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What can we learn from industry-level (aggregate) production functions?
Ben Filewod

Grantham Research Institute on Climate Change and the Environment, London School of Economics and Political Science, London, UK

ABSTRACT
Recent work has revived two intertwined challenges to aggregate production functions (the 
‘identity’ and ‘aggregation’ problems). This paper examines both problems in the context of 
aggregate industry-by-country analysis, first demonstrating the relevance of the identity problem 
for industry-level analysis and tracing its origin in the System of National Accounts. Using a case 
study of materials quality in global forestry and logging, the paper then compares estimates from 
fully physical versus conventional (monetary) production functions to isolate the aggregation 
problem and show that credible inference depends on appropriately modelling heterogeneity in 
production processes. Materials quality is measured via finite mixture modelling applied to global 
satellite data. Attempting to estimate the parameters of a common production technology yields 
poor results, because of differences in production processes between countries. The paper offers 
a practical approach for dealing with heterogeneity via Data Envelopment Analysis and hetero-
geneous coefficient panel estimators, and concludes with guidance to help applied industry-level 
analysis recognize and avoid both the identity and aggregation problems.
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I. Introduction

Production functions represent relationships 
between inputs and output using a transformation 
function Y ¼ f ðK; L; etc . . .Þ. Real production pro-
cesses are heterogeneous and typically involve phy-
sical quantities, but aggregate production 
functions1 estimated with value data are widely 
used for both research and policy formulation. 
Applied economists working with such functions 
must pay careful attention to problems surround-
ing data quality, model specification, and estima-
tion strategy. Recently, two further problems (the 
‘aggregation’ and ‘identity’ problems) have been 
revived and extensively developed (Felipe and 
Fisher 2003; Felipe and McCombie 2013, 2014).

The salience (if not the consequence) of these 
problems has been acknowledged (Heun et al.  
2017; Temple 2006), but debate has focused solely 
on their implications for total-economy produc-
tion functions (Felipe and McCombie 2010; 
Temple 2006, 2010). Yet the issues explicitly 
apply at a range of scales, and independent 

investigation of some of the claims made is lack-
ing. This paper therefore investigates both pro-
blems empirically in an industry-level setting 
(i.e. production functions for which the unit of 
analysis is industry by country). Industry-level 
analysis is a mainstay of both academic and 
applied inquiry (e.g. Eberhardt, Helmers, and 
Strauss 2013; Harrigan 1999), but falls into 
a theoretical grey area between the literatures on 
microeconomic (firm-level) and macroeconomic 
(total-economy) production functions; applied 
work at the industry level tends to emphasize 
microeconometric concerns (e.g. Vandenberghe  
2017). The main contribution of this paper is to 
pursue two fundamental problems from the 
macroeconomic literature in this policy-relevant 
setting, demonstrate their relevance, and suggest 
strategies for accommodating them.

The ‘aggregation’ problem arises because it is 
impossible to mathematically aggregate neoclassi-
cal production functions in a realistic way (Fisher  
1969). This is a practical as well as a theoretical 
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1The term ‘aggregate production function’ generally refers to total-economy production functions, but may also used to indicate any production function 
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problem: analysing the behavioural implications of 
an aggregate production function (e.g. substitution 
elasticities) may be nonsensical if there is no pre-
cise real-world counterpart, and glossing over het-
erogeneity in production processes may alter 
inference. Aggregation problems were widely 
demonstrated in the twentieth century (Felipe and 
Fisher 2003), but aggregate production functions 
continue to be seen as a useful approximation of 
reality (as per Solow’s ‘parable’ argument (Solow  
1957)) and are widely used for forecasting, mea-
surement, and hypothesis testing. In the latter case, 
whether aggregation poses problems in 
a hypothesis-testing context should depend on 
whether an aggregate representation of the data- 
generating process can identify the phenomenon of 
interest.

While production functions may be estimated at 
a range of scales, ranging from the individual physical 
process to firms, industries, or nations, only the first 
of these avoids some degree of aggregation. Textbook 
presentations of production theory emphasize the 
trivial case in which all firms are profit-maximizing 
price-takers who operate efficiently in competitive 
markets with homogeneous inputs (e.g. Mas-Collel 
et al. 1995:5.E). An aggregate production function is 
then a scaled-up version of the individual production 
technology, which is the same for all firms. Imposing 
more realistic conditions (notably heterogeneous 
capital) prevents mathematical aggregation (Felipe 
and Fisher 2003). Fisher (1969) provided 
a conclusive analysis, showing that (assuming max-
imization of output given inputs, constant returns to 
scale (CRS), labour homogeneous and mobile, and 
capital heterogeneous and fixed) an aggregate pro-
duction function can exist if and only if the under-
lying ‘micro’ production functions differ only by 
capital-augmenting technologies, and that no aggre-
gation is possible without CRS. These conditions are 
implausibly strict: differences in average product per 
worker between firms in an industry, for example, 
would preclude the existence of an aggregate produc-
tion function at the industry level (Felipe and Fisher  
2003).

The ‘identity’ problem arises because using 
monetary values to aggregate over heterogeneous 
output and inputs may involve an accounting iden-
tity. The monetary value of output must be distrib-
uted somewhere: in the textbook two-factor case, 

value added ; payments to labour plus payments 
to capital. Applied work often seeks to maintain 
this identity for theoretical coherence (Heun et al.  
2017), for example by adding the values of addi-
tional production inputs to the output measure, 
and it is a central assumption used to produce 
industry-level data within the System of National 
Accounts (SNA). However, estimating 
a production function from value data may be 
tautological because the usual neoclassical forms 
(Cobb-Douglas (Shaikh 1974) and Translog and 
CES (Felipe and McCombie 2013)) can be derived 
as transformations of the identity used to generate 
the data.

The clearest demonstration of the ‘identity’ pro-
blem in a panel context is due to Shaikh (1974). In 
response to Solow’s (Solow 1957) proposal for 
measuring technical change, Shaikh demonstrated 
the equivalence: 

Appendix A reproduces Shaikh’s proof. VAt 
represents output at time t, and Wt and �t give the 
cost shares of labour and capital, respectively. The 
left-hand side of eq 1 is an accounting identity, 
motivated by the assumption of competitive markets 
and CRS, which says output is fully dispersed to 
production factors (and Wt and �t are equivalently 
the value of labour and capital services). The right- 
hand side is indistinguishable from a Cobb-Douglas 
production function with a time-dependent technol-
ogy term (Bt), but in the equivalence in eq 1 it is 
derived as the factor-share-weighted average of the 
growth rates of the wage and profit rates. Translog 
and CES production functions can be derived simi-
larily by using different assumptions about the 
growth path of wages and profit (Felipe and 
McCombie 2013), meaning that the ‘identity’ pro-
blem implies that fitting a production function to 
value data is simply a matter of choosing 
a functional form that best approximates the growth 
path of wages and profits in the data to hand.

The implications of the equivalence in eq 1 have 
been throroughly developed elsewhere (e.g. Felipe 
and McCombie 2010, 2013; Shaikh 1974). Broadly, 
production functions fit to value data will not reveal 
new information about production processes. It 
should also always be possible to find a production 
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function that gives results matching a priori expec-
tations about what is correct, i.e. fitting the data 
extremely well, exhibiting CRS, and having marginal 
products that closely match factor cost shares (see 
Appendix A and following section). The ‘aggrega-
tion’ and ‘identity’ problems are therefore inter-
twined, since the latter ensures that estimates of 
aggregate production functions appear reasonable 
(which justifies dismissing concerns about aggrega-
tion). These arguments have led to very strong 
claims, including that total-economy production 
functions estimated with value data are spurious in 
general (Felipe and Fisher 2003; Felipe and 
McCombie 2006) and that measures of total factor 
productivity à la Solow are simply data artefacts 
(Shaikh 1974).

Although both the ‘aggregation’ and ‘identity’ 
problems have been thoroughly elaborated, they 
are rarely considered in applied work today. This 
paper takes an empirical approach to study both 
problems in a policy-relevant applied setting 
(industry-level production functions). Section II 
analyses the identity problem by revisiting 
a recent industry-level study ((Vandenberghe  
2017), published in this journal), demonstrating 
the claims above and locating the source of the 
problem in the System of National Accounts. 
Sections III-V analyse the aggregation problem 
via a case study of materials quality in a natural 
resource industry (forestry and logging; ISIC Rev.4 
A02). First, a non-parametric approach (Section 
IV) is used to evaluate heterogeneity and the prob-
able importance of aggregation in this industry. 
Second, comparisons between production func-
tions estimated with economic and physical data 
(Section V) are used to isolate the aggregation 
problem and show that heterogeneous coefficient 
estimators are a partial solution (contrasts are also 
made between estimates using only efficient sec-
tors, and two alternate specifications for materials 
quality). Section VI concludes with guidance for 
industry-level applied work.

