Mathematical Programming
https://doi.org/10.1007/s10107-024-02077-0

FULL LENGTH PAPER

Series B ")

Check for
updates

An update-and-stabilize framework for the
minimum-norm-point problem

Satoru Fujishige' - Tomonari Kitahara? - Laszl6 A. Végh3

Received: 14 August 2023 / Accepted: 23 February 2024
© The Author(s) 2024

Abstract

We consider the minimum-norm-point (MNP) problem over polyhedra, a well-studied
problem that encompasses linear programming. We present a general algorithmic
framework that combines two fundamental approaches for this problem: active set
methods and first order methods. Our algorithm performs first order update steps,
followed by iterations that aim to ‘stabilize’ the current iterate with additional projec-
tions, i.e., find a locally optimal solution whilst keeping the current tight inequalities.
Such steps have been previously used in active set methods for the nonnegative least
squares (NNLS) problem. We bound on the number of iterations polynomially in the
dimension and in the associated circuit imbalance measure. In particular, the algo-
rithm is strongly polynomial for network flow instances. Classical NNLS algorithms
such as the Lawson—Hanson algorithm are special instantiations of our framework; as
a consequence, we obtain convergence bounds for these algorithms. Our preliminary
computational experiments show promising practical performance.

Mathematics Subject Classification 90C05 - 90C25 - 65K05

An extended abstract of this paper has appeared in Proceedings of the 24th Conference on Integer
Programming and Combinatorial Optimization, IPCO 2023.

DX Laszlo A. Végh
L.Vegh@Ise.ac.uk

Satoru Fujishige
fujishig@kurims.kyoto-u.ac.jp

Tomonari Kitahara

tomonari.kitahara@econ.kyushu-u.ac.jp

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan
Faculty of Economics, Kyushu University, Fukuoka 819-0395, Japan

Department of Mathematics, London School of Economics and Political Science, London WC2A
2AE, UK

Published online: 18 April 2024 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-024-02077-0&domain=pdf
http://orcid.org/0000-0003-1152-200X

S. Fujishige et al.

1 Introduction
We study the minimum-norm-point (MNP) problem
Minimize 1[|Ax — b||* subjectto 0 < x <u, x € RV, (P)

where m and n are positive integers, M = {l,--- ,m}and N = {1,--- ,n}, A €
RM*N is a matrix with rank rk(A) = m, b € RM and u € (R U {oo})N. We will use
the notation B(x) := {x € RV | 0 < x < u} for the feasible set. The problem (P)
generalizes the linear programming (LP) feasibility problem: the optimum value is 0
if and only if Ax = b, x € B(u) is feasible. The case u(i) = oo forall i € N is also
known as the nonnegative least squares (NNLS) problem, a fundamental problem in
numerical analysis.

Two extensively studied approaches for MNP and NNLS are active set methods
and first order methods. An influential active set method was proposed by Lawson
and Hanson [19, Chapter 23] in 1974. Variants of this algorithm were also proposed
by Stoer [28], Bjorck [2], Wilhelmsen [31], and Leichner, Dantzig, and Davis [20].!
Closely related is Wolfe’s classical minimum-norm-point algorithm [32]. These are
iterative methods that maintain a set of active variables fixed at the lower or upper
bounds, and passive (inactive) variables. In the main update steps, these algorithms
fix the active variables at the lower or upper bounds, and perform unconstrained opti-
mization on the passive variables. Such update steps require solving systems of linear
equations. In all these methods, the set of columns corresponding to passive vari-
ables is linearly independent. The combinatorial nature of these algorithms enables
to show termination with an exact optimal solution in a finite number of iterations.
However, obtaining subexponential convergence bounds for such active set algorithms
has remained elusive; see Sect. 1.1 for more work on NNLS and Wolfe’s algorithm.

In the context of first order methods, the formulation (P) belongs to a family of
problems for which Necoara, Nesterov, and Glineur [22] showed linear convergence
bounds. That is, the number of iterations needed to find an e-approximate solution
depends linearly on log(1/¢). Such convergence has been known for strongly convex
functions, but this property does not hold for (P). However, [22] shows that restricted
variants of strong convexity also suffice for linear convergence. For problems of the
form (P), the required property follows using Hoffman-proximity bounds [16]; see
[26] and the references therein for recent results on Hoffman-proximity. In contrast
to active set methods, first order methods are computationally cheaper as they do not
require solving systems of linear equations. On the other hand, they do not find exact
solutions.

We propose a new algorithmic framework for the minimum-norm-point problem
(P) that can be seen as a blend of active set and first order methods. Our algorithm
performs stabilizing steps between first order updates, and terminates with an exact
optimal solution in a finite number of iterations. Moreover, we show poly(n, k) run-
ning time bounds for multiple instantiations of the framework, where « is the circuit

I While there are minor differences in the details, these are essentially the same algorithm. Henceforth, we
refer only to the Lawson—Hanson algorithm for simplicity.

@ Springer

An update-and-stabilize framework for the minimum-norm...

imbalance measure associated with the matrix (A | Ijs) (see Sect.2.1). This gives
strongly polynomial bounds whenever « is constant; in particular, k = 1 for net-
work flow feasibility. We note that if A € ZM*N then k < A(A) for the maximum
subdeterminant A (A). Still, ¥ can be exponential in the encoding length of the matrix.

The stabilizing step is similar to the one used by Bjorck [2] who considered the
same formulation (P). The Lawson—Hanson algorithm for the NNLS problem can
be seen as special instantiations of our framework, and we obtain an O(nzm2 k2.
| A]|? - log(n + «)) iteration bound. These algorithms only use coordinate updates as
first order steps, and maintain linear independence of the columns corresponding to
passive variables. Our framework is signficantly more general: we waive the linear
independence requirement and allow for arbitarty active and passive sets. This provides
much additional flexibility, as our framework can be implemented with a variety of first
order methods. This feature also yields a significant advantage in our computational
experiments.

Overview of the algorithm A key concept in our algorithm is the centroid mapping,
defined as follows. For disjoint subsets Iy, I1 S N, we let L(/o, I1) denote the affine
subspace of RY where x(i) = 0 fori € Iy and x(i) = u(i) fori € I. For x € B(u),
let Ip(x) and I; (x) denote the subsets of coordinates i with x(i) = O and x(i) = u(i),
respectively. The centroid mapping ¥ : B(u) — RY is a mapping with the property
that W(x) € arg miny{%HAy —b|? | y € L(Iy(x), I (x))}. This mapping may not be
unique, since the columns of A corresponding to J(x) :={i € N | 0 < x(i) < u(i)}
may not be independent: the optimal centroid set is itself an affine subspace. The
point x € B(u) is stable if W(x) = x. This generalizes an update used by Bjorck [2].
However, in his setting J (x) is always linearly independent and thus the centroid set is
always a single point. Stable sets can also be seen as the analogues of corral solutions
in Wolfe’s minimum-norm point algorithm.

Every major cycle starts with an update step and ends with a stable point. The
update step could be any first-order step satisfying some natural requirements, such
as variants of Frank—Wolfe, projected gradient, or coordinate updates. As long as
the current iterate is not optimal, this update strictly improves the objective. Finite
convergence follows by the fact that there can be at most 3” stable points.

After the update step, we start a sequence of minor cycles. From the current iterate
x € B(u), we move to W(x) in case W(x) € B(u), or to the intersection of the
boundary of B(u) and the line segment [x, W (x)] otherwise. The minor cycles finish
once x = W(x) is a stable point. The objective %lle — b||? is decreasing in every
minor cycle, and at least one new coordinate i € N is set to 0 or to u(i). Thus, the
number of minor cycles in any major cycle is at most n. One can use various centroid
mappings satisfying a mild requirement on W, described in Sect.2.3.

We present a poly(n, k) convergence analysis for the NNLS problem with coordi-
nate updates, which corresponds to the Lawson—Hanson algorithm and its variants. We
expect that similar arguments extend to the capacitated case. The proof has two key
ingredients. First, we show linear convergence of the first-order update steps (Theo-
rem 4.5). Such a bound follows already from [22]; we present a simple self-contained
proof exploiting properties of stable points and the uncapacitated setting. The second
step of the analysis shows that in every poly(n, k) iterations, we can identify a new

@ Springer

S. Fujishige et al.

variable that will never become zero in subsequent iterations (Theorem 4.1). The proof
relies on proximity arguments: we show that for any iterate x and any subsequent iter-
ate x’, the distance ||x — x’|| can be upper bounded in terms of 7, «, and the optimality
gap at x.

