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Abstract

Let D = (V , A) be a digraph. For an integer k ≥ 1, a k-arc-connected flip is an arc
subset of D such that after reversing the arcs in it the digraph becomes (strongly)
k-arc-connected. The first main result of this paper introduces a sufficient condi-
tion for the existence of a k-arc-connected flip that is also a submodular flow for a
crossing submodular function. More specifically, given some integer τ ≥ 1, suppose
d+

A (U )+ ( τ
k
−1)d−

A (U ) ≥ τ for all U � V , U �= ∅, where d+
A (U ) and d−

A (U ) denote
the number of arcs in A leaving and entering U , respectively. Let C be a crossing
family over ground set V , and let f : C → Z be a crossing submodular function
such that f (U ) ≥ k

τ
(d+

A (U ) − d−
A (U )) for all U ∈ C. Then D has a k-arc-connected

flip J such that f (U ) ≥ d+
J (U ) − d−

J (U ) for all U ∈ C. The result has several
applications to Graph Orientations and Combinatorial Optimization. In particular, it
strengthens Nash-Williams’ so-called weak orientation theorem, and proves a weaker
variant of Woodall’s conjecture on digraphs whose underlying undirected graph is
τ -edge-connected. The second main result of this paper is even more general. It intro-
duces a sufficient condition for the existence of capacitated integral solutions to the
intersection of two submodular flow systems. This sufficient condition implies the
classic result of Edmonds and Giles on the box-total dual integrality of a submodu-
lar flow system. It also has the consequence that in a weakly connected digraph, the
intersection of two submodular flow systems is totally dual integral.

Keywords Graph orientation · k-arc-connected flip · Weak orientation theorem ·

Woodall’s conjecture · Submodular flows · Total dual integrality

1 Introduction

Graph Orientation is a rich area of Graph Theory. A basic problem in the area consists in
orienting the edges of an undirected graph in order to obtain a k-arc-connected digraph,
and giving conditions under which such an orientation exists. Various constraints on
the orientation can be imposed, leading to an extensive literature in the area; for
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examples, see [1], Chapter 9 of [2], and Chapter 61 of [3]. One can set up the basic
problem equivalently in terms of digraphs, which is more appropriate for this paper:
start from a digraph and flip the orientation of some of the arcs in order to obtain
desired connectivity properties.

Let D = (V , A) be a digraph, fixed throughout the rest of the introduction, unless
stated otherwise. For U ⊆ V denote by δ+

D(U ) and δ−
D(U ) the sets of arcs leaving

and entering U , respectively. We shall drop the subscript D whenever it is clear from
the context. For J ⊆ A and U ⊆ V , denote d+

J (U ) := |δ+(U ) ∩ J | and d−
J (U ) :=

|δ−(U ) ∩ J |.

Definition 1 For an integer k ≥ 1, a k-arc-connected flip of D = (V , A) is a subset
J ⊆ A such that after flipping the arcs of J the digraph becomes k-arc-connected, that
is, d+

J (U ) + d−
A (U ) − d−

J (U ) ≥ k for all U � V , U �= ∅, or equivalently, switching
the roles of U and V \ U , d+

J (U ) − d−
J (U ) ≤ d+

A (U ) − k for all U � V , U �= ∅.

An important result is Nash-Williams’ weak orientation theorem, stating that there
exists a k-arc-connected flip if, and only if, the underlying undirected graph of D is
2k-edge-connected ( [4], also see [1, 5]). Our main theorem strengthens (the nontrivial
direction of) the weak orientation theorem in two ways. To state it we need to borrow
a few notions from Submodular Optimization.

Let C be a family of subsets of V . Then C is a crossing family over ground set V if,
for all U , W ∈ C such that U ∩ W �= ∅, U ∪ W �= V , we have U ∩ W , U ∪ W ∈ C.
A function f : C → R is crossing submodular over C if, for all U , W ∈ C such that
U ∩ W �= ∅, U ∪ W �= V , we have f (U ∩ W ) + f (U ∪ W ) ≤ f (U ) + f (W ). If we
have ≥ or = instead, then f is a crossing supermodular function or a crossing modular

function, respectively. For instance, C1 = {U � V : U �= ∅} is a crossing family, and
f1 : C1 → Z defined as f1(U ) = d+

A (U ) ∀U ∈ C1 is a crossing submodular function.
Another important example of a crossing family is C2 = {U � V : δ−

D(U ) = ∅, U �=

∅}, for which f2 : C2 → Z defined as f2(U ) = d+
A (U ) ∀U ∈ C2 is a crossing

modular function. More generally, given w ∈ RA, the function f3 : 2V → R defined
as f (U ) = w(δ+(U )) − w(δ−(U )) is crossing modular.

Let C be a crossing family over ground set V , and let f : C → R be a crossing
submodular function. The linear system y(δ+(U )) − y(δ−(U )) ≤ f (U ) ∀U ∈ C is
called a submodular flow system, and every feasible solution is called a submodular

flow. Observe that for the crossing submodular function f4 : C1 → Z defined as
f4(U ) = f1(U ) − k ∀C ∈ C1, the incidence vector of a k-arc-connected flip of D is
a submodular flow, by Definition 1.

Main result 1 The following theorem introduces a sufficient condition for the existence

of a k-arc-connected flip whose incidence vector is also a submodular flow for another

crossing submodular function.

Theorem 2 Let τ, k ≥ 1 be integers. Let D = (V , A) be a digraph where d+
A (U ) +

( τ
k

− 1)d−
A (U ) ≥ τ for all U � V , U �= ∅. Let C be a crossing family over ground

set V , and let f : C → Z be a crossing submodular function such that f (U ) ≥
k
τ
(d+

A (U ) − d−
A (U )) for all U ∈ C. Then D has a k-arc-connected flip J such that

f (U ) ≥ d+
J (U ) − d−

J (U ) for all U ∈ C.
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We shall prove Theorem 2 in §3. We shall discuss the complexity aspects following
the theorem in §5. As we will see, the inequalities d+

A (U ) + ( τ
k

− 1)d−
A (U ) ≥ τ for

all U � V , U �= ∅, can be verified in strongly polynomial time. Moreover, under
some standard conditions on how C and f are provided, J can also be found in oracle
strongly polynomial time.

Let us say a few more words about the inequalities on the cuts of D in Theorem
2. They are imposed for the simple reason that they are needed for our proof to work.
That said, they possess some nice properties.

First, as a sanity check, we note that the inequalities readily imply that the underlying
undirected graph is 2k-edge-connected: for every U � V , U �= ∅, by adding the two
inequalities corresponding to U and V \U , we get that τ

k
(d+

A (U ) + d−
A (U )) ≥ 2τ ,

implying in turn that d+
A (U ) + d−

A (U ) ≥ 2k.
Secondly, we note that the inequalities are equivalent to asking that ȳ = k

τ
1 satisfies

y(δ+(U )) − y(δ−(U )) ≥ k − d−
A (U ) for all U � V , U �= ∅. As k increases, the

inequalities become more strict. For k = 1 the inequalities ask precisely that every
dicut (a cut with all arcs crossing in the same direction) has size at least τ (see Theorem
15), while for k = ⌊τ/2⌋ the inequalities almost ask that every cut has size at least τ

(see Theorem 16).
In §4 we shall see applications of Theorem 2 to Graph Orientations and Combina-

torial Optimization. For instance, we see that for τ = 2k this result strengthens the
weak orientation theorem and its near-Eulerian sharpening, and for k = 1 it reduces
to a recent result on decomposing A into a dijoin and a (τ − 1)-dijoin [6]. Other
applications of Theorem 2 include an extension of the weak orientation theorem in a
different direction than above, a weaker version of Woodall’s conjecture for digraphs
with a τ -edge-connected underlying undirected graph [7], and a theorem on disjoint
dijoins in 0, 1-weighted digraphs.

Main result 2 Theorem 2 is proved by utilizing a result on submodular flows. To explain

it, we need a few notions from Integer Programming. Let A ∈ Qm×n and b ∈ Qm .

The linear system Ax ≤ b is totally dual integral (TDI) if for each w ∈ Zn , the

dual of the linear program max{w⊤x : Ax ≤ b} has an integral optimal solution

whenever the LP admits an optimum [8]. The system Ax ≤ b is box-TDI if the system

Ax ≤ b, ℓ ≤ x ≤ u is TDI, for all ℓ, u ∈ Zn such that ℓ ≤ u. An important result

is that if Ax ≤ b is TDI and b ∈ Zm , then {x : Ax ≤ b} is an integral polyhedron,

that is, every non-empty face of it contains an integral point [8, 9]. In particular, if

Ax ≤ b is box-TDI and b ∈ Zm , then {x : Ax ≤ b} is a box-integral polyhedron, that

is, {x : Ax ≤ b, ℓ ≤ x ≤ u} = {x : Ax ≤ b} ∩ [ℓ, u] is an integral polyhedron for

all ℓ, u ∈ Zn such that ℓ ≤ u. Here, and throughout the paper, [ℓ, u] refers to the box

{x : ℓ ≤ x ≤ u}.

