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ABSTRACT
We propose Robust Narrowest Significance Pursuit (RNSP), a methodology for detecting localized regions in
data sequences which each must contain a change-point in the median, at a prescribed global significance
level. RNSP works by fitting the postulated constant model over many regions of the data using a new sign-
multiresolution sup-norm-type loss, and greedily identifying the shortest intervals on which the constancy
is significantly violated. By working with the signs of the data around fitted model candidates, RNSP fulfils
its coverage promises under minimal assumptions, requiring only sign-symmetry and serial independence
of the signs of the true residuals. In particular, it permits their heterogeneity and arbitrarily heavy tails. The
intervals of significance returned by RNSP have a finite-sample character, are unconditional in nature and
do not rely on any assumptions on the true signal. Code implementing RNSP is available at https://github.
com/pfryz/nsp.
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1. Introduction

The problem of uncertainty quantification for possibly multiple
parameter changes in time- or space-ordered data is motivated
by the practical question of whether any suspected changes
reflect real structural changes in the underlying stochastic
model, or are due to random fluctuations. Approaches to this
problem include confidence sets associated with simultaneous
multiscale change-point estimation (Frick, Munk, and Sieling
2014; Pein, Sieling, and Munk 2017; Vanegas, Behr, and Munk
2022), post-selection inference (Hyun, G’Sell, and Tibshirani
2018; Duy et al. 2020; Hyun et al. 2021; Jewell, Fearnhead, and
Witten 2022), inference without selection and post-inference
selection via Narrowest Significance Pursuit (Fryzlewicz 2024),
asymptotic confidence intervals conditional on the estimated
change-point locations (Bai and Perron 1998; Eichinger and
Kirch 2018; Cho and Kirch 2022), False Discovery Rate (Hao,
Niu, and Zhang 2013; Li and Munk 2016; Cheng, He, and
Schwartzman 2020), and Bayesian inference (Lavielle and Lebar-
bier 2001; Fearnhead 2006). These approaches go beyond mere
change-point detection and offer statistical significance state-
ments regarding the existence and locations of change-points in
the statistical model underlying the data.

In this article, we are concerned with the following problem:
given a sequence of noisy observations, automatically determine
localized regions of the data which each must contain a change-
point in the median, at a prescribed global significance level α.
The methodology we introduce, referred to as Robust Narrowest
Significance Pursuit (RNSP), achieves this for the piecewise-
constant median model, capturing changes in the level of the
median. By its algorithmic construction, RNSP offers exact
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finite-sample coverage guarantees with practically no distribu-
tional assumptions on the data, other than serial independence
of the signs of the true residuals and their sign-symmetry, a weak
requirement which is immaterial for continuous distributions
(as all, even non-symmetric, continuous distributions are sign-
symmetric). In contrast to the existing literature, RNSP requires
no knowledge of the distribution on the part of the user, and
permits arbitrarily heavy tails, heterogeneity over time and/or
lack of symmetry. In addition, RNSP is able to handle distri-
butions that are continuous, continuous with mass points, or
discrete, where these properties may also vary over the signal.
The execution of RNSP does not rely on having an estimate of
the number or locations of change-points. Critical values needed
by RNSP do not depend on the noise distribution, and can be
accurately approximated analytically. RNSP explicitly targets the
shortest possible intervals of significance. It is worth noting,
however, that our large-sample consistency result for RNSP,
shown in Section 4, relies on stronger assumptions than its finite-
sample coverage properties, discussed in Sections 2 and 3. We
now situate RNSP in the context of the existing literature.

Heterogeneous Simultaneous Multiscale Change Point Esti-
mator, abbreviated as H-SMUCE (Pein, Sieling, and Munk
2017), an extension of SMUCE (Frick, Munk, and Sieling
2014), is a change-point detector in the heterogeneous Gaussian
piecewise-constant model Yi = fi +σiεi, where fi is a piecewise-
constant signal, εi are iid N(0, 1) variables, and σi can only
change when fi does. In Section A.1 of their work, the authors
provide an algorithmic construction of confidence intervals for
the locations of the change-points in fi, which involves screening
the data for short intervals over which a constant signal fit is
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unsuitable and they must therefore contain change-points. Cru-
cially, this algorithmic construction relies on the knowledge of
scale-dependent critical values (for measuring the unsuitability
of a locally constant fit), which are not available analytically but
only by simulation, and therefore the method does not extend
automatically to unknown noise distributions (as the analyst
needs to know what distribution to sample from). In Section 5,
we show that H-SMUCE suffers from inflated Type I error rates
in the sense that the thus-constructed confidence intervals, in
the examples of Gaussian models shown, do not all contain at
least one true change-point each in more than 100(1 − α)% of
the cases, contrary to what this algorithmic construction sets
out to do. H-SMUCE is also prone to failing if the model is
mis-specified, for example if the distribution of the data has a
mass point (which is unsurprising in view of its assumption of
Gaussianity).

Multiscale Quantile Segmentation (Vanegas, Behr, and Munk
2022, MQS), another extension of SMUCE, is a procedure
for detecting possibly multiple changes in a given piecewise-
constant quantile of the input data sequence, which includes
the median as a special case. MQS estimates the number of
change-points in the quantile function as the minimum among
those candidate fits for which the empirical residuals pass a
certain multiscale test at level α, where the empirical residuals
are defined as binary exceedance sequences of the data over the
level defined by each candidate fit. Working with such binary
exceedance sequences means that MQS makes no distributional
assumptions on the data other than their serial independence.
Like SMUCE and H-SMUCE, MQS then defines a confidence
set around the estimated signals as a set of all feasible (in the
same sense) signal fits at level α. This then enables the concep-
tual and algorithmic construction of asymptotic simultaneous
confidence intervals for the change-point locations, which are
guaranteed to (each) contain a change-point with probability 1−
α+o(1). Chen, Shah, and Samworth (2014) provide a critique of
SMUCE from the inferential point of view, which also applies to
H-SMUCE and MQS. In Section 5, we illustrate the advantages
and disadvantages of MQS, as implemented in the R package
mqs. In contrast to MQS, the coverage guarantees offered by
RNSP are wholly based on exact inequalities and therefore hold
for any sample size, which is reflected in its performance shown
in Section 5.

The (non-robust) Narrowest Significance Pursuit (NSP; Fry-
zlewicz, 2024) is able to handle heterogeneous data in a variety
of models, including the piecewise-constant signal plus inde-
pendent noise model. However, NSP requires that the noise, if
heterogeneous, is within the domain of attraction of the normal
distribution and is symmetric, neither of which is assumed
in RNSP. The self-normalized statistic used in NSP includes a
term resembling an estimate of the local variance of the noise
which, however, is only unbiased under the null hypothesis of no
change-point being present locally. The fact that the same term
over-estimates the variance under the alternative hypothesis,
reduces the power of the detection statistic, which leads to
typically long intervals of significance. We illustrate this issue in
Section 5 and show that RNSP offers a significant improvement.

Bai and Perron (1998, 2003), working with least-squares esti-
mation of multiple change-points in regression models under
possible heterogeneity of the errors, describe a procedure for

computing confidence intervals conditional on detection, with
asymptotic validity guarantees. Crucially, it does not take into
the account the uncertainty associated with detection, which
can be considerable especially for the more difficult problems
(e.g., see the “US ex-post real interest rate” case study in Bai
and Perron (2003), where there is genuine uncertainty between
models with 2 and 3 change-points; we revisit this example in
Section 6.1). By contrast, RNSP produces intervals of significant
change in the median that are not conditional on detection and
have a finite-sample nature.

The article is organized as follows. Section 2 motivates
RNSP and sets out its general algorithmic framework. Section 3
describes how RNSP measures the local deviation from model
constancy and gives finite-sample theoretical performance guar-
antees for RNSP. Section 4 quantifies the large-sample behavior
of RNSP. Section 5 contains numerical examples and compar-
isons. Section 6 includes examples showing the practical use-
fulness of RNSP. Section 7 concludes with a brief discussion.
Software implementing RNSP is available at https://github.com/
pfryz/nsp.

2. Motivation and Review of RNSP Algorithmic
Setting

2.1. RNSP: Context and Modus Operandi

RNSP discovers regions in the data in which the median departs
from constancy, at a certain global significance level. This is
in contrast to NSP (Fryzlewicz 2024), which targets the mean.
RNSP does not make moment assumptions about the data, and
therefore the median is a natural measure of data centrality. We
now review the components of the algorithmic framework that
are shared between NSP and RNSP, with the generic measure-
ment of local deviation from the constant model as one of its
building blocks. In Section 3, we introduce the particular way
in which local deviation from the constant model is measured
in RNSP, which is appropriate for the median and hence funda-
mentally different from NSP.

RNSP operates in the signal plus noise model
Yt = ft + Zt , t = 1, . . . , T, (1)

in which the signal {ft}T
t=1 and the variables {Zt}T

t=1 satisfy the
assumptions below. Define sign(x) = I(x > 0) − I(x < 0),
where I(·) is the indicator function.

