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The idiosyncratic components of a tensor time series fatimiel can
exhibit serial correlations, (e.g. finance or economic Jjatding out many
state-of-the-art methods that assume white/independédyncratic com-
ponents. While the traditional higher order orthogonatation (HOOI) is
proved to be convergent to a set of factor loading matridesctoseness of
them to the true underlying factor loading matrices are imegel not estab-
lished, or only under i.i.d. Gaussian noises. Under thegmes of serial and
cross-correlations in the idiosyncratic components ame series variables
with only bounded fourth order moments, for tensor timeesedata with
tensor order two or above, we propose a pre-averaging puogdtat can
be considered a random projection method. The estimatedtitins corre-
sponding to the strongest factors are then used for progetite data for a po-
tentially improved re-estimation of the factor loading spathemselves, with
theoretical guarantees and rate of convergence spelt e wit all factors
are pervasive. We also propose a hew rank estimation methimth wtilizes
correlation information from the projected data. Exteassimulations are
performed and compared to other state-of-the-art or toawit alternatives.
A set of tensor-valued NYC taxi data is also analyzed.

1. Introduction. Thanks to the advancement of the internet and general camgput
power, the collection and analysis of panel data are madeeasger over the past decade.
Toolboxes in high dimensional vector time series analylsig ipcreasingly important roles in
extracting useful information from high dimensional tinegies data. Time series factor mod-
elling is a major dimension reduction tool for such datagwihg insights into the common
dynamics of different observed time series. For instant&nconsidering many macroeco-
nomic time series for forecastingtock and Watsqr2002), the estimation and forecasting
through the common factors can give more accurate resudtstbyvand allowing for the in-
terpretation of the factors (e.g., potential grouping otmaconomic time series as factors)
at the same time.

To improve the accuracy of forecasting, one can add the tiniessof macroeconomic
indicators from other countries, and stack all observed series into one high dimensional
vector time series. The problem in doing this is that we ak ignoring the natural structure
of the data, namely, all macroeconomic time series are nt®goazed by countries. More-
over, stacking all time series into a long vector can creatsecof dimensionality (e.g., when
the stacked length is too much larger than the sample seagirlg to inaccurate estimation
and predictions.

A more natural approach is to consider the country-categdnmacroeconomic time se-
ries as matrix-valued (i.e., arder-2 tensay, with different countries by row and different
macroeconomic time series by columWéng, Liu and Che(019 describes a factor model
for such matrix-valued time series, and provides estimatiethods together with theoretical
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results. Their work is extended to a general orfietensor{x;} in Chen, Yang and Zhang
(2022, where the factor model for eactj € R% < *dx s

(1.1) Xy =C+&E=F x1 Ay X9 Xg Ag + &,

with C; the common componenf; the noise tensotf; € R™**"« the core tensor, and
A, € R%>" the modek factor loading matrix. The produect, is the tensok-mode prod-
uct (see Sectio2 for a review of basic tensor operation§)hen, Yang and Zhan(022
assumes that the elements in edglare sub-Gaussian, with ea€h independent of each
other. Base on the abovdan et al.(2020 analyzes iterative projection procedures iTOPUP
and iTIPUP for estimating\ ;, while Han, Zhang and Che{2022g proposes core rank (or
multilinear tensor rank) estimators 6f based on information criterion and eigen-ratio crite-
rion that are intertwined with iTIPUP and iTOPUP. Core rapks similar to the number of
factors, and will be explained in Secti@n

In other recent developmeni&hang and Xig2018 proposes a similar model for an order-
3 tensor, with the tensor noise elements being i.i.d. nolmaging a common variance, and
develops minimax theoretical guarantees for their esbnsatWith the same tensor noise
assumptionYokota, Lee and Cichockj2017 proposes a core rank estimator forfor a
general ordeiK” tensorX; based on a BIC-like criterion, whileiu, Yuan and Zhaq2022
proposes a tensor SVD method, addn and Zhang2023 proposes a tensor PCA for es-
timation under a CP decomposition 6f. Chen et al.(20203 proposes a semiparametric
model withC, taking covariates under the assumption of i.i.d. sub-Gansdements ir€;,
which are themselves independent of each other.

All the tensor factor modelling works mentioned above assdiat least independent noise
tensor serieg&,; } with sub-Gaussian elements. The i.i.d. assumption for a@ents in&,
in many of them is also considered a standard assumptioridtistecal analysis. However,
if we have applications in economics and finance for instaitde very easy that (weak)
serial correlations exist ifi; }, representing any serial correlations¥hnot captured by the
common componentd (some time series ifY; have “unique” company or macroeconomic
characteristics, for example). TA@proximate factor modelf Bai and Ng(2002) allows for
such weak serial correlations (as well as weak cross-@tiwek) in the idiosyncratic noise
series{&; }. Whené&, has a higher order tensor structure, allowing for weakasarid cross-
correlations becomes even more essential as there coulkbareore potentially intricate
serial and cross-correlations {g, }. In this paper, we adopt such a more flexible approach.
Our methods utilize covariance information, which are nmoatural to apply to financial re-
turn data for example as opposed to methods that utilize aumigcovariance information
(seeWang, Liu and Chern(2019, Chen, Yang and Zhan{2022 or Han, Zhang and Chen
(2022h for example). Due to market efficiency, population aut@s@nces of the data can be
close to zero and methods that only utilize autocovarianfcgration can have low signal-
to-noise ratio.

For matrix factor models (i.e., an order-2 tensor) with weakial and cross-correlations
in {&}, Chen and Faif2021) proposes am-PCA method by assuming-mixing of noise
series, whileHe et al. (2022 proposes matrix Kendall's tau by assuming matrix ellipitic
distribution of the noise. Witl-mixing assumptionyu et al. (2022 develops a projection
estimation (PE) method for matrix factor models by projegtihe observation matrix onto
the row or column factor space. The number of row and colurctofa are also estimated by
the eigenvalue-ratio statistics based on the covariarfioemation after projection-e et al.
(20233 provides the least squares interpretation of PE, and gexpa robust method by
substituting the least squares loss function with the Hilloss function (see alske et al.
(2023h). As an extensiortle, Li and Trapanf2022 andBarigozzi et al(2023 further gen-
eralize PE and the robust method to estimate tensor factdelséor a generak’. However,
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one limitation of all these recent developments is that tlesume all factors are pervasive in
every mode of the matrix or tensor, which can be restrictivenany real applications when
weak factors are present.

Other related developments of tensor factor models inclideind Chen(2022 on a
threshold matrix-variate factor model, allowing genenatl bniform factor strengths on the
factor loading matrices under uncorrelated noise tensdraanalpha-mixing condition for
the factorsChen et al(20200 proposes a class of models for modelling large-scale multi
variate spatial-temporal processes, which involves kntinwe-evolving covariates and a cor-
responding loading matrix, while all processes are dep#ratea space domaihen et al.
(2022 introduces a general R packagensor TS for wide variety of tensor data analy-
ses based on recent papers, and demonstrate the usage oriGhexi\data which we are
analysing in SectioB.4.

In this paper, we make two important contributions to theréiture of factor modelling
for tensor time series data of order two or above. The firstisrie allow for a spectrum
of different factor strengths, which is a generalisatioh.émn, Yao and Bathi2011) when
static vector time series factor model is concerned. To #st &of our knowledge, our model
is the first one in tensor factor modelling to consider wealtdes when both serial and
cross-correlations ifi€; } are present. For tensor factor models with indepenfi&nt while
Han et al.(2020 has two parametei® andd; controlling the factor strengths, they are less
easily interpretable comparedto ayy ;, j € {1,2,--- , 7}, which has thgth diagonal entry
of AJA, =< dz’”' (see Assumption (L1) in Sectidh2.3for more details). Hence if thgth
column ofA, is dense (a pervasive factor), thep,; = 1. If there are only finitely many non-
zeros in thejth column of Ay, then it is a very weak factor, ang, ; = 0. Freyaldenhoven
(2022 allows for these weaker factors in its vector time serietolamodel, and called them
“local factors”.

With relaxed assumptions for wider applications, and athgwfor a spectrum of factors
with different strengths, our second contribution is tovide a “pre-averaging” initial esti-
mator and an iterative projection estimator for our modéh wheoretical analyzes provided
and rate of convergence spelt out. The pre-averaging puoeds presented in Secti@)
which can be seen as a random projection method by randomiyngwg tensor fibres, and
we provide a method to control for the quality of the randomjgxetion in Sectior8.3. Sec-
tion 3.6 also shows that our pre-averaging estimator is minimaxydtunder certain sce-
narios on a certain localized set. Iterative projectiomesstiors of the factor loading matrices
(see Sectiod) are provided with idea similar to the projection methodyinet al. (2022,
except that we only project on the direction aligning to tliersggest estimated factor. This is
because we assume there are weak factors which may notiatstiwith enough accuracy.
With weak factors in the model, numerical experiments shat our estimator outperforms
other state-of-the-art methods since we only utilize thiermation which captures the most
accurate estimations so far. To complete the paper, we adsae estimators of the core ten-
sor rank through correlation analysis in Sectinvhich is inspired byFan, Guo and Zheng
(2022, but we provide a bootstrap method for tuning parametescsieh as well. All our
methods are written into an R packabensor Pr eAve published on CRAN and GitHub.
Please see Section 2 in our supplement for a very brief eafitanon how to use it.

