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The idiosyncratic components of a tensor time series factormodel can
exhibit serial correlations, (e.g. finance or economic data), ruling out many
state-of-the-art methods that assume white/independent idiosyncratic com-
ponents. While the traditional higher order orthogonal iteration (HOOI) is
proved to be convergent to a set of factor loading matrices, the closeness of
them to the true underlying factor loading matrices are in general not estab-
lished, or only under i.i.d. Gaussian noises. Under the presence of serial and
cross-correlations in the idiosyncratic components and time series variables
with only bounded fourth order moments, for tensor time series data with
tensor order two or above, we propose a pre-averaging procedure that can
be considered a random projection method. The estimated directions corre-
sponding to the strongest factors are then used for projecting the data for a po-
tentially improved re-estimation of the factor loading spaces themselves, with
theoretical guarantees and rate of convergence spelt out when not all factors
are pervasive. We also propose a new rank estimation method which utilizes
correlation information from the projected data. Extensive simulations are
performed and compared to other state-of-the-art or traditional alternatives.
A set of tensor-valued NYC taxi data is also analyzed.

1. Introduction. Thanks to the advancement of the internet and general computing
power, the collection and analysis of panel data are made ever easier over the past decade.
Toolboxes in high dimensional vector time series analysis play increasingly important roles in
extracting useful information from high dimensional time series data. Time series factor mod-
elling is a major dimension reduction tool for such data, allowing insights into the common
dynamics of different observed time series. For instance, when considering many macroeco-
nomic time series for forecasting (Stock and Watson, 2002), the estimation and forecasting
through the common factors can give more accurate results overall, and allowing for the in-
terpretation of the factors (e.g., potential grouping of macroeconomic time series as factors)
at the same time.

To improve the accuracy of forecasting, one can add the time series of macroeconomic
indicators from other countries, and stack all observed time series into one high dimensional
vector time series. The problem in doing this is that we are now ignoring the natural structure
of the data, namely, all macroeconomic time series are now categorized by countries. More-
over, stacking all time series into a long vector can create curse of dimensionality (e.g., when
the stacked length is too much larger than the sample size), leading to inaccurate estimation
and predictions.

A more natural approach is to consider the country-categorized macroeconomic time se-
ries as matrix-valued (i.e., anorder-2 tensor), with different countries by row and different
macroeconomic time series by columns.Wang, Liu and Chen(2019) describes a factor model
for such matrix-valued time series, and provides estimation methods together with theoretical
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results. Their work is extended to a general order-K tensor{Xt} in Chen, Yang and Zhang
(2022), where the factor model for eachXt ∈R

d1×···×dK , is

(1.1) Xt = Ct + Et =Ft ×1 A1 ×2 · · · ×K AK + Et,
with Ct the common component,Et the noise tensor,Ft ∈ R

r1×···×rK the core tensor, and
Ak ∈ R

dk×rk the mode-k factor loading matrix. The product×k is the tensork-mode prod-
uct (see Section2 for a review of basic tensor operations).Chen, Yang and Zhang(2022)
assumes that the elements in eachEt are sub-Gaussian, with eachEt independent of each
other. Base on the above,Han et al.(2020) analyzes iterative projection procedures iTOPUP
and iTIPUP for estimatingAk, while Han, Zhang and Chen(2022a) proposes core rank (or
multilinear tensor rank) estimators ofCt based on information criterion and eigen-ratio crite-
rion that are intertwined with iTIPUP and iTOPUP. Core rankrk is similar to the number of
factors, and will be explained in Section3.

In other recent developments,Zhang and Xia(2018) proposes a similar model for an order-
3 tensor, with the tensor noise elements being i.i.d. normalhaving a common variance, and
develops minimax theoretical guarantees for their estimators. With the same tensor noise
assumption,Yokota, Lee and Cichocki(2017) proposes a core rank estimator forCt for a
general order-K tensorXt based on a BIC-like criterion, whileLiu, Yuan and Zhao(2022)
proposes a tensor SVD method, andHan and Zhang(2023) proposes a tensor PCA for es-
timation under a CP decomposition ofCt. Chen et al.(2020a) proposes a semiparametric
model withCt taking covariates under the assumption of i.i.d. sub-Gaussian elements inEt,
which are themselves independent of each other.

All the tensor factor modelling works mentioned above assumed at least independent noise
tensor series{Et} with sub-Gaussian elements. The i.i.d. assumption for the elements inEt
in many of them is also considered a standard assumption for statistical analysis. However,
if we have applications in economics and finance for instance, it is very easy that (weak)
serial correlations exist in{Et}, representing any serial correlations inXt not captured by the
common componentsCt (some time series inXt have “unique” company or macroeconomic
characteristics, for example). TheApproximate factor modelof Bai and Ng(2002) allows for
such weak serial correlations (as well as weak cross-correlations) in the idiosyncratic noise
series{Et}. WhenEt has a higher order tensor structure, allowing for weak-serial and cross-
correlations becomes even more essential as there could be even more potentially intricate
serial and cross-correlations in{Et}. In this paper, we adopt such a more flexible approach.
Our methods utilize covariance information, which are morenatural to apply to financial re-
turn data for example as opposed to methods that utilize onlyautocovariance information
(seeWang, Liu and Chen(2019), Chen, Yang and Zhang(2022) or Han, Zhang and Chen
(2022b) for example). Due to market efficiency, population autocovariances of the data can be
close to zero and methods that only utilize autocovariance information can have low signal-
to-noise ratio.

For matrix factor models (i.e., an order-2 tensor) with weak-serial and cross-correlations
in {Et}, Chen and Fan(2021) proposes anα-PCA method by assumingα-mixing of noise
series, whileHe et al.(2022) proposes matrix Kendall’s tau by assuming matrix elliptical
distribution of the noise. Withα-mixing assumption,Yu et al. (2022) develops a projection
estimation (PE) method for matrix factor models by projecting the observation matrix onto
the row or column factor space. The number of row and column factors are also estimated by
the eigenvalue-ratio statistics based on the covariance information after projection.He et al.
(2023a) provides the least squares interpretation of PE, and proposes a robust method by
substituting the least squares loss function with the HuberLoss function (see alsoHe et al.
(2023b)). As an extension,He, Li and Trapani(2022) andBarigozzi et al.(2023) further gen-
eralize PE and the robust method to estimate tensor factor models for a generalK. However,
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one limitation of all these recent developments is that theyassume all factors are pervasive in
every mode of the matrix or tensor, which can be restrictive in many real applications when
weak factors are present.

Other related developments of tensor factor models includeLiu and Chen(2022) on a
threshold matrix-variate factor model, allowing general but uniform factor strengths on the
factor loading matrices under uncorrelated noise tensor and an alpha-mixing condition for
the factors.Chen et al.(2020b) proposes a class of models for modelling large-scale multi-
variate spatial-temporal processes, which involves knowntime-evolving covariates and a cor-
responding loading matrix, while all processes are dependent on a space domain.Chen et al.
(2022) introduces a general R packagetensorTS for wide variety of tensor data analy-
ses based on recent papers, and demonstrate the usage on the NYC taxi data which we are
analysing in Section6.4.

In this paper, we make two important contributions to the literature of factor modelling
for tensor time series data of order two or above. The first oneis to allow for a spectrum
of different factor strengths, which is a generalisation toLam, Yao and Bathia(2011) when
static vector time series factor model is concerned. To the best of our knowledge, our model
is the first one in tensor factor modelling to consider weak factors when both serial and
cross-correlations in{Et} are present. For tensor factor models with independent{Et}, while
Han et al.(2020) has two parametersδ0 andδ1 controlling the factor strengths, they are less
easily interpretable compared to ourαk,j, j ∈ {1,2, · · · , rk}, which has thejth diagonal entry
of AT

kAk ≍ d
αk,j

k (see Assumption (L1) in Section3.2.3for more details). Hence if thejth
column ofAk is dense (a pervasive factor), thenαk,j = 1. If there are only finitely many non-
zeros in thejth column ofAk, then it is a very weak factor, andαk,j = 0. Freyaldenhoven
(2022) allows for these weaker factors in its vector time series factor model, and called them
“local factors”.

With relaxed assumptions for wider applications, and allowing for a spectrum of factors
with different strengths, our second contribution is to provide a “pre-averaging” initial esti-
mator and an iterative projection estimator for our model, with theoretical analyzes provided
and rate of convergence spelt out. The pre-averaging procedure is presented in Section3,
which can be seen as a random projection method by randomly summing tensor fibres, and
we provide a method to control for the quality of the random projection in Section3.3. Sec-
tion 3.6 also shows that our pre-averaging estimator is minimax optimal under certain sce-
narios on a certain localized set. Iterative projection estimators of the factor loading matrices
(see Section4) are provided with idea similar to the projection method inYu et al. (2022),
except that we only project on the direction aligning to the strongest estimated factor. This is
because we assume there are weak factors which may not be estimated with enough accuracy.
With weak factors in the model, numerical experiments show that our estimator outperforms
other state-of-the-art methods since we only utilize the information which captures the most
accurate estimations so far. To complete the paper, we also provide estimators of the core ten-
sor rank through correlation analysis in Section5, which is inspired byFan, Guo and Zheng
(2022), but we provide a bootstrap method for tuning parameter selection as well. All our
methods are written into an R packageTensorPreAve published on CRAN and GitHub.
Please see Section 2 in our supplement for a very brief explanation on how to use it.

The rest of the paper is organized as follows. Section2 reviews some basic notations we
use throughout the paper. Section3 presents the idea of pre-averaging, together with impor-
tant assumptions on our model. Discussions and theory on choosing the “best” samples for
aggregating results are presented, together with rate of convergence for our pre-averaging
estimator for the strongest factors spelt out. Section4 utilizes the pre-averaging estimator as
the ideal initial estimator for re-estimating the projection direction by iterations, and presents
the key theoretical results on the iterative projection estimators. Section5 presents theoretical
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justifications for using correlation analysis in finding therank of the core tensor, and provides
a fibre bootstrapping technique in determining the tuning parameter of the procedure. Sec-
tion 6 presents our simulation studies on a number of different settings and compare to other
benchmarks or state-of-the-art estimators. A set of matrix-valued portfolio return data is an-
alyzed in Section 1.3 in our supplement, and a tensor-valuedNYC taxi data set is analyzed
in Section6.4of this paper. All proofs are in Section 3 of our supplement.