The main finding of the paper is that both ‘aggre-
gation’ and ‘identity’ problems can be debilitating 
for industry-level analysis: in Section II the identity 
renders production function estimates spurious, 

while in Section V the treatment of aggregation 
alters inference. In response the paper suggests 
some simple practical strategies, namely careful 
attention to data, incorporation of non-parametric 
analysis, and flexible panel estimators. A secondary 
contribution is new information about the role of 
materials input quality in global forestry and logging 
(measured using the approach of Filewod and Kant,  
2021), and roughly analogous to management 
regime, i.e. plantation, frontier, or semi-natural for-
est). New data on average products and efficiency 
are presented, and the production function estimates 
(when heterogeneous technology is modelled) shed 
some light about whether materials quality matters 
in this industry. This is a timely question, since 
policy debates in the forestry sector frequently turn 
on the trade-offs implicit in harvesting forests of 
different quality classes (e.g. Himes et al. 2022).

II. The identity problem at the industry level

To assess whether the identity problem matters for 
industry-level aggregate production functions, this 
section revisits a recent study (Vandenberghe  
2017) of the productivity implications of changing 
labour and capital mixes in Europe (another, very 
similar, example is Ilmakunnas and Miyakoshi  
2013). The data, obtained from the 2007 release of 
the EU-KLEMS database (O’Mahony and Timmer  
2009; Timmer, O’Mahony, and van Ark 2007), are 
annual observations for 34 industries in 16 coun-
tries of real gross value added (GVA), capital ser-
vices (CAP), hours worked (H_EMP), shares of 
total hours worked by educational level and age 
bracket, and the share of ICT capital in total capital 
compensation. The aim is to estimate an aggregate 
production function in which variation in input 
quality matters, following the method of 
Hellerstein and Neumark (Hellerstein and 
Neumark 2007). The aggregation problem is of 
interest, since estimating a single production func-
tion in effect assumes that different quality inputs 
affect output in the same way across diverse indus-
tries, as is the identity problem, since in EU- 
KLEMS capital services are defined2 to exhaust 
value added (i.e. CAP ; GVA – LAB).

2Specifically (O’Mahony and Timmer 2009: F380): “The nominal rate of return is determined ex post as it is assumed that the total value of capital services for 
each industry equals capital compensation. . .derived as gross value added minus labour compensation”.
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If the identity problem holds, regressing GVA 
on CAP and LAB in logs should yield coefficient 
estimates (βCAP, βLAB) that are either identical or 
very close to factor shares (depending on whether 
factor shares of output are constant over time 
(Felipe and Holz 2001)), while regressing the raw 
variables should return perfectly collinear results. 
Quality adjusting inputs should not be possible, 
since there will be no residual variation to explain. 
Table 1 collects results from a series of regressions 
that assess these claims, using the same data as the 
original study.3 The average (country by sector 
by year) factor shares are 0.319 for CAP and 
0.681 for LAB.

Pooling observations, a regression of the raw 
data (Model 1) reveals the identity problem (i.e. 
perfect collinearity). Log-transforming variables 
(Model 2) allows estimation, with coefficient esti-
mates extremely close to factor shares and a high r2. 
Critically, these results match the claims of the 
‘identity’ problem and are evidence of it, and are 
not confirmation that the model is reasonable. In 
Model 3, variables are deflated to constant dollars 
(local currency) using EU-KLEMS price indices 
and one-way (country by sector) fixed effects are 
included. Coefficient estimates and (within) r2 

seem reasonable, but all that has been added is 
‘noise’ from imperfect deflation. In Model 4, labour 
services is replaced with total hours worked 
(H_EMP): this is a conventional fixed-effects pro-
duction function with labour measured in physical 
units, but recall that CAP is still derived as 
a residual using an accounting identity. Replacing 
LAB with H_EMP doesn’t fix the ‘identity’ problem 
because the variation on which the coffecient on 
labour is estimated remains the same (as shown by 
the very similar results from Models 3 and 4).

Model 5 reproduces the specification in 
Vandenberghe (2017) (eq 26), less the terms 

describing age shares of the labour mix (H_MS 
and H_HS are shares of medium- and high- 
skilled workers in total hours worked, CAPIT is 
the share of ICT capital in total capital compensa-
tion, and numeraire quality categories are omitted 
according to the Hellerstein and Neumark 
approach). Because a residual measure of capital 
input is still used, H_EMP and the quality terms for 
labour and capital are identified primarily from 
variation in labour’s share of output (labour ser-
vices, LAB) and the noise introduced by imperfect 
deflation. In the shift from Model 1 to Model 2, the 
identity problem allows apparently reasonable esti-
mates to be obtained from collinear data, matching 
a priori expectations but in fact containing no new 
information (high fit, coefficient estimates close to 
factor cost shares, and close-to-CRS are guaran-
teed). In Models 2–5, progressive refinements 
obscure but do not alter the problem, and there is 
no basis for interpreting the result as a hypothesis 
test about input quality.

It is worth emphasizing that analysts working at 
the industry level already face a dizzying array of 
methodological issues, chiefly from the firm-level 
literature, and are unlikely to be intimately 
involved in generating their dataset. This gives the 
‘identity’ problem urgency, since the obvious 
source of industry-level data (the System of 
National Accounts, or SNA) conforms to an 
accounting identity by design. SNA data on capital 
inputs are derived as a residual, according to the 
accounting identity in the LHS of eq 1 and assum-
ing the existence of an aggregate production func-
tion (with competitive markets and CRS) as 
justification. This is because capital inputs are 
extremely difficult to measure: capital stocks are 
generally owned rather than rented, and it is not 
obvious how to price them in a given year. In SNA 
2008, the value of capital services (the theoretically 

Table 1. Demonstrative regressions using EU-KLEMS data.
Model Specification Model βCAP βLAB r2 Within r2

1 VA , CAP + LAB pooling 1 1 1 -
2 ln(VA) , ln(CAP) + ln(LAB) pooling 0.371 0.705 0.992 -
3 ln(VA95) , ln(CAP95) + ln(LAB95) individual FE 0.468 0.375 0.999 0.562
4 ln(VA95) , ln(CAP95) + ln(H_EMP) individual FE 0.504 0.322 0.999 0.551
5 ln(VA95) , ln(CAP95) + ln(H_EMP) + ln(H_MS) + ln(H_HS) + ln(CAPIT) two-way FE 0.241 0.470 0.999 0.312

3Downloaded from http://www.euklems.net/euk08i.shtml#top. Data on 31 (not 34) industries are used, and Canada and the United States are omitted (see 
Supplemental Information); temporal coverage is the same
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preferred measure of capital inputs) is calculated as 
the user cost of capital multiplied by the productive 
capital stock so as to equal the (residual) value of 
gross operating surplus within the primary distri-
bution of income current account (Schreyer 2001; 
Schreyer and Organisation for Economic Co- 
operation and Development, and SourceOECD 
(Online service) 2009). The stock of capital is 
observable (via investment series) but the user 
cost of capital is not. It can be derived via the 
approach of Jorgensen (see Schreyer 2001: 5.4), 
but this requires knowing the internal rate of 
return, an issue on which “theory provides no 
guidance” (Schreyer 2001: 5.4.2). National accoun-
tants therefore choose either to set the value of 
capital services equal to gross operating surplus 
and solve for the internal rate of return, or select 
an arbitrary value (for example, the rate of return 
on government bonds). The former ‘endogenous’ 
calculation ensures that the value of capital services 
is indistinguishable from the value of gross operat-
ing services, so that the accounting identity in eq 1 
is satisfied (the latter ‘exogenous’ approach is pri-
marily viewed as a check on data quality).

III. Description of ‘aggregation’ case study

To assess whether the aggregation problem matters 
for industry-level aggregate production functions, 
the remainder of the paper analyzes a case study in 
which production functions are used for hypoth-
esis testing. To clearly separate the aggregation and 
identity problems, conventional estimates (using 
monetary data) are compared against estimates 
using entirely physical data. The point of the phy-
sical estimates is to see how aggregation alters 
inference when the identity problem is ruled out, 
not to analyse the implied production technology. 
The case study research question is: ‘does materials 
quality matter in the forestry and logging sector?’. 
Apart from the inherent interest noted in Section I, 
the forestry and logging sector provides an ideal 
setting to examine the aggregation problem alone 
because entirely physical measurement is reason-
able (output is a commodity, and a measure of 

materials quality may be constructed from satellite 
data as described below).

