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ABSTRACT

We give a strongly polynomial algorithm for minimum cost general-
ized �ow, and hence for optimizing any linear program with at most
two non-zero entries per row, or at most two non-zero entries per
column. Primal and dual feasibility were shown by Végh (MOR ’17)
and Megiddo (SICOMP ’83), respectively. Our result can be viewed
as progress towards understanding whether all linear programs can
be solved in strongly polynomial time, also referred to as Smale’s
9th problem.

Our approach is based on the recent primal-dual interior point
method (IPM) byAllamigeon, Dadush, Loho, Natura, and Végh (FOCS
’22). The number of iterations needed by the IPM is bounded, up to a
polynomial factor in the number of inequalities, by the straight line
complexity of the central path. Roughly speaking, this is theminimum
number of pieces of any piecewise linear curve that multiplicatively
approximates the central path.

As our main contribution, we show that the straight line com-
plexity of any minimum cost generalized �ow instance is polyno-
mial in the number of arcs and vertices. By applying a reduction of
Hochbaum (ORL ’04), the same bound applies to any linear program
with at most two non-zeros per column or per row.

To be able to run the IPM, one requires a suitable initial point. For
this purpose, we develop a novel multistage approach, where each
stage can be solved in strongly polynomial time given the result of
the previous stage. Beyond this, substantial work is needed to ensure
that the bit complexity of each iterate remains bounded during the
execution of the algorithm. For this purpose, we show that one can
maintain a representation of the iterates as a low complexity convex
combination of vertices and extreme rays. Our approach is black-box
and can be applied to any log-barrier path-following method.

∗Full version available at https://bentonatura.com/gen�ow.
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1 INTRODUCTION

We consider linear programming (LP) in the following primal-dual
form:

min ⟨2, G⟩
AG = 1

G ≥ 0= ,

max ⟨1,~⟩
A
⊤~ + B = 2

B ≥ 0= ,

(LP)

where A ∈ R<×= , 1 ∈ R< , 2 ∈ R= , and A has rank<. Our focus is
on LP algorithms that �nd exact primal and dual optimal solutions,
or conclude infeasibility or unboundedness. We say that the dual
progam is a two variable per inequality (2VPI) linear program if every
row of A⊤ includes at most two nonzero entries. In such a case, we
refer to the pair of LPs as a 2VPI primal-dual pair.

The �rst polynomial-time LP algorithmswere the ellipsoidmethod
by Khachiyan in 1979 [29] and interior point methods, introduced
by Karmarkar in 1984 [28]. However, it remains an outstanding
open question to �nd a strongly polynomial algorithm for linear
programming. The question was listed by the Fields medalist Smale
as one of the most prominent mathematical challenges for the 21st
century [41]. In such an algorithm, only poly(=) basic arithmetic
operations and comparisons are allowed, and the algorithm uses
polynomial space.

The notion of strongly polynomial algorithms was �rst formally
introduced by Megiddo [32], under the term ‘genuinely polynomial’.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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The same paper gave an algorithm for two variable per inequality fea-
sibility systems, that is, for the dual feasibility problem in (LP) when
all rows of A⊤ have at most two nonzero entries. The corresponding
primal feasibility problem can be reduced to the maximum general-

ized �ow problem. For this, the �rst strongly polynomial algorithm
was given by Végh [50], followed by a faster and simpler algorithm by
Olver and Végh [37]. The minimum-cost generalized �ow problem is
the dual of a 2VPI LP, where the two nonzero entries in each column
of A are a −1 entry and a positive entry. As discussed below, this
naturally corresponds to a network �ow model with multipliers on
the arcs. As shown in [23], all 2VPI LPs are reducible to the dual of a
minimum-cost generalized �ow problem. The existence of a strongly
polynomial algorithm for this problem has been a longstanding open
question, mentioned e.g. in [1, 10, 11, 20, 24, 36, 37, 50, 51]. Our main
result resolves this question.

Theorem 1.1. There is a strongly polynomial algorithm for the

minimum-cost generalized �ow problem, and for two variable per

inequality primal-dual pairs.

1.1 Background and Previous Work

Strongly polynomial algorithms for well-conditioned LPs. In a semi-
nal, Fulkerson-prize winning paper [42], Tardos obtained the �rst
strongly polynomial algorithm for minimum-cost circulations. A
particularly important technique in this paper was variable �xing:
by solving an approximate version of the LP with rounded costs, one
can deduce that a certain variable is at the lower or upper capacity
bound in an optimal solution.

Towards general LP, Tardos [43] extended this approach to ob-
tain a strongly polynomial algorithm for ‘combinatorial LPs’. More
precisely, for (LP) with an integer constraint matrix A ∈ Z<×= , this
algorithm runs in poly(=, logΔA) iterations, where ΔA is the maxi-
mum subdeterminant of A. The running time is independent of 1 and
2 . In particular, this bound is strongly polynomial if all entries of A
are at most poly(=), such as for multicommodity �ows and other com-
binatorial problems. Using an interior point approach discussed be-
low, Vavasis and Ye [49] obtained an algorithm with poly(=, log j̄A)
arithmetic operations, where j̄A is the Dikin–Stewart–Todd condi-
tion number of the matrix A. For integer matrices, j̄A = $ (=ΔA),
thus, this strengthens Tardos’s result. A similar dependence, using a
black-box approach extending Tardos’s work [43] was obtained by
Dadush, Natura and Végh [15]. Further, Dadush, Huiberts, Natura and
Végh [13] strengthened this dependence to poly(=, log j̄∗

A
), where

j̄∗
A
is the optimized value of j̄A under column rescalings.

Prior results on 2VPI and generalized �ows. 2VPI LPs are a natural
class of LP that does not fall into the above ‘well-conditioned’ classes:
even j̄∗

A
may be unbounded for the constraint matrix. At the same

time, they form an interesting intermediate class, as it is easy to see
that solving an arbitrary LP is reducible to solving one with at most
three nonzero entries per row in A

⊤.
For �nding a feasible solution to a 2VPI system, Megiddo’s [32]

approach relied on parametric search. A faster parametric search
algorithm was given by Cohen and Megiddo [10]. Hochbaum and
Naor [24] used an e�cient Fourier–Motzkin elimination to obtain
what is still the fastest deterministic approach. Dadush, Koh, Natura
and Végh [14] used a variant of the discrete Newtonmethod. Recently,

Karczmarz [27] gave an improved randomized strongly polynomial
algorithm, also using parametric search.

Consider now monotone 2VPI (M2VPI) systems, where each in-
equality has at most one positive and at most one negative entry. If
such an LP is bounded, then there exists a unique pointwise minimal
solution and a unique pointwise maximal solution. Already the algo-
rithm in [32] can be used to �nd these solutions. As noted by Adler
and Cosares [1], an M2VPI linear program is strongly polynomially
solvable if 1 ≥ 0 or 1 ≤ 0. Norton, Plotkin and Tardos [36] gave a
strongly polynomial algorithm for a constant number of nonzero
demands.

The generalized �ow problem is (after normalization) the dual of
the M2VPI problem. In this problem, we are given a directed graph
� = (+ , �) with node demands 18 , 8 ∈ + and arc costs 24 and gain
factors W4 > 0 for 4 ∈ �. While traversing the arc 4 = (8, 9), the �ow
value G4 gets multiplied toW4G4 . In theminimum-cost generalized �ow

problem, we need to exactly satisfy all node demands at a minimum
cost. Themaximum generalized �ow problem is the special case when
the objective is to maximize the net �ow reaching a special sink node
C .

This is a fundamental network optimizationmodel that traces back
to Kantorovich’s 1939 paper [26] introducing linear programming.
Generalized �ow networks can be used to model transportation
of a commodity through a network with leakages, or conversions
between various equities in �nancial networks, as well as generalized
assignment problems. We refer the reader to [2, Chapter 15] for
further applications.

Goldberg, Plotkin, and Tardos [20] gave the �rst weakly poly-
nomial combinatorial algorithm for the maximum generalized �ow
problem. This was followed by a signi�cant number of further such
algorithms, such as [11, 21, 38, 39, 44, 51], see further references in
[37]. In particular, [11] gave a strongly polynomial approximation
scheme, i.e., a strongly polynomial algorithm that achieves a �xed
fraction of the optimum �ow value in a capacitated generalized �ow
network. The strongly polynomial algorithms by Végh [50] and Olver
and Végh [37] rely on the variable �xing technique, however, in a
new, ‘continuous’ scaling framework. While the original LP can be
ill-conditioned, variable �xing is still possible, since the dual solu-
tions can be used to ‘relabel’ the �ow to make it ‘locally’ amenable
to classical network �ow arguments.