In Sect. 5, we present preliminary computational experiments using randomly gen-
erated problem instances of various sizes. We compare the performance of different
variants of our algorithm to standard gradient methods. For the choice of update steps,
projected gradient performs much better than coordinate updates used in the NNLS
algorithms. We compare an ‘oblivious’ centroid mapping and one that chooses W (x)
as the nearest point to x in the centroid set in the ‘local norm’ (see Sect.2.2). The
latter one appears to be significantly better. For choices of parameters n > 2m, the
running time of our method with projected gradient updates and local norm mapping
is typically within a factor two of TNT-NN, the state-of-the-art practical active set
heuristic for NNLS [21], despite the fact that we only use simple linear algebra tools
and have not made any attempts for practical speed ups. The performance is often
better than projected accelerated gradient descent, the best first order approach.

Proximity arguments and strongly polynomial algorithms Arguments that show
strongly polynomial convergence by gradually revealing the support of an optimal
solution are prevalent in combinatorial optimization. These date back to Tardos’s [29]
groundbreaking work giving the first strongly polynomial algorithm for minimum-
cost flows. Our proof is closer to the dual ‘abundant arc’ arguments by Fujishige [12]
and Orlin [24]. Tardos generalized the above result for general LP’s, giving a running
time dependence poly(n, log A(A)), where A(A) is the largest subdeterminant of the
constraint matrix. In particular, her algorithm is strongly polynomial as long as the
entries of the matrix are polynomially bounded integers. This framework was recently
strengthened in [7] to poly(n, log k (A)) running time for the circuit imbalance mea-
sure k (A). They also highlight the role of Hoffman-proximity and give such a bound
in terms of x (A). We note that the above algorithms—along with many other strongly
polynomial algorithms in combinatorial optimization—modify the problem directly
once new information is learned about the optimal support. In contrast, our algorithm
does not require any such modifications, nor a knowledge or estimate on the condition
number x. Arguments about the optimal support only appear in the analysis.

Strongly polynomial algorithms with poly(n, log x (A)) running time bounds can
also be obtained using layered least squares interior point methods. This line of work
was initiated by Vavasis and Ye [30] using a related condition measure x(A). An
improved version that also established the relation between x(A) and «(A) was
recently given by Dadush et al. [6]. We refer the reader to the survey [9] for properties
and further applications of circuit imbalances.

1.1 Further related work

The Lawson—Hanson algorithm remains popular for the NNLS problem, and several
variants are known. Bro and De Jong [3], and by Myre et al. [21] proposed empirically
faster variants. In particular, [21] allows bigger changes in the active and passive sets,
thus waiving the linear independence on passive variables, and reports a significant

@ Springer

An update-and-stabilize framework for the minimum-norm...

speedup. However, there are no theoretical results underpinning the performance of
these heuristics.

Wolfe’s minimum-norm-point algorithm [32] considers the variant of (P) where
the box constraint x € B(u) is replaced by ZieN x; = 1, x > 0. It has been success-
fully employed as a subroutine in various optimization problems, e.g., submodular
function minimization [14], see also [1, 11, 13]. Beyond the trivial 2" bound, the con-
vergence analysis remained elusive; the first bound with 1/¢-dependence was given
by Chakrabarty et al. [4] in 2014. Lacoste-Julien and Jaggi [17] gave a log(1l/¢)
bound, parametrized by the pyramidal width of the polyhedron. Recently, De Loera
et al. [8] showed an example of exponential time behaviour of Wolfe’s algorithm for
the min-norm insertion rule (the analogue of a pivot rule); no exponential example
for other insertion rules such as the linopt rule used in the application for submodular
minimization.”

Our Update-and-Stabilize algorithm is also closely related to the Gradient Pro-
jection Method, see [5] and [23, Section 16.7]. This method also maintains a
non-independent set of passive variables. For each gradient update, a more careful
search is used in the gradient direction, ‘bending’ the movement direction whenever
a constraint is hit. The analogues of stabilizer steps are conjugate gradient iterations.
Thus, this method avoids the computationally expensive step of exact projections; on
the other hand, finite termination is not guaranteed. We further discuss the relationship
between the two algorithms in Sect. 6.

There are similarities between our algorithm and the Iteratively Reweighted Least
Squares (IRLS) method that has been intensively studied since the 1960s [18, 25].
For some p € [0, 00], A € RM*N and b € RM, the goal is to approximately solve
min{||x|, | Ax = b}. At each iteration, a weighted minimum-norm point problem
min{}"}_, wi(l)xl.2 | Ax = b} issolved, where the weights w® are iteratively updated.
The LP-feasibility problem Ax = b, 0 < x < 1 for finite upper bounds u = 1 can
be phrased as an £,,-minimization problem min{||x|» | Ax = b — A1/2}. Ene and
Vladu [10] gave an efficient variant of IRLS for £; and {,,-minimization; see their
paper for further references. Some variants of our algorithm solve a weighted least
squares problem with changing weights in the stabilizing steps. There are, however
significant differences between IRLS and our method. The underlying optimization
problems are different, and IRLS does not find an exact optimal solution in finite
time. Applied to LP in the £, formulation, IRLS satisfies Ax = b throughout while
violating the box constraints 0 < x < u. In contrast, iterates of our algorithm violate
Ax = b but maintain 0 < x < u. The role of the least squares subroutines is also
rather different in the two settings.

2 Preliminaries

Notation We use N @& M for disjoint union (or direct sum) of the copies of the two
sets. For a matrix A € RMXN, i € Mand j € N, we denote the ith row of A by
A; and jth column by A/. Also for any matrix X denote by X | the matrix transpose

2 The linopt rule corresponds to the coordinate updates in the terminology of this paper.

@ Springer

S. Fujishige et al.

of X. We let || - ||, denote the £, vector norm; we use || - || to denote the Euclidean
norm || - ||2. For a matrix A € R™>*N we let |A| denote the spectral norm, that is,
the ¢, — £, operator norm.

For any x, y € RM we define (x, y) = ZieM x(i)y(i). We will use this notation
also in other dimensions. We let [x, y] := {Ax + (1 —A)y | A € [0, 1]} denote the line
segment between the vectors x and y.

2.1 Elementary vectors and circuits

For a linear space W C RV, g € W is an elementary vector if g is a support minimal
nonzero vector in W, thatis,no s € W\ {0} exists such that supp(k) C supp(g), where
supp denotes the support of a vector. We let (W) € W denote the set of elementary
vectors. A circuit in W is the support of some elementary vector; these are precisely
the circuits in the associated linear matroid M (W).

The subspaces W = {0} and W = R are called trivial subspaces; all other
subspaces are nontrivial. We define the circuit imbalance measure

80))

k(W) := max ” o)

‘ lge F(W),i,je SUPp(g)}

for nontrivial subspaces and x (W) = 1 for trivial subspaces. For a matrix A € RMxN |
we use the notation « (A) to denote « (ker(A)).

The following theorem shows the relation to totally unimodular (TU) matrices.
Recall that a matrix is fotally unimodular (TU) if the determinant of every square
submatrix is 0, +1, or —1.

Theorem 2.1 [Cederbaum, 1957, see ¢ 3,4]ENV22] Let W C RY be a linear sub-
space. Then k(W) = 1 if and only if there exists a TU matrix A € RM*N such that
W = ker(A).

We also note that if A € Z">*N is an integer matrix, then x(A) < A(A) for the

maximum subdeterminant A(A).

Conformal circuit decompositions We say that the vector y € RN conforms tox € RN
if x(i)y(i) > 0 whenever y(i) # 0. Given a subspace W C RV, a conformal circuit
decomposition of a vector v € W is a decomposition

¢
v = th,
k=1

where ¢ <nandh!',h2,... hl e F (W) are elementary vectors that conform to v. A
fundamental result on elementary vectors asserts the existence of a conformal circuit
decomposition; see e.g., [15, 27]. Note that there may be multiple conformal circuit
decompositions of a vector.

Lemma 2.2 For every subspace W C RN, every v € W admits a conformal circuit
decomposition.

@ Springer

An update-and-stabilize framework for the minimum-norm...

Given A € RM*N we define the extended subspace Xy C RV®M a5 X, =
ker([A | —Iy]).Hence, forevery v € RV, (v, Av) € X.Forv € RV, the generalized
path-circuit decomposition of v with respect to A is a decomposition v = Zi:l h*,
where £ < n,and foreach1 <k < ¢, (hk, Ahk) € RVOM i5 an elementary vector in
X4 that conforms to (v, Av). Moreover, h¥ is an inner vector in the decomposition if
Ah* = 0 and an outer vector otherwise.

