametric transforma-
tion  (see Definition 1). This solution of (9) exists provided that the
set of parameters 𝜽 is identifiable, considering the support points 𝑥𝑖. In
some cases, the analytic expression of (10) can be obtained through
symbolic manipulation tools, such as Mathematica® [25]. In fact, if
the functions 𝑓 (𝑥,𝜽) are expressed in closed form, and do not involve
trigonometric or transcendental terms then (10) can also be exactly
expressed in analytic closed form; otherwise, an implicit definition
or the explicit form of some approximation need to be considered.
For complex nonlinear models, these techniques can become rather
specific and may not be entirely successful in its target goal. Therefore,
an alternative approach which can be more generally implemented is
considered next.

Approach 2. An alternative approach corresponds to the approxima-
tion of 𝑓 (𝑥,𝜽) by a Taylor expansion with respect to 𝜽, here limited to
first order terms. In this case the system (9) is replaced by a first-order
approximation

𝝑 ≃ 𝐟0 + 𝐽 (𝐱,𝐩0) (𝜽 − 𝐩0) (11)

where the vector 𝐟0 = (𝑓 (𝑥1,𝐩0),… , 𝑓 (𝑥𝑛𝑠 ,𝐩0))
⊺ contains the model pre-

dictions at the support points using the original vector of parameters,
𝐩0. Further, 𝐽 (𝐱,𝜽) is the 𝑛𝑠 × 𝑛𝜃 Jacobian matrix

𝐽 (𝐱,𝐩0) =
⎛

⎜

⎜

⎝

∇𝑓 (𝑥1,𝐩0)
⋮

∇𝑓 (𝑥𝑛𝑠 ,𝐩0)

⎞

⎟

⎟

⎠

formed by 1 × 𝑛𝜃 vectors containing the derivatives of the model with
respect to the parameters at support point 𝑖:

∇𝑓 (𝑥𝑖,𝜽) =
(

𝜕𝑓 (𝑥𝑖,𝜽)
𝜕𝜃𝑗

)

|

|

|

|

|𝜽=𝐩0

, 𝑗 ∈ [[𝑛𝜃]]

he solution for 𝜽 is therefore
−1
5

= 𝐩0 + [𝐽 (𝐱,𝐩0)] (𝝑 − 𝐟0)
here [𝐽 (𝐱,𝐩0)]−1 is the inverse of the Jacobian matrix; consequently,
(𝐱𝑠,𝝑) = 𝐩0+[𝐽 (𝐱,𝐩0)]−1 (𝝑−𝐟0). Similarly to the previous condition for

the existence of the solution (10), the Jacobian matrix in this last equa-
tion is invertible if the linearized model approximation is considered
identifiable at the support points 𝑥𝑖, and parameter estimates 𝐩0.

3.4. Generation of data for testing the model reparameterization

Here, we present the approach used to construct data sets to test the
model reparameterization (see Step 5 of the Algorithm) and compare
the fit of the parameterized model with that of the original model.

Let the number of observations in each data set be 𝑛𝑜. The optimal
experimental designs are used for sampling; we sample from the sup-
port points with the number of observations sampled from each support
point obtained from the corresponding weight. We use the rounding
procedure of Pukelsheim and Rieder [26] to determine the number of
observations taken at each support point ensuring that the total sums
to 𝑛𝑜. Each observation from model (1) is corrupted with independent
normally distributed random errors with standard deviation 𝜎 from a
ormal random generator. The data sets from the designs obtained for
ach criteria will be different, depending as they do on the support
oints and on the weights.

.5. Fitting the model

Now, we fit the parameterized model (see Step 6 of the Algorithm).
odel fitting is a LS problem, where the sum of squared errors of the

redictions is minimized. The NLP problem for this is

in
𝝑

𝑛𝑜
∑

𝑖=1

(

𝑦𝑖 − 𝑓 [𝑥𝑖, 𝐠(𝐱𝑠,𝝑)]
)2 (12a)

s.t. 𝝑 ∈ [𝝑𝐿,𝝑𝑈 ], (12b)

where 𝐠(𝐱𝑠,𝝑) is the transformation obtained in Step 4, 𝝑𝐿, and 𝝑𝑈 are
the lower and upper bounds for parameters 𝝑, which may be redundant,
and (𝑥𝑖, 𝑦𝑖), 𝑖 ∈ [[𝑛𝑜]] are the observations generated in Step 5. The
xamples considered were solved with a straightforward Levenberg–
arquardt algorithm; the details are in Nielsen and Madsen [27]. Note

hat the same formulation is used for fitting the original model.

.6. Construction of performance indicators

We now present the performance indicators used to compare the
ffect of model reparameterization on model fitting (see Step 7 of the
lgorithm).

To compare the impact of the various designs on the least-squares
roblem we used two numerical indicators: (i) the maximum of the
bsolute cross-correlation among the parameter estimates (designated
) and (ii) the condition number (𝜅) of the parameter covariance matrix

at the solution. To compute 𝜚, we first construct an approximation to
the correlation matrix using the covariance matrix 𝐶(𝜽̂), given by the
linearized model from the LS algorithm at convergence where 𝜽̂ stands
for the estimates of 𝜽. Let 𝐵(𝜽̂) be a diagonal (square) matrix of size
𝜃 containing the square roots of the diagonal elements of 𝐶(𝜽̂), i.e.
𝑖,𝑖 =

√

𝐶𝑖,𝑖, 𝑖 ∈ [[𝑛𝜃]] and 𝐵𝑖,𝑗 = 0, 𝑖, 𝑗 ∈ [[𝑛𝜃]], 𝑖 ≠ 𝑗. The correlation
matrix of the parameter estimates is then given by

𝑅(𝜽̂) = 𝐵−1(𝜽̂) 𝐶(𝜽̂) 𝐵−1(𝜽̂).

and

𝜚 = max
𝑖,𝑗∈[[𝑛𝜃 ]]
𝑗≠𝑖

|𝑅𝑖,𝑗 |.

The Variance Inflation Factor (VIF) is a metric commonly used
to measure the collinearity between a pair of parameters [28]. It is
represented by 𝜐 = 1∕(1 − 𝑅2

𝑖,𝑗 ), and thus:

max 𝜐 = max
𝑖,𝑗∈[[𝑛𝜃 ]]

1∕(1 − 𝑅2
𝑖,𝑗 ) = 1∕(1 − 𝜚2)
𝑗≠𝑖
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Despite the use of the VIF for measuring collinearity which occurs when
a parameter is a linear combination of others, Belsley et al. [29] and
Rempel and Zhou [30] suggest the advantages of several condition
indexes with the condition number, 𝜅, being one of them. Here, 𝜅 =
𝜆max[𝐶(𝜽̂)]∕𝜆min[𝐶(𝜽̂)], where 𝜆max[𝐶(𝜽̂)] is the maximum eigenvalue of
the covariance matrix and 𝜆min[𝐶(𝜽̂)] the minimum. A lower condition
number is an indication of reduced parametric collinearity. López et al.
[2],Belsley et al. [29] provide guidelines for the orthogonality analysis,
and suggest the arbitrary but convenient numbers of 0.90 as the cut-
off value for the maximum absolute parametric correlation, and 20
as the threshold for the condition number. Despite their arbitrariness,
they are helpful in assessing the performance of the reparameterization
technique.