A classic result of Edmonds and Giles states that a submodular flow system is box-
TDI [8]. This important theorem laid the basis for numerous min-max theorems and
polynomial and strongly polynomial algorithms for submodular flows. For in-depth
surveys see [10, 11], and for a more recent treatment we recommend Chapter 60 of
[3] and Chapter 16 of [2].
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In contrast, given two crossing submodular functions fi : Ci → Z, i = 1, 2 defined
over (possibly different) crossing families Ci , i = 1, 2 over the same ground set, the
combined system y(δ+(U ))− y(δ−(U )) ≤ fi (U ) ∀ U ∈ Ci , i = 1, 2, is not box-TDI
and not even integral, as Example 4 at the end of this section shows. Furthermore,
finding an integral solution to the system includes NP-complete problems; see §A in
the appendix for details.

Against this backdrop, Theorem 2 is significant since it provides a 0, 1 solution to
the intersection of two submodular flow systems. The theorem is a consequence of the
following result, which provides a sufficient condition for the existence of capacitated
integral solutions to the intersection of two submodular flow systems.

Theorem 3 Let D = (V , A) be a digraph. For i = 1, 2, let Ci be a crossing family

over ground set V , and let fi : Ci → Z be a crossing submodular function. Let

P :=
{

y ∈ RA : y(δ+(U )) − y(δ−(U )) ≤ fi (U ) ∀U ∈ Ci , i = 1, 2
}

. (1)

Then the following statements hold:

a. Suppose mini=1,2 fi (U ) ≤ 0 for all U � V , U �= ∅ such that δ+(U ) = δ−(U ) =

∅.1 Then the system (1) defining P is TDI. In particular, P is an integral polyhedron.

b. For every ℓ ∈ (Z∪{−∞})A, u ∈ (Z∪{+∞})A satisfying ℓ ≤ u and the following

cut condition:

min
i=1,2

fi (U ) ≤ u(δ+(U )) − ℓ(δ−(U )) ∀U � V , U �= ∅, (2)

we have that every non-empty face of P contains y⋆ ∈ ZA satisfying ℓ ≤ y⋆ ≤ u.

We prove Theorem 3 in §2, and provide a delicate extension of it afterwards.
We discuss the complexity aspects of the theorem in §5. We do not know whether
condition (2) can be verified in polynomial time. However, as we shall see, under
standard assumptions on how the crossing families Ci and the submodular functions
fi , i = 1, 2, are provided, there exists an oracle strongly polynomial time algorithm
that returns either a vector y⋆ as in the statement, or a subset U violating the cut
condition (2).

It must be pointed out that, in contrast to the box-TDI-ness of submodular flow
systems, the system defining (1) is not box-TDI. In fact, P ∩ [ℓ, u] is not necessarily
integral even if ℓ, u satisfy the cut condition (2); for an example see §B of the appendix.

Finally, let us say a few words about the first set of inequalities imposed on
mini=1,2 fi (U ). The condition that mini=1,2 fi (U ) ≤ 0 for all U � V , U �= ∅

such that δ+(U ) = δ−(U ) = ∅, is necessary for P to be an integral polyhedron, as
demonstrated by Example 4 below. Note that if P �= ∅, then the inequalities are equiv-
alent to mini=1,2 fi (U ) = 0 for all U � V , U �= ∅ such that δ+(U ) = δ−(U ) = ∅.
Note further that these inequalities are implied by the cut condition (2).

1 We follow the convention that fi (U ) = +∞ if U /∈ Ci .
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Example 4 Consider a digraph D⋆ with vertices 1, 2, 3, 1′, 2′, 3′ and arcs a :=

11′, b := 22′, c := 33′. Let C
⋆
1 := {{1, 2}, {1, 2, 3, 1′}} and C

⋆
2 := {{1, 2, 3, 2′}},

which are clearly crossing families. Let f ⋆
1 ({1, 2}) = f ⋆

1 ({1, 2, 3, 1′}) = 1 and
f ⋆
2 ({1, 2, 3, 2′}) = 1, which yield integer-valued crossing submodular functions over

C
⋆
1, C⋆

2 , respectively. Then the corresponding system (1) is ya + yb ≤ 1, yb + yc ≤

1, yc+ya ≤ 1. This system is not integral, and therefore not box-TDI, as (0.5, 0.5, 0.5)

is a vertex of the polyhedron.

Outline of the paper In §2 we prove Theorem 3, and provide an extension of it
afterwards. In §3 we present three applications of Theorem 3: the original result of
Edmonds and Giles, an application to digraphs with a connected underlying undirected
graph, and Theorem 2. In §4 we present applications of Theorem 2. In §5 we discuss
the complexity aspects of the two main results. Finally, in §6 we conclude with some
open questions.

2 Intersection of Two Submodular Flow Systems

In this section we prove Theorem 3, for which we need two ingredients from Submod-
ular Optimization and Network Flows. First we need the following result, essentially
stating that the intersection of two base systems is box-TDI.

Theorem 5 (see Theorem 49.8 of [3], and §14.4 of [2]) For i = 1, 2, let Ci be a

crossing family over ground set V , let fi : Ci → Z be a crossing submodular function,

and let k be an integer. Then the system x(V ) = k; x(U ) ≤ f1(U ) ∀U ∈ C1;

x(U ) ≤ f2(U ) ∀U ∈ C2 is box-TDI, and therefore defines a box-integral polyhedron.

Given a digraph D = (V , A) and b ∈ RV , a b-transshipment is a vector y ∈ RA

such that y(δ+(v)) − y(δ−(v)) = bv for every v ∈ V . Note that if there exists a
b-transshipment, then 1⊤b = 0 necessarily holds. We need the following result which
characterizes the existence of capacity constrained integral b-transshipments.

Theorem 6 (see Corollary 11.2f of [3]) Let D = (V , A) be a digraph. Let b ∈ ZV ,

ℓ ∈ (Z ∪ {−∞})A, and u ∈ (Z ∪ {+∞})A such that 1⊤b = 0 and ℓ ≤ u. Then

there exists a b-transshipment y ∈ ZA such that ℓ ≤ y ≤ u if, and only if, b(U ) ≤

u(δ+(U )) − ℓ(δ−(U )) for all U � V , U �= ∅.

We are now ready to prove Theorem 3.

Proof of Theorem 3 If P = ∅, then there is nothing to prove. Otherwise, P �= ∅.
Before we prove (a) and (b), let us set the scene. To this end, let c ∈ ZA be a cost
vector such that max{c⊤y : y ∈ P} admits an optimal solution, let ω⋆ be the optimal
value, and let F be the optimal face. For i = 1, 2, let Di be a subfamily of Ci such
that F = P ∩ {y : y(δ+(U )) − y(δ−(U )) = fi (U ) ∀U ∈ Di , i = 1, 2}. Define the
polyhedron P̃ := {x ∈ RV : 1⊤x = 0, x(U ) ≤ fi (U ) ∀U ∈ Ci , i = 1, 2}, and the
face F̃ := P̃ ∩ {x : x(U ) = fi (U ) ∀U ∈ Di , i = 1, 2}.

Claim 1 Let x ∈ RV , y ∈ RA such that y is an x-transshipment. Then y ∈ P if and

only if x ∈ P̃; also y ∈ F if and only if x ∈ F̃ .
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Proof Since an x-transshipment exists, 1⊤x = 0 is automatically satisfied. The claim
now follows from the equality y(δ+(U )) − y(δ−(U )) = x(U ) for all U ⊆ V .

Pick an arbitrary point ȳ ∈ F , and define x̄ ∈ RV by x̄v := ȳ(δ+(v)) −

ȳ(δ−(v)) ∀v ∈ V . By Claim 1, x̄ ∈ F̃ , so F̃ �= ∅. First we prove the second part as
its proof is shorter and contains the crux of the argument.