We say that v € RY is cycle-free with respect to A, if all generalized path-circuit
decompositions of v contain outer vectors only. The following lemma will play a key
role in analyzing our algorithms.

Lemma 2.3 Forany A € RM*N et v € RN be cycle-free with respect to A. Then,
[vlloo = k(Xa) - [[AVIL and vll2 < m -k (Xa) - [Av]2.

Proof Consider a generalized path-circuit decomposition v = Zi:l h*. By assump-
tion, Ah* # 0 for each k. Thus, for every j € supp(h¥) there exists an i € M, such
that |hk(DI < k(X A)|Aihk|. For every j € N, the conformity of the decomposition
implies |v(j)| = Y¢_, [h¥(j)|. Similarly, for every i € M, |A;v| = Y b_, |A;h*].
These imply the inequality ||v||cc < k(X4)||Av]||1.

For the second inequality, note that for any outer vector (hk, Ahk) € Xy, the
columns in supp(h¥) must be linearly independent. Consequently, ||h¥|l, < /m -
K (X4) - |(AR¥);| for each k and i € supp(Ah¥). This implies

14

vl < D 1AM < Vm - k(Xp) - I|Av][< m -k (Xa) - [|Av]l2.
k=1

completing the proof. O

Remark 2.4 We note that a similar argument shows that ||A|| < +/mt(A) - k(X4),
where T(A) < m is the maximum size of supp(A#h) for an elementary vector (h, Ah) €
Xy.

Example2.5 If A € RM*N s the node-arc incidence matrix of a directed graph
D = (M, N). The system Ax = b, x € B(u) corresponds to a network flow feasibility
problem. Here, b(i) is the demand of node i € M, i.e., the inflow minus the outflow
at i is required to be b(i). Recall that A is a TU matrix; consequently, (A| — Iys)
is also TU, and «(X4) = 1. Our algorithm is strongly polynomial in this setting.
Note that inner vectors correspond to cycles and outer vectors to paths; this motivates
the term ‘generalized path-circuit decomposition.” We also note t(A) = 2, and thus
|A|l < +/2]M] in this case.

2.2 Optimal solutions and proximity

Let
Z(A,u) :={Ax | x € B(u)}. (1)

@ Springer

S. Fujishige et al.

Thus, Problem (P) is to find the point in Z(A, u) that is nearest to b with respect to
the Euclidean norm. We note that if the upper bounds u are finite, Z(A, u) is called a

zonotope.
Throughout, we let p* denote the optimum value of (P). Note that whereas the
optimal solution x* may not be unique, the vector b* := Ax™ is unique by strong

convexity; we have p* = %Hb — b*)|%. We use
n(x) = 3llAx = b||* = p*

to denote the optimality gap for x € B(u). The pointx € B(u) is an e-approximate
solution if n(x) < e.
For a point x € B(u), let

Ipx):={ieN|x()=0}, Lx):={ieN| x@)=u(@)}, and
J(x) =N\ o(x) U1 (x)).

The gradient of the objective %||Ax — b||? in (P) can be written as
¢ =AT(Ax —b).)

We recall the first order optimality conditions.

Lemma 2.6 The point x € B(u) is an optimal solution to (P) if and only if g*(i) =0
foralli € J(x), g°(i) = O0foralli € Iy(x), and g*(i) <0 foralli € I,(x).

Using Lemma 2.3, we can bound the distance of any x from the nearest optimal
solution.

Lemma 2.7 For any x € B(u), there exists an optimal solution x* to (P) such that

I —x*lloo < & (Xa) - |Ax — b*|l1, and

[x —x*lla <m-k(Xa) - [|Ax — D" |5

Proof Let us select an optimal solution x* to (P) such that ||x — x*||; is minimal. We
show that x — x* is cycle-free w.r.t. A; the statements then follow from Lemma 2.3.
For a contradiction, assume a generalized path-circuit decomposition of x — x*
contains an inner vector g, i.e., Ag = 0. By conformity of the decomposition, for
X = x* 4+ g we have x € B(u) and Ax = Ax*. Thus, x is another optimal solution,
but |x — X]2 < |lx — x™||2, a contradiction. O

2.3 The centroid mapping

Let us denote by 3N the set of all ordered pairs (Io, I1) of disjoint subsets Iy, I} € N,
andlet I, := {i € N | u(i) < oo}. For any (Iy, I1) € 3N with I C I, we let

Lo,) i={x eRY |Viely:x(i)=0,Yiel:xi)=u@}. 3

@ Springer

An update-and-stabilize framework for the minimum-norm...

We call {Ax | x € B(u) NL(lp, 1)} € Z(A, u) a pseudoface of Z(A, u). We note
that every face of Z(A, u) is a pseudoface, but there might be pseudofaces that do not
correspond to any face.

We define a centroid set for (I, I1) as

Clo,) == argmyin{llAy — bl |y € Llo, IN)} . “

Proposition 2.8 For (Ip, I1) € 3V with I} C I, CIo, 1) is an affine subspace of]RN,
and for some w € RM, it holds that Ay = w for every y € C(Iy, I).

The centroid mapping W : B(u) — R is a mapping that satisfies
W(W(x)) =W(x) and W(x) € C(Ip(x), I1(x)) Vx € Bu).

We say that x € B(u) is a stable point if W(x) = x. A simple, ‘oblivious’ centroid
mapping arises by taking a minimum-norm point of the centroid set:

W (x) == argmin{|ly| | y € C(Io(x), [1(x))}. (&)

However, this mapping has some undesirable properties. For example, we may have an
iterate x that is already in C(/p(x), I1(x)), but W(x) # x. Instead, we aim for centroid
mappings that move the current point ‘as little as possible’. This can be formalized
as follows. The centroid mapping W is called cycle-free, if the vector W(x) — x is
cycle-free w.r.t. A for every x € B(u). The next claim describes a general class of
cycle-free centroid mappings.

Lemma 2.9 For every x € B(u), let D(x) € RIIOXNbe a positive diagonal matrix.
Then,
W (x) == argmin{|| D(x)(y —x)| | y € CLo(x), [1(x))} (6)

defines a cycle-free centroid mapping.

Proof For a contradiction, assume y — x is not cycle-free for y = W(x), that is, a
generalized path-circuit decomposition contains an inner vector z. For y = y — z
we have Ay’ = Ay, meaning that y’ € C(Ip(x), I;(x)). This is a contradiction, since
ID(x)(y — x)|| < ||D(x)(y — x)| for any positive diagonal matrix D(x). O

We emphasize that D(x) in the above statement is a function of x and can be any
positive diagonal matrix. Note also that the diagonal entries for indices in Io(x) U I} (x)
do not matter. In our experiments, defining D(x) with diagonal entries 1/x(i) +
1/(u(i) — x(@@)) fori € J(x) performs particularly well. Intuitively, this choice aims
to move less the coordinates close to the boundary.? The next proposition follows from
Lagrangian duality, and provides a way to compute W (x) as in (6) by solving a system
of linear equations.

3 Note that the weights fori € Iy(x)UI7(x) do not matter, since we force y(i) = x (i) on these coordinates.
The choice 1/x(i) + 1/(u(i) — x(i)) would set co on these coordinates.

@ Springer

S. Fujishige et al.

Proposition 2.10 For a partition N = Io U I U J, the centroid set can be written as
Cllo, 1) = {y € Lo, 1) | (A1) (Ay =) =0} .

For (Ip, I, J) = (Ip(x), I1(x), J(x)) and D = D(x), the point y = W (x) as in (6)
can be obtained as the unique solution to the system of linear equations

(AT Ay =(A)Th
yi+ DN HANHTAI =5,

y(i)=0 Vi € Iy
y(i) =u(i) Vi el
A eR’

3 The update-and-stabilize framework

Now we describe a general algorithmic framework MNPZ(A, b, u) for solving (P),
shown in Algorithm 1. Similarly to Wolfe’s MNP algorithm, the algorithm comprises
major and minor cycles. We maintain a point x € B(u), and x is stable at the end of
every major cycle. Each major cycle starts by calling the subroutine Update(x); the
only general requirement on this subroutine is as follows:

(U1) for y = Update(x), y = x if and only if x is optimal to (P), and ||Ay — b|| <
|Ax — b| otherwise, and

(U2) if y # x, then for any A € [0, 1), z = Ay + (1 — X)x satisfies ||Ay — b|| <
|Az — bJ|.

Property (Ul) can be obtained from any first order algorithm; we introduce some
important examples in Sect. 3.1. Property (U2) might be violated if using a fixed step-
length, which is a common choice. In order to guarantee (U2), we can post-process
the first order update: choose y as the optimal point on the line segment [x, y], where
y’ is the update found by the fixed-step update.