Assumption 2.1. In (1), ft is a piecewise-constant vector with an
unknown number N and locations 0 = η0 < η1 < · · · < ηN <

ηN+1 = T of change-points. (The location ηj is a change-point
if fηj �= fηj+1.)

Assumption 2.2. (a) ∀ t, M(Zt) = 0, where M is the median
operator. (If the median is nonunique, we require 0 ∈
M(Zt).)

(b) The variables {Zt}T
t=1 are sign-symmetric, that is P(Zt >

0) = P(Zt < 0), ∀ t.
(c) The variables {sign(Zt)}T

t=1 are mutually independent.

While Assumption 2.1 holds throughout the article, Assump-
tion 2.2 is not formally needed until Section 3.2. Section 4
provides additional results under extra assumptions.

https://github.com/pfryz/nsp
https://github.com/pfryz/nsp
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{Zt}T
t=1 do not have to be identically distributed, and can

have arbitrary mass atoms, or none, as long as their distribu-
tions satisfy Assumption 2.2. The distribution(s) of {Zt}T

t=1 can
be unknown to the analyst, and we do not impose moment
assumptions. Any zero-median continuous distribution (even
one with an asymmetric density function) is sign-symmetric.
The requirement of the independence of {sign(Zt)}T

t=1 is weaker
than that of the independence of {Zt}T

t=1 itself: for example if
Zt is a (G)ARCH process driven by symmetric, independent
innovations, then sign(Zt) is serially independent, while Zt is
not. While the results of Section 3 require the independence of
sign(Zt), those in Section 4 require the independence of Zt ; see
Section 4 for details.

RNSP achieves the high level of generality in terms of the
permitted distributions of Zt thanks to its use of the sign trans-
formation. The use of 0 in sign(x) is critical for RNSP’s objec-
tive to provide exact finite-sample coverage guarantees also for
discrete distributions and continuous distributions with mass
points, an aspect we discuss in Section 3.1.1. The sign function is
a critical building block of various procedures for nonparamet-
ric change-point testing and estimation; key references include
Bhattacharyya and Johnson (1968), Carlstein (1988), and Düm-
bgen (1991).

2.2. (R)NSP: Generic Algorithm

The generic algorithmic framework underlying both RNSP and
the non-robust NSP in Fryzlewicz (2024) is the same and is
based on recursively searching for the shortest sub-samples in
the data with globally significant deviations from the baseline
model. In this section, we introduce this shared generic frame-
work. In the following sections, we show how RNSP diverges
from NSP through its use of a robust measure of deviation from
the baseline model, suitable for the broad class of distributions
specified in Assumption 2.2.

We start with a pseudocode definition of the RNSP algo-
rithm, in the form of a recursively defined function RNSP. In
its arguments, [s, e] is the current interval under consideration
and at the start of the procedure, we have [s, e] = [1, T];
Y (of length T) is as in the model formula (1); M is the
minimum guaranteed number of sub-intervals of [s, e] drawn
(unless the number of all sub-intervals of [s, e] is less than M,
in which case drawing M sub-intervals would mean repetition);
λα is the threshold corresponding to the global significance
level α (typical values for α would be 0.05 or 0.1) and τL
(respectively τR) is a functional parameter used to specify the
maximum extent of overlap of the left (respectively right) sub-
interval of [s, e] searched next after having identified a region
of significance within [s, e], if any. The no-overlap case would
correspond to τL = τR ≡ 0. In each recursive call on
a generic interval [s, e], RNSP adds to the set S any glob-
ally significant local regions (intervals) of the data identified
within [s, e] on which Y is deemed to depart significantly (at
global level α) from the baseline constant model. We pro-
vide more details underneath the pseudocode below. In the
remainder of the article, the subscript [s,e] relates to a constant
indexed by the interval [s, e] whose value will be clear from the
context.

1: function RNSP(s, e, Y , M, λα , τL, τR)
2: if e − s < 1 then
3: STOP
4: end if
5: if M ≥ 1

2 (e − s + 1)(e − s) then
6: M := 1

2 (e − s + 1)(e − s)
7: draw all intervals [sm, em] ⊆ [s, s + 1, . . . , e], m =

1, . . . , M, s.t. em − sm ≥ 1
8: else
9: draw a representative (see description below) sample

of intervals [sm, em] ⊆ [s, s + 1, . . . , e], m = 1, . . . , M, s.t.
em − sm ≥ 1

10: end if
11: for m ← 1, . . . , M do
12: D[sm,em] := DeviationFromConstant-

Model(sm, em, Y)

13: end for
14: M0 := arg minm{em−sm : m = 1, . . . , M; D[sm,em] >

λα}
15: if |M0| = 0 then
16: STOP
17: end if
18: m0 :=AnyOf(arg maxm{D[sm,em] : m ∈ M0})
19: [s̃, ẽ] :=ShortestSignificantSubinterval

(sm0 , em0 , Y , M, λα)

20: add [s̃, ẽ] to the set S of significant intervals
21: RNSP(s, s̃ + τL(s̃, ẽ, Y), Y , M, λα , τL, τR)

22: RNSP(ẽ − τR(s̃, ẽ, Y), e, Y , M, λα , τL, τR)

23: end function
The RNSP algorithm is launched by the pair of calls: S :=

∅; RNSP(1, T, Y , M, λα , τL, τR). On completion, the output of
RNSP is in the set S ; when the context requires it, we write
the output asS{RNSP(1, T, Y , M, λα , τL, τR)}. We now comment
on the RNSP function line by line. In lines 2–4, execution is
terminated for intervals that are too short. In lines 5–10, a check
is performed to see if M is at least as large as the number of all
sub-intervals of [s, e]. If so, then M is adjusted accordingly, and
all sub-intervals are stored in {[sm, em]}M

m=1. Otherwise, a sample
of M sub-intervals [sm, em] ⊆ [s, e] is drawn in which sm and em
are all possible pairs from an (approximately) equispaced grid on
[s, e] which permits at least M such sub-intervals. The ability to
adjust the M parameter offers the users a choice between a faster
but less thorough procedure (for lower values of M) and a slower
but more accurate one (for higher values of M). The reason for
not necessarily using the maximum possible number of intervals
is that this may increase the computation time beyond what is
acceptable to the user. All examples in the article use M = 1000.

In lines 11–13, each sub-interval [sm, em] is checked to see to
what extent the response on this sub-interval (denoted by Ysm:em )
deviates from the baseline constant model. This core step of the
RNSP algorithm will be described in more detail in Section 3.

In line 14, the measures of deviation obtained in line 12
are tested against threshold λα , chosen to guarantee the global
significance level α. How to choose λα is independent of the
distribution of Zt if it is continuous, and there is also a simple
distribution-independent choice of λα for discrete distributions
and continuous distributions with probability masses; see Sec-
tion 3.2. The shortest sub-interval(s) [sm, em] for which the test
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rejects the baseline model at global level α are collected in
set M0. In lines 15–17, if M0 is empty, then the procedure
decides that it has not found regions of significant deviations
from the constant model on [s, e], and stops on this interval as a
consequence. Otherwise, in line 18, the procedure continues by
choosing the sub-interval, from among the shortest significant
ones, on which the deviation from the baseline constant model
has been the largest. The chosen interval is denoted by [sm0 , em0 ].

In line 19, [sm0 , em0 ] is searched for the shortest sub-interval
on which the hypothesis of the baseline model is rejected locally
at a global level α. Such a sub-interval certainly exists, as
[sm0 , em0 ] itself has this property. The structure of this search
again follows the workflow of the RNSP procedure; it proceeds
by executing lines 2–18 of RNSP, but with sm0 , em0 in place of
s, e. The chosen interval is denoted by [s̃, ẽ]. This second-stage
search is important to RNSP’s pursuit to produce short intervals:
indeed, if the sample of intervals [sm, em] contained insufficiently
short intervals (perhaps because an insufficiently large M was
chosen), then, without the second-stage search in line 19, the
intervals of significance returned by RNSP might be overly long.
The second-stage search in line 19 can be seen as a guard against
a small M, or in other words against an insufficiently fine original
grid of interval endpoints. In line 20, the selected interval [s̃, ẽ]
is added to the output set S .

Because of the second-stage search in line 19, pre-drawing
the intervals [sm, em] prior to launching the RNSP procedure
(rather than drawing them recursively on each current interval
as it done in the algorithm) is not an option for RNSP. Indeed,
in the presence of the second-stage search, the selected interval
of significance [s̃, ẽ] may be misaligned with the initial grid of
intervals drawn, in which case the grid of intervals to the left
and to the right of [s̃, ẽ] must be redrawn to avoid leaving un-
examined gaps in the data.

In lines 21–22, RNSP is executed recursively to the left and to
the right of the detected interval [s̃, ẽ]. However, we optionally
allow for some overlap with [s̃, ẽ]. The overlap, if present, is a
function of [s̃, ẽ] and, if it involves detection of the location of
a change-point within [s̃, ẽ], then it is also a function of Y . An
example of the relevance of this is given in Section 6.1.