2. Notations and Basic Tensor Manipulations. In this paper, we usea ≍ b to denote
a = O(b) andb= O(a) (alsoa ≍P b for a =OP (b) andb= OP (a)), while a� b is equiv-
alent tob = O(a), anda ≻ b is equivalent tob = o(a). We also use

∥∥ ·
∥∥ to denote theL2

norm (of a vector or a matrix), and
∥∥ ·

∥∥
F

to denote the Frobenius norm, while
∥∥ ·

∥∥
max

rep-
resents the maximum element (of a vector or a matrix). We alsouse

∥∥A
∥∥
∞

=maxi
∑

j |aij |
and

∥∥A
∥∥
1
=maxj

∑
i |aij | to denote theL∞ andL1 norm of a matrixA respectively. The

notation vec(·) represents the vectorisation of a matrix, stacking columnsof the matrix from
left to right. We use1m to represent a vector of ones with lengthm, 1m,S to represent a
vector of ones and zeros with lengthm, with ones on positions belonging to the setS and
zeros otherwise. The identity matrix with sizem is denoted byIm. The notation diag(A)
of a square matrixA is the diagonal matrix with only the diagonal elements ofA remain,
and everything else set to 0. This notation is also used to represent a block diagonal matrix.
For instance, diag(A1, . . . ,An) is the block diagonal matrix with diagonal block matrices
A1, . . . ,An. We useλj(A) to denote thej-th largest eigenvalue of a square matrixA, and
tr(A) the trace ofA. For a positive integerm, we define[m] := {1, . . . ,m}. The cardinality
of a setS is denoted by|S|.

We briefly introduce the notations and review on tensor manipulations in this sec-
tion just enough for the presentation of this paper. For moreinformation, please refer to
Kolda and Bader(2009).

Let X ∈ R
d1×···×dK be an order-K tensor. HereK represents the number of dimensions

in X , also called the number ofmodes. For instance, a vector time series hasK = 1 while a
matrix time series hasK = 2. If we writeX = (xi1···iK ), then we define amode-k fibreof X
to be a column vector (of lengthdk) (xi1···ik−1,j,ik+1···iK )j∈[dk], iℓ ∈ [dℓ] with ℓ ∈ [K]. Hence

there are in totald-k :=
∏K

ℓ=1 ;ℓ 6=k dℓ number of mode-k fibres for the tensorX . Themode-k

matricization/unfolding matrixmatk(X ) ∈R
dk×d-k (also denoted asX(k) sometimes) is then

defined to be the matrix containing (in order) all the mode-k fibres ofX . See figure1 for a
demonstration (figure fromTao, Su and Wang(2019)).

If there is a matrixA ∈ R
Ik×rk , andF ∈R

r1×···rK is an order-K tensor, then thek-mode
productof F andA, denoted byF ×k A ∈R

r1×···×rk−1×Ik×rk+1×···×rK , is defined such that
matk(F ×k A) = Amatk(F). The order of distinct mode products does not matter, in the
sense that fori 6= j,F×iAi×jAj =F×jAj×iAi. Finally, if C =F×1A1×2 · · ·×KAK ,
then we have the formula

(2.1) matk(C) =Akmatk(F)AT

-k,

where⊗ is the Kronecker product, andA-k :=AK ⊗ · · · ⊗Ak+1 ⊗Ak−1 ⊗ · · · ⊗A1.

3. Initial Estimation of Strongest Factors by Pre-averaging. We define the tensor
factor model for eachXt ∈R

d1×···×dK , t ∈ [T ], as

(3.1) Xt = µ+ Ct + Et = µ+Ft ×1 A1 ×2 · · · ×K AK + Et,
where we include a non-zero mean tensorµ ∈ R

d1×···×dK as compared to (1.1) introduced
by Chen, Yang and Zhang(2022), which makes our model more flexible. Using (2.1), the
mode-k unfolding of (3.1) can be written as

matk(Xt) = matk(µ) +Akmatk(Ft)A
T

-k +matk(Et).
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Fig 1: Illustration of the mode-k fibers and its corresponding unfolding matrix.

If we defineSj ⊆ [dj ] for j ∈ [K], then we can always define the Cartesian product

S-k := SK × · · · × Sk+1 × Sk−1 × · · · × S1, such that

1d-k,S-k = 1dK ,SK
⊗ · · · ⊗ 1dk+1,Sk+1

⊗ 1dk−1,Sk−1
⊗ · · · ⊗ 1d1,S1

.

Projecting on1d-k,S-k , equivalent to summing the fibres in matk(Xt) over the setS-k, is then

matk(Xt)1d-k,S-k = matk(µ)1d-k,S-k +Akmatk(Ft)A
T

-k1d-k,S-k + matk(Et)1d-k,S-k , where

AT

-k1d-k,S-k =AT

K1dK ,SK
⊗ · · · ⊗AT

k+11dk+1,Sk+1
⊗AT

k−11dk−1,Sk−1
⊗ · · · ⊗AT

11d1,S1
,

(3.2)

with A-k :=AK ⊗ · · ·Ak+1 ⊗Ak−1 ⊗ · · · ⊗A1. Hence projection of the data using1d-k,S-k

can be seen as pre-averaging the rows of eachAj usingSj for j ∈ [K] \ {k}. While we
re-estimate by projection in Section4, and papers likeYu et al.(2022) does projection esti-
mation as well, the aim of this section is to provide an initial estimator of projection direction
with quality that can becontrolledby careful selection of randomly generatedSj . The method
to selectSj among multiple random samples is introduced in Section3.3, which leads to the
pre-averaging estimator in Section3.5.

3.1. Potential advantages of pre-averaging.Consider just calculating the second order
moments

T∑

t=1

matk(Xt − X̄ )matTk(Xt − X̄ ) =: S0 +N1 +NT

1 +N2, where

S0 :=Ak

T∑

t=1

(
matk(Ft − F̄)AT

-kA-kmatTk(Ft − F̄)
)
AT

k,

(3.3)

N1 :=Ak

T∑

t=1

(
matk(Ft − F̄)AT

-kmatTk(Et − Ē)
)
, N2 :=

T∑

t=1

matk(Et − Ē)matTk(Et − Ē),

and extracting an estimator ofAk through PCA (e.g., seeBai and Ng(2002)). Our proposed
pre-averaging estimator, like a projected estimator, can accumulate significantly more signals
before doing the PCA step for extracting an estimator ofAk. This is because the signal term
Ak

∑T
t=1 matk(Ft − F̄)AT

-k1d-k,S-k1
T

d-k,S-k
A-kmatTk(Ft − F̄)AT

k (from using1d-k,S-k as the
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projection direction of the data) can be significantly larger thanS0 in (3.3), since the diagonal
elements ofAT

-k1d-k,S-k1
T

d-k,S-k
A-k can be much larger than those inAT

-kA-k. For instance,
whenA-k has a column with all positive or negative elements (e.g., factor loading entries for
the market factors in finance), we have diagonal elements ofAT

-k1d-k,S-k1
T

d-k,S-k
A-k of order

d2-k, while those inAT

-kA-k are only of orderd-k.
Before officially introducing the pre-averaging estimator, we first present some technical

assumptions needed for the tensor factor model (3.1).

3.2. Assumptions.

3.2.1. Assumptions on the errors.We present assumptions (E1) - (E2) below with expla-
nations.

(E1) (Decomposition of error)We assume thatK is a constant, and

Et =Fe,t ×1 Ae,1 × · · · ×Ae,K + ǫt,(3.4)

whereFe,t is an order-K tensor with dimensionre,1 × · · · × re,K , containing independent
elements with mean 0 and variance 1. The order-K tensorǫk ∈R

d1×···×dK contains inde-
pendent mean zero elements each with finite variance, with the two time series{ǫt} and
{Fe,t} being independent.

Moreover, for eachk ∈ [K],Ae,k ∈R
dk×re,k is such that

∥∥Ae,k

∥∥
1
=O(1). That is,Ae,k

is (approximately) sparse.

Hence with (E1), we have matk(Et) = Ae,kmatk(Fe,t)A
T

e,-k + matk(ǫt), whereAe,-k :=

Ae,K ⊗ · · · ⊗Ae,k+1 ⊗Ae,k−1 ⊗ · · · ⊗Ae,1. Each mode-k noise fibreet,-k,ℓ for ℓ ∈ [d-k]
can then be decomposed as

et,-k,ℓ :=Ae,kmatk(Fe,t)ae,-k,ℓ + (Σ
(k)
ǫ,ℓ )

1/2
ǫ
(k)
t,ℓ ,(3.5)

whereaT

e,-k,ℓ is theℓ-th row ofAe,-k,Σ(k)
ǫ,ℓ is diagonal andǫ(k)t,ℓ contains independent elements

each with mean 0 and variance 1. The above decomposition means that each noise fibre is
now a sum of two parts. The first part is similar to a common component with a factor
loading matrixAe,k, while the second part contains independent noise (but can still exhibit
serial correlations; see Assumption (E2)). However,Ae,k is (approximately) sparse here and
contains at most a very weak factor with factor strength 0 (see Assumption (L1) in Section
3.2.3). This part facilitates cross-noise fibres correlations, with

cov(et,-k,ℓ,et,-k,m) = aT

e,-k,ℓae,-k,mAe,kA
T

e,k.

This error structure satisfies the assumptions inHe, Li and Trapani(2022) andChen and Fan
(2021) whenre,k = O(dk), but we only assume up to the 4th order moments of the noise
variables exist and that these moments are uniformly bounded in Assumption (R2), which is
more relaxed than requiring the existent of 8th order moments in He, Li and Trapani(2022).
In fact, if Ae,k is not (approximately) sparse, it should be counted as a factor loading matrix
rather than a noise component in our model.