The rest of the paper is organized as follows. Sec?ioeviews some basic notations we
use throughout the paper. Sect®presents the idea of pre-averaging, together with impor-
tant assumptions on our model. Discussions and theory oosaigp the “best” samples for
aggregating results are presented, together with rate rofecgence for our pre-averaging
estimator for the strongest factors spelt out. Sectiotilizes the pre-averaging estimator as
the ideal initial estimator for re-estimating the projeatdirection by iterations, and presents
the key theoretical results on the iterative projectiomestors. Sectio® presents theoretical
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justifications for using correlation analysis in finding thek of the core tensor, and provides
a fibre bootstrapping technique in determining the tuningupeter of the procedure. Sec-
tion 6 presents our simulation studies on a number of differetingstand compare to other

benchmarks or state-of-the-art estimators. A set of matilyed portfolio return data is an-

alyzed in Section 1.3 in our supplement, and a tensor-veléd taxi data set is analyzed

in Section6.4 of this paper. All proofs are in Section 3 of our supplement.

2. Notations and Basic Tensor Manipulations. In this paper, we use = b to denote
a=0(b) andb= O(a) (alsoa <p b for a = Op(b) andb = Op(a)), while a = b is equiv-
alent tob = O(a), anda > b is equivalent tob = o(a). We also usé| - || to denote thel,
norm (of a vector or a matrix), andl- || . to denote the Frobenius norm, while ||  rep-
resents the maximum element (of a vector or a matrix). WewsgA || _ = max; ) [a;;]

and||A |, = max; Y, |a;]| to denote theLo, andL; norm of a matrixA respectively. The
notation ve¢:) represents the vectorisation of a matrix, stacking coluafrise matrix from
left to right. We usel,,, to represent a vector of ones with length 1,,, s to represent a
vector of ones and zeros with lengtl, with ones on positions belonging to the $eand
zeros otherwise. The identity matrix with size is denoted byl,,,. The notation diagA )
of a square matripA is the diagonal matrix with only the diagonal elementsAofemain,
and everything else set to 0. This notation is also used t@sept a block diagonal matrix.
For instance, diag\4,...,A,) is the block diagonal matrix with diagonal block matrices
Aq,...,A,. We use\;(A) to denote thg-th largest eigenvalue of a square matAx and
tr(A) the trace ofA. For a positive integein, we definglm] :={1,...,m}. The cardinality
of a setS'is denoted byS]|.

We briefly introduce the notations and review on tensor maatwns in this sec-
tion just enough for the presentation of this paper. For niof@mation, please refer to
Kolda and Bade(2009.

Let X € Rh**dx he an orderX tensor. Herek represents the number of dimensions
in X, also called the number ofiodesFor instance, a vector time series las= 1 while a
matrix time series ha& = 2. If we write X = (z;,...;,. ), then we define anodef fibre of X
to be a column vector (of length.) (x4, ...i,_, jissrix )jeld]> % € [de] With £ € [K]. Hence
there are in totadl ;. := [/, 021, de nUMber of modek fibres for the tensaft’. Themodek
matricization/unfolding matrixnat, (X) € R% >+ (also denoted aX ;) sometimes) is then
defined to be the matrix containing (in order) all the madihres of X'. See figurel for a
demonstration (figure fromao, Su and Wan(2019).

If there is a matrixA € R’=*"= andF € R™*""« is an orderk tensor, then thé-mode
productof F and A, denoted byF xj A € R™ % X7k xIxxrepxxri g defined such that
mat, (F xx A) = Amat,(F). The order of distinct mode products does not matter, in the
Sensethatfm#j,inAi XjAj :]:XjAj X; A, FinaIIy, ifC=Fx1A{ X9 - XAk,
then we have the formula
(2.1) maj(C) = Apmat, (F)A%,

where® is the Kronecker product, anll ;== A @ - @ Ap11 @ Ap_ 1 Q- R Aj.

3. Initial Estimation of Strongest Factors by Pre-averaging. We define the tensor
factor model for eacty; € R4 > *dx ¢ ¢ [T], as
(3.1) Xe=p+C+E=p+F X1 Ay Xg-- X Ag + &,

where we include a non-zero mean tengax R% * <4« as compared tol(1) introduced
by Chen, Yang and Zhan(2022, which makes our model more flexible. Using 1), the
mode# unfolding of 3.1) can be written as

mat, (X;) = mat, (1) + Agpmat, (F;) AL + mat.(&).
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Fig 1: lllustration of the modé-fibers and its corresponding unfolding matrix.

If we defineS; C [d;] for j € [K], then we can always define the Cartesian product
S =8k X+ X Sgy1 X Sg—1 X -+ x 57, such that
1o, =Lap 85 @ - ®1g, 1,80, ®La, 1,5, ® Ry, s,
Projecting onl,, s, , equivalent to summing the fibres in m@t;) over the sef5.;, is then
mat,(X;)14, s, = mat(u)la, s, + Axmay(F)ALLla, s, +mat (&)1, s,, where

3.2)
A-Tkld-ms-k = ATKldK,SK K- ® AZ+11dk+1,Sk+1 ® A‘Z—lldkflysk—l ®-® A’{]'thl?

With A = Ax ®--- A1 ® A1 ® --- ® Ay. Hence projection of the data usiag, s,
can be seen as pre-averaging the rows of e@gtusing S; for j € [K] \ {k}. While we
re-estimate by projection in Sectidin and papers lik&'u et al. (2022 does projection esti-
mation as well, the aim of this section is to provide an ihiistimator of projection direction
with quality that can beontrolledby careful selection of randomly generatgd The method
to selectS; among multiple random samples is introduced in SeciGnhwhich leads to the
pre-averaging estimator in Secti8rb.

3.1. Potential advantages of pre-averagingConsider just calculating the second order
moments

Zmaﬁg X, — X)maf (X, — X) =: Sy + N1 + N{ + N,, where

(3.3)
T
So = ArY_ (mak(F; - F)ALAmaf(F - F)) A,
t=1
T T
Ny = Ay Z (maﬁg(}} — F)ASmat (& — E’)), Ny := Z mat, (& — E)maf (& — &),
t=1 t=1

and extracting an estimator &f, through PCA (e.g., se®ai and Ng(2002). Our proposed
pre-averaging estimator, like a projected estimator, canmulate significantly more signals
before doing the PCA step for extracting an estimataAgf This is because the signal term
AL YL mag(F — F)AY wld,s. 1y, s, Axmag (7 — F)Ap (from usingl,, s, as the
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projection direction of the data) can be significantly laudpan.S, in (3.3), since the diagonal
elements OfA.Tkld_k,S_klihs_kA-k can be much larger than those At} A ;.. For instance,
whenA ;. has a column with all positive or negative elements (e.gtpfdoading entries for
the market factors in finance), we have diagonal elements’pf;, o, 13.k,s.kA-k of order

d?., while those inA”, A, are only of orderl.
Before officially introducing the pre-averaging estimatwe first present some technical
assumptions needed for the tensor factor mogld) (

3.2. Assumptions.

3.2.1. Assumptions on the errorsWe present assumptions (E1) - (E2) below with expla-
nations.

(E1) (Decomposition of errofVe assume that is a constant, and
(3.4) Er=Fer X1 A1 X X Ac g+ €,

whereF, ; is an order# tensor with dimension. ; x --- x r g, containing independent
elements with mean 0 and variance 1. The orfletensore;, € R4 * >4« contains inde-
pendent mean zero elements each with finite variance, watlwth time seriege;} and
{F..} being independent.

Moreover, for eaclt € [K], A, € R%*"* issuchthaf| A, ||, = O(1). Thatis, A\
is (approximately) sparse.

Hence with (E1), we have mdt,;) = Ae,kmaﬁg(}"e,t)A;_k + mat,(e;), where A, , :
Ak ® - @Acpr1 ® A1 ® - ® Ac1. Each modek noise fibree, ., o for ¢ € [d.
can then be decomposed as

(3.5) etk e = Acmat (Fe,)acre+ (SU9) 12l

N

wherea? ,; ,is the/-throwof A, , EE"’} is diagonal andi’? contains independent elements

each with mean 0 and variance 1. The above decompositionsieaneach noise fibre is
now a sum of two parts. The first part is similar to a common comemt with a factor
loading matrixA. , while the second part contains independent noise (buttdaexhibit
serial correlations; see Assumption (E2)). However,, is (approximately) sparse here and
contains at most a very weak factor with factor strength @ @ssumption (L1) in Section
3.2.3. This part facilitates cross-noise fibres correlationth w

COV(€¢ k0, €1,-k,m) = gk pAe, k,mAe kA -

This error structure satisfies the assumptiorntdén Li and Trapan{2022 andChen and Fan
(2021 whenr, ;, = O(d}), but we only assume up to the 4th order moments of the noise
variables exist and that these moments are uniformly baliimd@ssumption (R2), which is
more relaxed than requiring the existent of 8th order momritle, Li and Trapan{2022).