3. Robust NSP: Measuring Deviation from the
Constant Model

3.1. Deviation Measure: Motivation, Definition, and
Properties

The main structure of the DeviationFromConstant-
Model(sm, em, Y) operation is as follows: (a) Fit the best,
in the sense described precisely later, constant model to
Ysm:em . (b) Examine the signs of the empirical residuals
from this fit. If their distribution is deemed to contain a
change-point (which indicates that the constant model fit is
unsatisfactory on [sm, em] and therefore the model contains
a change-point on that interval), the value returned by
DeviationFromConstantModel(sm, em, Y) should be large;
otherwise small.

A key ingredient of our measure of deviation is a multiresolu-
tion sup-norm introduced below, used on the signs of the input
rather than in the original data domain. Its basic building block

is a scaled partial sum statistic, defined for an arbitrary input
sequence {xt}T

t=1 by Us,e(x) = (e−s+1)−1/2 ∑e
t=s xt . We define

the multiresolution sup-norm (Nemirovski 1986; Li 2016) of an
input vector x (of length T) with respect to the interval set I as
‖x‖I = max[s,e]∈I |Us,e(x)|. The set I used in RNSP contains
intervals at a range of scales and locations. A canonical example
of a suitable interval set I is the set Ia of all subintervals of
[1, T]. We will use Ia in defining the largest acceptable global
probability of spurious detection. However, for computational
reasons, DeviationFromConstantModel will use a smaller
interval set (we give the details later). This will not affect the
exactness of our coverage guarantees, because, naturally, if J ⊆
I , then ‖x‖J ≤ ‖x‖I . We also define the restriction of I to an
arbitrary interval [s, e] as I[s,e] = {[u, v] ⊆ [s, e] : [u, v] ∈ I}.
Note the trivial inequality

‖xs:e‖Ia[s,e] ≤ ‖x‖Ia (2)

for any [s, e] ⊆ [1, T]. When the above multiresolution sup-
norm is applied to the signs of the input, as is done in this
work, rather than the original input, we refer to it as the sign-
multiresolution sup-norm. When applied to the empirical resid-
uals from a candidate constant fit on an interval, it can be viewed
as a simple robust multiscale measure of data fidelity of the given
candidate fit on all time scales up to the length of the interval.

We now define the deviation measure D[sm,em] := Devi-
ationFromConstantModel(sm, em, Y), which satisfies the
property that if there is no change-point on the interval [sm, em],
then it is guaranteed that

D[sm,em] ≤ ‖sign(Zsm:em)‖Ia[sm ,em] . (3)

The discussion below assumes that there is no change-point in
[sm, em]. For the true constant signal fsm:em , denote f[sm,em] :=
fsm = · · · = fem . There are only at most 2(em − sm) + 3
different possible constants f̃[sm,em] leading to different sequences
{sign(Yt − f̃[sm,em])}em

t=sm . To see this, sort the values of Ysm:em
in nondecreasing order to create Y(1), Y(2), . . . , Y(em−sm+1). Take
candidate constants f̃ {j}

[sm,em], j = 1, . . . , 2(em − sm) + 3, defined
as follows.

f̃ {1}
[sm,em] < Y(1) (but otherwise arbitrary)

f̃ {2}
[sm,em] = Y(1)

f̃ {3}
[sm,em] = 1

2
(Y(1) + Y(2))

f̃ {4}
[sm,em] = Y(2)

f̃ {5}
[sm,em] = 1

2
(Y(2) + Y(3))

...
f̃ {2(em−sm)+2}
[sm,em] = Y(em−sm+1)

f̃ {2(em−sm)+3}
[sm,em] > Y(em−sm+1) (but otherwise arbitrary). (4)

We have the following simple result; the proof is trivial and we
omit it.

Proposition 3.1. Under Assumption 2.1, assume no change-
point in [sm, em] and denote f[sm,em] := fsm = · · · = fem . Let
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the constants f̃ {j}
[sm,em], j = 1, . . . , 2(em − sm) + 3 be defined as in

(4). There exists a j0 ∈ {1, . . . , 2(em − sm) + 3} such that

{sign(Yt − f[sm,em])}em
t=sm = {sign(Yt − f̃ {j0}

[sm,em])}em
t=sm . (5)

We now define our measure of deviation D[sm,em], and prove
its key property as a corollary to Proposition 3.1.

Definition 3.1. Let the constants f̃ {j}
[sm,em], j = 1, . . . , 2(em−sm)+3

be defined as in (4). We define

D[sm,em] := min
j∈{1,...,2(em−sm)+3} ‖sign(Ysm:em − f̃ {j}

[sm,em])‖Ia[sm ,em] .

(6)

D[sm,em] tries all possible baseline constant model fits
on [sm, em] and chooses the one that minimizes the sign-
multiresolution norm of the residuals, to ensure that the finite-
sample coverage guarantees hold, as we will see below.

Corollary 3.1. Under Assumption 2.1, for any interval [sm, em]
on which there is no change-point, we have

D[sm,em] ≤ ‖sign(Zsm:em)‖Ia[sm ,em] . (7)

In other words, the deviation measure defined in (6) satisfies the
desired property (3).

Proof. Let the index j0 be as in the statement of Proposition 3.1.
We have

D[sm,em] = min
j∈{1,...,2(em−sm)+3} ‖sign(Ysm:em − f̃ {j}

[sm,em])‖Ia[sm ,em]

≤ ‖sign(Ysm:em − f̃ {j0}
[sm,em])‖Ia[sm ,em]

= ‖sign(Ysm:em − f[sm,em])‖Ia[sm ,em]
= ‖sign(Zsm:em)‖Ia[sm ,em] .

This leads to the following guarantee for the RNSP algorithm.

Theorem 3.1. Let Assumption 2.1 hold, and let S = {S1, . . . , SR}
be the set of intervals returned by the RNSP algorithm.
We have P

(∃ i = 1, . . . , R ∀ j = 1, . . . , N [ηj, ηj + 1] �⊆ Si
) ≤

P(‖sign(Z)‖Ia > λα).

Proof. On the set ‖sign(Z)‖Ia ≤ λα , each interval Si must
contain a change-point as if it did not, then by Corollary 3.1 and
inequality (2), we would have to have

DSi ≤ ‖sign(Z)‖Ia ≤ λα . (8)

However, the fact that Si was returned by RNSP means, by line
14 of the RNSP algorithm, that DSi > λα , which contradicts (8).
This completes the proof.

Theorem 3.1 should be read as follows. Let α =
P(‖sign(Z)‖Ia > λα). For a set of intervals returned by RNSP,
we are guaranteed, with probability of at least 1 − α, that there
is at least one change-point in each of these intervals. Therefore,
S = {S1, . . . , SR} can be interpreted as an automatically chosen
set of regions (intervals) of significance in the data. In the no-
change-point case (N = 0), the probability of obtaining one of

more intervals of significance (R ≥ 1) is bounded from above
by P(‖sign(Z)‖Ia > λα). Theorem 3.1 is of a finite-sample
character and holds exactly and for any sample size. Moreover, it
is independent of the form of the innovations Z. Assumptions on
Z will only be needed in controlling the term P(‖sign(Z)‖Ia >

λα); we defer this to Section 3.2.
We emphasize that Theorem 3.1 does not promise to detect

all the change-points, or to do so asymptotically as the sample
size gets larger: this would be impossible without assumptions
on the strength of the change-points (involving spacing between
neighboring change-points and the sizes of the jumps). This
aspect of RNSP is investigated in Section 4. Instead, Theorem 3.1
promises that every interval of significance returned by RNSP
must contain at least one change-point each, with a certain
global probability adjustable by the user. Therefore, one partic-
ular implication of Theorem 3.1 is that we must have

P(N ≥ R) ≥ 1 − P(‖sign(Z)‖Ia > λα). (9)

The intervals of significance returned by RNSP have an
“unconditional confidence interval” interpretation: they are not
conditional on any prior detection event, but indicate regions
in the data each of which must unconditionally contain at least
one change in the underlying signal ft , with a global probabil-
ity of at least 1 − α. Therefore, as in NSP (Fryzlewicz 2024),
RNSP can be viewed as performing “inference without selec-
tion” (where “inference” refers to producing the RNSP inter-
vals of significance and “selection” to the estimation of change-
point locations, absent from RNSP). This viewpoint also enables
“post-inference selection” or “in-inference selection” if the exact
change-point locations (if any) are to be estimated within the
RNSP intervals of significance after or during the execution of
RNSP.

