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Introduction: This research focuses on exploring the impact of Big Data
Development (BDD) on Urban Ecological Governance Performance (EGP),
with a particular emphasis on environmental dimensions within and among
various regions. It aims to understand the complex interplay between
technological advancements, urbanization, and environmental management in
the context of urban ecological governance.

Methods: Employing the Spatial Durbin Model (SDM), the study rigorously
investigates the effects of BDD on EGP. It also examines the mediating role of
Industrial Structure Level (ISL) and the moderating effects of both Level of
Technological Investment (LTI) and Urbanization Level (URB), to provide a
comprehensive analysis of the factors influencing urban ecological governance.

Results: The findings reveal that big data significantly strengthens urban
ecological governance, characterized by pronounced spatial spillover effects,
indicating interregional interdependence in environmental management.
Urbanization level notably amplifies the influence of BDD on EGP, whereas
the magnitude of technological investments does not show a similar effect.
Moreover, the industrial structure acts as a partial mediator in the relationship
between BDD and EGP, with this mediating role demonstrating variability across
different regions.

Discussion: The research highlights the critical role of big data in enhancing
urban ecological governance, particularly in terms of environmental aspects. It
underscores the importance of technological advancements and urbanization in
augmenting the effectiveness of ecological governance. The variability of the
mediating role of industrial structure across regions suggests the need for tailored
strategies in implementing big data initiatives for environmental management.
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1 Introduction

The advent of the big data era marks a significant shift in
information technology and data analysis. Professionals spanning
a diverse range of disciplines, including computer science, physics,
economics, mathematics, political science, bioinformatics,
sociology, and others, are increasingly seeking access to the vast
troves of information generated about people, objects, and their
interactions (Boyd and Crawford, 2012) (Burgess, 2020). Recently,
the rapid evolution of big data has garnered considerable attention
and prompted widespread scholarly discussion, underlining its
significance in research. Despite its widespread usage, accurately
defining the term ‘big data’ continues to be a challenge (Laney, 2001;
Manyika et al., 2011; Franks, 2012). The National Institute of
Standards and Technology (NIST) (Executive Office of the
President, 2014) in the United States succinctly describes the
characteristics of big data using three “V”s: “Volume” (enormous
size), “Velocity” (rapid access and analysis), and “Variety” (diversity
in data types and sources). In addition to these attributes, certain
scholars assert that big data also encompasses an additional
characteristic: complexity (Desouza et al., 2017). Hirsch (2013)
draws a parallel between the significance of big data and the
discovery of oil, envisaging it as an essential catalyst in the
evolution of future smart cities (Iqbal et al., 2020). Owing to its
vast volume and extensive variety, big data has forged links with an
ever-growing array of fields. This is evidenced by its applications in
various sectors, such as transportation (Hashem et al., 2016),
healthcare (Murdoch and Detsky, 2013), and ecological
environmental governance (Bakker and Ritts, 2018; Sarker et al.,
2020). Yang et al. (2020) propose that the integration of big data
application with regulatory oversight can culminate in effective
environmental governance. Etzion and Aragon-Correa (2016)
argue that the onset of the digital era has the potential to
enhance efficiency and decrease energy consumption, thus
amplifying the effectiveness of environmental governance.

Since the latter half of the 20th century, there has been
unprecedented urban expansion globally, particularly in
developing countries (Cui and Shi, 2012), giving rise to
challenges including environmental degradation, congestion, and
social and economic exclusion (European Commission, 2010).
Furthermore, the pervasive use of fossil fuels post-Industrial
Revolution has led to substantial environmental pollution, posing
a concern of international proportions (Wu et al., 2022). In response
to this challenge, numerous scholars have investigated various
factors influencing environmental governance performance from
diverse angles. Xu and Lin (2018) argue that variations in research
and development personnel, along with funding, significantly affect
PM2.5 environmental governance outcomes. Concurrently, a
growing consensus acknowledges that the improved resource
allocation and efficiency enhancements enabled by big data
significantly contribute to sustainable development (Etzion and
Aragon-Correa, 2016). Shapiro and Walker (2018) discovered in
their study conducted in the United States that enhancements in air
quality and environmental governance are attributable to the
implementation of pertinent policies and regulations,
optimization of industrial structures, and increased production
efficiency. Additionally, certain researchers have extensively
explored the interplay between directed technological change and

the outcomes of environmental governance (Grimaud et al., 2011;
Aghion et al., 2016).

A robust ecological environment forms the cornerstone of China’s
commitment to sustainable development (Central Committee of the
Communist Party of China State Council, 2018), necessitating the
collective enhancement of ecological governance performance across
various regions to achieve this objective. Scholars have utilized spatial
econometric models to investigate the spatial spillover effects of
agricultural ecological governance in China (Wu et al., 2022),
providing valuable insights. Furthermore, the application of the
Spatial Durbin Model has been pivotal in deciphering the intricate
relationship between environmental regulation and Green Total
Factor Energy Efficiency (GTFEE) (Wu et al., 2020). In the
contemporary era of accelerated big data development, this subject
maintains its critical relevance in the context of regional development.
This rapid development poses a significant challenge for governments:
balancing the protection of citizens from potential big data risks while
simultaneously enhancing governmental efficiency (Kuziemski and
Misuraca, 2020). In this context, an intriguing question arises: To
what extent does the level of big data development in a region exert a
spatially driven influence on its ecological governance? Specifically, it
prompts the inquiry whether the extent of big data development in
various regions enhances internal ecological governance performance
or induces spillover effects on ecological governance across disparate
regions. Moreover, it is crucial to examine how technological
investments and the level of urbanization by local governments
influence ecological governance outcomes, with a potential for
spatial spillover effects.

The organization of this paper is outlined as follows: The second
section, the Literature Review, methodically examines the concepts
and existing research pertaining to urban ecological governance
performance and the level of big data development. The third
section constructs a theoretical framework and formulates
research hypotheses, grounded in existing theories and empirical
studies. The fourth section elaborates on the selection criteria and
construction standards for the indicators employed in this study,
alongside the development of the spatial econometric model. The
fifth section delves into the analysis of the test results obtained from
the spatial econometric model, scrutinizing the validity of the
formulated hypotheses. The sixth section provides a discussion
and comprehensive summary of the research findings. Finally,
the seventh section articulates the theoretical and practical
contributions of this study, delineating its limitations and
proposing avenues for future research.