In fact, if A, is not (approximately) sparse, it should be counted as arfémading matrix
rather than a noise component in our model.

(E2) (Time series)rhere isZ.; the same dimension as.;, and Z.; the same dimen-
sion ase;, such that?, ; = ZqZO Qe,qZet—q ANd € = ZqZO Qe g Zet—q, With {Z.,} and
{Z.+} independent of each other, and each time series have iletheats with mean 0
and variance 1. The coefficients, anda. , are so thaty" . a2, = > ~aZ, =1 and
>0 leql £C, 30 5o laeq| < C for some constant C.

With this assumption, the error variables i ; ande; are serially correlated in general.
Together with (E1), (weak) serial and cross-sectional ddpece within and among fibres
are allowed for the errors.
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3.2.2. Assumptions on the factorsSimilar to (E2), the factors ioF; are assumed to fol-
low general linear processes.

(F1) There isZ;; the same dimension &k, such that?; =3 - ay¢Zs:—q. The time
series{ Z;,} has i.i.d. elements with mean 0 and variance 1. The coeft&igr are so
that)_ - aff’q =1land}_ -,lay,| < C for some constant C.

Note the series of coefficien{s. 4}, {ac 4} and{ay,} are not necessarily equal.

3.2.3. Assumptions on the model parameterg/e present the assumptions needed for the
factor loading matriced\, k € [K |, and other model parameters.

(L1) (Factor Strength\Ve assume that, fdre [K], Ay, is of full rank,r, = o(T''/3), and as
dk — 00,

(3.6) D, ?ATAD Y 5 Sa,

whereD,, = diag(A} Aj) andX 4  is positive definite with all eigenvalues bounded away
from 0 and infinity. We assun®y,);; < dz’” for j € [rg], and0 < a,, <+ <ago <
a1 < 1.

Assumption (L1) states that the factors can have differaengths. Whenk = 1 and
ay ; = o for j € [rq], (3.6) reduces to the assumption of (approximate) vector factuteh
with the same strength, which is discussedai and Ng(2021). Hence, our assumption is
a generalisation oBai and Ng(2021) to a tensor setting with mixed strengths of factors,
which is more flexible to apply on many real datasets. In &iditwe do not assume the
orthogonality ofA ;, asFreyaldenhove(2022 did, since this would be incompatible with the
expression of factor strength and signal accumulationrimgeof the norm and row sum of
A,.. The concept of a pervasive factor, for instance, dependsomfumn ofA ;, being dense.
However, such an interpretation can be lost completely utideassumption of orthogonal
columns inAy.

(L2) (Signal accumulation from summingpr k € [K], let M;, o > 0 be the number of dif-
ferent sums of rows oA, considered, and forn € [Mj, o], denoteS), ,,, C [dy] to be the
m-th index set for summing the rowsAf,. With the choice ofSj, ,,| = |di /2], define

K
2
(37) Sk,m = HAzldk,Sk,m y Skmax -— 1MaX Skm, S-kmax ‘= H S4,max-
mée My, o] . :
J=157#k
We assume for somg < ry,,
dy, dy, -
(3.8) <1—|— —) =ol(d,~"").
S-k,max T ( k )

In Assumption (L2),s. ,, can be seen as a measure of accumulation of signals for a spe-
cific samplem € [M}, o], and sy 4. IS the “largest” accumulation of signal we can attain
over theM;, o samples. In Sectio.3, the method to provide a carefully selection of ran-
domly generated); ,, is introduced, and Sectidh4gives a more thorough discussion on the
number of samples needed to secure enough signal accurnulath a large probability.

Note that we choossy, ,,, with size Sy ,,,| < di (€.9.,|Sk.m| = [di/2] in Assumption
(L2)) for eachm € [M}, o]. This choice allows for the sum of rows &, to be potentially
large with a large probability (see also Sectid).

We also remark that unlike for instance @hen and Farf2021) that the dimensiond;,
are assumed to be diverging, hefiecan be finite as long a&y,/s.; max = 0(1). This can
be achieved when, for example, there isAapfor some; # k such that the majority of the
elements in a column are of the same sign, sodhat- d;, resulting ind., /s_; max = 0o(1).
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(R1) The time serie$Z; .} from Assumption (F1),Z.;} and{Z.;} from Assumption (E2)
are mutually independent of each other. All three time sdnave elements with uniformly
bounded fourth moments.

(R2) We assumadk(Zg?) is uniformly bounded below from 0 fdre [d_x], Wherezlg}) is
defined in 8.5). Let A, v be theT x T matrix with its (¢, s) element to b&A. 7); s =
> >0 Ge,q0e,q+|t—s|- DENOED <y :=limg, 700 % <1 andy* = min(y, 1), then
we assume there existse (1 —y*, 1] such that\., 7| (A1) > c2 > 0 for large T', where
¢ IS @ positive constant.

Assumption (R1) relaxes the need for Gaussian or sub-Gausahdom variables (see
Zhang and Xia2018 andChen, Yang and Zhan022 for example), with only bounded
fourth order moments required. This allows for substalgti@ore types of data to be ana-
lyzed. For instance, financial returns data over more \elp&riods where we do not usually
want to assume moments beyond order four exist. Finallgttey with Assumption (R1),
Assumption (R2) enables us to utilize random matrix theottydund the eigenvalues of var-
ious sample covariance matrices from below (see (S.3)) &d (S.11) in Lemma 1 and

Lemma 2 in our supplement). As long as the serial correlatmintheeg'?j’s are not too
strong, Assumption (R2) will be satisfied.

For convenience of further theoretical analysis, we dei@g = AkD,Zl/z. Since
Q; Qi — X4k Qp is a re-normalized version oA;. In addition, we apply the singular
value decomposition oA, as

(3.9) Ay = UkGll.Cﬂ s

whereU;, € R%*"+ has orthogonal columns such tHag U, =1,,, G, € R™*" is diag-
onal and consists of the eigenvaluesAfA, in decreasing order, and; € R™*" is an
orthogonal matrix. The subspaces spanned by the columbtig ,0®, and A, are the same,
and hence it is equivalent to estimdie (or Q) and A, and the columns olJ;, form an
orthonormal basis for the column space spanne@hyor A;). We will estimateU,, (or
Q) instead ofA,, in the sections that follow. We need another regularity diordon the
singular values oK. This can be relaxed at the expense of lengthier explarsitiwolving
factor loading spaces in all subsequent theorems.

(L1") The singular values ofexj, are distinct.

3.3. Choosing samples of tensor fibredlVe first present an algorithm for choosing the
“best” sample of tensor fibres to sum.

Algorithm for choosing the “best” sample of tensor fibres

1. Initialize Mj,  for eachk € [K].

2. Generate a sequence of independentS&ts, } rc(x)me[m, |- EAChSk m chooses uni-
formly over([dy], with | S, | = [dk/2].

3. Fix k € [K]. Define M, := Hje[K]\{k} M. For eachm € [My], define S, ,,, :=
Xje[K}\{k}Sj,mj andld_k,g,kwm = ®j€[K}\{k}1dj,Sj,mj for somem; € [Mj,O]-

4. For the same fixed from step 3, define for each € [M],

(310) ik,m = (ma‘k(Xl)ld_k’s_kYm, ceey ma‘k(XT)ld_k’s_kYm)T,
and for an integet satisfyingry, + 1 <! < |cmin(7,dy)| — r, for somec > 0, construct
M (XL (T = £101F) X m)

ER ., = — — .
A (X (T = 1717) Xy m)
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5. The “best” samplen € [M)] for estimatingA;, is the one that maximizes ER. We
denote byS i max := X je[k)\{k}9j,max the corresponding product set, and

S-k,max -— H Sjmax ‘= H HA;ldj,Sj,max
JEKN\{k} JEK\{k}

6. Repeat steps 3,4,5 until eack [K] is covered.

2

The justification of step 4 is as follows. With Assumption Jlahd (R2) satisfied, we have
by Lemma 2 in our supplement that the eigenvalue-ratip,FRas

— Qg1 d-k‘ dk) -
ER =p [—S_k’m <1 + ?) ] .

Hence the sample that maximised ERin fact asymptotically maximizes the product of
signals, froms_;, ,,, 10 st max-

One way to chooseis to use expert opinion. A typical value bfve use depends on the
user's idea of the maximum value af. Suppose for an economic data set, we expgst 8.
Then we can usé=9 for constructing ER For a more data-driven way, note from Lemma
2 in our supplement that for a particular sample with prodets.;, ,,, C [d_;],

Qe i

A XT I 11 1 X T dk ’ ZG[T‘k],
Z( k’m(T_T TT) km/ >AP j%(l—l—%’“),m—l—lgigLcmin(T,dk)J—rk,

wheres.y, ., is defined in 8.7), andX}, ,,, in (3.10. Hence ford;, < T', if we have a sample
S_k.m such thatd; /s, ,,, = O(1), then plotting the ordered-eigenvalues from the largest to
smallest, we would expect to see a large dip at(thet 1)th position. If we do not see such

a dip, then we can generate another santpjg,, and try again. Obtaining a sample with
d.x/s-.m = O(1) should not take long. See the section below.