(E2) (Time series)There isZe,t the same dimension asFe,t, and Zǫ,t the same dimen-
sion asǫt, such thatFe,t =

∑
q≥0 ae,qZe,t−q andǫt =

∑
q≥0 aǫ,qZǫ,t−q, with {Ze,t} and

{Zǫ,t} independent of each other, and each time series have i.i.d. elements with mean 0
and variance 1. The coefficientsae,q andaǫ,q are so that

∑
q≥0 a

2
e,q =

∑
q≥0 a

2
ǫ,q = 1 and∑

q≥0 |ae,q| ≤C,
∑

q≥0 |aǫ,q| ≤C for some constant C.

With this assumption, the error variables inFe,t andǫt are serially correlated in general.
Together with (E1), (weak) serial and cross-sectional dependence within and among fibres
are allowed for the errors.
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3.2.2. Assumptions on the factors.Similar to (E2), the factors inFt are assumed to fol-
low general linear processes.

(F1) There isZf,t the same dimension asFt, such thatFt =
∑

q≥0 af,qZf,t−q. The time
series{Zf,q} has i.i.d. elements with mean 0 and variance 1. The coefficientsaf,q are so
that

∑
q≥0 a

2
f,q = 1 and

∑
q≥0 |af,q| ≤C for some constant C.

Note the series of coefficients{ae,q}, {aǫ,q} and{af,q} are not necessarily equal.

3.2.3. Assumptions on the model parameters.We present the assumptions needed for the
factor loading matricesAk, k ∈ [K], and other model parameters.

(L1) (Factor Strength)We assume that, fork ∈ [K], Ak is of full rank,rk = o(T 1/3), and as
dk →∞,

D
−1/2
k AT

kAkD
−1/2
k →ΣA,k,(3.6)

whereDk = diag(AT

kAk) andΣA,k is positive definite with all eigenvalues bounded away
from 0 and infinity. We assume(Dk)jj ≍ d

αk,j

k for j ∈ [rk], and0< αk,rk ≤ · · · ≤ αk,2 ≤
αk,1 ≤ 1.

Assumption (L1) states that the factors can have different strengths. WhenK = 1 and
α1,j = α for j ∈ [r1], (3.6) reduces to the assumption of (approximate) vector factor model
with the same strength, which is discussed inBai and Ng(2021). Hence, our assumption is
a generalisation ofBai and Ng(2021) to a tensor setting with mixed strengths of factors,
which is more flexible to apply on many real datasets. In addition, we do not assume the
orthogonality ofAk asFreyaldenhoven(2022) did, since this would be incompatible with the
expression of factor strength and signal accumulation in terms of the norm and row sum of
Ak. The concept of a pervasive factor, for instance, depends ona column ofAk being dense.
However, such an interpretation can be lost completely under the assumption of orthogonal
columns inAk.

(L2) (Signal accumulation from summing)For k ∈ [K], let Mk,0 > 0 be the number of dif-
ferent sums of rows ofAk considered, and form ∈ [Mk,0], denoteSk,m ⊆ [dk] to be the
m-th index set for summing the rows ofAk. With the choice of|Sk,m|= ⌊dk/2⌋, define

sk,m :=
∥∥AT

k1dk,Sk,m

∥∥2, sk,max := max
m∈[Mk,0]

sk,m, s-k,max :=

K∏

j=1;j 6=k

sj,max.(3.7)

We assume for somezk ≤ rk,

d-k

s-k,max

(
1 +

dk
T

)
= o

(
d
αk,zk

k

)
.(3.8)

In Assumption (L2),sk,m can be seen as a measure of accumulation of signals for a spe-
cific samplem ∈ [Mk,0], andsk,max is the “largest” accumulation of signal we can attain
over theMk,0 samples. In Section3.3, the method to provide a carefully selection of ran-
domly generatedSj,m is introduced, and Section3.4gives a more thorough discussion on the
number of samples needed to secure enough signal accumulation with a large probability.

Note that we chooseSk,m with size |Sk,m| ≍ dk (e.g., |Sk,m| = ⌊dk/2⌋ in Assumption
(L2)) for eachm ∈ [Mk,0]. This choice allows for the sum of rows ofAk to be potentially
large with a large probability (see also Section3.4).

We also remark that unlike for instance inChen and Fan(2021) that the dimensionsdk
are assumed to be diverging, heredk can be finite as long asd-k/s-k,max = o(1). This can
be achieved when, for example, there is anAj for somej 6= k such that the majority of the
elements in a column are of the same sign, so thatsj,m ≻ dj , resulting ind-k/s-k,max = o(1).
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(R1) The time series{Zf,t} from Assumption (F1),{Ze,t} and{Zǫ,t} from Assumption (E2)
are mutually independent of each other. All three time series have elements with uniformly
bounded fourth moments.

(R2) We assumeλdk
(Σ

(k)
ǫ,ℓ ) is uniformly bounded below from 0 forℓ ∈ [d-k], whereΣ(k)

ǫ,ℓ is
defined in (3.5). Let Aǫ,T be theT × T matrix with its (t, s) element to be(Aǫ,T )t,s =∑

q≥0 aǫ,qaǫ,q+|t−s|. Denote0< y := limdk,T→∞
min(dk,T )
max(dk,T ) ≤ 1 andy∗ =min(y,1), then

we assume there existsc1 ∈ (1− y∗,1] such thatλ⌊c1T ⌋(Aǫ,T )> c2 > 0 for largeT , where
c2 is a positive constant.

Assumption (R1) relaxes the need for Gaussian or sub-Gaussian random variables (see
Zhang and Xia(2018) andChen, Yang and Zhang(2022) for example), with only bounded
fourth order moments required. This allows for substantially more types of data to be ana-
lyzed. For instance, financial returns data over more volatile periods where we do not usually
want to assume moments beyond order four exist. Finally, together with Assumption (R1),
Assumption (R2) enables us to utilize random matrix theory to bound the eigenvalues of var-
ious sample covariance matrices from below (see (S.3), (S.4) and (S.11) in Lemma 1 and
Lemma 2 in our supplement). As long as the serial correlations of theǫ(k)t,ℓ,j ’s are not too
strong, Assumption (R2) will be satisfied.

For convenience of further theoretical analysis, we defineQk = AkD
−1/2
k . Since

QT

kQk → ΣA,k, Qk is a re-normalized version ofAk. In addition, we apply the singular
value decomposition ofAk as

Ak =UkG
1/2
k VT

k ,(3.9)

whereUk ∈ R
dk×rk has orthogonal columns such thatUT

kUk = Irk , Gk ∈ R
rk×rk is diag-

onal and consists of the eigenvalues ofAT

kAk in decreasing order, andVk ∈ R
rk×rk is an

orthogonal matrix. The subspaces spanned by the columns ofUk, Qk andAk are the same,
and hence it is equivalent to estimateUk (or Qk) andAk, and the columns ofUk form an
orthonormal basis for the column space spanned byQk (or Ak). We will estimateUk (or
Qk) instead ofAk in the sections that follow. We need another regularity condition on the
singular values onGk. This can be relaxed at the expense of lengthier explanations involving
factor loading spaces in all subsequent theorems.

(L1’) The singular values onGk are distinct.

3.3. Choosing samples of tensor fibres.We first present an algorithm for choosing the
“best” sample of tensor fibres to sum.

Algorithm for choosing the “best” sample of tensor fibres

1. InitializeMk,0 for eachk ∈ [K].
2. Generate a sequence of independent sets{Sk,m}k∈[K],m∈[Mk,0]. EachSk,m chooses uni-

formly over[dk], with |Sk,m|= ⌊dk/2⌋.
3. Fix k ∈ [K]. Define M0 :=

∏
j∈[K]\{k}Mj,0. For eachm ∈ [M0], define S-k,m :=

×j∈[K]\{k}Sj,mj
and1d-k,S-k,m

:=⊗j∈[K]\{k}1dj ,Sj,mj
for somemj ∈ [Mj,0].

4. For the same fixedk from step 3, define for eachm ∈ [M0],

(3.10) X̃k,m := (matk(X1)1d-k,S-k,m
, . . . ,matk(XT )1d-k,S-k,m

)T,

and for an integerl satisfyingrk + 1≤ l≤ ⌊cmin(T,dk)⌋ − rk for somec > 0, construct

ERl,m :=
λ1

(
X̃T

k,m

(
IT − 1

T 1T1
T

T

)
X̃k,m

)

λl

(
X̃T

k,m

(
IT − 1

T 1T1
T

T

)
X̃k,m

) .
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5. The “best” samplem ∈ [M0] for estimatingAk is the one that maximizes ERl,m. We
denote byS-k,max :=×j∈[K]\{k}Sj,max the corresponding product set, and

s-k,max :=
∏

j∈[K]\{k}

sj,max :=
∏

j∈[K]\{k}

∥∥AT

j1dj ,Sj,max

∥∥2.

6. Repeat steps 3,4,5 until eachk ∈ [K] is covered.

The justification of step 4 is as follows. With Assumption (L1) and (R2) satisfied, we have
by Lemma 2 in our supplement that the eigenvalue-ratio ERl,m has

ERl,m ≍P d
αk,1

k

[
d-k

s-k,m

(
1 +

dk
T

)]−1

.

Hence the sample that maximised ERl,m in fact asymptotically maximizes the product of
signals, froms-k,m to s-k,max.

One way to choosel is to use expert opinion. A typical value ofl we use depends on the
user’s idea of the maximum value ofrk. Suppose for an economic data set, we expectrk ≤ 8.
Then we can usel = 9 for constructing ERl. For a more data-driven way, note from Lemma
2 in our supplement that for a particular sample with productsetS-k,m ⊆ [d-k],

λi

(
X̃T

k,m

(
IT − 1

T
1T1

T

T

)
X̃k,m/T

)
≍P

{
d
αk,i

k , i ∈ [rk];
d-k
s-k,m

(
1 + dk

T

)
, rk +1≤ i≤ ⌊cmin(T,dk)⌋ − rk,

wheres-k,m is defined in (3.7), andX̃k,m in (3.10). Hence fordk ≍ T , if we have a sample
S-k,m such thatd-k/s-k,m = O(1), then plotting the ordered-eigenvalues from the largest to
smallest, we would expect to see a large dip at the(rk + 1)th position. If we do not see such
a dip, then we can generate another sampleS-k,m and try again. Obtaining a sample with
d-k/s-k,m =O(1) should not take long. See the section below.