To complement the metrics 𝜚 and 𝜅 we also provide the graphical
representation of the 95% confidence ellipsoids for selected pairs of
parameters. The construction of these ellipsoids also uses the final
linearized version of the Jacobian after convergence is achieved [1].
Considering the scaled variable ranges, confidence ellipsoids where the
principal axes are not well aligned with the coordinate axes, associated
with higher condition numbers of the parameter covariance matrix
at the solution denote higher parameter collinearity (or equivalently,
reduced orthogonality). Throughout the paper the eccentricity of these
ellipsoids is denoted as the ratio of the lengths of the major semi-axis to
the minor semi-axis of the confidence region for a pair of parameters.
When the eccentricity is 1.0 the confidence region is circular and the pa-
rameters are uncorrelated. Contrarily, when the axes of the ellipses are
not the coordinate axes, as the eccentricity tends to +∞ the confidence
region tends to a line, and the parameters become highly correlated.

The absolute and relative tolerances imposed on the SDP and NLP
solvers were set equal to 1 × 10−5 and 1 × 10−6, respectively. All com-
putations in Section 4 used an Intel Core i7 machine running a 64 bits
Windows 10 operating system with a 2.80GHz processor.

4. Application examples

In this Section, we apply the formulations of Section 3 to find
parameterizations for nonlinear regression models. The first Example
considered is a linear (in the parameters) polynomial model while
the remaining four are nonlinear. The first model, see Section 4.1,
was considered by Ye and Zhou [22] to illustrate the construction
of K-optimal designs with Semidefinite Programming. It is consid-
ered here for comparative purposes and serves to demonstrate that
the formulation (7) is accurate for computing K-optimal designs. In
Section 3.3 we introduced two approaches for the calculation of the
transformations. The remaining Examples demonstrate the application
of Approach 1 (Examples 1 to 4, discussed in Section 4.1- Section 4.4)
and of Approach 2 (Examples 4 and 5, in Section 4.4- Section 4.5). All
of the examples presented in the next Sections required less than 15 s
of CPU time. The solution of the SDP problems required less than 3 s
each and the LS determination less than 1 s. Finally, we note that the
optimal designs obtained for some of the examples used for testing the
algorithm have analytical solution or can be addressed with alternative
numerical approaches. These tools can be used instead of the SDP-based
formulations in Step 3 of the Algorithm.

From this point onwards we use the counter 𝑖 ∈ [[𝑛𝜃]] for ordering
the parameters in 𝜽 and 𝝑.

4.1. Example 1 — Polynomial model of third degree

Our first example is the third degree polynomial

E(𝑦) = 𝜃1 + 𝜃2 𝑥 + 𝜃3 𝑥2 + 𝜃4 𝑥3, (13)

where 𝜽 ≡ (𝜃0, 𝜃1, 𝜃2, 𝜃3)⊺ and the design domain is 𝐗 = [−1,+1].
For discretizing the domain we use a uniform grid with 𝛥𝑥 = 0.02
(see Section 3.1); consequently, 𝑛𝑥 = 101 and the set of candidate

[[101]]
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design points is X . The results are in Table 1, and are in agreement
with those of Ye and Zhou [22]. To simplify the interpretation of
the results, the first column of Table 1 lists the optimality criteria,
the second column is for the corresponding optimal design obtained
with the Semidefinite Programming formulations (in Section 3.2 and
Appendix A) and the third column is for the optimum of the SDP
problem (7). We note for this example the coincidence of the support
points of all designs except those for E-optimality. However, their
respective weights differ. As expected, for a problem in which 𝑛𝑠 =
𝑛𝜃 , D-optimality equidistributes the weights. The K-optimality criterion
relatively overweights the middle support points, whereas the A- and
E-optimality criteria lead to designs between these two extremes. The
designs obtained for other polynomial orders (not shown here) are also
very similar to those of Ye and Zhou [22].

To analyse the performance of D-, A-, E- and K-optimal designs in
capturing the ‘‘real’’ model parameters we used the simulation-based
approach described in Section 3.5. We set 𝑛𝑜 to 200 observations, a
value that is used in all the remaining examples. Then, we produced
exact designs equivalent to the approximate designs in Table 1 by use of
the rounding procedure of Pukelsheim and Rieder [26]; for instance for
the D-optimality criterion the number of observations at each support
point 𝑥𝑖 ∈ {−1.0000,−0.4446,+0.4446,+1.0000} is ⌊0.2500 × 200⌉ = 50.
Similar calculations were made for the other criteria.

Next, we generated the observations using the model (13) with
𝐩0 = (1.0, 2.0,−2.0,−4.0)⊺ (this vector is interpreted as the vector of
‘‘real’’ model parameters), and corrupted the observations with zero
mean normally distributed random noise with 𝜎 = 0.1. Then, we
used LS (see Section 3.5) to fit the data generated from the design
for each criterion to a model structurally equal to (13) and obtained
the estimated parameters, represented as 𝜽̂. The estimated parameters
produced from all the data sets should be close, but differ in the
parametric confidence regions.

Finally, we constructed the parametric covariance matrix and sub-
sequently determined the performance metrics (𝜚 and 𝜅) described in
Section 3.6. Their values, obtained from fitting each data set, are listed
in columns 4 and 5 of Table 1. The parametric covariance matrix is also
used to compute the 95% confidence ellipsoids (see the above panel
of Fig. 2). Several findings can be noted: (i) the optimal designs yield
parameter estimates near the ‘‘real’’ values used for simulation; (ii)
Fig. 2(a) shows no correlation between parameter estimates - 𝜃̂3 vs. 𝜃̂2
– a direct consequence of the elements (2, 3) and (3, 2) of the covariance
matrix at convergence being nearly 0; (iii) Fig. 2(b) shows that a degree
of collinearity exists between 𝜃̂4 and 𝜃̂2 (the ellipses exhibit some degree
of eccentricity and their axes do not coincide with the coordinate
axes); (iv) all optimality criteria produce similar confidence regions.
We notice that the visual analysis of collinearity requires analysing all
pairs of parameters; here, only two of them are plotted.