3.4. How many samples do we needn most applications witll;, = O(T") for eachk €
(K], if the ratiod.,/s.x, max = O(1), then Assumption (L2) in Sectio®2.3is automatically
satisfied, and the rate of convergence3nl@ in Theorem3.1 becomeSal,;C”"1 when we
choosez;, = 1 there. One way to achieve this is to hayg,,., = dj, for eachk € [K].

Consider the scenario where for edch [K], r, = 1 and Ay, containsdy, i.i.d. standard
normal random variables, witA; independent ofA ; for i # j. For eachSy, ,,, C [dj] with
m € [My ], we want to choose ths; ,, such thatAj1,, s, . is the largest, and thaf, .« =
(maXmG[Mk’O] AZ]_dMSkYm)Z =p di. Now for eachm € [Mkp],

Ailg s |Sk.my N Skm.|
m = ———22 ~ N(0,1), and cortz m, s 2km,) = — 0\
Zk’ Ldk‘/2J1/2 ( ) (’Zk‘, 1 zk7 2) Ldk/2J

if we are choosingSy, ,,,| = |di /2] for eachm € [Mj, o]. Then by Theorem 3.4 dfiartigan
(2014, we have

1
P( max Zgm > 0(N + Lo — = log(N + La))> >1—2a, where
mE[Mkwo] ’ 2

N := log(M,iO/Zﬂ), L, := —2log(—log(a)), o := EI[I]l\}n }var(zk,i — E(zkilzk1, - 2ki-1)),
2 k,0

aslong asV + L, > 6. With a = 0.025, thenN + L, > 6 implies M, , > 186, and with this

we have

P( max zp,, >5.10) >0.95,
mG[J\/[k,g}
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meaning thaby, max = (max,,enr, ] Afla,,s,.,.)> has orde;, with over 95% probability.
Hence if K = 2, when we are estimatind; and to sample fibres from matt;) using
51 max = S2,max, We have whenly = M, > 186 that over 95% probability we can have
S-1,max = $2,max ~ dy =d;.

The value ofM;,  in practice to achievey, max =< dj, should be smaller than 186 since the
constants.10 above can be made smaller. In fact, in practice, we find tratrat M, o =
15 does a perfect job in all our simulation settings in secudpg,.. < di. It means that
with K = 3, say we are estimating.,, thenM, = M, o M3 o = 225 works fine for securing
5.2 max < d1d3 = d_o. Indeed in all simulation settings, we usf =200 for K =2 or 3 and
get very good performance overall.

We do not suggest explicit tuning éf/y, as our pre-averaging estimator is an initial esti-
mator for feeding our iterative projection procedure. Satian experiments in Section 1.1
in our supplement has clearly shown that the practical peaxdince of our iterative projection
estimator remains at a good constant level no matter thelidify we use.

3.5. Theoretical results for the pre-averaging estimatdn Section 3.3, we choose
S_k,max for summing the columns of mgtt;). To create stabler estimators, we can con-

struct M different setsS(,‘C r)nax C [d.t], m € [M] (we setM =5 in all our simulations), by
choosing the best/ from theMo samples in the procedure laid out in Sect®8 and form

Xk,l, .. Xk M, Where eacIka i is defined in B 10. Then define
M
X7 m( 1T1T) X
(3.11) D Z

The pre-averaging estlmatQk pre, (=) 1S defined as the, elgenvectors corresponding to
the z;, largest eigenvalues cExk .aggr With the constraank ——— Qk,pm (zn) = Lz, for

any z, < ri. The theoretical properties @k,pm(zk) can be summarized in the following
theorem.

THEOREM 3.1. Let Assumption (E1), (E2), (F1), (L1), (L2), (R1), (R2) baséed for
all M chosen random samples for constructig, 4., andr. , = O(dy). Then

(3.12)

1Qk pre. () — QeH||” = O, ( ZakaCk,max); where

o di rrdy | deg . dz d?,
chmax.—mm{l—i—?, T +d 1+ﬁ ,

8-k, max S -k,max
1 & 1
1/2 = ~ P A ~ .
Hk =T D / M Z |:Fk7m <IT - T1T1%> Fk,m:| ka,pre,(zk)Vkl7 with
m=1
f‘k,m = (maﬁg(f17_k)1d S(m) RREE mal;C(]-"T,_k) g, S ),

k,max

rank(Hk) = z;,, and Vy is diagonal, containing the,, elgenvalues (|n decreasmg order) of
Zxk .agg- Moreover, further assuming (L1’), there eX|$I§ pre,(z) With Ur

I, such thatth,ne,(zk) = Uk
so that

(3.13) 1Ok pre.) = Uk I = O (dﬁ e [dia’“ % +op me :

The matrixUy, ., is defined to be the matrix consisting of the firstolumns ofUy.

k,pre, (zk)Uk,pre,(z )=

pres(z0) Phpre,(z) With Py ¢ .,y being an orthogonal matrix,
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The meanings for3.12 and @.13 are different. When, < r, (3.12 suggests that the
estimated directionék,prev(zk) will lie in the subspace spanned by the column€xf (or
Uy), but it may not be “close” to the directions correspondiaghe strongest;, factors.
However, with 8.13, we can conclude thaﬁhme&z& will be “close” to the directions
which correspond to the strongest factors. As a compromise3 (13 involves an extra

ratedi(o““_O““'Z’“)mT‘1 as compared td3(12. Such a difference is especially notable when
we setz, = 1 and perform the iterative projection in Sectibn

Remark:Suppose in (L2), the ratid_; /s.k ;mqs iS Of orderd_‘kl, which can be achieved
if, for instance, there exists a dense columnAin (i.e., pervasive factor) having majority
of elements of the same sign for eagke [K]. Suppose further that the’s and K are
constants, withi;, < T for eachk € [K]. The results from Theorer8.1 implies that the

projection matrix®y. pre := Qk pre,(ri) Qf pre, () NAS €TTON rate

Hf)k,pre - Qk(QZQk)_lQZH = Hf)k,pre - UkUZH
= Op(d, " (@ + i Pa)).

This can be compared to the ratesOhen, Yang and Zhan@022, which need the errors to
be sub-Gaussian (compared to our Assumption (R1) wherebanigded fourth moments is
needed). While their? can be considered constant, theis such thai = [, di*'. The
TIPUP procedure has rate (in our notations, using equatighi Chen, Yang and Zhang
(2022, which has a faster rate of convergence than TOPUP)

1/2

dk/ N d1/2 >
QL 1 K QU1

T2 H5:1 d;” 2T Hk:l dy,

(3.14)

(3.15) Py — UL U] :0P<

When all factors are strong, i.ey; ; = 1, the rate in 8.14) is faster than that inr3(15. When
a1 =1andoy,, =0.5, i.e., the strongest factor is pervasive but the weakestiféequite
weak, then the two rates will be the same.

The rate in 8.14) can also be compared to Theorem 1Gien and Farf2021) when
K =2, which under the same conditions laid out at the start of ¢éhneark, implies

(3.16) Py, — U U|| = Op(d;, ).

Ourratein 8.14 is d;3/2 when all factors are strong, andd§1 whenay 1 =1 anday,,, =

0.5. Both rates are faster thaitjl/2 in (3.16.
Indeed, the better performance of the iterative projectistimator, which uses the pre-
averaging estimator as an initial estimator, is reflectetiénempirical results in Sectidh

3.6. A discussion on optimality. Our pre-averaging estimator achieves a minimax opti-
mal rate under certain scenarios over a certain localizedreesimplicity, suppose we only
take M =1in (3.11), and assume the data has mean 0. It means fBofhthat

~

1~ ~
Y% a99 = TXEJXk,l =M"*+H, where

T
1
H = -3 (AF/A%aq E] + Eiaq’ A F; A})
t=1

T
1 T T 1 T T
+t7 Z(thq E; — E[diag E;qq"E}))),

t=1
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1 & A
M":= ; ArFALaq AGFIAL + ; EldiagE:aq"Ey)],

with Fy := mat, (7), E; := mat, (&) andq := 14, s, ... /|| 1dx,S || (NOrMalizing it does
not affect the eigenvectors). Assume alsphas only i.i.d. entries with finite 4th order mo-
ments (i.e.£; = €; in (E1), each element having the same finite variance), SdfH) = 0
andT-' Y1 | E[diag E:qq”E})] = 021,,, whereo? = var((E;);;).