3.4. How many samples do we need.In most applications withdk =O(T ) for eachk ∈
[K], if the ratiod-k/s-k,max =O(1), then Assumption (L2) in Section3.2.3is automatically
satisfied, and the rate of convergence in (3.12) in Theorem3.1 becomesd−αk,1

k when we
choosezk = 1 there. One way to achieve this is to havesk,max ≍ dk for eachk ∈ [K].

Consider the scenario where for eachk ∈ [K], rk = 1 andAk containsdk i.i.d. standard
normal random variables, withAi independent ofAj for i 6= j. For eachSk,m ⊆ [dk] with
m ∈ [Mk,0], we want to choose theSk,m such thatAT

k1dk,Sk,m
is the largest, and thatsk,max =

(maxm∈[Mk,0]A
T

k1dk,Sk,m
)2 ≍P dk. Now for eachm ∈ [Mk,0],

zk,m :=
AT

k1dk,Sk,m

⌊dk/2⌋1/2
∼N(0,1), and corr(zk,m1

, zk,m2
) =

|Sk,m1
∩ Sk,m2

|
⌊dk/2⌋

,

if we are choosing|Sk,m|= ⌊dk/2⌋ for eachm ∈ [Mk,0]. Then by Theorem 3.4 ofHartigan
(2014), we have

P
(

max
m∈[Mk,0]

zk,m ≥ σ(N +Lα − 1

2
log(N +Lα))

)
≥ 1− 2α, where

N := log(M2
k,0/2π), Lα :=−2 log(− log(α)), σ := min

i∈[Mk,0]
var(zk,i −E(zk,i|zk,1, . . . , zk,i−1)),

as long asN +Lα ≥ 6. With α= 0.025, thenN +Lα ≥ 6 impliesMk,0 ≥ 186, and with this
we have

P ( max
m∈[Mk,0]

zk,m ≥ 5.1σ)≥ 0.95,
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meaning thatsk,max = (maxm∈[Mk,0]A
T

k1dk,Sk,m
)2 has orderdk with over 95% probability.

Hence ifK = 2, when we are estimatingA1 and to sample fibres from mat1(Xt) using
S-1,max = S2,max, we have whenM0 =M2,0 ≥ 186 that over 95% probability we can have
s-1,max = s2,max ≍ d2 = d-1.

The value ofMk,0 in practice to achievesk,max ≍ dk should be smaller than 186 since the
constant5.1σ above can be made smaller. In fact, in practice, we find that aroundMk,0 =
15 does a perfect job in all our simulation settings in securingsk,max ≍ dk. It means that
with K = 3, say we are estimatingA2, thenM0 =M1,0M3,0 = 225 works fine for securing
s-2,max ≍ d1d3 = d-2. Indeed in all simulation settings, we useM0 = 200 for K = 2 or 3 and
get very good performance overall.

We do not suggest explicit tuning ofM0, as our pre-averaging estimator is an initial esti-
mator for feeding our iterative projection procedure. Simulation experiments in Section 1.1
in our supplement has clearly shown that the practical performance of our iterative projection
estimator remains at a good constant level no matter the initial M0 we use.

3.5. Theoretical results for the pre-averaging estimator.In Section 3.3, we choose
S-k,max for summing the columns of matk(Xt). To create stabler estimators, we can con-

structM different setsS(m)
-k,max ⊆ [d-k], m ∈ [M ] (we setM = 5 in all our simulations), by

choosing the bestM from theM0 samples in the procedure laid out in Section3.3, and form
X̃k,1, . . . , X̃k,M , where each̃Xk,i is defined in (3.10). Then define

(3.11) Σ̂x̃k,agg :=
1

M

M∑

m=1

X̃T

k,m

(
IT − 1

T 1T1
T

T

)
X̃k,m

T
.

The pre-averaging estimator̂Qk,pre,(zk) is defined as thezk eigenvectors corresponding to

the zk largest eigenvalues of̂Σx̃k,agg, with the constraint̂QT

k,pre,(zk)
Q̂k,pre,(zk) = Izk , for

any zk ≤ rk. The theoretical properties of̂Qk,pre,(zk) can be summarized in the following
theorem.

THEOREM 3.1. Let Assumption (E1), (E2), (F1), (L1), (L2), (R1), (R2) be satisfied for
all M chosen random samples for constructingΣ̂x̃k,agg, andre,k =O(dk). Then

∥∥Q̂k,pre,(zk) −QkHk

∥∥2 =Op

(
d
−2αk,zk

k ck,max

)
, where

(3.12)

ck,max := min

{
1 +

dk
T
,
rkdk
T

}
d-k

s-k,max
+ d

αk,1

k

(
1 +

d2k
T 2

)
d2-k

s2-k,max

,

Hk := T−1D
1/2
k

1

M

M∑

m=1

[
F̃k,m

(
IT − 1

T
1T1

T

T

)
F̃T

k,m

]
AT

kQ̂k,pre,(zk)Ṽ
−1
k , with

F̃k,m := (matk(F1,-k)1d-k,S
(m)
-k,max

, . . . ,matk(FT,-k)1d-k,S
(m)
-k,max

),

rank(Hk) = zk, andṼk is diagonal, containing thezk eigenvalues (in decreasing order) of
Σ̂x̃k,agg. Moreover, further assuming (L1’), there existsÛk,pre,(zk) with ÛT

k,pre,(zk)
Ûk,pre,(zk) =

Izk such thatQ̂k,pre,(zk) = Ûk,pre,(zk)Pk,pre,(zk) withPk,pre,(zk) being an orthogonal matrix,
so that ∥∥Ûk,pre,(zk) −Uk,(zk)

∥∥2 =Op

(
d
−2αk,zk

k

[
d
2αk,1

k

rk
T

+ ck,max

])
.(3.13)

The matrixUk,(zk) is defined to be the matrix consisting of the firstzk columns ofUk.
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The meanings for (3.12) and (3.13) are different. Whenzk < rk, (3.12) suggests that the
estimated directionŝQk,pre,(zk) will lie in the subspace spanned by the columns ofQk (or
Uk), but it may not be “close” to the directions corresponding to the strongestzk factors.
However, with (3.13), we can conclude that̂Uk,pre,(zk) will be “close” to the directions
which correspond to the strongestzk factors. As a compromise, (3.13) involves an extra

rated
2(αk,1−αk,zk

)

k rkT
−1 as compared to (3.12). Such a difference is especially notable when

we setzk = 1 and perform the iterative projection in Section4.
Remark:Suppose in (L2), the ratiod-k/s-k,max is of orderd−1

-k , which can be achieved
if, for instance, there exists a dense column inAj (i.e., pervasive factor) having majority
of elements of the same sign for eachj ∈ [K]. Suppose further that therk ’s andK are
constants, withdk ≍ T for eachk ∈ [K]. The results from Theorem3.1 implies that the
projection matrixP̂k,pre := Q̂k,pre,(rk)Q̂

T

k,pre,(rk)
has error rate

∥∥P̂k,pre −Qk(Q
T

kQk)
−1QT

k

∥∥=
∥∥P̂k,pre −UkU

T

k

∥∥

=OP (d
−αk,rk

k (d
−1/2
-k + d

αk,1/2
k d−1

-k )).
(3.14)

This can be compared to the rates inChen, Yang and Zhang(2022), which need the errors to
be sub-Gaussian (compared to our Assumption (R1) where onlybounded fourth moments is
needed). While theirσ2 can be considered constant, theirλ is such thatλ≍∏K

k=1 d
αk,1

k . The
TIPUP procedure has rate (in our notations, using equation (47) in Chen, Yang and Zhang
(2022), which has a faster rate of convergence than TOPUP)

(3.15)
∥∥P̂k −UkU

T

k

∥∥=OP

(
d
1/2
k

T 1/2
∏K

k=1 d
αk,1/2
k

+
d1/2

T 1/2
∏K

k=1 d
αk,1

k

)
.

When all factors are strong, i.e.,αk,j = 1, the rate in (3.14) is faster than that in (3.15). When
αk,1 = 1 andαk,rk = 0.5, i.e., the strongest factor is pervasive but the weakest factor is quite
weak, then the two rates will be the same.

The rate in (3.14) can also be compared to Theorem 1 ofChen and Fan(2021) when
K = 2, which under the same conditions laid out at the start of the remark, implies

(3.16)
∥∥P̂k −UkU

T

k

∥∥=OP (d
−1/2
k ).

Our rate in (3.14) is d−3/2
k when all factors are strong, and isd−1

k whenαk,1 = 1 andαk,rk =

0.5. Both rates are faster thand−1/2
k in (3.16).

Indeed, the better performance of the iterative projectionestimator, which uses the pre-
averaging estimator as an initial estimator, is reflected inthe empirical results in Section6.

3.6. A discussion on optimality.Our pre-averaging estimator achieves a minimax opti-
mal rate under certain scenarios over a certain localized set. For simplicity, suppose we only
takeM = 1 in (3.11), and assume the data has mean 0. It means from (3.1) that

Σ̂x̃k,agg =
1

T
X̃T

k,1X̃k,1 =M∗ +H, where

H :=
1

T

T∑

t=1

(AkFtA
T

-kqq
TET

t +Etqq
TA-kF

T

tA
T

k)

+
1

T

T∑

t=1

(Etqq
TET

t −E[diag(Etqq
TET

t )]),



12

M∗ :=
1

T

T∑

t=1

AkFtA
T

-kqq
TA-kF

T

tA
T

k +
1

T

T∑

t=1

E[diag(Etqq
TET

t )],

with Ft := matk(Ft),Et := matk(Et) andq := 1d-k,S-k,max
/
∥∥1d-k,S-k,max

∥∥ (normalizing it does
not affect the eigenvectors). Assume alsoEt has only i.i.d. entries with finite 4th order mo-
ments (i.e.,Et = ǫt in (E1), each element having the same finite variance), so that E(H) = 0,
andT−1

∑T
t=1E[diag(Etqq

TET

t )] = σ2
ǫ Idk

, whereσ2
ǫ = var((Et)ij).