Estimated production functions are of the form 
Y ¼ f ðK; L;MÞ. In the conventional versions, Y is 
measured as (industry) value-added, K as the value 
of capital stock, L as number of persons employed, 
and M as the area of harvested forest (the materials 
input, which is transformed by the forestry and 
logging industry into timber). In the physical ver-
sions, Y is measured as industrial roundwood pro-
duction (m3) and K is measured as final energy 
consumption (terajoules). The baseline model esti-
mates a Cobb-Douglas production function via 
fixed-effects. There are clearly serious limitations to 
this minimal set-up, including the suitability of 
a Cobb-Douglas specification (Heun et al. 2017), 
the failure of fixed effects estimation to eliminate 
simultaneity (Griliches and Mairesse 1995), and 
(for the physical production functions) variation in 
the capital input not captured by final energy use.4 

These (and other) shortcomings are intended to 
focus attention on the aggregation problem alone.

For both conventional and physical production 
functions, quality variation in M is measured by 
unsupervised classification (finite mixture model-
ling) using global 30 m satellite observations of 
forest cover loss (Hansen et al. 2013), post- 
processed to identify harvested areas and classified 
using the approach of (Filewod and Kant 2021) (see 
Appendix B). This measure captures high-level (i.e. 
relevant for industry-level analysis) variation in the 
quality of harvested forest land, identified using 
pixel-level variation along two fundamental micro-
economic quality dimensions from the forest eco-
nomics literature (travel costs, proxied by least-cost 
travel time to cities, and site productivity, proxied 
by canopy height). Three quality classes are 
retrieved, corresponding to three bivariate skew- 
normal distributions (‘components’) fit to a global 
stratified sample of harvested forest pixels via 
expectation-maximization. Class/component 2 
(59.4% of sampled pixels) captures harvest occur-
ring close to markets in forests that are likely to be 
intensively managed (e.g. tree farms, plantations, 
semi-natural planted forests), while class/compo-
nent 1 (33.1%) captures harvest occurring in more 

4Time-invariant differences in capital stock (e.g. some of the difference in energy efficiency of machinery between countries) should be absorbed by the 
individual fixed effects.
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remote areas (e.g. semi-natural planted forests, 
managed natural forests), and class/component 3 
(7.5%) captures harvest occurring in very remote 
areas with higher standing volume (e.g. frontier 
forests). Using these data, the production function 
estimates essentially ask whether the type of forest 
harvested matters for productivity in the forestry 
and logging sector.

Economic variables were obtained from the 2016 
release of the World Input-Output Database 
(WIOD) (Timmer et al. 2015) Socio-Economic 
Accounts (SEA) (Gouma et al. 2018) and converted 
to 2010 $USD. Data on emissions-relevant (i.e. 
final) energy use were taken from WIOD’s energy 
accounts (Corsatea et al. 2019), and data on indus-
trial roundwood production from FAOSTAT. Each 
variable is observed once per country per year, with 
28 countries retained for analysis following quality 
filtering of geospatial results (Figure 1). Means and 
standard deviations for all variables are given in 
Appendix C.

IV. Exploring producer heterogeneity

An aggregate (industry-level) production function 
assumes that all countries produce on the efficient 
frontier of a common production technology. If this 
is not the case, then non-parametric approaches to 
productivity analysis such as index numbers or Data 
Envelopment Analysis (DEA) may be preferable 
(van Biesebroeck 2007, 2008). In this section, DEA 
is used to assess potential heterogeneous technology 
in the case study dataset, before proceeding to pro-
duction function estimation in Section V.

There are many flavours of DEA. Here, a basic 
input-oriented DEA model is used to estimate the 
minimal production possibility set consistent with 
the data. Each observation (country) is compared 
to the efficient frontier, which is a linear envelope 
defined by the most efficient observations. With 
three inputs and N observations, the basic input- 
oriented DEA model under variable returns 
(Bogetoft and Otto 2011: eq 5.1) is: 

WIOD database
n = 43, 2001-2014

ID country-specific canopy cover thresholds

Calculate annual area harvested

Retain countries with corr (area, industrial 
roundwood) > 0 and mean annual 
production > 1 M m3

n = 28

Sample quality (1 pixel / 100 ha / yr)

Finite mixture modelling

Dataset
n = 28, 2001-2014

Monetary variables
• Value added (2010 

$USD)
• Capital Stock (2011 

$USD)

Physical Variables
• Employment (persons 

engaged)
• Energy use (terajoules)
• Area harvested 

(hectares)
• Industrial roundwood 

production (m3)

Quality variables
• Means/standard 

deviations
• Classified pixels

Figure 1. Case study dataset construction.
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The input efficiency of the industry being eval-
uated (θ�) is the scaling factor by which all inputs 
could be reduced without reducing output (Farrell 
efficiency), as demonstrated by the production 
plans of other industries. Weights λn compare the 
industry to a linear combination of most similar 
industries. The z variables are ‘complementary 
slacks’, which capture possible gains in efficiency 
beyond what can be achieved by a proportional 
rescaling of inputs; δ is the corresponding penalty 
for slack. The DEA analysis employs the weakest 
possible assumptions (in this context, free disposa-
bility, convexity, and variable returns to scale 
(Bogetoft and Otto 2011)).5 Because eq (2) is non- 
stochastic, 2001–2014 values are averaged to 
reduce the impact of interannual variation 
(Ruggiero 2007) and two outliers are excluded 
(Austria, due to apparent measurement error in 
the energy input, and Russia, due to missing data).

The last four columns of Table 2 collect DEA 
efficiency scores (E; equal to 1 if the country is at 
the efficient frontier) and complementary slacks (S; 
summed across inputs to compare relative effi-
ciency between countries). The analysis is per-
formed for the physical data only, first for the 
basic dataset (E and S; output is industrial round-
wood and inputs are final energy, person-hours, 
and harvested area) and second (Eaug and Saug) 
for a modified dataset where harvested area has 
been allocated into the three quality classes 
described in Section III. The remainder of Table 2 
provides average products (for K, L, and M) and 
summary information about materials input qual-
ity. Compared to DEA, average products give lim-
ited information (and implicitly assume constant 
returns to scale (Bogetoft and Otto 2011)), but do 

provide a straightforward first assessment of the 
plausibility of assuming a single production 
technology.

The results of this benchmarking exercise clearly 
demonstrate heterogeneous technology in the for-
estry and logging sector. Only 11 of 26 countries 
operate at the efficient frontier (E = 1) in the un- 
augmented model (for Eaug this rises to 13). 
Average products exhibit wide variation across 
countries, some of which is likely due to measure-
ment error.6 The key implication is that the aggre-
gation problem should matter in this dataset. One 
response (implemented in Section V) is to retain 
only (theoretically consistent) efficient producers 
when estimating production functions. Another is 
to abandon parametric analysis altogether, instead 
using detailed DEA or index number approaches in 
combination with narrative economic history to 
understand the importance of materials quality in 
global forestry and logging. However, the suitabil-
ity of non-parametric methods depends on the 
importance of measurement error (van 
Biesebroeck 2007), and this would forego formal 
hypothesis testing.

V. Production function estimates

In this section, a variety of Cobb-Douglas produc-
tion function estimates are compared to empiri-
cally assess the importance of the aggregation 
problem for industry-level analysis, using the 
hypothesis-testing case study described in Section 
III. Estimating fully physical production functions 
(which are clearly not subject to an accounting 
identity) isolates the aggregation problem; 
a comparison of results obtained using fixed effects 
versus heterogeneous panel estimators (the Swamy 
and Mean Groups estimators) then shows how 
inference changes when an aggregate production 
technology is not assumed. An alternative set of 
estimates uses only the DEA-efficient firms identi-
fied in Section IV, for which a single production 
technology is more reasonable. A final set of con-
trasts considers two alternate approaches to 

5Free disposability is innocuous if the data do not include undesirable outputs. Convexity implies that unobserved (convex) combinations of inputs are feasible 
production plans, which is increasingly plausible at higher levels of aggregation. Variable returns is weaker than the alternate assumption that production can 
be scaled.

6For example, roundwood output per area harvested ranges from 0.068 (Indonesia) to 10.414 (Slovenia) because satellite observations of harvested area at 30  
m resolution include some forest cover loss not due to harvest (Indonesia) and exclude harvest from non-clearcut silviculture (Slovenia). Since measurement 
error across countries is extremely difficult to eliminate, data exploration is a vital step in sector-level analysis.
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including a quality term in the production func-
tion. All specifications are compared against esti-
mates using conventional (monetary) data, giving 
24 estimates in total. In the physical production 
function industries use capital (energy), person- 
hours, and forests to produce a commodity, while 
in the economic version industries use capital 
(stocks), person-hours, and forests to produce 
profits.