However, relabelling heavily relies on the special cost function of
the �ow maximization problem, and does not seem to be extendable
to the minimum-cost version. For solving the minimum-cost general-
ized �ow problem, the only known (weakly polynomial) combinato-
rial approach is the ratio-circuit cancelling algorithm by Wayne [51].
The fastest previous weakly polynomial algorithms can be obtained
using interior point methods; an early such example is by Vaidya [45].
Daitch and Spielman [16], and Lee and Sidford [31] gave fast algo-
rithms for obtaining an additive Y-approximation; however, such
approximation cannot be used to obtain exact optimal solutions. We
also note that the latter results only apply for lossy �ows, i.e., with
gain factors W4 ≤ 1.

Interior Point Methods and their limitations. Interior point methods
(IPMs) give the fastest current weakly polynomial algorithms for
general LP, see [12, 25, 46, 47] as well as for special classes such as
minimum-cost circulations [8, 9] and multicommodity �ows [48].
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They are also a potent approach in the context of strongly polynomial
computability, and form the basis of our result.

The algorithms discussed next fall into the class of primal-dual
path-following algorithms. A key concept here is the central path, the
algebraic curve formed by minimizers of ⟨2, G⟩ − `∑=

8=1 log(G8 ) for
` > 0. As ` → 0, the limit of the central path is an optimal solution.
Path-following methods maintain iterates in a certain neighborhood
of the central path while geometrically decreasing `, and thus, the
optimality gap. The logarithmic barrier function above can be re-
placed by more general barrier functions. The a�ne scaling step
is a standard way to �nd a movement direction. This can be inter-
preted as a least square computation in the local norm induced by
the Hessian of the logarithmic barrier function.

Layered least squares (LLS) IPMs were introduced in the in�uential
work of Vavasis and Ye [49]. The LLS step in the Vavasis–Ye algo-
rithm decomposes the variables into di�erent layers based on the
values of the current iterate. The step direction is determined as a
sequence of least squares computations that prioritizes decreasing
variables at lower layers. Roughly speaking, such steps enable to
traverse arbitrarily long but relatively straight segments of the cen-
tral path in a single iteration. Combinatorial progress is measured
by crossover events, where two variables get reordered consistently
with their order in the limit optimal solution. This is very di�erent
from the variable �xing technique prevalent in the combinatorial
approaches discussed above. In particular, while we can infer the
occurrence of a new crossover event within a certain number of iter-
ations, the argument only shows existence, and we cannot identify
the participating variables. The condition number j̄A appearing in
the running time is a bound on the norms of oblique projections.

This led to a line of research on improved combinatorial IPMs
[30, 33–35]. The paper [13] revealed that j̄A is closely related to the
circuit imbalance measure ^A that bounds the maximum ratio of two
nonzero entries of an elementary vector in the kernel of A. Moreover,
they obtained an LLS algorithm invariant under column rescaling,
thus improving the dependence to the best^∗

A
value achievable under

column rescalings.
The above results may raise hopes to �nding a strongly polynomial

IPM. However, the papers by Allamigeon, Benchimol, Gaubert and
Joswig [3], Allamigeon, Gaubert and Vandame [6], and Zong, Lee
and Yue [53] yield a surprising negative answer. By analyzing the
tropical limits of linear programs, these papers exhibit parametric
families of LPs such that for suitably large parameter values, no
path-following method can be strongly polynomial. This was �rst
shown for the standard logarithmic barrier [3], and later for arbitrary
self-concordant barriers [6].

1.2 The Subspace Layered Least Squares Interior

Point Method and Straight Line Complexity

The primal central path has a natural dual counterpart. The primal-
dual central path point (Gcp (`), Bcp (`)) is the unique pair of primal
and dual feasible solutions to (LP) such that G

cp
8 (`)B

cp
8 (`) = ` for all

1 ≤ 8 ≤ =. Thus, the duality gap between Gcp (`) and Bcp (`) is =`.
The lower bounds in [3, 6] are ultimately based on the following

insight. The trajectory of any path-following IPM is a piecewise
linear curve in the neighborhood of the central path; the number of
pieces correspond to the number of iterations. Thus, a lower bound

on the number of any piecewise linear curve in the neighborhood
provides a lower bound on the number of iterations. For the examples
in these papers, exponential lower bounds are shown.

The recent algorithm designed by Allamigeon, Dadush, Loho,
Natura and Végh [4] complements these negative results by a positive
algorithmic bound. Namely, they provide an IPM whose number of
iterations matches such a lower bound within a strongly polynomial
factor. Let us elaborate on the lower bound.

Assume (LP) is feasible and bounded with optimum value E★.
Given 6 ≥ 0, we denote by

P6 ≔ {G ∈ R=+ | AG = 1 , ⟨2, G⟩ ≤ E★ + 6} ,
D6 ≔ {B ∈ R=+ | ∃~ ∈ R< : A⊤~ + B = 2 , ⟨1,~⟩ ≥ E★ − 6}

(1)

the feasible sublevel sets. They correspond to the sets of the primal
and dual feasible points (G, B) with objective value within 6 from the
optimum E★, respectively.

Assuming that (LP) has strictly feasible primal and dual solutions,
themax central path is de�ned as the parametric curve6 ↦→ Im (6) ≔
(Gm (6), Bm (6)) ∈ R2=+ , where

Gm8 (6) ≔ max{G8 : G ∈ P6} , Bm8 (6) ≔ max{B8 : B ∈ D6} (2)

for all 8 ∈ [=]. The max central path can be seen as a combinatorial
proxy to the central path. In particular, for 6 = =`, Gcp (`) ∈ P6 and
Bcp (`) ∈ D6 , and it is easy to see that Gm (6)/= ≤ Gcp (`) ≤ Gm (6)
and Bm (6)/= ≤ Bcp (`) ≤ Bm (6).

For each 1 ≤ 8 ≤ =, the function 6 ↦→ Gm8 (6) is a piecewise
linear concave function. It corresponds to a trajectory of the shadow
simplex algorithm that interpolates between the objective functions
⟨2, G⟩ and −G8 . The breakpoints correspond to basic feasible solutions,
and therefore the number of linear pieces is at most the number of
vertices, that is, at most 2= . We will use the following de�nition.

De�nition 1.2. Let 5 : R+ → R+ be a function and [ ∈ [0, 1]. The
straight line complexity of 5 with respect to [, denoted SLC[ (5 ),
is the in�mum number of pieces of a continuous piecewise linear
function ℎ : R+ → R+ where [5 ≤ ℎ ≤ 5 . 1

The number of iterations taken by the Subspace Layered Least

Squares (SLLS) IPM in [4] can be bounded by the sum of straight
line complexities of each coordinate of the (primal) max central
path. We now state the guarantees of SLLS IPM as given in [5],
which strengthens the main result of the conference version [4]
by ensuring that each iteration of the IPM can be implemented in
strongly polynomial time.

Theorem 1.3 ([4, 5]). There is an interior-point method that given

an instance of (LP) and strictly feasible solutions G, B > 0 such that

∥ =G◦B⟨G,B ⟩ −1= ∥ ≤ V , 0 < V ≤ 1/6, �nds a pair of primal and dual optimal

solutions in

$

(

min
[∈ (0,1]

√
=

V
log

(

=

V[

) =
∑

8=1

SLC[ (Gm8 )
)

many iterations.2 The algorithm can be implemented in the real RAM

model, moreover, each iteration runs in strongly polynomial time in

the Turing model.

1We remark that our convention on the parameter [ di�ers from [4, 5], which uses
(1 − \ ) 5 ≤ ℎ ≤ 5 instead.
2The condition on the starting point asserts that it is near the central path; G ◦ B denotes
the Hadamard product.
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We explain the real RAM and strongly polynomial computational
models in Section 1.3 below. The SLLS IPM requires at most a $̃ (=1.5)
factor more iterations than any path-following IPM for any self-
concordant barrier function. This is because it can be shown that each
SLC[ (Gm8 ) gives a lower bound on the number of piecewise linear
segments traversing a corresponding wide neighborhood. Moreover,
as noted above, SLC1 (Gm8 ) ≤ 2= , thus, the number of iterations is
always at most singly exponential.

We note that the theorem could be equivalently written in terms
of the dual straight line complexities (see [5, Lemma 4.5]). Further,
we note that the neighborhood parameter [ is not important for the
overall bound. It is not di�cult to show that for 0 < [ < [′ < 1,
SLC[′ (5 ) = $ (log(1/[)/log(1/[′)) SLC[ (5 ).

According to Theorem 1.3, analyzing the number of iterations of
SLLS IPM boils down to upper-bounding the straight line complex-
ities of the variables. Note that this is a purely geometric question
about understanding the structure of univariate piecewise linear
functions Gm8 (6).

1.3 Computational Models

There are multiple related, yet distinct notions of a strongly poly-

nomial computational model. Smale’s question was posed in the
Blum–Shub–Smale (BSS) real model of computation [7]. In this model,
the input can be given by arbitrary real numbers, and one step may
compute a rational polynomial function of the previously computed
quantities with real coe�cients, or make comparisons between two
quantities. In the more restrictive real RAM model, one can perform
a sequence of elementary arithmetic operations (+,−,×, /) and com-
parisons (≥) on real numbers. In this paper, we say that an algorithm
is polynomial in the real RAM model if the number of elementary
arithmetic operations and comparisons is bounded polynomially in
the dimension of the input; in the case of LP, this is  = =×<+=+<.