Let \* be thej-th largest eigenvalue &NI*. The set of eigenvectors fdd* now coincides
with the columns inU; defined in 8.9), and we writeu? to be thej-th column of Uy.
Following equation (20c) ittheng, Wei and Chef2021), define

M(M*) ::{A e R4 symmetric| rank(A) = 7y,
* 1 * Camin\/d_
M= (12100, () - uj] < T

whereu;(A) is the eigenvector corresponding to tiuh largest eigenvalue of, ando? ;|
is the smallest value amongst of the variance of the elenoérkis
We can easily show that, 85— oo,

d%*ig, o q"A AT, S h
N =p di* U A AL = A e ] g = K k,ma
d_k Tdk

Then the conditions in Theorem 3 Gheng, Wei and ChefEOZJ) are satisfied, except that
the elements oH are at most asymptotically normal @s— oo, and are dependent in gen-
eral. The conclusion of the theorem is that joF [ry],

COomin Vd
f E (A = 1/ 1/
1‘?] AE./S\}il(p M) Hu] uj( )H n ’)\* O“C S\ T'q* A kAqu dak 7 TS k,max

Similar to the remark at the end of SectiBrb, SUPPOSEs.; max = d_kdg’”, which can
be achieved if there exists a columnAy having “enough” elements of the same sign for
each? € [K] (if all are of the same sign, theqy, . < d?k, which can be much larger than
d.d;"”). Suppose alse;, and K are constants, and, < T for each/ € [K]. Then the

minimax rate above ig, **” (d.;./s-k max)"/? for j € [r¢], which coincides with the rate from
Theorenm3.1for the pre averaging estimator whep= j < ry:

1Quk pre. () — QuHK|| = Op(d, ™ (d/sk.max) /?) for j € [ry], implying
H]/-:\)k,;m"e UkUk H = OP Olk * (d-k/s-k,max)1/2)7
Wheref’kwe = kae,(m)Q; pre ()" DefineU(A) = (ui(A4),...,u,,(A)), then

sup  ||Prpre — UA)UA)|| < ||Prpre — URUE| +  sup  2[|U(A) — U]
AeM(M¥) AeM(M*)

— OP(d,;O%’T)C (d-k/s—k,max)l/z)'

4. Re-estimation by Projection. While Yuetal. (2022, Heetal (20233 and
He, Li and Trapan{2022 all deal with projection estimation of a factor loading miain the
case ofK =2 or a generakK, they all assume that all factors are pervasive. And in mact
they need to know the number of factofsin Ay, for eachk € K] first in order to estimate
a projection matrixBy, of sized.;, x ., wherer_y :==r/rp withr =ry -+ rg.
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In contrast, our projection method to be presented here doeseed the estimation of
eachr,, first, since we are projecting to one direction only: the clian of thestrongesfac-
tors, iteratively. Setting, = 1, the pre-averaging vect@kvp,ne,(l) is indeed asymptotically
pointing to the direction of the strongest factors (s&3 in Theorem3.1).

Projecting to the direction of the strongest factors is eeldd our setting since there are
weak factors. Their estimators have worse rate of convesgand estimation performance
than pervasive ones. Using these worse estimated diredtiorprojections will deteriorate
the performance of the projection estimators. In Sedbiowe demonstrated that under the
presence of weak factors, our method provides the bestrpaaface of factor loading matrix
estimation compared to all other state-of-the-art methodtuding the projection estimation
suggested by these three papers.

In (3.2), we demean the data first and change the projection diretdiq.,., where

Qi =9 @ D Q41 D Qe—1 @ - @ q1, With qi:= Aycy, k€ [K],
for some non-zero constant vectejs Then defining . :=cx ® - cxr1 Vcp_1 Q- Rcq,
we haveq., = A _,c.;, and we can construct the new projected data as
k —
(4.2) vy =mat (X, — X)q,
:Akmaﬁq(}}—f) Aka—Fma‘k(gt )Qk

Depending on the direction;, we can see from above that the signals from the factors are
strengthened due to the terAl, A_;.c.;., while the noise level is retained or strengthened,
depending on the level of cross-correlations among theerfidises. The projected data can
also be used to estimate a finer projection direction, esdlgnterating the projection step.
See Theorem.1 below and the explanations followed. See simulation resefyarding this

in Section6 as well.

4.1. Reflnlng the prOJectlon direction. From Theoren3.1, settingz;, = 1 there, we obtain
Ak pre = Qk,pmm Uk,pre,a)Pk,pm 1= iUk pre,(1) (WLOG we take the plus signin the

presentations hereafter). For edch [ K], we create the projected da,té{C asin@.l), using
(42) qQ-r = a—kz,pre = aK,pre Q- ® ak’—l—l,pre & ak’—l,pre K- ® al,;m"e'

Then we definaj,(j) to be the eigenvector corresponding to the largest eigeevalf the
matrix

~ (k T
S Zygk)ygk) '

The superscrip(l) in qff) signals that this is the first iterated estimator @y ;). We can
iterate this process to obtain refinement of projectionatioa. More formally, we introduce
the following algorithm.

Algorithm for Iterative Projection Direction Refinement

1. Initialize q,(go) = Q, pre fOr eachk € [K].
2. Fori > 1, at thei-th step, create projected daﬁé’? = mat, (X — X)q,(j U for each
ke [K]. 7
3. For each: € [K], defineq ()the eigenvector corresponding to the largest eigenvalue of
T
(4.3) f](lf) =71 y(k)y(k-)T.

Y, ta vt
t=1
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4. Replace by i+ 1. Go back to step 2. Stop until after the procedure has beeateg for
a fixed number of times.

We present a further assumption needed before presentemydind. 1

(RE1) For apositive integetV, let Ay € RV+UTXT pe defined asly r := (ay1,...,a57),
where

ayr = (OtT_l,CLﬁNT, af NT—1;---30f,0, 0;_t)T, te [T],

with 0; being a column vector of zeros and the:; ,'s are from Assumption (F1). Define
Aer and A r similarly using coefficients frorfa. .} and {a.,} respectively from As-
sumption (E2). Then we assume that (wittcan be eithetd r, A, 7 or A.7) || A is
uniformly bounded above, and

%tr(ATA) 1 —o(T2d72),

1
LA A)1r = as,

wherelr is a column vector of” ones, and the constants, as andas can be different
for A= A7, Acr and A, r respectively.

1 T T
TII’(A A)2 —ai, 3/2 1TA A].T — as,

Consider a truncated linear procg$s}c (7}, and the original procesg); }.c (1,

NT
U= Z AqZt—q> Yt = Z aqzt—q, With var(y;) =1,
q=0 q=0

where{z } is a sequence of i.i.d. random variables. Construct theixndtusing{a, } similar

to those in Assumption (RE1). The4i" A contains the variance dfy, } on the diagonal, and
lag-k autocovariance on thie-th off-diagonal. The rates in (RE1) are then controllingvho
fast thea,’s are going to 0, and how much serial dependence betweep thare allowed.

In particular, general linear processes with absoluteiyireable autocovariance sequence,
short range dependent processes like ARMA models, satisfggsumption.

THEOREM 4.1. Let all the assumptions in Theore®l be satisfied, together with

(RE1). Letg, := [[/, df"", re == Hf | Te.- Assume further that for eadhe [K], r =

O(dg;1), re = o(T), d, = O(gs) = (re ++/T/r). Then

laf” - Uk H_OP{\/7+9_1/2bk\/ } (assumedp(1)) where
b= Iy b Y G, o)

J=Lj#k

Furthermore, ifrdgs_l = o(T), then for an integern > 1,

" =l =0n{ 7+ 4~ Ui Iy 57 | =ort1)

and the Algorithm for Iterative Projection Direction Refinent will produce, after a certain
number of iterations (say),

~(m r
™ = U =0 <\/;>




TENSOR FACTOR MODEL ESTIMATION BY PRE-AVERAGING 15

To put the above results into perspective, assume a very oonsgenario that; =< --- <
di =< T (this is especially true in economic applications wh&rés small), with K and
eachr; being constants fok € [K]. We first note that if all-;, factors inAj, are pervasive,
i.e.,ap; =1forall j € [rg], theng, = d, and hencg| q,(j) — Uy, 1y|| = Op(T~1/?), and any
refinements will retain the same rate. Eveajf; < 1 (i.e., the strongest factor corresponding
to A, is not pervasive)) q,(i,l) — Uy, 1)|| can still beOp(T1/2), as long a$?d/gs = O(1),
equivalent tooy, ; > 1/2. The case oty ; = 1/2 presents a significantly weak strongest
factor corresponding td ;,, and without the help of projection and strong factors frahreo
modes’ factor loading spaces, the typical rate for estimgasiuch a weak factor would be
d,."* which is much worse thafi—1/2.

To have an idea on the valueaf, from the last part of the proof of Theorefrl, we need

w(ym.) =olz)

Supposely, < T, ry is a constant and.; /s, max < 1 (See Sectior8.4 on how to achieve
this). Thenby, = d, “*'/?, and hence

- constant- ay, 1 log(dy,) — log(T)

N log(£L) '
Further, ifay 1 = 0.5 (a very weak factor), and/gs < 7% (recall that we assumelg; ! =
o(T)), then asl’, dj, — oo, we haven > 10. This is already quite extreme sinéggs < 79
means that the strongest factors of some athgs are also weak. The fact that we are using
m = 30 in our simulations in Sectiof throughout made sure that the rage’/T is reached,
and we do not recommend users increastirther for saving computational time.