The correlation of some pairs of parameter estimates (one example
being 𝜃̂1 and 𝜃̂3) is also revealed by the metrics 𝜚 and 𝜅. The data
set generated with the D-optimal design leads to a value of 𝜚 = 0.95
(above the cut-off). Likewise, all data sets fitted produce models with
a parametric covariance matrix with 𝜅 above the threshold (20). The
results also confirm the advantages of the K-optimality criterion in
this context (i.e., to sample the system) relative to the other criteria
since the condition number of the covariance matrix of the LS problem
obtained from the K-optimal design is the lowest, as expected, since it
minimizes the maximum parametric sensitivity to observational error.
We note that the results obtained by sampling from all designs are
above the threshold, which suggest that a model reparameterization
would be beneficial; it will be considered next. From this point on
we use 𝜗̂𝑖 to designate the parameter estimates obtained fitting the
reparameterized model.

Now, we parameterize model (13). The algebraic treatment of the
Eqs. (9) leads to the following linear transformation:

𝜽 =

⎛

⎜

⎜

⎜

⎜

−0.1342 𝜗1 + 0.6342 𝜗2 + 0.6342 𝜗3 − 0.1342 𝜗4
0.1342 𝜗1 − 1.3787 𝜗2 + 1.3787 𝜗3 − 0.1342 𝜗4
0.6342 𝜗1 − 0.6342 𝜗2 − 0.6342 𝜗3 + 0.6342 𝜗4

⎞

⎟

⎟

⎟

⎟

(14)
⎝

−0.6342 𝜗1 + 1.3787 𝜗2 − 1.3787 𝜗3 + 0.6342 𝜗4 ⎠
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Table 1
Polynomial model of third degree (13): optimal designs, 𝐗 = [−1,+1] and 𝛥𝑥 = 0.02.

Optimality criterion Design Optimum 𝜚† 𝜅† 𝜚‡ 𝜅‡

D−
(

−1.0000 −0.4446 0.4446 1.0000
0.2500 0.2500 0.2500 0.2500

)

0.2674 0.9485 47.3904 0.0339 1.0801

A−
(

−1.0000 −0.4600 0.4600 1.0000
0.1497 0.3503 0.3503 0.1497

)

37.5254 0.8939 31.7578 0.0000 2.3333

E−
(

−1.0000 −0.5000 0.5000 1.0000
0.1267 0.3733 0.3733 0.1267

)

0.0400 0.8781 30.2806 0.0858 3.1894

K−
(

−1.0000 −0.4600 0.4600 1.0000
0.0969 0.4031 0.4031 0.0969

)

29.3651 0.8476 29.3569 0.0000 4.2083

† — based on original model.
‡ — based on parameterized model.
Fig. 2. Polynomial model of third degree: 95% confidence ellipses for parameters obtained with the optimal designs in Table 1 for: (a) 𝜃̂3 vs. 𝜃̂2; (b) 𝜃̂4 vs. 𝜃̂2; (c) 𝜗̂3 vs. 𝜗̂2 using
ransformation (14); (d) 𝜗̂ vs. 𝜗̂ using transformation (14).
4 2

c
a
t

4

E

𝐗
𝛥
P
p

Figs. 2(c) and 2(d) present the confidence regions for 𝜗̂2 vs. 𝜗̂1
nd 𝜗̂3 vs. 𝜗̂1, respectively, after reparameterization. We note that the
xis of the ellipses for the pair of parameters 𝜗̂3 and 𝜗̂1 (left column
f the lower panel) are now aligned with the coordinate axes, thus
howing the orthogonality of the new parameters. This is also shown
y observing the values of 𝜚 and 𝜅 in Table 1 (see columns 6 and 7).
he maximum of the absolute of cross-correlation is below 0.10 for
ll data sets, being exactly 0 for A- and K-optimality; this result was
xpected for K-optimality, since the K-optimal support points were used
or model reparameterization and the algebraic manipulation of the
nalytic equations is exact. A similar result could be obtained for the
emaining optimality criteria if linear transformations of the form (14)
ere considered, but based instead in the support points of the D- and
- designs. Now, the condition number is well below 20 for all criteria.

Finally, we note that the regression of Eq. (13) in [−1, 1] leads to
coefficient or design matrix (of the over-determined system to be

olved in the least squares sense) of Bernstein–Vandermonde kind [31].
he numerical condition of these matrices can grow exponentially with
ize [32]. Here, using optimal designs based on information criteria to
hoose a limited set of support points significantly helps to limit the
7

p

ondition of the resulting design matrices. The K-optimality criterion is
n obvious choice in this particular example as it minimizes specifically
he condition number of the covariance matrix.

.2. Example 2 — Michaelis–Menten rate-based model

Here, we consider the Michaelis–Menten rate model

(𝑦) = 𝜃1 +
𝜃2 𝑥
𝜃3 + 𝑥

, (15)

which has the form of a rational polynomial function and ad-
mits exact reparameterization solutions by applying purely algebraic
manipulation techniques.

The vector of parameters is 𝜽 ≡ (𝜃1, 𝜃2, 𝜃3)⊺, and for testing purposes
we consider the singleton 𝐩0 = (1.0, 2.0, 5.0)⊺. The design space is

= [0, 10], and we discretize it with a uniformly distributed grid with
𝑥 = 0.1. The optimal experimental designs obtained via Semidefinite
rogramming are listed in Table 2. Again, we note that all criteria
rovide similar support points but different weights. The maximum of
arameter intercorrelation is below 0.9 for all data sets (see column
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Table 2
Michaelis–Menten model (15): optimal designs for 𝐗 = [0, 10], 𝛥𝑥 = 0.1 and 𝐩0 = (1.0, 2.0, 5.0)⊺.

Optimality criterion Design Optimum 𝜚† 𝜅† 𝜚‡ 𝜅‡

D−
(

0.0000 2.5000 10.0000
0.3334 0.3333 0.3333

)

0.0319 0.8547 2.1742E+3 0.0289 1.0816

A−
(

0.0000 2.5000 10.0000
0.2475 0.4974 0.2551

)

2.0827E+3 0.8060 1.9952E+3 0.0419 2.0345

E−
(

0.0000 2.5000 10.0000
0.1642 0.6662 0.1696

)

4.8495E−4 0.7594 2.1932E+3 0.0578 4.1066

K−
(

0.0000 2.3000 10.0000
0.2854 0.4972 0.2175

)

2.2297E+3 0.8212 2.0344E+3 0.0000 2.3056

† — based on original model.
‡ — based on parameterized model.
Fig. 3. Michaelis–Menten model (15): 95% confidence ellipses for parameters obtained with the optimal designs in Table 2 for 𝜃̂3 vs. 𝜃̂1: (a) considering the original parameters;
(b) after reparameterization.
4 of Table 2). Contrarily, the condition number is larger than 1 × 103,
denoting a ill-conditioned LS problem (see column 5).

