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In this article, we approach the problem of measuring and interpreting the mid-term climate of a non-autonomous
chaotic dynamical system in the context of climate modelling. To do so, we use a low-dimensional, conceptual model
for the Earth System with different timescales of variability and subjected to non-periodic external forcing. We intro-
duce the concepts of an evolution set its distribution which are dependent on the starting state of the system, and explore
their links to different types of initial condition uncertainty and the rate of external forcing. We define the convergence
time as the time that it takes for the evolution distribution of one of the dependent variables to lose memory of its
initial conditions. We suspect a connection between convergence times and the classical concept of mixing times but
the precise nature of this connection needs to be explored. These results have implications for the design of influential
climate and Earth System Model ensembles, and raise a number of issues of mathematical interest.

Complex Earth System Models are widely utilised to make
conditional statements about the future climate under
some assumptions about changes in atmospheric green-
house gas concentrations to come; these statements are
often referred to as climate projections. The models them-
selves are high-dimensional nonlinear systems, and it is
common to discuss their behaviour in terms of attrac-
tors and in analogy to low-dimensional nonlinear systems
such as the long-established Lorenz ‘63 model. In a non-
autonomous situation, for instance due to anthropogenic
climate change, the relevant object is sometimes consid-
ered to be the pullback or snapshot attractor. The pull-
back attractor, however, is a collection of all plausible
states of the system at a given time and therefore does not
take into consideration any information we have about the
current state of the Earth System when making climate
projections, and are therefore not very informative re-
garding annual to multi-decadal climate projections. We
thus turn our attention to the situation when the starting
state of the system is fully or partially known and can be
used to constrain its future evolution.

I. INTRODUCTION

The theory of non-autonomous dynamical systems has en-
joyed great popularity over the past few decades, particularly
within the climate modelling community1. This is because
complex global climate models, or rather Earth System Mod-
els (ESMs), which are widely used to make projections of
the 21st century and to support the IPCC’s climate assess-
ment reports, are subject to non-periodic, climate-change-like

a)Also at Department of Physics, University of Warwick, Coventry, CV4 7AL,
United Kingdom

forcing, which inevitably breaks their autonomy. These mod-
els are also high-dimensional, multi-component, multi-scale,
nonlinear and chaotic systems and as a consequence, any for-
ward computation - that is to say, projection of the future
within the model - is highly sensitive to the finest details of
the initial state (up to the precision of the computer), making
climate prediction a non-trivial task.

Uncertainty in the state from which to initialise ESMs is
known as initial condition uncertainty (ICU). The sensitivity
of such models to ICU is well known since the early 60s’2

and has led to the development of ensemble weather forecast-
ing3. Its relevance for climate forecasting is also increasingly
being recognised 4–7, as it is the necessity of using large ini-
tial condition ensembles (ICEs) to characterise ICU8. Never-
theless, the uncertainty arising from ICU is often addressed
by taking statistics from a single, long trajectory9,10, which
it is assumed to explore all possible states in phase space -
hence assuming that the system in question is stationary. In
a stationary system (and periodically forced ones as well, via
a stroboscopic map) this is essentially an ergodic11 assump-
tion, or in practice a “kairodic”8 assumption: that averages
and distributions of states over long periods (e.g. 30 years for
WHO12) are representative of a particular instant. However,
in non-stationary systems under non-periodic forcing, such as
the climate system forced by increasing atmospheric green-
house gas concentrations12,13 the system is not ergodic, and
hence cannot be studied in this way in general11, while the
kairodic assumption has been shown to substantially underes-
timate uncertainty8.

The non-autonomous nature of ESMs under anthropogenic,
non-periodic forcing means that, in general, such a system
does not possess an attractor in the classical sense, because
one cannot take the asymptotic limit as time tends to infin-
ity. Recent years have seen the emergence of a number of
approaches from the mathematical community to address this
issue1,14. Central to these approaches is the idea that a model’s
climate can be formally seen as an evolving probability dis-
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The evolution of a non-autonomous chaotic system under non-periodic forcing 2

tribution constructed from an ensemble of simulations which
have been initialised from different ICs and in the very re-
mote past. This can be thought of as multiple “evolutions” of
the same Earth System (that is to say, they all obey the same
physical laws) but with each one starting from different initial
points14.

