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CATASTROPHE INSURANCE DECISION MAKING WHEN THE SCIENCE IS UNCERTAIN 

Richard Bradley 

 

1. Introduction 

The impact of natural disasters on lives and livelihoods is significant and likely to become more so as 

the climate changes. Over the past 20 years, more than 1.25 million people have died as a direct 

result of natural disasters and close to 4 billion adversely affected (UNDDR 2020). Although direct 

deaths from natural catastrophes have declined over the last hundred years, economic losses have 

risen in line with GDP (Ritchie and Roser 2024). Global losses quadrupled from $50 billion a year in 

the 1980s to $200 billion in the early 2010s, for instance, and in 2022 they stood at an estimated 

$343 billion, hurricane Ian alone having contribute in excess of $50 billion of insured losses (Aon 

2024). Moreover, according to the World Bank report “Shock waves”, 75% of expected future losses 

associated with climate chance can be attributed to an increase in the frequency and/or severity of 

natural catastrophes (Hallegatte et al 2015). Even with large margins for errors, these are impressive 

figures. 

Insurance and reinsurance are important components of any strategy for managing these impacts 

(alongside, of course, measures to improve resilience and reduce vulnerability and disaster relief 

planning). Above all they offer the possibility of an efficient and cost-effective redistribution of some 

of the risk away from those who are most vulnerable to natural hazards and onto those better 

positioned to absorb them, thereby indirectly enhancing the financial resilience of both individuals 

and organisations. Some have argued that they also serve to reduce moral hazard by creating 

incentives for risk-reducing investments and behaviours by the vulnerable and that parametric 

insurance in particular offers fast and costs-effective support for post-disaster recovery and 

reconstruction by providing rapid access to funds (Clarke and Dercon 2016). 

Achieving any of these benefits faces two significant challenges however. Firstly, the covariant 

nature of the catastrophic risks associated with natural hazards means that the amount of capital, 

and hence the associated opportunity costs, required to ensure solvency in the face of low 

probability but highly impactful events is very large (Powers 2005). Secondly, much of the financial 

risk is associated with events about which the least is known, namely the rare, highly damaging 

ones. As a result, (re)insurers face considerable ambiguity around the rare events that matter most 

to them. Jointly these challenges push up the price of insurance, thereby undermining its usefulness 

as a mechanism for risk transfer. On the one hand, if insurance is correctly or over-priced then 

catastrophe insurance is rendered unaffordable for those who most need it (Charpentier 2008); on 

the other, if insurance is subsidised or under-priced then there is a systemic risk of collapse of the 

insurance sector. 

The character of the catastrophe insurance sector has been shaped by responses to these two 

challenges. To offset the covariant nature of catastrophe risks, insurance companies and public 

sector organisations have sought to transfer risk to reinsurers who hedge risks globally, across 

different perils in different regions. And to improve the accuracy of risk estimates, the sector 

(insurers, reinsurers and regulators) has increasingly turned to specialised catastrophe modelling 
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companies to provide them with the projections that they need to make decisions (Shome et al ).1 

But although the use of cat models has greatly improved probabilistic projections of losses, doubts 

remain as to whether the models capture all relevant uncertainty. To the extent they don’t, 

(re)insurers continue to face ambiguity and standard techniques for settling such questions as what 

price to put on insurance cover, what capital reserves to hold and how to allocate capacity across 

different hazards and regions, cannot be applied. 

The challenge presented to the catastrophe insurance sector by ambiguity and the importance of 

finding ways to manage it, makes insurance decision making an especially interesting test case for 

the many theories of rational decision making under ambiguity that are to be found in the current 

economics and philosophy literature. The literature contains a number of applications of decision 

rules for ambiguity to the question of optimal contracts, including Alary et al (2013), Gollier (2014), 

Bernard et (2015), Jiang et al (2020) and Birghila et al (2023). Despite this, the literature contains 

only one explicit application of a rule for ambiguity to insurance decision making, by Dietz and 

Walker (2017). I will argue furthermore that prevailing theories only partially provide the resources 

needed to address the challenge, because they take as inputs factors that in fact need to be 

determined if a reasonable decision is to be made – in particular, the size of the set of projections 

that should serve as the basis for decisions. I will then build on recent work on confidence-based 

decision making (Hill 2013, Hill 2019, Bradley 2017) and on how to embed models within it (Roussos 

et al 2021, Bradley et al 2017) to propose ways of settling the questions mentioned above regarding 

pricing and capital allocation.  