Broadly speaking, there are two approaches to test 
hypotheses about input quality in a production func-
tion framework: either variables describing the quality 
dimensions of inputs are simply added to the estimat-
ing equation, without a formal statement of the 
upstream production technology, or the production 
function may be modified to accommodate hetero-
geneous inputs. The former approach (hereafter 
termed ‘characterization’), has a long pedigree (e.g. 
Garnero, Kampelmann, and Rycx 2014; Griliches  
1967) but lacks theoretical coherence.7 The second 
approach (‘augmentation’) is consistent with an 
upstream aggregate production function. Early efforts 

(e.g. Griliches 1967) included inputs of different qual-
ity as separate factors of production. More recently, 
Hellerstein and Neumark (HN henceforth) 
(Hellerstein and Neumark 1995; Hellerstein, 
Neumark, and Troske 1999) showed that input qual-
ity classes may be modelled as substitutes whose 
productivity is estimated relative to a numeraire.

Implementing the HN approach with three qual-
ity classes, taking logs, and (approximately) linear-
alizing by applying lnð1 � xÞ � x (an approach 
taken by HN and others (Griliches 1967; 
Hellerstein and Neumark 2007)) yields the estimat-
ing equation: 

Lower case variables denote logs, and c2it and c3it 
are the fraction of materials input falling into qual-
ity class 2 and 3 for producer i in year t. The 
analagous ‘characterization’ approach is simply: 

Table 2. Physical input intensities and quality characteristics (2001–2014 means) for A02 panel.
Flag Mm3: 1000 hectares Mm3: 1000 persons Mm3: Tj n Access (hours) height (metres) C1/C2/C3 E S Eaug Saug

AUS 2 0.227 2.341 0.00183 16980 4.4 18.4 38/57/5 0.89 5716.9 0.98 8687.59
AUT 1 1.978 0.519 0.44221 1583 0.9 26.7 0/100/0 NA NA NA NA
BEL 1 2.496 1.733 0.00348 1400 0.5 21.5 0/100/0 1 0 1 0
CAN 2 0.181 3.203 0.00325 127286 6.8 17 70/22/8 1 0 1 0
CHE 1 8.948 1.007 0.02009 1400 0.6 24.6 0/100/0 1 0 1 0
CHN 3 0.438 0.01 0.00048 46419 3 23.6 17/75/7 0.95 275886.12 1 291217.08
CZE 1 4.286 0.491 0.00254 1404 0.5 21.5 0/100/0 0.94 1150.03 0.94 1150.03
DEU 1 4.775 1.192 0.00732 2681 0.6 21.8 0/100/0 1 0 1 0
DNK 1 0.919 0.338 0.00231 1399 1 15.9 3/97/0 1 0 1 0
FRA 1 0.939 0.85 0.00185 5695 0.7 18.8 0/100/0 0.64 5733.05 0.7 6271.01
GBR 1 0.974 0.528 0.00105 2449 1 16.1 3/97/0 0.35 953.05 0.36 1008.8
HRV 1 1.98 0.294 0.00421 1400 0.7 22.1 0/100/0 0.73 0 0.74 0.5
IDN 3 0.068 0.02 0.00133 131441 3.2 24 17/72/11 0.13 340.9 0.15 451.25
IND 3 1.496 0.002 7e-04 4740 1.9 22.7 6/89/6 0.48 35231.69 0.54 40508.54
IRL 1 0.691 0.224 0.00142 1400 0.7 14.1 0/100/0 0.42 0 0.43 1.2
JPN 3 0.889 0.189 0.00041 2989 0.5 25.3 0/99/0 0.27 7504.9 0.27 7762.08
KOR 3 0.438 0.055 0.00051 1422 0.5 23.6 0/100/0 0.15 0 0.15 0.39
LTU 1 0.454 0.415 0.00386 1613 0.9 18.5 0/100/0 0.76 0 0.91 8.46
NOR 1 0.35 1.576 0.02756 3441 1.4 18.9 4/96/0 1 0 1 0
POL 1 1.9 0.516 0.00307 2479 0.7 18.7 0/100/0 0.6 9.56 0.6 9.56
PRT 1 0.464 0.808 0.00538 3328 0.9 16.8 0/100/0 0.81 0 1 15.84
ROU 1 1.172 0.261 0.01038 1675 1.4 26.5 0/100/0 1 0 1 0
RUS 3 0.154 NA NA 163247 7.9 19.7 60/25/14 NA NA NA NA
SVK 1 2.939 0.293 0.00846 1400 0.8 25.2 0/100/0 1 0 1 0
SVN 1 10.414 0.368 0.00255 1400 0.6 24.9 0/100/0 1 0 1 0
SWE 1 0.363 2.043 0.01325 27146 2.2 17.9 29/71/0 1 0 1 0
TUR 3 0.753 0.081 0.00251 2601 1 18.4 0/100/0 0.39 35.83 0.42 40.14
USA 2 0.293 0.905 0.00448 179747 1.9 21.3 7/92/1 1 0 1 0

Columns 3–5 give output:input ratios (average products), expressed as million m3 of industrial roundwood output per unit of materials, labour, or capital 
(energy) input. Columns 6–9 give the the number of harvested pixels sampled to characterize materials input quality (n), the mean scores for each underlying 
quality dimension used for unsupervised classification (see Appendix B for details), and the shares of harvested area falling into each quality class (C1-C3).

7Added variables are frequently seen as statistical controls, irrespective of theoretical coherence: HN (Hellerstein and Neumark 1995), for example, also employ 
terms for ownership structure, location, and firm age.
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This is a log-linearized Cobb-Douglas production 
function with three factors, to which two variables 
describing quality have been added ( �H and �A, the 
country mean scores of harvested pixels on the two 
underlying quality dimensions used for finite mix-
ture modelling, i.e. canopy height and travel time 
to cities)

Baseline estimates of eq 3–4 are obtained using 
one-way (country) fixed effects (Table A1); follow-
ing Lagrange multiplier tests and Chamberlain’s 
test as recommended by (Baltagi 2013). A parallel 
set of estimates use heterogeneous coefficient mod-
els, which relax the assumption that a single coeffi-
cient vector describes the data generating process 
for all units. These models are intended to accom-
modate the producer heterogeneity at the root of 
the aggregation problem8; they are also empirically 
motivated, since Chow tests for poolability in the 
fixed effects models firmly rejects for both the 
physical and economic datasets (p � 0:001 in 
both cases) and estimating country-specific models 
by OLS reveals wide variation in coefficients. The 
first heterogenous panel estimator is that of Swamy 
(1970), who proposed a random coefficient estima-
tor in which the common data generating process 
is identified as the average of the individual coeffi-
cients weighted using the producer-level variances. 
Collecting coefficients in β and letting X represent 
the data, the model may be written (Croissant and 
Millo 2018):  

If the deviations (δis) from the average effects are 
not correlated with the idiosyncratic error eit, eq 5 
can be estimated by generalized least squares. 
Alternatively, the Mean Groups estimator 
(Pesaran and Smith 1995) identifies each mean 
effect β as the simple average of the individual 
effects from i individual regressions 
(�β ¼ 1

N
PN

i¼1 βi). Whereas Swamy imposed para-
metric assumptions to derive an expression for 

the variance of �β, the Mean Groups approach 
assumes only the exogeneity of the regressors and 
independent errors to express var(�β) as the empiri-
cal covariance of the βi (Croissant and Millo 2018).

Fixed effects estimates using physical data (mod-
els 1–6) are poor: using the full dataset (odd num-
bers in Table 3) coefficients on capital and labour 
are not significant, and overall model fits (reported 
as adjusted ‘within’ r2) are low (significant coeffi-
cients on M are implied by the quality filtering 
shown in Appendix B, Figure A3). Fixed-effects 
results using economic data (models 7–12) are 
somewhat better, with significant and plausible 
coefficients on all inputs. However, point estimates 
(and implied elasticities of scale) are very low, ran-
ging from 0.083 to 0.284 for capital, 0.078–0.313 
for labour, and 0.064–0.137 for materials. An 
obvious explanation for this is that endogenous 
input selection is known to bias coefficient esti-
mates downwards in fixed effects models, “with 
the capital coefficient falling faster than the labor 
coefficient and often actually reaching zero” 
(Griliches and Mairesse 1995): 11. For the physical 
models, omitted variables (notably the use of 
energy to represent the capital input, despite prior 
support (Santos et al. 2016) for this approach) and 
measurement error may also play a role: the coeffi-
cient estimates on capital and labour in the fixed 
effects models are almost never significant, sug-
gesting that these models are not viable platforms 
for testing hypotheses about materials quality. 
Using only DEA-efficient countries (even numbers 
in Table 3) improves goodness-of-fit for physical 
models only but decreases it for the conventional 
models, because DEA was performed using the 
physical dataset only. While results are plausible 
(taking endogeneity bias into account) for the con-
ventional models, this should be surprising given 
the marked heterogeneity shown in Section IV. 
A weak version of the identity problem may be at 
play due to the use of monetary measures of output 
and capital.

