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Germán Pardo González a,b, Alejandra Tabares Pozos a,*, Camilo Quiroga c, 
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A B S T R A C T   

In the highly competitive and cost-sensitive realm of low-cost carriers, ancillary services have emerged as a 
pivotal revenue source, supplementing the basic fare with optional extras that enhance the passenger experience. 
This research propels this concept forward by introducing a sophisticated Mixed Integer Linear Programming 
(MILP) model specifically designed to optimise revenue from seat change fees, a key ancillary service. Our model 
is particularly crucial for low-cost carriers, where the natural decomposition of pricing strategies allows pas-
sengers to pay for a basic service, with the option to enhance their flying experience through additional paid 
services. The model introduces a novel approach to encourage seat changes, particularly for passengers booked 
together under the same reservation. The core strategy to promote seat changes involves maximising the seating 
distance between passengers who opt for the automatic seat selection feature, based on the current aircraft 
configuration. By intentionally allocating these passengers the furthest seats apart, the model creates a natural 
incentive for them to pay for seat changes, aiming to sit closer together. This approach not only generates 
additional revenue through seat change fees but also optimises the utilization of seat inventory by encouraging 
the purchase of premium seat options. To address the inherent unpredictability of seat sales, the model strate-
gically reserves premium seats and places passengers less inclined towards seat changes in less desirable loca-
tions. This ensures an optimised allocation of seats that maximises revenue potential. Incorporating 
computational acceleration techniques, the model is designed for real-time application, allowing airlines to 
dynamically adapt to booking changes and maximise ancillary revenue opportunities. This rapid response 
capability empowers airlines to adapt swiftly to changing dynamics in seat bookings, thereby maximising their 
revenue generation potential. By offering a sophisticated tool for increasing profits from passenger accommo-
dation services, this research bridges an essential gap in existing airline industry strategies, proposing a trans-
formative approach to ancillary service optimisation.   

1. Introduction 

The airline industry faces increasing competition and pressure to 
improve revenue and profitability. In 2016, Latin American airlines earned 
around $2.15 net profit per passenger, while the industry-wide airlines’ 
mean was over $9.13 and Latin American carriers were four times lower. 
Commercial aviation within Latin American countries has often been 
limited due to high fuel costs and political challenges. Furthermore, the 
currency exchange for these countries makes acquiring fuel more complex, 

as it is generally purchased in US dollars. Specifically, in Colombia, the 
charges and taxes for international passengers are excessively high, 
amounting to over $110 per traveller (O’Connell et al., 2020). 

Research suggests that airlines are exploring ways to optimise their 
operations and increase revenue through ancillary services in today’s 
competitive environment. One such service is the unbundling of flight 
products, where airlines sell products or services separately, such as the 
option to reserve a specific seat. In recent years, the revenue generated 
from unbundled flight products has become increasingly common 
among low-cost and traditional airlines. 
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For instance, Allegiant Air, a low-cost airline, reported a significant 
increase of 115 percent in net income in 2009, primarily due to the 
revenue generated from unbundled flight products. Allegiant Air is 
considered a world leader in turning ancillary services into revenue, 
with unbundled flight products representing 30 percent of its total 
revenue in 2009. This indicates the potential for airlines to increase their 
revenue streams and profitability by leveraging ancillary services, 
mainly through unbundled flight products. Passengers on this low-cost 
airline tend to pay 5 to 25 dollars for seat assignments (O’Connell, 
2011). 

To be more precise, ancillary revenue defined by (Idea-
WorksCompany LLC, 2022) refers to the revenue beyond tickets sales. 
With this in mind, most low-cost airlines based a significant percentage 
of their total revenue on ancillaries in 2021; examples are Viva Aerobus 
(44.8%), Volaris (42.9%), Wizz Air (56.0%) and Ryanair Group (44.7%), 
among others. Whereas non-low-cost airlines tend to depend less on 
ancillary revenue, such as Lufthansa Network Airlines (8.5%), Qatar 
Airways+ (5.2%) and Aeromexico (6.0%), among others. Showing the 
rapid development of ancillary revenue in low-cost airlines in recent 
years and the need to optimise operations. Furthermore, the rapid in-
crease on ancillary revenue can be noticed where airlines such as GOL 
and Ryanair Group increased their ancillary revenue in 16.0 and 10.3 
percentage points from 2019 to 2021. Also, some interesting items found 
in 2021 show that the airlines are coming with interesting ideas on how 
to increase their ancillary revenue. For instance, passengers of the 
airline Eurowings can book a middle seat in advance; The seat selection 
from advance represented an average of $7.00 per passenger for Spirits 
airline in 2021 (IdeaWorksCompany LLC, 2022). 

As mentioned, one of the vital ancillary services is seat allocation 
sales, which allows airlines to generate additional revenue and improve 
customer satisfaction. However, optimising seat allocation sales is a 

challenging problem that requires considering various factors, such as 
passenger preferences, capacity constraints, and pricing information. 
According to a study by (O’Connell and Warnock-Smith, 2013), low-cost 
airline passengers are more likely to purchase ancillary products and 
services than those flying with traditional airlines. The study also found 
that seat reservation fees were the third most acceptable ancillary rev-
enue service among passengers. This suggests that offering unbundled 
flight products, such as seat reservations, may be an effective way for 
airlines to increase their revenue streams and meet the growing demand 
for ancillary services among passengers. 

The operations research applications in the airline industry are 
diverse. They include addressing the overbooking problem to determine 
the optimal number of seats to overbook, given the number of seats sold 
and the time before departure (Rothstein, 1971), online seat assignment 
(Castro and Fernando, 2020), fleet assignment (Sherali et al., 2006), 
simultaneous aircraft routing and crew scheduling (Cordeau et al., 
2001), air traffic management using deterministic optimisation (Agustín 
et al., 2012) and stochastic optimisation (Agustín et al., 2012), boarding 
strategies (Fonseca et al., 2013), and addressing social distancing in 
airplane seat assignments during the COVID-19 pandemic (Salari et al., 
2020). 