Next, we used the support points of the K-optimal design in Table 2
and Approach 1 in Section 3.3 to find the parametric transformations
to a stable vector, namely:

𝜽 =
(

𝜗1,
77.0

(

𝜗1 𝜗2+𝜗1 𝜗3−𝜗2 𝜗3−𝜗12
)

77.0 𝜗1−100.0 𝜗2+23.0 𝜗3
, 230.0 𝜗2−230.0 𝜗3

77.0 𝜗1−100.0 𝜗2+23.0 𝜗3

)⊺
(16)

The performance metrics of the nonlinear LS fits for the param-
eterized model are in columns 6 and 7 of Table 2 and they show:
(i) the maximum of parameter intercorrelations is close to 0; (ii) the
condition number decreased from 1 × 103 to values below 5 for all the
criteria (i.e., below the threshold); and (iii) the data set obtained by
sampling with the K-optimal design gives a parametric intercorrelation
of exactly 0. This is expected as the new parameters in the transformed
model are fully orthogonal and no approximations were required in the
algebraic treatment of the equations representing the response surface
(see Eq. (9)).

Fig. 3(a) shows the ellipsoids for 𝜃̂3 vs. 𝜃̂1 obtained fitting the
original model, and Fig. 3(b) is for the reparameterized model obtained
using (16). Here, we note the value of one for 𝜗̂1 is also that of
𝜃̂1. Since it is the ordinate at the origin, this value, unlike the other
parameters, was not affected by the reparameterization. Fig. 3(b) also
shows that the reparameterization removes any evidence of collinearity
whichever design criterion is used, with the major impact also holding
for K–optimality for which 𝜚 = 0.0, as expected.

4.3. Example 3 — Exponential model

Here, we consider the exponential model

E(𝑦) = 𝜃1 + 𝜃2 exp(−𝜃3 𝑥) (17)

where 𝜽 ≡ (𝜃1, 𝜃2, 𝜃3)⊺ and the design domain is 𝐗 = [0, 10]. We follow
Algorithm Fig. 1. For discretizing the design space we use a uniform
grid with 𝛥𝑥 = 0.1, i.e. 𝑛𝑥 = 101. The locally optimal designs are

⊺
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found for 𝐩0 ≡ (1.0, 1.0, 0.1) and are in Table 3. We note that the
K-optimal design is remarkably different from those obtained for the
other optimality criteria.

To compare the designs for the ability to generate observations
allowing capture of the ‘‘real’’ model parameters, we followed the
simulation scheme presented in Section 3.4. The same vector 𝐩0 used
to find optimal experimental designs was used to construct new data,
with the observational noise used for its randomization following a
normal distribution with zero mean and 𝜎 = 0.10. As in Section 4.1,
the 𝑛𝑜 points forming each data set were sampled using the respective
approximate optimal designs previously found. Then, a nonlinear least
squares procedure was used for model fitting to the each of the four
data sets previously generated, see Section 3.5. The figures of merit
of the models identified are in the fourth column, 𝜚, and in the
fifth column, 𝜅, of Table 3. Both performance metrics show that the
estimated model parameters are highly correlated, with the condition
number of the covariance matrices at convergence being above 1 × 103

for all models. The 95% confidence ellipsoids are displayed in Fig. 4(a);
they strengthen those findings. The confidence ellipsoids for parameters
𝜃̂3 vs 𝜃̂1, by their orientation and eccentricity, show that all the designs
lead to strongly collinear parameter estimates.

Now, we demonstrate the impact of the reparameterization of model
(17). That is, we use the vector of support points of the K-optimal
design to determine a transformation to a stable vector of parameters,
see Section 3.3. Since this specific problem involves an exponential
expression in one of the parameters, no closed form exact reparameteri-
zation was possible without simultaneous changes in the data variables.
Instead, in this case, an approximate solution of the reparameterization
Eqs. (10) was obtained using Approach 1, considering the method fol-
lowed by Ross et al. [14]. Specifically, the system of algebraic equations
was reformulated as a ratio and later approximated by an expression
that depends only on 𝜃3:
𝜗3 − 𝜗2
𝜗2 − 𝜗1

=
exp(−𝜃3 𝑥3) − exp(−𝜃3 𝑥2)
exp(−𝜃3 𝑥2) − exp(−𝜃3 𝑥1)

≈ exp[−𝜃3 (𝑥3 − 𝑥2)] − 1
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Table 3
Exponential model (17): optimal designs, 𝐗 = [0, 10], 𝛥𝑥 = 0.1, and 𝐩0 = (1.0, 1.0, 0.1)⊺.

Optimality criterion Design Optimum 𝜚† 𝜅† 𝜚‡ 𝜅‡

D−
(

0.0000 4.1999 10.0000
0.3334 0.3333 0.3333

)

0.2051 0.9952 4.4778E+3 0.6192 9.9220

A−
(

0.0000 4.200 10.0000
0.1567 0.4826 0.3608

)

506.064 0.9896 4.8957E+3 0.7835 20.4597

E−
(

0.0000 4.2000 10.0000
0.1042 0.6520 0.2438

)

0.0019 0.9896 5.0800E+3 0.8065 20.7862

K−
(

0.0000 2.5000 10.0000
0.5458 0.3399 0.1143

)

3408.26 0.9996 2.8100E+3 0.4071 3.3525

† — based on original model.
‡ — based on parameterized model.
Fig. 4. Exponential model (17): 95% confidence ellipses for parameters obtained with the optimal designs in Table 3 for 𝜃̂3 vs. 𝜃̂1: (a) considering the original parameters; (b)
after reparameterization.
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The approximation was used to relate 𝜃3 with 𝝑 and the remaining
parameters of the ‘‘original’’ model (i.e., 𝜃1 and 𝜃2) were determined
by replacing it in the first two symbolic equalities, yielding:

𝜽 =
⎛

⎜

⎜

⎝

−

(

𝜗2−𝜗1
( 𝜗2−𝜗3
𝜗1−𝜗2

)1∕3)

( 𝜗2−𝜗3
𝜗1−𝜗2

)1∕3
−1.0

, − (𝜗1−𝜗2)
( 𝜗2−𝜗3
𝜗1−𝜗2

)1∕3
−1.0

, −
2 ln

( 𝜗1−𝜗3
𝜗1−𝜗2

)

15

⎞

⎟

⎟

⎠

⊺

(18)

The same data used to fit the ‘‘original’’ model was then used to fit
the parameterized model where 𝜽 is replaced by (18) and the nonlinear
LS problem presented in Section 3.5 re-solved. The performance metrics
of the parameterized model are in columns 6 and 7 of Table 3. It
should be stressed that the unique parameterization (18) (specific to
the K-optimal design support points) was used to generate all data
in this Table. Because of this fact, the orthogonality behaviour of the
remaining optimal designs needs to be considered as partially impaired,
since their support points differ from the case considered. Repeating the
same procedure, but considering this time the support points, e.g., of
design D- would produce better orthogonal behaviour for the remaining
criteria.

In the present case we notice that (i) all the parametric correlations
are between −0.81 and 0.81, which indicates the reparameterization is
efficient in treating the collinearity. This value is below the threshold,
see Section 3.6; (ii) the condition numbers of the LS problems for
the parameterized model are below 21 with those for data generated
with D- and K-optimal designs below 20 ; (iii) as expected the lowest
condition number is obtained from the data set generated with the K-
optimal design, since the reparameterization used the curve passing
exactly through the same support points as the design. The failure
of the reparameterization (18) in providing a fully orthogonal new
parameter set is explained by the approximations considered in the
algebraic manipulation of the original Eqs. (9).

