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Abstract
In the dynamic discrete-time trading setting of Kyle (Econometrica 53:1315–1336, 1985),
we prove that Kyle’s equilibriummodel is stable when there are one or two trading times. For
three or more trading times, we prove that Kyle’s equilibrium is not stable. These theoretical
results are proven to hold irrespectively of all Kyle’s input parameters.

Keywords Market microstructure theory · Stability · Informed trading · Fixed points

1 Introduction

Kyle [13] is a cornerstone model in today’s market microstructure theory. Its relevance is
long established; see, e.g., the textbook discussions in Back [1]. We consider the discrete-
time formulation where an informed trader, noise traders, and market makers dynamically
trade the stock at N ∈ N time points. After observing the aggregate order flow, the market
makers set the stock price to clear the stock market. Kyle [13] proves existence of a unique
linear equilibrium, and we study its stability properties. We prove that the number of trading
time points N ∈ N determines all stability properties of Kyle’s equilibrium. Specifically,
irrespectively of all other input parameters, we prove that Kyle’s equilibrium is stable for
N ∈ {1, 2} and not stable for N ≥ 3.

Hadamard [9] deems amodel well-posed if existence, uniqueness, and stability hold. Kyle
[13] gives existence and uniqueness of a linear equilibrium, and we use the convergence of
policy iterations to determine if Kyle’s linear equilibrium is stable.1 We start the policy

1 Using policy iterations to iteratively calculate optimizers is well established and is intimately related to the
Bellman equation in optimal control theory, see, e.g., Theorem 3 in Chapter I.11 in Bellman [2].
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iterations from a marginal perturbation away from the insider’s equilibrium orders. Then,
we iteratively create a sequence of insider orders by considering the market makers’ best
response to the insider’s perturbed orders and the subsequent best response by the insider
and so on. Kyle’s equilibrium is deemed stable if this iteratively constructed sequence of
insider orders converges to Kyle’s equilibrium orders whenever the initial orders are only
marginally different from Kyle’s equilibrium orders. This definition of fixed-point stability
in terms of iterations of a marginal perturbation away from the fixed point itself is standard
in numerical analysis; see, e.g., Definition 1.3 in the textbook [15].2

Defining stability in terms of the convergence of policy iterations is natural in the context
of a financialmarket equilibriumbecause policy iterations can be viewed as the best responses
of rational agents given the current state of the market. Thus, a stable equilibrium has the
property that if the agents find themselves in the equilibrium’s vicinity, their actions draw
the economy closer to equilibrium.3

To the best of our knowledge, stability of Kyle’s dynamic equilibrium model has not been
studied in the literature. The closest study to our paper is Boulatov and Bernhardt [6], who
proves a robustness property for Kyle’s equilibrium when N = 1. We study stability of
Kyle’s discrete-time model for arbitrary N ∈ N trading times. In the economics literature,
stability of equilibria is typically considered within the context of multiple equilibria and is
used as a refinement to discard repellent equilibria. However, as we also demonstrate in this
paper, uniqueness of equilibrium does not imply its stability. Indeed, Kyle’s unique linear
equilibrium is not stable for N ≥ 3.

The main part of our analysis uses marginal perturbations of the insider’s equilibrium
orders that are linear. For such perturbations, there is an operator T , which produces the
next iteration of insider orders as a function of her previous orders. Naturally, the insider’s
equilibrium orders are a fixed point for T . However, because T is nonlinear, T has multiple
fixed points of which only one fixed point corresponds to Kyle’s equilibrium. We note that
such marginal perturbations may arise in practice as a result of measurement or precision
errors in model parameters. Thus, in addition to being of theoretical interest, our interest in
stability comes from a numerical perspective. Numerics related to Kyle’s equilibrium have
become more and more relevant as algorithmic market makers have become an important
part of asset pricing; see, e.g., [7].

We prove two theoretical results. First, when N ∈ {1, 2}, we prove that Kyle’s equilibrium
is always stable. Our proof establishes that the policy iterations are locally contracting near
Kyle’s equilibrium. Even stronger, for N = 1, we show that Kyle’s equilibrium is a super-
attractive fixed point in the sense that local convergence is strictly faster than linear. Second,
when N ≥ 3, we prove that Kyle’s equilibrium is always not stable. Table 1 summarizes our
theoretical results.

To provide some intuition for our results, we illustrate numerically the non-stability of
Kyle’s equilibriumwhen N = 3. Our numerics are based on a 5th digit perturbationwherewe
illustrate that the policy iterations converge, however, not to Kyle’s equilibrium. Mathemat-
ically speaking, this happens because the eigenvalue of the Jacobian of the policy iteration

2 There are several related notions of stability. For example, stability of the fixed-point operator itself is defined
in Definition 7.1 in Berinde [3], and stability for dynamical systems (such as ODE solutions) is defined in
Definition 6.1 in Betounes [4]. Stability of games is defined in Kohlberg and Mertens [12]. Robustness of
games is defined Stauber [14].
3 This notion of stability can be found in the financial economics literature. In [8], a stable equilibrium leads
to a price bubble, which means that small shocks to the agents’ beliefs may result in departures from optimal
risk sharing associated with typically non-stable equilibria. Biais, Foucault, and Moinas [5] focus on stable
equilibria in their study of firms investing in fast trading technologies.
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Table 1 Key results N Fixed-point type Conclusion

1 Super-attractive Stable

2 Attractive Stable

≥ 3 Repellent Not stable

operator evaluated at Kyle’s equilibrium is strictly bigger than one (in absolute value), which
implies non-stability. However, there are other non-equilibrium attractive fixed points and
we illustrate that the policy iterations can converge numerically to such a fixed point.