Research indicates significant opportunities to improve airline rev-
enue management using ancillary services. For instance, Rothstein 
(1971) uses dynamic programming to obtain the optimal number of 
seats to overbook given the mean of ticket purchases per day to develop 
an overbooking policy for airlines and the work in (Bertsimas and de 
Boer, 2005) proposed an algorithm that addresses several issues faced by 
revenue management models, including demand uncertainty, nesting, 
and the dynamic nature of the booking process. Their algorithm com-
bines ideas from stochastic gradient and approximate dynamic pro-
gramming suggesting significant revenue enhancements through 

Nomenclature 

Sets 
I : Seats on the airplane 

Undirected Complete Graph 
Let G = (N ,A ) a graph composed of nodes N and arcs A , where N = {i} ∈ I and A = {(i, j)| i∈ I, j∈ I, i∕= j}

Parameters 

ai :

{
1 if the seat i ∈ I has not been previously assigned or blocked

0 otherwise 

hi :

{
1 if the seat i ∈ I has not been previously assigned

0 otherwise 
δ : Minimum distance between seats in the same booking 

βij :

{
1 if seats (i, j) ∈ G are at least δ units apart

0 otherwise 
ci : Price of the seat i ∈ I.
ranki : Parameter that determines how important is seat i ∈ I relative to the others 
dij : Distance of seats (i, j) ∈ G 

b : Extra price for the most purchased seats based on historical data 
q : Number of people in the booking 
s : Percentage of blocked seats 
ω1 : Weight for the cost in the objective function 
ω2 : Weight for the distance in the objective function 
λ1 : Relaxation of the weight and balance constraints 
λ2 : Relaxation of the weight and balance constraints 

Variables 

xi :

{
1 if the seat i ∈ I is assigned

0 otherwise 

yij :

{
1 if the seats (i, j) ∈ G are assigned

0 otherwise  
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simulations. However, as airlines’ ancillary pricing decision-making is 
primarily manual, in (Kummara et al., 2021) have proposed a gradient 
boosting machine learning algorithm that can make automated pricing 
decisions for ancillaries by understanding the relations between 
different features such as passenger type, itinerary, aircraft type, etc. 
One of the benefits of this algorithm is that it can automate pricing for 
each customer and identify trends and patterns through its training. 
However, there are also some limitations to consider. For instance, the 
algorithm does not account for competitor information and assumes that 
every ancillary sold is unlimited, which may not be the case. Nonethe-
less, automated pricing decision-making can still significantly improve 
airline revenue management. 

Most of the available literature on airlines deals with the above-
mentioned problems, and just a few cover the seat assignment problem. 
However, a relevant approach is presented in (Castro and Fernando, 
2020), which focuses on determining where to seat the passengers who 
make different online purchases. The authors proposed both determin-
istic and stochastic models considering several future demand scenarios. 
This work includes an interesting network flows-based model to retrieve 
the optimal seat for every passenger considering different economic 
groups. It is also relevant the probability that a seat is purchased and 
determine which factors mainly affect the purchasing behaviour. In 
(Mumbower et al., 2015) they model a logistic regression using real data 
from JetBlue to determine the relevant factors in the purchasing behav-
iour such as the amount of passengers traveling together, how far in 
advance the ticket is purchased, among others. Important insights show 
that airlines who block premium seats, increase seat fee revenues overall. 
This means airlines reduce the number of preferred seats to reserve for 
free and they increase their seat fee revenue. Hence, the airplane appears 
to be more fully reserved than it really is at online check-in, leaving the 
premium seats unassigned for passengers who are willing to pay for them. 
In this study we use a similar approach which benefits are twofold: it helps 
to reduce the computation time significantly and it improves revenue 
through the blocking of historical premium seats. 

Furthermore, Given the recent COVID pandemic, airlines were 
interested in assigning seats as furthest as possible to prevent people 
from spreading the virus to each other. The problem in (Salari et al., 
2020) addresses the COVID-seating issues by maximising the distance 
between passengers using a Euclidean approach. Another important 
study is presented in (Cordeau et al., 2001), where the authors use bi-
nary variables to solve the simultaneous aircraft routing and crew 
scheduling problem. They use Benders’ decomposition and column 
generation algorithm, resulting in excellent computational times and 
results. 

Although there is some existing literature on using optimisation 
techniques for seat allocation in low-cost flights to increase profits from 
the sale of ancillary services, there are still some gaps in the research. 
For instance, the weight and balance constraints and passenger prefer-
ences for seat locations are often not considered. Some areas that require 
further investigation include addressing uncertainty in the operational 
constraints. While optimisation techniques help determine the best seat 
allocation strategy. However, incorporating uncertainty in demand and 
operational constraints, such as aircraft capacity and crew availability, 
can lead to more realistic and practical solutions. Incorporation of pas-
senger preferences: by considering customer preferences, it is possible to 
influence their purchasing behaviour of ancillary services, increasing 
customer satisfaction and airline revenue. 

As described before, there has been a growing interest in using 
optimisation techniques to enhance seat allocation sales and other 
ancillary services in the airline industry. In this study, we propose a 
network flow-based optimisation model for flight seat allocation sales to 
maximise airline revenue rather than improving the customer experi-
ence. Optimisation models allow airlines to allocate seats to passengers 
to maximise revenue and enhance the overall customer experience. 

The proposed model considers several factors that affect seat allo-
cation, including passenger preferences, capacity and balance 

constraints, and pricing information. We formulate the problem as a 
network flow-based optimisation problem, where the objective is to 
maximise indirectly the ancillary revenue generated from seat allocation 
sales subject to various constraints, i.e., we do not include the income in 
the objective function. Still, we expect to increase customers’ proba-
bility of buying more ancillary services. We develop an algorithm to 
solve the optimisation model efficiently and test it using real data from 
an airline’s reservation system. 

We have made several contributions to the field, including:  

I. Introducing an innovative network-flow-based formulation, this 
approach strategically motivates customers to increase their 
purchase of bundled ancillaries, including seat assignments. It 
leverages the distance between passengers traveling together as 
the primary criterion, ingeniously encouraging the selection of 
ancillary bundles to enhance their travel experience. 

II. A comprehensive set of linear constraints to maintain the air-
craft’s weight balance throughout the seat assignment process, 
ensuring operational safety and efficiency without compromising 
the strategic ancillary sales model. 

III. Developing a statistical method to reserve premium seats, tar-
geting future customers with a higher propensity to purchase 
these high-value ancillaries, thereby optimising revenue poten-
tial from seat selection options.  

IV. Proposing an acceleration technique that blocks premium seats 
based on historical data. Its advantages are twofold: accelerate 
the model and increase revenue. 

The primary goal of this paper is to demonstrate the potential ben-
efits of network flow-based optimisation for airline seat allocation sales. 
We aim to show that the proposed model can help airlines increase their 
ancillary revenue per person by allocating seats more effectively and 
efficiently. We also seek to contribute to the growing literature on 
optimisation techniques for airline ancillary services, focusing on seat 
allocation sales. 

