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Abstract

This note contains a corrective and a generalization of results by Borsboom

et al. (2008), based on Heesen and Romeijn (2019). It highlights the relevance
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Introduction

Borsboom et al. (2008) showed that we cannot combine two important fair-

ness requirements for selection procedures. On the one hand we wish that

selection procedures respect ‘measurement invariance’, meaning that they

treat all individuals in the same way. Specifically, the probability for an in-

dividual to be selected may only depend on the latent ability that they are

tested for; not on other characteristics of the individual. On the other hand

they must be ‘selection invariant’, i.e., treat all groups within the population

equally. In particular, if we partition the population into groups, we want

the probabilities of misclassification to be the same in these groups. In short,

the procedure may not discriminate individuals or groups on the basis of any

other characteristic than the latent ability at issue.

Per Borsboom et al. (2008), fair selection is impossible if this is under-

stood as a procedure that makes good on both requirements. This result is

driven by the fact that groups will in general differ on the latent variable that

is being selected for; the latent ability will correlate with other population

characteristics. For example, the ability may be the command of a language,

and this will give certain nationalities or ethnicities an edge. People from

different groups thereby have different probabilities for being selected. The

specific unfairness that ensues if we maintain measurement invariance is that

the selection procedure does not work equally well for people from different

groups: the procedure will incorrectly reject and accept members of these

groups at different rates. Moreover, the arguably most impactful errors will

be higher for more vulnerable groups.

This is not an isolated finding. We briefly review related results in the

next section. We then provide a corrective and a generalization of the original

results by Borsboom et al. (2008), based on Heesen and Romeijn (2019). This

is timely as there is widespread concern over the transparency, adequacy and

fairness of automated selection and classification procedures. Psychometrics

is in an excellent position to advance this debate.
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Similar Findings in Other Fields

Interestingly, the problem of implicit discrimination in Borsboom et al. (2008)

was rediscovered, presumably independently, by Kleinberg et al. (2017) and

Chouldechova (2017) in the context of the discussion on fairness in Artifi-

cial Intelligence (AI): a machine learner that fairly judges individuals can

nevertheless discriminate at the group level. The result rightly received pub-

lic attention (e.g., Angwin et al. 2016) and has inspired further discussion

in the AI community (e.g., Barocas and Selbst 2016, Corbett-Davies et al.

2017, Barocas et al. 2019).

Since Kleinberg et al. (2017) and Chouldechova (2017) do not compare

their results to those of Borsboom et al. (2008), we briefly do so here. At

the heart of Kleinberg et al. (2017) and Chouldechova (2017)’s results is

Bayes’ theorem. In the terminology of Borsboom et al. (2008), which is

explained in detail in the next section, they hold fixed the test sensitivity

and specificity for two groups taking the same test (the likelihoods in Bayes’

theorem), and then observe that if the base rates are different in the two

groups, the positive and negative predictive values (the posteriors in Bayes’

theorem) will be different as well. Thus, assuming that the base rates are

different, if one wants equal predictive value across groups, one cannot have

equal sensitivity and specificity, and vice versa. Because equal predictive

values are identified as a necessary condition for fairness, requiring a test to

be fair in this sense entails that it will not operate equally well for groups

with different probabilities for the latent variable, i.e., different base rates,

thereby making the test unfair in another sense. So Kleinberg et al. and

Chouldechova are ultimately highlighting a form of base-rate neglect. In

medicine and epidemiology, base-rate neglect has been widely reported and

discussed (Casscells et al. 1978, Hoffrage et al. 2000).

This is superficially similar to the results in Borsboom et al. (2008) and to

the generalization presented here. But there are notable differences. Bors-

boom et al. (2008) make the stronger assumption of measurement invari-
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ance, which requires that for any fixed value of the underlying continuous

latent characteristic the test operates equally well, independently of group

membership. We get a correspondingly stronger result: assuming different

distributions over the latent characteristic for the two groups, all four of the

test error rates (sensitivity, specificity, and positive and negative predictive

value) differ across groups. Once again, requiring the test to be fair in one

sense, this time requiring measurement invariance, the test fails to operate

equally well for groups that differ on the latent characteristic. However, in

the result from Borsboom et al. (2008), the requirement of fairness is more

specific, and the differences in test quality between the two groups are more

dramatic.

In labor market economics, there has long been awareness that selection

methods for job allocation can be discriminatory (cf. Fang and Moro 2011).