While the main part of the paper is about policy iterations in the insider’s control (i.e.,
informed stock orders), we consider an alternative inAppendixA,wherewe iterate themarket
makers’ control (i.e., the pricing rule). This variation leads to the same stability conclusions
in that Kyle’s equilibrium is stable for N ∈ {1, 2} and not stable for N ≥ 3.

All proofs are in Appendix B. Our proofs rely on a new characterization of Kyle’s equi-
librium in terms of a one-dimensional fully autonomous recursion, which is independent of
all model inputs.

Throughout the text, we use the symbol ′ to transpose vectors. For example, �x =
(x1, . . . , xN )′ denotes a column vector in R

N . For numbers, we use... to indicate that we
have excluded remaining decimals. For example, we have π = 3.14159 . . ..

2 Kyle’s discrete-timemodel

This section briefly recalls the discrete-time model in Kyle [13] with N ∈ N trading times.
The noise traders’ orders�un at trading time n ∈ {1, . . . , N } are Gaussian random variables
withmean zero and variance σ 2

u �, where� > 0 is the time step. The stock’s liquidating value
is denoted by ṽ, which is assumed Gaussian with mean zero and variance �0 := V[ṽ] > 0.
These exogenous random variables (ṽ,�u1, . . . , �uN ) are assumed mutually independent.

At time n = 1, the insider submits orders �x1 to the market makers. The orders �x1 are
required to bemeasurablewith respect to σ(ṽ). At later times n ∈ {2, . . . , N }, the insider sub-
mits orders�xn , which are required to bemeasurable with respect to σ(ṽ,�u1, . . . , �un−1).
The aggregate orders are defined as

�yn := �un + �xn, n ∈ {1, . . . , N }. (2.1)

For a given pricing rule pn = pn(�y1, . . . , �yn), the insider seeks orders (�x1, . . . ,�xn)

that maximize her expected profit given by

N∑

n=1

E
[
(ṽ − pn)�xn

∣∣ṽ
]
. (2.2)

The market makers set prices pn in the following sense. At time n ∈ {1, . . . , N }, the
market makers observe the aggregate orders �yn from (2.1) before setting the stock price as

pn = E[ṽ|�y1, . . . , �yn], n ∈ {1, . . . , N }. (2.3)

The next result (due to [13]) gives existence of a linear Kyle equilibrium in the sense that
items 2. and 3. in Theorem 2.1 hold.
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Theorem 2.1 [13]

1. For � > 0, σu > 0, �0 := V[ṽ] > 0, and αN := 0, there exist unique solutions
(λ̂n, �̂n, α̂n, β̂n), n = 1, . . . , N, of

λn = βn�n−1

β2
n�n−1� + σ 2

u
, �n = �n−1σ

2
u

β2
n�n−1� + σ 2

u
,

αn−1 = 1

4λn(1 − αnλn)
, βn = 1 − 2αnλn

�2λn(1 − αnλn)
, n = 1, . . . , N , (2.4)

such that the second-order condition λn(1 − λnαn) > 0 holds.
2. For the pricing rule

�pn := λ̂n
(
�un + �xn

)
, p0 := 0, (2.5)

the insider’s optimal orders are
{

�x̂n = β̂n(ṽ − p̂n−1)�,

� p̂n = λ̂n
(
�un + �x̂n

)
, p̂0 = 0.

(2.6)

3. For the orders (2.6), the stock price (2.5) is efficient in the sense that (2.3) holds.

In what follows, we will refer to �̂
β as the insider’s equilibrium trading intensity as �̂

β

determines how aggressively the insider trades when the market price differs from her own
valuation.

3 Policy iterations and stability

In (3.9) below, we construct the best response operator T for which Kyle’s equilibrium is a
fixed point. One iteration takes as input linear insider orders and produces as output updated
linear insider orders (AppendixApresents an alternativewherewe iterate the pricing rule). For
given input orders, market makers’ respond by creating a pricing rule based on computing
conditional expectations of ṽ given aggregate orders. Given this pricing rule, the insider
computes her optimal orders, which gives the outcome of one policy iteration.

To iteratively create a sequence of insider orders, we start with some vector �β(0) =
(β

(0)
1 , . . . , β

(0)
N )′ ∈ (0,∞)N , which differs only marginally from Kyle’s equilibrium �̂

β from

Theorem 2.1. Kyle’s lambda �λ(0) = (λ
(0)
1 , . . . , λ

(0)
N )′ ∈ R

N is defined similarly to (2.4) by

�
(0)
0 := V[ṽ] > 0 and

λ(0)
n := β

(0)
n �

(0)
n−1(

β
(0)
n

)2
�

(0)
n−1� + σ 2

u

, �(0)
n := �

(0)
n−1σ

2
u(

β
(0)
n

)2
�

(0)
n−1� + σ 2

u

, n = 1, . . . , N . (3.1)

The initial pricing rule is defined by

�p(0)
n := λ(0)

n

(
�un + �xn

)
, p(0)

0 := 0, (3.2)

where (�x1, . . . , �xN ) denote arbitrary insider orders.When she faces the pricing rule (3.2),
the insider’s optimal orders that maximize (2.2) are similar to (2.6), and given by

{
�x (1)

n := β
(1)
n (ṽ − p̂(0)

n−1)�,

� p̂(0)
n := λ

(0)
n

(
�un + �x (1)

n
)
, p̂(0)

0 := 0.
(3.3)

123



Mathematics and Financial Economics

In (3.3), the next policy iteration �β(1) := (β
(1)
1 , . . . , β

(1)
N )′ is computed by α

(1)
N := 0 and

β(1)
n := 1 − 2α(1)

n λ
(0)
n

�2λ(0)
n (1 − α

(1)
n λ

(0)
n )