The structure of this document is as follows: Section 2 introduces the 
overall ticket sales procedure in an airline. The optimisation problem 
description is presented in Section 3. The networks flow-base model, 
including the formulation and methodology is in Section 4. The 
computational experiments including case study, the Pareto front and 
the decision-making approach proposed are presented in Section 5. 
Finally, the conclusions and future work are presented in Section 6. 

2. Description of the airline purchase procedure 

The company we are working with is a low-cost airline founded in 
Colombia in the early 2000s. This airline offers a variety of national and 
international low-cost flights in the American continent. As one of the 
first low-cost airlines in Colombia and Peru, it was able to reduce 66% 
and 30% respectively the flight’s prices of their competitors in those 
countries. With over 20 aircraft and 35 routes, it operates approximately 
40,000 flights annually to offer its customers affordable prices. 

This research focuses on automatic seat assignments during check-in, 
specifically for customers who have not yet purchased a seat. If a 
customer decides not to buy a seat at check-in, the airline must assign a 
seat for free. Ideally, this seat should be one of the cheapest and his-
torically unpopular among customers. Additionally, seats should be 
assigned as far apart as possible for check-ins with multiple passengers 
to encourage customers to purchase seats in the future. The ultimate 
objective is to indirectly increase ancillary revenue by making customers 
more likely to buy seats on future flights. 

The overall ticket sale and seat assignment procedure can be seen in 
Fig. 1. It is important to note that the airline’s sales process may differ 
from the general case for all low-cost airlines. 

Following the “no” path in Fig. 1 leads us to the stage of seat 
assignment for pending customers who have chosen not to purchase a 
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seat. This occurs at check-in, but it is important to note that seats can 
also be bought at the counter desk just before flight departure or that 
passengers may change seats at an additional cost. Therefore, the model 
must ensure that preferred seats remain unassigned. 

3. Optimisation problem description 

In this work, we consider the seat assignment for passengers that 
have not paid their seat fee. To address this problem, we model the plane 
as a network where each node represents the seats I and the arcs connect 
the seats in the same booking. Let G = (N ,A ) be a complete network 
where N = {i} ∈ I is the node set and A = {(i, j)| i∈ I, j∈ I, i∕= j} de-
notes the set of arcs. A graphical representation of a graph of a hypo-
thetic airplane with six rows and six columns with three seats assigned in 
the same booking is shown in Fig. 2. 

Tailored specifically for low-cost carriers, our approach recognises 
the unique market positioning and operational strategies of these airlines, 
distinguishing them from full-service counterparts that may prioritise 
keeping passengers of the same booking close together. Our model offers 
a strategic balance aimed at maximising ancillary revenue by leveraging 
seat assignment dynamics. It intentionally increases the seating distance 
between passengers of the same booking to stimulate interest in paid seat 
changes, thereby boosting ancillary service income. Concurrently, the 
model conservatively assigns passengers who initially forego the option 
to select their seats, with a focus on preserving premium seats for future 
customers willing to pay for the privilege. This dual-pronged strategy is 
designed to enhance ancillary revenue streams while ensuring premium 
seating availability, catering to the operational and financial goals of low- 
cost carriers. Through this approach, we provide a solution that aligns 
with the distinctive needs of low-cost airlines, optimising revenue op-
portunities and strategic seat management (Subramanian et al., 1994). 
For this reason, we propose a mathematical formulation that aims to 
maximise the distance between passengers in the same booking. We as-
sume each seat has a fixed distance dij measured using the Manhattan 

approach. Additionally, if the airline’s goal is to maximise, the minimum 
distance established is δ, characterized by βij in the mathematical 
formulation. To be more precise: 

βij :

{
1 if the pair of seats (i, j) ∈ G are at minimum δ units of distance

0 otherwise 

Also, the number of people q in the same booking impacts the 
feasibility of the model when δ and q are large, this problem is addressed 
by reducing δ by one unit until the model becomes feasible again. 
Furthermore, there are seats that are usually preferred by passengers; 
therefore, these seats tend to be sold quicker and airlines might not want 
to assign these preferred seats for free. That’s why our mathematical 
formulation accounts the uncertainty that a seat will be bought in the 
future with probability distributions characterized by ranki, which de-
termines how important is seat i ∈ I relative to the other seats. This 
parameter makes part of the cost structure ci of each seat i ∈ I. Another 
way we address the uncertainty is by blocking a specified percentage 
(denoted by s) of the most important seats (i.e., seats with the higher 
ranki). 

On the other hand, our aim is to assign for free the seats with the 
lowest cost ci and if there are seats already assigned, then ai prevents the 
model to select seats previously sold or blocked based on the historical 
data. More precisely: 

ai :

{
1 if the seat i ∈ I has not been previously assigned or blocked

0 otherwise 

Also, to calculate the centre of mass and ensure the weight and 
balance in the aircraft, we use hi that has the same function of ai but it 
does not consider the artificially assigned seats (blocked seats), therefore 
we are able to calculate the centre of mass with the actual assigned seats: 

Fig. 2. Complete graph for an airplane.  

Fig. 1. Overall tickets sale and seat assignment procedure (Agustín 
et al., 2012). 
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hi :

{
1 if the seat i ∈ I has not been previously assigned

0 otherwise 

Regarding both goals, when one wants to maximise distance between 
passengers in the same booking and assign the less preferred seats results 
in conflicting objectives. This must be addressed using multi-objective 
techniques that give optimal weights ω1 and ω2 that show the trade- 
offs the decision-maker needs to address. 

Building on our strategy tailored for low-cost carriers, this work is 
driven by three primary objectives, designed to align with the specific 
operational and financial nuances of these airlines. The first objective 
seeks to indirectly maximise ancillary revenue through a strategic seat 
allocation policy that leverages the airline’s preferences. By maximising 
the distance between passengers of the same booking, we aim to 
encourage them to opt for paid seat changes, thereby generating addi-
tional revenue streams for the carriers. This strategy not only increases 
immediate revenue but also cultivates a customer behaviour inclined 
towards future purchases of seat selections, enriching the airline’s 
ancillary income over time. The second objective focuses on minimising 
the opportunity cost of seat assignments for passengers who have not 
paid for seat selection. Recognising the value attributed to certain 
seats—be it for their location, like window seats, those with extra 
legroom, or those situated in the front rows for quicker aircraft 
egress—this aspect of our model aims to strategically reserve these high- 
demand seats. This ensures they remain available for passengers willing 
to pay a premium, thus optimising the airline’s revenue potential from 
seat selection fees. Lastly, we address the efficiency of our model’s 
implementation with the third objective: to reduce the computational 
time required to solve the model. This focus on computational efficiency 
is crucial for real-time application, allowing airlines to swiftly adjust 
their seat allocation strategies in response to dynamic booking patterns, 
without compromising the quality of the solutions. 