Instead of the approximated solution of Eqs. (10), the alternative ap-
plication of Approach 2 would also be feasible; this is considered in the
next example, also involving exponential terms. Finally, the confidence
9

regions for parameters 𝜗̂3 vs 𝜗̂1 (obtained after reparameterization)
are in Fig. 4(b). They show a visible decrease in eccentricity which
denotes lower collinearity despite the orientation of the ellipses. Here,
for the nonlinear model, the values of the parameters obtained for the
reparameterized model are different from those found for the original
form.

4.4. Example 4 — Logistic model

We consider now the logistic model:

E(𝑦) =
𝜃1

1 + exp[−𝜃2 (𝑥 − 𝜃3)]
(19)

The vector of parameters is 𝜽 ≡ (𝜃1, 𝜃2, 𝜃3)⊺; for testing we consider
he singleton 𝐩0 = (1.0, 0.5, 0.5)⊺. The design space is 𝐗 = [−2.0, 2.5],
nd we discretize it with a uniformly distributed grid with 𝛥𝑥 = 0.045,
orresponding to 101 candidate points. The optimal designs are listed
n Table 4. The maximum absolute intercorrelation metrics obtained
onsidering the original parameters are above 0.98 for all data sets (see
olumn 4). The condition number is also very large (see column 5 of
he Table) which indicates collinear parameter estimates.

Similarly, we used the support points produced by the K-optimal
esign in Table 4 and Approach 1 in Section 3.3 to find a reparam-
terization for 𝜽. Like in the previous example, during the algebraic
anipulation some approximations were required. In this case, the

ystem of algebraic equations was reformulated as a ratio and then
pproximated by an expression that depends only on 𝜃2:
1∕𝜗3 − 1∕𝜗2
1∕𝜗2 − 1∕𝜗1

=
exp[−𝜃2 (𝑥3 − 𝜃3)] − exp[−𝜃2 (𝑥2 − 𝜃2)]
exp[−𝜃2 (𝑥2 − 𝜃3)] − exp[−𝜃2 (𝑥1 − 𝜃3)]

≈ exp[−𝜃2 (𝑥3 − 𝑥2)] − 1

he approximation was used to relate 𝜃2 with 𝝑 and the remain-
ing parameters were determined by replacing this parameter in
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Fig. 5. Logistic model (19): 95% confidence ellipses for parameters obtained with the optimal designs in Table 4 for 𝜃̂3 vs. 𝜃̂1: (a) considering the original parameters; (b) after
reparameterization.
Table 4
Logistic model (19): optimal designs, 𝐗 = [−2.5, 2.0], 𝛥𝑥 = 0.045, and 𝐩0 = (1.0, 0.5, 0.5)⊺.

Optimality criterion Design Optimum 𝜚† 𝜅† 𝜚‡ 𝜅‡

D−
(

−2.0000 0.6102 2.5000
0.3334 0.3332 0.3334

)

0.0177 0.9909 1.6814E+3 0.1377 1.3851

A−
(

−2.0000 0.6550 2.5000
0.2215 0.4918 0.2868

)

4.7069E+3 0.9890 1.4175E+3 0.2211 2.5908

E−
(

−2.0000 0.6550 2.5000
0.1477 0.6595 0.1928

)

2.1322E−4 0.9919 1.5985E+3 0.3038 5.0802

K−
(

−2.0000 0.2500 2.5000
0.4209 0.4317 0.1475

)

1.1668E+3 0.9898 1.1338E+3 0.0000 2.9189

† — based on original model.
‡ — based on parameterized model.
.

the first and third symbolic equalities, leading to the approximate
reparameterization:

𝜽 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

− 𝜗2 (𝜗1 𝜗2−2.0 𝜗1 𝜗3+𝜗2 𝜗3)
𝜗1 𝜗3−𝜗22

−
4 ln

(

𝜗1 (𝜗2−𝜗3)
𝜗3 (𝜗1−𝜗2)

)

9

−

2.25 ln

⎛

⎜

⎜

⎜

⎜

⎝

−
𝜗3 (𝜗1−𝜗2)2

(

𝜗1 (𝜗2−𝜗3)
𝜗3 (𝜗1−𝜗2)

)8∕9

𝜗1 (𝜗1 𝜗3−𝜗22)

⎞

⎟

⎟

⎟

⎟

⎠

ln
(

𝜗1 (𝜗2−𝜗3)
𝜗3 (𝜗1−𝜗2)

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(20)

The results for the parameterized model are in columns 6 and 7 of
Table 4 and they show: (i) the parametric intercorrelation coefficients
are all below or equal to 0.3; (ii) the condition number is below 5.1
for all criteria; and (iii) the data set generated with the K-optimal
design yields non-correlated parameters (𝜚 = 0); the parameters are
orthogonal in the transformed model. Fig. 5(a) shows the ellipsoids
for 𝜃̂3 vs. 𝜃̂1 obtained fitting the original model, while Fig. 5(b) is
for the reparameterized model. As in the previous examples, Fig. 5(b)
demonstrates that the K–optimal design based parameterization shows
no evidence of parameter collinearity. A similar behaviour is expected
for the remaining optimal designs, provided that the exact support
points were considered in the reparameterization (20).

Now, we apply Approach 2 in Section 3.3 to reparameterize
the model (19) and compare the results obtained with Approach 1.
The vector of stable parameters obtained with the first-order Taylor
approximation is:

𝜽 =
⎛

⎜

⎜

⎝

4.6595 𝜗1 − 6.4779 𝜗2 + 4.1024 𝜗3
−3.8017 𝜗1 + 3.5006 𝜗2 − 1.0867 𝜗3 + 0.5000
19.4439 𝜗1 − 34.1709 𝜗2 + 15.9889 𝜗3 + 0.5000

⎞

⎟

⎟

⎠

(21)

Table 5 compares the figures of merit of the LS problem obtained
ith (i) the original set of parameters; (ii) the vector (20); and (iii)

he vector of parameters (21) obtained by approximating 𝑓 (𝑥,𝜽) to a
10

irst order polynomial via Taylor expansion. The results show that the
Table 5
Logistic model (19): optimal designs, 𝐗 = [−2.5, 2.0], 𝛥𝑥 = 0.045, and 𝐩0 = (1.0, 0.5, 0.5)⊺

Optimality
criterion

𝜚† 𝜅† 𝜚‡ 𝜅‡ 𝜚⋆ 𝜅⋆

D− 0.9909 1.6814E+3 0.1377 1.3851 0.1807 1.7779
A− 0.9890 1.4175E+3 0.2211 2.5908 0.2180 2.5200
E− 0.9919 1.5985E+3 0.3038 5.0802 0.3112 5.1429
K− 0.9898 1.1338E+3 0.0000 2.9189 0.0853 4.2371

† — based on original model.
‡ — based on the reparameterization (20).
⋆ — based on the reparameterization (21).

maximum parameter intercorrelation and the condition number of the
LS problems for this latest vector of parameters are similar to those
of (20) (compare columns 3 and 5, and 4 and 6, respectively). The
condition number obtained for all the data sets is below 6, well below
the threshold. Now, the value of 𝜚 for data set sampled with the K-
optimal design is not 0, unlike that obtained with the transformation
(20). This indicates that, due to the first-order approximation, the
vector (21) is not fully orthogonal; nevertheless, it still provides an
acceptable set of stable parameters.