2 Literature review

Urban Ecological Governance Performance: The latter half of the
20th century has witnessed unprecedented urban growth globally,
particularly in developing countries (Cui and Shi, 2012), leading to
pressing challenges like environmental degradation, congestion, and
social and economic exclusion (European Commission, 2010). Urban
development necessitates an approach oriented towards ecological
governance (Gao and Sun, 2022), wherein diminishing the reliance on
fossil fuels in energy consumption is pivotal in tackling climate change
(Greaker and Pade, 2009). The efficacy of urban ecological governance
is measured by its ability to yield economic and social benefits through
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efficient natural resource utilization, effective labor and capital
allocation, and the fostering of technological innovation. Within
this framework, Shiell and Lyssenko (2014) propose that the
adoption of a carbon tax or a tradable permit system could
positively impact climate change mitigation by incentivizing
energy-related technological research and development.
Furthermore, the amalgamation of big data with environmental
governance has been instrumental in catalyzing technological
transformations in energy consumption and environmental quality
(Acemoglu et al., 2012). The field of environmental economics
highlights the impact of monopoly periods on environmental
patents or technological innovations in the formation of
environmental and innovation policies (Greaker and Pade, 2009;
Gerlagh et al., 2014). Scholars have delved deeper into
understanding how modifications in industrial structures influence
the outcomes of environmental governance (Zhao et al., 2022). In
efforts to improve urban environmental management, researchers
have combined remote sensing and census data to develop biophysical
indicators for evaluating environmental conditions across diverse
urban communities (Musse et al., 2018). Moreover, China views
the maintenance of a robust ecological environment as a
foundational necessity for sustainable development (Central
Committee of the Communist Party of China State Council, 2018).
In this context, spatial econometric models have been utilized to
conduct comprehensive studies on the spatial spillover effects of
agricultural ecological governance in China (Wu et al., 2022). This
emphasizes the inherent complexity and interactivity of ecological
governance, contributing to a more holistic understanding of urban
ecological governance. Through a thorough examination of seminal
studies on big data applications in areas such as urban environmental
monitoring, intelligent transportation, disaster management systems,
and assisted living, a more comprehensive understanding unfolds of
how big data effectively addresses ecological challenges in urban
development and significantly contributes to ecological governance
(Ang and Seng, 2016).

Big Data Development Level: Despite the widespread usage of the
term ‘big data,’ its precise definition continues to be somewhat nebulous
and subject to various interpretations (Laney, 2001; Manyika et al.,
2011; Franks, 2012). The National Institute of Standards and
Technology (NIST) in the United States delineates big data with
three defining characteristics: ‘Volume’ (enormous scale), ‘Velocity’
(swift access and analysis), and ‘Variety’ (extensive range of data types
and sources) (Executive Office of the President, 2014). The exponential
growth of big data technology, expanding nearly tenfold every 5 years
(Hendrickson, 2010), has catalyzed its application across a wide
spectrum of fields, including environmental governance (Zhang
et al., 2017; Zhang et al., 2018), government administration
(Stoianov et al., 2015), healthcare systems (Kankanhalli et al., 2016),
and retail (Schmarzo, 2013). Furthermore, the burgeoning potential of
big data applications has prompted numerous countries to prioritize its
development, as evidenced by initiatives like the United States’
$200 million investment in big data research and development in
2012 (NSF, 2012) and Japan’s strategic emphasis on big data
technology (Li, 2015). Manyika et al. (2011) contend that big data
endows the public sector with a potent suite of strategies and
techniques, enhancing productivity, and fostering greater efficiency
and effectiveness. Oussous et al. (2018) delineate key applications of
big data across various domains, including national power

consumption, E-health, the Internet of Things (IoT), public utilities,
transportation, logistics, political services, and government monitoring.
Overall, the development level of local big data can be gauged by factors
including the level of infrastructure construction and the breadth of
application. However, the development of big data is accompanied by
challenges such as complexities in data management, data cleaning,
aggregation, imbalances in system capabilities, issues in categorizing big
data sets, and technical hurdles in data analysis (Oussous et al., 2018), all
intricately linked to the diversity, speed, and volume of data (Khan et al.,
2014). Furthermore, scholars have expressed concerns regarding
security and privacy challenges associated with the growth of big
data (Greenwald, 2013; Greenwald and MacAskill, 2013), warning
that it might intensify existing inequalities, such as racial
discrimination (Polonetsky and Tene, 2013). Giest and Samuels
(2020) emphasize the detrimental effects of data gaps, noting their
impact on the economic opportunities of marginalized groups, social
mobility, and levels of democratic participation, potentially giving rise to
new forms of inequality. Moreover, the implementation of data-sharing
initiatives often encounters obstacles due to policy and legal constraints
(Desouza, 2014).

Contemporary academic research on big data and ecological
environmental governance is expansive, with numerous scholars
emphasizing an urban development model that is intricately guided
by ecological governance principles and big data insights. As delineated
by the ‘Muddling Through’ theory (Lindblom, 2010), confronting
complex environmental pollution challenges, scholars and
policymakers frequently adopt incremental strategies over
comprehensive, one-off solutions due to the limitations imposed by
bounded rationality. Historically, initiatives to mitigate climate change
have predominantly focused on curbing the consumption and
utilization of fossil fuels. Viewed through the lens of environmental
economics, policy instruments like carbon taxes are considered to exert
a positive influence on ecological governance. Additionally, the
potential role of big data in enhancing ecological environmental
governance has been a focal point of scholarly investigation. The
academic community acknowledges that big data paves new
pathways for formulating environmental and innovation policies,
and catalyzing technological breakthroughs. Nonetheless, the existing
literature remains relatively sparse in empirical studies that specifically
focus on the application of big data in urban ecological governance
performance. Research that delves into the reciprocal impacts among
regions, especially those incorporating spatial spillover effects, is notably
lacking. Consequently, this paper endeavors to integrate spatial spillover
effects with an analysis of how the development level of big data
influences the efficacy of urban ecological environmental governance.

FIGURE 1
Theoretical model of research hypotheses.
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This methodology is designed to offer fresh perspectives and innovative
approaches in the realm of urban ecological governance research.

3 Theoretical model and research
hypotheses

This study builds on theoretical foundations that clarify the
relationships among several key elements: the level of big data
development, technological investment, urbanization, industrial
structure, and urban ecological governance performance. It
introduces a comprehensive theoretical model (see Figure 1) that
illustrates the interplay among these elements. Within this model,
the application of big data is hypothesized to augment resource
allocation efficiency and strengthen environmental monitoring
initiatives, thus directly contributing to the enhancement of
urban ecological governance performance. Furthermore, big data
enables government entities to precisely pinpoint market demands
and developmental trends, leveraging a vast spectrum of
information resources. This capability fosters shifts in industrial
structures, subsequently influencing the outcomes of ecological
governance. The progression of big data technology is also
perceived to interact with the intensity of technological
investment and the level of urbanization, thereby influencing
government decision-making in areas such as funding allocations
and policy development. These interactions play a crucial role in
determining the overall effectiveness of governance strategies.

