
DNet: Distributional Network for Distributional Individualized
Treatment Effects

Guojun Wu
wuguojun.wu@bytedance.com

Bytedance
Beijing, China

Ge Song
songge.cindy@bytedance.com

Bytedance
Beijing, China

Xiaoxiang Lv
lvxiaoxiang.misaka@bytedance.com

Bytedance
Beijing, China

Shikai Luo*

shadow.luo@bytedance.com
Bytedance

Beijing, China

Chengchun Shi*
c.shi7@lse.ac.uk

London School of Economics and
Political Science

London, United Kingdom

Hongtu Zhu*

htzhu@email.unc.edu
University of North Carolina at Chapel

Hill
Chapel Hill, United States

ABSTRACT
There is a growing interest in developing methods to estimate individ-
ualized treatment effects (ITEs) for various real-world applications,
such as e-commerce and public health. This paper presents a novel
architecture, called DNet, to infer distributional ITEs. DNet can
learn the entire outcome distribution for each treatment, whereas
most existing methods primarily focus on the conditional average
treatment effect and ignore the conditional variance around its expec-
tation. Additionally, our method excels in settings with heavy-tailed
outcomes and outperforms state-of-the-art methods in extensive ex-
periments on benchmark and real-world datasets. DNet has also been
successfully deployed in a widely used mobile app with millions of
daily active users.

CCS CONCEPTS
• Computing methodologies → Machine learning algorithms.

KEYWORDS
uplift modeling, causal inference, quantile regression

ACM Reference Format:
Guojun Wu, Ge Song, Xiaoxiang Lv, Shikai Luo, Chengchun Shi, and Hongtu
Zhu. 2023. DNet: Distributional Network for Distributional Individual-
ized Treatment Effects. In Proceedings of the 29th ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining (KDD ’23), August 6–
10, 2023, Long Beach, CA, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3580305.3599809

1 INTRODUCTION
The individualized treatment effect (ITE) has been widely studied
in various fields, including medical science, psychology, sociology,

*These authors are senior authors of this paper.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’23, August 6–10, 2023, Long Beach, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0103-0/23/08. . . $15.00
https://doi.org/10.1145/3580305.3599809

0 5 10 15 20 25 30
X

0

2

4

6

8

10

12

Y

MSE-based(T=1)
Quantile-based(T=1)
MSE-based(T=0)
Quantile-based(T=0)

(A)

0 5 10 15 20 25 30
X

0

2

4

6

8

10

12

Y

Oracle ITE
MSE-based ITE
Quantile-based ITE

(B)

Figure 1: A toy simulation example to visualize the disadvantage
of standard ITE estimators with heavy-tailed outcomes. Panel A
plots the data distribution for treatments 0 and 1 with circles and
stars, respectively. The blue and orange lines are the conditional
mean estimators obtained by minimizing the MSE and quantile
losses, respectively. Panel B displays the corresponding ITE
estimators, computed by subtracting the two mean curves in
Panel A. The green dashed line depicts the oracle ITE values.
The outcomes are generated from a heavy-tailed distribution.

economics, e-commerce, and education. Recently, technology com-
panies have been using ITE estimation to optimize their marketing
efforts [10, 39, 40, 42, 43]. There is a growing trend towards us-
ing statistical and machine learning methods to estimate ITEs from
observational data [1, 6, 11, 21, 25, 27, 32–34]. However, most ex-
isting research has focused on the conditional average treatment
effect (CATE), which is the average individual treatment effect given
certain baseline characteristics. This approach is not robust to out-
liers and may not provide accurate estimators when the outcome
distribution is skewed. See Figure 1 for an illustration. Circles and
stars indicate heavy-tailed outcomes under two treatments. Panel
A depicts the conditional mean estimators trained by minimizing
the mean squared error (MSE) and quantile loss. Panel B displays
the corresponding ITE estimators obtained by subtracting the two
conditional mean curves. The MSE-based ITE estimator is biased,
highlighting the danger of ignoring heavy tailedness. The slope of
the quantile-based ITE estimator is consistent, demonstrating its
robustness against outliers.

This paper aims to learn distributional ITEs in order to capture
the intrinsic uncertainty of the counterfactual outcome. A key ob-
servation is that, a given distribution function can be approximated

https://doi.org/10.1145/3580305.3599809
https://doi.org/10.1145/3580305.3599809

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Guojun Wu, Ge Song, Xiaoxiang Lv, Shikai Luo, Chengchun Shi, and Hongtu Zhu

by using a set of quantiles [23, 36]. This motivates us to consider
quantile ITEs at a given set of quantile levels. However, a major
challenge in this process is that many existing quantile estimators
may not necessarily satisfy the monotonicity constraint, i.e., the
estimator at the 𝑞1th quantile is strictly larger than that at the 𝑞2th
quantile for some 𝑞1 < 𝑞2, referred to as “crossing." This occurs
when quantile regression is conducted at each level without imposing
a non-crossing constraint. Crossing leads to instability in treatment
selections, reduces the estimator’s statistical efficiency and harms
the model’s interpretability. Although it has been extensively studied
in the statistics and economics literature [5, 7, 9, 12, 13, 20, 22, 24],
most existing works focus on linear quantile regression models. Non-
crossing and non-linear quantile regression has been less studied in
the literature. This paper is to fill in this gap by imposing explicit
non-crossing constraints on the quantile regression while employ-
ing existing state-of-the-art deep learning techniques to capture the
nonlinear causal relationships among the variables.

Our major contributions are summarized as follows:
(a) This paper is pioneering in studying non-crossing quantile

regression for ITE estimation. We propose a distributional
network (DNet) architecture, based on non-crossing quantile
regression, to handle heavy-tailed outcomes. This architecture
can be utilized as a standalone component and incorporated
into other neural network models to solve other distributional
learning tasks.

(b) We further develop two novel adaptations of DNet to address
some common challenges in practical applications, including
monotone treatment effects and zero-inflated outcomes.

(c) We conduct extensive empirical studies by comparing our pro-
posal against existing state-of-the-art on a number of bench-
mark and real-world datasets. The proposed DNet provides
more accurate treatment effects estimation in our applica-
tions, and generate better personalized intervention policies
in the production environment of a well-known tech company,
serving millions of users each day.

The rest of this paper is structured as follows: Section 2 reviews
related works on treatment effects estimation and quantile regression.
Section 3 introduces the background and some notation. Section 4
describes the DNet architecture as well as its training and inference
procedures. In Section 5, we discuss how DNet can be adapted
to handle zero-inflated outcomes and monotone treatment effects.
Section 6 presents extensive experimental evaluations of DNet on
benchmark and real-world datasets, as well as the online deployment
results. Finally, we conclude our findings in Section 7.

2 RELATED WORK
The proposed methods are closely related to three different areas in
causal inference and machine learning, including conditional aver-
age treatment effect estimation, conditional distributional treatment
effect estimation and quantile regression.