The algorithm terminates in the first major cycle when x = Update(x). Within
each major cycle, the minor cycles repeatedly use the centroid mapping W. As long
as w := W(x) # x, i.e., x is not stable, we set x := w if w € B(u); otherwise, we
set the next x as the intersection of the line segment [x, w] and the boundary of B(u).
The requirement (U1) is already sufficient to show finite termination.

Theorem 3.1 Consider any Update(x) subroutine that satisfies (U1) and any cen-
troid mapping V. The algorithm MNPZ(A, b, u) finds an optimal solution to (P) within
3" major cycles. Every major cycle contains at most n minor cycles.

Proof Requirement (U1l) guarantees that if the algorithm terminates, it returns an
optimal solution. We claim that the same sets (Ip, /1) cannot appear as (Ip(x), I1(x))
at the end of two different major cycles; this implies the bound on the number of major
cycles. To see this, we note that for x = W(x), x € C(Ip(x), I;(x)) = C(lp, I1); thus,

@ Springer

An update-and-stabilize framework for the minimum-norm...

Algorithm 1: MNPZ(A, b, u)

Input : A e RMN p e RM e RU {oco))N
Output: An optimal solution x to (P)
x <—initial point from B(u) ;
repeat
X <« Update(x) ; // Major cycle
w <« W(x);
while W (x) # x // Minor cycle
do
a* < argmax{o € [0,1] | x + a(w — x) € Bw)};
x <—x+a*(w—1x);
w <« W(x);

o AN AW N -

[y
>

X <—w;
11 until x = Update(x)
return x

[y
[

[Ax — bl = min{||Az —b|l | z € L(o, [1))}. By (Ul), [Ay — b|l < [Ax — b]| at
the beginning of every major cycle. Moreover, it follows from the definition of the
centroid mapping that ||[Ax — b|| is non-increasing in every minor cycle. To bound
the number of minor cycles in a major cycle, note that the set Io(x) U I1(x) € N is
extended in every minor cycle. O

3.1 The update subroutine

We can implement the Update(x) subroutine satisfying (U1) and (U2) using various
first order methods for constrained optimization.

Recall the gradient g* from (2); we use g = g* when x is clear from the context.
The following property of stable points can be compared to the optimality condition
in Lemma 2.6.

Lemma 3.2 If x(= W (x)) is a stable point, then g*(j) = 0 for all j € J(x).

Proof This directly follows from Proposition 2.10 that asserts (A7) T (Ax —b) = 0.
O

We now describe three classical options. We stress that the centroid mapping W can
be chosen independently from the update step.

The Frank—Wolfe update The Frank—Wolfe or conditional gradient method is appli-
cable only in the case when u(i) is finite for every i € N. In every update step, we
start by computing y as a minimizer of the linear objective (g, y) over B(u), that is,

y € argmin{(g, y) | y € Bu)}. (N

We set Update(x) := x if (g, y) = (g, x), or y = Update(x) is selected so that y
minimizes %llAy — b))% on the line segment [x, y].

Clearly, y(i) = O whenever g(i) > 0, and y(i) = u(i) whenever g(i) < 0.
However, y (i) can be chosen arbitrarily if g(i) = 0. In this case, we keep y(i) = x(i);
this will be significant to guarantee stability of solutions in the analysis.

@ Springer

S. Fujishige et al.

The projected gradient update The projected gradient update moves in the opposite
gradient direction to y := x — Ag for some step-length A > 0, and obtains the output
y = Update(x) as the projection y of y to the box B(u). This projection simply
changes every negative coordinate to 0 and every y(i) > u(i) to y(i) = u(i). To
ensure (U2), we can perform an additional step that replaces y by the point y" € [x, y]
that minimizes 5[Ay’ — b||%.

Consider now an NNLS instance (i.e., u(i) = oo for alli € N), and let x be a
stable point. Recall 7 (x) = @ in the NNLS setting. Lemma 3.2 allows us to write the
projected gradient update in the following simple form that also enables to use optimal
line search. Define

2 (i) == max{—g" (i), 0}, (@)

and use z = z* when clear from the context. According to Lemma 2.6, x is optimal
to (P) if and only if z = 0. We use the optimal line search

y = argmyin[%HAy—sz |y =x4+2Az,A ZO} .

If z # 0, this can be written explicitly as

lzl? .
| Az|2

©))

To verify this formula, we note that lzlI> = —(g, z), since for every i € N either
z(i) =0orz(@i) = —g(i).

Coordinate update Our third update rule is the one used in the Lawson—Hanson algo-
rithm. Given a stable point x € B(u), we select a coordinate j € N where either
j € lp(x)and g(j) < Oorj € I1(x) and g(j) > 0, and set y such that y(i) = x(i)
if i # j, and y(j) is chosen in [0, u(j)] so that %||Ay — b||? is minimized. As in the
Lawson—Hanson algorithm, we can maintain basic solutions throughout.

Lemma 3.3 Assume A’ is linearly independent for J = J(x). Then, A" is also
linearly independent for J' = J(y) = J U {j}, where y = Update(x) using a
coordinate update.

Proof For a contradiction, assume A/ = A7 w for some w € R’. Then,
g(j) = (AN (Ax —b) =w'(A))T(Ax —b) =0,

a contradiction. O

Let us start with x = 0, i.e., J(x) = I;(x) = ¥, Io(x) = N. Then, A’® remains
linearly independent throughout. Hence, every stable solution x is a basic solution
to (P). Note that whenever A7) is linearly independent, C(Ip(x), I1(x)) contains a
single point, hence, W (x) is uniquely defined.

For the special case of NNLS, i.e., for the case with no upper bounds, one can obtain
simple explicit formulas for the coordinate update y. For z asin (8), letus return y = x
if z = 0. Otherwise, let j € arg maxy z(k); note that j € Ip(x). Let

@ Springer

An update-and-stabilize framework for the minimum-norm...

. x(i) ifi e N\{j},
y(i) =14 o)
TAT|?

(10)

ifi=j.

The following lemma is immediate. In the NNLS setting, (U2) is guaranteed for the
updates described above. For the general form with upper bounds, we can post-process
as noted above to ensure (U2).

Lemma 3.4 The Frank—Wolfe, projected gradient, and coordinate update rules all
satisfy (U1) and (U2).

Cycle-free update rules

Definition 3.5 We say that Update(x) is a cycle-free update rule, if for every x €
B(u) and y = Update(x), x — y is cycle-free w.r.t. A.

Lemma 3.6 The Frank—Wolfe, projected gradient, and coordinate updates are all
cycle-free.

Proof Each of the three rules satisfies that for any x € B(u) with gradient g and
y = Update(x), y — x conforms to —g. We show that this implies the required
property.

For a contradiction, assume that a generalized path-cycle decomposition of y — x
contains an inner vector 4. Thus, & # 0, Ah = 0, and & conforms to —g. Consequently,
(g, h) < 0. Recalling the form of g from (2), we get

0> (g, h) = <AT(Ax —b),h> — (Ax — b, Ah) =0,

a contradiction. O

4 Analysis

Our main goal is to show the following convergence bound. The proof will be given
in Sect. 4.3. Recall that in an NNLS instance, all upper capacities are infinite.

Theorem 4.1 Consider an NNLS instance of (P), and assume we use a cycle-free
centroid mapping. Algorithm 1 terminates with an optimal solution in O(n - m> -
k2(X) - |A||% - log(n + (X4))) major cycles using projected gradient updates (9),
and in 0(r12m2 . KZ(XA) . ||A||2 -log(n + k(X4))) major cycles using coordinate
updates (9), when initialized with x = 0. In both cases, the total number of minor
cycles is O(n?m? - k>(Xy) - |A]1? - log(n + k(X))

4.1 Proximity bounds

We show that if using a cycle-free update rule and a cycle-free centroid mapping, the
movement of the iterates in Algorithm 1 can be bounded by the change in the objective
value. First, a nice property of the centroid set is that the movement of Ax directly
relates to the decrease in the objective value. Namely,

@ Springer

S. Fujishige et al.

Lemma4.2 Forx € B(u), let y € C(Iy(x), I1(x)). Then,
|Ax — Ay||* = | Ax = b|* — | Ay — b]>.
Consequently, if V is a cycle-free centroid mapping and y = WV (x), then
I = ¥I2 < - k2Xa) - (IAx = bIP = Ay = b]?) .