, α
(1)
n−1 := 1

4λ(0)
n (1 − α

(1)
n λ

(0)
n )

, n = N , . . . , 1. (3.4)

Given the pricing rule (3.2), the orders (3.3) maximize (2.2) provided that the second-order
condition α

(1)
n λ

(0)
n < 1 holds. However, because Kyle’s equilibrium coefficients from The-

orem 2.1 satisfy α̂n λ̂n < 1, a continuity argument gives that α
(1)
n λ

(0)
n < 1 provided that

| �β(0) − �̂
β| < ε for some ε > 0 sufficiently small. Here, | �β| denotes the standard Euclidean

norm of �β ∈ R
N given by | �β| :=

√∑N
n=1 β2

n .
We write the above policy iteration step compactly as

�β(1) = T ( �β(0)), (3.5)

for a non-linear smooth function T : R
N → R

N with domain dom(T ) ⊂ R
N . For �β /∈

dom(T ), we set T ( �β) := (∞, . . . ,∞)′. Of course, Kyle’s equilibrium coefficients �̂
β =

(β̂1, . . . , β̂N )′ from Theorem 2.1 satisfy the fixed-point property

�̂
β = T (

�̂
β), (3.6)

but there are several other solutions to (3.6). Because Kyle’s linear equilibrium is unique,
exactly one of T ’s fixed points produces an equilibrium (T ’s other fixed points violate the
insider’s second-order condition). The n’th coordinate of the function T in (3.5) is given as a
ratio of polynomial functions (i.e., T is a rational function). Because the general expression
for T is long and not needed in our stability analysis for N ≥ 3, we only give T for N ∈ {1, 2}.
Example 3.1 1. For N = 1, the function T in (3.5) is given by

T (β) := β2�0� + σ 2
u

2�β�0
. (3.7)

The domain of T is given by

dom(T ) = {β ∈ R : β 	= 0}.
2. For N = 2, the function T in (3.5) is given by

T

(
β1

β2

)
=

⎛

⎝

(
β2
1��0+σ 2

u
)(

β1��0(β1−β2)
2+σ 2

u (β1−2β2)
)

β1��0
(
β1��0

(
β2
1−4β1β2+β2

2

)+σ 2
u (β1−4β2)

)

��0
(
β2
1+β2

2

)+σ 2
u

2β2��0

⎞

⎠ . (3.8)

The domain of T is given by

dom(T ) = {(β1, β2)
′ ∈ R

2 :
β1

(
β1��0

(
β2
1 − 4β1β2 + β2

2

) + σ 2
u (β1 − 4β2)

) 	= 0, β2 	= 0}.
♦

Based on �β(1) from (3.5), we use forward recursion to iteratively construct the sequence
�β(2), �β(3), . . .. More specifically, given the m’th policy iteration �β(m) ∈ R

N , the next policy
iteration is defined as

�β(m+1) := T ( �β(m)), m ∈ {0, 1, . . .}. (3.9)
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T
(
)

Fig. 1 Two fixed points of a fictitious operator T : R → R. The left fixed point is not stable and the right
fixed point is stable

We use the following definition of stability, which is based on Definition 1.3 in Süli and
Mayers [15].

Definition 3.2 Kyle’s equilibrium is locally stable with respect to policy iterations for the

insider if there exists ε > 0 such that all initial policies �β(0) ∈ dom(T )with0 < | �β(0)−�̂
β| < ε

satisfy

lim
m→∞

�β(m) = �̂
β, (3.10)

where the sequence �β(m) is defined recursively by (3.9). ♦
In Definition 3.2, the term locally refers to the smallness condition | �β(0) − �̂

β| < ε.
Definition 5.2 below allows for more general policy iterations.

Figure 1 depicts a fictitious operator T : R → Rwith two fixed points. The dashed line is
the 45-degree line and the intersections of the two lines correspond to T ’s two fixed points.
The fixed point to the left is not stable because policy iterations starting from a vicinity of
this point moves away from this fixed point. This is called a repellent fixed point. At the left
fixed point, the graph of T intersects the 45-degree line from below at this point indicating
that T ’s derivative is larger than 1. On the other hand, the fixed point to the right is stable
and T ’s derivative at this point is smaller than 1. This is called an attractive fixed point.

To gain some intuition of local stability, we consider a first-order Taylor approximation
around a point β̃ ∈ dom(T ) ⊆ R given by

T (β) = β̃ + T ′(β̃)(β − β̃) + R(β − β̃), β ∈ dom(T̃ ),

where R is the reminder function, which satisfies R(β) = o(|β|) as |β| → 0. When we
heuristically replace (3.9) with the linear iterations

β(m+1) := β̃ + T ′(β̃)(β(m) − β̃), (3.11)
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we see that

β(m+1) − β̃ = T ′(β̃)(β(m) − β̃) = · · · = T ′(β̃)m+1(β(0) − β̃). (3.12)

If β̃ ∈ R is the left fixed point in Fig. 1, we have |T ′(β̃)| > 1 and so the iterations in (3.12)
diverge as soon as β(0) 	= β̃. On the other hand, if β̃ ∈ R is the right fixed point in Fig. 1,
we have |T ′(β̃)| < 1 and so the iterations in (3.11) converge to β̃.

In the subsequent sections, we prove that the derivative of the policy iteration operator T

in (3.5) evaluated at Kyle’s equilibrium �̂
β has a norm less than one when N ∈ {1, 2}, and a

norm larger than 1 when N ≥ 3. In view of the above discussion, these norms indicate that
Kyle’s equilibrium is stable if and only if N ∈ {1, 2}.