2.1 Conditional Average Treatment Effect
Estimation

In recent years, there is a growing interest in developing machine
learning methods for conditional average treatment effect (CATE)
estimation. For instance, [21, 27] developed meta-learners which

effectively combine several base-learners computed by existing su-
pervised learning or regression method in order to estimate the CATE
function. Another line of research focused on developing flexible
non-parametric heterogeneous treatment effect estimation based on
random forest [1, 28, 34]. These tree-based methods can produce
consistent estimators with fast convergence rate, and valid confi-
dence intervals. However, they can hardly be adapted to incremental
training and tend to be ineffective with sparse categorical features. Fi-
nally, [18, 32, 33, 41] proposed original neural network architectures
to simultaneously model multiple potential outcomes. In particular,
DragonNet [33] provides an end-to-end procedure based neural net-
works for simultaneously estimating the propensity score and the
expected outcomes given the covariates and the treatment. [41] de-
veloped a collaborating causal network to learn the full potential
outcome distribution.

2.2 Conditional Distributional Treatment Effect
Estimation

Recently, a few methods have been developed in the literature
for distributional treatment effects estimation or policy evaluation
[2, 4, 8, 15, 26, 29, 37, 38]. In particular, [8] proposed to discretize 𝑌
and to employ regression to estimate the resulting conditional cumu-
lative distribution function (CCDF). However, the estimated CCDF
is not guaranteed to satisfied the monotonicity constraint. [4, 15]
proposed to apply generalized additive models for location, scale,
and shape [GAMLSS, 30] for learning conditional distributional
treatment effects [4, 15]. However, it relies crucially on the additive
assumption and suffers from model misspecification. [26, 29] con-
sider learning distributional treatment effect via kernel conditional
mean embeddings which embeds the counterfactual outcome distri-
bution into a reproducing kernel Hilbert space (RKHS). However,
empirical evidence suggests that kernel-based methods deteriorate
significantly when the covariate space is high-dimensional.

2.3 Quantile Regression
Commonly used in statistics and econometrics, quantile regression
estimates the conditional quantiles of a given outcome, as opposed
to linear regressions which focus on the mean outcome. There are
two main advantages of quantile regression over linear regression.
First, it is more robust against outliers. Second, different from linear
regression which only computes a conditional mean function, quan-
tile regression produces conditional estimators at a range of quantile
levels. In that sense, quantile regression provides more information.
A number of quantile regression methods have been developed in
the literature [see e.g., 7, 9, 12, 13, 19, 20, 22, 23, 35]. However,
it is common to encounter the crossing problem, where the esti-
mated quantiles violate the monotonicity property. To address this
issue, a few methods have been proposed to impose the non-crossing
constraints [3, 9, 13, 23]. However, these methods are very compu-
tationally intensive and are mostly designed for parametric quantile
models. As such, it requires the development of flexible and efficient
optimization algorithm to solve the non-crossing issue.

DNet: Distributional Network for Distributional Individualized Treatment Effects KDD ’23, August 6–10, 2023, Long Beach, CA, USA

3 BACKGROUND AND PROBLEM
FORMULATION

In this section, we apply the Neyman-Rubin potential outcomes
framework [see e.g., 17, 31] for problem formulation. We begin with
some notations and assumptions. The underlying probability space
can be represented by (Ω, F ,P), where Ω = X × T × Y with the
input space X ⊆ 𝑅𝑝 , treatment space T = 0, 1, 2, . . . , 𝑀 − 1 where
𝑀 denotes the number of treatment options (0 denotes the control by
convention), and output space Y ⊆ 𝑅. Random variables𝑋 : Ω → X,
𝑇 : Ω → T , and 𝑌 ∗ (𝑡) : Ω → Y represent the covariates, treatment
assignment, and the counterfactual outcome that would have been
observed if treatment 𝑡 were assigned. In practice, it is impossible
to observe all the potential outcomes. Instead, we only have access
to the observed outcome 𝑌 : Ω → Y, depending on the treatment
we receive (see the consistency assumption in (A1) below). This
missing data issue is known as the fundamental problem of causal
inference [16], prevents us from directly computing the difference in
outcomes under treatments and control for each unit. The observed
data correspond to i.i.d. copies of the triplet (𝑋,𝑇 ,𝑌), given by
(𝑥𝑖 , 𝑡𝑖 , 𝑦𝑖)𝑁𝑖=1.

Accurate estimation of the ITE is essential in many practical
applications. In particular, this paper is motivated by the applications
in a world-leading video creation and sharing platform. The company
aims to implement a ‘pop-up’ notification policy to inform users of
the latest updates and new features in their updated application, while
maintaining a seamless user experience. To successfully implement
this policy, we must accurately assess the impact of pop-up windows
on user engagement, i.e. the treatment effect with and without pop-
ups. In this case, 𝑇 is binary and indicates whether the pop-up
window appears or not when a user launches the app. 𝑋 and 𝑌
correspond to historical behavior of the user in regards to their usage
of the app and their daily active time, respectively.

Throughout this paper, we assume that the following three as-
sumptions hold.
(A1) 𝑌 = 𝑌 ∗ (𝑇).
(A2) 𝑇 is independent of (𝑌 ∗ (0), 𝑌 ∗ (1), . . . , 𝑌 ∗ (𝑀 − 1)) given 𝑋 .
(A3) 𝑏 (𝑡 |𝑥) : = 𝑃 (𝑇 = 𝑡 |𝑋 = 𝑥) > 0 for ∀𝑥, 𝑡 .
Assumption (A1) is known as the consistency assumption. Assump-
tion (A2) asserts that there are no unmeasured confounding variables,
which is automatically satisfied in randomized studies where the
treatment assignment mechanism depends only upon the feature 𝑋 .
Assumption (A3) is referred to as the positivity or overlap assump-
tion that is commonly imposed in the literature.

These assumptions ensure that the causal effects can be inferred
from the observed dataset. In particular, they imply that 𝑃𝑌 (𝑡) |𝑋 =

𝑃𝑌 (𝑡) |𝑋,𝑇=𝑡 = 𝑃𝑌 |𝑋,𝑇=𝑡 for all 𝑡 where 𝑃𝑈 |𝑉 denotes the conditional
distribution of𝑈 given 𝑉 for any random variables𝑈 and 𝑉 . We use
𝑏 (𝑡 |𝑥) to denote the propensity score, which is known in a random-
ized controlled trial, and equals 1/𝑀 in a randomized experiment.

The primary interest in the causal inference literature lies in infer-
ring the average treatment effect (ATE), 𝜏𝑡 = 𝐸 [𝑌 ∗ (𝑡) − 𝑌 ∗ (0)], and
the conditional average treatment effect (CATE), 𝜏𝑡 (𝑥) = 𝐸 [𝑌 ∗ (𝑡) −
𝑌 ∗ (0) |𝑋 = 𝑥]. As commented earlier, these causal estimands de-
scribe the averaged (heterogeneous) treatment effects, but do not
capture the uncertainty around the mean (e.g., variance) or other

Figure 2: A graphical illustration of the Non-Crossing Quantile
Layer. The Value Layer aims to learn the averge of all quantiles
and the Delta Layer aims to learn the differences between any
two adjacent quantiles.

higher order moments. This motivates us to consider the distribu-
tional treatment effect. We also remark that distributional treatment
effects play an important role in making fair and explainable deci-
sions, since they provide a more comprehensive understanding of
the treatment effect.

4 METHODOLOGY
In this section, we present our method for estimating distributional
treatment effects using non-crossing deep quantile regression. We be-
gin by introducing a non-crossing quantile layer. Next, we formally
present the proposed distributional network architecture, discussing
some practical implementation details.