4. Methodology 

To define the model, it is key that we want to maximise or minimise 
the distance between passengers, depending on the decision-maker and 
select the cheapest seats making it a multi-objective function using 
network flow-based model. All the concepts have been reviewed and 
retrieved from the Network Flows book (Orlin et al., 1993) and an 
interesting motivation example from Tabares et al. (2019) use all the 
concepts in network flows to calculate the standard network-dependent 
reliability indices of distribution systems by solving linear equations. 
This study presents an interesting perspective on how network flows can 
be applied to airline operations. Regarding multi-objective optimisation 
problems and the Pareto front, the work in (Dias de Lima et al., 2021) 
was used as a guide to build the Pareto front and the fuzzy function to 
assist decision-makers in the selection of weights in the objective func-
tion. As for accelerating the computation time, several heuristics and 
algorithms, such as “GRASP” and “warm start” variants, were used in 
(Cuellar-Usaquén et al., 2023). Their approaches are compared through 
benchmarking, and the computational time is analysed, illustrating the 
pros and cons of each approach implemented in terms of solution and 
time which helped us to identify parameters and techniques to apply on 
this study. 

4.1. The network flow-based model 

min
∑

i∈I
ω1cixi +

∑

(i,j)∈G

ω2dijyij (1)  

subject to: 
∑

i∈I
xi = q (2)  

(q − 1)xi −
∑

j|(i,j)∈G

yji = 0, ∀i ∈ I (3)  

(q − 1)xi −
∑

j|(i,j)∈G

yij = 0, ∀i ∈ I (4)  

xi ≤ ai, ∀i ∈ I (5)  

yij ≤ βij,∀(i, j) ∈ G (6)  

xi ∈{0, 1}, ∀i ∈ I (7)  

yij ∈{0, 1}, ∀(i, j) ∈ G (8) 

The multi-criteria function (Eq. (1)) minimises the seat assignment 
cost at check-in, selecting the cheapest seat available in the aircraft. 
Additionally, (1) maximises (or minimises) the distance between each 
pair of seats chosen. Constraint (2) guarantees that the number of seats 
selected equals the number of people in the booking. Constraints (3) and 
(4) connect seats in the same booking, and guarantee flow through 
corresponding arcs. Constraints (5) prevents using previously assigned 
seats. Constraints (6) ensure that seats (i, j) ∈ G are at the minimum 
distance δ required by the decision-maker. If the aircraft is mainly 
occupied, the model becomes infeasible. Therefore, the parameter δ is 
relaxed until the model is feasible again. Ultimately, Equations (7) and 
(8) represent the domain of the variables. 

Given all the possible scenarios of aircraft occupancy and passengers 
in the same booking, it is possible that the model becomes infeasible 
when δ is too large and the airplane is mostly occupied, also it can 
happen that in the same booking there are over 20 passengers and 
therefore it doesn’t make sense to maximise distance between them. 
Thus, an algorithm was designed to address all the possible scenarios 
while maintaining an appropriate optimality gap and a reasonable 
computation time. We tested our algorithm under real instances pro-
vided by an airline (with some assumptions). 

In this case, we received a large dataset with relevant information 
including booking date, seat booking date and time (if applicable) and 
flight number for legs departing from several Colombian cities like 
Bogotá, Medellín, Cali, among others and arriving in San Andrés Island. 
Since we don’t account with the check-in date of the bookings, we 
assumed the booking date was the same. Afterwards, we filtered the 
reservations that never booked a seat and retrieved the number of 
people in the booking in a chronological order and solved the model for 
every reservation until every booking in the flight had seats assigned. 

4.2. Mono-objective static model 

The future purchases of seats are highly stochastic. To capture the 
behaviour of the customers we calculate ranki which determines how 
important is seat i ∈ I relative to the other seats. This way, we find the 
most valuable seats for regular airline customers and add the relative 
purchase frequency to the cost structure of each seat in the mathematical 
model. We want to allocate passengers in the cheapest and less pur-
chasable seats. 

To determine the final cost of each seat, the following formula was 
applied: 

ci = basei + ranki ∗ b ∀i ∈ I (a)  

where the cost of each seat i ∈ I is determined by its original price (given 
by the airline in thousand COP) plus its relative importance (ranki) times 
a tuneable bonus cost b. Therefore, the most important seats with 
ranki = 1 have an additional cost of b. 

We tested our algorithm minimising only the cost of the seats 
selected (i.e., ω1 = 1 and ω2 = 0), under different initial occupancy 
scenarios of the aircraft and setting δ = 0, the minimum distance be-
tween seats in the same reservation. 

G. Pardo González et al.                                                                                                                                                                                                                      



Journal of Air Transport Management 117 (2024) 102582

6

4.3. Multi-objective static model 

Following our premise, we also want passengers in the same booking 
to be as far as possible. Therefore, we add the second objective which 
maximises distance, while also preserving the weight and balance con-
straints in the aircraft. 

To measure the distance between each seat, we use the Manhattan 
distance modelling the aircraft as a grid: 

dij =
⃒
⃒xi − xj

⃒
⃒+
⃒
⃒yi − yj

⃒
⃒,∀(i, j) ∈ G (b)  

where xi stands for the x-coordinate and yi for the y-coordinate of seat 
i ∈ I, avoid confusions with the decision variables xi and yij. The x and y 
coordinates were assigned accordingly to each seat, and one extra unit 
was added for the aisle. 

Regarding the weight and balance constraints, it is only considered 
in the model when the aircraft’s occupancy is between 40% and 70%. 
When the airplane is mostly empty, the balance depends more in other 
factors such as the baggage. On the contrary, when the airplane is over 
70% occupied the balance is considered automatically. 