We now turn to the Turing model. Consider a problem where the
input is given by  integers; for LP, the input (A, 1, 2) is described
by  = 2(= ×< + = +<) integers representing the rational entries.
An algorithm is strongly polynomial in the Turing model (see [22]),
if it only performs poly( ) (in the LP case, this means poly(<,=))
elementary arithmetic operations and comparisons as in the real
model. Additionally, the bit-complexity of the numbers during the
computations must remain polynomially bounded in the encoding
length of the input. Equivalently, the algorithm must be PSPACE.
The model has an ambiguity regarding how divisions can be imple-
mented, see discussion of variants in [22, Section 1.3]. The results
of this paper work with the most restricted setting: we maintain
rational representations (?, @) of all numbers during the computa-

tion, and division
?
@ /

?′

@′ corresponds to computing the representation

(?@′, ?′@).
While a strongly polynomial algorithm in the Turing model im-

plies a polynomial algorithm in the real RAM model, the converse is
not necessarily the case: enforcing PSPACE may be challenging. For
example, Gaussian elimination needs to be done carefully to keep
the sizes of numbers under control, see [17] and [22, Section 1.4].
The LLS interior point methods [4, 13, 33–35, 49] are polynomial in
the real RAM model3 whenever log( j̄A) = poly(=). However, we
3Some of these IPMs make use of square-root computations, and hence rely on the
extended real model (+, −, ×, /,√.) .

are not aware of any strongly polynomial implementation of such
algorithms in the Turing model. The principal di�culty in this regard
is keeping the bit-complexity of the iterates produced by the IPM
uniformly bounded using only the allowed operations (+,−,×, /). In
particular, truncating the bit representation of the current iteration
to !-bits of precision, where ! depends on the bit-length of the input
cannot be achieved using $ (1) basic operations.

In the weakly polynomial model, i.e., when running time depen-
dence on the total encoding length is allowed, the bit complexity
of the algorithms can be controlled by approximately solving linear
systems and roundings. Recent work by Ghadiri, Peng, and Vempala
[19] developed general tools that enable to keep the bit complex-
ity of recent fast IPMs under control. However, these techniques
are not applicable in the strongly polynomial model. In particular,
they require estimates on parameters such as the total bit length of
the input or the condition number of the matrix. They also require
rounding to a �xed number of bits depending on such numerical
parameters. As mentioned above, in the most stringent de�nition of
strongly polynomial time, this cannot be done.

The implementation of the SLLS IPM given in [5], which we rely
on, guarantees that each iteration of the IPM is strongly polynomial
in the Turing model. More precisely, given the constraint matrix �
and the current iterate (G, B) as input, the IPM computes the next
iterate (G ′, B′) in time strongly polynomial in the input (�, G, B). This
in particular implies that the bit complexity of the iterates grows
at most by a polynomial factor in each iteration. This is however
insu�cient for controlling the bit complexity over many iterations.
We resolve this issue by providing a combinatorial rounding scheme,
which maintains a representation of the current iterate as a low
complexity convex combination of vertices and extreme rays. We
describe this in further detail in Section 1.4.3.

We note that the algorithms presented in this paper are fully
deterministic.

1.4 Our Contributions

We prove Theorem 1.1, i.e., give a strongly polynomial algorithm
for the minimum-cost generalized �ow problem by showing that
the total number of iterations of the SLLS IPM by [4] is strongly
polynomially bounded, and that the SLLS IPM can be implemented
in strongly polynomial time in the Turing model. Our result has
three main ingredients:

(1) Straight line complexity bound: We establish in Theorem 3.1
a strongly polynomial bound SLC[ (Gm4 ) = $ (<=) on the
straight line complexities of the variables in the minimum-
cost generalized �ow problem, with [ = Ω(1/(<2=)), where
< is the number of arcs and = is the number of nodes of the
graph. This bound applies for the uncapacitated version of the
problem as described above; if in addition arcs have capacities,
the bound becomes $ (<2).

(2) Initialization: IPMs require a strictly feasible and well centered
starting point (G0, B0), even though a strictly feasible (or even
a feasible) solution may not exist. We present a careful ini-
tialization scheme that solves linear programs in three stages,
and preserves the straight line complexity bounds.
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(3) Implementation in the Turing model: We show that the bit-
length of the computations can be controlled in a model using
only basic arithmetic operations and comparisons.

The straight line complexity is established via a combinatorial argu-
ment using structural properties of generalized �ows. In contrast,
the initialization and implementation tasks are applicable for general
LP, and can be seen as a direct strengthening of the result in [4, 5].
We now elaborate on each of these parts, and highlight the main
technical ideas.

1.4.1 Straight Line Complexity Bound for Generalized Flows. The-
orem 1.3 enables to bound the number of iterations in SLLS IPM
by bounding the straight line complexities SLC[ (Gm8 ) for a suitable
[ > 0. In the �rst step, we reduce this to an even more concrete
combinatorial question of circuit covers as explained next.

Circuit covers. For the purposes of analyzing straight line complex-
ities, we can assume that a pair of primal and dual optimal solutions
(Ḡ, B̄) to (LP) is provided.

For any vector ℎ ∈ ker(A), with ⟨2, ℎ⟩ ≥ 0 we can de�ne the
function Ḡℎ (6) : R+ → (R+ ∪ {∞})= by moving from Ḡ in the
direction of ℎ; this is called the ℎ-curve from Ḡ . Namely, we de�ne
Ḡℎ (6) = Ḡ + U (6)ℎ, where U (6) is chosen maximally so that Ḡℎ (6) is
feasible, and has cost at most 6 larger than the cost of Ḡ . For every
8 ∈ [=], the 8-th coordinate Ḡℎ8 (6) can easily be seen to be a piecewise
linear concave function with two pieces, the �rst with slope ℎ8/⟨2, ℎ⟩
and the second constant.Note that Ḡℎ is constant if ⟨2, ℎ⟩ = 0.

Given ℎ,ℎ′ ∈ ker(A), ⟨2, ℎ⟩ , ⟨2, ℎ′⟩ ≥ 0, U > 0 and 8 ∈ [=], we say
that ℎ U-dominates ℎ′ on 8 ∈ [=] if Ḡℎ8 (6) ≥ UḠℎ

′
8 (6) for all 6 ≥ 0.

In the linear space ker(A), an elementary vector is a support min-
imal nonzero vector, and the support of an elementary vector is
called a circuit. Note that the latter coincides with the notion of
circuits of the linear matroid of A; each circuit corresponds to a one-
dimensional subspace of elementary vectors. We let E(A) denote
the set of all elementary vectors.

Given an optimal solution Ḡ , let us consider the augmentations
from Ḡ by an elementary vector ℎ. Noting that Ḡℎ (6) is invariant
under rescaling ℎ to Uℎ for U > 0, this gives one function per circuit.
For any coordinate 8 ∈ [=], let us now consider the pointwise maxi-
mum at the 8-th coordinate Ĝ8 (6) = max{Ḡℎ8 (6) : ℎ ∈ E(A)}. This
is a piecewise linear function, but is not concave. Note also that the
number of pieces can be exponential. Nevertheless, using standard
circuit decomposition techniques, it is not di�cult to show that Ĝ8 (6)
approximates Gm8 (6) up to a factor =: Gm8 (6)/= ≤ Ĝ8 (6) ≤ Gm8 (6).

Our strategy to obtain SLC bounds is by constructing circuit covers.
Given a primal optimal solution Ḡ , an index 8 ∈ [=] and U > 0, we say
that a set of vectors ( ⊆ ker(A) is an U-circuit cover of 8 with respect

to Ḡ if for every ℎ′ ∈ E(A), there is a ℎ ∈ ( that U-dominates ℎ′ on
8 . Then, the piecewise-linear function Ḡ(8 (6) = max{Ḡℎ8 (6) : ℎ ∈ (}
satis�es UGm8 (6)/= ≤ Ḡ(8 (6) ≤ Gm8 (6). The upper convex envelope
of this function has at most |( | + 1 linear pieces, and consequently,
SLCU/= (Gm8 ) ≤ |( | + 1.

Circuit covers for generalized �ows. We work with minimum-cost
generalized �ow in its capacitated form, where arcs may have capaci-
ties, and all demands are zero; this reduction yields only= capacitated
arcs when starting from the demand form. The circuits in this version

of the generalized �ow problem correspond to simple combinato-
rial structures: namely, a circuit either corresponds to a conservative
directed cycle, where the product of the gain factors is one, or a
‘bicycle’, namely, a �ow generating cycle connected by a path to a
�ow absorbing cycle. The latter are cycles where the product of the
gain factors is greater and less than one, respectively. These struc-
tures played a fundamental role in all prior works on generalized
�ows, see e.g., [20, 37, 50, 51], as well as for 2VPI algorithms, e.g.,
[10, 14, 27, 32].