For a wide class of nonautonomous systems, it has been
shown that, in this “parallel climate realisations" approach,
the correct concept to describe a time-dependent set in the
phase space as the “limit” of a set of ICs is the pullback attrac-
tor.15–19. Many climate models, including the one discussed
here20, satisfy some form of energy balance which typically
implies the core structural hypotheses required to establish
the existence of pullback attractors. At any instant in time,
the system’s ‘climate’ can therefore be taken as an instan-
taneous slice of the pullback attractor - this slice is the so-
called snapshot attractor. Furthermore, in the same way that
the (pullback) attractors are some form of “limit” for a set of
IC’s, the initial distribution of IC’s might converge to a time
dependent “pullback” probability measure supported on the
pullback attractor. Invariant and pullback measures are typi-
cally not unique but here we are specifically interested21 in so-
called natural or physical pullback measures, which emerge
as the limit of smooth IC distributions22.

However, while mathematically appealing, these concepts
are of limited use in supporting the construction of climate
change ensembles of ESMs, and therefore in making climate
projections and ultimately supporting society. By definition,
the pullback attractor depends on initialisation infinitely far
in the past - see Equation (10). Generally, this problem can
be overcome by noting that in most cases we can assume that
mixing happens on finite time scales, which, however long,
can be taken as providing a convergence time: the time taken
for the ensemble dynamics to forget its initial state. We do not
therefore require infinitely long simulations, only sufficiently
long, where "sufficient" is defined by this convergence time.
Nevertheless this means that the pullback attractor is only ap-
plicable for long term climate analyses - longer than the con-
vergence time. This convergence time can be small (around 5
years) for a simple conceptual low-dimensional atmospheric
model system23 but rather long (over 150 years) even for fast-
mixing atmosphere variables in an intermediate-complexity
ESM24. In other words, the pullback attractor approach might
give us a good description of our idealised model system’s cli-
mate by the end of the next century (i.e., in about 150 years
time), but it can not tell us how we will get there.

This means that, while the pullback attractor represents the
internal variability of the mathematical system on timescales
beyond the convergence time, it is not the relevant object to
represent climate on shorter timescales because it does not re-
flect knowledge regarding the current state of the climate sys-
tem. On shorter timescales, the representative distribution is
more constrained. The set of trajectories that make up this
constrained distribution is a subset of those making up the
pullback attractor, but it is not clear how the two distributions
relate to each other.

Here we consider how to quantify this initial response and
how such forward distributions can depend on both our knowl-

edge of the current state and the characteristics of the non-
autonomous forcing. These issues are critical to understand-
ing what is required to make climate projections - even in
the perfect model scenario25 - and in characterising the be-
haviour of non-autonomous, non-periodic, nonlinear systems
more broadly. To do so, we use a low-dimensional system
with characteristics of an ESM26. The concept of an evo-
lution set is introduced to describe the set on which a more
constrained distribution would be supported. We also intro-
duce the concept of an evolution distribution to describe the
more constrained distribution and we consider the conver-
gence time for this evolution distribution to become indistin-
guishable from the pullback invariant distribution.

The paper is divided as follows. In Section II, we describe
the model used in this study, as well as the experiments per-
formed. In Section III, we elaborate on the concept of the pull-
back attractor, demonstrate it with examples from our model,
and define and illustrate the convergence time for different
variables in a stationary situation. In Section IV, we ap-
proach the transient climate change problem in combination
with some hypothetical, highly-constrained knowledge of the
initial state - so-called micro ICUs4,7. In Section V we con-
sider situations where the initial state is not well constrained -
so called macro ICUs4,7, while revisiting the concept of con-
vergence time in the non-autonomous situation. In Section VI,
we explore the influence of the forcing on the evolving distri-
butions. The implications to the design and initialisation of
ensembles in ESMs are briefly discussed in Section VII. We
then conclude the paper with Section VIII, where we discuss
further questions and future directions for the this study.