Proof LetJ := J(x).Since Ax —b = (Ax — Ay) + (Ay — b), the claim is equivalent
to showing that

(Ax — Ay, Ay —b) =0.
Noting that Ax — Ay = A/x; — A”y;, we can write
(Ax — Ay, Ay —b) = (x; — y)) (A)) T (Ay = b) =0,

where the equality follows since (A7) T (Ay —b) = 0 by Proposition 2.10. The second
part follows from Lemma 2.3. O

Next, let us consider the movement of x during a call to Update(x).

Lemma4.3 Let x € B(u) and y = Update(x). Then,
IAx — Ay|* < [|Ax — b|* — | Ay — b]>.
If using a cycle-free update rule, we also have
I = ¥I12 = m? - 2(X0) - (14 = BI7 = 1Ay = BI1) .

Proof From property (U2), it is immediate to see that (Ay — b, Ax — Ay) > 0. This
implies the first claim. The second claim follows from the definition of a cycle-free
update rule and Lemma 2.3. O

Lemma 4.4 Let x € B(u), and let x' be an iterate obtained by consecutive t major or
minor updates of Algorithm 1 using a cycle-free update rule and a cycle-free centroid
mapping, starting from x. Then,

llx =Xl < m -k (Xa) - \/t (IlAx = bII> — | Ax" — b1?).

@ Springer

An update-and-stabilize framework for the minimum-norm...

Proof Letus consider the (major and minor cycle) iterates x = x®, x*+D k0 —
x'. From the triangle inequality, and the arithmetic-quadratic means inequality,

t
/ k+j k+7—1
e = xf| < Yl — xEHD) <

j=1

t
tZ [|x k) — xktj=1))12
j=1

The statement then follows using the bounds in Lemma 4.2 and Lemma 4.3. O

4.2 Geometric convergence of the projected gradient and coordinate updates

We present a simple convergence analysis for the NNLS setting. For the general
capacitated setting, similar bounds should follow from [22]. Recall that n(x) denotes
the optimality gap at x.

Theorem 4.5 Consider an NNLS instance of (P), and let x > 0 be a stable point. Then
for y = Update(x) using the projected gradient update (9) we have

1
n0) = (1 T 2mZk2(Xy) - ||A||2> 1)

Using coordinate updates as in (10), we have

1
) = (1 " 2nm? 2 (Xy) - ||A||2> e

Consequently, either with projected gradient or with coordinate updates, after per-
forming O (nm? - k2(Xy) - | Al|?) minor and major cycles from an iterate x, we obtain
an iterate x’ with n(x’) < n(x)/2.

Let us formulate the update progress using optimal line search.

Lemma 4.6 For a stable point x > 0, the update (9) satisfies

IzII?
|Ax — b|I* — Ay — b||* > ,
IA]2
and the update (10) satisfies
2(j)?
|Ax = b|* — Ay — b|I* = =5 .
| AT]2

@ Springer

S. Fujishige et al.

Proof For the update (9) with stepsize A = Iz1I2/1|Az||?, we have

|Ay — blI> = ||Ax — b||*> + A%|| Az||*> + 20 (Ax — b, Az)
= | Ax — bII* + A*||Azl|* + 2A(g, 2)
= | Ax — b|I* + 2% Az||* — 2Azl?

lzl*
|Az|2”

= | Ax — b||* —

where the third equality uses (g,z) = —||z||> noted previously. The statement
follows by using ||Az]| < [|A]l - |Iz]l.

The proof is similar for the update (10). Here, y = x + Ae;, where e; is the jth
unit vector, and A = z(j)/||A/||%. The bound follows by noting that (Ax — b, Ae;) =

(8, ej) =—z()). O
We now use Lemma 2.7 to bound ||z]||.

Lemma 4.7 For a stable point x > 0 and the update direction z = z* as in (8), we
have

/1 (x)

Izl > ————.
V2m -k (Xa)

Proof Letx™ > 0 be an optimal solution to (P) as in Lemma 2.7, and b* = Ax*. Using
convexity of f(x) := 5[Ax — b|%,

Pr= 0" > f)+ (g, x" —x) = f(x) = (z,x" —x),
where the second inequality follows by noting that foreachi € N,eitherz(i) = —g(i),

or z(i) = 0 and g(i)(x*(i) — x(i)) > 0. From the Cauchy-Schwarz inequality and
Lemma 2.7, we get

pr = f) =zl - Ix* = x|l = f(x) —m - k(Xp) - [|[Ax = D*|| - ||zl ,
that is,

n(x)
m -k (Xa) - |Ax —b*|

lzll >

The proof is complete by showing
2n(x) = [[Ax = b*||%. (11

Recalling that n(x) = 1[|Ax — b|> — J||Ax* — b||?> and that b* = Ax*, this is
equivalent to

(Ax — Ax*, Ax* —b) > 0.

@ Springer

An update-and-stabilize framework for the minimum-norm...

This can be further written as

*

(x—x*,¢g")=>0,

which is implied by the first order optimality condition at x*. This proves (11), and
hence the lemma follows. O

Proof (Proof of Theorem 4.5) The proof for the bound in projected gradient updates
is immediate from Lemma 4.6 and Lemma 4.7. For coordinate updates, recall that j
is selected as the index of the largest component z(j). Thus, z(j)2 > ||z||2/n, and
IAT]] < Al

For the second part, the statement follows for projected gradient updates by the
first part and by noting that there are at most n minor cycles in every major cycle.
For coordinate updates, every major cycle adds one component to J (x) whereas every
minor cycle removes at least one. Hence, the total number of minor cycles is at most
m plus the total number of major cycles. O

4.3 Overall convergence bounds

In this subsection, we prove Theorem 4.1. Using Lemma 4.4 and Theorem 4.5, we
can derive the following stronger proximity bound:

Lemma 4.8 Consider an NNLS instance of (P). Let x > 0 be an iterate of Algorithm 1

using projected gradient or coordinate updates, and let x’ > 0 be any later iterate.
Then, for a value

O := 0(/nm? - k2(Xy) - |A])
we have

x —x'|| < ©ynx).

Proof According to Theorem 4.5, after T := O(mm? - k2(X4) - A% major and
minor cycles, we get to an iterate x” with n(x”) < n(x)/4. Thus, Lemma 4.4 gives

lx — x"|| <m-~2T - k(Xa) - V/n(x).

Let us now define x® as the iterate following x after Tk major and minor cycles;
we let x@ = x. By Theorem 4.5, x® < n(x)/4k, and similarly as above, for each
k=0,1,2,... we get

Vn(x) ‘

1@ = x D < m - V2T se(Xa) - S

@ Springer

S. Fujishige et al.

The above bound also holds for any iterate x” between x® an x*+1)_ Using these
bounds and the triangle inequality, for any iterate x” after x, we obtain

lx = x| <2m - ~2T -k (Xa) - V/0(x) .

This completes the proof. O

We need one more auxiliary lemma.

Lemma 4.9 Consider an NNLS instance of (P), and let x > 0 be a stable point. Let
X > 0 such that for each i € N, either x(i) = x(i), or X(i) = 0 < x(i). Then,

A% — b|I* = | Ax — b||* + || A% — Ax]|*.
Proof The claim is equivalent to showing
(AX — Ax, Ax —b) =0.

We can write (AX — Ax, Ax — b) = (g*, X — x). By assumption, X({) — x(i) # 0
only if x(7) > 0, but in this case g* (i) = 0 by Lemma 3.2. O

For the threshold ® as in Lemma 4.8 and for any x > 0, let us define

T {i | x() > @M} .

The following is immediate from Lemma 4.8.

Lemma 4.10 Consider an NNLS instance of (P). Let x > 0 be an iterate of Algorithm 1
using projected gradient updates, and x' > 0 be any later iterate. Then,

IO C iR

We are ready to prove Theorem 4.1.

Proof (Proof of Theorem 4.1) At any point of the algorithm, let J* denote the union
of the sets J*™) for all iterations thus far. Consider a stable iterate x at the beginning
of any major cycle, and let

. A/ (x)
T 4n-0- A

Theorem 4.5 guarantees that within O (nm? - k>(X4) - || A||* - log(n + k (X4))) major
and minor cycles we arrive at an iterate x” such that /n(x’) < &. We note that
log(n+k(X4)+ |All) = O(log(n+«(X4))) according to Remark 2.4. We show that

TN L) #0. (12)

@ Springer

An update-and-stabilize framework for the minimum-norm...

From here, we can conclude that J* was extended between iterates x and x’. This may
happen at most n times, leading to the claimed bound on the total number of major and
minor cycles. Using Theorem 4.5 we also obtain the respective bounds on the number
of major cycles for the two different updates.

For a contradiction, assume that (12) does not hold. Thus, for every i € Iy(x), we
have x’(i) < @e¢. Let us define £ € RY as

. {o ifi € Iy(x),
x(@) =)
X'y ifi e J(x).