We construct a circuit cover of size $ (<=) to bound the straight
line complexity of the variables in the generalized �ow problem. The
basis of our construction is path domination. Let us �x two nodes B
and C in the graph. We demonstrate a small collection of B–C walks
that “dominate” the collection of all B–C paths in a certain sense. The
general cover will be constructed by combining such walks. We now
highlight the main ideas of path domination.

Consider an B–C walk, ; this induces an B–C �ow Ḡ, on the walk.
We de�ne the function ®5, : R2+ → R+ such that ®5, (_, A ) denotes
the maximum amount of �ow that can be sent from B to C if there
are A units available at B , each step of the walk satis�es the capacity
bound, and the cost incurred in any step of the walk is at most _. This
corresponds to a certain maximal scaling of Ḡ, . This scaling may
have total cost larger than _, and moreover since an arc of the graph
can be used multiple times, it may also violate arc capacities. But, as
long as the walk is =-recurrent, meaning it uses each edge at most =
times, scaling down by<= will yield a feasible �ow with total cost at
most _. There are two possible bottleneck arcs that prevent a larger
scaling of Ḡ, from being used: a cost bottleneck arc 4c where 24c Ḡ

,
4c

is maximal, and a �ow bottleneck arc 4f where Ḡ
,
4f
/D4f is maximal,

where 24 and D4 denote the cost and capacity of arc 4 , respectively.
We associate the combinatorial signature (4c, 4f , ⪯) or (4c, 4f , ≻) with
, , where ⪯ means that 4c precedes or equals 4f on the walk, , and
≻ means that 4f precedes 4c.

We say that the B–C walk, ′ dominates, if ®5, ′ ≥ ®5, . Denoting
the number of �nite capacity arcs by <̄, we are able to show the
existence of an $ (<<̄)-sized family of =-recurrent B–C walks that
dominate all B–C paths. The family is constructed by �xing the signa-
ture, and from each signature, selecting the best walk for the three
segments de�ned by B , C , and the two bottleneck arcs, such that each
segment is highest gain subject to recurrence bounds and not having
other bottlenecks.

Once we have this path domination result, we can use this to
demonstrate domination of more complicated collections of objects
with small dominating sets, and eventually all circuits. It easily fol-
lows, for instance, that there is a small collection of B–B walks with
the property that for any �ow-generating cycle� containing B , there
exists a walk ' in this collection that dominates � , in the sense that
for every choice of cost bound _ ∈ R+, at least as much excess can
be created using ' than � . From this, by ‘composing’ dominating
sets for cycles and paths, we obtain a small dominating set for the
collection of all bicycles in the graph.

1.4.2 Initialization. A strongly polynomial straight line complexity
bound implies a strongly polynomial iteration bound of the SLLS
IPM; however, it requires an initial point (G0, B0) ∈ P++ × D++ near
the central path. Such a point may not even exist; in fact, the primal
or dual programs in (LP) may be infeasible. Whereas one could use

1565



STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Daniel Dadush, Zhuan Khye Koh, Bento Natura, Neil Olver, and László A. Végh

the combinatorial algorithms to decide primal [37] and dual [24]
feasibility, these algorithms do not directly yield strictly feasible
solutions (which may again not exist).

The situation is analogous to Simplex, where Stage I can be used
to �nd a feasible solution by solving an auxiliary LP. Various initial-
ization methods have been developed for IPMs, but none of these is
directly applicable for our purposes: only solving auxiliary systems
with small straight line complexity, while remaining in the strongly
polynomial model.

A common initialization technique is the self-dual homogenous
formulation [52]. However, writing the self-dual formulation of a
generalized �ow LP results in a more complicated problem and it
is not clear if the straight line complexity admits a similar bound.
(Note also that in the simpler case of (standard) network �ows, the
constraint matrix is totally unimodular, while the combined matrix
does not have this property.)

We present two initialization methods. Our �rst approach uses
a ‘big-"’ method, as in [49]. Let us create a negative copy of each
variable with a large penalty cost. That is, one can replace the primal
system using variables (G, G ′, G ′′) ∈ R3= in the form

min ⟨2, G⟩ +"
〈

1=, G
′〉

s.t. AG − AG ′ = 1 , G + G ′′ = 2"1= , G, G ′, G ′′ ≥ 0 .
(3)

Here, G ′ represents a negative copy of each variable and G ′′ corre-
sponds to a slack variable for the box constraint 0 ≤ G ≤ 2"1= . Such
a system, along with its dual, is easy to initialize for su�ciently large
" . Moreover, the constraint matrix remains ‘nice’, e.g., it can be still
interpreted as a (capacitated) generalized �ow problem, where the
G ′ variables correspond to expensive reverse arcs. As long as there
exists a pair of primal and dual optimal solutions (G★, B★) to (LP)
with ∥G★∥∞, ∥B★∥∞ < "1= , these will also be optimal solutions to
the extended formulation.

However, �nding a suitable large" becomes challenging. In [49],
such a bound is derived based on j̄A. This is hard to compute in
general; one could use a repeated guessing of this condition number,
but this would lead to a log log j̄A running time dependence. Bounds
on the norms of optimal solutions are routinely derived using bit-
complexity arguments, see e.g. [22]; however, this is also not possible
in the strongly polynomial model.

To address this, we use the existing strongly polynomial algo-
rithms of e.g., [37] and [24] to solve up to = primal and dual feasi-
bility problems to �rst obtain maximum support primal and dual
solutions. We then reduce the problem to a system with a pair of
strictly positive primal and dual solutions. The reduction is achieved
by deleting some variables and projecting out some others. In the
generalized �ow problem, these amount to graphical operations of
deletions and contractions, and thus preserve the generalized �ow
structure. Given the strictly positive primal and dual solutions (Ĝ, B̂),
choosing" larger than ⟨Ĝ, B̂⟩ divided by the smallest entry of (Ĝ, B̂)
guarantees that ∥G★∥∞, ∥B★∥∞ < "1= for any pair of primal and
dual optimal solutions.

Whereas the above approach can implement the big-" method,
it is only applicable to the particular minimum-cost generalized
�ow setting as it requires feasibility solvers. Also, it needs to solve
2= systems as preprocessing. We also develop a more principled,
multistage initialization strategy that is applicable to general LP,

preserves straight line complexity, and only requires solving four
IPM problems. Since we will need to solve di�erent LPs derived from
(LP), one needs to clarify what ‘preserving straight line complexity’
means. We de�ne SLC[ (A) as the maximum value of SLC[ (Gm8 ) for
any variable 8 ∈ [=] in any LP of the form (LP) with constraint
matrix A, but taking any possible right-hand side 1 ∈ R< and cost
2 ∈ R= . All our auxiliary LPs will have SLC bounded by SLC[ (B),

where B =

(

A −A 0<×=
I= 0=×= I=

)

is the matrix also used in the big-M

formulation (3).
Our strategy can be interpreted as a facial reduction strategy,

wherewe carefully �x or project out variables that yield an equivalent
LP to the original one, and where strictly feasible primal and dual
solutions in fact exist. Throughout the process, the solutions from a
previous stage provide a starting point near the central path.

1.4.3 Implementation in the Turingmodel. As discussed in Section 1.3,
to obtain a strongly polynomial algorithm in the Turing model one
needs to devise a new rounding approach, as the previous ones rely on
bit-complexity information and rounding that are not implementable
in the strongly polynomial model.

The main ingredient is a general strongly polynomial technique
to keep the bit-complexity of all iterations polynomially bounded
in the input encoding length. This technique is not particular to the
SLLS algorithm but can be used for any path-following method. The
main subroutine takes an iterate (G, B) in the central path neighbor-
hood, and computes (G̃, B̃) that is in a slightly larger neighborhood,
may have slightly worse optimality gap, but its encoding length is
polynomially bounded in the length of the input.

To argue about the encoding length, we ‘anchor’ the point (G̃, B̃)
to vertices of the primal and dual polytopes. In strongly polynomial
time, we can write a Minkowski–Weyl decomposition of G and B
using vertices and extreme rays. However, we cannot simply round
the coe�cients. In particular, it is possible that (G, B) is written as
a ‘highly unstable’ convex combination of primal and dual vertices
such that either ⟨E,D⟩ < ⟨G, B⟩ /2= or ⟨E,D⟩ < 2= ⟨G, B⟩ for each pair
of primal and dual vertices (E,D). We proceed in two stages. First,
we try to �nd a value `★ ≈ ⟨G, B⟩ /= such that `★ has small encoding
length. This is easy as long as the combination contains primal and
dual vertices (E,D) with ⟨G, B⟩ /2= ≤ ⟨E,D⟩ ≤ 2= ⟨G, B⟩. In the ‘highly
unstable’ situation as above, it turns out that the direction from (G, B)
pointing towards a pair of primal and dual vertices (E,D) with much
better gap is a very good movement direction of the IPM. Hence, we
can replace (G, B) during the rounding step by a much better iterate
that is also numerically more stable. In the second stage, we add a
cost bound to our feasible region according to `★. On this bounded
polytope, we can now �nd a Minkowski–Weyl decomposition and
simply round the coe�cients. The guarantees of this rounding are
based on the near-monotonocity property of the central path.