3.1 The impact of big data development level
on urban ecological governance
performance

According to Technological Determinism theory, technological
advancements are pivotal in shaping social and economic structures,
playing a fundamental role in driving societal evolution (Morley and
Robins, 1995). Consistent with this perspective, Yang et al. (2020)
assert that the integration of big data applications within regulatory
frameworks can significantly enhance environmental governance.
Specifically, big data technology can be utilized to develop urban
environmental monitoring systems, facilitating the prompt
identification of environmental issues and provision of early
warnings. Furthermore, the expansion of big data endows urban
managers with an enhanced precision in understanding
environmental challenges and natural resource utilization, thereby
paving the way for the development of more effective ecological
governance strategies. In addition, big data facilitates increased public
participation in urban ecological governance, thereby enhancing the
rationality and scientific underpinning of decision-making processes.
The development of big data is anticipated to substantially support
urban ecological governance across various sectors, influenced by a
myriad of interconnected factors. Considering that scholars have
identified spatial spillover effects in the fields of environment (Wu
et al., 2020), agriculture (Wu et al., 2022), and healthcare (Song et al.,
2019) across various regions, it is reasonable to hypothesize that
similar spillover effects could exist between the level of big data
development and urban ecological governance performance.
Consequently, we propose the following hypothesis:

H1a: The level of big data development in cities significantly impacts
the improvement of urban ecological governance performance.

H1b: The level of big data development in cities exerts a significant
spatial spillover effect on urban ecological governance performance.

3.2 The mediating mechanism of industrial
structure level

Achieving a balance between sustainable economic development
and effective environmental protection represents a critical and
challenging task (Daly, 1977). Industrial restructuring not only
creates market opportunities, fostering economic development
(Schumpeter, 1959), but also plays a vital role in reducing pollution
levels (Cheng et al., 2018). Within this framework, establishing a
sustainable system for resource utilization and environmental
conservation that simultaneously balances economic growth is of
utmost importance. The widespread application of big data across
diverse fields (Oussous et al., 2018) showcases its potential to
scientifically guide the adjustment and development of urban
industrial structures. The beneficial impacts of big data are evident
in sectors including environmental governance (Zhang et al., 2017;
Zhang et al., 2018), government administration (Stoianov et al., 2015),
healthcare systems (Kankanhalli et al., 2016), and retail (Schmarzo,
2013). Through the analysis of relevant data, governments can pinpoint
industries that utilize resources efficiently and identify those that
contribute significantly to environmental degradation. This analysis
aids in the optimization of industrial structures, consequently reducing
ecological and environmental pressures on urban areas and steering
them towards an environmentally sustainable development trajectory.
This approach supports cities in enhancing ecological governance
outcomes while simultaneously fostering economic growth.
Therefore, we propose the following hypotheses:

H2a: The level of industrial structure development mediates the
relationship between the level of big data development and urban
ecological governance performance.

H2b: The level of industrial structure development not only
mediates the relationship between the level of big data
development and urban ecological governance performance but
also encompasses a spatial spillover effect.

3.3 The moderating mechanism of
technological investment level and
urbanization level

The intensity of technological investment exerts a pivotal
moderating influence on the evolution of Urban Ecological
Governance Performance, and its impacts can potentially yield
negative effects. Recent research has highlighted that, although
governmental investment in technology is instrumental in
advancing high-quality regional development (Jin and Yang,
2022), driving corporate digital transformation (Feng et al.,
2022), and supporting the construction of smart cities (Zeng
et al., 2023), it can also result in disparate resource allocation
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and diminished investment efficiency. Additionally, augmented
technological investment by certain regional governments could
potentially intensify disparities among localities, consequently
expanding the divergence in ecological governance performance
across regions. Therefore, we propose the following hypotheses:

H3a: The level of government technology investment can serve as a
moderating factor in the relationship between urban big data
development and urban ecological governance performance.

H3b: The level of government technology investment not only acts
as a moderator in the nexus between urban big data development
and urban ecological governance performance but also encompasses
spatial spillover effects.

In the developmental trajectory of urban areas, cities often evolve
into a series of concentric circles, indicative of dynamic population
shifts and urban expansion within these zones (Burgess, 2020). With
the escalation of urbanization and intensification of population
concentration, there is a concomitant increase in the demand for
big data applications in these urban environments. Examples like
intelligent transportation systems and environmental monitoring
systems highlight the role of big data in facilitating green
governance in urban areas, thereby amplifying its importance in
ecological governance. Additionally, the progression of urbanization
not only boosts the demand for big data applications but also correlates
with an increased awareness and willingness among residents to
participate in ecological protection initiatives. Fundamentally, the
progression of urbanization, along with escalating investments in
big data applications and an increasing environmental
consciousness among citizens, cultivates a synergistic interplay
among these facets. This synergy exerts a positive influence on the
outcomes of urban ecological governance, highlighting the intricate
interdependencies inherent in these urban dynamics. Therefore, we
propose the following hypotheses:

H4a: The level of urbanization development can act as a moderating
factor in the relationship between urban big data development and
urban ecological governance performance.

H4b: The level of urbanization development not only serves as a
moderator in the nexus between urban big data development and
urban ecological governance performance but also includes spatial
spillover effects.

4 Materials and methods

4.1 Selection andmeasurement of indicators

(1) Dependent Variable: Urban Ecological Governance
Performance (EGP). Urban ecological governance
performance can be understood as achieving significant
economic and social benefits through rational use of natural
resources, effective labor and capital input, and promoting
technological innovation. Combining related prior academic
research (Dong et al., 2008; Xiao and Xiao, 2022) and the goals
of China’s construction of an ecological civilization
(Central Committee of the Communist Party of China State

Council, 2015), we have developed a measurement system for
urban ecological governance performance. For ecological
governance input, this paper selects indicators from four
aspects: resource consumption, labor, capital, and
technology. As for the output of ecological governance,
indicators are chosen mainly from three aspects: economic,
social, and ecological environmental benefits. Given that per
capita urban GDP and fiscal revenue can measure a region’s
level of economic development, they are used to represent
economic benefits. For social and ecological environmental
benefits, considering their inherent ambiguity and difficulty to
be depicted by a single indicator, this paper chooses indicators
from four aspects: living environment, quality of life, resource
utilization, and pollution control capacity. Additionally, natural
environmental pollution in the socio-economic development of
cities is considered as an undesired output. Specific indicators
and their calculation are detailed in Table 1.

(2) Explanatory Variable: Big Data Development Level (BDD).
This study adopts the measurement methods of Berner et al.
(2014), Yoo and Choi (2015), Zhang et al. (2023), using
network readiness (infrastructure construction), information
and communication technology application index, and big data
application benefit index as the primary indicators to measure
the level of big data development. Based on these, each primary
indicator is further divided into secondary indicators, including
fixed (mobile) telephone penetration rate, number of internet
domain names, energy-saving and consumption-reducing
index, etc. The calculated indicators are then combined
using the entropy weight method to form a comprehensive
index of big data development level. Specific details of the
indicator calculations are provided in Table 2.

(3) Mediating Variable: Industrial Structure Level (ISL). The level
of industrial structure development reflects the rationality of a
city’s economic development and production. The ratio of the
value of the tertiary industry to the secondary industry can
indicate the economic level of a region and its evolutionary
trend. Therefore, this study chooses the ratio of these two as
the expression of the industrial structure development level.