By the above assumption, [|X —x’|lco < ®¢, and therefore || A% — Ax’|| < /nO|Alls.
From Lemma 4.9, we can bound

|A% — b|I> = ||Ax — b||> + | A% — AX/||? < 2p* + (n@? || A|> +2)e?. (13)
Recall that since x is a stable solution,
|Ax — b|| = min {||Ay — b|| : y € L(Io(x), %)} .

Since £ is a feasible solution to this program, it follows that || Ax — b||2 > ||Ax —b ||2.
We get that

2n(x) = ||[Ax — b||> = 2p* < ||A% — b|* — 2p* < n@?||A|* +2)&?,

in contradiction with the choice of ¢. |

5 Computational experiments

We give preliminary computational experiments of different versions of our algorithm,
and compare them to standard gradient methods and existing NNLS implementations.
The experiments were programmed and executed by MATLAB version R2023a on a
personal computer having 11th Gen Intel(R) Core(TM) i7-11370H @ 3.30GHz and
16GB of memory.

We considered two families of randomly generated NNLS instances. In Appendix A,
we also present experiments for capacitated instances (finite u (i) values).

We tested each combination of two update methods: Projected Gradient (PG), and
coordinate (C); and two centroid mappings, the ‘oblivious’ mapping (5) and the ‘local
norm’ mapping (6) with diagonal entries 1/x(i), i € N. Recall that for coordinate
updates and starting from x = 0, there is a unique centroid mapping by Lemma 3.3.

Our first benchmarks are the projected gradient (PG) and the projected fast (accel-
erated) gradient (PFG) methods. In contrast to our algorithms, these do not finitely
terminate. We stopped the algorithms once they found a near-optimal solution within
a certain accuracy threshold.

Further, we also compare our algorithms against the standard MATLAB imple-
mentation of the Lawson—Hanson algorithm called 1sgnonneg, and against the

@ Springer

S. Fujishige et al.

Table 1 Computation time (in sec) for uncapacitated rectangular instances

m 100 200 300 400 500 500 500
n 200 400 600 800 1000 2000 3000
PG+(5) 0.06 0.50 1.77 5.09 11.92 20.07 50.23
PG+(6) 0.01 0.06 0.18 0.28 0.29 0.17 0.22
C 0.05 0.31 1.02 2.52 4.84 2.98 2.90
PG 0.84 5.34 16.16 (1) 21.85 (1) 24.93 (2) 0.07 0.05
PFG 0.06 0.53 1.52 2.06 422 0.09 0.07
Isqnonneg 0.01 0.16 0.54 1.38 2.79 1.51 1.55
TNT-NN 0.01 0.03 0.08 0.17 0.33 0.22 0.61

Table 2 # of major cycles for uncapacitated rectangular instances

m 100 200 300 400 500 500 500
n 200 400 600 800 1000 2000 3000
PG+(5) 6.4 9.4 134 11.6 134 1.0 1.0
PG+(6) 2.0 3.0 3.0 2.4 1.6 1.0 1.0
C 128.8 267.4 404.0 536.6 664.4 520.8 501.8

Table 3 The total # of minor cycles for uncapacitated rectangular instances

m 100 200 300 400 500 500 500

n 200 400 600 800 1000 2000 3000
PG+(5) 201.8 462.6 727.8 1129.8 1619.4 1029.6 1517.4
PG+(6) 17.4 32.6 42.0 32.0 18.8 2.0 1.0

C 157.6 336.6 5122 675.8 828.4 542.4 509.2

implementation TNT-NN from [21]. We note that 1sgnonneg and the coordinate
update version of our algorithms are essentially the same.

Generating instances We generated two families of experiments. In the rectangular
experiments n > 2m, and in the near-square experiments m < n < 1.1m. In both
cases, the entries of the m x n matrix A were chosen independently uniformly at
random from the interval [—0.5, 0.5]. In the rectangular experiments, the entries of
b were also chosen independently uniformly at random from [—0.5, 0.5]. Thus, the
underlying LP Ax = b, x > 0 may or may not be feasible.

For the near-square instances, such arandom choice of b leads to infeasible instances
with high probability. We used this method to generate infeasible instances. We also
constructed families where the LP is feasible as follows. For a sparsity parameter
x € (0, 1], we sampled a subset / C N, adding each variable independently with
probability x, and generated coefficients {z; : i € J} independently at random from
[0, 1]. We then set b =), ; Alz;.

@ Springer

An update-and-stabilize framework for the minimum-norm...

pringer

Qs

L¥'0
SS'LT
($) 0009
9¢'81
88°G¢
ST0
or'e
(D4
0011
0001

920
181
70
(44
89'¢
So'1
19'6
cod
001T
0001

01°0
LO0
ST0
18°0
ST
€01
o't
(Tro4d
0011
0001

91'0
98°C
¥C0
§C0
€ro
1881
G891

0011
0001

S 40]
ILLT

($) 0009
($) 0009
87°9¢
ST0

6v'1
(D4
0501
0001

10
65’1
€0
1971
YTe
S6'0
0c'e
cod
0s01
0001

600
900
40
650
$1°0
€60
17°¢C
(o4
0501
0001

Sr'o
gee
61°0
0c0
€e's
66'81
VLY
I
0501
0001

8¢°0
8891
($) 0009
($) 0009
SLYE
¥T0
€8°0
(D4
0201
0001

81°0
o'l
€0
71
°6'C
6¢'¢
6S°C
cod
0coI1
0001

80°0
90°0
Tro
6%°0
€10
€8°0
88°0
Tod
0201
0001

710
LET
910
LT°0
ws
L9°81
Pyl
I
0co1
0001

NN-LNL
Souuoubs|
DAd

Dd

o)

(9)+0d
(9+0d
smelsg

u

w

saoue)sur arenbs-1eau pajejroedesun 10y (99s ur) awn uoneindwo)) 3|qel

S. Fujishige et al.

92601
01
01

(DA
0011
0001

9'9%t
01
91

(S04
0011
0001

8601
01
01

(Tro)d
00TT
000T

9°€ss
<y
vy

0011
0001

79601
01
01

(D4
0S0T
0001

v eTy
01
01

(S04
0501
0001

0’101
01
01

Tro)d
0S0T
000T

¥'¥s 90801 0'90% 786 TS o)
(47 01 1 01 (a4 (9)+Dd
oY 4 4! 01 (A7 ($)+Dd

I (D4 (S04 To4d I smelg
0501 0201 0201 0201 0201 u
0001 0001 000T 0001 0001 w

saoue)sul arenbs-1eau pajeiroedesun 10j SI[0AD Jofew Jo # G d|qel

pringer

As

An update-and-stabilize framework for the minimum-norm...

pringer

Qs

THS8II
0°¢
TS
(DA
0011
0001

T6SY
0Ll
8'0LT
(S04
0011
0001

8401
91
0101
(Tro)d
00TT
000T

TLSS
VLSS
09¢9

0011
0001

1611
4
8T
(D4
0S0T
0001

8 IEh
091
01$

(S04
0501
0001

0001
8°GI
01¢

Tro)d
0S0T
000T

0'6CS
8°0LS
' 109

I
0s01
0001

T0911
e
981
(D4
0201
0001

vy
8'9L
T8L
(S04
0201
0001

¥'L6
¥l
01¢
To4d
0201
0001

115
9ILS
VLS
I
0201
0001

o)
(9+Dd
($)+Dd

snye)g

u

w

sooue)sul a1enbs-1eau pajejroedesun 10J SA[OAD Jourw Jo # [e10], 9 d|qe]

S. Fujishige et al.

Computational results We stopped each algorithm when the computation time reached
60s. For each (m, n), we test all the algorithms 5 times and the results shown here are
the 5-run averaged figures.

Table 1 shows the overall computational times for rectangular instances; values in
brackets show the number of trials whose computation time exceeded 60 s. Tables 2 and
3 show the number of major cycles, and the total number of minor cycles, respectively.
Table 4 shows the overall computational times for near-square instances. The status
‘T” denotes infeasible instances and ‘F’ feasible instances, with the sparsity parameter
x in brackets, with values 0.1, 0.5, and 1. Tables 5 and 6 show the number of major
cycles, and the total number of minor cycles, respectively, for near-square instances.

Comparison of the results For rectangular instances, the ‘local-norm’ update (6) per-
forms significantly better than the ‘oblivious’ update (5). The ‘oblivious’ updates are
also outperformed by the coordinate updates, both in terms of running time as well as
in the total number of minor cycles.