We measure the centre of gravity (CG) and it is calculated using Eqs. 
(c) and (d), assuming that each passenger has the same mean weight m, 
hence: 

CGx =

∑

i∈I
hilim
∑

i∈I
him

=

∑

i∈I
hili

∑

i∈I
hi

(c)  

CGy =

∑

i∈I
hirim
∑

i∈I
him

=

∑

i∈I
hiri

∑

i∈I
hi

(d) 

Assuming again that li stands for the x-coordinate and ri for the y- 
coordinate of seat i ∈ I to avoid confusions with the decision variables xi 

and yij. The idea with this approach is to maintain the CG of both co-
ordinates within a margin close to 0 and only account for the seats 
assigned hi in the calculation of CG. Desirably we want CGy and CGx to 
be 0 or near to 0. 

When the aircraft is between 40% and 70% occupied, we add the 
constraints (9) − (12), derived from CGx and CGy. Since these con-
straints were obtained from the general expression of centre of gravity, it 
is desirable that its value tends to 0 to guarantee that the centre of 
gravity of the plane is centred. This is usually not feasible, therefore, 
there is a relaxation λ1 and λ2 that makes it feasible and let the CG be 
close to 0 and safe. 

∑

i∈I

(

hili + xili

)

≥ − λ1 (9)  

∑

i∈I

(

hili + xili

)

≤ λ1 (10)  

∑

i∈I

(

hiri + xiri

)

≥ − λ2 (11)  

∑

i∈I

(

hiri + xiri

)

≤ λ2 (12) 

Following the same notation, li stands for the x-coordinate and ri for 
the y-coordinate of seat i ∈ I to avoid confusions with the decision var-
iables xi and yij. Also, it is important to highlight that the parameter hi 

has the same function of the parameter ai, but it does not account for the 
blocked seats since they are not assigned in reality and it would not 
make sense to calculate the CG using them. Constraints (9) − (12) were 
linearised and are based on Eqs. (c) and (d), they aim to balance the 
number of assigned people at each side of the plane. The centre of the 

coordinate system is in the exact centre of the plane; therefore, con-
straints (9) and (10) admit at most λ1 extra passengers in the left or right 
side of the plane. Whereas constraints (11) and (12) admit at most λ2 

extra passengers in the rear or front from the plane. If λ1 and λ2 take the 
value of 0 and the assignment is feasible, this means that the centre of 
gravity is centred; however, this may result infeasible, and we admit 
some imbalance defined by the parameters mentioned. For instance, if 
the airplane has 20 people assigned in the front, constraints (11) and 
(12) will ensure that there are at most λ2 passengers extra in the rear 
part. λ1 and λ2 are tuneable parameters that controls the level of balance 
and weight in the airplane. 

4.3.1. The augmented ε-constraint method 
In addressing the multi-objective optimisation problem of seat allo-

cation for low-cost carriers, we apply the augmented ε-constraint 
method (Mavrotas, 2009). This method effectively circumvents the issue 
of dominated solutions that are prevalent in the standard ε-constraint 
approach. Specifically, one objective function—maximising the distance 
between passengers in the same booking—is optimised, while the other 
objective is incorporated as constraints with adjustable parameter, ε, 
which are iteratively varied to explore the Pareto front. 

Our multi-objective model initially transforms the secondary objec-
tive, the minimisation of premium seat allocation, into a constraint with 
an additional slack variable (SV2). This transformation adjusts the sec-
ondary objective from a simple inequality into an equality, ensuring a 
balance between our objectives: minimising the number of premium 
seats allocated unintentionally and maximising ancillary revenue 
through incentivised seat changes. The adjusted objective function is 
represented as: 

min
∑

i∈I
ω1cixi − η(SV2 / r) (13)  

subject to: (2), (3), (4), (5), (6), (7) and (8) 
∑

(i,j)∈G

ω2dijyij + SV2 = ε (14) 

The value η is chosen to be sufficiently small, ensuring the primary 
focus remains on 

∑

i∈I
ω1cixi, while r represents the range of 

∑

(i,j)∈G

ω2dijyij 

values, promoting a balanced Pareto front. This fine-tuning is crucial to 
maintaining operational integrity while pursuing revenue optimisation. 

The iterative process for constructing the Pareto front is as follows:  

1. Determine a small decrement value α.  
2. Set the initial value of ε to the maximum value of 

∑

(i,j)∈G

ω2dijyij minus 

α.  
3. Solve the optimisation problem to determine the values of 

∑

i∈I
ω1cixi 

and 
∑

(i,j)∈G

ω2dijyij.  

4. Adjust ε by reducing it by the amount of α or by the value obtained 
for 

∑

(i,j)∈G

ω2dijyij in the previous iteration, whichever is smaller.  

5. Continue this iterative process until ε reaches the minimum value of 
∑

(i,j)∈G

ω2dijyij. 

Once the Pareto front is established, we employ a fuzzy decision- 
making approach to select the optimal compromised solution from the 
set of non-dominated solutions (Dias de Lima et al., 2021). This selection 
is guided by linear fuzzy membership functions μcost

p for 
∑

i∈I
ω1cixi and 

μdistance
p for 

∑

(i,j)∈G

ω2dijyij, which measure the degree to which each 

objective is achieved for each solution. The compromise ratio is then 
calculated using the set of constraints (15)–(17) to find the most 
balanced solution cost and distance, with importance factors ω1 and ω2 
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tuned to reflect the carrier’s specific priorities, i.e., these factors are 
selected by the decision maker based on the company’s preferences. 

μcost
p =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 OFcost
p ≤ OF1 ∀p

OF1 − OFcost
p

OF1 − OF1
OF1 ≤ OFcost

p ≤ OF1∀p

0 OFcost
p ≥ OF1 ∀p

(15)  

μdistance
p =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 OFdistance
p ≤ OF2 ∀p

OF2 − OFdistance
p

OF2 − OF2
OF2 ≤ OFdistance

p ≤ OF2 ∀p

0 OFdistance
p ≥ OF2 ∀p

(16)  

μp =
ω1μcost

p + ω2μdistance
p

ω1 + ω2
∀p (17)  

where OFcost
p and OFcost

p are the objective functions values for each point p 
of the Pareto front and OFi,OFi represent the maximum and the mini-
mum values of each vector, respectively. 

By integrating these advanced optimisation and decision-making 
methodologies, our model provides low-cost carriers with a robust 
tool for strategic seat allocation, enhancing revenue without compro-
mising customer experience or operational efficiency. 