The fixed rateDp(+/r/T') in Theorem4.1comes from the fact that we need to distinguish

the direction of the strongest factors from all other dimtd of weaker factors in order to

find the “best” projection direction. In the case of studyihg wholeU,,, we in fact may get
a better rate of convergence even in the presence of weakdact

THEOREMA4.2. Letallthe assumptionsin Theoreiribe satisfied. Suppose we know the
value ofry, and perform an eigenanalysis (Eé}nﬂ in (4.3) which utilized the projection

directionq,(cm) in Theoremt. 1, obtainingr, eigenvectors as an estimator of the factor loading
space ofA .

Then there existtJ;, € R4 with UU}, = I,, such that the, eigenvectors obtained
above isU;, multiplied with some orthogonal matrix, with

i Ak, 1k, r — d
Uk — Uy :Op{dk AT [95 Ly /%(r;ﬂ _|_d,1€/2 I %)} }, (assumedp(1)).

Considerd; < --- =< dg =< T, with K andr; being constants fok € [K]. If all factors for
Ay, are pervasive, i.eqy, ; = 1 for all j € [ry], then we havl Uy, — Uy || = Op(T ). When
K =2, this has the same rate as the average Frobenius error ndha e$timators ofA;
andA, in Theorem 3.1 and Theorem 4.118é et al.(20233. This is also consistent with the
rate in Corollary 3.1 oHe, Li and Trapan{2022, Theorem 3.1 and 3.2 die et al.(2022),
and Theorem 3.1 ofu et al.(2022 under the same scenario.

The above rate can be greatly improved if the tagfnd/T can be removed. It is there
because the estimated projection direction is correlaigdtive data in general. If we have
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independent noise tensff; } (e.g., the setting i€hen, Yang and Zhan@022) we can split

the data into half, and using only one half of it for projeatidirection estimation while the
other half is for re-estimation only. Then the estimatedqmtion direction will be indepen-
dent of the re-estimation data, and hence the final rate éhaéebe rid of this term. When

all the factors are strong, this improved rate will be thesasithe one for TIPUP in equation
(47) of Chen, Yang and Zhan@022. We do not pursue this since our paper focuses on time
series data with serial correlation in the noise. Moreoter,empirical performance of our
projection method is very good already.

5. Core Tensor Rank Estimation Using Projected Data. With the projected data and
: : ~(k , : ,
the associated covariance matﬁ)é ,)n+1 defined in ¢.3), define

s k) k) (k)
(5.1) R | =diag2(8, . 1)E, . diag VA(S,) ), ke [K].
Our estimator for, for eachk € [K] is then defined to be
(5.2) P =max{j: \(RY, 1) > 1+, j € [dil},

wherenr — 0 asT — oo, and its practical choice will be discussed in Sectio This
estimator is inspired by the one lfan, Guo and Zhen@022 for independent observations
from a vector factor model.

5.1. Main results. The following assumption is needed for all the theorems is $lec-
tion.

(RE2) (Model Parameter$pr eachk € [K], we assume that for eaghe [di], the value
Aj(diag(AA7})) is uniformly bounded away from 0 and infinity Asd, — co. Moreover,

T = 0((1]16_0%'1—i_akmlc )

Assumption (RE2) ensures that each rowAf has at least one non-zero value, meaning
that at least one factor drives the dynamics of the corredipgrelement |ry§ ) 41+ The as-
sumption can be weakened so that the values are vanishihg, pice of more compllcated
proofs and rates in Theorem?2 Define

(5.3)

(k)

ym+1 ( & A kA qu AkA Z E(k _|_q(;n) Ae kAe kq(k )Ae,kAz,k

The matrixzék) is in fact the expected value &r;,,)nﬂ in (4.3, pretending thaq_(}f) is

m+1
a constant vector.

THEOREMb5.1. Let Assumption (E1), (F1) and (RE2) hold. Define the corighatnatrix

- k
R! T)fH-l = diag 1/2(22 > ;mﬂdlag 12(3 y7)n+1) ke [K].
Then for large enoughl’, d;,, we have in probability\;; ( y,)nH) =p rgld,i_o"“”a’” > 1
for j € [rg], whereasxj(R; 2n+1) <lforj=mr,+1,...,d.

This theorem is in parallel to Theorem 1kdin, Guo and Zhen@022. With this, we can
write

rr = max{j : A (Rz(/kzﬁl) >1, j € [di]}.

In light of this, the estimator;, in (5.2) makes sense. The following theorem shows further
that7}, is in fact consistent for;, for a suitable choice of.



TENSOR FACTOR MODEL ESTIMATION BY PRE-AVERAGING 17

THEOREMbG.2. Let (RE2) and all the assumptions in Theorérhhold. Suppose

Qg1 — Qg T(Te + dk) Kr d
o (TTe R AR) BT TN o) ke (K
R R ) B!

wheregy; is defined in Theoresh.1 Then asl’, d;, — oo, we have for eack € [K],

— —1d1_ak,l+ak,j
(k) =P rk k 200 1—ap ;—1
Aj(Ryi1) = (1 +O0p{rrd, ™" ™" “ar(0) +ar(ok1)}), j € [ril;
<14 Op{br}, J € [dg]/[re],

where for0 < § <1,

K2r 1/2d
aT(5)-:\/;[l+d5/2 _1/2<1/2—|—d1/2+K\/ >+d s T3/2 ],

b Ao 19—1{ (Te +dk K\/ Te +dk Kzrd}
T:: k ' S bl

T T2

20%1 — O TR -1

with ry.d), ar(0), ar(ag,1) andbr assumed(1). Hencery, in (5.2) is a consistent
estimator forr, if we choose)r = C'by for some constar@ > 0.

To gain some insights from the theorem, suppose the strofeyeer for each modé-
unfolded matrix is pervasive, i.ey;; = 1 for eachj € [K], andr;, and K are constants with
dy<---=<dg=<T.Then

dezam—ak,j—l (0)—|—CLT(1) 1/2 bT:O(Tl/zd__kl—Fd__kl/2—|—T_1)-

This shows that the rate of convergencépfis at bestI'~1/2 when K = 2, and7~! when
K > 3. It means that our search fgi can be in the fornC7T~'/2 whenK = 2, andCT~!
when K > 3. The extra rate assumptions in the theorem may not be mongestt than
those in Theoremd.1 and (RE2). For instance, K and eachr, for k € [K]| are constants
with d; < --- < dg =< T and all factors are pervasive, then the extra rate assungpiio
Theorenb.2are satisfied automatically.

5.2. Practical implementation for core rank estimatoiSince there is only one mode-
unfolding matrix from our data, we propose the followingaithm for Bootstrapping the
mode+ fibres to facilitate the search fgg-.

Bootstrapping Algorithm for modé-tensor fibres and projected data

1. Initialize an integeB > 0, and independent sequences of i.i.d. Bernoulli randonalobes
{5§.b) }jela,) for eachh € [B].

2. For each, createW, ¢ R%+*dx where thei-th column isO except itsj-th zero is re-
placed by§ ®) , with j chosen uniformly fromd.].

3. Define new projected dagé a1y = Mag (A — X)Wngq(;”) for eachb € [B].

Essentially, we Bootstrap the modédibres by choosing them randomly with replacement,
and augment the vector of projectiqﬁ’f’ accordingly by pre-multiplying it withiw;". We
control each row ofW, to contains at most 61@’3, meaning that a fibre is at most cho-

sen 8 times in each Bootstrap sample. This facilitates aortitical proof of Theorer.3,
although for all our simulations, a fibre is never chosen ntioaa 8 times.



18

From here on, we drop the subscript+ 1 for the ease of presentation. With the new
projected data, we then create new covariance and coomeleatrices:
T
< () - k)_ (k)T (k) & _
Sy =TSy By RE) = diag V2] 5] diag /(8
t=1

"), kelK),be[B).

THEOREM5.3. Let all the assumptions in Theorén® hold. Suppose for eadhe K],
the elements in the unit vect®f_, 1y =: (u;);e[a,] have the same moment structure up to

the 4th order, and? (ufu?) = d*(1 + o(1)) for i # j asd.,, — oc. Then Theorer.1holds

for R; ,)nH defined there but Witk‘il_(k in Z; ,)nH replaced bbequ(;”) Theorenb.2

holds also forR").

The above theorem means that any procedures for finding theenof factors exploiting
Theorem5.1 and5.2, should work for our Bootstrapped correlation matﬁ%fg too. The
assumption onE(u?u?) is mild, since it is easily see th#t(u?) = d', so that at exact inde-
pendence we havE( ) d‘2 We are essentially assuming that the covariance among
thew;’s areo(d;,?), so thatu andu; are nearly uncorrelated.