1.5 Organization

The rest of the paper is structured as follows. Section 2 introduces
some necessary background, in particular, regarding straight line
complexity and circuits. Section 3 analyzes the straight line complex-
ity of minimum cost generalized �ows. It contains an overview of the
proof strategy for obtaining a weaker bound of$ (=<4). The stronger
bound of $ (<2) and all the proofs can be found in the full version.
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The initialization procedure for the IPM, as well as the rounding
procedure needed to control the bit-complexity, are also deferred to
the full version.

2 PRELIMINARIES

Notation. We let R++ denote the set of positive reals, and R+ the
set of nonnegative reals; similarly forZ++,Z+,Q++ andQ+. For= ∈ N,
we let [=] ≔ {1, 2, . . . , =}. We let 0=, 1= ∈ R= denote the all 0s and all
1s vectors, respectively. For G ∈ R= , we let supp(G) ⊆ [=] denote its
support. For U ∈ R, we let U+ = max{U, 0} and U− = max{−U, 0}; for
a vectorG ∈ R= , we useG+ andG− coordinatewise.We let supp+ (G) =
supp(G+) and supp− (G) = supp(G−). For functions 58 : R= → R< ,
8 ∈ I, we let ∨8∈I 58 denote the pointwise maximum.

We let ker(A) denote the kernel of the matrix A ∈ R<×= . The
standard inner product of the two vectors G,~ ∈ R= is denoted as
⟨G,~⟩ = G⊤~. For G,~ ∈ R= , we let G◦~ = (G1~1, . . . , G=~=) denote the
Hadamard-product, and if ~ ∈ R=++, we let G/~ = (G1/~1, . . . , G=/~=).

We denote the primal and dual feasible regions of (LP) by

P ≔ {G ∈ R=+ | AG = 1} and D ≔ {B ∈ R=+ | ∃~ : A⊤~ + B = 2}
respectively. We let P++ ≔ P ∩ R=++ and D++ ≔ D ∩ R=++ de-
note the strictly feasible regions. Interior point methods require
P++,D++ ≠ ∅. We do not make this assumption in general; in the
full version, we show how one can use a sequence of reductions
to simpler IPM problems to �rst either �nd a suitable initial point
(G0, B0), or conclude infeasibility or unboundedness of the input LP.

The sublevel sets. Assume P,D ≠ ∅, in which case (LP) admits
a pair of primal and dual optimal solutions (Ḡ, ~̄, B̄) with optimum
value ⟨2, Ḡ⟩ = ⟨1, ~̄⟩ = E★. Recall that this holds precisely if these two
solutions are complementary: ⟨Ḡ, B̄⟩ = 0; in particular, Ḡ8 B̄8 = 0 for all
8 ∈ [=].

Recall the de�nitions of the sublevel sets P6 , D6 in (1) as the set
of primal and dual solutions with objective value within 6 from the
optimum value E★.

The duality gap of any pair (G,~, B) of primal-dual feasible points
of (LP) ful�lls ⟨2, G⟩ − ⟨1,~⟩ = ⟨G, B⟩. In particular, we have ⟨G, B̄⟩ =
⟨2, G⟩ − E★ and ⟨Ḡ, B⟩ = E★ − ⟨1,~⟩. Thus, the two sets P6 andD6 are
equivalently given by

P6 = {G ∈ P : ⟨G, B̄⟩ ≤ 6} and D6 = {B ∈ D : ⟨Ḡ, B⟩ ≤ 6} .
These expressions are in fact independent of the choice of optimal
solutions (Ḡ, ~̄, B̄). The following is immediate.

Proposition 2.1. Assume that P++ andD++ are nonempty. Then, for

all 6 ≥ 0, the sets P6 and D6 are bounded.

Our main tool for analyzing SLC are circuits.

De�nition 2.2 (Elementary vectors and circuits). Let A ∈ R<×=
and assume ker(A) ≠ {0=}. A vector I ∈ ker(A) is an elementary

vector in ker(A) if I is a support-minimal nonzero vector in ker(A).
We let E(A) denote the set of all elementary vectors. A set � ⊆ [=]
is a circuit of A if it is the support of some elementary vector; we let
C(A) ⊆ 2[=] denote the set of circuits.

We say that a vector ~ ∈ R= conforms to G ∈ R= if G8~8 > 0

whenever ~8 ≠ 0. A conformal circuit decomposition of a vector
I ∈ ker(A) is a decomposition of the form I =

∑ℓ
8=1 6

(8 ) , where

6 (1) , . . . , 6 (ℓ ) ∈ E(A), ℓ ≤ =, and each 6 (8 ) conforms to I. This no-
tion can be seen as a generalization of the cycle decomposition of
circulations for networks �ows. The existence of such a decomposi-
tion is well-known, see e.g., [18, 40].

Proposition 2.3. For every A ∈ R<×= , every vector I ∈ ker(A)
admits a conformal circuit decomposition.

2.1 Straight Line Complexity and Circuits

In this section, we establish an intimate connection between the SLC
of an LP and its circuits. Recall the de�nition (2) of the max central
path (Gm, Bm) from the introduction.

De�nition 2.4 (ℎ-curve). Let Ḡ be a primal optimal solution to (LP).
Given a vector ℎ ∈ ker(A) where ⟨2, ℎ⟩ ≥ 0, the ℎ-curve from Ḡ is
the function Ḡℎ : R+ → (R+ ∪ {∞})= that maps Ḡℎ (6) to Ḡ + Uℎ, for
U ∈ R+∪{∞} chosen maximally such that Ḡ +Uℎ ≥ 0 and ⟨2, Uℎ⟩ ≤ 6.

Note that Ḡℎ = ḠVℎ for all V > 0. It is easy to see that

Ḡℎ (6) = Ḡ +min

(

6

⟨2, ℎ⟩ , min
9∈supp− (ℎ)

Ḡ 9

|ℎ 9 |

)

ℎ , (4)

with the convention that we omit the �rst term from the minimum
if ⟨2, ℎ⟩ = 0 (Ḡℎ is a constant function in this case). The next lemma
shows that for every 8 ∈ [=] and 6 ≥ 0, the 8th coordinate of the max
central path at 6 is upper bounded by a circuit augmentation from
an optimal solution, up to a factor =.

Lemma 2.5. Let Ḡ be a primal optimal solution to (LP) and 8 ∈ [=].
For every 6 ≥ 0 where Gm8 (6) > Ḡ8 , there exists an elementary vector

ℎ ∈ E(A) such that ⟨2, ℎ⟩ ≥ 0, ℎ8 > 0, ℎ 9 ≥ 0 whenever Ḡ 9 = 0, and

Ḡℎ8 (6) ≥ Gm8 (6)/=.
De�nition 2.6 (Dominance). Let Ḡ be a primal optimal solution
to (LP). Let 8 ∈ [=] and U ≥ 0. Given vectors ℎ,ℎ′ ∈ ker(A) where
⟨2, ℎ⟩ , ⟨2, ℎ′⟩ ≥ 0, we say that ℎ U-dominates ℎ′ on 8 with respect to

Ḡ if Ḡℎ8 ≥ UḠℎ
′

8 . More generally, given sets (, ( ′ ⊆ ker(A), we say
that ( U-dominates ( ′ on 8 with respect to Ḡ if ⟨2, ℎ⟩ ≥ 0 for all ℎ ∈ ( ,
and for every ℎ′ ∈ ( ′ with ⟨2, ℎ′⟩ ≥ 0, there exists ℎ ∈ ( such that ℎ
U-dominates ℎ′ on 8 with respect to Ḡ .

De�nition 2.7 (Circuit cover). Let Ḡ be a primal optimal solution to
(LP). Let 8 ∈ [=] and U ≥ 0. An U-primal circuit cover of 8 with respect

to Ḡ is a set ( ⊆ ker(A) which U-dominates E(A) on 8 with respect
to Ḡ .

The utility of a circuit cover is illustrated by the following lemma.
Note that Gm8 (0) is the maximum value of the 8-th coordinate in an
optimal solution. Assuming Gm8 (0) < ∞, there exists a (basic) optimal
solution Ḡ such that Gm8 (0) = Ḡ8 .

Lemma 2.8. Fix 8 ∈ [=] such that Gm8 (0) < ∞, and let Ḡ be a primal

optimal solution to (LP) such that Ḡ8 = Gm8 (0). If ( is an U-primal

circuit cover of 8 with respect to Ḡ , then SLCU/= (Gm8 ) ≤ |( | + 1.