4.1 Non-Crossing Quantile Layer
The non-crossing quantile layer is used to estimate the outcome
distribution under a given treatment 𝑡 . To simplify the notation,
we omit all dependencies on 𝑡 throughout this section. Let 𝛾 =

(𝛾1, . . . , 𝛾𝐾) denote a set of 𝐾 pre-specified non-decreasing quantile
levels, typically chosen as 𝛾𝑘 = 𝑘/(𝐾 + 1) for 𝑘 = 1, · · · , 𝐾 . A
standard quantile layer is defined as follows:

q B 𝑓 (𝑥 ;𝜃𝑞),

where 𝑥 denotes the input data, 𝜃𝑞 is the set of parameters in the
quantile layer, q denotes the output quantiles in ascending order,
i.e. q = (𝑞𝛾1 , . . . , 𝑞𝛾𝐾) where 𝑞𝛾𝑘 represents the 𝛾𝑘 th conditional
quantile of 𝑌 given 𝑋 = 𝑥 and 𝑇 = 𝑡 , and 𝑓 denotes certain neural
network model.

As commented earlier, the learned quantile curves may not satisfy
the monotonicity constraint, reducing the estimation accuracy and
hurting the model interpretability. To address this issue, we propose
a Non-Crossing Quantile (NCQ) Layer. See Figure 2 for a graphical
illustration. The NCQ Layer essentially replaces the output layer in
the standard quantile layer with two independent dense layers: the
Value Layer and the Delta Layer, which share the same inputs. It is
formally defined as:

𝑁𝐶𝑄 (𝑥) = 𝑣 (𝑥 ;𝜃𝑣) ⊕ 𝑑 (𝑥 ;𝜃𝛿), (1)

where 𝑣 (·;𝜃𝑣) and 𝑑 (·;𝜃𝛿) denote the Value Layer and Delta Layer,
respectively, and the ⊕ symbol denotes a broadcast operator to per-
form a broadcast add between the scalar-valued 𝑣 (·;𝜃𝑣) and the
𝐾-dimensional output 𝑑 (·;𝜃𝛿). The Value Layer is a dense layer and
corresponds to the average of the predicted quantiles. The Delta
Layer outputs a 𝐾-dimensional vector c = 𝑔(·;𝜃𝛿). Both layers are

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Guojun Wu, Ge Song, Xiaoxiang Lv, Shikai Luo, Chengchun Shi, and Hongtu Zhu

(A) Output of a base dense layer.

(B) Apply the activation function 𝜎 to create non-negative outputs.

(C) Apply the cumsum function to generate non-crossing quantiles.

(D) Center the outputs. Perform a broadcast sum between these
centered outputs and the value layer.

Figure 3: Visualizing the implementation of non-crossing quan-
tile estimation with 50 quantiles given an arbitrary input.

used to produce the final quantiles {𝑞𝛾𝑘 }𝑘 as follows:

𝑑𝛾𝑘 (·;𝜃𝛿) =
𝑘∑︁
𝑗=1

𝜎 (𝑐 𝑗) − 𝐾−1
𝐾∑︁
𝑗=1

(𝐾 + 1 − 𝑗)𝜎 (𝑐 𝑗),

𝑞𝛾𝑘 = 𝑑𝛾𝑘 (·;𝜃𝛿) + 𝑣 (·;𝜃𝑣),
(2)

where 𝑑𝛾𝑘 measures the difference between the 𝛾𝑘 -quantile and the
average of all the quantiles, and the activation function 𝜎 (𝑥) =

𝐸𝐿𝑈 (𝑥) + 1 with 𝐸𝐿𝑈 (𝑥) being an exponential linear unit function,
defined as,

𝐸𝐿𝑈 (𝑥) =
{
𝑥, 𝑥 ≥ 0;
𝛼 (exp(𝑥) − 1), 𝑥 < 0,

for some 𝛼 > 0. By definition, the 𝐸𝐿𝑈 -function rectifies the input to
(−1, +∞). As such, 𝜎 is a strictly positive function. It follows from
(2) that

𝑞𝛾𝑘 − 𝑞𝛾𝑘−1 = 𝜎 (𝑐𝑘) > 0.

Consequently, the proposed neural network architecture guarantees
that the quantile estimators are monotonically increasing, making
the resulting model more interpretable and reliable. A graphical
illustration of the NCQ Layer is given in Figure 3.

Finally, it is worth mentioning that the Value Layer and the Delta
Layer are allowed to have different neural network architectures.
This makes the proposed structure more flexible. For instance, it
allows us to impose the monotone treatment constraint on the Value
Layer only, as illustrated in Section 5.

Figure 4: Illustration of DNet architecture with two treatments.
The base network learns shared feature representation and the
towers produce final predictions.
4.2 Distributional Network
The proposed Distributional Network (DNet) is composed of mul-
tiple NCQ Layers. As shown in Figure 4, it consists of three major
components:

• A BaseNet that learns a shared representation for all treat-
ments.

• A T-Tower, a simple softmax layer that estimates the propen-
sity vector, 𝜋 (𝑥 ;𝜃𝜋) = {𝑃 (𝑇 = 𝑡 |𝑋 = 𝑥, 𝜃𝜋)}𝑀−1

𝑡=0 .

• A R-Tower associated with each individual treatment 𝑡 , repre-
sented by 𝑅(·, 𝑡 ;𝜃𝑟) with the last layer being an NCQ layer,

where 𝜃𝜋 and 𝜃𝑟 denote the network parameters of the T-Tower and
R-Tower, respectively. The BaseNet is a bottom network used for
feature extraction. Its output will be used as the inputs for the T-
Tower and R-Tower. The T-Tower forces the shared representation
to be closely tied to the estimated propensity scores. As discussed
later, these propensity scores will not be used to produce ITE esti-
mators. Nonetheless, the inclusion of the T-Tower helps improve the
prediction accuracy [33]. Finally, the R-Tower is used to produce
the quantile estimators. We next detail the training and inference
procedures.

Training of DNet. To train the DNet, we define loss functions
for each component. We denote all loss functions as ℓ . The T-
Tower uses cross-entropy loss to estimate the propensity score.
For the R-Tower’s, we consider either the quantile loss 𝜌𝛾 (𝑢) =

𝑢 (𝛾 − 1{𝑢 < 0}), or the quantile Huber loss,

𝜌𝜅𝛾 (𝑢) = |𝛾 − 1{𝑢 < 0}| ℓ𝜅 (𝑢)
𝜅

,

where ℓ𝜅 (𝑢) = 0.5𝑢2 if |𝑢 | ≤ 𝜅 and 𝜅 (|𝑢 | − 0.5𝜅) otherwise. We then
set the loss function for a single R-Tower to

ℓ (𝑅(𝑥, 𝑡 ;𝜃𝑟), 𝑦) =
1
𝐾

𝐾∑︁
𝑘=1

ℓ𝜅 (𝑦 − 𝑞𝛾𝑘 (𝑥, 𝑡)), (3)

where 𝑞𝛾𝑘 (𝑥, 𝑡) is the 𝑘th qauntile output of 𝑅(𝑥, 𝑡 ;𝜃𝑟) under treat-
ment 𝑡 . The final loss function of DNet for a single sample (𝑥𝑖 , 𝑡𝑖 , 𝑦𝑖)
is given by

L(𝑥𝑖 , 𝑡𝑖 , 𝑦𝑖 ;𝜃𝑟 , 𝜃𝜋) = ℓ (𝑅(𝑥𝑖 , 𝑡𝑖 ;𝜃𝑟), 𝑦𝑖) + 𝜔ℓ (𝜋 (𝑥𝑖 ;𝜃𝜋), 𝑡𝑖),

where ℓ (𝜋 (𝑥𝑖 ;𝜃𝜋), 𝑡𝑖) is the cross-entropy loss, and 𝜔 is a weight
parameter that balances the two loss components.