4 One or two trading times

Let T be defined in (3.7) for N = 1 or (3.8) for N = 2. In the next result, ∇T ( �β) ∈ R
N×N

denotes the Jacobian matrix of T ’s derivatives evaluated at �β ∈ dom(T ).

Theorem 4.1 For � > 0, σu > 0, and �0 > 0, we have:

1. For N := 2, the Jacobian matrix of T ’s derivative satisfies

∇T (
�̂
β) =

(−0.981214 . . . 0
0.554958 . . . 0

)
. (4.1)

2. For N ∈ {1, 2}, Kyle’s equilibrium is locally stable with respect to policy iterations for
the insider in the sense of Definition 3.2.

Our proof of Theorem 4.1 shows that T defined in (3.7) or (3.8) is a local contraction for �β
near Kyle’s equilibrium �̂

β whenRN is equipped with the norm | �β|∞ := max{|β1|, . . . , |βN |}
and when N ∈ {1, 2}. For N = 1, the proof gives the stronger property T ′(β̂) = 0, which
implies that Kyle’s equilibrium is a super-attractive fixed point. Hubbard and Papadopol
[11] has details about super-attractive fixed-points. A similar observation is in Boulatov and
Bernhardt [6].

5 Three or more trading times

Before rigorously proving that the policy iterations are not stable, we consider a numerical
illustration.

5.1 Numerical example for N = 3

This section considers numerical experiments corresponding to the parameters

N = 3, σu := � := V[ṽ] := 1. (5.1)

The terminal variance �N = 0.26830307 produces �0 = 1.000000047 . . ., which agrees
with V[ṽ] = 1 up to 7 digits. Kyle’s corresponding equilibrium is given by

�̂
β :=

⎛

⎝
0.538169580578541 . . .

0.757586803229793 . . .

1.365124248887518 . . .

⎞

⎠ . (5.2)
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Table 2 Eigenvalues for
σu = V[ṽ] = � = 1 and N = 3 ∇T ( �β(∞)) {0.413853 . . . , 0.193926 . . . , 0}

∇T (
�̂
β) {−2.16095 . . . , −0.896373 . . . , 0}

In this case, there are 18 solutions of (3.6) valued inC3 of which 8 are valued inR3 with (5.2)
being the only solution valued in (0,∞)3. Except for (5.2), the other 7 real-valued solutions
of (3.6) violate the second-order condition (because some of the corresponding �λ values are
negative).

Based on the parameters in (5.1), the policy iteration operator in (3.5) is given by

T

⎛

⎝
β1

β2

β3

⎞

⎠ =

⎛

⎜⎜⎜⎝

(
β2
1+1

)((
β2
1+1

)
β2
2β2

3+2β3
(
β1(β1−β2)

2+β1−2β2
)(

β2
1+β2

2+1
)+(

β2
1+1

)
β2
2

(
β2
1+β2

2+1
))

2β1
((

β2
1+1

)
β2
2β2

3+β3
(
β2
1+β2

2+1
)(

β1
(
β2
1−4β1β2+β2

2+1
)−4β2

)+(
β2
1+1

)
β2
2

(
β2
1+β2

2+1
))

(
β2
1+β2

2+1
)(−2β3

(
β2
1+β2

2+1
)+β2

(
β2
1+β2

2+1
)+β2β

2
3

)

β2
(−4β3

(
β2
1+β2

2+1
)+β2

(
β2
1+β2

2+1
)+β2β

2
3

)

β2
1+β2

2+β2
3+1

2β3

⎞

⎟⎟⎟⎠ .

To illustrate themodel’s non-stability, we start the policy iterations from a 5 digit perturbation
defined by4

�β(0) := �̂
β +

⎛

⎝
0.00001

0
0

⎞

⎠ . (5.3)

Numerically, the non-linear policy iterating scheme (3.9) starting from �β(0) in (5.3) converges
to

�β(∞) :=
⎛

⎝
1.2582536009629393 . . .

−2.157491457005712 . . .

2.6903478420808034 . . .

⎞

⎠ 	= �̂
β.

Table 2 reports two sets of eigenvalues of the Jacobian matrix of T ’s derivatives ∇T (·) ∈
R

N×N .
By replacing T ′(β̃)with the eigenvalues of T ’s derivatives, the discussion following Fig. 1

gives some intuition forwhy �β(m+1) = T ( �β(m)) = T
( · · · T ( �β(0))

)
converges to �β(∞) instead

of converging to Kyle’s equilibrium �̂
β. Indeed, for an induced matrix norm || · ||, the value

||∇T (
�̂
β)|| dominates (in absolute value) all of ∇T (

�̂
β)’s eigenvalues. Therefore, the second

row inTable 2 shows that ||∇T (
�̂
β)|| > 1,which indicates thatKyle’s equilibrium is not stable.

On the other hand, the eigenvalues for ∇T ( �β(∞)) in the first row in Table 2 are smaller than

one and therefore do not contradict local stability. To build an analogy with Fig. 1, �̂
β (resp.

�β(∞)) can be associated with the non-stable left fixed point (resp. the stable right fixed point)
at which the operator has a derivative bigger (resp. less) than 1. Mathematically speaking,

for N = 3, Kyle’s equilibrium �̂
β is a repelling fixed point for the policy iteration operator T

whereas the fixed point �β(∞) is an attractive fixed point for T .

4 As discussed after Theorem 5.5 below, a marginal perturbation of the last two coordinates β̂2 and β̂3 will

produce convergence to �̂
β.