The paper proceeds as follows. The next section briefly presents the standard methods for pricing 

catastrophe insurance and explains the challenge posed to them by the ambiguity in hazard 

projections. Section 3 evaluates current theories of decision making under ambiguity in the light of 

the challenge and section 4 applies its lessons to propose how questions regarding the size of capital 

holding, the pricing of cover and capacity allocation can be settled in a manner which reflects both 

the evidential situation of the insurance decision maker and their attitude to ambiguity.  

 

2. Catastrophe Insurance: the background 

At its simplest insurers make money out of risk by charging premiums on policies protecting against 

occurrences of harmful events that are higher than the expected losses from such events. They are 

able to do so because by selling large numbers of policies they can pool risks that are too great for 

individual policy holders to bear. If the probability of a large hurricane striking in the next year at 

each of 100 sites is 5%, for instance, then by charging a customer at each site a premium equal to 

10% of the loss to the insurer of a claim in the event of a hurricane, the insurer can expect an annual 

profit of 5 times the insured loss. So, while the individual customer may be bankrupted by a single 

catastrophic event, the insurer will only face ruin in the highly improbable circumstance in which a 

hurricane strikes a very large number of sites. All of this assumes of course that the probabilities of 

strikes at the different sites are not positively correlated. In practice things are a good deal more 

 
1 Industry folklore has it that was hurricane Andrew and the magnitude of the losses associated with it, that 
persuaded the industry of the value of sophisticated cat modelling. 
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complicated because natural disasters such as hurricanes tend to affect large numbers of 

policyholders simultaneously. As a result, insurers against natural disasters need to hold a lot of 

capital in order to ensure that they stay solvent in the event of a major disaster and/or transfer 

some of their risk to other institutions such as reinsurers. But the principle remains the same: 

insurers and reinsurers can tolerate more risk than the insured because (and essentially only insofar 

as) they can exploit opportunities to hedge against it.  

Standard theory treats insurers as attempting to maximise profit subject to a survival constraint 

(Stone 1973). To spell it out more formally what this entails, consider a state space consisting of all 

possible states of the world relevant to the performance of the insurer’s book.2 The book can then 

be viewed simply as a mapping from each state to a monetary gain or loss, determined by the 

difference in that state between the premiums collected and the claims paid out plus other costs. To 

calculate an expected return on the book, the insurer draws on a probability measure P defined on a 

Boolean algebra of payoff-relevant events. For any book b, let us denote by 𝑥 the event of b paying 

out 𝑥 currency units to settle claims and let 𝜇𝑏 and 𝜎𝑏 respectively be expected pay-out and 

standard deviation of this book. Now we can define an associated probability measure 𝑃𝑏 on the 

Borel σ-algebra of pay-out events by: 

𝑃𝑏(𝑥) = 𝑃(𝑏−1(𝑥)) 

Let the probability of the book b paying out more than x be denoted by 𝑃𝑏(> 𝑥), a measure known 

as the exceedance probability for the book b of the event x. Then standard theory says that the 

insurer will, given book b, set its capital holding 𝑍𝑏 to: 

𝑍𝑏 = min⁡{𝑥: 𝑃𝑏(> 𝑥) ≤ 𝜅} 

where 𝜅 is a benchmark level that depends on the caution or conservatism of the insurer or 

regulator. Note that this threshold is a probability of survival and independent of the absolute losses 

and benefits at stake, something we return to later. 

Now suppose that the insurer is considering whether to sell another contract c, a transaction that 

will leave her with a book b+c, where this book is defined by, for all states s, b+c(s) = b(s) + c(s). The 

sale will require an increase in capital holding from 𝑍𝑏 to  𝑍𝑏+𝑐, so if the new contract is 

competitively priced then the expected profit from it cannot be less than the opportunity cost of the 

additional capital – denoted by 𝑦(𝑍𝑏 - 𝑍𝑏+𝑐) – required in order to mitigate the risk of ruin. Now the 

expected profit from the sale of the new contract is just the difference between its price and the 

expected losses associated with it: 𝜇𝑐 = 𝜇𝑏+𝑐 − 𝜇𝑏. So, it follows that: 

𝑝𝑐 ≥ 𝜇𝑐 + 𝑦(𝑍𝑏+𝑐 − 𝑍𝑏)   (1) 

It is common in catastrophe reinsurance to set this price according to Kreps’s formula (Kreps 1990):  

𝑝𝑐 = 𝜇𝑐 + 𝜄. 𝜎𝑐     (2) 

 
2 Here I follow Dietz and Walker (2017). 
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Here 𝜎𝑐 is the standard deviation of the new contract c and 𝜄 is the risk load on this contract that is 

determined by the difference in the standard deviations of the books b+c and b, the benchmark level 

𝜅 representing acceptable probability of ruin to the insurer and the opportunity cost of capital, 𝑦. As 

such 𝜄. 𝜎𝑐  will depend on the degree of correlation in the losses associated with the new contract c 

and those of current book b held by the insurer. 