Letλ∗
j be thej-th largest eigenvalue ofM∗. The set of eigenvectors forM∗ now coincides

with the columns inUk defined in (3.9), and we writeu∗
j to be thej-th column ofUk.

Following equation (20c) inCheng, Wei and Chen(2021), define

M(M∗) :=

{
A ∈R

dk×dk symmetric| rank(A) = rk,

λi(A) = λ∗
i (1≤ i≤ rk),

∥∥uj(A)−u∗
j

∥∥≤ cσmin

√
dk

|λ∗
j |

}
,

whereuj(A) is the eigenvector corresponding to thej-th largest eigenvalue ofA, andσ2
min

is the smallest value amongst of the variance of the elementsof H.
We can easily show that, asT →∞,

λ∗
j ≍P d

αk,j

k qTA-kA
T

-kq≍ d
αk,j

k s-k,max

d-k
, j ∈ [rk]; σmin ≍

√
qTA-kA

T

-kq

T
≍
√

s-k,max

Td-k
.

Then the conditions in Theorem 3 ofCheng, Wei and Chen(2021) are satisfied, except that
the elements ofH are at most asymptotically normal asT →∞, and are dependent in gen-
eral. The conclusion of the theorem is that forj ∈ [rk],

inf
ûj

sup
A∈M(M∗)

E
∥∥ûj −uj(A)

∥∥≥ Cσmin

√
dk

|λ∗
j |

≍ 1

d
αk,j

k

√
dk

TqTA-kA
T

-kq
≍ 1

d
αk,j

k

√
d

Ts-k,max
.

Similar to the remark at the end of Section3.5, supposes-k,max � d-kd
αk,j

k , which can
be achieved if there exists a column inAℓ having “enough” elements of the same sign for
eachℓ ∈ [K] (if all are of the same sign, thens-k,max ≍ d2-k, which can be much larger than
d-kd

αk,j

k ). Suppose alsork andK are constants, anddℓ ≍ T for eachℓ ∈ [K]. Then the
minimax rate above isd−αk,j

k (d-k/s-k,max)
1/2 for j ∈ [rk], which coincides with the rate from

Theorem3.1for the pre-averaging estimator whenzk = j ≤ rk:
∥∥Q̂k,pre,(j)−QkHk

∥∥=OP (d
−αk,j

k (d-k/s-k,max)
1/2) for j ∈ [rk], implying

∥∥P̂k,pre −UkU
T

k

∥∥=OP (d
−αk,rk

k (d-k/s-k,max)
1/2),

whereP̂k,pre := Q̂k,pre,(rk)Q̂
T

k,pre,(rk)
. DefineU(A) := (u1(A), . . . ,urk(A)), then

sup
A∈M(M∗)

∥∥P̂k,pre −U(A)U(A)T
∥∥≤

∥∥P̂k,pre −UkU
T

k

∥∥+ sup
A∈M(M∗)

2
∥∥U(A)−Uk

∥∥

=OP (d
−αk,rk

k (d-k/s-k,max)
1/2).

4. Re-estimation by Projection. While Yu et al. (2022), He et al. (2023a) and
He, Li and Trapani(2022) all deal with projection estimation of a factor loading matrix in the
case ofK = 2 or a generalK, they all assume that all factors are pervasive. And in practice,
they need to know the number of factorsrk in Ak for eachk ∈ [K] first in order to estimate
a projection matrixBk of sized-k × r-k, wherer-k := r/rk with r= r1 · · · rK .
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In contrast, our projection method to be presented here doesnot need the estimation of
eachrk first, since we are projecting to one direction only: the direction of thestrongestfac-
tors, iteratively. Settingzk = 1, the pre-averaging vector̂Qk,pre,(1) is indeed asymptotically
pointing to the direction of the strongest factors (see (3.13) in Theorem3.1).

Projecting to the direction of the strongest factors is needed in our setting since there are
weak factors. Their estimators have worse rate of convergence and estimation performance
than pervasive ones. Using these worse estimated directions for projections will deteriorate
the performance of the projection estimators. In Section6, we demonstrated that under the
presence of weak factors, our method provides the best performance of factor loading matrix
estimation compared to all other state-of-the-art methods, including the projection estimation
suggested by these three papers.

In (3.2), we demean the data first and change the projection direction toq-k, where

q-k := qK ⊗ · · · ⊗ qk+1 ⊗ qk−1 ⊗ · · · ⊗ q1, with qk :=Akck, k ∈ [K],

for some non-zero constant vectorsck. Then definingc-k := cK ⊗· · ·ck+1⊗ck−1⊗· · ·⊗c1,
we haveq-k =A-kc-k, and we can construct the new projected data as

y
(k)
t : = matk(Xt − X̄ )q-k(4.1)

=Akmatk(Ft − F̄)AT

-kA-kc-k +matk(Et − Ē)q-k.

Depending on the directionc-k, we can see from above that the signals from the factors are
strengthened due to the termAT

-kA-kc-k, while the noise level is retained or strengthened,
depending on the level of cross-correlations among the noise fibres. The projected data can
also be used to estimate a finer projection direction, essentially iterating the projection step.
See Theorem4.1below and the explanations followed. See simulation results regarding this
in Section6 as well.

4.1. Refining the projection direction.From Theorem3.1, settingzk = 1 there, we obtain
q̂k,pre := Q̂k,pre,(1) = Ûk,pre,(1)Pk,pre,(1) =±Ûk,pre,(1) (WLOG we take the plus sign in the

presentations hereafter). For eachk ∈ [K], we create the projected datay(k)
t as in (4.1), using

(4.2) q-k = q̂-k,pre := q̂K,pre ⊗ · · · ⊗ q̂k+1,pre ⊗ q̂k−1,pre ⊗ · · · ⊗ q̂1,pre.

Then we definěq(1)
k to be the eigenvector corresponding to the largest eigenvalue of the

matrix

Σ̃
(k)

y := T−1
T∑

t=1

y
(k)
t y

(k)T
t .

The superscript(1) in q̌
(1)
k signals that this is the first iterated estimator forUk,(1). We can

iterate this process to obtain refinement of projection direction. More formally, we introduce
the following algorithm.

Algorithm for Iterative Projection Direction Refinement

1. Initialize q̌(0)
k = q̂k,pre for eachk ∈ [K].

2. For i ≥ 1, at thei-th step, create projected datay(k)
t,i := matk(Xt − X̄ )q̌

(i−1)
k for each

k ∈ [K].

3. For eachk ∈ [K], defineq̌(i)
k the eigenvector corresponding to the largest eigenvalue of

(4.3) Σ̃
(k)

y,i := T−1
T∑

t=1

y
(k)
t,i y

(k)T
t,i .
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4. Replacei by i+1. Go back to step 2. Stop until after the procedure has been repeated for
a fixed number of times.

We present a further assumption needed before presenting Theorem4.1.

(RE1) For a positive integerN , letAf,T ∈R
(N+1)T×T be defined asAf,T := (af,1, . . . ,af,T ),

where

af,t := (0T

t−1, af,NT , af,NT−1, . . . , af,0,0
T

T−t)
T, t ∈ [T ],

with 0j being a column vector ofj zeros and theaf,q ’s are from Assumption (F1). Define
Ae,T andAǫ,T similarly using coefficients from{ae,q} and {aǫ,q} respectively from As-
sumption (E2). Then we assume that (withA can be eitherAf,T ,Ae,T or Aǫ,T )

∥∥A
∥∥ is

uniformly bounded above, and

1

T
tr(ATA) = 1− o(T−2d−2),

1

T
tr(ATA)2 → a1,

1

T 2
1T

T (ATA)21T → a2,
1

T 3/2
1T

TATA1T → a3,

where1T is a column vector ofT ones, and the constantsa1, a2 anda3 can be different
for A=Af,T ,Ae,T andAǫ,T respectively.

Consider a truncated linear process{yt}t∈[T ], and the original process{ỹt}t∈[T ],

ỹt =
∑

q≥0

aqzt−q, yt =

NT∑

q=0

aqzt−q, with var(ỹt) = 1,

where{zt} is a sequence of i.i.d. random variables. Construct the matrix A using{aq} similar
to those in Assumption (RE1). ThenATA contains the variance of{yt} on the diagonal, and
lag-k autocovariance on thek-th off-diagonal. The rates in (RE1) are then controlling how
fast theaq ’s are going to 0, and how much serial dependence between theyt’s are allowed.
In particular, general linear processes with absolutely summable autocovariance sequence,
short range dependent processes like ARMA models, satisfy the assumption.

THEOREM 4.1. Let all the assumptions in Theorem3.1 be satisfied, together with
(RE1). Letgs :=

∏K
j=1 d

αj,1

j , re :=
∏K

k=1 re,k. Assume further that for eachk ∈ [K], r =

O(dg−1
s ), re = o(T ), dk =O(gs) = (re +

√
T/r). Then

∥∥q̌(1)
k −Uk,(1)

∥∥=OP

{√
r

T
+ g−1/2

s bk

√
rd

T

}
, (assumedoP (1)) where

bk =K

√
rmax

T
+

K∑

j=1;j 6=k

d
−αj,1

j c
1/2
j,max = o(1).

Furthermore, ifrdg−1
s = o(T ), then for an integerm≥ 1,

∥∥q̌(m+1)
k −Uk,(1)

∥∥=OP

{√
r

T
+ g−1/2

s

∥∥q̌(m)
-k −U-k,(1)

∥∥
√

rd

T

}
= oP (1),

and the Algorithm for Iterative Projection Direction Refinement will produce, after a certain
number of iterations (saym),

∥∥q̌(m)
k −Uk,(1)

∥∥=OP

(√
r

T

)
.
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To put the above results into perspective, assume a very common scenario thatd1 ≍ · · · ≍
dK ≍ T (this is especially true in economic applications whereT is small), withK and
eachrk being constants fork ∈ [K]. We first note that if allrk factors inAk are pervasive,

i.e.,αk,j = 1 for all j ∈ [rk], thengs = d, and hence
∥∥q̌(1)

k −Uk,(1)

∥∥=OP (T
−1/2), and any

refinements will retain the same rate. Even ifαk,1 < 1 (i.e., the strongest factor corresponding

to Ak is not pervasive),
∥∥q̌(1)

k −Uk,(1)

∥∥ can still beOP (T
−1/2), as long asb2kd/gs =O(1),

equivalent toαk,1 ≥ 1/2. The case ofαk,1 = 1/2 presents a significantly weak strongest
factor corresponding toAk, and without the help of projection and strong factors from other
modes’ factor loading spaces, the typical rate for estimating such a weak factor would be
d
−1/4
k which is much worse thanT−1/2.