Inference of DNet. When using a trained model to make predictions
on new data, we only use the predicted quantile vector under each

DNet: Distributional Network for Distributional Individualized Treatment Effects KDD ’23, August 6–10, 2023, Long Beach, CA, USA

treatment and ignore the estimated propensity score. We set the
final conditional mean outcome prediction for each treatment to the
average of the predicted quantiles, that is,

𝐸 [𝑌 |𝑋 = 𝑥,𝑇 = 𝑡] = 1
𝐾

𝐾∑︁
𝑘=1

𝑞𝛾𝑘 (𝑥, 𝑡) . (4)

The treatment effects 𝜏𝑡 (𝑥) are then estimated as

𝜏𝑡 (𝑥) = 𝐸 [𝑌 |𝑋 = 𝑥,𝑇 = 𝑡] − 𝐸 [𝑌 |𝑋 = 𝑥,𝑇 = 0]

=
1
𝐾

𝐾∑︁
𝑘=1

𝑞𝛾𝑘 (𝑥, 𝑡) −
1
𝐾

𝐾∑︁
𝑘=1

𝑞𝛾𝑘 (𝑥, 0) .
(5)

Next, we illustrate how to conduct policy optimization based
on the outputs of DNet. Optimization in real applications often
involves multiple objectives, i.e. stay duration, promotion costs, etc.
For illustration purposes, consider two outcomes 𝑌𝑅 and 𝑌𝐶 , where
𝑌𝑅 corresponds to the business metric we wish to maximize and
𝑌𝐶 corresponds to cost 𝑌𝐶 we wish to control. We train different
DNets for 𝑌𝑅 and 𝑌𝐶 , denoted as 𝑞𝑅𝛾 (𝑥, 𝑡) and 𝑞𝐶𝛾 (𝑥, 𝑡). Let 𝑞𝑅

𝑖 𝑗𝑘
=

𝑞𝑅𝛾𝑘 (𝑥𝑖 , 𝑡 𝑗), 𝑞
𝑅
𝑖 𝑗

= 𝐾−1 ∑𝐾
𝑘=1 𝑞

𝑅
𝑖 𝑗𝑘

, and 𝜏𝑅
𝑖 𝑗

= 𝜏𝑅𝑡 𝑗
(𝑥𝑖). Define 𝑞𝐶

𝑖 𝑗𝑘
, 𝑞𝐶
𝑖 𝑗
,

and 𝜏𝐶
𝑖 𝑗

similarly. We formalize the policy optimization problem as
the following linear programming problem,

argmax
𝐴

1
𝑁

𝑁∑︁
𝑖=1

𝑀−1∑︁
𝑗=0

𝑞𝑅𝑖 𝑗 × 𝑎𝑖 𝑗︸ ︷︷ ︸
(𝑖)

−𝜆1
1
𝑁

𝑁∑︁
𝑖=1

𝑀−1∑︁
𝑗=0

(𝑞𝑅𝑖 𝑗𝐾 − 𝑞𝑅𝑖 𝑗1) × 𝑎𝑖 𝑗︸ ︷︷ ︸
(𝑖𝑖)

− 𝜆2
1
𝑁

𝑁∑︁
𝑖=1

𝑀−1∑︁
𝑗=0

(𝑞𝐶𝑖 𝑗𝐾 − 𝑞𝐶𝑖 𝑗1) × 𝑎𝑖 𝑗︸ ︷︷ ︸
(𝑖𝑖𝑖)

, (6)

𝑠 .𝑡 .

𝑁∑︁
𝑖=1

𝑀−1∑︁
𝑗=0

𝑞𝐶𝑖 𝑗 × 𝑎𝑖 𝑗︸ ︷︷ ︸
(𝑖𝑣)

≤ 𝐵,

𝑀−1∑︁
𝑗=0

𝑎𝑖 𝑗 = 1, 𝑎𝑖 𝑗 ∈ {0, 1}

where 𝐴 = (𝑎𝑖 𝑗)𝑁,𝑀−1
𝑖=1, 𝑗=0 ∈ R𝑁×𝑀 with 𝑎𝑖 𝑗 being the indicator of

whether to assign user 𝑥𝑖 to treatment 𝑡 𝑗 , and 𝐵 is the total budget.
The treatment assignment matrix 𝐴 is evaluated based on four crite-
ria: average reward and cost represented by (𝑖) and (𝑖𝑣) respectively,
and penalization of treatments with high variance in reward and
cost represented by (𝑖𝑖) and (𝑖𝑖𝑖) respectively. 𝜆1 and 𝜆2 are the
hyperparameters chosen via cross-validation to balance the trade-
off between these criteria. The inclusion of (𝑖𝑖) and (𝑖𝑖𝑖) ensures
stable and consistent performance, as well as improves compliance
with budgeted costs. Furthermore, notice that (𝑖) and (𝑖𝑣) can be
represented as

(𝑖) = 1
𝑁

𝑁∑︁
𝑖=1

𝑞𝑅𝑖0 +
1
𝑁

𝑁∑︁
𝑖=1

𝑀−1∑︁
𝑗=1

𝜏𝑅𝑖 𝑗 × 𝑎𝑖 𝑗 ,

(𝑖𝑣) = 1
𝑁

𝑁∑︁
𝑖=1

𝑞𝐶𝑖0 +
1
𝑁

𝑁∑︁
𝑖=1

𝑀−1∑︁
𝑗=1

𝜏𝐶𝑖 𝑗 × 𝑎𝑖 𝑗 ,

(7)

which depends on the estimated ITE. Equation (7) thus implies
that accurate estimation of the treatment effects is critical to policy

optimization. The optimization problem is a special multiple-choice
knapsack problem whose dual problem can be solved in parallel. It
usually converges in several iterations, and takes just a few minutes
for tens of millions of samples.

Toy Example. The toy example in Section 1 provides a visual il-
lustration of how non-crossing quantile regression improves the
estimation of ITE. In Figure 1, the orange lines are the conditional
mean outcome predictions based on DNet with number of quantiles
𝐾 = 5. The blue lines are given by a multi-headed neural network
model with MSE loss. It is apparent that the model with MSE loss is
affected by "large" outcomes, which results in biased ITE estimation
shown in Figure 1 (B). To the contrary, the ITE estimation curve
based on DNet performs much better, and is parrallel to the oracle
ITE curve.

5 VARIATIONS OF THE DNET
ARCHITECTURE

In the previous section, we discussed the standard DNet architecture.
In this section, we will introduce two modifications of DNet to
accommodate some real-world tasks.