For a constant’, we usejr = CT /2 for K =2 andnp = CT~ for K > 3, and calcu-
late

F(C) == max{j : \j(RY)) > 1+ 07, j € [dil}.
We propose to choosg with

N (b
O .= [Cn;%var({ﬁC )(C)}be[B})’

wherevar({x; };c7) is the sample variance 6, },c7. Finally, our estimator for,, is defined
to be

(5.4) 7, := Mode of {7\ (C) }pe(p

The intuition of C and 7 is as follows. If there are, factors for A, then the firstr,
eigenvalues oR( ) for eachb € [B] should be approximately well-separated. Setting alarge
C will create a Iarge thresholtl+ 77 that is almost always lying in betweéq( )) and
>\J+1(R(k)) for some fixed; € [ry] for eachb € [B], so thatvar({rk (C)}oeim) WI|| be
small, or even equals 0.

However, ifC' is small such that + 77 is now in betweemj(f{;kg) and>\j+1(f{;’“g) for
somej € [di]/[rk] and somé € [B], then we expect that this particular threshold will lie in

betweemj/(R;k)) and\; +1(R( )) for somej’ # j and some otherse [B], since all these
eigenvalues are less than or equal to 1 by Thedselnand their variability is originated
from the noise series only, making them less stable comparetien; € [r]. Hence for a

small enouglC, we expecﬁr({?,ib)(C)}be[B]) to be large. The range of values @fsuch
that1 + 7 lies in between\,, (R.")) and),, +1(R'")) for the majority ofb € [B] will then

include C'. The definition ofi, in (5.4 allows for variability arises from the noises and the
ri-th factor which can be weak and hence may not be detectetiBoaistrap samples.

Finally, in all the simulation settings in Sectiéhwe useB = 50 Bootstrap samples. This
is a safe number, since reducing it to 10 in fact hardly chahgeaesults in our simulation
experiments.
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6. Simulation Experiments. In this section, we conduct simulation experiments to
compare the performances of our iterative projection edtins (PROJ) to other state-of-
the-art competitors. The pre-averaging estimator (PRRjésented and compared to PROJ
in the supplement. We also test the performance of our pempank estimators (BCorTH)
with bootstrapping of tensor fibres for tuning parameteec@n. A set of NYC taxi traffic
data is also analyzed in Sectiér¥. An extra set of real data analysis is also presented in the
supplement.

6.1. Simulation settings. For generating our data, we use mod&ll), with elements in
w being i.i.d. standard normal in each repetition of expenme€&or k € [K], each factor
loading matrix A, is generated independently with;, = B;Ry, where the elements in
B € R%**™ arei.i.d.U(uy,us), andRy, € R™*" is diagonal with thegith diagonal element
beingd,f”, 0 < (,; <0.5. Pervasive (strong) factors hage; = 0, while weak factors have
0 <(k,; <0.5.

The elements inF; are independent standardized AR(5) with AR coefficients0037-
0.4,0.2 and -0.1. Same for the elementsAy, ande; in (3.4), but their AR coefficients
are (-0.7,-0.3,-0.4,0.2,0.1) and (0.8,0.4, -0.4,0.2)-fespectively. The standard deviation of
each element oé; is randomly generated with i.i.dA/(0,1)|. Each entry of the matrices
A, ) € RUXren | € [K] is generated with i.i.d. standard normal, but has an inddgen
probability of 0.7 being set exactly to 0. Each experimen¢eated 500 times. We consider
the simulation settings (1), (1) and (Ill), with sub-seitjs (a) and (b), detailed below:

(la) All strong factors with(, ; = 0 for all £, j, andu; = —2, up = 2 (rows of A;, sum to
“small” magnitude (smalk;)).

(lla) One strong factor witlj;, ; =0 and(y » = 0.2 for all k; u; = —2, ug = 2.

(Illa) Two weak factors with(;, ; = 0.1 and(j, 2 = 0.2 for all k; uy = —2, up = 2.

Setting (Ib) to (llib) are the same as (la) to (llla) respesy, except thaty; = 0, us =2, SO
that the row sums o\, have large magnitude, leading to large

To test the performance of different estimation methodsuhéavy-tailed distributions,
we consider two distributions for the innovation processes,, 7. ; ande,: 1) i.i.d. standard
normal; 2) i.i.d.t3. Thus, there are totally twelve profiles considered. Fopalfiles above,
we setr, = ., = 2 for all k.

6.2. Factor loading estimations.We compare our iterative projection estimator (PROJ)
in estimating the factor loading spaces with some statgrpfmethods proposed by recent
literature. All the twelve profiles in Sectiogh1 and five settings of different dimensions are
considered:

. K=2,T=100,d; =dy=40; ii. K=2,T=200,d, =dy=280;
ii. K=3.T=200,d=dy=d3=15 iv. K=3.T=200,d; =ds=ds=25;
V.K:4.T:200,d1:d2:d3:d4:15.

When K = 2, the following methods designed for matrix-valued factadels are com-
pared: The method ofWang, Liu and Chen(2019 is TOPOP inChen, Yang and Zhang
(2022, but we omit its results since it performs much worse thal?dP in Han et al.
(2020, which is the best one among the same type of estimators.oTREA estimator
of Chen and Farf2021) is implemented witho = 0 (the performances fow € {—1,0,1}
are comparable according Yo et al.(2022). The projection method dfu et al. (2022 and
He, Li and Trapan{2022 are referred to as PE (which is in the same spirit as HOOI). In
addition, we also consider some robust procedures, ingduttie robust tensor factor analy-
sis (RTFA) proposed bile et al.(2022 andHe et al.(20233, and the Matrix Kendall's tau
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(MRTS) byHe, Li and Trapan{2022. For all the above methods which involve iterations,
we set the number of iterations to be 30.

For settings withK = 3, we do not includex-PCA and MRTS, since they are only de-
signed forK = 2. For the setting withK' = 4, we further exclude RTFA in comparison, since
it requires too much computational time, as can be obsen/@dble 1 in the supplement.

Figure2 and3 show the logarithm of estimation errors Af under the first four different
settings of dimensions, with normally ahgdistributed errors, respectively. The results with
K =4isincluded in Section 1.2 in our supplement. It can be seatrotlr iterative projection
estimator (PROJ) generally outperforms all competitoralirsettings and dimensions we
consider, and is at least on par with other competitors.

More specifically, wher = 2, all methods perform reasonably well in sub-setting (af), bu
they all perform poorly in sub-setting (b) except our itemtprojection estimator (PROJ).
The only difference between sub-setting (a) and (b) is tiebhtean of each element Af; in
sub-setting (a) is 0 while it is non-zero in sub-setting Whenever the mean of the elements
are not 0, the pre-averaging estimator, and hence theivteaojection estimator, can take
advantage since pre-averaging is based on summing rog ¢for estimatingA,) or A,
(for estimatingA. ;).

Regarding factor strengths, the advantage of PROJ is maabledn Setting (II) and (l11),
when other methods tend to give poorer estimates in the presaf weak factors in these
settings. Our method is also robust to heavy-tailed ereord,perform better than the robust
procedure RTFA and MRTS in all scenarios. WhEn= 3 (and 4 as well; see Section 1.2
in our supplement), most methods take advantage of a ldggand perform better. Our
iterative projection estimator still performs better thanat least on par with all competitors.
For computation time, see Section 1.2 of our supplement.

6.3. Core tensor rank estimationsWe compare the performance of our BCorTh with
other competitors for estimating the rank of core tensong methods we consider include
ITIP-ER byHan, Zhang and Chef20223, «-PCA-ER byChen and Fai2021), PE-ER by
Yu et al. (2022 andHe, Li and Trapan{2022, RTFA-ER byHe et al.(2022 andHe et al.
(20233, and MRTS-ER byHe, Li and Trapan{2022. Most of these methods are based on
the spirit of eigenvalue-ratio criteria of the (adjustedinple covariance matrices, which are
defined differently in their corresponding processes dbfialoading estimations. For ease of
presentation, the following three set of dimensions aresiciamed:

. K =2,T=100, dy =dy =40; ii. K=2,T =200, dj =dy=280; iii. K =3.
T =200, dj, = 25.

Table 1 records the correct proportion over 500 repetitions ofediht rank estimators
under different settings and dimensions. For BCorTh, wetlsethumber of bootstrapped
samples to bé = 50 for settings withK = 2, andB = 10 for settings withK" = 3. We have
tested that reducing from 50 to 10 does not significantly change the results of BGor
Also, for K = 3, we do not report the results fo-PCA-ER and MRTS-ER since they are
only designed for matrix time serie& (= 2).

From Tablel, all rank estimators perform better whénd, or K increases, and BCorTh
outperforms all competitors in every setting and dimenswenconsider. Whetk( = 2, it is
obvious that all methods, except BCorTh, perform quite jydarSetting (I1) and (lll) when
weak factors are present (especially in sub-setting ())evBCorTh can still give relatively
good performances. MRTS-ER andPCA-ER give extremely poor estimates in all settings
except (la). BCorTh is robust as well, since changing therelistribution from normal tas
does not have large effects in its estimation accuracy.