To have an idea on the value ofm, from the last part of the proof of Theorem4.1, we need

bk

(√
rd

Tgs

)m

=O

(√
r

T

)
.

Supposedk ≍ T , rk is a constant andd-k/s-k,max ≍ 1 (see Section3.4 on how to achieve

this). Thenbk ≍ d
−αk,1/2
k , and hence

m≥ constant+αk,1 log(dk)− log(T )

log( rd
Tgs

)
.

Further, ifαk,1 = 0.5 (a very weak factor), andd/gs ≍ T 0.95 (recall that we assumerdg−1
s =

o(T )), then asT,dk →∞, we havem≥ 10. This is already quite extreme sinced/gs ≍ T 0.95

means that the strongest factors of some otherAk ’s are also weak. The fact that we are using
m= 30 in our simulations in Section6 throughout made sure that the rate

√
r/T is reached,

and we do not recommend users increasem further for saving computational time.
The fixed rateOP (

√
r/T ) in Theorem4.1comes from the fact that we need to distinguish

the direction of the strongest factors from all other directions of weaker factors in order to
find the “best” projection direction. In the case of studyingthe wholeUk, we in fact may get
a better rate of convergence even in the presence of weak factors.

THEOREM4.2. Let all the assumptions in Theorem4.1be satisfied. Suppose we know the

value ofrk, and perform an eigenanalysis oñΣ
(k)

y,m+1 in (4.3) which utilized the projection

directionq̌(m)
k in Theorem4.1, obtainingrk eigenvectors as an estimator of the factor loading

space ofAk.
Then there existšUk ∈ R

dk×rk with ǓT

kǓk = Irk such that therk eigenvectors obtained
above isǓk multiplied with some orthogonal matrix, with

∥∥Ǔk −Uk

∥∥=OP

{
d
αk,1−αk,rk

k

[
g−1
s +

√
r

Tgs

(
r1/2e + d

1/2
k +

√
rd

T

)]}
, (assumedoP (1)).

Considerd1 ≍ · · · ≍ dK ≍ T , with K andrk being constants fork ∈ [K]. If all factors for
Ak are pervasive, i.e.,αk,j = 1 for all j ∈ [rk], then we have

∥∥Ǔk−Uk

∥∥=OP (T
−1). When

K = 2, this has the same rate as the average Frobenius error norm ofthe estimators ofA1

andA2 in Theorem 3.1 and Theorem 4.1 ofHe et al.(2023a). This is also consistent with the
rate in Corollary 3.1 ofHe, Li and Trapani(2022), Theorem 3.1 and 3.2 ofHe et al.(2022),
and Theorem 3.1 ofYu et al.(2022) under the same scenario.

The above rate can be greatly improved if the term
√

rd/T can be removed. It is there
because the estimated projection direction is correlated with the data in general. If we have
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independent noise tensor{Et} (e.g., the setting inChen, Yang and Zhang(2022)) we can split
the data into half, and using only one half of it for projection direction estimation while the
other half is for re-estimation only. Then the estimated projection direction will be indepen-
dent of the re-estimation data, and hence the final rate indeed will be rid of this term. When
all the factors are strong, this improved rate will be the same as the one for TIPUP in equation
(47) ofChen, Yang and Zhang(2022). We do not pursue this since our paper focuses on time
series data with serial correlation in the noise. Moreover,the empirical performance of our
projection method is very good already.

5. Core Tensor Rank Estimation Using Projected Data. With the projected data and

the associated covariance matrixΣ̃
(k)

y,m+1 defined in (4.3), define

(5.1) R̃
(k)
y,m+1 := diag−1/2(Σ̃

(k)

y,m+1)Σ̃
(k)

y,m+1diag−1/2(Σ̃
(k)

y,m+1), k ∈ [K].

Our estimator forrk for eachk ∈ [K] is then defined to be

(5.2) r̂k :=max{j : λj(R̃
(k)
y,m+1)> 1 + ηT , j ∈ [dk]},

whereηT → 0 asT → ∞, and its practical choice will be discussed in Section5.2. This
estimator is inspired by the one inFan, Guo and Zheng(2022) for independent observations
from a vector factor model.

5.1. Main results. The following assumption is needed for all the theorems in this sec-
tion.

(RE2) (Model Parameters)For eachk ∈ [K], we assume that for eachj ∈ [dk], the value
λj(diag(AkA

T

k)) is uniformly bounded away from 0 and infinity asT,dk →∞. Moreover,

rk = o(d
1−αk,1+αk,rk

k ).

Assumption (RE2) ensures that each row ofAk has at least one non-zero value, meaning
that at least one factor drives the dynamics of the corresponding element iny(k)

t,m+1. The as-
sumption can be weakened so that the values are vanishing, atthe price of more complicated
proofs and rates in Theorem5.2. Define
(5.3)

Σ
(k)
y,m+1 := q̌

(m)T
-k A-kA

T

-kq̌
(m)
-k AkA

T

k +

d-k∑

j=1

(q̌
(m)
-k )2jΣ

(k)
ǫ,j + q̌

(m)T
-k Ae,-kA

T

e,-kq̌
(m)
-k Ae,kA

T

e,k.

The matrixΣ(k)
y,m+1 is in fact the expected value of̃Σ

(k)

y,m+1 in (4.3), pretending thaťq(m)
-k is

a constant vector.

THEOREM5.1. Let Assumption (E1), (F1) and (RE2) hold. Define the correlation matrix

R
(k)
y,m+1 = diag−1/2(Σ

(k)
y,m+1)Σ

(k)
y,m+1diag−1/2(Σ

(k)
y,m+1), k ∈ [K].

Then for large enoughT,dk, we have in probabilityλj(R
(k)
y,m+1) �P r−1

k d
1−αk,1+αk,j

k > 1

for j ∈ [rk], whereasλj(R
(k)
y,m+1)≤ 1 for j = rk +1, . . . , dk.

This theorem is in parallel to Theorem 1 ofFan, Guo and Zheng(2022). With this, we can
write

rk =max{j : λj(R
(k)
y,m+1)> 1, j ∈ [dk]}.

In light of this, the estimator̂rk in (5.2) makes sense. The following theorem shows further
that r̂k is in fact consistent forrk for a suitable choice ofηT .
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THEOREM 5.2. Let (RE2) and all the assumptions in Theorem4.1hold. Suppose

d
αk,1−αk,rk

k

(√
r(re + dk)

Tgs
+

Kr

T

√
d

gs

)
= o(1), k ∈ [K],

wheregs is defined in Theorem4.1. Then asT,dk →∞, we have for eachk ∈ [K],

λj(R̃
(k)
y,m+1) =





�P r−1
k d

1−αk,1+αk,j

k

·(1 +OP {rkd2αk,1−αk,j−1
k aT (0) + aT (αk,1)}), j ∈ [rk];

≤ 1 +OP {bT }, j ∈ [dk]/[rk],

where for0< δ ≤ 1,

aT (δ) :=

√
r

T

[
1 + d

δ/2
k g−1/2

s

(
r1/2e + d

1/2
k +K

√
rd

T

)
+ dδkg

−1
s

K2r1/2d

T 3/2

]
,

bT := d
αk,1

k g−1
s

{√
(re + dk)dk

T
+

K
√

r(re + dk)d

T
+

K2rd

T 2

}
,

with rkd
2αk,1−αk,rk

−1
k aT (0), aT (αk,1) andbT assumedo(1). Hencêrk in (5.2) is a consistent

estimator forrk if we chooseηT =CbT for some constantC > 0.

To gain some insights from the theorem, suppose the strongest factor for each mode-k
unfolded matrix is pervasive, i.e.,αj,1 = 1 for eachj ∈ [K], andrk andK are constants with
d1 ≍ · · · ≍ dK ≍ T . Then

rkd
2αk,1−αk,j−1
k aT (0) + aT (1)≍ T−1/2, bT =O(T 1/2d−1

-k + d
−1/2
-k + T−1).

This shows that the rate of convergence ofbT is at bestT−1/2 whenK = 2, andT−1 when
K ≥ 3. It means that our search forηT can be in the formCT−1/2 whenK = 2, andCT−1

whenK ≥ 3. The extra rate assumptions in the theorem may not be more stringent than
those in Theorem4.1 and (RE2). For instance, ifK and eachrk for k ∈ [K] are constants
with d1 ≍ · · · ≍ dK ≍ T and all factors are pervasive, then the extra rate assumptions in
Theorem5.2are satisfied automatically.

5.2. Practical implementation for core rank estimator.Since there is only one mode-k
unfolding matrix from our data, we propose the following algorithm for Bootstrapping the
mode-k fibres to facilitate the search forηT .

Bootstrapping Algorithm for mode-k tensor fibres and projected data

1. Initialize an integerB > 0, and independent sequences of i.i.d. Bernoulli random variables
{ξ(b)j }j∈[d-k] for eachb ∈ [B].

2. For eachb, createWb ∈ R
d-k×d-k , where thei-th column is0 except itsj-th zero is re-

placed byξ(b)i , with j chosen uniformly from[d-k].

3. Define new projected datay(k)
t,m+1,b := matk(Xt − X̄ )WbW

T

b q̌
(m)
-k for eachb ∈ [B].

Essentially, we Bootstrap the mode-k fibres by choosing them randomly with replacement,
and augment the vector of projectionq̌(m)

-k accordingly by pre-multiplying it withWT

b . We

control each row ofWb to contains at most 8ξ(b)i ’s, meaning that a fibre is at most cho-
sen 8 times in each Bootstrap sample. This facilitates our theoretical proof of Theorem5.3,
although for all our simulations, a fibre is never chosen morethan 8 times.
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From here on, we drop the subscriptm + 1 for the ease of presentation. With the new
projected data, we then create new covariance and correlation matrices:

Σ̃
(k)

y,b := T−1
T∑

t=1

y
(k)
t,b y

(k)T
t,b , R̃

(k)
y,b := diag−1/2(Σ̃

(k)

y,b )Σ̃
(k)

y,bdiag−1/2(Σ̃
(k)

y,b ), k ∈ [K], b ∈ [B].