Mono-DNet. In many real-world applications, the expected outcome
is often a monotonic function of the treatments applied. For example,
in an e-commerce platform, providing more coupons will likely
result in higher marketing costs and more customer orders. To borrow
this information, we propose a monotonic DNet (Mono-DNet) by
imposing the monotonic treatment constraint during the training
phase. In this scenario, it is typically assumed that the outcome is
an increasing function of the treatments. Similar to the monotonic
constraints on quantile values, we apply the transformation function
𝐸𝐿𝑈 (𝑥) +1 to the original outputs of the Value Layers 𝑣 (𝑥, 𝑡 ;𝜃𝑣), 𝑡 =
0, 1, . . . , 𝑀 − 1. Let 𝑣 (𝑥, 𝑡 ;𝜃𝑣) denote the modified monotonic Value
Layer for treatment 𝑡 . We next define the output

𝑣 (𝑥, 𝑡 ;𝜃𝑣) =
𝑡∑︁

𝑡 ′=1
(𝐸𝐿𝑈 (𝑣 (𝑥, 𝑡 ′;𝜃𝑣)) + 1) + 𝑣 (𝑥, 0;𝜃𝑣), (8)

where ELU is not applied on 𝑣 (𝑥, 0;𝜃𝑣) to allow 𝑣 (𝑥, 𝑡 ;𝜃𝑣) to take
negative values. Such a transformation guarantees that the expected
outcome is a non-decreasing of the treatments in equation 8.

ZI-DNet. In practice, we often encounter outcomes that are non-
negative, heavy-tailed and have a significant fraction of zero values,
resulting in a zero-inflated heavy-tailed distribution. Examples of
such outcomes include customers’ future lifetime value (LTV) and
the gross merchandise value (GMV) in a marketing campaign, since
many people may not use coupon as tall. Estimating ITEs can be
extremely challenging in this case as the outcome is a mixture of
discrete and continuous variables.

To address this challenge, we propose a modified version of
DNet, called zero-inflated DNet, which involves an auxiliary task for
predicting whether the outcome is zero. As shown in Figure 5, we
add another head in the NCQ Layer to predict 𝑍 (𝑥, 𝑡 ;𝜃𝑧) = 𝑃 (𝑌 =

0|𝑋 = 𝑥,𝑇 = 𝑡 ;𝜃𝑧), i.e., the conditional probability of 𝑌 being 0. The
final prediction can be reformulated as,

�̃�(𝑥, 𝑡 ;𝜃𝑟) = stop_gradient {1 − 𝑍 (𝑥, 𝑡 ;𝜃𝑧)} ⊗ 𝑅(𝑥, 𝑡 ;𝜃𝑟).
We apply the stop-gradient ‘operation in the zero-inflated NCQ Layer
to ensure that the Prob Layer only learns from the classification loss.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Guojun Wu, Ge Song, Xiaoxiang Lv, Shikai Luo, Chengchun Shi, and Hongtu Zhu

Figure 5: The illustration of Zero-Inflated Non-Crossing Quan-
tile Layer, where we learn a separate probability about whether
the outcome is zero.

Finally, we extend the loss function to include the classification loss
of a zero-inflated term,

L(𝑥𝑖 , 𝑡𝑖 , 𝑦𝑖 ;𝜃𝑟 , 𝜃𝜋 , 𝜃𝑧) = ℓ (�̃�(𝑥𝑖 , 𝑡𝑖 ;𝜃𝑟), 𝑦𝑖)
+ 𝜔1ℓ (𝜋 (𝑥𝑖 ;𝜃𝜋), 𝑡𝑖) + 𝜔2ℓ (𝑍 (𝑥𝑖 , 𝑡𝑖 ;𝜃𝑧), 1(𝑦𝑖 = 0)),

where 1(𝑌𝑖 = 0) is an indicator function. It is worth noting that the
final prediction is �̃�(𝑥, 𝑡 ;𝜃𝑟) and the original output 𝑅(𝑥, 𝑡 ;𝜃𝑟) can
be viewed as the prediction conditional on the fact that the outcome
is non-zero.

6 EVALUATION
We evaluate the performance of the proposed DNet architecture
through a thorough examination of synthetic and real-world datasets.
The results show that the proposed architecture effectively captures
the outcome distribution under each treatment and provides more
accurate estimates of the individualized treatment effects. Further-
more, the model has been deployed in a production setting, resulting
in significant improvements in key business metrics, validating its
effectiveness in practical situations.

Datasets. Evaluating causal models can be challenging due to the
absence of ground truth for causal effects in real-world datasets.
To overcome this, researchers often use semi-synthetic datasets. In
this study, we use the widely-used public datasets IHDP and ACIC
as benchmarks to compare the performance of DNet with other
baseline methods. Additionally, we collect several large-scale real-
world datasets to further the usefulnesses of DNet and its variants.

• IHDP: The Infant Health and Development Program (IHDP) con-
ducted randomized experiments to investigate the effect of home
visits by specialists on infants’ cognitive scores. Hill [14] gener-
ated thousands of datasets for causal effect estimation based on
these experiments. We use 1000 realizations from the NPCI pack-
age, as in [32] and [33]. Each realization contains 747 instances.
63% of them are used for training whereas the remaining 27% and
10% are used for validation and testing, respectively.

• ACIC: We also use the data from the 2019 Atlantic Causal In-
ference Conference competition. The data is high-dimensional
with continuous features and heterogeneous ITEs. Specifically, it
contains 200,000 samples, each with 200 features and a binary
treatment indicator. We split the data into 80% for training, 10%
for validation and 10% for testing.

• Real Datasets: To evaluate the effectiveness of the proposed
DNet architecture in real-world scenarios, we conduct online ran-
domized controlled experiments and collect two datasets from a
leading technology company to illustrate the usefulness of our pro-
posal. This company operates one of the largest mobile platforms
for production, aggregation, and distribution of various types of
information. On the platform, users can earn rewards by watch-
ing video ads, searching relevant features, etc. We consider an
ads dataset and a search dataset, use these datasets to evaluate
the performance of DNet and its variants, and demonstrate their
effectiveness in practical scenarios.
– Ads: In the first dataset, users earn rewards by watching video

ads. The dataset consists of millions of ad requests, with each
request containing hundreds of pre-treatment features. The treat-
ment corresponds to the reward we assigned to a give user.
Here, we discretize all rewards into five levels, corresponding
to𝑇 = 0, 1, 2, 3, and 4, where larger values lead to more rewards.
For each request, a uniformly random reward is assigned and
effective cost per mille (eCPM) is recorded as the value to the
advertiser which serves as the outcome. The goal is to develop
an optimal policy to maximize the total value to the advertisers,
subject to a budget constraint.

– Search: In the second dataset, we divide the daytime into three
time windows. When a user launches the app for the first time
during a time window, they may see a pop-up window that
recommends them to experience a new search feature. However,
some users find pop-ups annoying. The company is interested
in developing an optimal ’pop-up’ notification policy that imple-
ment this strategy for a subgroup of users at each time window
to increase their search frequency. At each time window, the
company can decide whether to show the pop-up window or not.
This yields 23 = 8 treatment options. The baseline treatment is
to always show the pop-up window when the user launches the
app for the first time regardless of what time window it is. Thus,
we have 9 treatments in total. We randomly sample 9 equal-
size groups of users and assign different treatments to different
groups. This randomized controlled experiment lasts for two
weeks. We collect hundreds of pre-treatment features for each
user and are interested in the treatment effects on users’ search
counts in the two weeks. An optimal policy will maximize the
total search counts without hurting user experience, which is
reflected by the frequency of using the company’s app.

Baseline Models. We compare the performance of our DNet archi-
tecture with several commonly used neural network baselines for
ITE estimation.