When K = 3, the accuracy of all estimators increases, and BCorThgiti#ls the best
performances among all competitors.
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Fig 2: Plot of estimation erro{Q;Q} — U, Uf|| (in log-scale) fork = 2, normally dis-
tributed errors. In each panel, the left six boxplots (in) megresent sub-setting (a), while the
right six boxplots (in blue) represent sub-setting (b).

6.4. NYC taxi traffic. We analyze taxi traffic pattern in New York city. The data urdss
all individual taxi rides operated by Yellow Taxi within NeYork City, published at

https://www1.nyc.gov/site/tic/about/tlc-trip-recedata.page

To simplify the discussion, we only consider rides within ifattan Island. The dataset
contains 1.1 billion trip records within the period of Janua, 2011 to December 31, 2021.
Each trip record includes fields capturing pick-up and dvéiplates/times, pick-up and drop-
off locations, trip distances, itemized fares, rate tygegment types, and driver-reported
passenger counts. Our study focuses on the pick-up andafiralates/times, and pick-up
and drop-off locations of each ride.

The pick-up and drop-off locations in Manhattan are codezbeting to 69 predefined
zones and we will use them to classify the pick-up and drdépeafations. Furthermore,
we divide each day into 24 hourly periods, with the first hpyrériod from Oam to l1am.


https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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Fig 3: Plot of estimation errof{Q:Q} — U, U7|| (in log-scale) fork = 3,7 = 200, t3-
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the right four boxplots (in blue) represent sub-setting (b)

The total number of rides moving among the zones within eacin Is recorded, yielding a
X; € RO9x69x21 tensor for each day. More specificaliy; ;2 i3+ is the number of trips from
zonei; (the pick-up zone) to zong (the drop-off zone) and the pickup time is within the

th hourly period on day. We consider business day and non-business day separtgalye
we will analyze two tensor time series. The business-dagsér 2770 days long, and the
non-business-day series is 1248 days long, within the pefidanuary 1, 2011 to December
31, 2021.

We first estimate the rank of the core tensors using BCorThedlsas other state-of-the-
art methods. BCorTh gives,72,73) = (3,3,2) for business-day series, aid, r2,73) =
(3,2,2) for non-business-day series, whilg,, 7, 73) = (1,1,1) for iTIP-ER, PE-ER and
RTFA-ER. However, based on our common knowledge and prevaoalysis conducted by
Chen, Yang and Zzhan(@022, (r1,72,73) = (1,1,1) is obviously not a reasonable choice for
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Setting BCorTh iTIP-ER PE-ER a-PCA-ER RTFA-ER MRTS-ER
N | t3 N | t3 N | t3 N | t3 N | t3 N | t3

K=2,T=100, dy =dgy =40
(la) .994 988 | .894 | .866 | .892 | .878 | .842 | .810 | .894 | .884 | .842 | .810
(Ib) 998 | 1.000| .830 | .794 | .908 | .896 | .014 | .012 | .906 | .898 | .040 | .030
(UEY) .994 966 | .754 | .640| .762 | .690 | .010 | .038 | .768 | .702 | .026 | .022
(lib) .954 .928 | .070| .084 | .126 | .080 | .014 | .046 | .092 | .070 | .026 | .056
(UIEY) .758 .684 | 556 | .482 | .334 | .408 | .054 | .092 | .320 | .372 | .048 | .068
(11b) 772 712 | .108 | .202 | .052 | .116 | .122 | .180 | .048 | .106 | .128 | .182
K =2, T=200,dy =dg =80
(la) .994 990 | .926 | .910 | .768 | .854 | .944 | 904 | .768 | .842 | .768 | .804
(Ib) .998 | 1.000 | .966 | .956 | .073 | .898 | .006 | .012 | .686 | .884 | .020 | .022
(lla) .992 972 | .814 | .796 | .438 | .632 | .000 | .010 | .406 | .602 | .000 | .000
(lib) .998 998 | .258 | .176| .332 | .230 | .004 | .024 | .296 | .230 | .004 | .016
(lla) .594 .620 | .188 | .292 | .014 | .092 | .000 | .010 | .016| .092 | .000 | .010
(11b) .978 .968 | .096 | .074 | .078 | .082 | .060 | .074 | .070| .080 | .028 | .054

K =3, T =200, d| =dg =25

(la) 1.000| 1.000 | .996 | .990 | .992 | 980 | / / 776 | 732 / /
(Ib) 1.000| .998 | .998 | .986 | .972 | .982 / / .998 | 1.000 | / /
(na) 1.000| .988 | .988 | .968 | .834 | .854| / / 106 | .072 / /
(lb) 994 | 992 | 988 | 968 | .948 | 940 | / / .948 | .920 / /
(Iha) 930 | .856 | .910 | .866 | .522 | 544 | / / .100 | .056 / /
(Ib) 996 | .996 | .920 | .868 | .764 | .738 / / .804 | .760 / /

TABLE 1
Correct Proportion (71,72) = (2,2) for K =2, (¥1,79,73) = (2,2, 2) for K = 3) of rank estimation under
different settings, dimensions and error distributions for normally distributed errorstg for g distributed
errors).

the rank of the core tensor, since a single factor can hamsufficient to reveal all traffic
patterns. It is very likely that all of iTIP-ER, PE-ER and R¥ER fail to detect the weak
factors in both time series, since these methods are dekiga@alyze pervasive factors only.
For ease of presentation and comparison, wgtiséz, 73) = (3, 3,2) for both business-day
and non-business-day series to estimate their factorrigadand present the results of our
iterative projection estimator.

Figure4 and5 show the heatmaps of the loading matriees (pick-up locations) for the
business day and non-business day series, respectivisiygden that during business days,
the midtown/Times square area (tourism and office building$eavily loaded on Factor
1, east village/lower east (arts, music venues and reste)jran Factor 2 and upper east
side (affluent neighborhoods and museums) on Factor 3. Febusiness days, the overall
pattern for the three factors is generally similar, but vattme non-negligible differences.
The area around Penn Station (large transportation hut} lestremely heavily in Factor 2,
while its loading is much lighter than the midtown center amdtown east for business day
series, where a lot of office buildings locate.

Figure6 and 7 show the loading matriceA, (drop-off locations) for the business day
and non-business day series, respectively. For both lBssdays and non-business days, the
drop-off factor matrices are quite similar to their pickdagtors. Similarly, the area around
Penn Station is heavily loaded in non-business days, bweisshadowed by midtown center
in business days. In addition, in Factor 1 of non-businegs daries, west village (arts, music
venues and theatres) loads heavily together with easgeilla

Table 2 and 3 show the loading matriceA s (time of day) for business days and non-
business days, respectively. For ease of presentatiohavetbe estimated loading matrices
after a varimax rotation, scaled by 30 for a cleaner view. Bt@iness days, it can be seen
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that day-time business hour (9am to 4pm) and evening hopra (@ 12am) load heavily
on Factor 1, while morning rush-hours (6am to 9am), evenisg+hours (5pm to 7pm) and
night life hours (Oam to 2am) load heavily on Factor 2. For-basiness days, the patterns
of estimated factors are significantly different: Eveniogiis from 6pm to 1am load heavily
on Factor 1, while late-night hours from lam to 5am load Hga Factor 2. The differ-
ent factor loadings reveal the difference between peopi@®lling habits in business days
and non-business days. During non-business days, moraimd €vening) rush-hours and
day-time business hours no longer appear in the factordewkiople tend to travel more

frequently by taxi at evening and at night, and their niglat lasts to much later hours than
in the business days.

Oam 2 4 6 8 10 12pm 2 4 6 8 10 12am
1/6 32110 1 47 98 7 7 7 7 76 4 6 8 98 87
2|12 74 2 1 -2 -11 -16 80 3 -1 2 0 -2 0 3-7 -9 -2 3 0 338

TABLE 2
Estimated loading matriX 5 for hour of day fibre, business day, after rotation and saalidagnitudes larger
than 7 are highlighted in red.

Oam 2 4 6 8 10
19 12 1 -1 -2 -1 1 2 3 5 5
2|0 17 14 13 105 1 -1 -1 -2 0O

2pm 2 4 6 8 10 12am
5 4 68 9 9 9 10 12
5 420020 -2 4

1
5
2

5 5 5
4 4 5 4

TABLE 3
Estimated loading matriX 3 for hour of day fibre, non-business day, after rotation analisg. Magnitudes
larger than 7 are highlighted in red.
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Fig 4: Loadings on three pickup factors for business dageseri
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Fig 6: Loadings on three dropoff factors for business daieser

SUPPLEMENTARY MATERIAL

Proof of Theorems, Extra Simulations and Data Analysis
Extra simulation results, analysis of a set of matrix-vdlpertfolio return data, a brief intro-
duction to the use of the R packagiensor Pr eAve and the proofs of all the theorems in
this paper can be found http://stats.Ise.ac.uk/lam/Supp-PROJ.[ddfe R codes to replicate
the results of our simulation experiments and data anabeede foundere
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