3.1.1. Deviation Measure: Discussion
Achieving computational savings without affecting coverage
guarantees. The operation of trying each constant f̃ {j}

[sm,em] in (6)
is fast, but in order to accelerate it further, we introduce the two
computational savings below, which do not increase D[sm,em] and
therefore respect the inequality (7) and hence also our coverage
guarantees in Theorem 3.1.
Reducing the set Ia[sm,em]. To accelerate the computation of (6),
we replace the set Ia[sm,em] in D[sm,em] with the set I lr[sm,em] :=
I l[sm,em] ∪Ir[sm,em] (with l and r standing for left and right, respec-
tively), where I l[sm,em] = {[sm, sm +1], [sm, sm +2], . . . , [sm, em]}
and Ir[sm,em] = {[sm, em], [sm + 1, em], . . . , [em − 1, em]}. This
reduces the cardinality of the set of intervals included in D[sm,em]
from O((em − sm)2) to O(em − sm). As I lr[sm,em] ⊆ Ia[sm,em] and
hence ‖ · ‖I lr[sm ,em]

≤ ‖ · ‖Ia[sm ,em] , the results of Corollary 3.1 and
Theorem 3.1 remain unchanged for the thus-reduced D[sm,em].
On the other hand, I lr[sm,em] has been defined in this particu-
lar way so as not to compromise the detection power in the
piecewise-constant signal model. To see this, consider the fol-
lowing illustrative example. Suppose Yt = ft (noiseless case)
and ft = 0 for t = 1, . . . , 50 and ft = 1 for t = 51, . . . , 100.
On [sm, em] = [1, 100], the baseline constant signal level fitted
is f̃[1,100] = 1/2 and we have sign(Yt − f̃[1,100]) = −1 for
t = 1, . . . , 50; sign(Yt − f̃[1,100]) = 1 for t = 51, . . . , 100.
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In this setting, the two multiresolution sup-norms: ‖sign(Yt −
f̃[1,100])‖I lr[1,100]

and ‖sign(Yt − f̃[1,100])‖Ia[1,100] are identical, equal

to
√

50 and achieve this value for the intervals [1, 50] and
[51, 100], members of both Ia[1,100] and I lr[1,100]. This simple
example illustrates the wider phenomenon that if there is a
single change-point in ft on a generic interval [sm, em] under
consideration, then in the noiseless case the multiresolution
norm over the set Ia[sm,em] is maximized at one of the “left”
or “right” intervals in I lr[sm,em], and we are happy to sacrifice
potential negligible differences in the noisy case in exchange for
the substantial computational savings.
Limiting interval lengths. In practice, the analyst may not be
interested in excessively long RNSP intervals of significance and
may therefore wish to ignore intervals for which em − sm > L
for a user-specified maximum length L.
Validity for non-continuously distributed data. The following
three aspects of RNSP ensure the validity of its coverage guar-
antees in the presence of mass points in Zt or if the distribution
of Zt is discrete: (a) the fact that the sign function defined in
Section 2.1 returns zero if its argument is zero, (b) the fact that
the test levels f̃ {j}

[sm,em] (definition (4)) are placed at data points,
and (c) the fact that these test levels are placed in between the
sorted data points. Indeed, in the absence of (a), (b), or (c), it is
easy to construct simple discrete distributions of Zt for which
D[sm,em] would be spuriously large in the absence of change-
points on [sm, em].

3.2. Evaluation and Bounds for ‖sign(Z)‖Ia

To make Theorem 3.1 operational, we need to obtain an under-
standing of the distribution of ‖sign(Z)‖Ia so we are able to
choose λα such that P(‖sign(Z)‖Ia > λα) = α (or approxi-
mately so) for a desired global significance level α.

Initially we consider Zt such that P(sign(Zt) = 1) =
P(sign(Zt) = −1) = 1/2 (the general case P(sign(Zt) =
0) ≥ 0 is covered in the next paragraph). One simple way of
determining the distribution of ‖sign(Z)‖Ia for any finite T is
by simulation; this would only need to be done once for every
T and the quantiles stored for fast access. Another approach
is asymptotic and proceeds as follows. From Theorem 1.1 in
Kabluchko and Wang (2014) (which applies to sequences of
serially independent symmetric Bernoulli variables as explained
in Section 1.5.1 of that work; our Assumption 2.2 means that
result is applicable in our context), we have

lim
T→∞ P(‖sign(Z)‖Ia > aT + τ/aT) = 1 − exp(−2� exp(−τ)),

(10)
where aT = {2 log(T log−1/2 T)}1/2 and � is a constant. As
the theoretical calculation of � in Kabluchko and Wang (2014)
contains an error, we use simulation over a range of values of T
and τ to determine a suitable value of � as 0.274. The practical
choice of the significance threshold λα then proceed as follows:
(a) fix α to the desired level, for example 0.05 or 0.1; (b) obtain
the value of τ by equating 1 − exp(−2� exp(−τ)) = α; (c)
obtain λα = aT + τ/aT . While this approach is asymptotic in
nature (note the limit as T → ∞ in (10)), we observe that the
finite-sample agreement of P(‖sign(Z)‖Ia > aT + τ/aT) with
its limit in (10) is excellent even for small sample sizes. If the user

chooses to pursue this route of obtaining λα , this will be the only
asymptotic component of RNSP.

Suppose now that P(sign(Zt) = 0) = ρt ≥ 0; note that the
sign-symmetry Assumption 2.2(b) implies P(sign(Zt) = 1) =
P(sign(Zt) = −1) = (1 − ρt)/2. Construct the variable Z̃t =
Zt | Zt �= 0. As P(sign(Z̃t) = 1) = P(sign(Z̃t) = −1) = 1/2,
the limiting statement (10) applies to sign(Z̃t). However, we have
the double inequality

‖sign(Z)‖Ia ≤ ‖sign(Z̃)‖Ia
I

≤ ‖sign(Z̃)‖Ia , (11)

with I = [1, 2, . . . , T1], where T1 = |{t ∈ [1, . . . , T] :
Zt �= 0}|. The first inequality in (11) holds because every con-
stituent partial sum of ‖sign(Z)‖Ia has a corresponding larger
or equal in magnitude partial sum in ‖sign(Z̃)‖Ia

I
constructed

by removing the zeros from its numerator and decreasing (or
not increasing) its denominator as it contains fewer (or the
same number of) terms. As an illustrative example, suppose the
sequence of sign(Zt) starts −1, 0, 1, 1. The absolute partial sum
|−1+0+1+1|/√4, a constituent of ‖sign(Z)‖Ia , is majorized
by the absolute partial sum | − 1 + 1 + 1|/√3, a constituent
of ‖sign(Z̃)‖Ia

I
, where the latter sum has been constructed by

removing the 0 from −1, 0, 1, 1 and adjusting for the number
of terms (now 3 instead of 4). The second inequality in (11)
holds simply because T1 ≤ T. The implication of (11) is that
‖sign(Z)‖Ia for ρt ≥ 0 is majorized by ‖sign(Z)‖Ia for ρt = 0,
the case handled by (10). Therefore, the threshold λα obtained
as a consequence of (10) can also meaningfully be applied in the
general case ρt ≥ 0.

4. Detection Consistency and Lengths of RNSP
Intervals

This section shows the large-sample consistency of RNSP in
detecting change-points, and the rates at which the lengths of
the RNSP intervals contract (relative to T), as T increases. To
simplify our technical arguments, we consider a version of the
RNSP algorithm that considers all subintervals of [1, T]. Our
focus on iid Zt ’s in this section is mainly due to our ability to
rely on the Dvoretzky-Kiefer-Wolfowitz inequality in the proof
of Corollary 4.1; however, note that the finite-sample result of
Theorem 4.1 holds regardless of the dependence structure of
Zt . We focus on continuously-distributed Zt ’s as this results in
notationally much less involved arguments regarding the mini-
mum signal strength required. We first introduce some essential
notation, and then state our assumption and the result. For each
change-point ηj, define


j = min{P{Zt ∈ (−|fηj − fηj+1|/2, 0)},
P{Zt ∈ (0, |fηj − fηj+1|/2)}, (12)

d̄j = d̄j(λ, λα) =
⌈(

2λ + λα

2
j

)2
+ 1

⌉
. (13)

In addition, for any process Vt , define εV
t (w) = I(Vt − w >

0) − P(Vt − w > 0).

Assumption 4.1. (a) The variables {Zt}T
t=1 are mutually inde-

pendent.
(b) The variables {Zt}T

t=1 are identically distributed.
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(c) The distribution of Z1 is continuous.
(d) With the notation η0 = 0 and ηN+1 = T, we have ηj+1 −

ηj ≥ 2d̄j+1 + 2d̄j − 2 for j = 1, . . . , N − 1, and η1 − η0 ≥
2d̄1 − 1 as well as ηN+1 − ηN ≥ 2d̄N − 1.

Our first result below is of a finite-sample nature.

Theorem 4.1. Let Assumptions 2.1, 2.2(a) and 4.1(b),(c),(d)
hold. On the set defined by the intersection of the events
‖sign(Z)‖Ia ≤ λα and maxs,e supw

∣∣∣ 1√
e−s+1

∑e
t=s εZ

t (w)

∣∣∣ ≤ λ,
a version of the RNSP algorithm that considers all intervals,
executed with no overlaps and with threshold λα , returns exactly
N intervals of significance [s1, e1] < · · · < [sN , eN] such that
ηj ∈ [sj, ej − 1] and ej − sj + 1 ≤ 2d̄j for j = 1, . . . , N.

Theorem 4.1 leads to the following corollary giving a large-
sample consistency result.