(4) Moderating Variables: To enhance the explanatory power and
predictive accuracy of the model and to more comprehensively
consider and explain the complex relationships between the
variables, this study selects the Level of Technological Investment
(LTI) and Urbanization Level (URB) as moderating variables.
The study covers 30 provincial regions in China from 2012 to
2021, providing a large sample size that supports effective
modelling of multiple moderating variables. The Level of
Technological Investment (LTI) is measured by the ratio of
fiscal expenditure on science and technology to total local fiscal
expenditure; the Urbanization Level (URB) is measured by the
ratio of urban population to total regional population.

(5) Control Variables: This paper selects the Level of Human
Capital (LHC), Degree of Openness (OPD), and Foreign
Direct Investment Intensity (FDI) as control variables.
LHC is measured by the ratio of higher education students
to the total regional population; OPD is calculated by
multiplying the total value of goods imports and exports
by the exchange rate of USD to RMB and then taking the
proportion of this value to the region’s Gross Domestic
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TABLE 1 Urban ecological governance performance indicator system.

Type Primary index Secondary index Index explanation

Investment
Indicators

Natural Resource
Consumption

Land Consumption Urban construction land area per square kilometer

Energy Consumption Power consumption in billion kilowatt-hours

Water Resource Consumption Urban total water supply in ten thousand cubic meters

Labor Input Government Personnel Changes in
Environmental Management

Number of personnel in environmental and public facilities management and
water conservancy per ten thousand people

Capital Input Urban Environmental Infrastructure
Construction

Number of Urban Sanitation Vehicles: per unit

Number of Public Toilets: per seat

Length of Urban Drainage Pipes: per kilometer

Technical Input Level of Technological Investment Proportion of technological expenditures to total public financial
expenditures

Output
Indicators

Economic Benefits Economic Growth GDP: in billion yuan

General Revenue of Local Public Finance: in billion yuan

Social Benefits Living Environment Urban Road Area: in ten thousand square meters

Park Green Area: in hectares

Quality of Life Number of University Students: on campus

Average Salary of Non-private Sector Employees in Urban Areas: in yuan

Hospital Bed Capacity per Thousand People: per bed

Ecological Environmental
Benefits

Resource Utilization and Pollution Control
Capability

Urban Daily Sewage Treatment Capacity: in ten thousand cubic meters

Built-up Area Greening Coverage Rate: in percentage

Urban Domestic Waste Harmless Treatment Rate: in percentage

Natural Environmental
Pollution

Gas Emissions Sulfur Dioxide Emission: in ten thousand tons

Solid Waste Emissions Urban Domestic Waste Clearing Volume: in ten thousand tons

TABLE 2 Big data development level indicator system.

Primary index Secondary index Index explanation

Network (Infursturcture) Readiness Fixed Telephone Penetration Rate Total number of fixed telephone lines per hundred individuals in the
region

Mobile Phone Penetration Rate Total number of mobile phone subscriptions per hundred individuals in
the region

Mobile Phone Exchange Capacity Maximum simultaneous user capacity of mobile phone exchanges in the
region

Internet Access Ports Total number of broadband ports opened in the region

Optic Cable Route Length Total length of optic cable construction in the region

Information and Communication
Application Index

Revenue Level of Information Transmission, Software,
and Information Services

Total revenue of information transmission, software, and information
technology services in the region

Internet Domain Names Total number of internet domain names in the region

Internet Web Pages Total number of internet web pages in the region

Big Data Application Index Technological Innovation Index Number of domestic patents granted in the region per GDP

Energy Conservation Index Electricity consumption (in billion kilowatt-hours) per GDP
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Product (GDP); FDI is measured by the percentage of foreign
direct investment in the region’s total production value. The
measurement of all variables is reflected in Table 3.

4.2 Data source and description

This study selects data from 2012 to 2021 for 30 provincial regions
in China as the research subject. The data are sourced from the “China
Statistical Yearbook” and the “China City Statistical Yearbook,” and
are standardized for analysis. Missing data are filled in using the mean
value method. Due to the significant amount of missing data for
Taiwan, Hong Kong, Macau, and Tibet in China, these regions are not
included as research subjects. Table 4 displays the characteristic values
of variables with consistent data distribution.

4.3 Model construction and description

4.3.1 Spatial weight matrix
The spatial distance matrix is constructed based on the

distances between provinces, which can be either road

distances or straight-line distances. To ensure more objective
data measurement, this study constructs the matrix using
spherical distances calculated based on latitude and longitude.
The specific settings are as follows:

wij �
1

d2, i ≠ j

0, i � j

⎧⎪⎨⎪⎩
Herein, dij represents the spherical distance calculated based

on the latitudes and longitudes of province i and province j. The
term 1/ dij indicates the degree of weakening in the correlation
between the geographical distances of the provinces and cities.
The farther the geographical distance, the weaker the correlation,
or in other words, the greater the distance, the lesser
the influence.

4.3.2 Spatial autocorrelation model
The spatial autocorrelation model can determine the overall

spatial correlation of urban ecological governance performance.
Anselin (2019) has pointed out that the Moran’ I is an effective
tool for explaining the spatial correlation. This paper uses the global
Moran’s I index to assess the overall spatial connection or degree of

TABLE 3 Explanation of variable selection.

Type Name Symbol Index explanation

Dependent
Variable

Ecological Governance
Performance

EGP Input Indicators include: natural resource consumption, labor input, and so on; Output Indicators
include: economic benefits, social benefits, and so forth.

Independent
Variable

Big Data Development Level BDD Network Readiness, Information and Communication Application Index, Big Data Application
Benefit Index

Moderator Variable Level of Technological
Investment

LTI Science and technology fiscal expenditure as a percentage of total fiscal expenditure

Urbanization Level URB Urban population as a percentage of total population

Mediator Variable Industrial Structure Level ISL Output value of the tertiary industry as a percentage of the output value of the secondary industry

Control Variable Level of Human Capital LHC Number of students in higher education institutions as a percentage of the total population

Openness Degree OPD (Total value of goods imports and exports * USD to RMB exchange rate) as a percentage of the
regional gross domestic product

Intensity of Foreign Direct
Investment

FDI Total foreign direct investment as a percentage of GDP

TABLE 4 Basic characteristics of variables.