This entire theoretical edifice depends on the availability of a probability measure on the set of 

states that the insurer can use to compute the expected payoffs of possible contracts and the 

exceedance probabilities from which capital requirements and premiums can be derived. For this 

they rely on the projections coming from models of natural hazards and vulnerabilities that are 

typically constructed by others. But a combination of sparse historical data and the complexity of the 

processes determining hazard and exposure characteristics means that the precise probabilistic 

outputs of these models do not capture all uncertainty potentially relevant to the insurer. The 

problem has two characteristic manifestations: in the persistence of multiple rival models of the 

natural hazard (model disagreement) and residual uncertainty amongst scientists and those drawing 

on model projections about the reliability of the models themselves (model uncertainty). Both arise 

because the available data is not sufficient in quantity and quality either to uniquely identify the set 

of relevant causal factors responsible for the properties of the natural hazard or to fix the precise 

functional relationships between those that have been identified.  

The modelling of the impact of hurricanes provides a useful example. It is striking, firstly, how many 

models of hurricane formation and of associated landfall rates are to be found in the scientific 

literature. Guin (2010) reports that the Florida Commission on Hurricane Loss Projection 

Methodology 2007 assessment of the modelling industry used an ensemble of 972 models, while 

Risk Management Solutions, a leading modelling firm, uses an ensemble of 13 models to generate 

the “Medium-Term Rate,” their preferred prediction of hurricane landfall frequency (Sabbatelli and 

Waters 2015). These models differ both in their methodology - some use statistical extrapolations 

from historical landfalling rates, while others are physical models of hurricane formation; some 

identify periods of greater and lesser hurricane activity based on the hypothesized Atlantic 

Multidecadal Oscillation, others don’t (see Shome et al 2018) - and in the causal factors they 

incorporate, e.g. whether the influence of Indian and Pacific ocean sea-surface temperatures are 

incorporated in models of hurricane formation in the Atlantic. (See also Bender et al., 2010; Knutson 

et al., 2008; Ranger and Niehoerster, 2012).  

Secondly there is considerable model uncertainty for a number of reasons. The historical dataset 

used to score these models is small, as large hurricanes are infrequent. HURDAT2, the standard 

database for hurricanes hitting the Atlantic coast of the USA, is moderate in size, with ~300 storms 

to date and only 1/3 of those counting as “major hurricanes”. If we split the dataset by region the 

numbers drop well below what is typically regarded as sufficient to form a reliable predictive 

statistical model and modellers frequently resort to creating “statistical storms” to expand and “fill 

in” the dataset. Model confirmation is further complicated by the fact that scientists expect climate 

change to affect hurricane generation, which implies that in the future key climate variables which 

drive hurricane formation will be outside of their historical ranges. Finally, there is general 

recognition that existing models omit potentially relevant facts such as the effects of aerosols and 
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pollution. Hazard metrics exclude many characteristics known to be relevant such as duration of 

inundation, flow velocity and pollution levels. 

Similar problems arise in assessing the vulnerability of communities to a hurricane hit and of the 

financial losses associated with it. Claims experience is insufficient for risk estimation in cases of 

catastrophic loss because the paucity of claims data and trends in the underlying processes make the 

past an inadequate guide to the future. These trends include changes in exposure characteristics of 

populations due to factors like urbanisation, changes in vulnerability characteristics such as 

infrastructure (e.g. flood defences) and regulation (e.g. building standards), and changes in the 

processes determining the frequency and severity of the natural hazards themselves originating in 

climate change. 