(b) It suffices to find an integral point y⋆ ∈ F satisfying ℓ ≤ y⋆ ≤ u. By Theorem
5, P̃ is an integral polyhedron, hence F̃ contains an integral point b. Observe that
b(U ) ≤ fi (U ) for all U ∈ Ci , i = 1, 2, so b(U ) ≤ mini=1,2 fi (U ) for all U �

V , U �= ∅ (recall the convention that fi (U ) = +∞ if U /∈ Ci ). Thus, by the cut
condition (2), we have that b(U ) ≤ u(δ+(U )) − ℓ(δ−(U )) for all U � V , U �= ∅.
Thus, by Theorem 6, there exists a b-transshipment y⋆ ∈ ZA such that ℓ ≤ y⋆ ≤ u.
Since b ∈ F̃ , it follows from Claim 1 that y⋆ ∈ F . This is the desired point.

(a) To prove this part it suffices to show that the dual of max{c⊤y : y ∈ P} has an
integral optimal solution. Let M ∈ {0,±1}V ×A denote the node-arc incidence matrix
of D. It is well-known that M is a totally unimodular matrix, i.e., every subdeterminant
is 0,±1 (see Theorem 13.9 of [3]). Observe that x̄ = M ȳ.

Claim 2 There exists w ∈ ZV such that w⊤M = c⊤ and w⊤ x̄ = ω⋆.

Proof Observe that if y ∈ RA satisfies My = x̄ , then since x̄ ∈ F̃ , we have y ∈ F by
Claim 1, so c⊤y = ω⋆ by definition. Thus, the linear system My = x̄ where y ∈ RA is a
vector of variables, implies the equation c⊤y = ω⋆. Subsequently, there exists w ∈ RV

such that w⊤M = c⊤ and w⊤ x̄ = ω⋆. Since M is totally unimodular, and c ∈ ZA, we
may choose w ∈ ZV such that w⊤M = c⊤. Note that w⊤ x̄ = w⊤M ȳ = c⊤ ȳ = ω⋆.

Claim 3 max{w⊤x : x ∈ P̃} = ω⋆.

Proof (≥) follows from w⊤ x̄ = ω⋆. (≤) Let x ′ ∈ P̃ . We know that x ′(U ) ≤ fi (U )

for all U ∈ Ci , i = 1, 2, so x ′(U ) ≤ mini=1,2 fi (U ) for all U � V , U �= ∅.
By hypothesis, the right-hand side is at most 0 for all U � V , U �= ∅ such that
δ+(U ) = δ−(U ) = ∅, so for all such U , x ′(U ) ≤ 0. Thus, by Theorem 6 with the
choices of u = +∞ and ℓ = −∞, there exists an x ′-transshipment y′ ∈ RA, i.e.
My′ = x ′. Observe that y′ ∈ P by Claim 1. Thus, w⊤x ′ = w⊤My′ = c⊤y′ ≤ ω⋆,
where the last inequality follows from the definition of ω⋆ and the fact that y′ ∈ P .

Now consider the dual of max{w⊤x : x ∈ P̃}:

min
∑

i=1,2
∑

U∈Ci
fi (U )zi

U

s.t.
∑

i=1,2
∑

U∈Ci
χU zi

U + 1μ = w

zi
U ≥ 0 U ∈ Ci , i = 1, 2,

(3)

where μ ∈ R is the dual variable corresponding to 1⊤x = 0, and χU is the incidence
vector of U as a subset of V . By Theorem 5, the system of constraints of P̃ is TDI. Thus,
since w is integral, it follows that (3) has an integral optimal solution (z̄, μ̄). By Claim 3
and LP Strong Duality, (3) has optimal value ω⋆. Thus,

∑
i=1,2

∑
U∈Ci

fi (U )z̄i
U = ω⋆.
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Claim 4 z̄ = (z̄i
U )U∈Ci , i=1,2 is an optimal solution to the dual of max{c⊤y : y ∈ P}:

min
∑

i=1,2
∑

U∈Ci
fi (U )zi

U

s.t.
∑

i=1,2
∑

U∈Ci

(
χ δ+(U ) − χ δ−(U )

)
zi

U = c

zi
U ≥ 0 U ∈ Ci , i = 1, 2,

(4)

where χ δ+(U ), χ δ−(U ) are the incidence vectors of δ+(U ), δ−(U ) as subsets of A.

Proof By definition, ω⋆ = max{c⊤y : y ∈ P}, so by LP Strong Duality, it suffices to
prove that z̄ is a feasible solution to (4) with objective value ω⋆. The latter is indeed
the case as we argued above. Let us prove feasibility. Clearly, z̄ ≥ 0. Moreover,

∑

i=1,2

∑

U∈Ci

(
χ δ+(U ) − χ δ−(U )

)
z̄i

U = M⊤

⎛
⎝ ∑

i=1,2

∑

U∈Ci

χU z̄i
U + 1μ̄

⎞
⎠ = M⊤w = c

where the first equality follows from M⊤χU = χ δ+(U ) − χ δ−(U ) for every U � V ,
U �= ∅, and M⊤1 = 0, the second equality from the feasibility of (z̄, μ̄) for (3), and
the third equality from the definition of w. Thus, z̄ is feasible for (4), as required.

Claim 4 finishes the proof of the first part. ⊓⊔

An extension. By a delicate analysis of the proof, we can show that Theorem 3 admits
the following extension. Below, for a vector x ∈ Rn , x+ and x− denote the vectors in
Rn defined as x+

i = max{xi , 0} and x−
i = min{xi , 0} for all i ∈ {1, 2, . . . , n}.

Theorem 7 Let V be a finite set, and let M be a |V |-by-m totally unimodular matrix

with rows indexed by the elements of V , such that M⊤1 = 0. For i = 1, 2, let Ci be

a crossing family over ground set V , and let fi : Ci → Z be a crossing submodular

function, where mini=1,2 fi (U ) ≤ 0 for all U � V , U �= ∅ such that M⊤χU = 0.

Let

P :=
{

y ∈ Rm : (χU )⊤My ≤ fi (U ) ∀U ∈ Ci , i = 1, 2
}

. (5)

Then the following statements hold:

a. The system (5) defining P is TDI. In particular, P is an integral polyhedron.

b. For every ℓ ∈ (Z∪{−∞})m , u ∈ (Z∪{+∞})m satisfying ℓ ≤ u and the following

condition:

min
i=1,2

fi (U ) ≤ u⊤(M⊤χU )+ − ℓ⊤(M⊤χU )− ∀U � V , U �= ∅, (6)

we have that every non-empty face of P contains y⋆ ∈ ZA satisfying ℓ ≤ y⋆ ≤ u.

Proof sketch. The proof is almost identical to that of Theorem 3 but with a few mod-
ifications which we highlight as follows. First, the optimal face F is now defined as
F = P ∩ {y : (χU )⊤My = fi (U ) ∀U ∈ Di , i = 1, 2}. Furthermore, P̃ and its face
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F̃ are defined as before, namely P̃ := {x ∈ RV : 1⊤x = 0, x(U ) ≤ fi (U ) ∀U ∈

Ci , i = 1, 2}, and the face F̃ := P̃ ∩ {x : x(U ) = fi (U ) ∀U ∈ Di , i = 1, 2}.

The statement of Claim 1 needs to be modified as follows:

Claim 5 Let x ∈ RV , y ∈ Rm such that x = My. Then y ∈ P if and only if x ∈ P̃;

also y ∈ F if and only if x ∈ F̃ .

Proof The claim follows from the definitions of P̃ and F̃ , and the fact that 1⊤x =

1⊤My = 0 since M⊤1 = 0.

Furthermore, we need the following additional claim.

Claim 6 Let b ∈ RV such that 1⊤b = 0.

i. The system My = b is feasible if and only if b(U ) ≤ 0 for all U � V , U �= ∅

such that M⊤χU = 0.

ii. The system My = b, ℓ ≤ y ≤ u is feasible if and only if b(U ) ≤ u⊤(M⊤χU )+ −

ℓ⊤(M⊤χU )− for all U � V , U �= ∅.

Proof The “only if” direction of both statements is trivial, so we focus on the “if”
statements.

For part (i), My = b is feasible if b⊤ z̄ = 0 for all z̄ ∈ {z ∈ RV : M⊤z = 0}. By
shifting z̄ by some α1, α ∈ R, if necessary, we may assume that z̄ ≥ 0. (Note that
M⊤z = M⊤(z + α1) and b⊤z = b⊤(z + α1) = 0, because M⊤1 = 0 and b⊤1 = 0.)
Furthermore, by scaling down z̄, if necessary, we may assume that z̄ ≤ 1. Thus, we can
only focus on the points z̄ in the polyhedron Q := {z : M⊤z = 0, 0 ≤ z ≤ 1}. In fact,
by basic polyhedral theory, it suffices to focus on the extreme points z̄ of Q. Since M

is totally unimodular, z̄ must be integral, so z̄ = χU for some U ⊆ V . If U ∈ {∅, V },
then clearly b⊤ z̄ = 0, so we are done. Otherwise, since M⊤χU = 0, it follows from
the assumption that b(U ) ≤ 0. Since M⊤1 = 0, we also have M⊤χV \U = 0, so again
by assumption b(V \ U ) ≤ 0. Thus, b(U ), b(V \ U ) ≤ 0, and since 1⊤b = 0, we get
that b⊤ z̄ = b(U ) = 0, as required.