4.4. Blocking seats framework 

In this subsection we explain how the seat blocking and the dynamic 
multi-objective model work together, aiming to increase the overall 
revenue. A common practice in the airline industry is to block premium 
seats so that passengers cannot book them for free. This increase the 
purchase probability by leaving the most historically purchasable seats 
unassigned and in some cases, this may lead in passenger’s unsat-
isfaction if they get to notice that the seats were blocked, meaning that 
the blocking must be prudent. Anyway, this practice influences cus-
tomers that usually do not purchase premium seats (Mumbower et al., 
2015). The airplane appears to be more fully reserved than it really is, 
and this is accounted in the parameter ai but not in hi. The key idea is to 
leave premium seats unassigned for passengers willing to pay for them. 

Firstly, our algorithm blocks the number of seats specified by the 
parameter s. Secondly, it receives the number of passengers q and 
depending on this parameter different stopping criteria are applied. For 
instance, if q < 7 the optimality gap is at most 5.0%; if 7 ≤ q < 10 the 
optimality gap is at most 15.0%, if 10 ≤ q < 20 the optimality gap is at 
most 20.0%, otherwise the booking is discarded by the model. 
Regarding the minimum distance δ it is initialised in 7 units so that the 
passengers are not located in the same row. If the aircraft is too full and 
the minimum distance δ cannot be possibly accomplished, the model 
becomes infeasible and δ is relaxed by one unit until the model is feasible 
again. This procedure makes the computation time longer for these it-
erations and when seats are finally assigned by the model, q most 
important seats are unblocked for the next booking and parameter ai is 
updated accordingly. 

To handle uncertainty and increase the purchase probability of a 
seat, we block premium seats with the higher ranki by setting ai = 1, 
which are later unblocked when new seats are assigned, as explained in 
Fig. 3. 

5. Computational experiments 

All the results were run in processor Intel(R) Core (TM) i5-8250U 
CPU @ 1.60 GHz 1.80 GHz, RAM 8.00 GB (7.86 GB useable) in type 
64-bit operating system, x64-based processor in Gurobi optimiser under 
version 10.0 and academic license. 

In this section we will present all the relevant results. First, we will 
show the statistical results obtained and the relevant parameters in the 
mathematical model. Second, we expose the model’s seat assignments 
and performance varying the weights in the objective function for 
different cases. Third, we show the multi-objective approach analysis 
including the Pareto front and a fuzzy function to assist decision-makers. 
Finally, we demonstrate the acceleration results. 

5.1. Case study 

From the historical data provided by the airline, we found out the 10 
most purchased seats shown in Fig. 4a. We determined that every seat 
has been purchased at least one time and therefore the ranki of any seat 
is greater than 0. 

Fig. 4 shows descriptive statistics for the historical seats purchased 
and number of people per booking. Specifically, Fig. 4a shows the results 
obtained for the parameter ranki for the top 10 seats, where it was 
determined that the most important seats in our model are 24B and 24A. 
Furthermore, it is essential to have an idea of how the number of people 
per booking behaves on regular flights to determine the stopping criteria 
in the model based on q. Fig. 4b shows a histogram to have an intuition 
of the probability distribution for the number of passengers in each 
booking. Statistical analysis was made with historical data from 345 
flights. From Fig. 4b we can determine that the most common number of 
people in a booking is one passenger, followed by two and three, 
meaning that the model must work more efficiently for this number of 
passengers in the same booking. It is also interesting to see that there are 
bookings where the number of people is 20 or even more. This is due to 
charter sales, and in this particular case, where there are more than ten 
people or so, and this type of booking are discarded by the model. 

The original cost of each seat determined by the airline in thousands 
COP is shown next in Table 1. 

Table 1 depicts the cost provided by the airline. This is represented 
by basei in Eq. (a). Having these results in mind, we are now able to 
compute the final cost of each seat using Eq. (a). More details, like the 
seat numeration, can be found in the GitHub repository.1 

5.1.1. Results for the seat assignment 
It employed a color-coding scheme to elucidate the seat assignment 

process within our proposed model. This system is pivotal for inter-
preting the set of Fig. 5, which illustrate the model’s assignment pattern. 
Specifically, red markings with an “A” denote seats that were previously 
assigned and thus are not allocated by the model. Green markings, 
accompanied by a number, indicate the sequential order of assignment 
by the model; seats sharing the same number belong to the same 
booking. This numbering commences at 1 and continues until all 
bookings are allocated. Notably, the green hue intensifies in corre-
spondence with later allocations. 

5.1.1.1. Mono-objective static model. In this section, we test the mathe-
matical model using only the first objective, i.e., ω1 = 1 and ω2 = 0. 
Therefore, we seek to minimise the cost associated to assign seats and to 
leave the most probable seats to be purchased in the future without any 
assignation. Additionally, we run the model for different initial occu-
pancy scenarios of the airplane starting with 30% of assigned seats, 
continuing with 50% and finally 80%. Assignation results are shown 
next. 

Fig. 5 depicts how the seats were assigned in each iteration. The 
number in the seat represent the iteration when it was assigned; if two or 
more seats have the same number, it means they were selected in the 

1 Electronic companion–Seat Assignment Recommendation in Airlines Pur-
chase Flow to Increase Ancillary Revenue Considering Weight and Balance 
Constraints: Data and Codes (2024) https://github.com/germanrpardo 
1/Airline-Seat-Assignment-MIP- [Accessed 27 Mar 2024]. 
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Fig. 3. Solution methodology.  

Fig. 4a. Rank for the top 10 most purchased seats.  Fig. 4b. Histogram of the number of people per booking.  
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Table 1 
Original cost in thousand COP.  

Original cost [k COP] 

Row A 
Window 

B 
Middle 

C 
Aisle 

1 39 34 39 
2 34 29 34 
3 34 29 34 
4 34 29 34 
5 34 29 34 
6 27 22 27 
7 27 22 27 
8 27 22 27 
9 27 22 27 
10 27 22 27 
11 27 22 27 
12 29 24 29 
13 29 24 29 
14 18 12 18 
15 18 12 18 
16 18 12 18 
17 18 12 18 
18 18 12 18 
19 18 12 18 
20 18 12 18 
21 18 12 18 
22 18 12 18 
23 18 12 18 
24 14 9 14 
25 14 9 14 
26 14 9 14 
27 14 9 14 
28 14 9 14 
29 14 9 14 
30 14 9 14 
31 14 9 14 
32 14 9 –  

Fig. 5a. Mono-objective seat assignment with 30% of seats assigned.  

Fig. 5b. Mono-objective seat assignment with 50% of seats assigned.  