In a nutshell, catastrophe insurers must make decisions not just under risk but under ambiguity, i.e. 

in circumstances in which they should not have full confidence in any single probability measure of 

the uncertainty they face. This fact seems to be at least partially recognised by insurers. There is 

growing empirical evidence for instance that insurers and (particularly) reinsurers charge an 

‘ambiguity premium’ when selling coverage against catastrophic events (Hogarth 1985, 1989; 

Kunreuther et al, 1995; Cantabous, 2007; Dietz and Niehörster, 2021), and some evidence that 

insurers are reluctant to supply coverage in these conditions (Kunreuther et al, 1993), both 

expressions of less than full confidence in model-based expected loss projections and an aversion to 

the uncertainty regarding their reliability. On the other hand, there is little evidence of explicit 

modelling of ambiguity, nor of procedures for managing it within insurance companies (beyond the 

kind of averaging techniques described later). This in turn may partially reflect the aforementioned 

the sparsity of theoretical work on insurance decision making under ambiguity and of evaluations of 

the suitability of the various proposals for ambiguity-sensitive decision rules to insurance 

applications.  

 

3. Decision Making under Ambiguity 

There is wide recognition in the literature on decision making under ambiguity that it is reasonable 

for decision makers to be sensitive to the quantity and quality of information available to them and, 

in particular, to exhibit ambiguity aversion in the form of preferring actions with better scientifically 

understood consequences. I will focus here on the class of decision models that respond to this by 

look at more than just a single probabilistic estimate and which instead give consideration to sets of 

such probabilities and to the corresponding range of expected benefits and losses that they induce. 

This approach implies that decisions about pricing and capital holdings should be based on the 

characteristics of this range. Other prominent decision models such as Choquet expected utility 

(Schmeidler 1989) use non-probabilistic inputs and I will not consider them here.3  

A couple of considerations animate the proposals based on sets of probability functions. One is that 

in situations of ambiguity a decision maker is justified in giving greater weight to the downside risks 

of alternative actions than the upside opportunities. The most popular version of this, known as the 

 
3 See Heal and Milner (2014) and Gilboa and Marinacci (2013) for surveys of existing proposals for decision 
rules for ambiguity. 
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maximin EU rule, prescribes choice of the action that maximises the minimum expected benefit (Levi 

1974, Gilboa & Schmeidler 1989). Others, such as the alpha-maximin rule, recommend choice based 

on a ‘pessimism’-weighted average of the minimum and maximum expected benefit associated with 

each action (Ghirardato et al 2004), or on the best and minimum estimates of expected benefit 

(Ellsberg 1961), or even on all of the expected benefit estimates, such as the so-called ‘smooth 

ambiguity’ rule (Klibanoff et al 2005). A second thought is that agents should look for actions or 

policies that achieve pregiven goals robustly in the sense that they can be expected to reach these 

goals under all assumptions. More precisely, an action is robust if the expected benefit of 

performing it is over a required threshold when calculated relative to every probability function in 

the set of those qualifying for consideration (Gärdenfors and Sahlin 1982; Nehring 2009; Ben-Haim 

2006).  

There is a lot to be said about the relationship between these different proposals and about their 

relative merits but, for present purposes, it suffices to note that all of them face the same challenge, 

namely to explain what determines the size of the set of probability functions that are to serve as 

inputs to the decision-making rule. This is a question that gets surprising little attention in the 

theoretical literature; indeed it is largely non-committal even on whether it is something that should 

be treated as a subjective parameter, reflecting an attitude on the part of the decision maker to 

ambiguity, or as an objective one determined by how ambiguous the situation is, as a matter of fact. 

While this issue may not seem important if the aim is to axiomatically characterise different 

theories, it is manifestly so from the perspective of guiding decision making. 

To explore the problem, it will suffice to consider one illustrative application to the setting of capital 

reserves and pricing of premiums under ambiguity, involving the application of the maximin EU rule. 

Let 𝜋𝑏 = {𝑃𝑏
1, … , 𝑃𝑏

𝑛} be the set of exceedance probabilities for a book b associated with n candidate 

hazard projections. For any 𝑃𝑏
𝑖 ∈ 𝜋𝑏 and threshold 𝜅, let 𝑥𝑘

𝑖  be defined as the minimum amount x 

such that 𝑃𝑏
𝑖(> 𝑥) ≤ 𝜅. Then a maximally cautious approach to capital reserves would be to require 

that they be set at the minimum holding such that the probability of a loss greater than this amount 

is lower than the chosen threshold on every probability function in the set; i.e. that for book b: 

𝑍𝑏 = MIN{𝑥:⁡∀𝑃𝑏
𝑖 ∈ 𝜋, 𝑃𝑏

𝑖 ⁡(> 𝑥) ≤ 𝜅} = MAX{⁡𝑥̂𝑘
𝑖 : 𝑃𝑏

𝑖 ∈ 𝜋}   (3) 

Less cautious approaches would follow from the adoption of one of the other rules for decision 

making under ambiguity. Dietz and Walker (2017), for instance, apply the alpha-maximin rule to 

propose that capital holdings be set to the minimum amount such that a weighted average of the 

maximum and minimum probability that losses exceed this amount is below the threshold. In all 

cases however the implications for the size of capital holding that is recommended will depend on 

the size of the set of exceedance probabilities.  