123



Mathematics and Financial Economics

5.2 Theory for N ≥ 3

To rigorously disprove local stability when N ≥ 3, we iterate only in the third-to-last variable
βN−2 whereas all other coefficients are set equal to Kyle’s equilibrium values. Then, we show
that the resulting policy iterations diverge, and, consequently, there is no ε > 0 such that
(3.10) holds. To this end, we let T be from (3.5) and define the scalar function T̃ : R → R

as T ’s (N − 2)’th coordinate

T̃ (β
(m)
N−2) := T

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β̂1

β̂2
...

β̂N−3

β
(m)
N−2

β̂N−1

β̂N

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

N−2

, (5.4)

where (β̂1, . . . , β̂N ) are Kyle’s equilibrium coefficients from Theorem 2.1 and β
(m)
N−2 ∈ R is

the variable we iterate in. When β
(m)
N−2 ∈ R is such that (β̂1, . . . , β̂N−3, β

(m)
N−2, β̂N−1, β̂N )′ /∈

dom(T ), we set T̃ (β
(m)
N−2) := ∞.

Theorem 5.1 Let N ≥ 3. For � > 0, σu > 0, and �0 > 0, we have:

1. For any starting value β
(0)
N−2 ∈ R with β

(0)
N−2 	= β̂N−2, the recursively defined sequence

β
(m+1)
N−2 := β̂N−2 + T̃ ′(β̂N−2)

(
β

(m)
N−2 − β̂N−2

)
, m = 0, 1, . . . , (5.5)

diverges in the sense limm→∞ |β(m)
N−2| = ∞.

2. Kyle’s equilibrium is not locally stable with respect to policy iterations for the insider in
the sense of Definition 3.2.

Theorem 5.1 implies that policy iterations based on more general starting policies are also
not locally stable in the following sense. We say stock holdings �x = (x0, x1, . . . , xN )′ ∈ L2

if the random variables �xn := xn − xn−1 satisfy ||�x || :=
√∑N

n=1 E
[
(�xn)2

]
< ∞. An

extension T ◦ of T has dom(T ) ⊆ dom(T ◦) ⊆ L2 and is said to be consistent with T if
T ◦(�x) = T (�x) for all �x ∈ dom(T ).

Definition 5.2 Let T ◦ be a consistent extension of T . Kyle’s equilibrium is locally stable
with respect to generalized policy iterations for the insider if there exists ε > 0 such that all
starting policies �x (0) ∈ dom(T ◦) with 0 < ||�x (0) − �̂x || < ε satisfy

lim
m→∞ �x (m) = �̂x, �x (m+1) := T ◦(�x (m)), (5.6)

where T ◦(�x) := (∞, . . . ,∞)′ whenever x /∈ dom(T ◦). ♦
The following by-product is an immediate consequence of Theorem 5.1.

Corollary 5.3 Let N ≥ 3 and let T ◦ be a consistent extension of T . Then, for � > 0, σu > 0,
and �0 > 0, Kyle’s equilibrium is not locally stable with respect to generalized policy
iterations for the insider in the sense of Definition 5.2.
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We conclude this section by considering the related definition of an unstable equilibrium.
This definition can be found in, e.g., Definition 1.3 in Süli and Mayers [15] and differs
from non locally stable equilibria (i.e., unstable and non-stable are different mathematical
concepts).

Definition 5.4 If �β(0) = �̂
β is the only starting policy for which (3.10) holds, we say that

Kyle’s equilibrium is unstable with respect to policy iterations for the insider. ♦
By comparing Definitions 3.2 and 5.4, we see that an unstable fixed point is always also

not stable. However, Exercise 1.2 in Süli and Mayers [15] shows that a non-stable fixed point
can fail to be unstable. For N ≥ 3, our next and last theoretical result shows that while Kyle’s
equilibrium is not stable, it is also not unstable.

Theorem 5.5 Let N ≥ 3. For � > 0, σu > 0, and �0 > 0, Kyle’s equilibrium is not unstable
with respect to policy iterations for the insider in the sense of Definition 5.4.

In our proof of Theorem 5.5, we marginally perturb the last equilibrium coordinate by
setting β

(0)
N := β̂N + δ for a small δ > 0 and β

(0)
n := β̂n for n ∈ {1, . . . , N − 1}. Then,

we show the corresponding policy iterations converge to �̂
β. Alternatively, the iterations also

converge to �̂
β when we set β

(0)
N−1 := β̂N−1 + δ and β

(0)
n := β̂n for n ∈ {1, . . . , N − 2, N }.

However, no matter how small a perturbation, as soon as we perturb one of the first N − 2

coordinates of �̂
β, the policy iterations do not converge to �̂

β.

6 Conclusion

Based on a standard notion of stability used widely in both numerical analysis and financial
economics, we proved that the dynamic equilibrium model of informed trading in Kyle [13]
is stable when N ∈ {1, 2} and not stable when N ≥ 3. To investigate further the severity of
non-stability, we proved that Kyle’s equilibrium is not unstable when N ≥ 3.We numerically
illustrated that policy iterations can converge to fixed points, which are not equilibria.

A Policy iterations for themarket markers

We outline how to perform policy iterations in the market makers’ control (i.e., how to
iterate the pricing rule). Because this alternative policy iteration scheme produces the same
conclusions as iterating the insider’s orders, we keep the presentation brief.

Given �λ(m) = (λ
(m)
1 , . . . , λ

(m)
N )′ ∈ R

N , we define �λ(m+1) = (λ
(m+1)
1 , . . . , λ

(m+1)
N )′ ∈ R

N

recursively as follows. We define the insider’s response by starting from n = N and going
to n = 1 by setting α

(m)
N := 0 and

β(m)
n = 1 − 2α(m)

n λ
(m)
n

�2λ(m)
n (1 − α

(m)
n λ

(m)
n )

, α
(m)
n−1 = 1

4λ(m)
n (1 − α

(m)
n λ

(m)
n )

, n = N , . . . , 1.