Type Variable Obs Mean Std. dev. Min Max

Dependent Variable EGP 300 0.3817110 0.0903354 0.2556760 0.7231316

Independent Variable BDD 300 0.1605794 0.127316 0.0261107 0.7367519

LTI 300 0.2625235 0.2411242 0.0000000 1.0000000

URB 300 0.6023137 0.1181357 0.3630000 0.8960000

ISL 300 1.2828340 0.7105003 0.5492720 5.2968200

LHC 300 0.0207672 0.0054972 0.0085230 0.0424870

OPD 300 0.2590370 0.2772613 0.0076000 1.4409000

FDI 300 0.0182750 0.0143852 0.0001000 0.0796000
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difference of urban ecological governance performance between
regions. The calculation formula is as follows:

I � ∑n
i�1∑n

j�1wij xi − �x( ) xj − �x( )
s2∑n

i�1∑n
j�1wij

In the above formula, s2 represents the variance of the subject of
study, wij is the spatial weight matrix, xi、 xj are the urban ecological
governance performance of province i and province j, n represents the
number of provinces studied, and �x represents the average urban
ecological governance performance across all provinces within the
study scope. The value range of Moran’s I index is [-1, 1]. A smaller
absolute value indicates weaker spatial correlation of the subject of study,
while a larger absolute value indicates stronger spatial correlation.When
the value is positive, it indicates a positive spatial correlation among the
subjects of study, i.e., objects with similar attribute values are clustered in
space. If it equals 0, it implies no spatial correlation among the subjects of
study. A negative value indicates a negative spatial correlation, meaning
objects with dissimilar attribute values are clustered in space.

4.3.3 Spatial econometric model
According to the method proposed by Lesage and Pace (2009),

this paper constructs a spatial econometric model to test spatial
autocorrelation. Considering the results of spatial autocorrelation
measurement, we have more appropriately applied the Spatial
Durbin Model (SDM) in this research to test the spatial effects
among variables. The Spatial Durbin Model (SDM) is a
generalization of the Spatial Error Model (SEM) and the Spatial
LagModel (SLM), obtained by reorganizing and expanding the SEM
and SLM and adding relevant conditional constraints. The basic
expression of the model is as follows:

Y � α + ρWY + βX + λWX + θ, θ ∈ 0, σ2In( )
In the formula, Y represents the dependent variable, X

represents the explanatory variables, α is the constant term, W is
the spatial weight matrix, β represents the regression coefficients, ρ is
the coefficient of the spatial lag term of the dependent variable Y, λ is
a parameter vector, and θ represents the random disturbance term,
which follows an independent distribution.

In this paper, based on the basic expression of the Spatial Durbin
Model (SDM) and the selected influencing variable indicators, a
Spatial Durbin Model (SDM) related to the study of factors affecting

urban ecological governance performance has been constructed,
specifically as follows:

The impact of Big Data Development Level (BDD) on Urban
Ecological Governance Performance (EGP).

Equation (1):

EGP � ρWij*EGP + α1BDD + α2COIit + γ1WitBDD + γ2COIit

+ μi + λt + εit

(1)
The mediating role of Industrial Structure Level (ISL) between

Big Data Development Level (BDD) and Urban Ecological
Governance Performance (EGP):

Equation (2):

ISL � ρWij*ISL + β1BDD + β2COIit + θ1WitBDD + θ2COIit + μi

+ λt + εit

(2)
Equation (3):

EGP � ρ′Wij*EGP + β1
′BDD + β2

′ISL + β3
′COIit + θ1

′WitBDD

+ θ2
′WitISL + θ3

′WitCOIit + μ′i + λ′t + εit
′ (3)

The moderating role of the Level of Technological Investment
(LTI) between Big Data Development Level (BDD) and Urban
Ecological Governance Performance (EGP).

Equation (4):

EGP � ρWij*EGP + δ1BDD + δ2LTI + δ3 BDD*LTI( ) + δ4COIit

+ η1WitEGP + η2WitLTI + η3Wit BDD*LTI( ) + η4COIit

+ μi + λt + εit (4)

The moderating role of Urbanization Level (URB) between Big
Data Development Level (BDD) and Urban Ecological Governance
Performance (EGP):

Equation (5):

EGP � ρWij*EGP + δ1BDD + δ2URB + δ3 BDD*URB( ) + δ4COIit

+ η1WitEGP+ η2WitURB + η3Wit BDD*URB( ) + η4COIit

+ μi + λt + εit (5)

In the formula, α1 ~ α2、 β1 ~ β3、 δ1 ~ δ4、 γ1 ~ γ2、 θ1 ~
θ3、 η1 ~ η4 represent the regression coefficients to be estimated; ρ is

TABLE 5 Results of data stationarity test.

Variables LLC unit root test ADF unit root test PP unit root test

EGP −12.0704*** −3.670*** −4.972***

BDD −7.2895*** −4.915*** −5.080***

LTI −6.1666*** −3.727*** −4.509***

URB −5.0260*** −4.009*** −5.315***

ISL −6.8265*** −5.894*** −4.899***

LHC −14.3366*** −4.414*** −6.161***

OPD −5.5812*** −4.091*** −5.078***

FDI −6.5161*** −4.508*** −6.186***

*p < 0.1, **p < 0.05, ***p < 0.01.
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the correlation coefficient of the dependent variable; ?is the spatial
weight matrix, COIit represents the control variables, including
LHC, OPD, FDI; μi denotes spatial fixed effects, λt represents time
fixed effects, εit is the random error term.

4.3.4 Spatial spillover effects
The Spatial Durbin Model (SDM) exhibits limitations in

elucidating the influence of pertinent variables in adjacent areas.
The SDM accounts for the lagged terms of assorted variables, which
may not objectively represent the explanatory capacity of the
regression coefficient values. Consequently, it is necessary to
undertake further decomposition of the effects of the influencing
factor variables. Drawing upon the findings of Lesage and Pace
(2009), this study utilizes partial differential equations to decompose
spatial spillover effects and reformulates the existing spatial models
into matrix form, as illustrated below:

yt � ρWyt + xtβ +Wxtθ + α + λttn + εt (6)
yt � 1 − ρW( )−1 α + xtβ +Wxtθ + λttn + εt( ) (7)

In certain situation, (1 − ρWij)−1 � 1 + ρWij + ρ2Wij
2 + ρ2Wij

3 + . . . . . .,

this equation can be transformed into the following matrix:

∂E y1( )
∂x1

/
∂E y1( )
∂xn

..

.
1 ..

.

∂E yn( )
∂x1

/
∂E yn( )
∂xn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� 1 − ρW( )−1

βk
W21θk

..

.

Wn1θk

W21θk
βk

/
W1nθk
W1nθk

..

.
1 ..

.

Wn1θk / βk

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)
Eq. 6 is a shorthand form of the SDM (Spatial Durbin Model),

where yt and xt are the explained variables, β and θ are the estimated
coefficients of the explained variables, ρ is the correlation coefficient
of the explained variable, Wis the spatial weight matrix, α represents
spatial fixed effects, λttn represents time fixed effects, and εt is the
random error term. Eq. 7 represents the partial derivatives for the
SDM. Eq. 8 is the modified matrix form.