As noted above, while our algorithm with coordinate updates and 1sgnonneg
are basically the same, the running time of the latter algorithm is better by around
factor two. This is since 1sgnonneg might be using more efficient linear algebra
operations, in contrast to our more basic implementation.

The algorithm TNT-NN from [21] is a fast practical algorithm using a number
of heuristics, representing the state-of-the-art active set method for NNLS. Notably,
our algorithm with ‘local-norm’ updates (6) is almost always within a factor two for
rectangular instances, and performs better in some cases. This is despite the fact that we
only use a basic implementation without using more efficient linear algebra methods
or including further heuristics.

For rectangular instances, TNT-NN and ‘local-norm’ updates also outperform fast
projected gradient in most cases.

The picture is more mixed for near-square instances. There is a marked difference
between feasible and infeasible instances. The ‘local-norm’ and ‘oblivious’ update
rules perform similarly, with a small number of major cycles. The number of minor
cycles is much higher for infeasible instances. For infeasible instances, coordinate
updates are faster than either variant of the PG update rule, while PG updates are
faster for feasible instances.

The algorithm TNT-NN is consistently faster than our algorithm, with better run-
ning times for infeasible instances. For projected gradient and projected fast gradient,
the running times are similar to TNT-NN except for feasible instances with sparsity
parameter x = 1, where they do not terminate within the 60 s limit in most cases. In
contrast, these appear to be the easiest instances to our method with PG updates with
the ‘local-norm’ mapping.

6 Concluding remarks
We have proposed a new ‘Update-and-Stabilize’ framework for the minimum-

norm-point problem (P). Our method combines classical first order methods with
‘stabilizing’ steps using the centroid mapping that amounts to computing a projection

@ Springer

An update-and-stabilize framework for the minimum-norm...

to an affine subspace. Our algorithm is always finite, and is strongly polynomial when
the associated circuit imbalance measure is constant. In particular, this gives the first
such convergence bound for the Lawson—Hanson algorithm.

There is scope for further improvements both in the theoretical analysis and in
practical implementations. In this paper, we only analyzed the running time for unca-
pacitated instances. Combined with existing results from [22], we expect that similar
bounds can be shown for capacitated instances. We note that for the analysis, it would
suffice to run minor cycles only once in a while, say after every O (n) gradient updates.
From a practical perspective however, running minor cycles after every update appears
to be highly beneficial in most cases. Rigorous computational experiments, using stan-
dard families of LP benchmarks, are left for future work.

Future work should also compare the performance of our algorithms to the gradient
projection method [5, 23], using techniques from that method to our algorithm and vice
versa. We note that for NNLS instances, starting from a stable point our algorithm
already finds the optimal gradient update. However, a similar search as in gradient
projection methods may be useful in the capacitated case. In the other direction, we
note that the conjugate gradient iterations used in gradient projection do not correspond
to an explicit choice of a centroid mapping. A possible enhancement of gradient
projection could come from approximating a ‘local-norm’ objective as in (6) in the
second stage.

We also point out that the ‘local-norm’ selection rule (6) was inspired by the affine
scaling method; the important difference is that our algorithm moves all the way to
the boundary, whereas affine scaling stays in the interior throughout.

Acknowledgements We are grateful to Andreas Wichter for pointing us to the literature on the gradient
projection method. The third author would like to thank Richard Cole, Daniel Dadush, Christoph Hertrich,
Bento Natura, and Yixin Tao for discussions on first order methods and circuit imbalances.

Funding SF’s research is supported by JSPS KAKENHI Grant Numbers JP19K 11839 and 22K 11922 and
by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located
in Kyoto University. TK is supported by JSPS KAKENHI Grant Number JP19K11830. LAV’s research is
supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement no. 757481-ScaleOpt).

Declarations

Conflict of interests The authors have no conflicts of interest to declare that are relevant to the content of
this article.

OpenAccess Thisarticleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

@ Springer

http://creativecommons.org/licenses/by/4.0/

S. Fujishige et al.

A Computational experiments for capacitated instances

Tables 7, 8, 9, 10, 11, and 12 show experimental results for capacitated instances.
The instances were generated as in the NNLS case, with upper capacities u(i) = 1,
i € N. We did not use the benchmarks 1 sgnonneg and TNT-NN since these are not
implemented for the capacitated setting. On the other hand, we also implemented our
method with Frank—Wolfe updates, using both ‘local-norm’ and ‘oblvious’ centroid
mappings. Among the first order benchmarks, we also included conditional gradient
methods: the Frank—Wolfe and away-step Frank Wolfe (AFW) methods.

Table 7 Computation time (in sec) for capacitated rectangular instances

m 100 200 300 400 500 500 500
n 200 400 600 800 1000 2000 3000
FW+(5) 0.07 0.43 1.56 4.81 9.73 19.67 49.56
FW+(6) 0.02 0.07 0.22 0.49 0.63 0.17 0.31
PG+(5) 0.07 0.49 1.64 5.44 10.56 19.70 49.68
PG+(6) 0.01 0.07 0.20 0.44 0.55 0.17 0.32
C 0.05 0.28 0.94 2.19 5.35 2.88 2.88
FW 51.80 (4) 54.78 (4) 60.00 (5) 60.00 (5) 60.00 (5) 0.18 0.20
AFW 51.76 (4) 54.68 (4) 60.00 (5) 60.00 (5) 60.00 (5) 0.09 0.14
PG 0.31 2.64 5.25 5.44 33.33 (1) 0.04 0.04
PFG 0.02 0.12 0.24 0.42 0.84 0.05 0.06
Table 8 # of major cycles for capacitated rectangular instances

m 100 200 300 400 500 500 500

n 200 400 600 800 1000 2000 3000
FW+(5) 6.2 7.8 10.2 10.2 12.8 1.0 1.0
FW+(6) 2.6 34 3.6 34 32 1.0 1.0
PG+(5) 6.8 9.4 11.8 114 14.4 1.0 1.0
PG+(6) 2.6 2.8 3.8 32 3.6 1.0 1.0

C 127.0 253.6 389.0 507.6 697.6 514.8 502.2
Table 9 The total # of minor cycles for capacitated rectangular instances

m 100 200 300 400 500 500 500

n 200 400 600 800 1000 2000 3000
FW+(5) 186.6 378.6 629.2 1066.0 1356.4 1016.6 1498.8
FW+(6) 28.2 424 522 61.8 434 2.0 2.0
PG+(5) 212.4 4424 668.6 1213.0 1465.4 1013.8 1498.4
PG+(6) 27.2 37.4 48.0 55.8 38.8 2.0 2.0

C 155.6 313.2 483.8 622.6 897.0 532.2 511.2

@ Springer

An update-and-stabilize framework for the minimum-norm...

pringer

Qs

($) 0009
0€'LT
($) 0009
($) 0009
170y
ST0
9¢°¢
9C°0
€e'e
(D4
0011
0001

9¢°0
e

(€) 0009
(€) 0009
8¢
Y0'1
w7l
!
6l'¢l
cod
00IT
0001

#1°0
69°0

($) 0009
($) 0009
SI'0
L6'0
¥y
L6'0
L¥'9
(1ro4d
0011
0001

Sr'o
L1°0

($) 0009
($) 0009
99°¢
6¢°81
8€91
Y81
G691

1

0011
0001

($) 0009
($) 0009
($) 0009
($) 0009
68'LE
¥T0
68T
ST0
S9'C
(D4
0501
0001

LEO

8'1

(€) 0009
(€) 0009
e
9T’
wL
88°0
08'L
cod
0s01
0001

110
50

($) 0009
($) 0009
$1°0
68°0
0T
98°0
e
(o4
0501
0001

11°0
vIo

($) 0009
($) 0009
6T’S
S181
€Tyl
69'81
[<hg!