Corollary 4.1. Let the assumptions of Theorem 4.1 and Assump-
tion 4.1(a) hold. Let λα = (1 + δ){2 log T}1/2 and λ = (1 +
δ) log1/2 T, for any δ > 0. Let S denote the set of intervals
of significance [s1, e1] < · · · < [sR, eR] returned by RNSP
algorithm that considers all intervals, executed with no overlaps
and with threshold λα . We have

P
{

R = N ∧ ∀ j = 1, . . . , N
ηj ∈ [sj, ej − 1] ∧ ej − sj + 1 ≤ 2d̄j

} → 1

as T → ∞.

This and Corollary 4.2 below are the only large-sample results
of the article; the others are of a finite-sample character. Setting
λα = (1 + δ){2 log T}1/2 and λ = (1 + δ) log1/2 T, for any
δ > 0, causes the probabilities of the events ‖sign(Z)‖Ia ≤
λα and maxs,e supw

∣∣∣ 1√
e−s+1

∑e
t=s εZ

t (w)

∣∣∣ ≤ λ in Theorem 4.1
(respectively) to converge to one. Note that here, λα does not
depend on α and is of a higher order of magnitude than the
(α-dependent) λα of Section 3.2. Paraphrasing, this is to say
that we need the global significance level α to tend to zero with
T in order to obtain large-sample consistency; a result in line
with analogous results in Pein, Sieling, and Munk (2017) and
Vanegas, Behr, and Munk (2022).

We briefly comment on what the result of Corollary 4.1
means for the minimum signal strength Assumption 4.1(iii), and
for the localization rates of the RNSP algorithm in detecting
the change-points. If the distribution of Zt does not vary with
T (this section already assumes that it does not vary with t),
and if the jump sizes |fηj − fηj−1 | are bounded from below by
a positive constant independent of j and T, then 
j (formula
(12)) is also bounded from below by a positive constant inde-
pendent of j and T. By formula (13), the assumptions on λ, λα

in Corollary 4.1 then imply d̄j = (log T) (where  should
be read “of the exact order”). Assumption 4.1(iii) then requires
that the spacings between the change-points be at least of order
log T. Corollary 4.1 states that the length of each RNSP interval
of significance, ej −sj +1, is, with global probability approaching
1, at most of order log T. These minimum-spacing assumptions
and the implied lengths of the localization intervals are near-
optimal and the same as those in the non-robust literature, see

for example Theorem 1 in Baranowski, Chen, and Fryzlewicz
(2019) and Corollary 4 in Fryzlewicz (2024), as well as the
associated discussions. However, the results of this section also
permit 
j → 0 with T, which will, naturally, affect the above
minimum-spacing requirements and localization rates as stipu-
lated by formulas (12) and (13) and Assumption 4.1(iii).

The consistency of RNSP in the sense of Corollary 4.1 implies
the consistency of any pointwise estimators η̂j contained within
the RNSP intervals of significance [sj, ej], with the localization
rate of η̂j bounded from above by the length of the interval
[sj, ej]. In particular, the near-optimality of the lengths of the
RNSP intervals [sj, ej] (as discussed in the preceding paragraph)
automatically implies the near-optimality of the localization rate
of η̂j. Indeed, since by Corollary 4.1, [sj, ej − 1] is guaranteed to
contain ηj (on an event of high probability), for any estimator
η̂j ∈ [sj, ej − 1], we must have |η̂j − ηj| ≤ |ej − sj − 1| (on the
same event). In other words, the rate with which [sj, ej] contract
(relative to T) is inherited by any estimator η̂j ∈ [sj, ej − 1];
this applies even to naive estimators constructed for example
as the middle points of their corresponding RNSP intervals
[sj, ej], that is η̂j = �(sj + ej)/2�. More refined estimators, for
example one based on the CUSUM maximization of the signs of
the data around their median (Sen and Srivastava 1975) within
each RNSP interval, can also be used and will also automatically
inherit the consistency and rate. Sections 5 and 6 illustrate both
of these estimators. Trivially, in light of Corollary 4.1, the set of
estimated change-points {η̂j}R

j=1 is consistent in the Hausdorff
measure for {ηj}N

j=1, the set of true change-points in ft .
Yet another implication of Theorem 4.1 appears below.

Corollary 4.2. Let the assumptions of Corollary 4.1 hold. Let
λα be such that P(‖sign(Z)‖Ia ≤ λα) ≥ 1 − α and let λ =
(1 + δ) log1/2 T, for any δ > 0. Let S denote the set of intervals
of significance [s1, e1] < . . . < [sR, eR] returned by RNSP
algorithm that considers all intervals, executed with no overlaps
and with threshold λα . We then have

lim inf
T→∞ P

{
R = N ∧ ∀ j = 1, . . . , N

ηj ∈ [sj, ej − 1] ∧ ej − sj + 1 ≤ 2d̄j
} ≥ 1 − α.

The computation of the deviation measure D[s,e] for all subin-
tervals [s, e] of [1, T], as the results of this section require, is
a O(T3) operation. The cubic complexity should not surprise
in the context of a robust method that considers all inter-
vals, as there are O(T2) intervals to consider and O(T) binary
exceedance levels within each interval. In practice, we use three
devices to reduce the computational complexity of RNSP: (a)
using a fixed (i.e., unchanging with T) value of M, (b) restricting
the length of intervals under consideration to ≤ L, and (c)
reducing the set Ia[s,e]. Items (b) and (c) are described in more
detail in Section 3.1.1.

5. Numerical Illustrations

In this section, we demonstrate numerically that the guarantee
offered by Theorem 3.1 holds for RNSP in practice over a
variety of homogeneous and heterogeneous models for which
the variables Zt satisfy Assumption 2.2. We also investigate
the circumstances under which similar guarantees are not
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Table 1. Null models for the comparative simulation study in Section 5.

Model name Sample path execution in R

Plain Gauss rnorm(100)
Plain Gauss Long rnorm(1000)
Plain Poisson as.numeric(rpois(200, 1))
Heterogeneous Gauss c(rep(1, 100), rep(8, 50), rep(1, 100)) * rnorm(250)
Symmetric Bernoulli as.numeric(rbinom(200, 1, .5))
Plain Cauchy rcauchy(100, 0)
Mix 1 sample(3, size=300, replace=TRUE, prob=c(.35, .3, .35)) -> xx

xx[xx != 2] <- rnorm(sum(xx !=2 ))
Mix 2 rpois(200, 5)+rnorm(200)/30

Table 2. Percentage of times, out of 200 simulated sample paths of each null model,
that the respective method indicates no intervals of significance at level α = 0.1
(nominal coverage = 90%).

Model RNSP H-SMUCE MQS-R MQS-K SN-NSP

Plain Gauss 100.0 99.0 99.5 99.5 100.0
Plain Gauss Long 100.0 96.5 98.5 98.5 100.0
Plain Poisson 98.5 0.0 99.5 99.5 1.0
Heterogeneous Gauss 99.5 98.0 99.5 99.5 91.0
Symmetric Bernoulli 95.5 0.0 99.5 99.5 35.0
Plain Cauchy 99.5 100.0 98.0 98.0 99.5
Mix 1 100.0 0.0 99.0 99.0 99.5
Mix 2 98.5 88.0 96.5 96.5 100.0

offered by H-SMUCE (Pein, Sieling, and Munk 2017), MQS
(Vanegas, Behr, and Munk 2022) or the self-normalized
version of NSP (SN-NSP), suitable for heterogeneous data
(Fryzlewicz 2024). In this section, we use the acronyms
RNSP and SN-NSP to denote the versions of these respective
procedures with no interval overlaps, that is τL = τR = 0.
Later in this section, we introduce notation for versions
with overlaps. Both RNSP and SN-NSP use M = 1000
intervals, the default setting. For H-SMUCE, the function
call we use is stepR::stepFit(x, alpha=0.1,
family="hsmuce", confband=TRUE). The type
parameter in MQS specifies the loss function for their
final estimate with multiscale constraints; we denote by
MQS-R the result of mqs::mqse(x, alpha=0.1,
conf=TRUE, type="runs") and by MQS-K the
result of mqs::mqse(x, alpha=0.1, conf=TRUE,
type="koenker"). We use the following package versions:
mqs v1.0, stepR v2.1-8, nsp v1.0.0.

We begin with null models, by which we mean models (1) for
which ft is constant throughout, that is N = 0. For null models,
Theorem 3.1 promises that RNSP at level α returns no intervals
of significance with probability at least 1 − α. In this section,
we use α = 0.1. There are analogous parameters in H-SMUCE,
MQS and SN-NSP, and they are also set to 0.1. However, while
in both RNSP and SN-NSP, the parameter α is responsible for
finite-sample coverage guarantees (for both null and non-null
models), in MQS and H-SMUCE it is responsible for similar
but only asymptotic coverage guarantees, as T → ∞. For H-
SMUCE, this latter point is clarified (jointly) in Theorem 5 of
Pein, Sieling, and Munk (2017) and in Section A.1 of the online
supplement to that work, and for MQS – in Theorem 2.3 of
Vanegas, Behr, and Munk (2022) and in Section S.4 of the online
supplement to that work.