3 MINIMUM-COST GENERALIZED FLOW

Let � = (+ , �) be a directed multigraph with arc capacities D ∈
(R++ ∪ {∞})� and gain factors W ∈ R�++. A �ow in � is any non-
negative vector G ∈ R�+ . Note that a �ow is allowed to violate arc
capacities. For a node 8 ∈ + , we denote X in (8) and Xout (8) as the set
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of incoming and outgoing arcs of 8 respectively. The net �ow of G at
node 8 is de�ned as

∇8G ≔
∑

4∈X in (8 )
W4G4 −

∑

4∈Xout (8 )
G4 .

Let ∇G ∈ R+ denote the vector of net �ows at every node in + . A
�ow G is a circulation if ∇G = 0. For 8, 9 ∈ + , we denote by �8, 9 ⊆ �
the subset of arcs with tail 8 and head 9 .

An instance of theminimum-cost generalized �ow problem is given
by a directed multigraph� = (+ , �) with node demands 1 ∈ R+ , arc
costs 2 ∈ R� , capacities D ∈ (R++ ∪ {∞})� and gain factors W ∈ R�++.
It can be formulated as the following LP:

min{⟨2, G⟩ : ∇G = 1 , 0 ≤ G ≤ D} . (MGF)

Throughout this section, we will use = for the number of nodes of
� and< for the number of arcs; note that applied to (MGF), this is
the reverse of the convention used for general LPs. Let �2 ⊆ � denote
the subset of arcs with �nite capacities. We de�ne<2 := |�2 | for the
number of �nite capacity arcs.

We assume that (MGF) has a �nite optimum, since otherwise the
max central path does not exist; our initialization procedure will
ensure that we only consider such instances. For an arc 4 ∈ �, we
denote Gm4 as the coordinate of the primal max central path which
corresponds to the �ow variable G4 . For a capacitated arc 4 ∈ �2 ,
we also denote Gm←

4
as the coordinate of the primal max central path

which corresponds to the slack variable D4 − G4 . Our goal in this
section is to prove the following bound on the SLC of each coordinate
of the primal max central path.

Theorem 3.1. Given an instance of minimum-cost generalized �ow

with a �nite optimum, we have

(i) SLC[ (Gm4 ) = $ (=<2 (<2 + =)2) for every arc 4 ∈ �, and
(ii) SLC[ (Gm←

4
) = $ (=<2 (<2 + =)2) for every arc 4 ∈ �2

for some [ = Ω(1/(<2=)).

In the full version, we prove a stronger bound of $ (<(<2 + =))
on the SLC.

It will be more convenient to work with the special case of (MGF)
where 1 = 0 and 2 ≥ 0. Note that 0 is trivially an optimal solution.
One can show that it su�ces to bound SLC[ (Gm4 ) for every arc 4
in this instance in order to prove Theorem 3.1. This is achieved by
replacing the cost 2 with any optimal reduced cost, and considering
the residual graph with respect to any optimal solution G∗ to (MGF).
Let � denote the set of �nite capacity arcs in the reduced instance,
and de�ne <̄ ≔ |� |. By picking G∗ to be basic, one can further ensure
that <̄ ≤ <2 + =. See the full version for more details.

3.1 SLC Bounds via Domination

We will follow exactly the general plan discussed in Section 2.1: we
demonstrate the existence of a small primal circuit cover. Recall the
notion of an elementary vector from De�nition 2.2. The following is
precisely this same notion, in the context of generalized circulations.

De�nition 3.2 (Elementary circulation). A nonzero circulation 5 in
� is elementary if supp(5 ) is inclusion-wise minimal, i.e., there is no
nonzero circulation 5 ′ in � with supp(5 ′) ⊊ supp(5 ).

In order to characterize elementary circulations, we need the
following concepts.

De�nition 3.3 (Walk, trail, path and cycle). A walk is a sequence
, = (E0, 41, . . . , 4ℓ , Eℓ ) where 48 is an arc from E8−1 to E8 for all 8 ∈ [ℓ].
It is closed if E0 = Eℓ , and open otherwise. If 48 ≠ 4 9 for all 8 ≠ 9 , then
it is called a trail. If E0 = Eℓ and E8 ≠ E 9 for all 0 ≤ 8 < 9 ≤ ℓ , then it
is called a cycle at E0.

The gain of, is W (, ) ≔ ∏ℓ
8=1 W48 , with the convention W (, ) ≔

1 if ℓ = 0. We call, �ow-generating if W (, ) > 1, conservative if
W (, ) = 1, and �ow-absorbing if W (, ) < 1.

For an A–B walk & and an B–C walk, , we denote & ⊕, as the
concatenated A–C walk. We use + (, ) and � (, ) to refer to the node
set and arc set of a walk, .

De�nition 3.4 (Objects). A �ow-generating object at C ∈ + is a
pair (�,, ) where � is a �ow-generating B–B walk for some B ∈ +
and, is an B–C walk. It is simple if � is a cycle,, is a path, and
+ (�) ∩+ (, ) = {B}.

A �ow-absorbing object at B ∈ + is a pair (,,�) where, is an
B–C walk for some C ∈ + and � is a �ow-absorbing C–C walk. It is
simple if, is a path, � is a cycle, and + (, ) ∩+ (�) = {C}.

A conservative object is a triple (�,, , �) where either
(i) for some B, C ∈ + ,� is a �ow-generating B–B walk,, is an B–C

walk, and � is a �ow-absorbing C–C walk; or
(ii) � is a conservative closed B–B walk for some B ,, is the trivial

path at B , and � = � .4

The object is simple in case (ii) if� is a cycle, and in case (i) if (�,, )
and (,,�) are simple, and

- + (�) ∩+ (�) = ∅ in the case that � (, ) ≠ ∅; or
- the intersection of� and� is a path, in the case that � (, ) = ∅.

Given a �ow-generating object*1 = (�1,,1) at B , an B-C walk & ,
and a �ow-absorbing object*2 = (�2,,2) at C , we also use*1⊕&⊕*2

to refer to the conservative object (�1,,1 ⊕ & ⊕,2,�2).
Since an arc can be used multiple times in a walk or an object, we

introduce the notion of recurrence to keep track of its multiplicity.

De�nition 3.5 (Recurrence). A walk, is called :-recurrent if every
arc appears at most : times as a step in, . Similarly, an object* is
:-recurrent if every arc appears at most : times in total as a step in
some constituent walk of* .

Note that:-recurrent only upper bounds the number of repetitions
of an arc; for : ≤ ℓ , any :-recurrent walk is also ℓ-recurrent.

When considering �ows supported on the arc set of a walk, it
will be important to be able distinguish between �ow on di�erent
“steps” of the walk that involve the same arc of the graph. We do this
formally by de�ning the “splitting” of a walk, which simply makes
parallel copies of arcs to turn the walk into a corresponding trail.

De�nition 3.6 (Splitting). Let �̃ = (+ , �̃) be the directed multi-
graph with the same node set as � , but with 10= parallel copies of
each arc, each with the same gain factor, cost and capacity as the
corresponding arc in � . (The choice of 10= is just to be su�ciently
large for our purposes.) For each 4 ∈ �, we use 41, 42, . . . , 410= to
index the corresponding copies in �̃.

4This may look somewhat strange, but it essentially views a conservative cycle as a
degenerate bicycle; this will be convenient in covering all cases with a single argument.
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Given a 10=-recurrent walk, = (E0, 41, E1, 42, . . . , 4A , EA ) in� , we
de�ne a splitting of, to be a trail ,̃ = (E0, 4f11 , E2, 4

f2
2 , . . . , 4

fA
A , EA )

in �̃ , where for each 8 ≠ 9 with 48 = 4 9 , f8 ≠ f 9 .

Given an object* , a splitting of* is a tuple of trails in �̃ , each be-
ing a splitting of the corresponding walk in* , and where in addition
the trails are arc-disjoint.

Note that up to trivial relabelling of copies of arcs, the splitting of
a walk or object is unique.

For an object or walk* , we use+ (* ) and � (* ) to denote its node
set and arc set respectively, and also use � (*̃ ) ⊆ �̃ to denote the arc
set of a splitting *̃ .

De�nition 3.7 (Induced �ows). Given an B–C walk, with splitting

,̃ , we say that G̃ ∈ R�̃+ is a �ow induced by ,̃ if G̃ is nonzero,
supported on � (,̃ ), and W4 G̃4 = G̃ 5 for any pair of consecutive arcs

4, 5 ∈ � (,̃ ) where 4 comes before 5 in ,̃ . We say that Ḡ ∈ R�+ is a
�ow induced by, if Ḡ is the projection onto � of a �ow G̃ induced
by a splitting of, , that is, Ḡ4 =

∑

9 G̃4 9 .
Given a �ow-generating object * = (�,, ) at C , a �ow induced

by a splitting *̃ = (�̃,,̃ ) is a vector G̃ ∈ R�̃+ that can be written
as a sum of a �ow induced by �̃ and a �ow induced by ,̃ , and
where in addition ∇EG̃ = 0 for all E ≠ C . The de�nition for �ow-
absorbing objects is completely analogous; and for a conservative
object* = (�,, , �), G̃ should satisfy ∇G̃ = 0, and be a sum of �ows
induced by the components of a splitting of* .