I

0501
0001

($) 0009
($) 0009
($) 0009
($) 0009
8€'6¢€
ST0
LT
920
L1
(D4
0201
0001

8C°0

8Tl

(€) 0009
(€) 0009
70°¢
080
¢80

LLO

¢80
cod
0201
0001

110
6%°0

($) 0009
($) 0009
€10
LLO
780
8L°0
S8°0
(Tro4d
0201
0001

oro
1o

(€) 0009
(€) 0009
8LV
08°'LI
L9Cl
01°81
S6'Cl

1

0201
0001

0Ad
od
MAV
MA

o)
(9+Dd
($)+Dd
O)+md
(©)+md
smels

u

w

saoue)jsur arenbs-1eau pajejroedes 1oy (09s ur) swm uonendwo) (L 3jqeL

S. Fujishige et al.

891
01
01
01
01

(D4
0011
0001

8¢S
01
e

01
¥'C
S04
0011
0001

498!
01
01
01
Tl

(1o 4
0011
0001

Vevs
<y
<y
9Y
vy

001T
0001

7'88¢€1 9€IS 8CII 0°LTS TLSEI TL8Y 801 9'80S o)
01 Tl 01 ot 01 01 01 9°¢ (9)+Dd
0T 81 01 8¢ 8T 01 01 8¢ ()+Dd
01 01 01 (a4 01 01 01 8¢ O)+md
81 0C 01 (1h% 8T 01 01 vy (©)+md

(D4 (S04 (1o 4 I (D4 (o4 (Tro)d I smelg
0501 0501 0501 0S0T 0201 0201 0201 0201 u
0001 0001 0001 0001 0001 0001 0001 0001 w

sooue)sur arenbs-1eou pajejroedes 103 so[040 Jolew Jo # || d|qel

pringer

As

An update-and-stabilize framework for the minimum-norm...

pringer

Qs

8°0¥91
e
99L
4
09L
(D4
0011
0001

T8¢
0Ll
9'L8¢E
TL
81Ty
0 d
0011
0001

el
791
766
091
0161
(1o 4
0011
0001

8'SrS
149
8179
7196
909

001T
0001

81LSI
Te
¥'L9
4
9'¢9
(D4
0501
0001

¥'61S
T
TEST
TSI
T89¢C
(S04
0501
0001

¥OrI1
8°GI
¥'6v
0's1
0'1S
(1o 4
0501
0001

0°0€s
(%%
Te8s
99LS
9609

I
0501
0001

#'86ST
¥'e
0°6€
¥
86
(D4
0201
0001

008
oyl
0°1¢
ovl
0'1¢

co4a
0coT1
0001

9'901
¥l
90T
Tyl
01¢

(Tro)d
0201
0001

70IS
eSS
8'6S¢
9€ELS
9'€ELS
I
0co1
0001

o)
(9)+Dd
($)+Dd
O)+md
(©)+md
mﬁuﬁw

u

w

sooue)sur arenbs-1eau pajeiroeded 10J sO[0Ad JouTw JO # [BI0], ZL d]gel

S. Fujishige et al.

In our framework, the Frank—Wolfe and projected gradient update rules performed

similarly. In contrast, among the benchmark experiments, projected gradient methods
consistently outperformed conditional gradient methods: the latter methods did not
terminate within the 60 s limit for most cases.

The overall experience is similar for uncapacitated (NNLS) and capacitated

instances. Our method does well for rectangular instances, but is generally slower
for infeasible near-square instances.

References

10.

11.

12.

15.
16.
17.
18.
19.
20.
21.

22.

. Bach, F.: Learning with submodular functions: a convex optimization perspective. Found. Trends Mach.

Learn. 6(2-3), 145-373 (2013)
Bjorck, A.: A direct method for sparse least squares problems with lower and upper bounds. Numer.
Math. 54(1), 19-32 (1988)

. Bro, R., De Jong, S.: A fast non-negativity-constrained least squares algorithm. J. Chemomet. J.

Chemomet. Soc. 11(5), 393-401 (1997)

Chakrabarty, D., Jain, P., Kothari, P.: Provable submodular minimization using Wolfe’s algorithm. Adv.
Neural Inf. Process. Syst. 27 (2014)

Conn, A.R., Gould, N.I., Toint, P.L.: Testing a class of methods for solving minimization problems
with simple bounds on the variables. Math. Comput. 50(182), 399-430 (1988)

Dadush, D., Huiberts, S., Natura, B., Végh, L.A.: A scaling-invariant algorithm for linear programming
whose running time depends only on the constraint matrix. Math. Program. (2023)

Dadush, D., Natura, B., Végh, L.A.: Revisiting Tardos’s framework for linear programming: Faster
exact solutions using approximate solvers. In: Proceedings of the 61st Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pp. 931-942 (2020)

De Loera, J.A., Haddock, J., Rademacher, L.: The minimum Euclidean-norm point in a convex poly-
tope: Wolfe’s combinatorial algorithm is exponential. STAM J. Comput. 49(1), 138-169 (2020)
Ekbatani, F., Natura, B., Végh, A.L.: Circuit imbalance measures and linear programming. In: Surveys
in combinatorics 2022, London Mathematical Society Lecture Note Series, pp. 64—114. Cambridge
University Press (2022)

Ene, A., Vladu, A.: Improved convergence for £1 and £~ regression via iteratively reweighted least
squares. In: International Conference on Machine Learning, pp. 1794-1801. PMLR (2019)
Fujishige, S.: Lexicographically optimal base of a polymatroid with respect to a weight vector. Math.
Oper. Res. 5(2), 186-196 (1980)

Fujishige, S.: A capacity-rounding algorithm for the minimum-cost circulation problem: a dual frame-
work of the Tardos algorithm. Math. Program. 35(3), 298-308 (1986)

Fujishige, S., Hayashi, T., Yamashita, K., Zimmermann, U.: Zonotopes and the LP-Newton method.
Optim. Eng. 10(2), 193-205 (2009)

Fujishige, S., Isotani, S.: A submodular function minimization algorithm based on the minimum-norm
base. Pac. J. Optim. 7(1), 3—-17 (2011)

Fulkerson, D.: Networks, frames, blocking systems. Math. Decis. Sci. Part I Lect. Appl. Math. 2,
303-334 (1968)

Hoffman, A.J.: On approximate solutions of systems of linear inequalities. J. Res. Natl. Bur. Stand.
49(4), 263-265 (1952)

Lacoste-Julien, S., Jaggi, M.: On the global linear convergence of Frank—Wolfe optimization variants.
Adyv. Neural Inf. Process. Syst. 28 (2015)

Lawson, C.L.: Contribution to the Theory of Linear Least Maximum Approximation. PhD thesis (1961)
Lawson, C.L., Hanson, R.J.: Solving least squares problems. SIAM (1995)

Leichner, S., Dantzig, G., Davis, J.: A strictly improving linear programming phase I algorithm. Ann.
Oper. Res. 46, 409-430 (1993)

Myre, J.M., Frahm, E., Lilja, D.J., Saar, M.O.: TNT-NN: a fast active set method for solving large
non-negative least squares problems. Procedia Comput. Sci. 108, 755-764 (2017)

Necoara, I., Nesterov, Y., Glineur, F.: Linear convergence of first order methods for non-strongly convex
optimization. Math. Program. 175(1), 69-107 (2019)

@ Springer

An update-and-stabilize framework for the minimum-norm...

23.
24.

25.
26.

27.

28.

29.

30.

31.

32.

Nocedal, J., Wright, S.J.: Numerical Optimization. Springer (1999)

Orlin, J.B.: A faster strongly polynomial minimum cost flow algorithm. Oper. Res. 41(2), 338-350
(1993)

Osborne, M.R.: Finite Algorithms in Optimization and Data Analysis. Wiley (1985)

Pefia, J., Vera, J.C., Zuluaga, L.F.: New characterizations of Hoffman constants for systems of linear
constraints. Math. Program. 1-31 (2020)

Rockafellar, R.T.: The elementary vectors of a subspace of R . In: Combinatorial Mathematics and Its
Applications: Proceedings North Carolina Conference, Chapel Hill, 1967, pp. 104—127. The University
of North Carolina Press (1969)

Stoer, J.: On the numerical solution of constrained least-squares problems. SIAM J. Numer. Anal. 8(2),
382-411 (1971)

Tardos, E.: A strongly polynomial minimum cost circulation algorithm. Combinatorica 5(3), 247-255
(1985)

Vavasis, S.A., Ye, Y.: A primal-dual interior point method whose running time depends only on the
constraint matrix. Math. Program. 74(1), 79—-120 (1996)

Wilhelmsen, D.R.: A nearest point algorithm for convex polyhedral cones and applications to positive
linear approximation. Math. Comput. 30(133), 48-57 (1976)

Wolfe, P.: Finding the nearest point in a polytope. Math. Program. 11(1), 128-149 (1976)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

	An update-and-stabilize framework for the minimum-norm-point problem
	Abstract
	1 Introduction
	1.1 Further related work

	2 Preliminaries
	2.1 Elementary vectors and circuits
	2.2 Optimal solutions and proximity
	2.3 The centroid mapping

	3 The update-and-stabilize framework
	3.1 The update subroutine

	4 Analysis
	4.1 Proximity bounds
	4.2 Geometric convergence of the projected gradient and coordinate updates
	4.3 Overall convergence bounds

	5 Computational experiments
	6 Concluding remarks
	Acknowledgements
	A Computational experiments for capacitated instances
	References