To determine this set it is natural to focus on the class of hazard and loss models that are worthy of 

consideration and the range of estimates that they produce. Such a class might be generated in a 

number of different ways. Where there is a model available that is known or commonly believed to 

best represent the underlying physical processes generating the catastrophic events, then a salient 

class is the one produced by varying the assumptions about parameter values and initial conditions. 

But when there is not, then the set should include all candidate causal and statistical models as well 

as the variations obtained by perturbing parameter values and initial conditions. 
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The obvious problem with this approach is that the range of estimates generated by a process like 

this is likely to be large, especially in the second case. Many of the rules for decision making under 

ambiguity will then recommend setting premiums and capital reserves at levels that are not 

commercially viable and which encode levels of ambiguity sensitivity well in excess of those reported 

in the empirical studies mentioned before. Moreover, there are variety of reasons why both cat 

model vendors and insurers purchasing them prefer relatively precise probabilities, not least of 

which are the requirements imposed by regulators.  

The prevailing working solution to this problem amongst vendors of cat models, and some users of 

them, is to achieve the required precision by averaging the outputs of the different models under 

consideration, weighting the models in terms of skill (typically using hindcasting to determine skill 

weights). There are however a number of limitations to this method (see Roussos et al 2020). In the 

first place, it is only sensible to average model outputs under very specific conditions, such as when 

the structural assumptions underlying them are sufficiently similar. This condition is not met in much 

catastrophe modelling  (Philp et al 2019). Secondly, the historical dataset used to score these models 

is typically small because the events that matter most (the ones that cause the most damage) are 

rare. Consequently, hindcasting against this dataset does not significantly distinguish models. 

Thirdly, the range of scoring rules on offer is so diverse that almost any reasonable answer could be 

selected by one of them (Stainforth et al. 2007). So, the question remains of which one to select. 

Finally, in practice it doesn’t entirely solve the problem for the insurer since the projections based on 

such averaging techniques still often differ from vendor to vendor and so the insurer is still 

confronted with a range of estimates. 

An alternative strategy to averaging over the space of all models is to restrict the set of models to be 

considered to those meeting some criterion, e.g. of reliability greater than some threshold (as in 

Gärdenfors and Sahlin 1982) or that lie within some specified distance from the ‘best’ one, relative 

to some metric on the space of models (as in Hansen and Sargent 1982). To implement this strategy, 

we need to be able to say what the criterion for inclusion should be: how reliable a model must be, 

for instance, or how close it must be to the reference one in order to be considered. What this, there 

is a risk of introducing an ad hoc filter on decision inputs.  

Let us step back and consider what is at stake here. Any choice of set of probability distributions 

amounts in effect to a compromise between robustness and specificity. Suppose a decision depends 

on some parameter (say rainfall) and consider the set of all probability distributions over its values. 

Such a set is represented in Figure I, with subsets (such as E and F) corresponding to a set of claims 

about, or estimates of, these values, namely those that are supported by all distributions in that 

subset. Small sets determine fine-grained, precise claims such as that (E) the probability of flooding 

is 0.25; larger ones, claims that are either more coarse-grained or less precise, such as that (F) the 

probability of flooding is between 0.2 and 0.3. Basing a decision on a more precise estimate serves 

the goal of optimisation: this is what makes information valuable to decision makers. On the other 

hand, basing the decision on a larger set confers robustness on it in the sense that it will have 

acceptable consequences over a wider range of possible contingencies. If too little specificity is 

sought then either no action will be sanctioned (if drawing on the first class of rules for decision 

making under ambiguity) or only very cautious ones will (if drawing from the second). If too much 

specificity is sought, then confidence in the correctness of the decision must be sacrificed.  
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[Insert Figure I here] 

This trade-off between specificity and robustness can be represented by a confidence ranking of sets 

of probability distributions of the kind illustrated in Figure II below, where the inner, darkly filled set 

represents the ‘best’ probability distributions and each of the outer, lighter-filled sets contains a 

sufficiently expanded set of distributions to confer greater confidence on the judgements that it 

supports than any set of distributions contained within it. (Only three confidence levels are exhibited 

in this figure, but in principle the confidence ranking can be as fine-grained as the evidence allows.) 