The picture that emerges from the heteroge-
neous panel models (Table 4) is rather different. 
The results for the physical models are greatly 
improved, with all inputs showing significant 

8The idea of using these methods to tackle the heterogeneous technology highlighted by the theoretical aggregation literature appears to have been 
suggested as early as Zellner, 1966 (cited in Swamy 1970).
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effects on output and plausible magnitudes. The 
output elasticity of labour is about twice that of 
capital (measured as final energy consumption). 
This dramatic change from the (physical) fixed 
effects results in Table 3 to the heterogeneous 
coefficient results in Table 4 is a clear demonstra-
tion of the importance of the aggregation pro-
blem at the sector level, in a setting where the 
intertwined identity problem is unambiguously 
ruled out. For the conventional (monetary) mod-
els in Table 4, the relative importance of inputs 
changes (i.e. is roughly equal), and the labour 
input is never significant. Note that the coeffi-
cients on capital and labour in the baseline con-
ventional estimates (models 7 and 10) sum to 
nearly 1, and that this is consistent with the 
(monetary) capital stock measure having been 
constructed so as to sum with labour’s share of 
output to equal value added.

To summarize: comparing fixed effects and het-
erogenous panel estimates for the physical 

production functions excludes the identity pro-
blem and highlights the aggregation problem. 
Because the production processes of different 
countries are heterogeneous, attempting to esti-
mate the parameters of a common production 
technology yields poor results. When the estima-
tion strategy permits variable coefficients, the effect 
of inputs on outputs is strongly significant. 
Handling heterogeneity appropriately is clearly 
necessary, as strongly suggested by the benchmark-
ing results in Section IV, but this constrains the 
types of questions that can be asked of the data. 
Specifically, heterogeneous technology precludes 
a behavioural interpretation of estimated para-
meters: mean coefficients cannot be interpreted as 
output elasticities because the modelling strategy 
starts with the assumption that no common pro-
duction technology exists. On the other hand, 
appropriately modelling coefficient heterogeneity 
does provide a valid framework for hypothesis 
testing.

Table 3. Results of fixed effects regressions.
Basic model ‘characterization’ ‘augmentation’

Physical production function: RWD = TJ + EMP + AREA
(1) (2) (3) (4) (5) (6)

K 0.013 -0.009 0.010 -0.002 0.011 0.001
(0.012) (0.013) (0.012) (0.013) (0.012) (0.0132)

L 0.013 0.150 0.034 0.121 0.035 0.002
(0.037) (0.073) * (0.037) (0.074) (0.038) (0.061)

M 0.122 0.126 0.121 0.138 0.125 0.133
(0.014) *** (0.019) *** (0.0140 *** (0.020) *** (0.014) *** (0.019) ***

�H 0.008 0.025
(0.007) (0.012) *

�A -0.045 -0.033
(0.022) * (0.047)

c2 0.462 1.168
(0.221) * (0.412) **

c3 0.594 -2.368
(0.533) (1.155) *

adj r2 0.125 0.270 0.139 0.220 0.131 0.252

Economic production function: VA = K + EMP + AREA
(7) (8) (9) (10) (11) (12)

K 0.188 0.220 0.120 0.083 0.193 0.284
(0.039) *** (0.084) ** (0.039) ** (0.082) (0.038) *** (0.074) ***

L 0.219 0.078 0.313 0.286 0.307 0.171
(0.065) ** (0.146) (0.063) *** (0.140) * (0.065) *** (0.108)

M 0.120 0.137 0.095 0.064 0.128 0.123
(0.024) *** (0.036) *** (0.023) *** (0.036). (0.024) *** (0.031) ***

�H 0.069 0.114
(0.012) *** (0.022) ***

�A -0.054 0.041
(0.036) (0.085)

c2 1.913 0.940
(0.370) *** (0.712)

c3 0.818 7.534
(0.897) (2.030) ***

adj r2 0.096 0.055 0.194 0.202 0.157 0.126

Even-numbered models are estimated using the full dataset (n=28); odd-numbered models use only DEA-efficient countries (n=11 for the three- 
input models (2,8) and n=13 for the quality-augmented models (4,6,10,12). 

*** [0, 0.001], ** (0.001, 0.01], * (0.01, 0.05]. Where “[“ indicates that the bound of the interval is included and “(“ does not.
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Answering the case study question – does mate-
rials quality matter in global forestry and logging? – 
is complicated by a number of methodological 
issues not considered here (e.g. choice of functional 
form). Disregarding the fixed effects models due to 
the inadmissibility of assuming a single (aggregate) 
production technology, the heterogeneous coeffi-
cient models in Table 4 give contradictory results. 
Results from the physical models show that mate-
rials quality does not matter for industrial round-
wood output in either a ‘characterization’ or an 
‘augmentation’ (HN) approach. Conversely, results 
from the conventional (monetary) models show 
that quality does matter: countries producing 
from forests classed in quality bin 2 tend to see 
higher value added (models 9 and 12), and the 
height of harvested forests is significantly and posi-
tively associated with increased value added (mod-
els 8 and 11). These results can be reconciled by 
considering the different outcome variables used, 
recalling that the measure of materials quality used 

here is essentially a description of the forest man-
agement regime. The physical results show that 
more than one regime can be associated with high 
industrial roundwood output (e.g. both short- 
rotation plantations and frontier forests can pro-
duce high harvested volumes). The conventional 
‘characterization’ results (models 8, 11) show that 
countries whose harvested forests are more mature 
tend to see higher profits since mature forests yield 
more wood (and typically higher value) per unit 
harvesting effort. The monetary ‘augmentation’ 
results (9, 12) are probably driven by two outliers, 
Canada and Russia, which are the only countries 
primarily producing quality categories other than 
component two and are widely known as produ-
cers of unprocessed (lower-value-added) products.

VI. Concluding remarks

Industry-level production function analysis is likely 
to remain an important area of applied work, 

Table 4. Results of heterogeneous panel models.
Swamy Mean Groups

Physical production function: RWD = TJ + EMP + AREA
(1) (2) (3) (4) (5) (6)

K 0.125 0.119 0.164 0.116 0.122 0.185
(0.027) *** (0.045) ** (0.061) ** (0.037) ** (0.041) ** (0.057) **

L 0.394 0.308 0.281 0.414 0.297 0.263
(0.069) *** (0.010) ** (0.102) ** (0.088) 8*** (0.091) ** (0.090) **

M 0.120 0.104 0.103 0.132 0.103 0.100
(0.027) *** (0.031) *** (0.025) *** (0.031) *** (0.027) *** (0.021) ***

�H 0.011 0.011
(0.014) (0.012)

�A 0.043 0.109
(0.130) (0.110)

c2 -0.054 -0.185
(0.515) (0.478)

c3 -0.351 NA
(0.923)

multiple_r2 0.978 0.998 0.988 0.995 0.997 0.997

Economic production function: VA = K + EMP + AREA
(7) (8) (9) (10) (11) (12)

K 0.520 0.303 0.114 0.547 0.282 0.097
(0.108) *** (0.105) ** (0.135) (110) *** (0.098) ** (0.129)

L 0.473 0.334 -0.025 0.451 0.325 -0.209
(0.288) (0.285) (0.285) (0.294) (0.274) (0.274)

M 0.148 0.083 0.129 0.165 0.096 0.140
(0.027) *** (0.039) * (0.048) ** (0.042) *** (0.032) ** (0.043) **

�H 0.126 0.140
(0.033) *** (0.030) ***

�A 0.043 0.151
(0.249) (0.223)

c2 5.490 6.036
(1.585) *** (1.536) ***

c3 1.027 NA
(0.999)

multiple_r2 0.943 0.995 0.963 0.986 0.993 0.994

For each combination of estimator and dataset, the first (e.g. (1)) is the baseline specification, the second (2) uses the ‘characterization’ approach to include 
materials input quality, and the third (3) uses the HN ‘augmentation’ approach. 

*** [0, 0.001], ** (0.001, 0.01], * (0.01, 0.05]. Where “[“ indicates that the bound of the interval is included and “(“ does not.
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especially when rich firm-level datasets are scarce. 
However, the theoretical basis for estimating indus-
try-level production functions is less well studied 
than either the firm-level or total-economy case, 
potentially leading applied workers to overlook key 
concerns arising from disparate literatures.