Fig. 5c. Mono-objective seat assignment with 80% of seats assigned.  
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same booking. For instance, in Fig. 5a one can see that seats 17D and 
21D were selected in the first iteration for the same booking. Moreover, 
the letter “A” means that the seat was initially assigned, and the model 
didn’t consider that seat for the allocation. The model is always 
assigning the less probable purchasable seats based on historical data 
and, since the airplane ends almost full in most cases, the weight and 
balance constraints are automatically considered. One key insight to 
notice, is that the model tends to group the seats in the same reservation 
very close to each other, therefore we are not accomplishing with our 
objective of maximising distance between passengers. 

5.1.1.2. Multi-objective static model. Following our premise, we want to 
allocate passengers in the same booking as far as possible. But at the 
same time, we want to assign the less preferable seats so that they can be 
bought in the future by other customers. Another important aspect to 
consider, is that we want to allocate passengers preserving the balance 
and weight constraints in the plane. This will only take place when the 
airplane is between 40% and 70% full, because in the rest of the cases 
the passenger assignment will not affect as much as other factors such as 
the baggage or the petrol that is constantly consumed when the airplane 
is flying. 

The model was run using different instances and unless otherwise 
specified δ = 7 and b = 100. The parameter δ starts with a value of seven 
so that, at least, the seats assigned in the same booking are not in the 
same row. As the airplane gets fuller, the problem becomes infeasible 

Table 2 
Weights in the objective function.  

Objective function ω1 ω2 

Both objectives 0.55 − 0.45 
Only distance 0.0 − 1.0 
Only cost 1.0 0.0  

Fig. 6a. Multi-objective seat assignment with 30% of seats assigned.  

Fig. 6b. Multi-objective seat assignment with 50% of seats assigned.  

Fig. 6c. Multi-objective seat assignment with 80% of seats assigned.  
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since there is no combination of seats to satisfy the minimum distance δ, 
so this parameter is relaxed by one unit in such cases until the problem 
becomes feasible again. Table 2 shows the designated weights for each 
objective in the model. Specifically, the ωi values for the multi-objective 
instance (second row of the table) were chosen only for illustrated 
purpose and can be setting to any number depending on the decision 
maker preferences. 

Contrasting the results in Fig. 6 the key insight here is that the model 
now chooses the cheapest seats, but at the same time it maximises the 
distance between passengers in the same booking, hence persuading 
them to buy ancillary services. 

5.1.2. Blocking seats framework 
As explained in section 4.3, our algorithm starts by blocking a given 

percentage of premium seats so that they remain unassigned for cus-
tomers willing to pay for them. This has several benefits such as 
increasing the purchase probability of premium seats and a computation 
time reduction in the model shown in section 5.4. Briefly explained, our 
algorithm initialises the parameter ai = 0 for the most important seats i. 
e., the seats appear to be assigned when they are not really assigned. 
After some seats are assigned, we release the least important seats to 
maintain a constant percentage of blocked seats throughout the itera-
tions and maintain premium seats blocked. 

To test our multi-objective dynamic approach, we compare the seat 
assignment under different weights in the objective function. We use the 
following expressions to measure cost and distance, respectively: cost =

Fig. 7a. Seat assignment considering both objectives.  

Fig. 7b. Seat assignment minimising cost.  

Fig. 7c. Seat assignment maximising distance.  

Table 3 
Payoff table.  

Optimisation OF1[$ COP] OF2 

min OF1 107.76 48 
max OF2 1107.10 148     
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∑

i∈I
cixi and distance =

∑

(i,j)∈G

dijyij and they are multiplied by the weights 

ω1 and ω2, respectively. Additionally, Table 2 illustrates the weights 
used in each scenario. 

Fig. 7 show how the seats were assigned in each iteration. The 
number in the seat represent the iteration when it was assigned and if 
two or more seats have the same number, it means they were selected in 
the same booking. For instance, in Fig. 7a one can see that seats 11C and 
21D were selected in the first iteration when both expressions are 
considered in the objective function. Furthermore, in Fig. 7c when the 
cost was not considered in the objective function, the seats 9E and 28C 
were selected in the first iteration, i.e., when the plane was empty. 

Moreover, Fig. 7 shows that the balance of the aircraft is accom-
plished with the constraints above mentioned. The allocation is sym-
metric in every case. 

5.1.3. Pareto front and decision-making approach 
Below are the results obtained by applying the augmented 

ε-constraint method for the multi-objective instance of the problem. The 
first step to build the Pareto front was to calculate the payoff table, i.e., 
each objective’s maximum and minimum value as shown in Table 3. 
This was done by computing the model with one weight equal to 0 to 
find the minimum of the other part. To find the maximum, the optimi-
sation problem was run using both weights for each objective:where 
OF1 =

∑

i∈I
cixi and OF2 =

∑

(i,j)∈G

dijyij. 

Then, applying the iterative method described in section 4.3 the 
following Pareto frontier is obtained: 

From Fig. 8, it can be noticed how the two objectives are conflictive 
with each other. The more distance between seats, we obtain a higher 
cost. Additionally, it is evident that from around the cost of 300, the 

distance stops increasing; because the maximum distance was reached, 
and thus these are dominant points. 

The results from applying equations (15) − (17) are represented in 
Table 4, depicting a subset of the Pareto front solutions. The selection 
criterion is to choose the Pareto point that maximises the membership 
function value, μp, for each solution point p. The optimal μ_p value, 
4.671, is achieved at solution 107. Hence, for an optimal decision, the 
decision-maker should opt for the solution where OF1 = 192.90 and 
OF2 = 140, as this combination represents the most favorable trade-off 
between the two objectives according to the chosen decision-making 
criteria. 

5.1.4. Computation time reduction 
First, it is essential to notice how the computational time decreases 

when the airplane is fuller; the reason is that constraint (5) forces the 
variables to be 0, and the model needs to consider fewer variables. Next, 
it is shown a comparison of the computational time and the objective 
function through each iteration when there are four people per booking 
(i.e., q = 4) until the airplane is full. 

At the beginning of the iterations, we set every available seat to be 
empty. Still, given the time vs. iteration graphs, it is noticeable that 
throughout the iterations, the computational time tends to a constant 

Fig. 8. Pareto front.  

Table 4 
Results for selected solutions.  

Solution OF1[$ COP] OF2 μp 

1 1100.19 148 0.038 
25 682.52 148 2.337 
50 636.52 148 2.590 
75 255.29 140 4.328 
100 206.52 140 4.596 
107 192.90 140 4.671 
125 160.33 124 4.131 
150 116.14 76 2.214  

Fig. 9a. Comparison of computational time with and without acceleration.  