Any projection supported by a set of probability distributions containing a confidence level is held 

with confidence equal to or greater than that level. For example, we can read off from this figure 

that the projection that the probability of flooding is 0.25 is held at low confidence only, but that the 

projection that it will be between 0.2 and 0.3 is held with medium confidence.  

[Insert Figure II here] 

Such a representation of uncertainty helps us see the limitations of the ones standardly adopted. To 

measure uncertainty by a single probabilistic projection is to focus exclusively on the inner set 

(indeed on an inner point), thereby ignoring all second-order model uncertainty. To measure it 

instead by a set of probabilities is to fix on one of the level-sets of the confidence ranking, thereby 

implicitly making a choice for the decision maker of what level of confidence they should seek in the 

projections they draw on. Only by looking at the full set of sets of distributions does one gets a sense 

of the trade-off between precision and robustness in the projections engendered by the prevailing 

level of scientific understanding. 

A representation of the ambiguity a decision maker faces by a confidence ranking of decision 

relevant projections does not by itself determine what action should be taken. The decision maker 

also needs to settle on the level of confidence she requires in her choice; that is, how robust she 

requires the chosen action to be in achieving her goals in the light of the ambiguity she faces. Let us 

call the characteristic of the agent that determines her confidence requirement in a particular 

decision problem, her cautiousness. Intuitively cautiousness is a subjective attitude that can vary 

between decision makers: a bold agent will require less confidence in her choice of action in any 

given decision problem than a more cautious one. It is also reasonable to expect, as Hill (2013, 2016) 

argues, that how cautious an agent is will depend on what is at stake for her in the decision problem 

she faces: what the range of possible outcomes are of any choice of action and how much she values 

(or disvalues) these possible consequences, perhaps paying particular attention to the worst and 

best possible outcomes. Both possibilities are allowed by a formal representation of cautiousness as 

function of an agent and a decision problem that picks out a set of probabilistic projections, 

intuitively the small set of projections meeting the confidence requirement that her cautiousness 

dictates.  

If the level required is independent of the decision problem she faces then she can simply adopt the 

smallest set of probabilities that meets this confidence threshold and apply one of the rules for 

decision making under ambiguity mentioned before (in this case the standard representation of 

ambiguity is sufficient for decision purposes). Plausibly however the level of confidence she will 

require will depend on what is at stake for her: the greater the stakes the more confidence required. 
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So the set of probabilities functions that serves as the input to a decision rule will vary with the 

decision problem.  

We will return to the implications for insurance decision making in due course, but first let us 

consider the question of what determines the confidence ranking itself. While the question of how 

much confidence is required for a decision is something that depends on the decision maker’s aims 

and values, the trade-off between specificity and robustness captured by a confidence ranking of 

probabilistic projections is a matter for science to determine. Scientists achieve specificity in their 

findings by balancing the evidence for and against different claims obtained from running models, 

taking measurements, conducting laboratory and field experiments and so on. They acquire 

confidence in these findings by obtaining more evidence and evidence of higher quality, garnered 

from more diverse sources. 

These two considerations are quite distinct. Suppose that I want to know the probability that it will 

rain tomorrow. At the outset I might do no better than use an estimate of the frequency of rainy 

days. But, given the opportunity, I could improve this judgement by drawing on state-of-the-art 

meteorological models and up-to-the-minute data about prevailing conditions, consulting experts in 

the field, and so on. All this activity could of course leave me with exactly the same probability 

judgement as I started with. But something would clearly have changed as result; not the projected 

probability for rain, but the confidence I am entitled to have in the projection. While the probability 

of rain tomorrow reflects the balance of evidence for and against this possibility, confidence reflects 

what Keynes (1973/1921) called the weight of evidence, something which depends on how much 

evidence there is, its quality and consistency, and perhaps the diversity of its sources (see Joyce 

2005).  

Much of the scientific modelling of hazards has focused on the delivery of probabilistic projections 

through assessment and improvement of models. But modelling is equally important for 

determining the robustness of projections and thereby the confidence with which they can be held. 