For part ii), by Farkas’ lemma, the system My = b, ℓ ≤ y ≤ u is feasible if, for
all (z, v, w) ∈ RV × Rm × Rm such that v,w ≥ 0 and M⊤z = v − w, it follows that
b⊤z ≤ u⊤v − ℓ⊤w. Once again, by shifting z by some α1, α ∈ R, if necessary, we
may assume that z ≥ 0. Furthermore, by scaling down (z, v, w), if necessary, we may
assume that z ≤ 1. As before, since M is totally unimodular, we can focus on z = χU

for some U ⊆ V . Since u ≥ ℓ, the choice of v,w ≥ 0 such that M⊤χU = v − w

that minimizes u⊤v − ℓ⊤w, is v = (M⊤χU )+ and w = (M⊤χU )−. The statement
follows.

Claim 2 (i) ensures that if x ∈ P̃ , then My = x is feasible, because x(U ) ≤

mini=1,2 fi (U ) ≤ 0 for all U � V , U �= ∅ such that M⊤χU = 0. Furthermore,
Claim (2) (ii) ensures that if ℓ ≤ u satisfies the condition (6), then for all x ∈ P̃ , the
system My = x , ℓ ≤ y ≤ u is feasible. With these observations, the rest of the proof
of the theorem follows exactly the proof of Theorem 3. ⊓⊔
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3 Applications of Theorem 3, and Proof of Theorem 2

In this section we discuss three applications of Theorem 3, one of which is
Theorem 2.

First Application. Theorem 3 implies the classic theorem of Edmonds and Giles [8].
One way to prove it is to use a recent characterization of box-TDI systems. Consider
a polyhedron Q := {x : Ax ≤ b}. For an integer k ≥ 1, the kth dilation of Q is
k Q := {x : Ax ≤ kb}. Q is principally box-integral if k Q is box-integral for all
integers k ≥ 1 such that k Q is integral. This notion was coined recently by Chervet,
Grappe, and Robert who proved that Ax ≤ b is box-TDI if, and only if, Ax ≤ b is
TDI and Q is principally box-integral [12].

Theorem 8 ([8]) Let D = (V , A) be a digraph, let C be a crossing family over ground

set V , and let f : C → Z be a crossing submodular function. Then y(δ+(U )) −

y(δ−(U )) ≤ f (U ) ∀U ∈ C is box-TDI.

Proof We need the following two claims.

Claim 7 y(δ+(U )) − y(δ−(U )) ≤ f (U ) ∀U ∈ C is TDI.

Proof Let C1 := C and f1 := f . Let C2 := {U � V : U �= ∅, δ+(U ) = δ−(U ) = ∅}

and f2(U ) := 0 for all U ∈ C2. Then C2 is a crossing family and f2 is a crossing
submodular function defined over C2. Moreover, mini=1,2 fi (U ) ≤ 0 for all U �

V , U �= ∅ such that δ+(U ) = δ−(U ) = ∅. Subsequently, it follows from Theorem
3 (a) that the combined system y(δ+(U )) − y(δ−(U )) ≤ fi (U ) ∀U ∈ Ci , i = 1, 2 is
TDI. However, this system is precisely y(δ+(U )) − y(δ−(U )) ≤ f (U ) ∀U ∈ C, so
the claim follows.

Let Q := {y ∈ RA : y(δ+(U )) − y(δ−(U )) ≤ f (U ) ∀U ∈ C}.

Claim 8 For every integer k ≥ 1, k Q is box-integral.

Proof It suffices to prove this for k = 1, given that k f is a crossing submodular
function for every integer k ≥ 1. Take ℓ, u ∈ ZA such that ℓ ≤ u and consider a
nonempty face of Q ∩ [ℓ, u], say F = Q ∩ {y ∈ RA : y(δ+(U )) − y(δ−(U )) =

f (U ) ∀U ∈ D, ye = ℓe ∀e ∈ Aℓ, ye = ue ∀e ∈ Au}, where D ⊆ C; Aℓ, Au ⊆ A;
Aℓ ∩ Au = ∅. We need to show that F contains an integer point. To this end, let
C1 := C and for every U ∈ C1 define

f1(U ) := f (U ) + ℓ(δ−(U ) ∩ Aℓ) − ℓ(δ+(U ) ∩ Aℓ) + u(δ−(U ) ∩ Au)

−u(δ+(U ) ∩ Au).

Let A′ := A − (Aℓ ∪ Au), D′ := (V , A′), C2 := {U � V : U �= ∅},
and f2(U ) := u(δ+

D′(U )) − ℓ(δ−
D′(U )) for all U ∈ C2. Observe that f1 is a

crossing submodular function, because it is the sum of a crossing submodular
function f , and crossing modular functions ℓ(δ−(U ) ∩ Aℓ) − ℓ(δ+(U ) ∩ Aℓ) and
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u(δ−(U ) ∩ Au) − u(δ+(U ) ∩ Au). Observe also that f2(U ), as the sum of a cross-
ing modular function u(δ+

D′(U )) − u(δ−
D′(U )) and a crossing submodular function

(u − ℓ)(δ−
D′(U )), is a crossing submodular function.

Consider the polyhedron Q′ := {y ∈ RA′
: y(δ+

D′(U ))− y(δ−
D′(U )) ≤ fi (U ) ∀U ∈

Ci , i = 1, 2} and its face F ′ := Q′ ∩ {y ∈ RA′
: y(δ+

D′(U )) − y(δ−
D′(U )) =

f1(U ) ∀U ∈ D}. Note that F ′ is nonempty since it is the restriction of F to RA′
.

We shall apply Theorem 3 (b) to Q′. Observe that mini=1,2 fi (U ) ≤ f2(U ) =

u(δ+
D′(U )) − ℓ(δ−

D′(U )) for all U ∈ C2 = {U � V : U �= ∅}, so the cut condi-
tion (2) is satisfied for ℓ, u. In particular, mini=1,2 fi (U ) ≤ 0 for all U � V , U �= ∅

such that δ+
D′(U ) = δ−

D′(U ) = ∅. Hence, by Theorem 3 (b), F ′ contains an integer

point y⋆ ∈ RA′
such that ℓe ≤ y⋆

e ≤ ue for all e ∈ A′. Extend the point y⋆ to RA by
defining y⋆

e := ℓe for all e ∈ Aℓ, and y⋆
e := ue for all e ∈ Au . Then, by the definition

of f1, we have y⋆ ∈ F ∩ ZA, as desired.

It follows from Claim 2 that Q is principally box-integral. This, together with
Claim 1 and the theorem of Chervet, Grappe, and Robert [12], implies that y(δ+(U ))−

y(δ−(U )) ≤ f (U ) ∀U ∈ C is box-TDI. ⊓⊔

Second application. A digraph is weakly connected if its underlying undirected graph
is connected. The next application is the following result, which surprisingly seems to
be new. Observe that the weak connectivity assumption cannot be dropped, as shown
by Example 4.

Theorem 9 Let D = (V , A) be a weakly connected digraph and, for i = 1, 2, let Ci

be a crossing family over ground set V and fi : Ci → Z be a crossing submodular

function. Then the system in (1) is TDI, and in particular, the polyhedron P is integral.

Proof Since D is weakly connected, the condition mini=1,2 fi (U ) ≤ 0 for all U �

V , U �= ∅ is vacuously true, because there is no such U . Thus, the result follows from
Theorem 3 (a). ⊓⊔

Third application The final application is Theorem 2, which we restate for conve-
nience.

Theorem 2 Let τ, k ≥ 1 be integers. Let D = (V , A) be a digraph where d+
A (U ) +

( τ
k

− 1)d−
A (U ) ≥ τ for all U � V , U �= ∅. Let C be a crossing family over ground

set V , and let f : C → Z be a crossing submodular function such that f (U ) ≥
k
τ
(d+

A (U ) − d−
A (U )) for all U ∈ C. Then D has a k-arc-connected flip J such that

f (U ) ≥ d+
J (U ) − d−

J (U ) for all U ∈ C.