THEOREM 5.3. Let all the assumptions in Theorem5.2hold. Suppose for eachk ∈ [K],
the elements in the unit vectorU-k,(1) =: (uj)j∈[d-k] have the same moment structure up to
the 4th order, andE(u2i u

2
j) = d−2

-k (1 + o(1)) for i 6= j asd-k →∞. Then Theorem5.1holds

for R(k)
y,m+1 defined there but witȟq(m)

-k in Σ
(k)
y,m+1 replaced byWbW

T

b q̌
(m)
-k . Theorem5.2

holds also forR̃(k)
y,b .

The above theorem means that any procedures for finding the number of factors exploiting
Theorem5.1 and5.2, should work for our Bootstrapped correlation matrixR̃(k)

y,b too. The

assumption onE(u2i u
2
j ) is mild, since it is easily see thatE(u2i ) = d−1

-k , so that at exact inde-

pendence we haveE(u2i u
2
j ) = d−2

-k . We are essentially assuming that the covariance among

theui’s areo(d−2
-k ), so thatui anduj are nearly uncorrelated.

For a constantC, we useηT =CT−1/2 for K = 2 andηT =CT−1 for K ≥ 3, and calcu-
late

r̂
(b)
k (C) := max{j : λj(R̃

(k)
y,b )> 1 + ηT , j ∈ [dk]}.

We propose to chooseC with

Ĉ := min
C>0

v̂ar({r̂(b)k (C)}b∈[B]),

wherev̂ar({xt}t∈T ) is the sample variance of{xt}t∈T . Finally, our estimator forrk is defined
to be

(5.4) řk := Mode of{r̂(b)k (Ĉ)}b∈[B].

The intuition of Ĉ and řk is as follows. If there arerk factors forAk, then the firstrk
eigenvalues of̃R(k)

y,b for eachb ∈ [B] should be approximately well-separated. Setting a large

C will create a large threshold1 + ηT that is almost always lying in betweenλj(R̃
(k)
y,b ) and

λj+1(R̃
(k)
y,b ) for some fixedj ∈ [rk] for eachb ∈ [B], so thatv̂ar({r̂(b)k (C)}b∈[B]) will be

small, or even equals 0.
However, ifC is small such that1 + ηT is now in betweenλj(R̃

(k)
y,b ) andλj+1(R̃

(k)
y,b ) for

somej ∈ [dk]/[rk] and someb ∈ [B], then we expect that this particular threshold will lie in

betweenλj′(R̃
(k)
y,b ) andλj′+1(R̃

(k)
y,b ) for somej′ 6= j and some othersb ∈ [B], since all these

eigenvalues are less than or equal to 1 by Theorem5.1, and their variability is originated
from the noise series only, making them less stable comparedto whenj ∈ [rk]. Hence for a

small enoughC, we expect̂var({r̂(b)k (C)}b∈[B]) to be large. The range of values ofC such

that1 + ηT lies in betweenλrk(R̃
(k)
y,b ) andλrk+1(R̃

(k)
y,b ) for the majority ofb ∈ [B] will then

includeĈ . The definition ofřk in (5.4) allows for variability arises from the noises and the
rk-th factor which can be weak and hence may not be detected in all Bootstrap samples.

Finally, in all the simulation settings in Section6, we useB = 50 Bootstrap samples. This
is a safe number, since reducing it to 10 in fact hardly changethe results in our simulation
experiments.
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6. Simulation Experiments. In this section, we conduct simulation experiments to
compare the performances of our iterative projection estimators (PROJ) to other state-of-
the-art competitors. The pre-averaging estimator (PRE) ispresented and compared to PROJ
in the supplement. We also test the performance of our proposed rank estimators (BCorTH)
with bootstrapping of tensor fibres for tuning parameter selection. A set of NYC taxi traffic
data is also analyzed in Section6.4. An extra set of real data analysis is also presented in the
supplement.

6.1. Simulation settings. For generating our data, we use model (3.1), with elements in
µ being i.i.d. standard normal in each repetition of experiment. For k ∈ [K], each factor
loading matrixAk is generated independently withAk = BkRk, where the elements in
Bk ∈R

dk×rk are i.i.d.U(u1, u2), andRk ∈R
rk×rk is diagonal with thejth diagonal element

beingd−ζk,j

k , 0≤ ζk,j ≤ 0.5. Pervasive (strong) factors haveζk,j = 0, while weak factors have
0< ζk,j ≤ 0.5.

The elements inFt are independent standardized AR(5) with AR coefficients 0.7,0.3,-
0.4,0.2 and -0.1. Same for the elements inFe,t and ǫt in (3.4), but their AR coefficients
are (-0.7,-0.3,-0.4,0.2,0.1) and (0.8,0.4, -0.4,0.2,-0.1) respectively. The standard deviation of
each element ofǫt is randomly generated with i.i.d.|N (0,1)|. Each entry of the matrices
Ae,k ∈ R

dk×re,k , k ∈ [K] is generated with i.i.d. standard normal, but has an independent
probability of 0.7 being set exactly to 0. Each experiment isrepeated 500 times. We consider
the simulation settings (I), (II) and (III), with sub-settings (a) and (b), detailed below:

(Ia) All strong factors withζk,j = 0 for all k, j, andu1 = −2, u2 = 2 (rows ofAk sum to
“small” magnitude (smallsk)).

(IIa) One strong factor withζk,1 = 0 andζk,2 = 0.2 for all k; u1 =−2, u2 = 2.
(IIIa) Two weak factors withζk,1 = 0.1 andζk,2 = 0.2 for all k; u1 =−2, u2 = 2.

Setting (Ib) to (IIIb) are the same as (Ia) to (IIIa) respectively, except thatu1 = 0, u2 = 2, so
that the row sums ofAk have large magnitude, leading to largesk.

To test the performance of different estimation methods under heavy-tailed distributions,
we consider two distributions for the innovation processesof Ft,Fe,t andǫt: 1) i.i.d. standard
normal; 2) i.i.d.t3. Thus, there are totally twelve profiles considered. For allprofiles above,
we setrk = re,k = 2 for all k.

6.2. Factor loading estimations.We compare our iterative projection estimator (PROJ)
in estimating the factor loading spaces with some state-of-art methods proposed by recent
literature. All the twelve profiles in Section6.1and five settings of different dimensions are
considered:

i. K = 2, T = 100, d1 = d2 = 40; ii. K = 2, T = 200, d1 = d2 = 80;
iii. K = 3. T = 200, d1 = d2 = d3 = 15; iv. K = 3. T = 200, d1 = d2 = d3 = 25;
v. K = 4. T = 200, d1 = d2 = d3 = d4 = 15.

WhenK = 2, the following methods designed for matrix-valued factor models are com-
pared: The method ofWang, Liu and Chen(2019) is TOPOP inChen, Yang and Zhang
(2022), but we omit its results since it performs much worse than iTIPUP in Han et al.
(2020), which is the best one among the same type of estimators. Theα-PCA estimator
of Chen and Fan(2021) is implemented withα = 0 (the performances forα ∈ {−1,0,1}
are comparable according toYu et al.(2022)). The projection method ofYu et al.(2022) and
He, Li and Trapani(2022) are referred to as PE (which is in the same spirit as HOOI). In
addition, we also consider some robust procedures, including the robust tensor factor analy-
sis (RTFA) proposed byHe et al.(2022) andHe et al.(2023a), and the Matrix Kendall’s tau
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(MRTS) byHe, Li and Trapani(2022). For all the above methods which involve iterations,
we set the number of iterations to be 30.

For settings withK = 3, we do not includeα-PCA and MRTS, since they are only de-
signed forK = 2. For the setting withK = 4, we further exclude RTFA in comparison, since
it requires too much computational time, as can be observed in Table 1 in the supplement.

Figure2 and3 show the logarithm of estimation errors ofA1 under the first four different
settings of dimensions, with normally andt3 distributed errors, respectively. The results with
K = 4 is included in Section 1.2 in our supplement. It can be seen that our iterative projection
estimator (PROJ) generally outperforms all competitors inall settings and dimensions we
consider, and is at least on par with other competitors.

More specifically, whenK = 2, all methods perform reasonably well in sub-setting (a), but
they all perform poorly in sub-setting (b) except our iterative projection estimator (PROJ).
The only difference between sub-setting (a) and (b) is that the mean of each element ofAk in
sub-setting (a) is 0 while it is non-zero in sub-setting (b).Whenever the mean of the elements
are not 0, the pre-averaging estimator, and hence the iterative projection estimator, can take
advantage since pre-averaging is based on summing rows ofA1 (for estimatingA2) or A2

(for estimatingA1).
Regarding factor strengths, the advantage of PROJ is more notable in Setting (II) and (III),

when other methods tend to give poorer estimates in the presence of weak factors in these
settings. Our method is also robust to heavy-tailed errors,and perform better than the robust
procedure RTFA and MRTS in all scenarios. WhenK = 3 (and 4 as well; see Section 1.2
in our supplement), most methods take advantage of a largerK and perform better. Our
iterative projection estimator still performs better than, or at least on par with all competitors.
For computation time, see Section 1.2 of our supplement.

6.3. Core tensor rank estimations.We compare the performance of our BCorTh with
other competitors for estimating the rank of core tensors. The methods we consider include
iTIP-ER byHan, Zhang and Chen(2022a), α-PCA-ER byChen and Fan(2021), PE-ER by
Yu et al. (2022) andHe, Li and Trapani(2022), RTFA-ER byHe et al.(2022) andHe et al.
(2023a), and MRTS-ER byHe, Li and Trapani(2022). Most of these methods are based on
the spirit of eigenvalue-ratio criteria of the (adjusted) sample covariance matrices, which are
defined differently in their corresponding processes of factor loading estimations. For ease of
presentation, the following three set of dimensions are considered:

i. K = 2, T = 100, d1 = d2 = 40; ii. K = 2, T = 200, d1 = d2 = 80; iii. K = 3.
T = 200, dk = 25.