This can have significant implications for decision making. For instance, contrast a case in which 

exploration of the space of reasonable models reveals that they make projections that, while 

different, all lie within a fairly narrow range, from one in which they make projections that are 

scattered all over the place. (This is the sort of contrast that would be represented by Figures II and 

III, for instance.) It could be that while the balance of evidence supports the same precise projection 

in the two cases, in the former the loss of specificity entailed by adopting an imprecise projection 

supported by most models is not significant from the decision maker’s point of view, while in the 

latter it is. So, in the former the gain in confidence obtained by consulting a wide range of model 

projections outweighs the loss of specificity, but in the latter it does not. 

 

4. Insurance Decisions 

Let us turn now to how confidence rankings of projections - in particular, of exceedance probabilities 

- can support insurance decision making. Consider first the problem of setting capital reserve 

requirements for a book. The decision maker must decide not only what threshold they wish to 

apply but also the level of confidence they require that this threshold will not be exceeded. In 
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principle this level can vary from decision to decision as a function of the stakes. But for the moment 

let us treat it as a constant and suppose that the decision maker fixes values for a pair of parameters 

(𝜅, 𝛾) where 𝜅, as before, is the threshold for an acceptable probability of ruin and 𝛾 is the level of 

confidence required. The insurer can then compute capital reserve requirements using the threshold 

𝜅 for each of the exceedance probabilities that fall within the smallest set of such functions meeting 

the confidence requirement.  

More formally, let 𝜋
𝛾
= {𝑃1 , … , 𝑃𝑛} be the smallest set of probability functions on Boolean algebra 

of payoff-relevant events sufficient to achieve confidence 𝛾 and 𝜋𝑏
𝛾
= {𝑃𝑏

1, … , 𝑃𝑏
𝑛} be the 

corresponding set of probability measures on payoffs induced by book b. For any 𝑃𝑏
𝑖 ∈ 𝜋𝑏

𝛾
 let 𝜇𝑏

𝑖  and 

𝜎𝑏
𝑖  be the associated expected loss and standard deviation of book b. Then an insurer who seeks to 

set her capital reserves at a level at which she can be sufficiently confident that the risk of ruin is 

below the threshold, will set them according to:  

𝑍𝑏
𝛾
= MIN{𝑥: ∀𝑃𝑏 ∈ 𝜋𝑏

𝛾
⁡, 𝑃𝑏(> 𝑥) ≤ 𝜅}   (4) 

In other words, she will choose the smallest capital sum such that the probability of ruin falls below 

threshold 𝜅 with confidence 𝛾. 

To determine the price of any new contract c the insurer will need to consider a range of (changes 

in) expected losses and standard deviations associated with c that is sufficiently broad as to meet 

her confidence requirements. She can then apply equation (1) using the calculation of capital 

reserves suggested above or, more directly, by applying Kreps’s pricing formula (2), in both cases 

using each of the exceedance probabilities induced by c. More formally, let π𝑐
𝛾

 be the set of 

probability measures on payoffs induced by the smallest set of probabilities sufficient to achieve 

confidence 𝛾 and the new contract c. Then the highest of the resultant range of prices calculated 

using each of the members of π𝑐
𝛾

 should be selected. In particular, if the Kreps formula is used for 

pricing contracts for a given risk, then she should require: 

𝑝𝑐 ≥ MAX{𝜇𝑐
𝑖 + 𝜄. 𝜎𝑐

𝑖: 𝑃𝑐
𝑖 ∈ π𝑐

𝛾
}   (5) 

At any such price 𝑝𝑐 the insurer can expect with sufficient confidence to make a profit and avoid ruin. 

In practice market competition makes individual insurers price takers and the significant decision is 

whether to write policies at the market price and how much exposure to accept, in the light of the 

‘technical’ price obtained by application of their pricing formula. Confidence considerations should 

play an important role here as well. Consider, for example, a very simple case in which an insurer can 

decide whether to write a certain quantity of business in two different markets for protection 

against losses deriving from events uncorrelated with her current book (e.g. hurricane insurance in 

Florida and earthquake insurance in Pakistan). Suppose that the best estimate of the exceedance 

probabilities is the same for both contracts but that the weight of evidence supporting those for the 

first (say the hurricane projections) is much greater than those for the second (the earthquake 

projections). The situation is then as illustrated by Figures II and III in which for any confidence level 

the set of probabilities required to achieve that level is larger for the earthquake projections (given 

by Figure II) than the hurricane ones (given by Figure III). Application of pricing equation (5) will then 

yield higher minimum prices for the insurance against earthquake damage than hurricane damage. 
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The insurer should therefore enter the first market in preference to the second if market prices for 

insurance are the same in both. More generally, they should prefer the first in case the difference in 

price required to achieve the requisite confidence of ruin avoidance exceeds the difference in the 

price for insurance contracts in the two markets. 