We are ready to characterize elementary circulations.

Lemma 3.8. A �ow is an elementary circulation if and only if it is

induced by a simple conservative object.

We remark that all �ows induced by an object are the same up
to scaling. The following will be a crucial notion: it is the largest
possible �ow induced by a walk (or object), with the property that on
each step of the walk or object, the �ow does not exceed the capacity
of the arc, and the cost of that step (�ow times arc cost) does not
exceed a given bound _.

De�nition 3.9. Let, be a walk, with ,̃ a splitting of, and G̃ a

�ow induced by ,̃ . De�ne G,̃ : R+ → R�̃+ to be the function that

maps G,̃ (_) to the largest scaling of G̃ so that G̃0 ≤ D0 and 20G̃0 ≤ _
for each 0 ∈ � (,̃ ). Then let G, : R+ → R�+ be the projection of G,̃

onto � , i.e., G,4 (_) =
∑

9 G
,̃
4 9
(_).

We de�ne G*̃ (_) and G* (_) for an object * with splitting *̃ in
identical fashion.

Note that G, (_) and G* (_) do not depend on the choice of split-
ting, and so are well-de�ned.

Remark 3.10. This de�nition is closely related to the de�nition of
ℎ-curves for general LPs provided in De�nition 2.4. It is more general,
in that we de�ne G* for objects that are not conservative, and hence
which do not lie in the kernel. If we consider a conservative object* ,
and take ℎ to be a �ow induced by* , then G* and the ℎ-curve 0ℎ are
“close”: if * is :-recurrent, then 1

:<
G* (_) ≤ 0

ℎ (_) ≤ G* (_). The
reason that they are not identical, only within a factor :<, is simply
because of the per-step nature of the capacity bounds (meaning
G* (_) might overload an arc by a factor :) and cost bounds (meaning

G* (_) could have total cost :<_, given each arc could in principle
contribute a cost of :_).

Let E denote the collection of simple conservative objects. For
any 4 ∈ � and collectionU of conservative objects, we de�ne GU4 :=
∨

* ∈U G*4 . The following is essentially Lemma 2.8 for this setting,
taking into account the scaling necessary to make G* (_) feasible for
cost bound _.

Lemma 3.11. Fix any edge 4 ∈ �. Suppose that D is a collection

of :-recurrent conservative objects that U-dominates E on 4 , in that

GD4 ≥ UG E4 for some constant U . Then SLCU/(<2: ) (Gm4 ) ≤ |D|.

As such, our goal is now to demonstrate such a dominating collec-
tion D; we will do this with U = 1, : = $ (=) and |D| = $ (=<2<̄2).

3.2 Path Domination

While our goal is to dominate simple conservative objects, we build
up to this in stages. Our �rst step is to build a small collection of B–C
walks that dominate all B–C paths; these will become building blocks
in the next section.

De�nition 3.12. Given two distinct nodes B and C , and an B–C walk
, , let

®5, (_, A ) := min
(

∇CG, (_), W (, )A
)

. (5)

In words, ®5, (_, A ) is the maximum amount of �ow that can be sent
to C with a �ow induced by, , given that each step respects the cost
and capacity bounds, and that there are only A units available at B to
be sent.

The function ®5, for a given B–C walk, has a very simple form.
We can write it as

®5, (_, A ) = min{_/cost(, ), W (, )A, limit(, )},
where cost(, ) is the largest cost of a step of the walk per unit of
�ow measured at C ; W (, ) is the gain of the walk; and limit(, ) is the
maximum amount of �ow that can arrive at C given that each step
respects the capacity.

For walks, we use the following stronger “bivariate” notion of dom-
ination. This will be crucial when we come to use this to demonstrate
domination, in the usual sense, for �ow-generating/�ow-absorbing
objects and eventually conservative objects in the following sections.

De�nition 3.13. We say that an B–C walk, ′ dominates an B–C walk
, if W (, ′) ≥ W (, ) and ∇CG,

′ ≥ ∇CG, .

If, ′ dominates, , then by (5), clearly ®5, ′ ≥ ®5, (i.e., ®5, ′ (_, A ) ≥
®5, (_, A ) for all _ and A ); indeed this is easily seen to be equivalent.
Write P(B, C) for the set of all B–C paths for any distinct B, C ∈ + .

Given a collectionW of B–C walks, de�ne

®5W :=
∨

, ∈W
®5, .

The main theorem of this section is the following. It shows that the
collection of B–C paths can be dominated by a small collection of
=-recurrent B–C walks: for any B–C path % , any cost bound _, and any
amount of �ow A available at B , there is a walk in the collection that
does a better job at sending �ow to C under the same cost and �ow
restrictions.
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Theorem 3.14. Fix distinct nodes B and C . Then there is an $ (<<̄)-
sized collectionW of =-recurrent B–C walks such that for every % ∈
P(B, C), there is a walk, ∈ W that dominates % . Hence ®5W ≥ ®5P(B,C ) .

The remainder of this section will be devoted to sketching the
proof of Theorem 3.14. First, we need a few de�nitions.

De�nition 3.15 (Bottlenecks, signature and backbone of a walk).
Consider an B–C walk, with at least one step, and let G̃ be a �ow
induced by a splitting ,̃ .

De�ne the cost bottleneck step of ,̃ to be the arc 0c ∈ � (,̃ ) for
which 20c G̃0c is maximal, breaking ties towards steps closer to C . The
cost bottleneck of, is then the arc 4c ∈ � that corresponds to 0c.
Similarly, de�ne the �ow bottleneck step of,̃ to be the arc 0f ∈ � (,̃ )
for which G̃0f /D0f is maximal, breaking ties towards arcs closer to
C ; exceptionally, if all arcs of, have in�nite capacity, set 0f = 0c.
Again the �ow bottleneck of, is the arc 4f ∈ � that corresponds to
0f .

The signature of, is

f (, ) ≔
{

(4c, 4f , ⪯), if 0c is earlier in the walk than 0f , or 0c = 0f
(4c, 4f , ≻), otherwise.

The backbone of, , denoted V (, ), is the subwalk of, that starts
and ends with the bottleneck steps (including the bottleneck steps).
We also write g (, ) for the subwalk of, before V (, ), and [ (, )
for the subwalk after V (, ); that is,

, = g (, ) ⊕ V (, ) ⊕ [ (, ) .

If ,̃ is a splitting of, , we also de�ne the precisely corresponding
partition into subtrails,

,̃ = g (,̃ ) ⊕ V (,̃ ) ⊕ [ (,̃ ) .

For any walk, , it is easy to verify that f (V (, )) = f (, ).

De�nition 3.16. We say that a path % is f-capped if f (%) = f and
V (%) = % .

For each signature f , let ( (f) be any highest gain path amongst
all f-capped paths. For any signature f , say that a walk !̄ is a left
f-extension if it starts from B , contains ( (f) as a su�x, has signature
f , and !̄ = g (!̄) ⊕ ( (f). In other words, if we consider a splitting !̃
of !̄, it contains a splitting (̃ of ( (f) as its su�x, and the cost and
�ow bottleneck steps are the �rst and last arcs of (̃ (in the order
speci�ed by the signature). We similarly de�ne a walk '̄ to be a right
f-extension if it ends at C , contains ( (f) as a pre�x, has signature f ,
and '̄ = ( (f) ⊕ [ ('̄).

We are now ready to de�ne the dominating collectionW of B–C
walks. For any signature f , de�ne !(f) to be a highest-gain (= − 2)-
recurrent walk such that !(f) ⊕ ( (f) is a left f-extension, as long
as at least one such walk exists; if not, !(f) is unde�ned. Similarly,
let '(f) be a highest-gain path such that ( (f) ⊕ '(f) is a right f-
extension, or unde�ned if there are none such. Let Σ be the collection
of all signatures for which !(f) and '(f) are both de�ned; note that

Σ ⊆ (� × � × {⪯, ≻}) ∪ {(4, 4, ⪯) : 4 ∈ � \ � },

taking into account the possibility of walks consisting only of in�nite
capacity arcs.

Now de�ne, (f) := !(f) ⊕ ( (f) ⊕ '(f) for each f ∈ Σ, and
W := {, (f) : f ∈ Σ}. It is easy to see that f (, (f)) = f . Clearly,
|W| ≤ |Σ| ≤ <(2<̄ + 1).

It is left to prove thatW dominates the set of B–C paths. We show
this using the following patching operation. Given an B–C walk,
with signature f , de�ne patch(, ) to be the B–C walk obtained from
, by replacing V (, ) with ( (f). (Note that we do not care about
computing patch(, ); all of this is purely existential.)

Lemma 3.17 (Patching a walk). Suppose, is an B–C walk whose

backbone V (, ) is a path, and let, ′ = patch(, ). Then, ′ dominates

, . Furthermore, if f (, ′) ≠ f (, ), then [ (, ′) is a strict su�x of

[ (, ).