Table1 records the correct proportion over 500 repetitions of different rank estimators
under different settings and dimensions. For BCorTh, we setthe number of bootstrapped
samples to beB = 50 for settings withK = 2, andB = 10 for settings withK = 3. We have
tested that reducingB from 50 to 10 does not significantly change the results of BCorTh.
Also, for K = 3, we do not report the results forα-PCA-ER and MRTS-ER since they are
only designed for matrix time series (K = 2).

From Table1, all rank estimators perform better whenT,dk or K increases, and BCorTh
outperforms all competitors in every setting and dimensionwe consider. WhenK = 2, it is
obvious that all methods, except BCorTh, perform quite poorly in Setting (II) and (III) when
weak factors are present (especially in sub-setting (b)), while BCorTh can still give relatively
good performances. MRTS-ER andα-PCA-ER give extremely poor estimates in all settings
except (Ia). BCorTh is robust as well, since changing the error distribution from normal tot3
does not have large effects in its estimation accuracy.

WhenK = 3, the accuracy of all estimators increases, and BCorTh stillgives the best
performances among all competitors.
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Fig 2: Plot of estimation error
∥∥Q̂1Q̂

T

1 −U1U
T

1

∥∥ (in log-scale) forK = 2, normally dis-
tributed errors. In each panel, the left six boxplots (in red) represent sub-setting (a), while the
right six boxplots (in blue) represent sub-setting (b).

6.4. NYC taxi traffic. We analyze taxi traffic pattern in New York city. The data includes
all individual taxi rides operated by Yellow Taxi within NewYork City, published at

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page.
To simplify the discussion, we only consider rides within Manhattan Island. The dataset

contains 1.1 billion trip records within the period of January 1, 2011 to December 31, 2021.
Each trip record includes fields capturing pick-up and drop-off dates/times, pick-up and drop-
off locations, trip distances, itemized fares, rate types,payment types, and driver-reported
passenger counts. Our study focuses on the pick-up and drop-off dates/times, and pick-up
and drop-off locations of each ride.

The pick-up and drop-off locations in Manhattan are coded according to 69 predefined
zones and we will use them to classify the pick-up and drop-off locations. Furthermore,
we divide each day into 24 hourly periods, with the first hourly period from 0am to 1am.

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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Fig 3: Plot of estimation error
∥∥Q̂1Q̂

T

1 − U1U
T

1

∥∥ (in log-scale) forK = 3, T = 200, t3-
distributed errors. In each panel, the left four boxplots (in red) represent sub-setting (a), while
the right four boxplots (in blue) represent sub-setting (b).

The total number of rides moving among the zones within each hour is recorded, yielding a
Xt ∈R

69×69×24 tensor for each day. More specifically,xi1,i2,i3,t is the number of trips from
zonei1 (the pick-up zone) to zonei2 (the drop-off zone) and the pickup time is within thei3-
th hourly period on dayt. We consider business day and non-business day separately.Hence
we will analyze two tensor time series. The business-day series is 2770 days long, and the
non-business-day series is 1248 days long, within the period of January 1, 2011 to December
31, 2021.

We first estimate the rank of the core tensors using BCorTh as well as other state-of-the-
art methods. BCorTh gives(r̂1, r̂2, r̂3) = (3,3,2) for business-day series, and(r̂1, r̂2, r̂3) =
(3,2,2) for non-business-day series, while(r̂1, r̂2, r̂3) = (1,1,1) for iTIP-ER, PE-ER and
RTFA-ER. However, based on our common knowledge and previous analysis conducted by
Chen, Yang and Zhang(2022), (r̂1, r̂2, r̂3) = (1,1,1) is obviously not a reasonable choice for
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Setting BCorTh iTIP-ER PE-ER α-PCA-ER RTFA-ER MRTS-ER
N t3 N t3 N t3 N t3 N t3 N t3

K = 2, T = 100, d1 = d2 = 40

(Ia) .994 .988 .894 .866 .892 .878 .842 .810 .894 .884 .842 .810
(Ib) .998 1.000 .830 .794 .908 .896 .014 .012 .906 .898 .040 .030
(IIa) .994 .966 .754 .640 .762 .690 .010 .038 .768 .702 .026 .022
(IIb) .954 .928 .070 .084 .126 .080 .014 .046 .092 .070 .026 .056
(IIIa) .758 .684 .556 .482 .334 .408 .054 .092 .320 .372 .048 .068
(IIIb) .772 .712 .108 .202 .052 .116 .122 .180 .048 .106 .128 .182

K = 2, T = 200, d1 = d2 = 80

(Ia) .994 .990 .926 .910 .768 .854 .944 .904 .768 .842 .768 .804
(Ib) .998 1.000 .966 .956 .073 .898 .006 .012 .686 .884 .020 .022
(IIa) .992 .972 .814 .796 .438 .632 .000 .010 .406 .602 .000 .000
(IIb) .998 .998 .258 .176 .332 .230 .004 .024 .296 .230 .004 .016
(IIIa) .594 .620 .188 .292 .014 .092 .000 .010 .016 .092 .000 .010
(IIIb) .978 .968 .096 .074 .078 .082 .060 .074 .070 .080 .028 .054

K = 3, T = 200, d1 = d2 = 25

(Ia) 1.000 1.000 .996 .990 .992 .980 / / .776 .732 / /
(Ib) 1.000 .998 .998 .986 .972 .982 / / .998 1.000 / /
(IIa) 1.000 .988 .988 .968 .834 .854 / / .106 .072 / /
(IIb) .994 .992 .988 .968 .948 .940 / / .948 .920 / /
(IIIa) .930 .856 .910 .866 .522 .544 / / .100 .056 / /
(IIIb) .996 .996 .920 .868 .764 .738 / / .804 .760 / /

TABLE 1
Correct Proportion ((r̂1, r̂2) = (2,2) for K = 2, (r̂1, r̂2, r̂3) = (2,2,2) for K = 3) of rank estimation under
different settings, dimensions and error distributions (N for normally distributed errors,t3 for t3 distributed

errors).

the rank of the core tensor, since a single factor can hardly be sufficient to reveal all traffic
patterns. It is very likely that all of iTIP-ER, PE-ER and RTFA-ER fail to detect the weak
factors in both time series, since these methods are designed to analyze pervasive factors only.
For ease of presentation and comparison, we use(r̂1, r̂2, r̂3) = (3,3,2) for both business-day
and non-business-day series to estimate their factor loadings, and present the results of our
iterative projection estimator.

Figure4 and5 show the heatmaps of the loading matricesA1 (pick-up locations) for the
business day and non-business day series, respectively. Itis seen that during business days,
the midtown/Times square area (tourism and office buildings) is heavily loaded on Factor
1, east village/lower east (arts, music venues and restaurants) on Factor 2 and upper east
side (affluent neighborhoods and museums) on Factor 3. For non-business days, the overall
pattern for the three factors is generally similar, but withsome non-negligible differences.
The area around Penn Station (large transportation hub) loads extremely heavily in Factor 2,
while its loading is much lighter than the midtown center andmidtown east for business day
series, where a lot of office buildings locate.

Figure6 and7 show the loading matricesA2 (drop-off locations) for the business day
and non-business day series, respectively. For both business days and non-business days, the
drop-off factor matrices are quite similar to their pick-upfactors. Similarly, the area around
Penn Station is heavily loaded in non-business days, but is overshadowed by midtown center
in business days. In addition, in Factor 1 of non-business days series, west village (arts, music
venues and theatres) loads heavily together with east village.

Table2 and3 show the loading matricesA3 (time of day) for business days and non-
business days, respectively. For ease of presentation, we show the estimated loading matrices
after a varimax rotation, scaled by 30 for a cleaner view. Forbusiness days, it can be seen
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that day-time business hour (9am to 4pm) and evening hours (7pm to 12am) load heavily
on Factor 1, while morning rush-hours (6am to 9am), evening rush-hours (5pm to 7pm) and
night life hours (0am to 2am) load heavily on Factor 2. For non-business days, the patterns
of estimated factors are significantly different: Evening hours from 6pm to 1am load heavily
on Factor 1, while late-night hours from 1am to 5am load heavily on Factor 2. The differ-
ent factor loadings reveal the difference between people’stravelling habits in business days
and non-business days. During non-business days, morning (and evening) rush-hours and
day-time business hours no longer appear in the factors, while people tend to travel more
frequently by taxi at evening and at night, and their night life lasts to much later hours than
in the business days.

0am 2 4 6 8 10 12pm 2 4 6 8 10 12am
1 6 3 2 1 1 0 1 4 7 9 8 7 7 7 7 7 6 4 6 8 9 8 8 7
2 12 7 4 2 1 -2 -11 -16 -8 0 3 -1 -2 0 -2 0 3 -7 -9 -2 3 0 3 8

TABLE 2
Estimated loading matrixA3 for hour of day fibre, business day, after rotation and scaling. Magnitudes larger

than 7 are highlighted in red.

0am 2 4 6 8 10 12pm 2 4 6 8 10 12am
1 9 -1 -1 -1 -2 -1 1 2 3 5 5 5 5 5 5 5 4 68 9 9 9 10 12
2 0 17 14 13 10 5 1 -1 -1 -2 0 2 4 4 5 4 4 2 0 0 2 0 -2 -4

TABLE 3
Estimated loading matrixA3 for hour of day fibre, non-business day, after rotation and scaling. Magnitudes

larger than 7 are highlighted in red.
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Fig 4: Loadings on three pickup factors for business day series.
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Fig 5: Loadings on three pickup factors for non-business dayseries.
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Fig 6: Loadings on three dropoff factors for business day series.

SUPPLEMENTARY MATERIAL

Proof of Theorems, Extra Simulations and Data Analysis
Extra simulation results, analysis of a set of matrix-valued portfolio return data, a brief intro-
duction to the use of the R packageTensorPreAve and the proofs of all the theorems in
this paper can be found athttp://stats.lse.ac.uk/lam/Supp-PROJ.pdf. The R codes to replicate
the results of our simulation experiments and data analysescan be foundhere.
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