The null models used are listed in Table 1, and Table 2 shows
the associated results. RNSP, MQS-R and MQS-K keep the
nominal size well across all the models considered, returning no

intervals of significance at least 95% of the time in all situations.
H-SMUCE behaves correctly for the three Gaussian models,
but fails for the discrete distributions and model Mix 1, which
contains mass points. It is unexpectedly successful in the Plain
Cauchy model, but this is perhaps because it has very limited
detection power in the Cauchy model with change-points (more
on this model below). It also underperforms slightly for model
Mix 2, which is continuous (and within the domain of attraction
of the Gaussian distribution) but multimodal. SN-NSP fails for
the discrete distributions, which is a consequence of the
(asymptotically guaranteed) closeness of the self-normalized
deviation measure to the appropriate functional of the Wiener
process not kicking in in these instances (due to the relatively
small sample sizes).

We now discuss performance for signals with change-points
(N > 0). Table 3 defines our models; the model labeled
MQS.easy is taken from https://github.com/ljvanegas/mqs/blob/
master/mqs.ipynb and MQS.hard and MQS.vhard are its lower
signal-to-noise versions. Theorem 3.1 promises that any inter-
vals of significance returned by RNSP at levels α are such that,
with probability at least 1−α, they each contain at least one true
change-point. In addition to RNSP, H-SMUCE, MQS-R, MQS-
K, and SN-NSP, we also test versions of RNSP and SN-NSP with
the following overlap functions:

τL(s̃, ẽ) = �(s̃ + ẽ)/2� − s̃,
τR(s̃, ẽ) = �(s̃ + ẽ)/2� + 1 − ẽ. (14)

This setting means that upon detecting a generic interval of
significance [s̃, ẽ] within [s, e], the RNSP and SN-NSP algorithms
continue on the left interval [s, �(s̃+ ẽ)/2�] and the right interval
[�(s̃ + ẽ)/2� + 1, e] (recall that the no-overlap case results uses
the left interval [s, s̃] and the right interval [ẽ, e]). We denote the
versions of the two procedures with the overlaps as above by
RNSP-O and SN-NSP-O, respectively. As before, we set α = 0.1
for all methods tested.

For each model and method tested, we evaluate the following
metrics, which collectively promote the detection of genuine,
and the non-detection of spurious, intervals of significance:
[coverage] the empirical coverage (i.e., whether at least (1 −
α)100% of the simulated sample paths are such that any inter-
vals of significance returned contain at least one true change-
point each); [prop. gen. int.] if any intervals are returned, the
proportion of those that are genuine (i.e., the proportion of
those intervals returned that contain at least one true change-
point); [no. gen. int.] the number of genuine intervals (i.e., the
number of those intervals returned that contain at least one
true change-point); and [av. gen. int. len.] the average length

https://github.com/ljvanegas/mqs/blob/master/mqs.ipynb
https://github.com/ljvanegas/mqs/blob/master/mqs.ipynb
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Table 3. Non-null models for the comparative simulation study in Section 5.

Model name sample path execution in R

Blocks blocks <- c(rep(0, 204), rep(14.63795, 62), rep(-3.659487, 41), rep(7.318975, 164),
rep(-7.318975, 40), rep(10.97846, 308), rep(-4.391385, 82), rep(3.293539, 430),
rep(19.02933, 225), rep(7.684923, 41), rep(15.36985, 61), rep(-3.250278e-15, 390))
blocks + 10 * rnorm(2048)

Cauchy c(rcauchy(100, 1), rcauchy(100, 2), rcauchy(100, 1))
Bursts (c(rep(1, 200), rep(3, 80), rep(1, 200), rep(3, 80), rep(1, 200),

rep(4, 40)) * rnorm(800))2̂
Poisson as.numeric(rpois(350, c(rep(1, 50), rep(4, 50), rep(10, 50), rep(2, 200)))
MQS.easy f <- c(rep(-0.25, 690), rep(0.12, 435), rep(1.07, 85), rep(-0.53, 255), rep(0.60, 75),

rep(-0.69, 155), rep(-0.10, 790))
z <- c(rnorm(350, sd = sqrt(1)), rt(1540-350, df = 3)/sqrt(3)*sqrt(0.1),
(rchisq(length(mu)-1540, 1)-qchisq(0.5, 1))/sqrt(2)*sqrt(0.05))
f + z

MQS.hard f + 5 * z
MQS.vhard f + 10 * z

of genuine intervals (i.e., the average length of those intervals
returned that contain at least one true change-point). No single
measure describes the performance of (any) method accurately,
but the four measures in conjunction provide a clear picture. As a
cartoon illustration of how naive solutions are able to skew some
of these measures but not the others, consider a putative interval
estimator that always returns the longest possible interval of
[1, T]. For a model with ≥ 1 change-points, “coverage” and
“prop. gen. int” will return 100 and 1, respectively. However,
this naive solution will be penalized by the next two measures,
“no. gen. int.” and “av. gen. int. len.”. For models with a single
change-point, the [1, T] solution will return an interval that in
most cases will be unreasonably long, and this will be picked up
by the “av. gen. int. len.” measure. In addition, for models with
more than one change-point, “no. gen. int.” (equal to one) will
be inaccurate.

For completeness, we also show the Mean-Square Errors
(MSEs) between the reconstructed signal f̂t and the truth ft .
Given an increasingly sorted set {η̂j}R

j=1 of pointwise change-
point estimators (for any method), and defining in addition η̂0 =
0, η̂R+1 = T, a natural estimate of the signal ft is a piecewise-
constant vector f̂t such that f̂t = med(Yη̂j+1, . . . , Yη̂j+1) for
t = η̂j + 1, . . . , η̂j+1, j = 0, . . . , R, where med is the empiri-
cal median operator. HSMUCE comes with its own pointwise
change-point estimates. MQS, NSP or RNSP do not automati-
cally provide pointwise location estimates. For these three meth-
ods, we use two different approaches to producing pointwise
change-point location estimates within each interval of signif-
icance: (a) we take the mid-points of the respective intervals
of significance and (b) we take the argument-maximum of the
absolute value of the CUSUM statistic of the signs of the data
around the empirical median within each interval of signifi-
cance. (Midpoints of RNSP intervals of significance, while seem-
ingly appearing ad hoc as pointwise estimates of change-point
location, often behave well empirically, which may be due to
the fact that RNSP pursues short intervals, and those tend to be
symmetric around the true change-points as this offers the same
amount of evidence on either side of the change-points—hence
the frequent empirical closeness of RNSP interval midpoints to
the truth.)

Table 4 shows the results. H-SMUCE does not perform well
in any scenario, not even in the Blocks model, an instance of

the homogeneous Gaussian model, a simple sub-class of the
heterogeneous Gaussian model class for which it was specifically
designed (where it achieves the coverage of 30, well short of
the expected 90). Its coverage of 100 in the Cauchy model
is an artifact of the fact that it does not achieve almost any
detections over the 100 simulated sample paths (so there are also
no spurious detections).

With the exception of MQS.easy, the least challenging model,
MQS frequently produces spurious intervals in signals with
change-points: the coverage figures for MQS are well short of
90% in all but one models tested. On the upside, in MQS.easy
(the only set-up in which MQS achieves the correct coverage),
the average length of genuine intervals is around 20% below that
of RNSP.

RNSP and RNSP-O significantly outperform SN-NSP and
SN-NSP-O in five out of the seven scenarios tested, the only
exception being Bursts and MQS.vhard. In Blocks and Cauchy,
the RNSP methods achieve more detections and shorter inter-
vals of significance (so better localization). In Poisson, in addi-
tion, they achieve much better coverage (the SN-NSP methods
are misled by the discrete nature of this relatively low-intensity
Poisson dataset, for which their required asymptotics do not kick
in, which results in a very large number of spurious detections).
However, the SN-NSP methods work better for the Bursts data in
the sense that they lead to more detections. The underlying rea-
son is that the signal level in this model is linearly proportional
to the standard deviation of the noise, which particularly suits
the self-normalized SN-NSP methods. The RNSP methods are
the clear winners for the MQS.easy and MQS.hard models. No
method performs particularly well for the MQS.vhard model,
but the SN-NSP methods achieve more detections than RNSP
there, although at the price of the intervals being much longer.

With regards to the MSE (midpoint) and MSE (CUSUM)
measures, the clear overall winner is the RNSP-O method with
sign-CUSUM localization; however, all four versions of the
RNSP approach offer competitive performance.

6. Data Examples

6.1. The U.S. Real Interest Rates

We first reanalyze the time series of U.S. ex-post real inter-
est rate (the three-month treasury bill rate deflated by the
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Table 4. Results for each model+method combination, out of 200 simulated sample paths: “coverage” is the percentage of times that the respective model+method
combination did not return a spurious interval of significance; “prop. gen. int.” is the average proportion of genuine intervals out of all intervals returned, if any (if none are
returned, the corresponding 0/0 ratio is ignored in the average); “no. gen. int.” is the average number of genuine intervals returned; “av. gen. int. len.” is the average length
of a genuine interval returned in the respective model+method combination; “MSE (·)” is the MSE of f̂t constructed as described in the text, with the respective pointwise
change-point estimation in brackets.