The focus of these discussions is on the impact of factoring in other charac-

teristics explicitly: if skills are latent, employers will seek proxies and end

up selecting on the basis of demographics that are known to correlate with

skills. However, we are not aware of results that match those by Borsboom

et al. (2008), which pertain to the implicit discriminatory nature of selection.

In philosophy, the above insights have been imported in several debates.

For example, Heesen and Romeijn (2019) apply the present results to scien-

tific peer review, viewed as a selection procedure, and suggest that they may

lead to a conservative bias. Stewart and Nielsen (2020) and Stewart (2020)

take Kleinberg et al. (2017) as their starting point for, respectively, discus-

sions of testimonial injustice and assessment in general. We will not review

these discussions here. Rather, by drawing attention to these connections,

we hope to stimulate further work applying insights from psychometrics in

other fields.

To facilitate a more easy uptake of the results from Borsboom et al.

(2008) in these various fields, in what follows we present the original results

in corrected form, ironing out several inaccuracies. Next we present a more
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general and hence more widely applicable version of the result due to Heesen

and Romeijn (2019). The result has a more succinct proof than the original,

which can be found in their appendix.

The Setup

We briefly rehearse the formal setup of Borsboom et al. (2008). Assume a

population of individuals who differentially possess some latent character-

istic θ. We distinguish two groups in the population (H and L). In each

of these groups, the distribution of the latent characteristic is Gaussian (or

‘normal’), but the mean and variance of this distribution may differ between

the groups. We write µg for the mean and σg for the standard deviation of θ

in group g (where either g = H or g = L).

An individual is considered suitable if her individual value of the latent

characteristic exceeds a threshold value θc. This yields a binary division of

the population into suitable individuals (θ ≥ θc, marked S) and unsuitable

individuals (θ < θc, marked ¬S).

We would like to select suitable individuals, but we do not observe the

value of the latent characteristic directly. We instead rely on a test. An

individual’s test score X is assumed to be linearly related to the latent char-

acteristic, subject to some random error. More precisely, for an individual in

group g,

X = τg + λgθ + εg, (1)

where λg > 0 is the regression coefficient, τg the intercept, and εg the error

term. Errors are assumed to be Gaussian with mean zero and standard

deviation σε,g.

We select individuals based on a threshold Xc on the test scores. An

individual is accepted (event A) if X ≥ Xc and rejected (event ¬A) if X < Xc.

The requirement of measurement invariance states that, conditional on

the true value of the latent characteristic θ, the probability distribution of
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the test scores should be independent of group membership (formally: X |

θ ∼ X | θ ∩ g for any g). In the present context, this amounts to the

requirement that τH = τL, λH = λL, and σε,H = σε,L. Borsboom et al. (2008,

p. 79) further assume θc = Xc = τH = τL = 0, supposedly without loss of

generality.

Selection invariance requires instead that the error rates of the selection

process are the same across groups. The relevant quantities here are the

positive predictive value p(S | A), the negative predictive value p(¬S | ¬A),

the sensitivity p(A | S), and the specificity p(¬A | ¬S).

Results

The main result of Borsboom et al. (2008) is that, in general, measurement

invariance and selection invariance cannot be achieved simultaneously. More

specifically, they claim to show two things.

First, if measurement invariance obtains and the two groups differ (only)

in their means, i.e., µH > µL and σH = σL, then selection invariance fails

in that the test will have greater positive predictive value and sensitivity for

group H:

p(S | A ∩ H) > p(S | A ∩ L) and p(A | S ∩ H) > p(A | S ∩ L). (2)

As a corollary, group L will experience greater negative predictive value and

specificity.

Second, if measurement invariance obtains and the two groups differ in

both mean and variance, selection invariance fails as well. More specifically,

if µ/σ ≥ µ′/σ′ and σ > σ′ then positive predictive value and sensitivity will

be greater for the group with mean µ and standard deviation σ. On the other

hand, if µ′/σ′ ≥ µ/σ and σ > σ′ then negative predictive value and specificity

will be greater for the group with mean µ′ and standard deviation σ′.