5 Results

5.1 Stationarity test of data

To circumvent the potential problem of spurious regression, this
study employed the statistical software Stata 17.0 to carry out
stationarity tests on all variables. The study utilized the Levin-Lin-
Chu (LLC), augmented Dickey-Fuller (ADF), and Phillips-Perron (PP)
methods for unit root testing. Additionally, the difference-difference
method was applied to address unit roots in non-stationary time series,

as detailed in Table 5. When setting the lag order to 5, the significance
level for each variable was found to be 0.000 < 0.01, leading to the
rejection of the null hypothesis and thereby indicating that the data for
the selected variables are both stationary and reliable. For assessing
multicollinearity among the explanatory variables, the Variance
Inflation Factor (VIF) was utilized, providing an evaluation of
collinearity among these variables as presented in Table 6. The VIFs
for the explanatory variables were all found to be within the threshold of
10 and below 5, indicating a lack of dependence among the
explanatory variables.

5.2 Spatial autocorrelation test

To ascertain the spatial dependence of Ecological Governance
Performance (EGP) among various cities and provinces in China,
this study utilized Stata 17.0 to develop a standardized spatial weight
matrix and applied the global Moran’s I index to evaluate the EGP
across 30 provinces and municipalities in China spanning from 2012 to
2021. The results, as presented in Table 7, reveal that the p-values of the
Moran’s I index for EGP are all below 0.01, signifying a strong spatial
autocorrelation among the regions. All variables exhibit a positive
Moran’s I index, suggesting that there is a mutual enhancement of
ecological governance performance across regions. Additionally, from
2012 to 2021, the Moran’s I index overall exhibits a decreasing trend,
indicating a gradual reduction in spatial correlation among regions.
This finding lends crucial theoretical support to the use of spatial
econometric models in such analyses.

5.3 Establishment of spatial
econometric models

To confirm the suitability of selecting the Spatial Durbin Model
(SDM) for spatial econometric analysis, an LM test was conducted on
the model, with results displayed in Table 8. The test statistics from the
LM test are all significant at the 1% level, leading to the rejection of the
null hypothesis and supporting the selection of the SDM model as the
spatial econometric model. Subsequently, a Hausman test was
employed to compare the random effects model and the fixed
effects model. The results reveal that the test statistics are significant
at the 1% level, leading to the rejection of the null hypothesis and a
preference for the fixed effects model. Additionally, Wald tests and LR
tests were utilized to conclusively validate the spatial econometric
model, with results demonstrating significance at the 1% level and
eliminating the likelihood of reducing to a Spatial AutoregressiveModel
(SAR) or Spatial Error Model (SEM). Lastly, the results demonstrate
that the time fixed effects model is significant at the 1% level, suggesting
the superiority of the time fixed effects model over the individual fixed
effects model.

5.4 Regression analysis of the spatial
durbin model

a. Empirical Analysis of the Impact of Big Data Development
Level (BDD) on Urban Ecological Governance
Performance (EGP).

TABLE 6 Results of explanatory variable collinearity detection.

Variable VIF 1/VIF Variable VIF 1/VIF

BDD 2.92 0.341899 LHC 1.95 0.511930

LTI 4.52 0.221182 OPD 4.11 0.243190

URB 4.54 0.220063 FDI 1.61 0.619620

ISL 1.57 0.636183

Frontiers in Environmental Science frontiersin.org09

Lei 10.3389/fenvs.2024.1358296

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1358296


Model (1) focuses on assessing the impact of Big Data
Development (BDD) on Urban Ecological Governance
Performance (EGP). This model, estimated using the Spatial
Durbin Model via maximum likelihood estimation, presents its
test results in Table 9.

According to the data in Table 9, BDD exerts a significant
positive influence on EGP, demonstrating a positive promotional
effect (β = 0.349, p < 0.01). This implies that the application of big
data technology can furnish decision-makers with more
information, thereby facilitating optimized decision-making and
improving ecological governance outcomes. Regarding spatial
spillover effects, the advancement of BDD in one region has been
found to positively influence the EGP in neighboring regions (β =
0.219, p < 0.01). The development of big data facilitates information
sharing across regions and offers more advanced governance
techniques, thus enabling scientific decision-making to address
cross-regional environmental issues.

b. The Mediating Role of Industrial Structure Level (ISL) between
Big Data Development Level (BDD) and Urban Ecological
Governance Performance (EGP).

Table 10 investigates the mediating role of Industrial Structure
Level (ISL) between Big Data Development (BDD) and Urban

Ecological Governance Performance (EGP). As depicted in
Table 10, the study methodically analyzes the mediating effect of
ISL through sequential regression coefficients.

TABLE 7 Results of Moran’s I index test.

Year I Z p-value Year I Z p-value

2012 0.357*** 4.131 0.000 2017 0.263*** 3.161 0.002

2013 0.32*** 3.741 0.000 2018 0.218*** 2.718 0.007

2014 0.332*** 3.872 0.000 2019 0.257*** 3.113 0.002

2015 0.283*** 3.362 0.001 2020 0.283*** 3.375 0.001

2016 0.29*** 3.461 0.001 2021 0.270*** 3.214 0.001

*p < 0.1, **p < 0.05, ***p < 0.01.

TABLE 8 Basis of establishing the spatial durbin model.

Test type Hypothesis Statistic p-value Output

Lagrange Multiplier
Test

Choose the SEM Model 21.704*** 0.000 SDM

Choose the SLM Model 26.306*** 0.000

Hausman Test Hausman Test 48.440*** 0.000 Fixed Effects Model

Wald Test The SDM model can degenerate into the SAR model 44.430*** 0.000 Reject the Degeneration into the SAR
Model

The SDM model can degenerate into the SEM model 92.530*** 0.000 Reject the Degeneration into the SEM
Model

Likelihood-ratio Test The SDM model can degenerate into the SAR model 44.700*** 0.000 Reject the Degeneration into the SAR
Model

The SDM model can degenerate into the SEM model 78.900*** 0.000 Reject the Degeneration into the SEM
Model

Individual Fixed Effects Model is superio to Double Fixed Effects
Model

6.670 1.000 Time Fixed Effects Model

Time Fixed Effects Model is superio to Double Fixed Effects Model 385.500*** 0.000

*p < 0.1, **p < 0.05, ***p < 0.01.

TABLE 9 Results of spatial durbin model test.