Fig. 6(a) shows the ellipsoids for 𝜗̂3 vs. 𝜗̂1 obtained with the set
of stable parameters (20) while Fig. 6(b) is for the reparameterized
model obtained with the Taylor expansion, i.e. vector (21). Fig. 6(b)
demonstrates that the approximation has only a marginal effect on the
confidence ellipses and that the eccentricity is hardly changed.

4.5. Example 5 — Four-parameter hill model

Finally, we consider the four-parameter Hill model [33]:

E(𝑦) = 𝜃1 +
(𝜃2 − 𝜃1) 𝑥𝜃4

𝑥𝜃4 + 𝜃3
. (22)

The vector of parameters is 𝜽 ≡ (𝜃1, 𝜃2, 𝜃3, 𝜃4)⊺, and for testing
⊺
we consider the singleton 𝐩0 = (0.1, 0.9, 0.25, 1.5) . The domain is
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Fig. 6. Logistic model (19): 95% confidence ellipses for parameters obtained with the optimal designs in Table 4 for 𝜃̂3 vs. 𝜃̂1: (a) considering the stable parameters (20); (b)
considering the stable parameters (21).
Table 6
Four-parameter Hill model (22): optimal designs, 𝐗 = [1 × 10−4 , 5.0], 𝛥𝑥 = 0.05, and 𝐩0 = (0.1, 0.9, 0.2, 1.5)⊺.

Optimality criterion Design Optimum 𝜚† 𝜅† 𝜚⋆ 𝜅⋆

D−
(

0.0001 0.1958 0.7253 5.0000
0.2496 0.2510 0.2496 0.2498

)

0.0828 0.8004 196.89 0.2887 2.1487

A−
(

0.0001 0.1500 0.8000 5.0000
0.1992 0.3168 0.2989 0.1851

)

2.7663E+2 0.7861 168.47 0.1236 1.9552

E−
(

0.0001 0.1500 0.8000 5.0000
0.1925 0.3253 0.3060 0.1763

)

3.9611E−3 0.7941 170.12 0.1266 2.1132

K−
(

0.0001 0.1500 0.9000 5.0000
0.2185 0.2683 0.2797 0.2335

)

1.5825E+2 0.7779 163.36 0.0134 1.3143

† — based on original model.
‡ — based on parameterized model after Taylor expansion.
𝐗 = [1.0 × 10−4, 5.0], and we discretize it with a uniformly distributed
rid with 𝛥𝑥 = 0.05. The optimal designs are listed in Table 6. The
aximum intercorrelation coefficients obtained considering the origi-
al parameters are below 0.9 (see column 4) but the condition number
s considered large, above 150 for all the criteria (see column 5), which
ndicates ill-conditioning in the original LS problem. The K-optimality
riterion leads to the least badly scaled problem but 𝜅 is still above 160.

Now, we use the Taylor expansion approximation introduced in Sec-
ion 3.3 to find a vector of stable parameters. The algebraic treatment
f the Eqs. (9) leads to:

=

⎛

⎜

⎜

⎜

⎜

⎝

1.0000 𝜗1
−0.0933 𝜗1 + 0.1635 𝜗2 − 0.2920 𝜗3 + 1.2217 𝜗4

0.1962 𝜗1 + 0.3552 𝜗2 − 2.3086 𝜗3 + 1.7572 𝜗4 + 0.25
3.0052 𝜗1 − 4.9230 𝜗2 + 4.6308 𝜗3 − 2.7131 𝜗4 + 1.5

⎞

⎟

⎟

⎟

⎟

⎠

(23)

he figures of merit of this new system of parameters are in columns 6–
of Table 6. The technique is efficient in reducing both the maximum

arametric correlations and the condition numbers which are now
elow 2.5. Fig. 7(a) shows the ellipsoids for 𝜃̂4 vs. 𝜃̂2 obtained fitting
he model (22) with the original set of parameters. Fig. 7(b) shows
he ellipses with the set of stable parameters (23). The axes of the
onfidence regions are now virtually aligned with the parameter axes,
upporting the conclusions from the figures of merit.

. Robustness of the reparameterization

The algorithm we describe for model reparameterization is ‘‘local’’
s it depends on the support points of the optimal designs which are
ound for a given singleton 𝜽 (called 𝐩0). In this Section we test the ro-
ustness at two levels. We consider the Michaelis–Menten model (15),
nd submit it to two simulation tests.

First, we analyse the robustness of the transformation found (see
16)) when there is a change in the values of the parameters of the
odel used to generate the data. Here, we increased all the parameters

y 10%, so that the new vector of parameters is 𝐩 = (1.1, 2.2, 5.5)⊺.
11

0

Table 7
Michaelis–Menten model (15): metrics of performance when the parameters and the
design space are modified while the reparameterization (16) is maintained, 𝛥𝑥 = 0.1.

Optimality 𝐩0 = (1.1, 2.2, 5.5)⊺ , 𝐗 = [0, 10] 𝐩0 = (1.0, 2.0, 5.0)⊺ , 𝐗 = [0, 20]

criterion 𝜚† 𝜅† 𝜚‡ 𝜅‡

D− 0.0461 1.1260 0.6159 5.1442
A− 0.0640 2.0662 0.4377 4.4406
E− 0.0641 2.0747 0.4333 4.4531
K− 0.0210 2.3040 0.4338 3.3854

Table 7 shows the metrics for such a perturbation in columns 2 and 3.
We note that 𝜚 and 𝜅 increase from the reference values (see the values
in columns 6–7 of Table 2) but they are still well below the thresholds
considered. The confidence ellipsoids in Fig. 8(a) also show evidence
of the trends observed.

Secondly, we maintain the original vector of parameters, 𝐩0 =
(1.0, 2.0, 5.0)⊺, but introduce a larger design region, 𝐗 = [0, 20], while
keeping 𝛥𝑥 = 0.1. We find the optimal design for this larger region
and use it for sampling, but stay with the reparameterization optimized
for the smaller region. The performance metrics (in columns 4 and 5
of Table 7) present a remarkable increase, particularly in the value
of 𝜚, although the values remain within the thresholds. The ellipses
of Fig. 8(b) support these conclusions. The results show that the
reparameterization, although based on a local linearization, is robust
against modifications in the model parameters and changes in the
design region.