6



There are a couple of issues with the second result. First, the inequalities

for negative predictive value and specificity are backwards. Contrary to the

claim in the previous paragraph, if µ′/σ′ ≥ µ/σ and σ > σ′ then negative

predictive value and specificity will be greater for the group with mean µ

and standard deviation σ. The numbered equation (17) in the original paper

should actually read:

σ′

σ
µ ≤ µ′ ⇒











p(¬S | ¬A ∩ gµ,σ) > p(¬S | ¬A ∩ gµ′,σ′),

p(¬A | ¬S ∩ gµ,σ) > p(¬A | ¬S ∩ gµ′,σ′).
(17′)

The second issue is that the paper encourages the slightly misleading sugges-

tion that there is something special about the ratio between the mean and

the standard deviation. But this turns out to be a consequence of the not

completely innocent assumption that θc = 0. If we repeat the proofs without

that assumption (we do not provide this here, but the claim is a special case

of the results discussed in the next section), we find that the direction of the

inequalities depends on whether

µ − θc

σ
≥

µ′ − θc

σ′
or

µ − θc

σ
≤

µ′ − θc

σ′
. (3)

The two issues just identified are the only ones that affect the results of

Borsboom et al. (2008). That said, there are some minor errors in the proofs

of that paper that we wish to highlight while we are at it.

First, there is a typo in equations (A11) and (A12): all three occurrences

of µg should in fact read −µg.

Second, Borsboom et al. (2008, appendix B) aims to identify the marginal

distribution of X (within a group g) and finds that X is normally distributed

with mean λgµg and standard deviation

s = σε,g



1

2
+

λ2
gσ2

g

σ2
ε,g + λ2

gσ2
g



−1/2

. (B8)
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This is the result of a small mistake earlier in the proof: in equation (B6) they

write exp[−(1

2
+ γ2

1+γ2 )X ′2] which should have been exp[−(1

2
− 1

2

γ2

1+γ2 )X ′2]. The

correct standard deviation (independently verified using moment-generating

functions) is
√

σ2
ε,g + λ2

gσ2
g .

Third, there are some typos in appendix D. In equation (D1) there is a

minus sign missing inside both sets of square brackets. The second line of

p. 98 refers to equation (C6) but should refer to equation (C4). And the line

between equations (D7) and (D8) should refer to equation (D5) rather than

equation (D1).

Improved Results

It turns out that the incompatibility between measurement invariance and se-

lection invariance holds under more general assumptions than the ones made

by Borsboom et al. (2008). We drop all structural assumptions about the

test and instead assume just that it accepts or rejects individuals and is re-

sponsive to the latent characteristic. Measurement invariance then amounts

to the requirement that p(A | θ) = p(A | θ ∩ g) for any g. Responsiveness

to the latent characteristic is captured in the assumption that p(A | θ) is a

strictly increasing function of θ.

We also drop the assumption that the latent characteristic follows a Gaus-

sian distribution. We instead assume that there is a (shared) log-concave

density function f such that, for each group g, the density function fg is

given by

fg(θ) =
1

σg

f



θ − µg

σg



. (4)

The family of log-concave density functions is a non-parametric family that

includes, e.g., the uniform and exponential distributions (Saumard and Well-

ner 2014). Since the Gaussian density function is log-concave, this assump-

tion is a strict generalization of the one made by Borsboom et al. (2008).
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The density function f may exist for all real numbers (e.g., the Gaussian),

on a half-line (e.g., the exponential), or a finite interval (e.g., the uniform).

To avoid edge cases, we assume throughout this section that θc is chosen such

that 0 < p(S | g) < 1 for at least one group g.

The first result then generalizes as follows (Heesen and Romeijn 2019,

theorem 3). Assuming measurement invariance, if µH > µL and σH = σL,

then

p(S | A ∩ H) > p(S | A ∩ L) and p(A | S ∩ H) ≥ p(A | S ∩ L). (5)

The latter inequality is strict unless the right tail of f is exponential. Under

the same conditions we also have

p(¬S | ¬A∩L) > p(¬S | ¬A∩H) and p(¬A | ¬S ∩L) ≥ p(¬A | ¬S ∩H).

(6)

The second result also generalizes once the factors mentioned in the previous

sector are taken into account (Heesen and Romeijn 2019, theorem 5). If

measurement invariance is satisfied, then

µH − θc

σH

≥
µL − θc

σL

& σH > σL ⇒











p(S | A ∩ H) > p(S | A ∩ L),

p(A | S ∩ H) > p(A | S ∩ L).
(7)

And conversely,

µH − θc

σH

≥
µL − θc

σL

& σL > σH ⇒











p(¬S | ¬A ∩ L) > p(¬S | ¬A ∩ H),

p(¬A | ¬S ∩ L) > p(¬A | ¬S ∩ H).

(8)

Thus the results from Borsboom et al. (2008) are ultimately seen to hold in

a significantly more general mathematical setting.
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