II. MODELLING FRAMEWORK

A. Model

We use a low-dimensional coupled ocean-atmosphere
model, which is taken as a conceptual representation of a cli-
mate model. In this model, the ocean domain is presented as
two connected but distinct basins, say, one representing the
ocean at high latitudes and another representing it at low lat-
itudes in the same hemisphere, with its dynamics given by
the Stommel ‘61 (hereafter S61) model27. The S61 model
is based on the free convection controlled by density differ-
ences maintained by heat and salt exchange between the reser-
voirs. The atmosphere is represented by a simplified descrip-
tion of its large scale circulation in one hemisphere, given by
the Lorenz ‘84 (hereafter L84) model28,29. The L84 model
is based on the interaction of the westerly, mid-latitude wind
current and large scale, pole-ward eddies.

The L84 model and the S61 model form the coupled ocean-
atmosphere model used in this study, which we shall refer to
as Lorenz 84-Stommel 61 (hereafter L84-S61) model30.

Mathematically, the L84-S61 model consists on the follow-
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The evolution of a non-autonomous chaotic system under non-periodic forcing 3

ing five coupled ODEs

X ′ =−Y 2 −Z2 −aX +a(F0(t)+F1T ) (1)

Y ′ = XY −bXZ −Y +G0 +G1(Tav −T ) (2)

Z′ = bXY +XZ −Z (3)

T ′ = ka(γX −T )−| f (T,S)|T − kwT (4)

S′ = δ0 +δ1(Y 2 +Z2)−| f (T,S)|S− kwS (5)

where

f (T,S) = ωT − εS (6)
F0(t) = Fm +M cos((2πt/K)−π/12)+FCC(t) (7)

and

FCC(t) =


0 if t < tstart

(H/K)(t − tstart) if tstart ≤ t ≤ tend

(H/K)(tend − tstart) if tend < t.
(8)

In the above, X ,Y and Z represent the high-frequency, atmo-
spheric variables in the L84 model: X denotes the intensity
of the symmetric westerly wind, Y and Z are the Fourier am-
plitudes characterising a chain of large-scale eddies, which
transport heat towards the pole at a rate proportional to their
amplitude. The variables T,S are the slow ocean variables
as in the S61 model: T and S denote the pole-equator tem-
perature and salinity differences, respectively. The function
f (T,S) represents the strength of the thermohaline circulation
(THC), while F0(t) is the forcing due to seasonal variation in
the heating contrast between the pole and equator. The lat-
ter corresponds to an average forcing equals Fm which varies
seasonally according to a cosine function with amplitude M,
and can be forced towards another value at a rate H. All the
variables in the model are non-dimensional. The model pa-
rameters and their reference values are described in Table S.1,
except the forcing function F0(t) which are presented sepa-
rately in Table I.

While t denotes the non-dimensional time, we note that the
characteristic time for the this model is 5 days, and hence, one
time unit in this model corresponds to 5 days, as originally
stated by Lorenz (1984)28. We refer to this as 1 Lorenz Time
Unit (LTU). Hence, a 365-day year has K = 73 LTUs.

The L84-S61 model is a nonlinear, non-autonomous system
of ODEs31. Using vector notation, this system can be written
as

X′ = F(X, t), (9)

where X = (X ,Y,Z,T,S), and F(X, t) is a time-dependent,
nonlinear vector function of X given by the right-hand side of
Equations (1) to (5). Its solutions are bounded, i.e. ||X||<C,
with C being a positive constant. The system is condition-
ally dissipative, i.e. ∇ ·F(X, t) < 0 under certain conditions,
meaning that finite-volume attractors might exist.

Despite being a simplified representation of the ocean-
atmosphere system, the L84-S61 model retains some of the
main characteristics of a state-of-the-art ESM: it is nonlinear,
multiscale, multi-component, complex and chaotic. Hence,

conceptual results obtained from this model can be insightful,
if not informative, of general properties of ESMs. However,
contrary to complex ESMs, which are high-dimensional (nor-
mally with billions or even trillions of degrees of freedom),
the L84-S61 model consists of only 5 ODEs, making it an af-
fordable model to be systematically studied computationally -
in particular, allowing for very large ensembles to be run.

The L84-S61 model was first derived by Van Veen et al.
(2001)30, although a similar model was derived earlier by
Roebber (1995)32. The version presented here is the same
used in Daron and Stainforth (2013)8. For details on the
derivation of the L84-S61 model, the reader is suggested to
consult Van Veen et al. (2001)30. Details on the individ-
ual model components can be found on the original works of
Stommel (1961)27 and Lorenz (1984, 1990) 28,29. A didactic
introduction to the L84 model can also be found in Provenzale
and Balmforth (1999)33.