Relatively to the choices of the discretization step for the domain
and the exact number of observations sampled from each support point,
these parameters retain their usual effect from traditional optimal de-
signs, since the orthogonalization capabilities of the proposed method
are not dependent on particular choices of these two parameters.
With numbers of support points/replicas similar to the values in the
examples considered, the approximation error in the location of the

optimal designs will be small, but in each case the orthogonality of
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Fig. 7. Four-parameter Hill model (22): 95% confidence ellipses for parameters obtained with the optimal designs in Table 6 for 𝜃̂4 vs. 𝜃̂2: (a) considering the original parameters;
(b) considering the stable parameters (23).
Fig. 8. Michaelis–Menten model (15): 95% confidence ellipses for parameters obtained with the optimal designs in Table 2 for 𝜗̂3 vs. 𝜗̂1: (a) considering 𝐩0 = (1.1, 2.2, 5.5)⊺ and
= [0, 10]; (b) considering 𝐩0 = (1.0, 2.0, 5.0)⊺ and 𝐗 = [0, 20].
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he parameters estimated can be guaranteed through the exact solution
f (9).

. Results interpretation and overall effectiveness of the proce-
ure

For the proposed methodology, given its practical ability to re-
ormulate the original problems into transformed versions where
ssentially good orthogonality properties were observed with all of
he examples considered, two significant questions arise, namely: (i)
hether this property can be generalized for all classes of mod-
ls, including cases where severe ill-conditioning or even where
on-identifiable parameters might exist; (ii) the exact basis for the
ffectiveness of this procedure. The answer to both of these questions
s interrelated, and can be elucidated from the structure of Eqs. (9).

We first consider the most common case where 𝑛𝑠 = 𝑛𝜃 , for
aturated designs where the number of support points in the optimal
esign correspond to the number of parameters in the model. Since the
ransformed model seeks to produce responses (𝑦) equal to the values
f the model parameters (𝝑) at the chosen sampling points, its original
orm (1) can be replaced at these points by the equivalent form

(𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜗1, if 𝑥 = 𝑥1
𝜗2, if 𝑥 = 𝑥2
⋮

𝜗𝑛𝜃 , if 𝑥 = 𝑥𝑛𝜃 .

(24)

his occurs if the transformation (10) is obtained without approx-
mation (Approach 1), and also for the linearization considered in
pproach 2, provided that the first order approximation involved
12

s computed exactly. Eq. (24) corresponds to a linear model of the
orm (2) where the design matrix has a special block structure of the
orm 𝑋 =

[

𝐻1 𝐻2 ⋯ 𝐻𝑛𝜃

]⊺ and each block 𝐻𝑖 ∈ 𝑅𝑛𝑜,𝑖×𝑛𝜃 has a
ingle unitary column 𝑖 and the remaining columns are filled by zeros,
.g.,

1 =
⎡

⎢

⎢

⎣

1 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
1 0 ⋯ 0

⎤

⎥

⎥

⎦

, 𝐻2 =
⎡

⎢

⎢

⎣

0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 1 ⋯ 0

⎤

⎥

⎥

⎦

, etc.,

here 𝑛𝑜,𝑖 is the number of observations considered at the support
oint 𝑖. This simplifies the analytic solution of the normal equations
esulting from the least-squares formulation of the model (2). In this
ase the estimation of each parameter becomes decoupled, and its least
quares estimation corresponds to the arithmetic mean of a subset of
he samples, that is

̂𝑖 =
∑𝑛𝑜,𝑖
𝑖 𝑔𝑖(𝑥𝑖,𝝑)
𝑛𝑜,𝑖

, 𝑖 ∈ [[𝑛𝜃]].

Hence the application of the transformation (9) allows the replace-
ment of the computation of the least squares solution on the original
model (1) by the equivalent solution of the simultaneous set of
Eqs. (10). For linear models of the form (2) the effort is comparable,
since the solution of (10) also involves the solution of a linear set of
equations, of the same size. For nonlinear models, (10) represents the
solution of a set of nonlinear equations, also comparable in terms of
numerical effort to the numerical solution of the nonlinear least squares
problem. When the analytic solution of (10) is readily available, the
application of this transformation has the advantage of allowing the
estimation of the transformed parameters without collinearity; conse-
quently, it takes a numerically more stable form. In either situation of
Approaches 1 and 2, the computation of the model functions 𝑓 (𝑥,𝜽)
depends on knowing the exact value of the parameters 𝜽, which is
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usually not available until the parameter estimation task is completed.
This suggests the possible application of the transformation algorithm
iteratively, where the present estimate of the values of the parameters is
used to provide a local reparameterization to improve these estimates;
each step of the iterative procedure includes the model reparameter-
ization and updating the parameter estimates. Although conceptually
feasible, the convergence properties of this approach were not studied
in this paper.

In the cases where 𝑛𝑠 > 𝑛𝜃 , more support points are required in
the optimal design than the number of parameters in the model. This
situation is uncommon, since it is indicative of structural singularities
in the global FIM matrix (3) constructed from the support points
selected. As mentioned previously, it is possible here to select a subset
of 𝑛𝜃 support points to write the Eqs. (24). Thus the predictive model
equations at the selected support points would also have the linear
form (24), but the model equations for the remaining support points
would retain the original form (1) or (2). In this case, a full parameter
orthogonalization would therefore not be reached, although a reduction
in the overall parameter collinearity would still be achieved. Since
this configuration occurs rarely in practice, a detailed study of this
situation was not considered in this work. A possible extension to
models resulting in singular FIMs may require working with the Moore–
Penrose generalized inverse to generate the (optimal) set of support
points to construct the response curve and inverting the equalities
representing the stable transformation.

Now, the effect of the model reparameterization on the possible ill-
conditioning of the system relative to the model parameters can be
described. Since this effect is common to both linear and nonlinear
model structures, it will be examined by considering the least squares
solution of the predictive Eqs. (2)

min
𝜽

‖𝑦 −𝑋𝜽‖2,

dropping the ′ superscripts for simplicity of notation. Ill-condition or
non-unique identifiability of the parameters 𝜽 can be diagnosed when
the design matrix 𝑋 has a high condition number or has linearly
dependent columns, respectively. Contrarily, a sufficient condition for
this least squares problem to be perfectly conditioned is that the matrix
𝑋 is the identity matrix (or the identity matrix multiplied by some
constant).