Variable Main Wx

BDD 0.349*** (20.82) 0.219*** (3.19)

LTI 0.207*** (19.52) 0.021 (0.52)

URB −0.123*** (−4.08) −0.183 (−1.78)

ISL −0.019*** (−7.89) −0.007*** (−0.83)

LHC 1.814*** (4.34) 1.312 (1.02)

OPD 0.034** (2.88) 0.062 (1.67)

FDI 0.443*** (3.17) 0.126 (0.36)

Spatialrho −0.0849 (-0.72)

Variancesigma2_e 0.000402***(12.16)

N 300

R-sq 0.917

*p < 0.1, **p < 0.05, ***p < 0.01.
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In Table 10, a significant positive relationship is observed
between BDD and the mediating variable ISL, as indicated by a
coefficient of 1.356 (p < 0.01). In the model where EGB serves as the
dependent variable, the coefficient for BDD stands at 0.510 (p <
0.01), and that for ISL is −0.029 (p < 0.01). It is of significance to
observe that in Table 9, the coefficient for BDD registers at a mere
0.349 (p < 0.01). Nonetheless, when the mediating variable ISL is
factored in, there is a notable augmentation in the positive impact of
BDD on EGP. These results indicate that ISL plays a partial
mediating role between BDD and EGB. However, in the spatial
model with EGB as the dependent variable, the coefficients for BDD
and ISL are 0.048 (p > 0.1) and −0.016 (p > 0.1), indicating the
absence of a spatial mediating effect.

c. The Moderating Effects of Level of Technological Investment
(LTI) and Urbanization Level (URB) on the Relationship
Between BDD and EGP.

The moderating effects of Level of Technological Investment
(LTI) and Urbanization Level (URB) on the relationship between
Big Data Development (BDD) and Urban Ecological Governance
Performance (EGP) were assessed by constructing interaction terms.
The test results derived from the Spatial DurbinModel are presented
in Table 11.

The data presented in Table 11 indicates that LTI exhibits a
significant negative moderating effect on the relationship between
BDD and EGP (βBDDLHC = −0.291, p < 0.01). However, within the
Spatial Durbin Model framework, this moderating effect of LTI is no
longer statistically significant (ρBDDLHC = −0.030, p > 0.1).
Regarding URB, it demonstrates a significant positive moderating
effect on the relationship between BDD and EGP (βBDDURB =
0.351, p < 0.01), and this positive moderating effect persists as
significant in the Spatial Durbin Model (ρBDDURB = 0.354,
p < 0.1).

d. Empirical Analysis of Spatial Spillover Effects.

Utilizing the regression outcomes derived from the Spatial
Durbin Model (SDM), this study employs a spatial autoregressive

matrix to decompose the total effects of the variables in Equation (1).
The objective is to elucidate the spatial spillover effects of Big Data
Development Level (BDD) on Urban Ecological Governance
Performance (EGP), going beyond merely assessing a model that
incorporates Industrial Structure Level (ISL) as an intermediary and
Technological Investment Level (LTI) and Urbanization Level
(URB) as moderating variables, as delineated in Table 12.

1) Direct Effects Analysis:

Within the framework of spatial spillover effects, direct effects
denote the impact exerted by local explanatory variables on the
dependent variable. As illustrated in Table 12, the outcomes of
Equation (1), post-bias adjustment, reveal that BDD within a region
significantly positively impacts EGP (β = 0.368, p < 0.01), with this
influence likely to extend to other regions and produce
feedback effects.

2) Indirect Effects Analysis:

Indirect spatial effects quantify the spatial spillover impacts
exerted by the explanatory variables of neighboring regions on
the dependent variable in a local context. As depicted in
Table 12, an increase in local Big Data Development (BDD)
positively influences the Urban Ecological Governance
Performance (EGP) in neighboring areas (β = 0.115, p < 0.1).

6 Discussion

This study undertakes an empirical analysis of the relationship
among Big Data Development (BDD), Technological Investment
Level (LTI), Urbanization Level (URB), Industrial Structure Level
(ISL), and Urban Ecological Governance Performance (EGP)
through the application of spatial econometric models. The
results are as follows:

1) The research findings reveal that BDD exerts a significant
positive impact on EGP, with notable spatial spillover effects

TABLE 10 The mediation analysis in the spatial durbin model.

Variable ISL EGB ISL EGB

Main Wx

BDD 1.356*** 0.510*** (23.86) −2.955*** (−2.69) 0.048 (0.53)

ISL −0.029*** (−8.67) −0.016 (−1.52)

LHC 30.387*** 0.608 (1.44) −10.530 (−0.61) −2.184* (−2.23)

OPD 0.833*** 0.075*** (6.82) 0.670 (1.66) 0.018 (0.67)

FDI −4.330 1.254*** (7.63) 8.353 (1.11) 0.429 (0.93)

Spatial rho −0.197 (−1.77) 0.013 (0.12)

Variance sigma2_e 0.287*** (12.20) 0.001*** (12.24)

N 300 300 300 300

R-sq 0.007 0.030 0.146 0.786

*p < 0.1, **p < 0.05, ***p < 0.01.
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observed between regions, thereby confirming hypotheses H1a
and H1b. Technological advancement and its application
constitute key drivers of societal development (Morley and
Robins, 1995), with the implementation of big data
significantly enhancing the level and outcomes of urban
ecological governance. Owing to the extensive adoption of
big data across diverse domains like energy consumption,
transportation and logistics, and government services
(Oussous et al., 2018), governments globally are increasingly
acknowledging its significance (NSF, 2012; Li, 2015). Local
governments can effectively harness big data for enhanced
resource allocation and management. This is particularly
evident in the optimization of urban transportation, energy
utilization, waste management, and more, thereby leading to
enhanced overall urban ecological governance outcomes.
Furthermore, the swift pace of progress in big data
technology, which approximately expands tenfold every
5 years (Hendrickson, 2010), offers a conduit for technology
dissemination and advancement (Rogers, 1995), culminating
in a rapid escalation in the level of big data across various

regions. In this context, it is anticipated that ecological
governance performance across regions will also enhance
correspondingly.

2) The findings of this study indicate that the Industrial Structure
Level (ISL) serves as a partially positive mediator between Big
Data Development (BDD) and Urban Ecological Governance
Performance (EGP), yet no mediating effect is observed across
regions. This result confirms hypothesis H2a but refutes
hypothesis H2b. Energy-intensive industrial structures
present considerable challenges to urban sustainability
(Greaker et al., 2018). Zhao et al. (2022) discovered that the
upgrading of industrial structures can positively influence
carbon reduction through enhanced energy efficiency. The
advancement of big data is poised to encourage businesses to
adopt technologies like data analysis and artificial intelligence
(Björkdahl, 2020; Li, 2020), facilitating the upgrading of
industrial structures. Given the imperative of balancing
sustainable development with economic growth (Daly,
1977), these technology-driven industries are likely to
prioritize eco-friendliness, environmental protection, and
sustainability, thus enhancing the overall ecological
orientation of the industrial structure. Additionally, the
absence of significant spatial spillover effects across regions
could stem from marked disparities in big data development
levels and industrial structures among these areas, rendering it
challenging for alterations in one region’s industrial structure
to influence the ecological governance performance of
adjacent regions.

3) The Level of Urbanization (URB) significantly positively
moderates the relationship between the Level of Big Data
Development (BDD) and Urban Ecological Governance
Performance (EGP), while the Level of Technological
Investment (LTI) demonstrates a contrasting negative
moderating effect. This confirmation upholds hypotheses
H3a and H4a. Nevertheless, there are notable differences

TABLE 11 Results of the moderation analysis in the spatial durbin model.