• TARNet [32]: TARNet is a widely used deep learning causal
model. It is a multi-headed neural network and each head
corresponds to the expected outcome of each treatment. This
shared bottom architecture effectively addresses the challenge
of imbalance samples.

• CFR [32]: CFR is an extension of TARNet and addresses
the challenge of imbalance samples by incorporating an ad-
ditional loss function. This loss function forces the learned
covariate distributions to be more similar across different
treatments. We report the CFR performance with two differ-
ent distribution distance measurement metrics, corresponding

https://github.com/vdorie/npci

DNet: Distributional Network for Distributional Individualized Treatment Effects KDD ’23, August 6–10, 2023, Long Beach, CA, USA

0 1 2 3 4 5 6 7 8
Response

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
De

ns
ity

ACIC

(A) ACIC.

0.0 0.5 1.0 1.5 2.0 2.5
Value to advertisers

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

De
ns

ity

Ads

(B) Ads.

0 50 100 150 200 250 300
Search count

0.00

0.10

0.20

0.30

0.40

0.50

De
ns

ity

Search

(C) Search.

Figure 6: Histograms of outcomes in ACIC/Ads/Search datasets. All distributions are heavy-tailed and the outcome in the Search
dataset is also zero-inflated.

to Wasserstein and MMD, and denote the resulting two mod-
els as CFRWass and CFRMMD respectively.

• DragonNet [33]: DragonNet is designed to learn the aver-
age treatment effect (ATE). However, it can also be used to
estimate the conditional average treatment effect (CATE) as
well. It extends TARNet by adding a regularization term (also
known as the targeted regularization) to the loss function.
This targeted regularization provides an end-to-end training
procedure, yielding ATE estimators with desirable asymptotic
properties and excellent finite-sample performance.

Evaluation Metrics. For the synthetic datasets including IHDP and
ACIC, we use the Precision in Estimation of Heterogeneous Effect
(PEHE) as the evaluation metric, since we have access to the ground
truth of individual treatment effect 𝜏𝑡 (𝑥). The PEHE is defined as,

𝜖
(𝑡)
𝑃𝐸𝐻𝐸

= 𝐸 [𝜏𝑡 (𝑥) − 𝜏𝑡 (𝑥)]2 .

For real-world datasets, we use the Area Under Uplift Curve (AUUC)
as the evaluation metric due to that the ground truth is unknown to
us. To plot the uplift curve for a given treatment 𝑡 , we first sort all
the samples according to their estimated ITEs 𝜏𝑡 (𝑋𝑖), 𝑖 = 1, · · · , 𝑁
in decreasing order. Let 𝐷𝑛 be the first 𝑛 elements after sorting, and
𝐴𝑇𝐸𝑛 be the average treatment effect computed using 𝐷𝑛 . The uplift
curve is drawn by connecting points ((𝑛/𝑁), (𝑛/𝑁) × 𝐴𝑇𝐸𝑛) for
𝑛 = 0, 1, 2, . . . , 𝑁 .

6.1 Hyperparameters Settings
For all the baselines, we use the same network structure and hyper-
parameter settings in their original papers such as network depth,
layer dimension and learning rate. For the proposed DNet, the base
net contains two layers with size of 200 and 100 for the normal
dense layers with L-2 regularization in the action tower, which is
the same as TARNET and DragonNet. For all experiments, we set
the number of quantiles to 50 and we discuss how the number of
quantiles affects the performance of DNet in Section 6.4.

IDHP ACIC√
𝜖𝑃𝐸𝐻𝐸𝑖𝑛

√
𝜖𝑃𝐸𝐻𝐸𝑜𝑢𝑡

√
𝜖𝑃𝐸𝐻𝐸𝑖𝑛

√
𝜖𝑃𝐸𝐻𝐸𝑜𝑢𝑡

TARNET 0.88 0.95 4.35 4.69
CFR Wass 0.71 0.76 3.10 3.42
CFR MMD 0.73 0.77 3.08 3.38
DragonNet 0.68 0.77 4.04 4.35
DNet 0.49±0.02 0.56±0.03 1.87± 0.18 2.34± 0.15

Table 1: Performance summary of IHDP and ACIC datasets. 𝑖𝑛
stands for train and validation datasets while 𝑜𝑢𝑡 stands for test
set.

6.2 Performance of DNet
In this section, we conduct extensive comparisons between our
model with other baselines on IHDP, ACIC, and two real data sets.

IHDP. We report the mean rooted PEHE across 1000 realizations
for all models in Table 1. The results show that the DNet architec-
ture outperforms all baselines on both the training and testing sets.
DragonNet works reasonably well on both the training and testing
sets, with PEHEs equal to 0.68 and 0.77. The best baseline on the
testing set is the CFR Wass with a PEHE of 0.76. However, our ar-
chitecture can achieve more than 15% reduction in the rooted PEHE
for both the training and testing sets. Additionally, we tried to add
targeted regularization [33] to DNet, but it did not improve the over-
all performance on either the training or testing dataset. Similarly,
we found that DragonNet achieves almost the same performance
with or without the targeted regularization term in terms of rooted
PEHE. We believe that adding targeted regularization may help the
estimation of ATE, as shown in [33], but may not be helpful for the
estimation of ITE. In conclusion, our results demonstrate that the
proposed DNet architecture can outperform all baselines.

ACIC. On the ACIC dataset, we also use rooted PEHE as the evalu-
ation metric. The results in Table 1 show significant improvement
compared to the baselines. In contrast to the IHDP dataset, the
CFR model outperforms DragonNet partially due to the non-random
treatment assignment. Additionally, since the outcome of the ACIC
dataset is heavy tailed as shown in Figure 6, DNet performs signifi-
cantly better than other baselines.

Real Data. We also evaluate DNet on two real-world datasets based
on AUUC. Unlike PEHE, a higher AUUC indicates better perfor-
mance as it demonstrates the ability to more accurately rank samples

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Guojun Wu, Ge Song, Xiaoxiang Lv, Shikai Luo, Chengchun Shi, and Hongtu Zhu

IDHP ACIC√
𝜖𝑃𝐸𝐻𝐸𝑖𝑛

√
𝜖𝑃𝐸𝐻𝐸𝑜𝑢𝑡

√
𝜖𝑃𝐸𝐻𝐸𝑖𝑛

√
𝜖𝑃𝐸𝐻𝐸𝑜𝑢𝑡

TARNET 0.88 0.95 4.35 4.69
CFR Wass 0.71 0.76 3.10 3.42
CFR MMD 0.73 0.77 3.08 3.38
DragonNet 0.68 0.77 4.04 4.35
DNet 0.49±0.02 0.56±0.03 1.87± 0.18 2.34± 0.15

Table 2: Performance summary of IHDP and ACIC datasets. 𝑖𝑛
stands for train and validation datasets while 𝑜𝑢𝑡 stands for test
set.

T=1 T=2 T=3 T=4 Mean
DNet 0.53 0.58 0.68 0.58 0.59
Mono-DNet 0.70 0.70 0.84 0.79 0.76

Table 3: AUUCs of DNet and Monotonic-DNet models on value
to advertiser in the ads dataset.

based on their estimated treatment effects. We report the average
AUUC of all treatments in Table 2. It can be seen from the results that
DNet outperforms all baselines on both tasks. In particular, DNet
yields a larger improvement on complex tasks where all models have
relatively lower AUUC. On the other hand, it only lead to a marginal
improvement on the Search dataset which is relatively easy to learn
for all baseline methods. It is also important to note is that we have
multiple treatments in both the Ads and Search datasets, and the
CFR model performs poorly under a multi-treatment setting. We
believe this is due to the difficulty of aligning the feature embedding
distributions across different treatments.