Proof Let C1 := C, f1 := f , and define C2 := {U � V : U �= ∅}, f2(U ) := d+
A (U )−

k for all U ∈ C2. Observe that f2 is a crossing submodular function. Consider the vector
y ∈ RA that assigns k

τ
to every arc a ∈ A. Then y(δ+(U )) − y(δ−(U )) ≤ f1(U )

for all U ∈ C1, by one of our assumptions. Moreover, for all U � V , U �= ∅,
our assumption implies that d+

A (V \U ) + ( τ
k

− 1)d−
A (V \U ) ≥ τ , which in turn can

be written as y(δ+(V \U )) − y(δ−(V \U )) ≥ k − d−
A (V \U ), which is equivalent

to y(δ+(U )) − y(δ−(U )) ≤ f2(U ). Furthermore, f2(U ) ≤ d+
A (U ) for all U � V ,
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U �= ∅, so the cut condition (2) holds for the choices of ℓ = 0, u = 1. (Observe further
that mini=1,2 fi (U ) ≤ 0 for all U � V , U �= ∅ such that δ+(U ) = δ−(U ) = ∅, holds
vacuously as there is no such U .) It therefore follows from Theorem 3 (b) that there
exists y⋆ ∈ {0, 1}A such that y⋆(δ+(U ))−y⋆(δ−(U )) ≤ fi (U ) for all U ∈ Ci , i = 1, 2.
Let J := {a ∈ A : y⋆

a = 1}. Then d+
J (U ) − d−

J (U ) = y⋆(δ+(U )) − y⋆(δ−(U )) ≤

f (U ) for all U ∈ C. Moreover, d+
J (U ) − d−

J (U ) ≤ f2(U ) = d+
A (U ) − k for all

U � V , U �= ∅, implying in turn that J is a k-arc-connected flip. Thus, J is the
desired set. ⊓⊔

4 Applications of Theorem 2

We present several applications of Theorem 2 to Graph Orientations and Combinatorial
Optimization.

4.1 An Extension of theWeak Orientation Theorem

For τ = 2k, Theorem 2 gives the following strengthening of the weak orientation
theorem (that every digraph whose underlying undirected graph is 2k-edge-connected,
has a k-arc-connected flip).

Theorem 10 Let D = (V , A) be a digraph whose underlying undirected graph is

2k-edge-connected. Let C be a crossing family over ground set V , and let f : C → Z

be a crossing submodular function such that f (U ) ≥ 1
2 (d+

A (U ) − d−
A (U )) for all

U ∈ C. Then D has a k-arc-connected flip J such that f (U ) ≥ d+
J (U ) − d−

J (U ) for

all U ∈ C. ⊓⊔

A digraph is near-Eulerian if at every vertex the in-degree and out-degree differ
by at most one. Theorem 10 implies the following well-known extension of the weak
orientation theorem.

Theorem 11 ([4]) Let D = (V , A) be a digraph whose underlying undirected graph is

2k-edge-connected. Then there exists a k-arc-connected flip J such that after flipping

its arcs the digraph becomes near-Eulerian.

Proof Let C := {{u}, V \ u : u ∈ V }, and f (U ) :=
⌈ 1

2 (d+
A (U ) − d−

A (U ))
⌉

for all
U ∈ C. Clearly, C is a crossing family, f is a crossing submodular function over C,
and f (U ) ≥ 1

2 (d+
A (U ) − d−

A (U )) for all U ∈ C. It therefore follows from Theorem
10 that there exists a k-arc-connected flip J such that f (U ) ≥ d+

J (U ) − d−
J (U ) for

all U ∈ C. In other words, for every vertex u ∈ V ,

d+
J (u) − d−

J (u) ≤

⌈
1

2

(
d+

A (u) − d−
A (u)

)⌉
(7)

and

d+
J (V \ u) − d−

J (V \ u) ≤

⌈
1

2

(
d+

A (V \ u) − d−
A (V \ u)

)⌉
.
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The latter can be rewritten as

d−
J (u) − d+

J (u) ≤

⌈
1

2

(
d−

A (u) − d+
A (u)

)⌉
;

negating both sides, and reversing the inequality, we thus obtain

d+
J (u) − d−

J (u) ≥

⌊
1

2

(
d+

A (u) − d−
A (u)

)⌋
. (8)

Since (7) and (8) hold for every u ∈ V , it follows that the digraph obtained after
flipping the arcs in J is near-Eulerian, as required. ⊓⊔

In fact, even in the conclusion of Theorem 10 one can guarantee that after flipping
the arcs in J the digraph becomes near-Eulerian. This is obtained by updating C :=

C ∪ {{u}, V \u : u ∈ V } and f (U ) :=
⌈ 1

2 (d+
A (U ) − d−

A (U ))
⌉

for all U ∈ {{u}, V \u :

u ∈ V }, and then applying Theorem 10 to the updated crossing family and crossing
submodular function.

4.2 k-arc-Connected Flips and k-dijoins

Before discussing the next set of applications of Theorem 2, we need to set up the
scene. Let D = (V , A) be a digraph. A dicut is an arc subset of the form δ+(U ) where
δ−(U ) = ∅, for some U � V , U �= ∅. A dijoin is a subset J ⊆ A that intersects
every dicut at least once. Equivalently, J is a dijoin if bidirecting every arc in J makes
the digraph D strongly connected. In contrast, J is a 1-arc-connected flip if flipping
every arc in J makes the digraph strongly connected. Thus, every 1-arc-connected
flip is also a dijoin. It can be readily checked that the converse is not necessarily true.
Interestingly, however, every inclusionwise minimal dijoin is a 1-arc-connected flip
(see [3], Theorem 55.1). For an integer k ≥ 1, a k-dijoin is an arc subset that intersects
every dicut at least k times. Observe that the union of every k disjoint dijoins is a
k-dijoin (the converse is not necessarily true, see Figure 1). Moreover, we have the
following important observation.

Remark 12 Given a digraph and an integer k ≥ 1, every k-arc-connected flip is a
k-dijoin.

(The converse of this remark is not necessarily true even if the k-dijoin is inclu-
sionwise minimal, see Fig. 1).

4.3 Woodall’s Conjecture and aWeaker Variant

A seminal result of Lucchesi and Younger is that the minimum size of a dijoin is
equal to the maximum number of pairwise disjoint dicuts [14]. Woodall conjectured
that the dual minimax relation also holds: the minimum size of a dicut is equal to the
maximum number of pairwise disjoint dijoins [7]; this conjecture remains open. As
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Fig. 1 The solid arcs form an
inclusionwise minimal 2-dijoin
that cannot be decomposed into
two dijoins [13], nor is it a
2-arc-connected flip

a step towards the conjecture, it was recently shown that if the minimum size of a
dicut is τ , then A may be decomposed into a dijoin and a (τ − 1)-dijoin [6]. In fact, if
Woodall’s conjecture is true, then one should be able to decompose A into a k-dijoin
and a (τ − k)-dijoin, for every integer k ∈ {1, . . . , τ − 1}, but surprisingly even this
remains open for k �= 1, τ − 1. This leads us to the following weaker conjecture.

Conjecture 13 Let τ ≥ 2 be an integer. Let D = (V , A) be a digraph where every

dicut has size at least τ . Then A can be decomposed into a k-dijoin and a (τ −k)-dijoin,

for every k ∈ {1, . . . , τ − 1}.

Theorem 2 has the following consequence that relates to Conjecture 13.

Theorem 14 Let τ, k be integers such that τ − 1 ≥ k ≥ 1. Let D = (V , A) be a

digraph where d+
A (U ) + ( τ

k
− 1)d−

A (U ) ≥ τ for all U � V , U �= ∅. Then A can be

decomposed into a k-arc-connected flip and a (τ − k)-dijoin.

Proof Let C be the family of subsets U ⊆ V such that δ+(U ) is a dicut. Then C is a
crossing family. Let f : C → Z be the function defined as f (U ) := d+

A (U )− (τ − k)

for all U ∈ C. Then f is a crossing submodular (in fact, modular) function. The
inequalities d+

A (U )+( τ
k
−1)d−

A (U ) ≥ τ for all U � V , U �= ∅, imply that d+
A (U ) ≥ τ

for all U ∈ C, which in turn imply that

f (U ) ≥
k

τ
d+

A (U ) =
k

τ
(d+

A (U ) − d−
A (U )) ∀U ∈ C;

the first inequality holds because f (U ) − k
τ

d+
A (U ) = τ−k

τ
(d+

A (U ) − τ) ≥ 0 for
all U ∈ C. We can now apply Theorem 2 to get a k-arc-connected flip J such that
d+

J (U ) − d−
J (U ) ≤ f (U ) for all U ∈ C. That is, for every dicut δ+(U ), we have

d+
J (U ) ≤ d+

A (U )− (τ − k) which can be rewritten as d+
A−J (U ) ≥ τ − k. Thus, A − J

is a (τ − k)-dijoin, implying that (J , A − J ) is the desired decomposition. ⊓⊔

This theorem extends Nash-Williams’ classic theorem in a different direction than
Theorem 10. To elaborate, observe that the complement of a k-arc-connected flip is
also a k-arc-connected flip, so for τ = 2k, Theorem 14 reduces simply to the weak
orientation theorem.
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Let us discuss two special cases of Theorem 14. In the special case k = 1, we obtain
the following.