[Insert Figure III here] 

The argument of the previous paragraph implicitly rests on the assumption that the insurer’s 

exposure to the two events (the hurricanes and earthquakes) is roughly the same. When this is not 

the case consideration must also be given to the opportunity to hedge risks afforded by diversifying 

one’s portfolio of business. To keep things simple, suppose that the insurer has already written a 

good deal of hurricane insurance but none for earthquakes and must now choose between writing 

more contracts for hurricanes or writing the same volume of business in insurance against 

earthquake damage. Now two considerations will need to be balanced: the fact that writing 

earthquake insurance affords a hedging of the risks and the fact that projections of earthquake-

caused losses are more ambiguous. We can do this by applying the Kreps pricing formula to marginal 

increases in business in both markets and identifying the apportioning of business that equalises the 

differences between market and technical prices. 

Let us turn finally to the possibility of reducing exposure through reinsurance. Figure IV below shows 

three loss exceedance curves deriving from different models of the underlying hazards and of the 

vulnerability of insured assets. Suppose that the insurer’s confidence requirement dictates that they 

consider all three curves. Application of equation (4) with a threshold of 0.2% yields a relatively high 

capital holding requirement of around 10 million dollars. To avoid this the insurer could seek to 

reinsure against the losses associated with the 5% - 0.2% probability range with a less ambiguity 

averse reinsurer. For instance, suppose the reinsurer is ambiguity neutral and uses only the grey loss 

exceedance curve so that application of the 0.2% threshold would imply capital holdings of 8 million 

dollars. Then while the insurer must set aside an additional seven million dollars to take the risk of 

ruin from below 5% to below 0.2%, the reinsurer can achieve this by setting aside only an additional 

five million dollars. The difference in the opportunity costs of a capital holding of seven and five 

million represents the potential gains from reinsurance. 

[Insert Figure IV here] 

 

5. Concluding Remarks 

On the analysis given here, the price of catastrophe insurance depends on three factors: 

(1) The ambiguity profile of projections of the insured hazard, 

(2) The risk attitudes of insurer as measured by the probability of ruin threshold 𝜅 and 

the confidence requirement 𝜆, 

(3) The exposure characteristics of the insurer’s book; in particular its size and diversity, 

as captured by 𝜇𝑏 and 𝜎𝑏. 
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This suggests three corresponding ways in which the price of insurance can be reduced. This first is 

through improvements in scientific understanding of the hazard. While new research may of course 

lead to higher estimates of the probability of the hazard, the increase in confidence that 

improvements in scientific understanding justify will serve to offset this to some degree (and 

magnify the effect on the price of a reduced probability estimate).  

The second path is through the optimisation of exposure characteristics of the insurer’s book 

through diversification; for instance, by off-setting exposure to one kind of peril in one region by 

selling contracts for different perils or in other regions. The benefits of diversification are well-

understood, but the analysis here shows that they have to be balanced against increases in 

ambiguity that may result from selling contracts in perils or for regions for which the level of 

scientific uncertainty understanding is lower. 

The third and final way in which prices can be reduced is by risk transfer or hedging e.g. through 

reinsurance or partial socialisation of the risk or government take-up of layers of the exposure. 

Again, there is nothing new about this, but the presence of ambiguity offers additional need and 

opportunity for transferring exposure from the ambiguity averse to agencies that are less so. Indeed 

because very high levels of ambiguity are characteristic of the rare but extremely dangerous 

catastrophic events it may not be possible to insure against them without some transfer of exposure 

to the public sector. In this context, initiatives such as the 2008 Munich Climate Insurance Initiative 

(Linnerooth-Bayer et al 2009) and the recent (2018) launch of the Global Risk Financing Facility are 

to be welcomed.  
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Figures 

 

Figure I: Nested sets of probability distributions over flooding events 
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E: Pr(flooding) = 0.25 
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Figure II: Confidence grading of nested sets of probabilities (earthquake induced losses) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III: Confidence grading of nested sets of probabilities (hurricane induced losses) 

 

 

 

 

 

 

 

 

 

 

 

 

F’ 

E’ 

F 

E 
Low Confidence 

Medium Confidence 

High Confidence 

Low Confidence 

Medium Confidence 

High Confidence 

Confidence Grades 

Confidence Grades 



19 
 

Figure IV : Candidate loss exceedance curves  
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