We brie�y sketch the key idea of the proof. Let f be the signature
of, , and assume that it has the form f = (4c, 4f , ⪯); the other case
is analogous. Consider, ′ = patch(, ), obtained by replacing V (, )
with ( (f), the highest gain path starting with 4c and ending in 4f
whose cost bottleneck is 4c and �ow bottleneck is 4f . For convenience,
let us assume that , and , ′ are paths (there are no additional
conceptual di�culties when they are not paths, but more notational
care is needed). Fix some _, and consider G := G, (_), the largest
�ow induced by, that doesn’t violate the per-step capacity and
cost bounds. Let G ′ be the �ow induced by, ′ for which the same
amount of �ow arrives at C , i.e., ∇CG ′ = ∇CG . Since, and, ′ agree
after the �ow bottleneck 4f , G

′ and G are the same on these arcs; in
particular, G ′4f = G4f . Given thatW (( (f)) ≥ W (V (, )) by the de�nition
of ( (f), G ′4c ≤ G4c . Since ( (f) has signature f , and G ′ satis�es the
cost and capacity constraints on the bottleneck arcs, it satis�es these
constraints on all arcs of ( (f). Finally, since, and, ′ agree on
the segment from B to 4c, G ′ is no larger than G on all of these arcs.
So we can feasibly have as much �ow arriving using, ′ instead
of, , while sending the same or less �ow from B . This shows that
®5, ′ (_, A ) ≥ ®5, (_, A ) for all _ and A .
The signature of, ′ can di�er from, , but the reason for this

will be that 4c is no longer the cost bottleneck (since it can receive
proportionally less �ow compared to what arrives at the sink). In
this case the new cost bottleneck will necessarily be later in the walk.
It cannot be in ( (f), since ( (f) has signature f , and so must lie in
[ (, ), ensuring that [ (, ′) is a strict su�x of [ (, ).

Now, let % be an arbitrary B–C path. Starting from, (1) ≔ % ,
we construct a sequence, (1) ,, (2) , . . . ,, (ℓ ) of B–C walks by set-
ting, (8+1) = patch(, (8 ) ), stopping once f (, (8+1) ) = f (, (8 ) ).
By Lemma 3.17,, (8+1) dominates, (8 ) . Furthermore, as long as
f (, (8+1) ) ≠ f (, (8 ) ), [ (, (8+1) ) is a strict subwalk of [ (, (8 ) ).
Since we started with a path, it follows that ℓ ≤ =. Consequently,
, (ℓ ) is =-recurrent because each patching operation increases the
recurrence by at most 1. The proof of Theorem 3.14 is completed
by showing that, (ℓ ) is dominated by, (f′) ∈ W, where f′ =
f (, (ℓ ) ).

3.3 Dominating Simple Flow-Generating and

Flow-Absorbing Objects

In this section, we use the domination result for paths in the previous
section to dominate the set of �ow-generating objects and �ow-
absorbing objects at a node C .
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Given a �ow-generating object * at C , we will be interested in
∇G*C (_), the maximum amount of �ow that can be generated at C
using* , subject to the cost and capacity bounds. So de�ne 5 +

*
(_) :=

∇G*C (_) for all _ ≥ 0, and as usual, 5 +U :=
∨

* ∈U 5 +
*

for a collection
of �ow-generating objects at C . Given two �ow-generating objects
at C , * and * ′, we will say that * ′ dominates * if 5 +

* ′ ≥ 5 +
*
; and

similarly for collections of objects.
For a �ow-absorbing object * at B and a collection U of such

objects, we de�ne the analogous notions 5 −
*
(_) := −∇G*B (_) and

5 −U :=
∨

* ∈U 5 −
*
.

Flow-generating cycles at B . Given an B–B walk ', de�ne 5 +
'
(_) :=

∇G'B (_); that is, 5 +' = 5 +(',{B }) . De�ne 5
+
R for a collection of B–B

walks R in the usual way as 5 +R :=
∨

'∈R 5 +' . Let C+ (B) denote the
collection of �ow-generating cycles at B .

Theorem 3.18. There is an $ (<<̄)-sized collection R of (= + 1)-
recurrent �ow-generating B–B walks such that 5 +R ≥ 5

+
C+ (B ) .

The collection R is obtained by applying Theorem 3.14 to an aux-
iliary graph� ′, obtained from the original graph� by adding a new
node B′ and redirecting all the incoming arcs of B to B′, turning cycles
at B to B–B′ paths. Given such a path, and an B–B′ walk dominating
this cycle, domination means that we can send the same amount of
�ow from B along the walk and receive more at B′, without paying a
larger per-stop cost or violating the per-step capacity bound. Project-
ing this back to� yields an B–B walk which generates more excess
at B than the original cycle.

Flow-generating objects at C . For given nodes B and C , let G(B, C)
denote the collection of simple �ow-generating objects at C consisting
of a �ow-generating cycle at B , followed by an B–C path. Let G(C) :=
⋃

B∈+ G(B, C), be the collection of all simple �ow-generating objects
at C .

Lemma 3.19. For any B, C ∈ + , there is an $ (<2<̄2)-sized collection
H of$ (=)-recurrent �ow-generating objects, each consisting of a �ow-

generating B-B walk along with an B–C walk, such that 5 +H ≥ 5
+
G(B,C ) .

LetR be the collection of �ow-generating B–B walks guaranteed by
Theorem 3.18, and letW be the collection of B–C walks guaranteed
by Theorem 3.14. The collection H of �ow-generating objects is
obtained by taking all possible combinations of walks in R andW,
i.e., H := {(',, ) : ' ∈ R,, ∈ W}. Observe that for any �ow-
generating B–B walk ' and any B–C walk, , the �ow-generating

object * ≔ (',, ) satis�es 5 +
*
(_) = ®5, (_, 5 +' (_)). Therefore, 5 +H ≥

5 +G(B,C ) by our choice of R andW.

By taking the union of the dominating collections for G(B, C) for
each B ∈ + , we immediately get a dominating set of size $ (=<2<̄2)
for G(C).

Theorem 3.20. For any C ∈ + , there is an $ (=<2<̄2)-sized col-

lection H of $ (=)-recurrent �ow-generating objects at C such that

5 +H ≥ 5
+
G(C ) .

Absorbing versions. A completely symmetric version of the above
concerns, instead of the maximum excess we can generate at C , the
maximum de�cit we can create at C . Let A(C) the collection of all
simple �ow-absorbing objects at C .

Theorem 3.21. For any C ∈ + , there is an $ (=<2<̄2)-sized collec-
tion B of $ (=)-recurrent �ow-absorbing objects at C such that 5 −B ≥
5 −A(C ) .

3.4 Dominating Simple Conservative Objects

We are now ready to prove the main domination theorem for simple
conservative objects.

Theorem 3.22. Let  ∈ Z+ such that for every node B , there exist

(i) a collectionHB of $ (=)-recurrent �ow-generating objects at B
where 5 +HB

≥ 5 +G(B ) and |HB | ≤  ; and
(ii) a collection BB of $ (=)-recurrent �ow-absorbing objects at B

where 5 −BB ≥ 5
−
A(B ) and |BB | ≤  .

Then for any arc 4 , there is an$ (<<̄ + )-sized collection D of$ (=)-
recurrent conservative objects such that GD4 ≥ G E4 /8.

Combined with Theorem 3.20, Theorem 3.21 and Lemma 3.11,
this gives a bound of $ (=<2<̄2) on the SLC with neighborhood size
[ = Ω(1/(<2=)), proving Theorem 3.1.

Fix an arc 4 , with tail B and head C . In what follows, we only
sketch the proof for dominating the collection E? ⊆ E of simple
conservative objects � = (�6,�? ,�0) in which 4 ∈ � (�? ). The case
where 4 lies on the �ow-generating or �ow-absorbing cycle is more
involved. We refer the reader to the full version for the complete
proof.

Any� ∈ E? can be viewed as the composition of a �ow-generating
object*6 = (�6, %1) at B , the arc 4 , and a �ow-absorbing object*0 =

(%2,�0) at C (so�? = %1 ⊕4 ⊕%2). But this suggests a straightforward
choice of a dominating collection: take the collection HB of �ow-
generating objects at B which dominates all simple �ow-generating
objects at B , and the collectionBC of �ow-absorbing objects at C which
dominates (in the sense of Theorem 3.21) all simple �ow-absorbing
objects at C , to form a collection Q of conservative objects given by

Q ≔ {* ′6 ⊕ 4 ⊕ * ′0 : * ′6 ∈ HB ,*
′
0 ∈ BC }.

This does the job; for any cost bound _, there is some* ′6 ∈ HB that
can create at least as much excess at B as*6 ; similarly some* ′0 ∈ BC
can get rid of at least as much �ow at C as*0 ; and so* ′6 ⊕ 4 ⊕* ′0 ∈ Q
can send at least as much �ow through 4 as � .
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