Model attribute RNSP RNSP-O H-SMUCE MQS-R MQS-K SN-NSP SN-NSP-O

coverage 100 100 30 14 14 100 100
Blocks prop. gen. int. 1 1 0.83 0.75 0.75 1 1
(11 cpts) no. gen. int. 6.17 8.19 4.98 4.77 4.77 4.93 6.10

av. gen. int. len. 90.65 101.07 94.72 88.71 88.71 160.37 182.83
MSE (midpoint) 15.47 11.87 12.381(∗) 15.903 15.903 16.40 15.5
MSE (CUSUM) 11.92 6.94 – 13.008 13.008 14.01 11.5

coverage 100 100 100 71 70 100 99.5
Cauchy prop. gen. int. 1 1 1 0.61 0.59 1 0.99
(2 cpts) no. gen. int. 0.62 0.78 0.005 0.58 0.56 0.27 0.3

av. gen. int. len. 119.16 124.32 170 116.59 116.28 159.58 159.79
MSE (midpoint) 0.210 0.193 0.235(∗) 0.210 0.210 0.229 0.227
MSE (CUSUM) 0.209 0.194 – 0.208 0.208 0.225 0.224

coverage 100 100 43.5 25.5 27 100 100
Bursts prop. gen. int. 1 1 0.79 0.6 0.61 1 1
(5 cpts) no. gen. int. 3.10 4.44 3.19 2.14 2.17 4.18 5.36

av. gen. int. len. 100.79 107.64 92.85 94.42 94.40 111.61 108.81
MSE (midpoint) 20.1 16.73 15.935(∗) 20.803 20.770 18.22 14.08
MSE (CUSUM) 17.4 12.37 – 17.722 17.673 13.51 9.97

coverage 100 100 0 76.5 76 0 0
Poisson prop. gen. int. 1 1 0.1 0.87 0.86 0.07 0.07
(3 cpts) no. gen. int. 2.9 3 1.48 2.37 2.35 0.85 1.02

av. gen. int. len. 36.99 37.48 19.61 32.1 31.97 33.61 32.69
MSE (midpoint) 0.716 0.636 1.2322(∗) 1.165 1.171 2.5122 2.2460
MSE (CUSUM) 0.339 0.204 – 0.842 0.860 2.1320 1.9296

coverage 100 100 53 100 100 99.5 99
MQS.easy prop. gen. int. 1 1 0.92 1 1 1 1
(6 cpts) no. gen. int. 6 6 5.99 6 6 5.7 6.2

av. gen. int. len. 45 46 37.33 37 37 125 122.5
MSE (midpoint) 0.00272 0.00271 0.0011(∗) 0.00279 0.00279 0.031 0.0225
MSE (CUSUM) 0.00076 0.00072 – 0.00084 0.00084 0.012 0.0013

coverage 100 100 33.5 38 38 99 99
MQS.hard prop. gen. int. 1 1 0.66 0.73 0.73 0.99 1
(6 cpts) no. gen. int. 3.5 4.8 2.13 2.94 2.94 1.67 2.7

av. gen. int. len. 216.6 194.6 282.97 220.89 220.89 464.08 605.3
MSE (midpoint) 0.081 0.059 0.10(∗) 0.080 0.080 0.11 0.094
MSE (CUSUM) 0.069 0.036 – 0.069 0.069 0.11 0.080

coverage 100 100 47.5 63 63 99 99
MQS.vhard prop. gen. int. 1 1 0.58 0.63 0.63 0.99 0.99
(6 cpts) no. gen. int. 0.69 1 0.79 0.77 0.77 0.97 1.14

av. gen. int. len. 422.62 485 722.08 501.86 501.86 1149.57 1179.74
MSE (midpoint) 0.120 0.115 0.128(∗) 0.120 0.120 0.129 0.128
MSE (CUSUM) 0.119 0.113 – 0.121 0.121 0.133 0.133

(∗) note HSMUCE uses its own pointwise change-point estimation. Significance level α = 0.1 (nominal coverage = 90%). All numbers rounded to two decimal digits except
when such rounding takes a positive number to zero.

CPI inflation rate) considered in Garcia and Perron (1996),
Bai and Perron (2003), and Fryzlewicz (2024). The dataset is
available at http://qed.econ.queensu.ca/jae/datasets/bai001/. The
time series, shown in the left plot of Figure 1, is quarterly and the
range is 1961:1–1986:3, so t = 1, . . . , T = 103.

RNSP appears to be an appropriate tool here, as the data
displays heterogeneity and possibly some heavy-tailed move-
ments toward the latter part. We run the RNSP algorithm with
the default setting of M = 1000, with α = 0.1 and with
overlaps as defined in (14). The procedure returns two intervals
of significance: [23, 75] and [65, 91]. These are shown in the left
plot of Figure 1, together with their midpoints as well as the
maximizers of absolute CUSUMs of signs of the data around
the median in each interval of significance. As with any RNSP
execution with nonzero overlaps, one question that may be

asked is whether the two intervals may be indicating the same
change-point, but this, visually, is unlikely here (the reason for
using nonzero overlaps is simply to provide larger samples for
RNSP following the detection of the first interval; using zero
overlaps means the samples are too short and RNSP with zero
overlaps does not pick up the second change-point). Therefore,
the solution points to a model with at least two change-points.
This is consistent, or at least not inconsistent, with both Garcia
and Perron (1996), who also settle on a model with two change-
points, and Bai and Perron (2003), who prefer a three-change-
point model, not excluded by RNSP here.

The difference between those two earlier analyses and ours
is that those two (a) were based on asymptotic arguments (and
therefore valid asymptotically, for unspecified large samples)
and (b) were conditional in the sense that the confidence regions

http://qed.econ.queensu.ca/jae/datasets/bai001/


JOURNAL OF BUSINESS & ECONOMIC STATISTICS 11

Figure 1. Left: The U.S. 3-month ex-post real interest rate time series (black); intervals of significance returned by RNSP (transparent pink); their midpoints (red); argument-
maxima of absolute CUSUMs of signs of the data around the median in each interval of significance (blue). See Section 6.1 for a detailed description. Right: The U.S. 1-month
real interest rate time series (black); intervals of significance returned by RNSP (transparent pink); their midpoints (red); argument-maxima of absolute CUSUMs of signs of
the data around the median in each interval of significance (blue). Superimposed on the bottom of the graph is the probability of recession time series (purple), on the scale
of 0 (bottom purple dashed line) to 1 (top purple dashed line). RNSP significance level α = 0.1. See Section 6.1 for a detailed description.

for change-point locations in those two works were conditional
on the detection event. By contrast, our analysis via RNSP
has a finite-sample nature and the intervals of significance
have an unconditional character. Importantly, we do not make
any distributional assumptions besides independence and sign-
symmetry, both of which are likely to be acceptable for this
dataset. The analysis via RNSP is unaffected by the likely het-
erogeneity in the data.

To illustrate RNSP on a more recent dataset of
a similar nature, we examine the 1-month U.S. real
interest rate, available from https://fred.stlouisfed.org/series/
REAINTRATREARAT1MO. The time series, shown in the
right plot of Figure 1, is monthly and runs from January 1982
to February 2023. We run RNSP with M = 1000, α = 0.1
and no overlaps. The intervals of significance returned by
RNSP appear visually plausible and it is interesting (albeit not
unexpected) to observe that the periods of peaking probabilities
of recession (data available from: https://fred.stlouisfed.org/
series/RECPROUSM156N) from year 2000 onwards are wholly
contained within RNSP intervals of significance, indicating
declines in the 1-month real interest rate. The period of high
probability of recession in 1982 does not appear supported in
the 1-month real rate data in a way detectable to RNSP. Finally,
the period of high probability of recession in 1990 appears to
coincide with a falling 1-month rate but RNSP has, in this case,
a visually justifiable preference for intervals just before and just
after this likely recession period.

6.2. Interest in the Search Term “Data Science”

We analyze the weekly interest in the search term “data science”
from Google Trends, in the U.S. state of California. The link

to obtain the data was https://trends.google.com/trends/explore?
date=today%205-y&geo=US-CA&q=data%20science. Google
Trends describe the data as follows. “Numbers represent search
interest relative to the highest point on the chart for the
given region and time. A value of 100 is the peak popularity
for the term. A value of 50 means that the term is half as
popular. A score of 0 means there was not enough data for
this term.” Weeks in this data series start on Sundays and
the dataset spans the weeks from w/c 28th August 2016 to
w/c 15th August 2021 (so almost five years’ worth of data). The
observations are discrete (integers from 22 to 100), which would
likely pose difficulties for the competing methods as outlined
earlier.

We execute the RNSP procedure with the default setting of
M = 1000 and with α = 0.1, with no overlaps, which returns the
three intervals of significance shown in Figure 2. The intervals
are: w/c 23 April 2017 – w/c 10 June 2018 (interval 1), w/c 24
June 2018 – w/c 17 November 2019 (interval 2), w/c 3 May
2020 – w/c 14 March 2021 (interval 3). While intervals 1 and
2 correspond to likely increases in the median interest, interval
3 clearly corresponds to a likely decrease, and the midpoint of
interval 3 (w/c 4 October 2020) visually aligns well with what
seems to be a rather sudden drop of interest.