6.3 Performance of DNet’s Variants
In this section, we demonstrate how Monotonic and Zero-inflated
DNets can be applied to real-world problems.

Mono-DNet. For the ads dataset, we can reasonably assume that
the probability of users watching the video ads is monotonous with
respect to rewards, i.e. treatments. We apply monotonic DNet on
this dataset, and present AUUC scores of treatments 𝑇 = 1, 2, 3, 4
over baseline treatment 𝑇 = 0 in Table 3. The results demonstrate
that imposing the monotonicity constraint can significantly improve
the AUUC scores for all four treatments.

ZI-DNet. In the search dataset, Figure 6 shows that around 75% of
the search counts are zero. It is not surprising since users tend to
search only when they need specific information. In Table 4, we
compare the zero-inflated DNet to the original DNet on this dataset.
We present the AUUC scores of non-baseline treatments over the
baseline one with search counts as the outcome of interest, and it
shows that adding an auxiliary task to predict whether the outcome
is zero or not can significantly improve the AUUC score.

T=1 T=2 T=3 T=4
DNet 0.84 1.02 0.96 1.05
ZI-DNet 0.90 1.12 1.04 1.11

T=5 T=6 T=7 T=8 Mean
DNet 1.33 2.13 0.96 0.98 1.16
ZI-DNet 1.52 2.26 1.13 0.96 1.26

Table 4: AUUCs of DNet and ZI-DNet models on search counts
in the search dataset.

6.4 Ablation Study
In this section, we run extensive experiments to explore why DNet
can outperform baseline models and how to train a better model.

Training stability. Visualize the training process in Figure 7. The
first 80 epochs of rooted PEHE on validation set are plotted. The
curves show instability at early stages with higher numbers of quan-
tiles. The reason is that methods without extreme value theory usu-
ally break down for learning extreme quantiles, especially when
the sample size is small. We leave the study of neural networks
for extreme quantiles as future work. For practical applications, we
recommend choosing the number of quantiles via cross validation
based on AUUC scores.

Impact of number of quantiles. In DNet, non-crossing quantile
regression captures outcome distributions across treatments. Figure 8
evaluates DNet’s rooted PEHE with varying numbers of quantiles.
Results show that 50 quantiles yield the best performance. The rooted
PEHEs form a concave curve, indicating that accurate treatment
effect estimation requires a specific number of quantiles. If set to 1,
DNet performs worse as a model with MAE loss.

Results of 1000 IHDP tasks. See Figure 9 for the relative improve-
ment of DNet over the strong baseline DragonNet on rooted PEHE
for all 1,000 tasks. The red line shows where DNet underperforms
DragonNet. Results show DNet outperforms DragonNet for 904
out of 1,000 tasks, confirming the DNet architecture is universally
effective across multiple tasks, not just a selected few.

6.5 Online Deployment
All the DNet based models introduced in the real datasets have been
successfully deployed in the production environment on a widely
used mobile app with millions of daily active users. As introduced in
Section 4.2, we solve the corresponding optimization problem based
on the estimated treatment effects of these DNet models, and obtain
an optimal policy in each application. The deployment decisions
were based on two-week online A/B tests which showed that the new
policy was able to bring statistically significant improvements in key
business metrics. In the rewarded ads example, the optimal policy
based on DNet architecture was able to achieve 2.8% significant
increases in value to advertisers, while not negatively impacting user
experience, as reflected by the average number of days and stay
duration on the app. In the search example, ZI-DNet was able to
improve the number of search counts by more than 13%. Additionally,
the DNet model has been adopted by the monetization department
to improve user experience, resulting in a significant 0.1% increase
in user activity with minimal loss in value to advertisers.

DNet: Distributional Network for Distributional Individualized Treatment Effects KDD ’23, August 6–10, 2023, Long Beach, CA, USA

0 10 20 30 40 50 60 70 80
Epoch

1.00

2.00

3.00

4.00

5.00

ro
ot

ed
 P

EH
E

#Quantile=1
#Quantile=20
#Quantile=50
#Quantile=200

Figure 7: Validation PEHE versus train-
ing epochs.

1 5 10 20 50 100 500 1000
quantiles

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ro
ot
ed
 P
EH
E

in sample

out sample

all sample

Figure 8: Rooted PEHE on IHDP dataset
of models with different number of quan-
tiles in NCQ Layer.

0 200 400 600 800 1000
-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

Relative Gain

Figure 9: Relative differences of rooted
PEHE on various tasks.

7 CONCLUSIONS
We presented DNet, a non-crossing neural network architecture for
quantile ITE estimation with heavy-tailed outcomes. DNet captures
the entire outcome distribution across treatments and is robust to
outliers. We also develop two variants of DNet, and find that the lead
to improved AUUC scores in real-world applications. We notice that
the AUUC score measures the accuracy of the ranking instead of
that of the estimated ITE. Future research is warranted to develop
better evaluation methods on real datasets.

REFERENCES
[1] Susan Athey, Julie Tibshirani, and Stefan Wager. 2019. Generalized random

forests. The Annals of Statistics 47, 2 (2019), 1148–1178.
[2] Marianne P Bitler, Jonah B Gelbach, and Hilary W Hoynes. 2017. Can variation

in subgroups’ average treatment effects explain treatment effect heterogeneity?
Evidence from a social experiment. Review of Economics and Statistics 99, 4
(2017), 683–697.

[3] Howard D Bondell, Brian J Reich, and Huixia Wang. 2010. Noncrossing quantile
regression curve estimation. Biometrika 97, 4 (2010), 825–838.

[4] Guillermo Briseño Sanchez, Maike Hohberg, Andreas Groll, and Thomas Kneib.
2020. Flexible instrumental variable distributional regression. Journal of the Royal
Statistical Society: Series A (Statistics in Society) 183, 4 (2020), 1553–1574.

[5] Dong Chen, Ma Shujie, Zhu Liping, and Feng Xingdong. 2020. Estimation and
inference for non-crossing multiple-index quantile regression. SCIENTIA SINICA
Mathematica 51, 4 (2020), 631.

[6] Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian
Hansen, Whitney Newey, and James Robins. 2018. Double/debiased machine
learning for treatment and structural parameters. The Econometrics Journal 21, 1
(2018), C1–C68.

[7] Victor Chernozhukov, Ivan Fernandez-Val, and Alfred Galichon. 2009. Improving
point and interval estimators of monotone functions by rearrangement. Biometrika
96, 3 (2009), 559–575.

[8] Victor Chernozhukov, Iván Fernández-Val, and Blaise Melly. 2013. Inference on
counterfactual distributions. Econometrica 81, 6 (2013), 2205–2268.

[9] Holger Dette and Stanislav Volgushev. 2008. Non-crossing non-parametric es-
timates of quantile curves. Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 70, 3 (2008), 609–627.

[10] Shuyang Du, James Lee, and Farzin Ghaffarizadeh. 2019. Improve User Retention
with Causal Learning. In The 2019 ACM SIGKDD Workshop on Causal Discovery.
PMLR, 34–49.