This paper considers two such concerns: the 
identity and the aggregation problems. It finds 
(Section II) that the former is potentially a serious 
problem for industry-level analysis, given the ten-
dency to rely on SNA data (which explicitly con-
forms to an accounting identity) and the current 
preference for using capital services to measure 
capital inputs. In theory, the identity problem can 
be avoided by paying careful attention to data. This 
requires increased attention to the origins of indus-
try-level data, and in particular to the construction 
of observations on capital and their relationship 
with the output measure. Regressions of value- 
added on capital services should be ruled out. 
Similar regressions on capital stocks are suspect, 
but may be admissible if the capital stock series are 
built up independently of the value-added measure.

The benchmarking results in Section IV and the 
production function results in Section V argue for 
taking the aggregation problem into account in 
industry-level work. Industries (and firms) employ 
a wide variety of production processes, and using 
aggregate production functions for hypothesis test-
ing (or other purposes) requires appropriately 
modelling heterogeneity in production technology. 
Fortunately, techniques for assessing heterogeneity 
in production processes are readily available (e.g. 
average products, DEA), and, in a panel data con-
text, heterogeneous coefficient estimators provide 
a straightforward modelling solution.

A minimal interpretation of these results is that 
both the identity problem and the aggregation pro-
blem can matter for industry-level analysis. The 
wide array of methodological issues associated 
with production function estimation can easily cre-
ate a form of ‘attention bias’, leading to significant 
issues being neglected. Nevertheless, applied econ-
omists working with industry-level data should 
carefully consider the importance of heterogeneous 
technology in their data and the construction of 
any monetary variables used; given the degree to 
which subjective choices about estimation strategy 
can influence results (Heun et al. 2017), it will also 

be important to search for complementary sources 
of information (e.g. expert interviews, narrative 
histories) when interpreting results.

Based on these observations, the following guid-
ing questions can be considered for production 
function estimation with industry-level data:

● Do the data conform to an upstream account-
ing identity? If yes, production function esti-
mation is tautological, and different data must 
be sought. In general, data originating in the 
System of National Accounts conform to an 
accounting identity by design. Any measure of 
capital services should be carefully scrutinized, 
since capital services are not directly observed 
and are usually derived as an accounting resi-
dual. If stock measures of capital are used, 
a thorough exploration of their origin (e.g. in 
tax returns) is recommended.

● Do the data involve an element of aggrega-
tion? At the industry level, the answer is likely 
always yes – and heterogeneity in production 
technology should be explored empirically and 
modelled if necessary. Note that essentially all 
data, including firm-level data, involve aggre-
gation. At issue is whether this aggregation 
matters for the research question(s) of interest. 
At minimum, average products should be cal-
culated as a quick and simple means of asses-
sing production heterogeneity.

● Have a broad range of methodological issues 
been considered? If not, potentially serious pro-
blems may have been neglected and inference 
may be contingent on an arbitrary methodologi-
cal decision. This is particularly pressing in areas 
of less active methodological research, because 
the burden on analysts to synthesize multiple 
areas of inquiry is correspondingly higher (e.g. 
prior work may not have established preferred 
model specifications or estimation strategies; 
methods from other areas may be applied out 
of context without regard to underlying assump-
tions, etc.).

Looking ahead, criticisms of aggregate production 
functions have gone well beyond industry-level 
work (e.g. Felipe and McCombie 2013), while new 
methods for total-economy aggregation have 
emerged (Baqaee and Farhi 2018). This paper has 
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attempted to take the core issues seriously in 
a specific applied context, providing some new 
results and guidance for future work; since both 
the ‘aggregation’ and ‘identity’ problems appear to 
be both significant and neglected, a metascientific 
assessment of their prevalence in published produc-
tion function studies could be a valuable next step.
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Appendices

Appendix A: Shaikh’s (1974) critique

This appendix reproduces the derivation of the identity 
problem (in a panel data context) given in Anwar Shaikh’s 
1974 paper (Shaikh 1974). For convenience, the notation 
has been slightly altered and all algebraic steps are made 
explicit.

Consider time series data on the value of output VA (value- 
added) and total payments to factors of production W and R 
(wages and profits, respectively), all in monetary terms, as well 
as any index numbers L and K for labour and capital inputs. 
By definition, we have 

VAt;Wt þ Rt (A1) 

for each period t. This is an accounting identity, typically 
motivated by the argument that payments to factors of pro-
duction exhaust profits in competitive markets. Write this 
equation in per-unit-labor terms by dividing through by Lt 
and multiplying the last term by one: 

VAt

Lt
¼

Wt

Lt
þ

Rt

Lt
ð
Kt

Kt
Þ

Letting qt and kt represent the ratios of output and capital to 
labour, and wt ¼

Wt
Lt 

and kt ¼
Rt
Kt 

(the wage and profit rates): 

qt ¼ wt þ rtkt (A2) 

Then differentiate with respect to time (using @x
@t ¼ _x and 

dropping the time subscript for simplicity): 

_q ¼ _wþ _rkþ r _k 

multiply by 1 and regroup terms to express the right hand side 
in rates: 

_q ¼ _w
w
w
þ _rk

r
r
þ r _k

k
k
¼ ð

_w
w
Þwþ ð

_r
r
Þrkþ ð

_k
k
Þkr 

Divide through by q: 

_q
q
¼ ð

_w
w
Þ

w
q
þ ð

_r
r
Þ

rk
q
þ ð

_k
k
Þ

rk
q 

Note that we can write the share of profits in output as s ¼ Rt
VAt

, 
and (by identity 6) the share of wages in output as 1 � s. 
Futhermore, Rt

VAt
¼ rtkt

qt
. Making these substitutions gives: 

_q
q
¼ ð1 � sÞ

_w
w
þ s

_r
r
þ s

_k
k

(A3) 

Let _B
B ¼ ð1 � sÞ _w

wþ s _r
r, i.e. the factor-weighted share of the 

growth rate of wages and profits, and note that equation 8 
then appears identical to equation 2a in Solow’s famous paper 
on the measurement of technical change (Robert 1957). If 
factor shares of output happen to be stable over time 
(assumption 1) then s is a constant. Letting s ¼ β to empha-
size this, 8 may be integrated over time as follows: 

ð
_q
q

dt ¼
ð

_B
B

dt þ
ð

β
_k
k

dt 

ln q ¼
ð

_B
B

dt þ β ln kþ ln c 

where c is the constant of integration. Taking exponents: 

q ¼ expð
ð

_B
B

dtÞckβ (A4) 

If the growth rates of wages w and profits r are constant as well 
(assumption 2) then _B

B is essentially a function of time. 
Making another change of notation to emphasize this point 
gives: 

q ¼ ½BðtÞ�ckβ (A5) 

This appears to be a Cobb-Douglas production function in 
per-unit-labor terms with shift parameter B. Substituting 
q ¼ VA

L and k ¼ K
L and rearranging: 

VA ¼ BtcKβL1� β (A6) 

Shaikh’s point is that 11 is a Cobb-Douglas production func-
tion, but has been derived from an accounting identity under 
weak (and empirically reasonable) assumptions about the 
constancy of factor shares in output. A more detailed discus-
sion may be found in Chapter 2 of Felipe and McCombie 
(2013) including earlier formulations of the argument in 
a cross-sectional context (in which the relevant assumptions 
are the constancy of factor shares and growth rates across 
space).

The equivalence in 6 relies on two assumptions to show the 
equivalence between an accounting identity and a specific 
function form. The assumptions are, first, that factor shares 
of output are constant, and second, that the growth of the 
wage and profit growth rates is constant. These are empirically 
plausible, particularly in short panels, and simulation work 
shows that the argument is fairly robust to violating the 
former (Felipe and Holz 2001). In fact, removing them does 
not appear to affect the substance of the argument: these 
assumptions are simply required to derive a Cobb-Douglas 
production function from the value-added identity. Different 
assumptions about the time paths of factor shares and growth 
rates allow different functional forms to be derived, for exam-
ple the translog and the CES (Felipe and McCombie 2013: 
Appendix 2A1). Viewed in this light, model selection in pro-
duction function estimation (when data obey the accounting 
identity) may be seen as choosing a representation for these 
time paths, rather than identifying an aggregate production 
technology (Felipe and Holz 2001).