To update the markets makers’ response, we start with n = 1 and go to n = N by defining
�

(m+1)
0 := V[ṽ] > 0 and

λ(m+1)
n := β

(m)
n �

(m+1)
n−1(

β
(m)
n

)2
�

(m+1)
n−1 � + σ 2

u

, �(m+1)
n := �

(m+1)
n−1 σ 2

u(
β

(m)
n

)2
�

(m+1)
n−1 � + σ 2

u

, n = 1, . . . , N .
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Similar to (3.9), we write this iteration compactly as

�λ(m+1) = S(�λ(m)), (A.1)

for a non-linear but smooth function S : RN → R
N .

By replacing T and T ( �β(m))with S and S(�λ(m)) in Definitions 3.2, 5.2, and 5.4, we obtain
the precise mathematical meaning of stability and instability with respect to policy iterations
for the market makers.

Theorem A.1 For � > 0, σu > 0, and �0 > 0, we have:

1. For N ∈ {1, 2}, Kyle’s equilibrium is locally stable with respect to policy iterations for
the market makers.

2. For N ≥ 3, Kyle’s equilibrium is not locally stable with respect to policy iterations for
the market makers.

3. For N ≥ 3, Kyle’s equilibrium is not unstable with respect to policy iterations for the
market makers.

We omit the proofs because they are similar to the proofs of Theorems 4.1, 5.1, and 5.5.

B Proofs

B.1 Autonomous recursion

We start by providing an autonomous recursion, which will be used in our proofs. A related
recursion appears in Proposition 2 in Holden and Subrahmanyan [10]. Instead of Kyle’s
equilibrium coefficients (β̂1, . . . , β̂N ), we will use the coefficients (b̂1, .., b̂N ) in the next
lemma. We prefer (b̂1, .., b̂N ) because they are independent of the model input parameters
(�, σu,V[ṽ]).

Lemma B.1 1. There exist unique coefficients (b̂n)N−1
n=1 ⊂ (0, 1) given by the backward

recursion

b̂N = 1, b̂2n = b̂2n−1

(1 − b̂2n−1)
2(1 + b̂2n−1)

, n = N , N − 1, . . . , 1. (B.1)

2. Kyle’s equilibrium coefficients (2.4) can be expressed as

β̂n = b̂nσu√
�̂n−1�

, �̂n = �̂n−1

1 + b̂2n
, �̂0 := V[ṽ] > 0, n = 1, 2, . . . , N . (B.2)

Proof 1. We proceed by backward induction and assume b̂n ∈ (0, 1]. The transformation
a := b̂2n−1 produces the third-degree polynomial

b̂2n = a

(1 − a)2(1 + a)
. (B.3)

For b̂n ∈ (0, 1], the polynomial (B.3) has exactly one root a ∈ (0, 1).
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2. Inserting β̂n = b̂nσu√
�̂n−1�

into the formula for �n in (2.4) gives �̂n = �̂n−1

1+b̂2n
. Solving for αn

in the formula for βn in (2.4) produces

α̂n = 2β̂n�λ̂n − 1

2λ̂n( ˆβn�λ̂n − 1)
=

√
(b̂2n + 1)��̂n − 2b̂n� ˆλnσu

2λ̂n

√
(b̂2n + 1)��̂n − 2b̂n�λ̂n

2
σu

. (B.4)

FromEq. (3.18) inKyle [13], we have λ̂n = β̂n�̂n
σ 2

u
. Then, the recursion forαn in (2.4) becomes

the recursion in (B.1).
Finally, the terminal condition b̂N = 1 in (B.1) comes from α̂N = 0. This is because (B.4)

for n = N gives the requirement

1 = 2β̂N �λ̂N = 2b̂2N
1 + b̂2N

,

which has b̂N = 1 as its only positive solution. ♦

B.2 Mathematical proofs

For a matrix A ∈ R
N×N , we recall the matrix norm ||A||∞ := maxi∈{1,...,N }

∑N
j=1 |Ai j |.

The matrix norm || · ||∞ is induced by the vector norm | �β|∞ := max{|β1|, . . . , |βN |} and
therefore the inequality |A �β|∞ ≤ ||A||∞| �β|∞ holds. The second part of the following proof
is standard and can be found in, e.g., the proof of Theorem 4.2 in Süli and Mayers [15].

Proof of Theorem 4.1 1. We consider the parametrization

β1 := b1σu√
�0�

, β2 := b2σu√
�1�

, b1, b2 ∈ R.

Lemma B.1 ensures (b1, b2) := (b̂1, b̂2) produces Kyle’s equilibrium. Furthermore, we can

use (3.8) to calculate∇T ( �β) for �β = (β1, β2)
′. Inserting Kyle’s equilibrium �̂

β into∇T gives
(4.1).

2. First, we consider N = 1. The policy iteration function T in (3.5) is given in (3.7).
Our argument is based on the second-order Taylor expansion around Kyle’s equilibrium
β̂ := σu√

��0
given by

T (β) = T (β̂) + T ′(β̂)
(
β − β̂

) + 1

2
T ′′(γ )

(
β − β̂

)2

= β̂ + 1

2

σ 2
u

γ 3��0

(
β − β̂

)2
, (B.5)

where γ is a point between β and β̂. The second equality in (B.5) follows from T ′(β̂) = 0.5

Let ε ∈ (0, 1) be such that (i) ε < β̂ and (ii) εσ 2
u

(β̂−ε)3��0
< 2. Let β(0) > 0 with

0 < |β(0) − β̂| < ε be arbitrary. By combining the expressions in (3.9) and (B.5), we get

5 For N = 1, the property T ′(β̂) = 0 implies that β̂ is a super-attracting fixed point and implies that the
policy iterations converge faster than linearly.
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∣∣β(1) − β̂
∣∣ ≤ 1

2

σ 2
u

(β̂ − ε)3��0

(
β(0) − β̂

)2

≤ 1

2

εσ 2
u

(β̂ − ε)3��0

∣∣β(0) − β̂
∣∣.