Theorem 15 ([6]) Let τ ≥ 2 be an integer. Let D = (V , A) be a digraph where every

dicut has size at least τ . Then A can be decomposed into a dijoin J and a (τ −1)-dijoin

J ′.

Proof We claim that d+
A (U ) + (τ − 1)d−

A (U ) ≥ τ for all U � V , U �= ∅. This holds
because either δ+(U ), δ−(U ) �= ∅ or one of δ+(U ), δ−(U ) is a dicut. In the former
case, d+

A (U ) + (τ − 1)d−
A (U ) ≥ 1 + (τ − 1) = τ , and in the latter case, the dicut

must have size at least τ by assumption, so the claimed inequality holds. It therefore
follows from Theorem 14 for k = 1 that A can be decomposed into a 1-arc-connected
flip, which necessarily is a dijoin by Remark 12, and a (τ − 1)-dijoin, as required. ⊓⊔

This theorem was proved recently in an attempt to prove Woodall’s conjecture
by first reducing the problem to a special class of sink-regular (τ, τ + 1)-bipartite

digraphs [6]. The proof we have given here bypasses this reduction.
The reader may wonder why this theorem does not automatically prove Woodall’s

conjecture, as one may try to repeat the argument on the subdigraph D \ J . A key
complication comes from the fact that deleting an arc from D may create a new dicut,
whose size may unfavourably be smaller than τ − 1. Another comes from the fact that
given the decomposition J ∪ J ′, one may not necessarily be able to further decompose
J ′ into τ − 1 dijoins [6].

The second special case of Theorem 14 we consider is the case k = ⌊τ/2⌋.

Theorem 16 Let τ ≥ 2 be an integer. Let D = (V , A) be a digraph where every

dicut has size at least τ . Suppose further that every cut of D has size at least τ − 1,

i.e., |δ+(U )| + |δ−(U )| ≥ τ − 1 for all U � V , U �= ∅, and if equality holds,

then the number of outgoing arcs is equal to the number of incoming arcs. Then

A can be decomposed into a k-arc-connected flip and a (τ − k)-dijoin, for every

k ∈ {1, . . . , ⌊τ/2⌋}.

Proof Let k ∈ {1, . . . , ⌊τ/2⌋}. We claim that d+
A (U ) + ( τ

k
− 1)d−

A (U ) ≥ τ for all
U � V , U �= ∅. We know that d+

A (U ) + d−
A (U ) ≥ τ − 1. If equality holds, then by

assumption, d+
A (U ) = d−

A (U ) = τ−1
2 , so d+

A (U ) + ( τ
k

− 1)d−
A (U ) = τ−1

2 · τ
k

≥ τ .
Otherwise, d+

A (U )+d−
A (U ) ≥ τ , so d+

A (U )+( τ
k
−1)d−

A (U ) ≥ d+
A (U )+d−

A (U ) ≥ τ ,
proving the claimed inequality. The theorem now follows from Theorem 14. ⊓⊔

In particular, this proves Conjecture 13 when the underlying undirected graph is
τ -edge-connected:

Theorem 17 Let τ ≥ 2 be an integer. If D = (V , A) is a digraph whose underlying

undirected graph is τ -edge-connected, then A can be decomposed into a k-dijoin and

a (τ − k)-dijoin, for every k ∈ [τ − 1].

Proof By symmetry we may assume that k ≤ τ − k, so k ∈ {1, . . . , ⌊τ/2⌋}. Thus,
since every cut of D has size at least τ , we may apply Theorem 16 to decompose
A into a k-arc-connected flip, which necessarily is a k-dijoin by Remark 12, and a
(τ − k)-dijoin. ⊓⊔
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Theorem 17 suggests that it may be easier to prove Woodall’s conjecture for τ -
edge-connected instances. After all, if the underlying undirected graph has τ disjoint
spanning trees, which is guaranteed by 2τ -edge-connectivity for instance [15, 16],
then the digraph has τ disjoint dijoins. It should be noted that Woodall’s conjecture
for τ = 3 has been proven for 4-edge-connected instances, that is, if the underlying
undirected graph is 4-edge-connected, then the digraph contains 3 disjoint dijoins [17].

4.4 Packing Dijoins inWeighted Digraphs

Finally, Theorem 2 leads to an intriguing extension of Theorem 14 to a setting where
arcs are assigned nonnegative integer weights, viewed as capacities for packing dijoins.
By replacing an arc of weight t ≥ 1 with t parallel arcs of weight 1, we may reduce
to 0, 1 weights, so we can focus solely on them. Given a digraph D = (V , A) and
J ⊆ A, denote by D[J ] the subdigraph with vertex set V and arc set J .

Theorem 18 Let τ, k be integers such that τ − 1 ≥ k ≥ 1. Let D = (V , A) be

a digraph, and w ∈ {0, 1}A. Suppose w(δ+(U )) + ( τ
k

− 1)w(δ−(U )) ≥ τ for all

U � V , U �= ∅. Then {a ∈ A : wa = 1} can be decomposed into a k-arc-connected

flip of D[{a ∈ A : wa = 1}] and a (τ − k)-dijoin of D.

Proof The proof is similar to that of Theorem 14. This time, however, we apply
Theorem 2 to the digraph D[{a ∈ A : wa = 1}], denoted as D′ = (V , A′), the
crossing family C := {U � V : δ−

D(U ) = ∅, U �= ∅}, and the crossing submodular
function f : C → Z defined as f (U ) = d+

A′(U ) − (τ − k) = w(δ+
D(U )) − (τ − k).

We include the proof for completeness.
The inequalities w(δ+

D(U ))+ ( τ
k

− 1)w(δ−
D(U )) ≥ τ for all U � V , U �= ∅, imply

that w(δ+
D(U )) ≥ τ for all U ∈ C, which in turn imply that

f (U ) ≥
k

τ
w(δ+

D(U )) =
k

τ
(w(δ+

D(U )) − w(δ−
D(U ))) =

k

τ
(d+

A′(U ) − d−
A′(U )) ∀U ∈ C.

We may therefore apply Theorem 2 to get a k-arc-connected flip J ⊆ A′ of D′ such
that d+

J (U ) − d−
J (U ) ≤ f (U ) for all U ∈ C. That is, for every dicut δ+

D(U ) of D,
d+

J (U ) ≤ d+
A′(U )−(τ −k) which can be rewritten as d+

A′−J
(U ) ≥ τ −k. Thus, A′ − J

is a (τ − k)-dijoin of D, implying that (J , A′ − J ) is the desired decomposition. ⊓⊔

By specializing Theorem 18 to k = 1 we obtain the following.

Theorem 19 Let D = (V , A) be a digraph, let τ ≥ 2 be an integer, and w ∈ {0, 1}A.

Suppose min{w(δ+(U )), w(δ−(U ))} ≥ 1 or max{w(δ+(U )), w(δ−(U ))} ≥ τ for all

U � V , U �= ∅. Then {a ∈ A : wa = 1} can be decomposed into a dijoin and a

(τ − 1)-dijoin of D. ⊓⊔
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5 Discussion on Computational Complexity

To discuss the computational complexity of Theorem 2 and Theorem 3, we need to
make some standard assumptions about how the crossing families and the crossing
submodular functions are provided. Let us lay the ground work.

A lattice family L over a finite ground set V is one where for all U , W ∈ L we have
U ∩ W , U ∪ W ∈ L. Then the lattice family L can be provided compactly as follows.
Let L, M be the inclusionwise minimal and maximal sets in L, respectively. Define
the relation � on V as follows: u � v if every set in L that contains v also contains
u. It can be readily checked that � is a preorder, that is, it is reflexive and transitive.
Furthermore, it can be readily checked that U ∈ L if and only if L ⊆ U ⊆ M and U

is a lower ideal for � (that is, if v ∈ U and u � v, then u ∈ U ). Subsequently, L is
fully characterized by L, M and �, implying in turn that every lattice family can be
described compactly (see §49.3 of [3] for more). We say that the lattice family L is
well-provided if it is described by L, M and �.