Appendix B: Dataset construction

This appendix provides an overview of the case study dataset 
construction. For a full description of the approach to asses-
sing materials quality, see Filewod and Kant (2021).
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Output, capital, and labour

Economic variables were obtained from the World Input- 
Output Database (WIOD) project (Timmer et al. 2015), 
which collects and harmonizes data from national statistical 
institutes and regional aggregates (e.g. Eurostat) for 43 major 
global economies. Series for output (value added) were 
deflated to 2010 values using country-specific price indices 
and then converted to US dollars using exchange rates taken 
from the Penn World Tables (Feenstra, Inklaar, and Timmer  
2015). The WIOD Socio-Economic Accounts (SEA) do not 
provide price indices for capital stock, so instead a total- 
economy capital stock deflator from the Penn World Tables 
(base year 2011) was applied. Data on emissions-relevant (i.e. 
final) energy use were obtained from WIOD’s energy 
accounts (Corsatea et al. 2019), which reconcile the IEA 
energy balances with the SNA accounting framework. 
Compared to the energy balances, the energy accounts allo-
cate energy use to the country where it physically occurs 
(versus by the country of residence of reporting units) and 
attribute emissions from the transport sector to associate 
industries (versus reporting emissions from the transport 
sector).

While the WIOD offers an attractive combination of sector 
detail and country coverage, as compared to other multi- 
regional input-output tables, two limitations should be 
noted. First, achieving a common sector classification for the 
years 2001–2014 requires the WIOD SEA to disaggregate or 
impute input data for several non-European countries. 
A variety of procedures are used to take full advantage of the 
available data per country, centred around the use of industry 
shares in value-added to disaggregate data and linear models 
of ratios of value-added to other variables (e.g. employment) 
to impute missing years. Both approaches effectively assume 
aspects of the production technology (i.e. that ratios of inputs 
to output follow a constant trend, or that input intensities in 
disaggregated industries are identical to input intensities in 
industry aggregates). The ability of panel data estimators to 
identify mean effects while controlling for country heteroge-
neity, including mis-measurement, may partially control for 
violations of these assumptions. To facilitate robustness tests, 
a data quality indicator was added to indicate the degree of 
transformation imposed by the WIOD SEA (column ‘flag’ in 
Table 2: 1 = EU countries, for which full sector and time 
coverage is typically available, 2 = AUS, CAN, U.S.A. for 
which no desegregation is required, 3 = other countries, 
requiring disaggregation or substantial imputation). Second, 
the treatment of autoproduction in the WIOD energy 
accounts does not use a mass balance approach; instead, 
energy use from wood fuel is divided amongst forestry sectors 
using monetary shares of forestry output consumed 
per sector.

Series of industrial roundwood production (summed pro-
duction of sawlogs or veneer logs, pulpwood, and other indus-
trial roundwood) were obtained from the Food and 
Agriculture Organization of the United Nations’ statistical 
database (FAOSTAT). This FAO reporting category is 

preferred to the ’roundwood’ reporting category because the 
inclusion of fuelwood in the latter introduces bias in countries 
with significant fuelwood production by households.

Materials

The materials input for the forestry and logging sector is 
economically exploited forest land (i.e. harvested area), 
which varies in quality on two fundamental dimensions 
(Filewod and Kant 2021): location and (ecological) site pro-
ductivity. Both annual area harvested (per country) and its 
quality can be derived from global geospatial datasets 
((Hansen et al. 2013, Simard et al. 2011, Weiss et al. 2018)) 
based on earth observation satellite data (for location, mea-
sured here as accessibility to cities (Weiss et al. 2018)), earth 
observation data play a secondary role to human-generated 
data, e.g. Open Street Map). While the satellite-derived loss 
areas and quality metrics represent a significant advance over 
previously available data, the identification of harvested area 
from area lost is noisy. This is of most concern for harvest 
systems (e.g. single-tree selection, thinning) that do not pro-
duce cover loss at 30 m scale. Data were processed and ana-
lysed in R (v3.6) and the parallelized, cloud-based Google 
Earth Engine.

Countries typically do not report annual areas harvested, 
and identifying the causes of cover loss is a significant chal-
lenge. Here, a number of heuristics are applied to the Global 
Forest Change dataset (Hansen et al. 2013) to convert annual 
global maps of forest cover loss to annual maps of harvested 
area. Specifically, loss due to fire is excluded using annual 
composites of area burned generated from the MODIS 250 m 
product MCD54A1 v.6. Loss due to canopy dynamics is 
avoided by imposing a minimum patch size threshold of 11 
8-connected pixels (, 1 ha). Loss occurring in protected areas 
is excluded using annual masks of protected areas that prohi-
bit resource extraction (IUCN categories Ia-IV). Finally, loss 
occurring in densely settled areas is excluded. In addition, two 
data cleaning steps are implemented using scripts published 
by Ceccherini et al. (Ceccherini et al. 2020) to calibrate forest 
areas (and resultant loss detection) against FAO data. First, 
country-specific forest cover thresholds are applied that mini-
mize differences between year 2015 forest cover and data from 
the FAO’s 2015 Forest Resources Assessment (mean % error: 
5.04, median: 0.49). Second, a minimum mapping unit is 
applied at all processing steps to remove isolated tree patches 
that fall below common UN size thresholds used to define 
forests (�0.5 ha, implemented here by retaining only 30 m 
forested pixels for which there are 5 or more 30 m pixels 
within a 100 m square kernel). These data cleaning steps 
were found to minimally affect estimates of annual area lost.

Of course, this approach will include an unknown amount 
of cover loss not due to harvest but not excluded by the 
masking procedure, as well as excluding harvest that does 
not result in stand-replacing disturbance at the ,30 m scale. 
Changes in sensor sensitivity and processing algorithms also 
complicate time-series analysis with the underlying dataset 
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(Hansen et al. 2013). As a quality control, annual estimates of 
harvested area were compared against FAO data on industrial 
roundwood9 production (Figure A3). Only countries for 
which Pearson’s r � 0 were retained for analysis; of these, 
two (CYP, LUX) were excluded because their small forest 
sectors (mean 2000–2014 production volumes � 1 million 
m3) do not offer meaningful comparisons against major 
industrial producers. This quality filtering reduced the num-
ber of countries in the dataset from 43 to 28.

To assess the quality of harvested forests, I rely on the von 
Thünen land use model to motivate the importance of travel 
costs and site productivity in determining economic rents. These 
variables can be proxied by wall-to-wall maps of canopy height 
(Simard et al. 2011) and travel time (Weiss et al. 2018), which are 
randomly sampled (at the location of forest harvest observations) 
with a density of one 30 m pixel per 100 ha of harvested area for 
each country and year (with a minimum sample of 100 pixels per 
country per year). Random sampling for small countries is dis-
tributed over the entire country footprint (FAO GAUL0 admin-
istrative boundaries). For large countries (AUS, BRA, CAN, CH, 
IND, IDN, RUS, U.S.A.), resource limits in Earth Engine pre-
clude both random sampling and annual area loss calculations. 
For these countries, both calculations are mapped over FAO 
GAUL2 administrative areas (e.g. counties). This introduces an 
(essentially negligible) bias due to rounding, since GAUL2 units 
with <51 harvested pixels (,4.6 ha at the equator) are not 
sampled. The joint and marginal sampling distribution for all 
countries is given in Figure A1.

The resulting data allow summary metrics (means, stan-
dard deviations) to be calculated for each quality dimen-
sion. Alternatively, harvest observations can be classified 
by the (economic) class of forest in which they occur. 
I implement both approaches. Classification is via finite 
mixture modelling, which treats observations as arising 
from an underlying data generating process that may be 
modelled using multiple parametric distributions. An 
expectation-maximization algorithm is used to select the 
number of components (model order) as well as their 

parameters. Gaussian components are most widely used 
but, as discussed in (Filewod and Kant 2021), theory 
suggests that skew components should be used when the 
underlying data generating process is the harvesting deci-
sion of firms and observations score on measures of loca-
tion and productivity (ceteris paribus, firms preferentially 
harvest accessible forests with higher stocking volume). 
Here, observations are classified using a finite mixture of 
skew normal distributions (Romulo Barbosa Cabral, Hugo 
Lachos, and Prates 2012, Oliveira Prates, Rˆomulo Barbosa 
Cabral, and Hugo Lachos 2013); the choice to use asym-
metric components responds to the well-known problem 
of overestimating model order when using symmetric 
components to reproduce an irregular density surface. 
Because components overlapped heavily, model order 
was selected using the popular (Geoffrey and Rathnayake  
2014) Bayesian Information Criterion (BIC) (a widely used 
alternate measure, Integrated Complete Likelihood, 
favours well-separated components).