Iterating this inequality forward gives

∣∣β(m+1) − β̂
∣∣ ≤

(
1

2

εσ 2
u

(β̂ − ε)3��0

)m+1 ∣∣β(0) − β̂
∣∣, m ∈ N,

which converges to zero as m → ∞.

Second, we consider N = 2. Based on (4.1), we have ||∇T (
�̂
β)||∞ = 0.981214 . . ..

Because the function dom(T ) � �β → ∇T ( �β)i j is continuous for each matrix entry i, j ∈
{1, . . . , N }, we have continuity of dom(T ) � �β → ||∇T ( �β)||∞. Therefore, there exists an
ε > 0 such that

||∇T ( �β)||∞ < 0.99, whenever | �β − �̂
β|∞ < ε.

For | �β(m) − �̂
β|∞ < ε and t ∈ [0, 1], we have

∣∣( �β(m) + t( �̂β − �β(m))
) − �̂

β
∣∣∞ = (1 − t)| �β(m) − �̂

β|∞ < ε,

and therefore ||∇T
( �β(m) + t( �̂β − �β(m))

)||∞ < 0.99. The fundamental theorem for line
integrals gives the representation

�̂
β − �β(m+1) = T (

�̂
β) − T ( �β(m))

=
∫ 1

0
∇T

( �β(m) + t( �̂β − �β(m))
)
(
�̂
β − �β(m))dt .

Applying | · |∞ produces the inequality

| �̂β − �β(m+1)|∞ ≤
∫ 1

0
||∇T

( �β(m) + t( �̂β − �β(m))
)||∞|�̂β − �β(m)|∞dt

≤ 0.99| �̂β − �β(m)|∞.

By iterating this inequality forward, we see that

| �̂β − �β(m+1)|∞ ≤ 0.99m+1| �̂β − �β(0)|∞, m ∈ N,

which converges to zero as m → ∞. ♦

Proof of Theorem 5.1 1. Step 1/4:We start by rewriting (5.4) as

T̃ (βN−2) = f ( �B)

g( �B)
, �B := (β̂1, . . . , β̂N−3, βN−2, β̂N−1, β̂N )′, (B.6)

for βN−2 ∈ R such that �B ∈ dom(T ) = { �β ∈ R
N : g( �β) 	= 0}. In (B.6), the polynomials

f , g : RN → R are defined as
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f ( �β) := (
��0(β

2
1 + · · · + β2

N−2) + σ 2)

×
(
β2

N−1

(
��0(β

2
1 + · · · + β2

N−2) + σ 2)

× (
��0

(
β2
1 + · · · + β2

N−2 + 4βN−2βN + β2
N

) + σ 2)

+ β4
N−1��0

(
��0(β

2
1 + · · · + β2

N−2 + 2βN−2βN ) + σ 2)

− 4β3
N−1βN ��0

(
��0(β

2
1 + · · · + β2

N−2) + σ 2)

− 4βN−1βN
(
��0(β

2
1 + · · · + β2

N−2) + σ 2)2

+ 2βN−2βN
(
��0(β

2
1 + · · · + β2

N−2) + σ 2)2),

g( �β) := 2βN−2��0

(
− 4β3

N−1βN ��0
(
��0(β

2
1 + · · · + β2

N−2) + σ 2)

+ β2
N−1

(
��0(β

2
1 + · · · + β2

N−2) + σ 2)

×
(
��0

(
β2
1 + · · · + β2

N−3 + (βN−2 + βN )2
) + σ 2

)

− 4βN−1βN
(
��0(β

2
1 + · · · + β2

N−2) + σ 2)2

+ βN−2βN
(
��0(β

2
1 + · · · + β2

N−2) + σ 2)2

+ β4
N−1��0

(
��0

(
β2
1 + · · · + β2

N−3 + βN−2(βN−2 + βN )
) + σ 2

))
, (B.7)

for �β = (β1, . . . , βN )′ ∈ R
N . As functions of βN−2 ∈ R alone, f is a polynomial of degree

7 and g is a polynomial of degree 6.
Step 2/4: By substituting β̂n from (B.2) for n 	= N − 2, and βN−2 = zσu√

��0
for z > 0, we

can find polynomials f̃ , g̃ : R → R that are independent of (�, σu, �0) such that (B.6)
becomes

T̃ (βN−2) = T̃

(
zσu√
��0

)
=

σ 8

��0
f̃ (z)

σ 7√
��0

g̃(z)
.

The chain rule gives the derivative

T̃ ′(βN−2) =
√

��0

σu

∂

∂z
T̃

(
zσu√
��0

)
= ∂

∂z

f̃ (z)

g̃(z)
.

Step 3/4: Based on the previous step, we can assume � = σu = �0 = 1 without loss of
generality. In this step, we eliminate the dependence on N by reversing indices in (B.1). That
is, we let b̃n ∈ (0, 1) be uniquely given by the forward recursion

b̃1 = 1, b̃2n−1 = b̃2n
(1 − b̃2n)2(1 + b̃2n)

, n = 2, . . . (B.8)

Unlike (b̂1, b̂2, . . .) from (B.1), the values (b̃1, b̃2, . . .) in (B.8) do not depend on N ≥ 3.