Let C be a crossing family over ground set V . It can be readily seen that for every pair
of elements u, v ∈ V , Cuv := {C ∈ C : u ∈ C, v /∈ C} is a lattice family (see §49.10 of
[3] for more). Clearly, C can be fully described by all these lattice families. We say that
the crossing family C is well-provided if all the lattice families Cuv, u, v ∈ V , u �= v

are well-provided.
Given a well-provided crossing family C, and a crossing submodular function f :

C → Z, a value oracle for f is an oracle which, given X ∈ C, outputs in unit time the
value of f (X). We are ready to state a preliminary result.

Theorem 20 There exists an algorithm that, given well-provided crossing families

Ci , i = 1, 2 over ground set V , crossing submodular functions fi : Ci → Z, i = 1, 2
provided via value oracles, an integer k, and w ∈ ZV , outputs an extreme optimal

solution of max{w⊤x : x(V ) = k, x(U ) ≤ fi (U ) ∀U ∈ Ci , i = 1, 2} in oracle

strongly polynomial time.

Before we provide a proof sketch of this theorem, let us stress that it is well-
known that max{w⊤x : x(V ) = k, x(U ) ≤ fi (U ) ∀U ∈ Ci , i = 1, 2} is strongly
polynomial time solvable; see for instance §47.4 of [3]. Though the statement above
is widely accepted, none of the algorithms we could find in the literature necessarily
return an extreme optimal solution. However, this issue can be addressed by finding a
lexicographically maximal optimal solution.

Proof Sketch Let P̃ := {x ∈ RV : x(V ) = k, x(U ) ≤ fi (U )∀U ∈ Ci , i = 1, 2}, and
denote by F̃ the optimal face of max{w⊤x : x ∈ P̃}. It follows from §49.3, §49.7,
and §49.10 of [3] that one can construct, in strongly polynomial time, submodular
functions f ′

i , i = 1, 2 defined over 2V such that F̃ is the optimal face of max{w⊤x :

x(V ) = f ′
i (V ), x(U ) ≤ f ′

i (U ) ∀ U ⊂ V , i = 1, 2}. The proof of Theorem 47.4 of
[3] shows how to construct, in strongly polynomial time, submodular functions f ′′

i ,
i = 1, 2 defined over 2V such that

F̃ =
{

x ∈ RV : x(V ) = f ′′
i (V ), x(U ) ≤ f ′′

i (U ) ∀ U ⊂ V , i = 1, 2
}

.
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This shows that the original problem can be reduced, in strongly polynomial time,
to the problem of finding an extreme common base of two extended polymatroids.
While there exist strongly polynomial time algorithms that can provide a common
base [18] (see Theorem 47.1 in [3]), the common base returned by these algorithms
may not be extreme. However, for any given v ∈ V , one can in strongly polynomial
time find a point in F̃ maximizing xv [19] (see Theorem 47.2 of [3]). This implies,
as we discuss next, that we can pick an ordering 1, 2, . . . , n of the elements in V and
compute a lexicographically maximal point in F̃ , which will therefore be extreme.
Indeed, we start by computing the value α := max{xn : x ∈ F̃}. To iterate, we need
to compute the largest value of xn−1 for x ∈ F̃ ∩ {x : xn = α}. This can be reduced
again to the problem of finding a common base maximizing xn−1 for two extended
polymatroids defined over {1, . . . , n −1}, where the functions gi , i = 1, 2 are defined
over 2{1,...,n−1} by gi (U ) = min{ f ′′

i (U ), f ′′
i (U ∪{n})−α} for all U ⊆ V \{n}. It can be

readily checked that gi , i = 1, 2 are indeed still submodular, and furthermore, a point
z ∈ R{1,...,n−1} is a common base of g1 and g2 if and only if (z, α) is a common base
of f ′′

1 and f ′′
2 . Hence we are able to apply Theorem 47.2 of [3] iteratively, repeating

the process for 1, . . . , n − 2, and so on and so forth. ⊓⊔

Complexity aspects of Theorem 3. To discuss the complexity aspects of part (b) of
this theorem, we assume that for i = 1, 2, the crossing family Ci is well-provided, and
fi is provided via a value oracle. Furthermore, the non-empty face of P is provided
by some vector c ∈ ZA, namely, the face F is the optimal face of max{c⊤y : y ∈ P}.

The first question is whether the cut condition (2) can be verified in polynomial
time. We do not know. The verification amounts to determining whether g(U ) :=

u(δ+(U )) − ℓ(δ−(U )) − mini=1,2 fi (U ) ∀U � V , U �= ∅ is a nonnegative function.
However, g is not necessarily a crossing submodular function, making the verification
problem challenging. That said, there is a way to circumvent this issue altogether.

Following the proof of Theorem 3 (b), we can show that in strongly polynomial
time, we can either find an integral point y⋆ ∈ F such that ℓ ≤ y⋆ ≤ u, or a subset
U ⊆ V that violates the cut condition (2).

First we compute w ∈ ZV such that w⊤M = c⊤, which can be done in strongly
polynomial time. Then, if we let P̃ and F̃ be defined as in the proof of Theorem 3,
we have that F̃ is the optimal face of max{w⊤x : x ∈ P̃}. Next, we find a vertex b

of F̃ in strongly polynomial time, by Theorem 20. Note that b ought to be integral by
Theorem 5. Then we find either an integral b-transhipment y⋆ satisfying ℓ ≤ y⋆ ≤ u,
or a certificate that such a b-transhipment does not exist, in the form of a set U ,
U � V , U �= ∅, such that b(U ) > u(δ+(U )) − ℓ(δ−(U )); this can be done in
strongly polynomial time (see Corollary 12.2d of [3]). In the first case, we get an
integral point y⋆ in F ∩ {y ∈ RA : ℓ ≤ y ≤ u}, and in the second case, we have a
certificate U that (2) is not satisfied.
Complexity aspects of Theorem 2. First, we claim that the assumed inequalities
d+

A (U ) + ( τ
k

− 1)d−
A (U ) ≥ τ for all U � V , U �= ∅, can be verified in strongly

polynomial time. To elaborate, note that the inequalities are satisfied if, and only if,
ȳ = k

τ
· 1 satisfies y(δ+(U )) − y(δ−(U )) ≤ d+

A (U ) − k = f2(U ) for all U ∈ C2 =

{U � V : U �= ∅}. This holds if, and only if, min{g(U ) : U ∈ C2} ≥ 0 for the crossing
submodular function g over the crossing family C2 defined as g(U ) := f2(U ) −
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ȳ(δ+(U )) + ȳ(δ−(U )). The claim now follows from the fact that the minimization
problem can be solved in strongly polynomial time (see §49.10 of [3] for details).

Secondly, Theorem 2 also assumes the inequalities f (U ) ≥ k
τ
(d+

A (U ) − d−
A (U ))

for all U ∈ C. To be able to verify these inequalities in polynomial time, we would
need some assumptions on how the data is provided. As such, suppose C is a well-
provided crossing family, and f is provided via a value oracle. Then, just as above,
the inequalities can be verified in strongly polynomial time (see §49.10 of [3]).

Finally, with the assumptions mentioned above on C = C1 and f = f1, we can
find the k-arc-connected flip J in strongly polynomial time, by an application of
the algorithm we provided for Theorem 3 (b). To describe the algorithm, first we
find b ∈ ZV such that 1⊤b = 0, b(U ) ≤ fi (U ) for all U ∈ Ci , then we find a
b-transshipment y⋆ ∈ {0, 1}A. The first step relies on the fact that every vertex of
{x : 1⊤x = 0, x(U ) ≤ fi (U ) ∀ U ∈ Ci , i = 1, 2} is integral by Theorem 5, and
that a vertex b can be found in strongly polynomial time by Theorem 20. The second
step can also be done in strongly polynomial time (see Corollary 12.2d of [3]). The
subset J corresponds to the support of y⋆.

6 Open Questions and Concluding Remarks

Theorem 19 connects intriguingly to a conjecture of Chudnovsky, Edwards, Kim,
Scott, and Seymour [20] for 0, 1-weighted digraphs (D, w), that if every cut has
nonzero weight and every dicut has weight at least τ , then {a ∈ A : wa = 1} can be
decomposed into τ dijoins of D. In fact, another result of ours, namely Theorem 9,
has a direct application to this conjecture for τ = 2. In this case, the conjecture can
be equivalently formulated as below.