Fig. 9b. Comparison of objective function with and without acceleration.  
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and to be shorter. This technique consisted of blocking seats that are the 
most expensive with the previously defined cost for its attributes and 
operating cost. Also, throughout the iterations, we started to unblock the 
cheapest seats blocked in the first place so that the model begins to 
consider them again. All of these by setting parameter ai to 1 for the most 
important seats. In the first iterations, we had a constant number of 
available/occupied seats, marking to busy (for the optimal solution in an 
iteration) and releasing the others marked busy without being physically 
busy. 

As shown previously, the computational time tends to decrease when 
the airplane is fuller. Therefore, the blocking of seats was tested, with 
the same parameters and having s = 82.5% of seats blocked in the 
aircraft as an initial condition for the model. These seats will be released 
simultaneously as the model assign seats to passengers. 

Comparing the graphs in Fig. 9a, we show that the computational 
time decreased under the same parameters, and the time is now more 
constant and way shorter than before. The orange objective is smoother 
but similar to the blue one, proving that the objective function does not 
change extremely in Fig. 9b. Given the blocked seats, the model per-
forms very well in both computational time and objective function (see 
Fig. 9). That means the model can solve problems in real-time and can be 
used in real applications. 

6. Conclusion 

We proposed an innovative multi-criteria approach to assign seats at 
check-in. The two main objectives of the model were satisfied in every 
iteration, and the computational time started to get problematic when 
there were four or more people in the same booking. Anyway, this 
problem was addressed by blocking seats; benefits of blocking seats are 
twofold: improves computation time significantly and it increases seat 
fee revenues overall (Mumbower et al., 2015). Furthermore, the algo-
rithm ensures balance and weight constraints in the aircraft for safety 
reasons, resulting in a symmetric seat assigning and not overburdening 
any area by using novel linear constraints derived from the centre of 
mass formula. 

The model proposed consisted of a network flow-based formulation 
where every node represents one seat with a fixed cost, and every arc 
corresponds to the distance between seats, measured using the Man-
hattan approach. Additionally, we included the premium seats blocking 
framework to increase overall revenue, leaving premium seats unas-
signed for customers willing to pay for them. Finally, we proposed a 
decision-making approach based on Pareto front and a fuzzy function to 
assist decision makers prioritising each objective. 

Future work includes using machine learning models to better cap-
ture the probability of a seat to be purchased. Furthermore, one goal is to 
model this problem using a stochastic optimisation universal framework 
to retrieve policies, to better address the uncertainty, solve the problem 
using different learning algorithms and finally set a benchmark for 
future possible solutions. 
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Modeling and solving the endpoint cutting problem. Int. Trans. Oper. Res. 800–830. 
https://doi.org/10.1111/itor.13091. 

Dias de Lima, T., Tabares, A., Baños Arias, N., Franco, J.F., 2021. Investment & 
generation costs vs CO2 emissions in the distribution system expansion planning: a 
multi-objective stochastic programming approach. Electr. Power Energy Syst. 
https://doi.org/10.1016/j.ijepes.2021.106925. 

Fonseca, P.A., Juan-Perez, A., Mas, S., 2013. Using simulation to compare aircraft 
boarding strategies. Simulat. Prod. Logistik 237–246. https://doi.org/10.3390/ 
math11204288. 

IdeaWorksCompany LLC, 2022. The 2022 CarTrawler Yearbook of Ancillary Revenue. 
Airline Revenue and Transformation Series. 

Kummara, R., Guntreddy, R., Garcia Vega, I., Tai, H., 2021. Dynamic pricing of 
ancillaries using machine learning: one step closer to full offer optimization. 
J. Revenue Pricing Manag. 646–653. https://doi.org/10.1057/s41272-021-00347-6. 

Mavrotas, G., 2009. Effective implementation of the ε-constraint method in multi- 
objective mathematical programming problems. Appl. Math. Comput. 455–465. 
https://doi.org/10.1016/j.amc.2009.03.037. 

Mumbower, S., Garrow, L.A., Newman, J.P., 2015. Investigating airline customers’ 
premium coach seat purchases and implications for optimal pricing strategies. 
Transport. Res. Pol. Pract. 53–69. https://doi.org/10.1016/j.tra.2014.12.008. 

O’Connell, J.F., 2011. Ancillary revenues: the new trend in strategic airline marketing. 
En J. F. O’Connell, & G. Williams Air Transport in the 21st Century. Ashgate 
Publishing Limited, pp. 145–169. Obtained from. https://www.taylorfrancis. 
com/chapters/edit/10.4324/9781315263052-21/ancillary-revenues-new-trend-stra 
tegic-airline-marketing. 

O’Connell, J.F., Warnock-Smith, D., 2013. An investigation into traveler preferences and 
acceptance levels of airline ancillary revenues. J. Air Transport. Manag. 12–21. 
https://doi.org/10.1016/j.jairtraman.2013.06.006. 

O’Connell, J.F., Martinez Avellana, R., Warnock-Smith, D., Efthymiou, M., 2020. 
Evaluating drivers of profitability for airlines in Latin America: a case study of Copa 
Airlines. J. Air Transport. Manag. https://doi.org/10.1016/j. 
jairtraman.2019.101727. 

Orlin, J.B., Ahuja, R.K., Magnanti, T.L., 1993. Network Flows: Theory, Algorithms, and 
Applications. Prentice Hall. 

Rothstein, M., 1971. An airline overbooking model. Transport. Sci. 180–192. Obtained 
from. http://www.jstor.org/stable/25767604. 

Salari, M., Milne, J.R., Delcea, C., Kattan, L., Cotfas, L.-A., 2020. Social distancing in 
airplane seat assignments. J. Air Transport. Manag. https://doi.org/10.1016/j. 
jairtraman.2020.101915. 

Sherali, H.D., Bish, E.K., Zhu, X., 2006. Airline fleet assignment concepts, models and 
algorithms. Eur. J. Oper. Res. 1–30. https://doi.org/10.1016/j.ejor.2005.01.056. 

Subramanian, R., Scheff, R.P., Quillinan, J.D., Wiper, D.S., Marsten, R.E., 1994. 
Coldstart: fleet assignment at delta air lines. Interfaces 104–120. https://doi.org/ 
10.1287/inte.24.1.104. 
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