We augment �̂
β and write �̂

βN = (
β̂N ,1, . . . , β̂N ,N

)′ ∈ R
N to highlight its dependence

on N . Similarly, we augment notation and write (T̃N , fN , gN ) instead of (T̃ , f , g). We use

(B.2) to write �̂
βN as
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β̂N ,1 = b̃N , β̂N ,2 = b̃N−1

√
1 + b̃2N , β̂N ,3 = b̃N−2

√
1 + b̃2N

√
1 + b̃2N−1, . . . ,

β̂N ,N = b̃1

√
1 + b̃2N . . .

√
1 + b̃22.

We insert these expressions for β̂N ,1, . . . , β̂N ,N into (B.7) and use

T̃ ′
N (β̂N ,N−2) = f ′

N (β̂N ,N−2)gN (β̂N ,N−2) − fN (β̂N ,N−2)g′
N (β̂N ,N−2)

gN (β̂N ,N−2)2
,

T̃ ′
N−1(β̂N−1,N−3) = f ′

N−1(β̂N−1,N−3)gN−1(β̂N−1,N−3) − fN−1(β̂N−1,N−3)g′
N−1(β̂N−1,N−3)

gN−1(β̂N−1,N−3)2
,

to see that

T̃ ′
N (β̂N ,N−2) = T̃ ′

N−1(β̂N−1,N−3), N ≥ 4.

Consequently, T̃ ′
N (β̂N ,N−2) does not depend on N for N ≥ 3 and it suffices to consider

N = 3. For N = 3, the common value is explicitly given as

T̃ ′
3(β̂3,1) = −2.07611 . . . (B.9)

Step 4/4: To prove that β(m)
N−2 defined in (5.5) diverges, we iteratively use (5.5) to produce

β
(m+1)
N−2 − β̂N−2 = T̃ ′(β̂N−2)

(
β

(m)
N−2 − β̂N−2

)

= T̃ ′(β̂N−2)
2(β(m−1)

N−2 − β̂N−2
)

= · · ·
= T̃ ′(β̂N−2)

m+1(β(0)
N−2 − β̂N−2

)
.

Because β
(0)
N−2 	= β̂N−2 and |T̃ ′(β̂N−2)| > 1, we see that β(m+1)

N−2 diverges as m → ∞.
2. To see that divergence in coordinate N − 2 suffices to rule out local stability, we use a

first-order Taylor expansion around Kyle’s equilibrium �̂
β ∈ R

N . For �β ∈ dom(T ), we have

T ( �β) = T (
�̂
β) + ∇T (

�̂
β)( �β − �̂

β) + R( �β − �̂
β), (B.10)

where R is the reminder function, which satisfies R( �β) = o(| �β|) as | �β| → 0. Inserting �B
from (B.6) into (B.10) and using (5.4) give us

T̃ (βN−2) = β̂N−2 + T̃ ′(β̂N−2)
(
βN−2 − β̂N−2

) + R( �B − �̂
β)N−2. (B.11)

To complete the proof, we argue by contradiction and assume that the sequence �β(m)

defined in (3.9) converges to �̂
β. We set �B(m) := (β̂1, . . . , β̂N−3, β

(m)
N−2, β̂N−1, β̂N )′. For m

sufficiently big, (B.9) and R( �β) = o(| �β|) as | �β| → 0 give the lower bound

∣∣∣∣∣T̃
′(β̂N−2) + R( �B(m) − �̂

β)N−2

(β
(m)
N−2 − β̂N−2)

∣∣∣∣∣ > 2. (B.12)

From (B.11), we have
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β
(m+1)
N−2 − β̂N−2 = T̃ ′(β̂N−2)

(
β

(m)
N−2 − β̂N−2

) + R( �B(m) − �̂
β)N−2

=
(

T̃ ′(β̂N−2) + R( �B(m) − �̂
β)N−2

(β
(m)
N−2 − β̂N−2)

)
(
β

(m)
N−2 − β̂N−2

)
. (B.13)

This gives a contradiction because the iterations (B.13) diverge by (B.12). ♦
Proof of Theorem 5.5 Instead of using the (N − 2)’th coordinate, we redefine T̃ in (5.4) to
be the N ’th coordinate. That is, we define

T̃ (β
(m)
N ) := T

⎛

⎜⎜⎜⎜⎝

β̂1
...

β̂N−1

β
(m)
N

⎞

⎟⎟⎟⎟⎠

N

, (B.14)

where (β̂1, . . . , β̂N ) are Kyle’s equilibrium coefficients from Theorem 2.1 and β
(m)
N ∈ R is

the variable we iterate in. Proceeding as in the proof of Theorem 5.1, we see that T̃ ′(β̂N ) = 0
for all N ≥ 3. Consequently, as in the first part of Theorem 4.1, the equilibrium value β̂N is a
super-attracting fixed point for T̃ . Proceeding as in the proof of the first part of Theorem 4.1,
we see that for a starting value β

(0)
N sufficiently close to β̂N with β

(0)
N 	= β̂N , the initial

policy

�B(0) := (β̂1, . . . , β̂N−1, β
(0)
N )′,

produces a sequence �B(m+1) = T ( �B(m)) = T
( · · · T ( �B(0))

)
which converges to �̂

β. Because

�B(0) 	= �̂
β, Kyle’s equilibrium is not unstable in the sense of Definition 5.4. ♦

Data availability We do not analyze or generate any datasets, because our work proceeds within a theoretical
and mathematical approach.
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