Conjecture 21 ([20]) Let G = (V , E) be a tree, and let L be a lattice family over

ground set V such that |δ(U )| ≥ 2 for all U ∈ L\{∅, V }. Then there exists an

orientation D of G such that δ+
D(U ), δ−

D(U ) �= ∅ for all U ∈ L\{∅, V }.

To point out the connection to Theorem 9, let D = (V , A) be an arbitrary orientation
of G. Consider the system

y(δ+
D(U )) − y(δ−

D(U )) ≤ d+
A (U ) − 1 ∀U ∈ L \ {∅, V }

y(δ+
D(U )) − y(δ−

D(U )) ≥ 1 − d−
A (U ) ∀U ∈ L \ {∅, V }.

Observe that y = 1
2 · 1 is a feasible solution. Observe further that L \ {∅, V } is a

crossing family. Since D is weakly connected, it follows from Theorem 9 that the
system is TDI, and so it has an integral solution. Conjecture 21 states equivalently that
the system has a 0, 1 solution.

The next open question comes from Theorem 9. We saw that the weak connectivity
assumption could not be dropped due to Example 4. However, this example is not only
disconnected but has three connected components in its underlying undirected graph.
An immediate open question is whether Theorem 9 extends beyond weakly connected
digraphs to those digraphs with at most two connected components in their underlying
undirected graph?
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Another open question comes from a closer look at Theorem 14. The theorem
provides a sufficient condition for decomposing the arc set of a digraph D into a k-
arc-connected flip and a (τ −k)-dijoin. Clearly, to be able to do this, two conditions are
necessary: (a) the underlying undirected graph of D must be 2k-edge-connected, and
(b) every dicut of D must have size at least τ . Are these two conditions also sufficient?

Finally, as we show in §B of the appendix, the intersection of two submodular flow
systems with integral right-hand sides, is not necessarily box-integral. In March 2023,
during a talk at the Combinatorics and Optimization workshop at ICERM, Brown
University, the first author made the following “wild" conjecture: Let D = (V , A) be

a weakly connected digraph and, for i = 1, 2, let Ci be a crossing family over ground

set V and fi : Ci → Z be a crossing submodular function. Then the polyhedron P

from (1) is box-half-integral. However, this conjecture has been refuted by Goemans
and Pan (personal communication).

A Hardness for Three Base Systems, and Two Submodular Flow Sys-
tems

Integral Solutions to Three Base Systems. Take three matroids over the same (finite)
ground set V with rank functions r1, r2, r3, respectively, where the functions are given
via an oracle (which for every X ⊆ V outputs ri (X) in unit time). Suppose further
ri (V ) = r for all i , and that r1(V \u) = r and r1(u) = 1 for all u ∈ V . It is known that
finding a common basis of the three matroids is a hard problem in general. For example,
it includes the NP-complete problems Does a bipartite graph have a Hamilton cycle?

[22] and Does a digraph have a Hamilton st-dipath? (see §3.1.3 of [23]).
Consider the intersection of the three base systems 1⊤x = r , x(U ) ≤ ri (U ) ∀U ⊆

V , i = 1, 2, 3. Suppose x ∈ ZV is an integral solution. It can be readily checked, by
using the assumption that r1(u) = 1 and r1(V \u) = r for all u ∈ V , that x ∈ {0, 1}V ,
and {u ∈ V : xu = 1} is a common basis of M1, M2, M3. Since finding a common
basis of three matroids is hard, finding a solution to three base systems in ZA is also
hard.

Integral Solutions to Two Submodular Flow Systems Let D = (V , A) be a digraph,
and let fi : Ci → Z, i = 1, 2 be two crossing submodular functions. Consider the
system y(δ+(U )) − y(δ−(U )) ≤ fi (U ) ∀U ∈ Ci , i = 1, 2. Finding an integral
solution to this system is a hard problem.

To see this, let Mi , i = 1, 2, 3 be the matroids as above, with rank functions ri , i =

1, 2, 3, respectively. Let V ⋆ be a copy of V . Let D be the digraph over vertex set V ∪V ⋆,
and arc set A := {(u, u⋆) : u ∈ V }. Let C := {U : U ⊆ V }∪{V ∪U ⋆ : U ⊆ V }∪{V ⋆},
where U ⋆ ⊆ V ⋆ corresponds to the subset U ⊆ V , and U ⋆ = V ⋆ − U ⋆. It can be
readily checked that C is a crossing family.

Define f : C → Z as follows: f (U ) := r1(U ) for all U ⊆ V , f (V ∪U ⋆) := r2(U )

for all U ⊆ V , and f (V ⋆) := −r1(V ) (note f (V ) = r and f (V ⋆) = −r ). It
can be readily checked that f is a crossing submodular function over C. Suppose
y ∈ ZA is an f -submodular flow in D. It can be readily checked, by using the
assumption that r1(u) = 1 and r1(V \u) = r for all u ∈ V , that y ∈ {0, 1}A, and
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Fig. 2 Left: A vertex-labelled digraph D = (V , A). Middle/Right: Representations of two fractional vertices
y1/y2 of the polytope Q = P ∩ [0, 1], where solid arcs are set to 1, dotted arcs to 0, and dashed arcs to 1

2

{u ∈ V : y(u,u⋆) = 1} is a common basis of M1, M2. Conversely, for every common
basis B of M1, M2, the incidence vector of {(u, u⋆) : u ∈ B} is an f -submodular
flow in {0, 1}A. Subsequently, there exists an f -submodular flow in ZA if and only if
M1, M2 have a common basis.

Similarly, define g : C → Z as follows: g(U ) := r1(U ) for all U ⊆ V , f (V ∪

U ⋆) := r3(U ) for all U ⊆ V , and g(V ⋆) := −r1(V ). Then g, too, is a crossing
submodular function over C, and there exists a g-submodular flow in ZA if and only
if M1, M3 have a common basis.

Putting it altogether, we get that there exists a y ∈ ZA that is both an f - and g-
submodular flow if and only if M1, M2, M3 have a common basis. Since finding a
common basis of three matroids is hard, finding a solution to two sets of submodular
flow constraints in ZA is also hard.2

B Theorem 3 and Box Constraints

Here we demonstrate that the system (1) from Theorem 3, together with box con-
straints, is not necessarily integral. To this end, consider the digraph D = (V , A)

displayed in Figure 2 (left).
Define the crossing families C1 := {U � V : δ−(U ) = ∅, U �= ∅} and C2 := {U �

V : U �= ∅}, and the crossing submodular functions f1(U ) := d+
A (U ) − 3 ∀U ∈ C1

and f2(U ) := d+
A (U ) − 1 ∀U ∈ C2. Clearly f2(U ) ≤ d+

A (U ) ∀U ∈ C2. Thus, ℓ = 0

and u = 1 satisfy the cut condition (2). Let P be the polyhedron defined as in (1), and
Q := P ∩ [0, 1].

To give some intuition, a 0, 1 vector ȳ belongs to Q if, and only if, {a ∈ A : ȳa = 0}

is a 3-dijoin and {a ∈ A : ȳa = 1} is a 1-arc-connected flip of D. This gives a
description of all the integral vertices of Q. However, Q may have fractional vertices.

To see this, define y1 ∈
{
0, 1

2 , 1
}A

where for each a ∈ A, y1
a = 0, 1

2 or 1 if a is

dotted, dashed, or solid in Figure 2 (middle), respectively. Define y2 ∈
{
0, 1

2 , 1
}A

analogously with respect to Figure 2 (right).

Proposition 22 y1, y2 are vertices of Q.

2 Our argument can easily be adapted to show that finding an integral solution to the intersection of two
submodular flow systems, contains the problem of finding a common basis of four matroids.
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Proof It can be readily checked that y1, y2 are feasible. To see that yi is a vertex, we
need to exhibit 21 linearly independent tight inequalities at yi . We immediately get
15 from 0 ≤ y ≤ 1 as yi has as many coordinates set to 0 or 1. For y1 the remaining
6 may be chosen as the following inequalities: y(δ+(U )) − y(δ−(U )) ≤ f1(U ) for
U = {3}, {10}, {5}, {12}, {1, 2, 3, 7, 8, 9} and y(δ+(U )) − y(δ−(U )) ≤ f2(U ) for
U = {7, 8, 9, 10, 11, 12}. For y2 they may be chosen as y(δ+(U )) − y(δ−(U )) ≤

f1(U ) for U = {3}, {10}, {5}, {12}, {1, 5, 6, 7, 11, 12} and y(δ+(U )) − y(δ−(U )) ≤

f2(U ) for U = {4, 5, 6, 10, 11, 12}. ⊓⊔
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