The proposed reformulation rewrites (9) as 𝝑 = 𝑋𝜽 and (10)
roduces 𝜽 = 𝑋+𝝑 where the matrix 𝑋+ ∈ R𝑛𝑜×𝑛𝜃 corresponds to the
seudo inverse or Moore–Penrose inverse of the design matrix 𝑋. Thus,
he model reparameterization (9) has the basic effect of producing

suitable a priori model inversion of the original model equations,
o that the resulting estimation problem is always numerically well
onditioned. A similar effect is also observed with nonlinear models
f the form (1), this time involving the composition of the functions
(∙) and 𝑔(∙) as defined, when the equivalent transformed model can be
ritten in the form (24). If the linear model is originally ill-conditioned
ith respect to the ‘‘original’’ parameters it is first transformed to a
lways well conditioned model in the new parameter space containing
, where these parameters can be estimated without major difficulties,
roducing relatively small confidence regions with low eccentricity.
owever, in this case the inverse transformation matrix 𝑋+ will also
e ill-conditioned, and therefore larger and intercorrelated confidence
egions for the original parameters 𝜽 will originate if these results are
ropagated back to the original parameter space. This can be easily
een for instance from a singular value decomposition 𝑋 = 𝑈𝛴𝑉 ⊺,
eading to 𝑋+ = 𝑉 𝛴+𝑈 ⊺, where the singular value matrix 𝛴+ is
btained from 𝛴 by taking the reciprocal of each non-zero element on
he diagonal of 𝛴, leaving the zeros in place, and then transposing the
esulting matrix. If 𝛴 is originally ill-conditioned, the transformation
+ will also be ill-conditioned. However, the update of the uncertainty

egions for the problem will only occur during the transformation (10),
hich is handled after the parameter estimation procedure has been
13

ompleted. Thus, the parameter estimation for these systems can be a
erformed in a controlled manner in the transformed parameter space,
lthough the equivalent final confidence regions in the original param-
ter space will always reflect the effect of the uncertainties. Following
similar reasoning, it is also possible to conclude that if the original
odel has non uniquely identifiable parameters, this type of transfor-
ations will not be able to change this situation, in the sense that the

eparameterized model will also have the same number of non uniquely
dentifiable parameters, since the number of non-zero elements in the
atrices 𝛴 and 𝛴+ is equal.

. Conclusions

We have considered the problem of robustifying LS fitting in
onlinear regression through the calculation and use of orthogonal
independent) parameters, which improve the computational efficiency
nd improve the local model identifiability. The strategy, based on
odel reparameterization, finds a transformation of the original set

f parameters to a stable vector. Our approach constructs a response
urve that passes through a given set of points of the regressor space.
his curve allows the expression of the original set of parameters as
vector of functions of orthogonal (or nearly orthogonal) parameters.
o automate the procedure we use the support points of the K-optimal
esign, obtained via Semidefinite Programming, to construct the ana-
ytic response surface. We propose two distinct approaches to handle
he construction of stable transformations: (i) based on the algebraic
anipulation of the model equations at the support points; and (ii)
sing a first-order Taylor approximation to the model. To compare
he effect of reparameterization we use three metrics (i) the maximum
arametric intercorrelation at LS convergence; (ii) the condition num-
er of the covariance matrix; and (iii) the orientation and eccentricity
f the parametric confidence region.

The results in Section 4 show the application to four models and
llustrate the strong improvement in the orthogonality of the new
arameters. Using the Michaelis–Menten model as an example, Sec-
ion 5 briefly analyses the robustness of the reparameterization to
odifications in the parameters and the design region. Both analyses

how that the reparameterization is robust despite being based on a
ocally optimal design. Thus the reparameterization approach proposed
erein can handle satisfactorily and systematically problems where the
arameter estimates are highly collinear, typical of models that produce
IMs with a large (but finite) condition number.

We have considered the support points of the K-optimal design of
xperiments for constructing the surface response to find the trans-
ormation used for model reparameterization. The main reason for
hoosing the K-optimality criterion is that it allows minimizing an
pper bound on the sensitivity of the estimated parameters in the
riginal model to observational noise; that is, the support points in
he covariance space are those that minimize the condition number
f the covariance matrix in LS fitting. However, the orthogonality of
he transformed parameters is guaranteed by definition and depends
ainly on the invertibility of the set of equations (or their approxi-
ation) representing the surface response. Consequently, the support
oints maximizing other information optimality criteria or even equis-
aced points, as in Ross [24], can also be used. Practically, the points
sed only have to assure the invertibility of the system of algebraic
quations, and other more accurate approaches can be used in this step,
uch as the numerical parameterization of the solution.

At the end of a discussion of ill-conditioning in nonlinear models,
eber and Wild [1, p. 118] write ‘‘good experimental design can reduce
he problem, but it may not be able to eliminate it’’. In this paper we
ave shown that parameter transformation, coupled with appropriate
xperimental design, can effectively deal with the problem of estima-
ion of ill-conditioned models through the suitable characterization of

n equivalent parameter space for the original problem.
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Code availability

The code used for obtaining the results in the paper was developed
in Matlab® (version 2022). To run it requires the installation of the
onvex optimization environment cvx [34] (version 2.2) and the solver
osek [35] (version 9). A sample is presented in Appendix B of the
upplementary Material.
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ppendix A

.1. Formulations to determine the optimal allocation via semidefinite
rogramming

Here we list the SDP formulations for the D-, A- and E-optimality
riteria. The first three were introduced in Vandenberghe and Boyd [20,
6] and Ben-Tal and Nemirovski [17]. We start with the formulation
or D-optimal designs:

pt ≡ max
𝜉,𝐵

𝑡 (A.1a)

s.t.
(

𝑀(𝜉) 𝐵⊺

𝐵 diag(𝐵)

)

⪰ 0𝑛𝜃 (A.1b)

𝑡 ≤
𝑛𝜃
∏

𝑖=1
𝐵1∕𝑛𝜃
𝑖,𝑖 (A.1c)

𝑘
∑

𝑖=1
𝑤𝑖 = 1 (A.1d)

0 ≤ 𝑤𝑖 ≤ 1, 𝑖 ∈ [[𝑘]]. (A.1e)

The formulation for computing A-optimal designs is:

pt ≡ min
𝜉,𝐵

𝑡 (A.2a)

s.t.
(

𝑀(𝜉) 𝐼𝑛𝜃
𝐼𝑛𝜃 𝐵

)

⪰ 02×𝑛𝜃 (A.2b)

𝑡 ≥
𝑛𝜃
∑

𝑖=1
𝐵𝑖,𝑖 (A.2c)

𝑘
∑

𝑖=1
𝑤𝑖 = 1 (A.2d)

0 ≤ 𝑤𝑖 ≤ 1, 𝑖 ∈ [[𝑘]], (A.2e)
14
Finally, for E-optimal designs, we have:

pt ≡ max
𝜉,𝑡

𝑡 (A.3a)

s.t. 𝑀(𝜉) − 𝑡 𝐼𝑛𝜃 ⪰ 0𝑛𝜃 (A.3b)
𝑘
∑

𝑖=1
𝑤𝑖 = 1 (A.3c)

0 ≤ 𝑤𝑖 ≤ 1, 𝑖 ∈ [[𝑘]]. (A.3d)

ppendix B. Supplementary data

Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.chemolab.2023.104874.
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