It is difficult to speculate as to possible reasons for this
drop of interest. A blog post on the popular website https://
towardsdatascience.com (https://bit.ly/3kqwDWO) reports that
“2020 was the first year since 2016, Data Scientist was not the
number one job in America, according to Glassdoor’s annual
ranking. That title would belong to Front End Engineer, fol-
lowed by Java Developer, followed by Data Scientist.” However,
visually, a similar decline in interest is observed for exam-
ple in the analogous Google Trends series for the term “Java”
(not shown).

https://fred.stlouisfed.org/series/REAINTRATREARAT1MO
https://fred.stlouisfed.org/series/REAINTRATREARAT1MO
https://fred.stlouisfed.org/series/RECPROUSM156N
https://fred.stlouisfed.org/series/RECPROUSM156N
https://trends.google.com/trends/explore?date=today%205-y&geo=US-CA&q=data%20science
https://trends.google.com/trends/explore?date=today%205-y&geo=US-CA&q=data%20science
https://towardsdatascience.com
https://towardsdatascience.com
https://bit.ly/3kqwDWO
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Figure 2. Weekly relative interest (top=100) in the search term “data science” in
California in weeks from w/c 28 August 2016 to 15 August 2021 (black); intervals of
significance returned by RNSP (transparent pink); their midpoints (red); argument-
maxima of absolute CUSUMs of signs of the data around the median in each interval
of significance (blue). RNSP significance level α = 0.1. See Section 6.2 for a detailed
description.

7. Discussion

Other quantiles. Note that Corollary 3.1, crucial to the success of
RNSP, can be rewritten as

D[sm,em] ≤ ‖sign{Ysm:em − Q1/2(Ysm:em)}‖Ia[sm ,em] , (15)

where Qq(·) is the population q-quantile. However, the left-hand
side of (15) was not specifically constructed with q = 1/2 in

mind and therefore the inequality D[sm,em] ≤ ‖sign{Ysm:em −
Qq(Ysm:em)}‖Ia[sm ,em] is true for any q ∈ (0, 1). This shows
that RNSP can equally be used for significant change detec-
tion in any quantile, and not just the median. However,
for q �= 1/2, the challenge is to obtain the null dis-
tribution of ‖sign{Y − Qq(Y)}‖Ia . Even if this challenge
is overcome (e.g., by simulation), RNSP as defined in this
work may not be effective for change detection in quantiles
“far” from the median, due to the particular way in which
D[sm,em] is constructed (involving minimization over all lev-
els). For RNSP to be a successful device for change detection
in other quantiles, the definition of D[sm,em] would have to
be modified to only minimize over ‘realistic’ candidate lev-
els not far from the population q-quantile under the local
null.

Set of feasible signals. It is convenient to define the set of feasi-
ble signals f 0

t at level α with respect to the algorithmic execution
RNSP(1, T, ·, M, λα , τL, τR) by Fα = {f 0 : S{RNSP(1, T, Y −
f 0, M, λα , τL, τR)} = ∅}, where λα is such that P(‖sign(Z)‖Ia ≤
λα) ≥ 1 − α. That is, Fα is the set of postulated signals f 0 such
that, on fitting f 0 to the data and obtaining the empirical residu-
als, RNSP cannot distinguish (at level α) the empirical residuals
from white noise. For any candidate fit f 0, it is straightforward
to check whether or not it is a member of Fα by executing
RNSP(1, T, Y − f 0, M, λα , τL, τR).

Appendix A: Proofs

Proof of Theorem 4.1. Consider initially the case of a single change-
point η1. RNSP will, among others, consider intervals symmetric about
the true change-point, that is [η1 − d + 1, η1 + d], for all appropriate
d. Take a constant candidate fit w on the interval [η1 − d + 1, η1 + d]
and define Ut(w) := sign(Yt − w) = 2I(Yt − w > 0) − 1 (the latter
equality holds due to the continuity of the distribution of Zt). Assume
wlog fη1 > fη1+1. We have

D[η1−d+1,η1+d] ≥ inf
w

1√
d

max

⎧⎨
⎩

∣∣∣∣∣∣
η1∑

t=η1−d+1
Ut(w)

∣∣∣∣∣∣ ,

∣∣∣∣∣∣
η1+d∑

t=η1+1
Ut(w)

∣∣∣∣∣∣
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Now note
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Continuing from (16), this implies

D[η1−d+1,η1+d]

≥ 2√
d

inf
w

max
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⎩

∣∣∣∣∣∣
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t=η1−d+1
P(Yt − w > 0) − 1

2
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2
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⎫⎬
⎭ − 2λ. (17)

The infimum over w will be achieved if both elements of the maximum
are the same (or otherwise it would be possible to alter w slightly to
decrease the larger of the two moduli). But this is only possible if w ∈
(fη1+1, fη1) and hence, bearing in mind that Zt is median-zero, we have

∣∣∣∣∣∣
η1∑

t=η1−d+1
P(Zt > w − fη1) − 1

2

∣∣∣∣∣∣ = dP(Zt > w − fη1) − d/2

= dP{Zt ∈ (w − fη1 , 0)},∣∣∣∣∣∣
η1+d∑

t=η1+1
P(Zt > w − fη1+1) − 1

2

∣∣∣∣∣∣ = d/2 − dP(Zt > w − fη1+1)

= dP{Zt ∈ (0, w − fη1+1)}.

Let w0 be such that P{Zt ∈ (w0 − fη1 , 0)} = P{Zt ∈ (0, w0 − fη1+1)}.
Since (w0 − fη1+1) − (w0 − fη1) = fη1 − fη1+1, then either fη1 − w0 ≥
(fη1 − fη1+1)/2 or w0 − fη1+1 ≥ (fη1 − fη1+1)/2. Therefore,

P{Zt ∈ (w0 − fη1 , 0)} = P{Zt ∈ (0, w0 − fη1+1)}
≥ min{P{Zt ∈ (−|fη1 − fη1+1|/2, 0)},

P{Zt ∈ (0, |fη1 − fη1+1|/2)}} = 
1.

Continuing from (17), we therefore have

D[η1−d+1,η1+d] ≥ 2
√

d
1 − 2λ. (18)

But from the definition of the RNSP algorithm (line 14), detection on an
interval [s, e] will occur if D[s,e] > λα . Therefore, from (18), detection
on [η1 − d + 1, η1 + d] will occur if

d >

(
2λ + λα

2
1

)2
. (19)

As RNSP looks for the shortest intervals of significance, the length
of the RNSP interval will not exceed that of [η1 − d + 1, η1 + d],
which is 2d. From (19), its length will therefore be bounded from

above by 2
⌈(

2λ+λα
2
1

)2 + 1
⌉

= 2d̄1. We now turn our attention to the

multiple change-point case. Note that even though the RNSP interval
of significance around ηj is guaranteed to be of length at most 2d̄j, it
will not necessarily be a sub-interval of [ηj − d̄j + 1, ηj + d̄j]. Therefore,
in order that an interval detection around ηj does not interfere with
detections around ηj−1 or ηj+1, the distances ηj − ηj−1 and ηj+1 − ηj
must be suitably long, but this is guaranteed by Assumption 4.1(iii).
This completes the proof.

Proof of Corollary 4.1. The fact that P(‖sign(Z)‖Ia > λα) → 0 as
T → ∞ is a simple consequence of Corollary 1 in Shao (1995). We
next assess and bound the magnitude of supw

∣∣∣ 1√
d

∑s+d−1
t=s εZ

t (w)

∣∣∣.

The Dvoretzky-Kiefer-Wolfowitz inequality (with Massart’s optimal
constant, see Massart 1990) implies

P

⎛
⎝sup

w

∣∣∣∣∣∣
1√
d

s+d−1∑
t=s

εZ
t (w)

∣∣∣∣∣∣ > λ

⎞
⎠

= P

⎛
⎝sup

w

∣∣∣∣∣∣
1
d

s+d−1∑
t=s

εZ
t (w)

∣∣∣∣∣∣ > λd−1/2

⎞
⎠ ≤ 2 exp(−2λ2).

This leads to a uniform bound via Bonferroni’s correction.
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)

≤ T(T + 1) exp(−2λ2).

For λ = (1 + δ) log1/2 T, the above tends to zero if δ > 0. This
completes the proof.

Proof of Corollary 4.2. As in the proof of Corollary 4.1, setting α at this
level means that

P

(
max

s,e
sup

w

∣∣∣∣∣ 1√
e − s + 1

e∑
t=s

εZ
t (w)

∣∣∣∣∣ ≤ λ

)
→ 1

as T → ∞, and therefore

lim inf
T→∞ P

(
‖sign(Z)‖Ia ≤ λα ∧ max

s,e
sup

w

∣∣∣∣∣ 1√
e − s + 1

e∑
t=s

εZ
t (w)

∣∣∣∣∣ ≤ λ

)

≥ 1 − α.

Theorem 4.1 implies the result.
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R code to accompany the paper appears at https://github.com/pfryz/nsp.
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