In essence, this approach uses variation (in accessibility- 
height feature space) in harvested forests to identify distinct 
data-generating processes (the skew-normal components), 
which are interpreted as distinct management regimes (corre-
sponding to quality tiers). Figure A1 shows the samplign 
distribution of the data used for finite mixture modelling, 
and 3 gives the resulting classification. Components are 
strongly overlapping, and the maximum-probability assign-
ment of pixels to components is clearly ambiguous for many 
individual pixels. However, the retrieved components 
(classes) are readily interpretable. Component 2 (59.4% of 
sampled pixels) captures harvest occurring close to markets 
in forests that are likely to be intensively managed (e.g. tree 
farms, plantations, semi-natural planted forests). Component 
1 (33.1%) captures harvest occurring in more remote areas 
(e.g. semi-natural planted forests, managed natural forests). 
Component 3 (7.5%) captures harvest occurring in more 
remote forests with higher standing volume (e.g. frontier 
forests).

9Roundwood Production comprises all wood obtained from removals on public or private land whether round, split, squared or in other forms, including wood 
recovered following natural loss and wood removed for fuel. Volumes are reported under bark. An alternative measure is Industrial Roundwood, which 
excludes removals for fuel (i.e. retaining only sawlogs and veneer logs, pulpwood round or split, and other industrial roundwood).
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Figure A1. Sampling distribution for height and access data (data for 2001–2014 inclusive, n = 740,165).

Figure A2. Sample classification using a finite mixture of skew-normal distributions. Colours indicate maximum probability assign-
ment of sampled pixels (n = 740,165) to components; crosses indicated component means (C1 (μheight , μaccessibility): 17.6, 167.3, C2: 19.3, 
24.5, C3: 24.9, 352.4).
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Figure A3. Post-processed global-forest watch forest cover loss (red bars) compared against FAOSTAT roundwood production 
statistics black lines). Pearson’s correlation coefficient r is in brackets (blue boxes highlight countries for which r � 0) and p is 
obtained via OLS. Values have been normalized using maximums per series. Figure style follows(Ceccherini et al. 2020), and results 
presented there (for European countries only) are similar for common years.
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Appendix C: Means and standard deviations for case study data

Table A1. Summary statistics for 2001–2014 A02 industry.
VA (millions) K (billions) EMP (1000s) TJ (TJ) RWD (m3) AREA (1000 ha) n= access (hours) height (m) C1 (%) C2 (%) C3 (%)

AUS 885.7 3.8 11.5 14875.6 25.6 122.9 16980 4.4 18.4 0.4 0.6 0
(337.4) (0.7) (2.8) (3646) (1.5) (45) (8.7) (8.7) (0.1) (0.1) (0.1)

AUT 1363.6 2.8 25.6 62 13.3 8.6 1583 0.9 26.7 0 1 0
(221.8) (0.6) (1.5) (38.1) (1.7) (4.9) (4.5) (4.5) (0) (0) (0)

BEL 128.6 0.3 2.4 1817.6 4.2 2.6 1400 0.5 21.5 0 1 0
(19.2) (0.1) (0.1) (1123.5) (0.3) (1.3) (3.9) (3.9) (0) (0) (0)

CAN 3837.5 2.7 50.8 57119.6 162.9 910.7 127286 6.8 17 0.7 0.2 0.1
(957.1) (0.8) (2.7) (17330.6) (27.6) (164.7) (4.7) (4.7) (0) (0) (0)

CHE 312.9 0.9 3.6 2913.7 3.7 0.6 1400 0.6 24.6 0 1 0
(37.7) (0.2) (0.4) (1955.4) (0.5) (0.4) (4.5) (4.5) (0) (0) (0)

CHN 30756.4 614.3 16286.2 303005.1 125.2 332.3 46419 3 23.6 0.2 0.8 0.1
(5362.6) (97.4) (7721.5) (160518.8) (32.7) (129.2) (5.8) (5.8) (0.1) (0.1) (0)

CZE 971.3 63.6 29.3 5628.6 14.2 4.8 1404 0.5 21.5 0 1 0
(275.9) (8.9) (4.2) (715) (1.1) (2.7) (4.3) (4.3) (0) (0) (0)

DEU 3024.9 7.1 41.6 8367.9 49.2 17.6 2681 0.6 21.8 0 1 0
(691.4) (0.8) (3.2) (3682.1) (8) (14.5) (4.7) (4.7) (0) (0) (0)

DNK 268.2 3.2 4.9 714.1 1.6 2.5 1399 1 15.9 0 1 0
(39.5) (0.8) (0.9) (146.3) (0.3) (1.6) (3.5) (3.5) (0) (0) (0)

FRA 3035.9 7.6 33.4 16536.6 28.2 40.7 5695 0.7 18.8 0 1 0
(207.2) (1.6) (3.7) (4075.6) (2.3) (26.4) (3.5) (3.5) (0) (0) (0)

GBR 593.8 1.2 16.2 9342.4 8.3 16.4 2449 1 16.1 0 1 0
(134.2) (0.4) (3.1) (3519.4) (0.6) (8.5) (4.6) (4.6) (0) (0) (0)

HRV 234.5 5.3 11.6 1347.1 3.4 1.9 1400 0.7 22.1 0 1 0
(52.1) (2.1) (1.4) (606.4) (0.5) (0.8) (4.1) (4.1) (0) (0) (0)

IDN 6324.2 144898.2 2862.5 44204.5 55.2 941.6 131441 3.2 24 0.2 0.7 0.1
(760.5) (88597.3) (334.2) (8705.4) (9.4) (352.6) (7.7) (7.7) (0) (0) (0)

IND 23579.1 6840.9 23643.3 67213.8 46.5 34.8 4740 1.9 22.7 0.1 0.9 0.1
(3102.3) (3335.7) (971.9) (6823.5) (2.7) (15) (7) (7) (0) (0) (0)

IRL 312.2 1.4 13.2 2212.3 2.5 4.2 1400 0.7 14.1 0 1 0
(123.4) (0.9) (4.7) (986) (0.2) (1.6) (4.2) (4.2) (0) (0) (0)

JPN 4487.3 7743.4 95.1 44976.3 17.3 21.4 2989 0.5 25.3 0 1 0
(975) (816.6) (24.1) (11410.2) (1.9) (6.3) (5.2) (5.2) (0) (0) (0)

KOR 1257 4635 51.5 5931.2 2.8 7.1 1422 0.5 23.6 0 1 0
(302.6) (677.4) (9.5) (2328.8) (0.9) (3) (5.6) (5.6) (0) (0) (0)

LTU 158.9 0.8 12.6 1259.8 4.7 11 1613 0.9 18.5 0 1 0
(49.1) (0.2) (4.2) (268.5) (0.4) (2.7) (3) (3) (0) (0) (0)

NOR 837.8 11.3 5.2 1167.8 8.1 24.6 3441 1.4 18.9 0 1 0
(95.7) (1.1) (0.8) (723.9) (0.9) (6.5) (2.8) (2.8) (0) (0) (0)

POL 1483.4 15.1 59.2 9931.1 30.2 17.5 2479 0.7 18.7 0 1 0
(221.9) (2.7) (8.6) (1457.5) (3.2) (6.4) (3.4) (3.4) (0) (0) (0)

PRT 903.2 3.3 12 1863.6 9.6 23.7 3328 0.9 16.8 0 1 0
(108.4) (0.8) (0.3) (364.1) (0.8) (8.4) (4.7) (4.7) (0) (0) (0)

ROU 599.7 15.4 44.4 1323.3 10.7 10.6 1675 1.4 26.5 0 1 0
(186.1) (7.9) (10.6) (757.2) (1.2) (4.9) (5.2) (5.2) (0) (0) (0)

RUS 0 0 0 0 167.1 1166.1 163247 7.9 19.7 0.6 0.3 0.1
(0) (0) (0) (0) (14.4) (355.6) (3.5) (3.5) (0.1) (0.1) (0.1)

SVK 505.1 2.9 26.3 1216.6 7.6 3.2 1400 0.8 25.2 0 1 0
(220.6) (0.3) (2.3) (680.8) (1.2) (1.7) (4.9) (4.9) (0) (0) (0)

SVN 203.2 1.3 5.8 849.7 2.1 0.4 1400 0.6 24.9 0 1 0
(54.6) (0.4) (0.6) (134.9) (0.4) (0.4) (4.6) (4.6) (0) (0) (0)

SWE 4446.2 75.7 33.1 5342.1 65.4 194 27146 2.2 17.9 0.3 0.7 0
(1165.6) (14.4) (6.8) (1454.3) (8.7) (49.2) (2.4) (2.4) (0) (0) (0)

TUR 1594 6.9 176.9 5475.7 13.9 18.6 2601 1 18.4 0 1 0
(149) (3.9) (29) (650) (2.8) (2.6) (4.9) (4.9) (0) (0) (0)

USA 20990.6 32 413.6 91881.1 373.2 1291.2 179747 1.9 21.3 0.1 0.9 0
(1694.2) (3.6) (30.5) (33873.9) (39.2) (173.3) (4.5) (4.5) (0) (0) (0)
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