Variable EGB

Main Wx

BDD 0.499*** (16.36) 0.263*** (5.94) 0.239* (2.02) −0.061*** (−0.38)

LTI 0.277*** (19.41) −0.035 (−0.73)

BDD*LTI −0.291*** (−6.70) −0.030 (−0.24)

URB −0.239*** (−5.32) −0.796*** (−5.18)

BDD*URB 0.351*** (6.49) 0.354* (2.07)

LHC 0.370 (1.18) 3.354*** (5.24) −0.592 (−0.83) 7.072*** (3.77)

OPD −0.035*** (−4.15) 0.096*** (5.61) 0.002 (0.11) 0.231*** (4.24)

FDI −0.087 (0.66) 1.286*** (7.49) −0.094 (−0.26) 0.670 (1.35)

Spatialrho 0.089 (0.80) −0.084 (−0.78) 0.090 (0.80) −0.084 (−0.78)

Variancesigma2_e 0.000477*** (12.39) 0.000966*** (12.18) 0.000477*** (12.39) 0.000966*** (12.18)

N 300 300 300 300

R-sq 0.938 0.707 0.938 0.707

*p < 0.1, **p < 0.05, ***p < 0.01.

TABLE 12 Decomposition results of spatial spillover effects.

Variable Direct effect Indirect effect Total effect

BDD 0.368*** (22.09) 0.115* (2.30) 0.482*** (9.48)

LTI 0.225*** (21.51) −0.031 (−1.11) 0.195*** (6.81)

URB 0.016 (0.45) −0.305* (−2.55) −0.289* (−2.16)

ISL −0.008** (−2.67) −0.025* (−2.51) −0.033** (−3.32)

LHC 1.383*** (3.45) 0.586 (0.44) 1.970 (1.22)

OPD 0.023* (2.01) 0.100** (2.92) 0.123*** (3.32)

FDI 0.357** (3.20) 0.251 (0.84) 0.608 (1.79)

*p < 0.1, **p < 0.05, ***p < 0.0.
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observed within the Spatial Durbin Model. Specifically, the
interaction between Big Data Development Level and
Technological Input Level does not demonstrate spatial
spillover effects across regions, whereas the interactive
effect between big data development level and
urbanization level extends to neighboring regions. This
validates hypothesis H4b. Within individual regions,
government investment in technology likely contributes
to high-quality development (Jin and Yang, 2022), the
digital transformation of businesses (Feng et al., 2022),
and the advancement of smart cities (Zeng et al., 2023).
The escalation of urbanization level may intensify the
demand for big data applications in urban areas, thereby
fostering a greater willingness among the populace to
embrace new technologies (Davis et al., 1992). The
synergistic effect of these two factors is likely to amplify
the positive impact of big data on urban ecological
governance. Additionally, the Spatial Durbin Model
results suggest that the interaction between Big Data
Development Level and Technological Input Level does
not manifest spatial spillover effects across regions,
possibly attributable to the intricacies of technology
diffusion (Rogers, 1995). In contrast, the interactive
impact between big data development level and
urbanization level demonstrates spatial diffusion effects
in neighboring regions, potentially due to urban density
fostering communication between adjacent areas (Glaeser,
2013), thereby influencing the relationship between Big
Data Development and Urban Ecological Governance
Performance.

7 Contributions and limitations

7.1 Theoretical and practical contributions

This study carries multiple theoretical implications. Firstly,
preceding research has predominantly concentrated on
examining the effects of traditional energy use constraints
(Acemoglu et al., 2012), industrial structure (Mi et al., 2015), and
technological innovation (Chen et al., 2019) on environmental
governance. This study enhances the understanding of the
determinants of urban ecological governance performance by
emphasizing the level of urban big data development and
integrating a technological innovation perspective. This
contributes to the development of a more comprehensive and
multi-dimensional theoretical framework for understanding the
impact on urban ecological governance performance, offering a
broader foundation for policy formulation and resource
allocation. Secondly, by incorporating industrial structure as a
mediating variable, and technological input intensity and
urbanization level as moderating factors, this study addresses a
research gap concerning the internal mechanisms linking big data
development level and urban ecological governance performance.
This research further delves into how governments can enhance
urban ecological governance performance by leveraging the
dimensions of big data development and industrial structure,
providing novel insights into the drivers of ecological governance

performance from a technological and innovative standpoint.
Thirdly, this study expands the methodological approaches for
examining factors influencing urban ecological governance
performance by utilizing spatial econometric models to
underscore the locality-specific characteristics linking urban big
data development and urban ecological governance performance.
This is because, in many instances, changes in one region can
precipitate demonstration, competition, and feedback effects in
adjacent regions. Consequently, this study offers a spatial
analytical perspective to explore the impact of big data and
identify similar patterns across various regions, thereby
facilitating potential cross-regional collaboration in big data
development.

Additionally, this study possesses significant practical
implications for governments and businesses, offering a
pragmatic pathway towards constructing smarter and more
sustainable urban ecological governance systems. Firstly, the
research underscores the criticality of eschewing indiscriminate
escalations in technological investments. While the level of Big
Data Development possesses the capacity to augment Urban
Ecological Governance Performance, an inordinate escalation in
technological investment might lead to counterproductive
outcomes, not only failing to bolster Big Data Development as
expected but also failing to further improve Urban Ecological
Governance Performance. Simultaneously, accelerating the
urbanization process will endow cities with enhanced
infrastructure and services, further bolstering their ecological
governance capabilities. These twin strategies can be rapidly
transformed into policy actions, offering substantial backing for
urban sustainable development. Furthermore, this paper
introduces innovative concepts for cross-regional collaboration.
Via data sharing and joint implementation of big data technology,
governments across different regions can augment each other’s
resource strengths, facilitating cross-regional collaboration in the
development of big data for ecological governance performance.
The collaborative application of big data technology enables
regions to collectively explore its potential in enhancing
ecological governance. By collaboratively developing and
implementing cutting-edge big data analytics tools, regions can
share technological advancements and attain more optimal
governance outcomes.

7.2 Limitations and future research
directions

Despite its contributions, this study is not without limitations.
Firstly, the diversity in socio-economic and cultural systems across
regions may result in varied outcomes. The data utilized in this study
originates from 30 provincial administrative units in China. Future
research endeavors could engage in cross-national and cross-
cultural comparative analyses. Secondly, this paper delves into
the impact of big data development level on urban ecological
governance performance. The subsequent step could involve
broadening the scope of measurement for independent variables
by integrating big data with aspects like technological innovation to
formulate composite variables and collectively examine their impact
on urban ecological governance performance. Finally, future studies
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could consider examining the spatial spillover effects of additional
mediating variables. Concurrently, by integrating short-term and
long-term mediating effects, direct and indirect effects, among other
variables, further research can be undertaken from a more
comprehensive perspective.
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