[11] Mehrdad Farajtabar, Andrew Lee, Yuanjian Feng, Vishal Gupta, Peter Dolan,
Harish Chandran, and Martin Szummer. 2020. Balance regularized neural network
models for causal effect estimation. arXiv preprint arXiv:2011.11199 (2020).

[12] Peter Hall, Rodney CL Wolff, and Qiwei Yao. 1999. Methods for estimating a
conditional distribution function. Journal of the American Statistical association
94, 445 (1999), 154–163.

[13] Xuming He. 1997. Quantile curves without crossing. The American Statistician
51, 2 (1997), 186–192.

[14] Jennifer L Hill. 2011. Bayesian nonparametric modeling for causal inference.
Journal of Computational and Graphical Statistics 20, 1 (2011), 217–240.

[15] Maike Hohberg, Peter Pütz, and Thomas Kneib. 2020. Treatment effects beyond
the mean using distributional regression: Methods and guidance. PloS one 15, 2
(2020), e0226514.

[16] Paul W Holland. 1986. Statistics and causal inference. Journal of the American
statistical Association 81, 396 (1986), 945–960.

[17] Guido W Imbens and Donald B Rubin. 2010. Rubin causal model. Microecono-
metrics (2010), 229–241.

[18] Fredrik Johansson, Uri Shalit, and David Sontag. 2016. Learning representations
for counterfactual inference. In International conference on machine learning.
PMLR, 3020–3029.

[19] Roger Koenker, Victor Chernozhukov, Xuming He, and Limin Peng. 2017. Hand-
book of quantile regression. (2017).

[20] Roger Koenker, Pin Ng, and Stephen Portnoy. 1994. Quantile smoothing splines.
Biometrika 81, 4 (1994), 673–680.

[21] Sören R Künzel, Jasjeet S Sekhon, Peter J Bickel, and Bin Yu. 2019. Metalearners
for estimating heterogeneous treatment effects using machine learning. Proceed-
ings of the national academy of sciences 116, 10 (2019), 4156–4165.

[22] Yufeng Liu and Yichao Wu. 2009. Stepwise multiple quantile regression estimation
using non-crossing constraints. Statistics and its Interface 2, 3 (2009), 299–310.

[23] Nicolai Meinshausen and Greg Ridgeway. 2006. Quantile regression forests.
Journal of Machine Learning Research 7, 6 (2006).

[24] Sang Jun Moon, Jong-June Jeon, Jason Sang Hun Lee, and Yongdai Kim. 2021.
Learning multiple quantiles with neural networks. Journal of Computational and
Graphical Statistics 30, 4 (2021), 1238–1248.

[25] Belbahri Mouloud, Gandouet Olivier, and Kazma Ghaith. 2020. Adapting Neural
Networks for Uplift Models. arXiv preprint arXiv:2011.00041 (2020).

[26] Krikamol Muandet, Motonobu Kanagawa, Sorawit Saengkyongam, and Sanparith
Marukatat. 2021. Counterfactual Mean Embeddings. J. Mach. Learn. Res. 22
(2021), 162–1.

[27] Xinkun Nie and Stefan Wager. 2021. Quasi-oracle estimation of heterogeneous
treatment effects. Biometrika 108, 2 (2021), 299–319.

[28] Miruna Oprescu, Vasilis Syrgkanis, and Zhiwei Steven Wu. 2019. Orthogonal
random forest for causal inference. In International Conference on Machine
Learning. PMLR, 4932–4941.

[29] Junhyung Park, Uri Shalit, Bernhard Schölkopf, and Krikamol Muandet. 2021.
Conditional distributional treatment effect with kernel conditional mean embed-
dings and U-statistic regression. In International Conference on Machine Learning.
PMLR, 8401–8412.

[30] Robert A Rigby and D Mikis Stasinopoulos. 2005. Generalized additive models
for location, scale and shape. Journal of the Royal Statistical Society: Series C
(Applied Statistics) 54, 3 (2005), 507–554.

[31] Donald B Rubin. 2005. Causal inference using potential outcomes: Design,
modeling, decisions. J. Amer. Statist. Assoc. 100, 469 (2005), 322–331.

[32] Uri Shalit, Fredrik D Johansson, and David Sontag. 2017. Estimating individual
treatment effect: generalization bounds and algorithms. In International Confer-
ence on Machine Learning. PMLR, 3076–3085.

[33] Claudia Shi, David Blei, and Victor Veitch. 2019. Adapting Neural Networks for
the Estimation of Treatment Effects. Advances in Neural Information Processing
Systems 32 (2019), 2507–2517.

[34] Stefan Wager and Susan Athey. 2018. Estimation and inference of heterogeneous
treatment effects using random forests. J. Amer. Statist. Assoc. 113, 523 (2018),
1228–1242.

[35] Huixia Judy Wang and Lan Wang. 2009. Locally weighted censored quantile
regression. J. Amer. Statist. Assoc. 104, 487 (2009), 1117–1128.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Guojun Wu, Ge Song, Xiaoxiang Lv, Shikai Luo, Chengchun Shi, and Hongtu Zhu

[36] Lan Wang, Yu Zhou, Rui Song, and Ben Sherwood. 2018. Quantile-optimal
treatment regimes. J. Amer. Statist. Assoc. 113, 523 (2018), 1243–1254.

[37] Yang Xu, Chengchun Shi, Shikai Luo, Lan Wang, and Rui Song. 2022. Quantile
Off-Policy Evaluation via Deep Conditional Generative Learning. arXiv preprint
arXiv:2212.14466 (2022).

[38] Jinsung Yoon, James Jordon, and Mihaela Van Der Schaar. 2018. GANITE:
Estimation of individualized treatment effects using generative adversarial nets. In
International Conference on Learning Representations.

[39] Kui Zhao, Junhao Hua, Ling Yan, Qi Zhang, Huan Xu, and Cheng Yang. 2019.
A Unified Framework for Marketing Budget Allocation. In Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 1820–1830.

[40] Zhenyu Zhao and Totte Harinen. 2019. Uplift modeling for multiple treatments
with cost optimization. In 2019 IEEE International Conference on Data Science
and Advanced Analytics (DSAA). IEEE, 422–431.

[41] Tianhui Zhou and David Carlson. 2021. Estimating Potential Outcome Distri-
butions with Collaborating Causal Networks. arXiv preprint arXiv:2110.01664
(2021).

[42] Yunhong Zhou, Deeparnab Chakrabarty, and Rajan Lukose. 2008. Budget con-
strained bidding in keyword auctions and online knapsack problems. In Interna-
tional Workshop on Internet and Network Economics. Springer, 566–576.

[43] Will Y Zou, Shuyang Du, James Lee, and Jan Pedersen. 2020. Heterogeneous
causal learning for effectiveness optimization in user marketing. arXiv preprint
arXiv:2004.09702 (2020).

	Abstract
	1 Introduction
	2 Related Work
	2.1 Conditional Average Treatment Effect Estimation
	2.2 Conditional Distributional Treatment Effect Estimation
	2.3 Quantile Regression

	3 Background and problem formulation
	4 Methodology
	4.1 Non-Crossing Quantile Layer
	4.2 Distributional Network

	5 Variations of the DNet architecture
	6 Evaluation
	6.1 Hyperparameters Settings
	6.2 Performance of DNet
	6.3 Performance of DNet's Variants
	6.4 Ablation Study
	6.5 Online Deployment

	7 Conclusions
	References