B. Numerical solver, parameter values and ensemble design

The L84-S61 model is solved using the 4th-order Runge-
Kutta method, with time step 0.01 LTUs (1.2 hours). The
output frequency is 0.2 LTUs (1 day). All results, whether
single trajectories or ensembles, are presented as 1-year aver-
ages, which, for the purpose of this study, are a satisfactory
representation of the system behaviour34. The exceptions are
Figures S.3 and S.5 in the Supplementary Materials, and Fig-
ure 10, which use outputs of daily resolution.

All simulations use the parameter values as shown in Ta-
bles I and S.1 (Supplementary Materials), except for some
simulations in Sections III and VI where H = 0 and 0.0025
respectively. Regarding the forcing, note that the values pre-
sented in Table I mean that F0 oscillates seasonally around an
average value Fm = 7 with seasonal amplitude M = 1 (with a
full cycle taking one year to complete), while being driving to
another value at a rate of H = 0.01 units per year, or 1 unit per
100 years.

The ensembles in this work are designed as follows. Given
an IC X0 = (X0,1,X0,2,X0,3,X0,4,X0,5) in the phase space, we
randomly sample another 1,000 ICs such that, for each de-
pendent variable, the sample is normally distributed around
X0, j with variance given by σX0, j - with σX0, j being two or-
ders of magnitude lower than X0, j. Hence, each ensemble has
1,001 members. The details of each individual experiment,
including duration and parameter values, can be found in the
Supplementary Materials.

III. THE PULLBACK ATTRACTOR AND CONVERGENCE
TIME

The pullback attractor15,16 is a mathematical object that
generalises the concept of attractor to non-autonomous dy-
namical systems. This approach consists on the idea that, for
most non-autonomous systems, there exists a time-dependent
object in the phase space, to which trajectories that started in
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The evolution of a non-autonomous chaotic system under non-periodic forcing 4

TABLE I. Description of the parameters and their reference values in the forcing function F0(t), as per Daron and Stainforth (2013)8.

Parameter Value Description
Fm 7 1-year mean value of the seasonal variation function F0(t) when H = 0
H 0.01 Externally forced rate of change of Fm
M 1 Magnitude of the seasonal cycle

(tstart/K) 0 Start of non-periodic external forcing (in years)
(tend/K) 100 End of non-periodic external forcing (in years)

the infinite past will converge. Such object presents therefore
a natural estimate for the internal variability of the system.

A formal definition can be presented as follows. Let us
denote by X(t;X0, t0) the solution to the initial value prob-
lem (IVP) given by the ODE in Equation (9) and the IC
X0 = X(t0); and by X the corresponding phase space. A set
A = A (t) in the phase space is said to “pullback” attract a
set, or ensemble of points DX0 ⊆ X if, for all Y ∈ DX0 ,

distX (X(t;Y, t0),A (t))−→ 0 as t0 −→−∞, (10)

for all t, where distX(·, ·) denotes the Hausdorff semi-distance
between sets in the phase space. The time-dependent set
A (t), if also invariant with respect to the dynamics, is called
pullback attractor. When pullback attractors exist, there
might also exists an invariant probability distribution sup-
ported on this set, so-called the pullback invariant measure
(or distribution), which we will generically denote by µA

18.

A. Computing the pullback attractor

An explicit, rigorous computation of both A (t) and µA

is only viable for very simple dynamical systems, and usu-
ally not possible for most nonlinear ones, including L84-S61.
However, for non-conservative systems, a more practical ap-
proach is possible. This relies on the fact that, in general, a
solution (or ensemble) starting near or on the attractor takes
only a finite time to lose most of its dependency on the initial
condition and run through (span) most of the attractor. The
time taken for this convergence to happen is dependent on the
system (and its relevant time scales), and can also be estimated
numerically under some hypothesis, as we shall see below.

Figures 1(a-c) illustrate this convergence to the pullback
attractor for some of the variables of L84-S61. There, the
pullback attractor and its natural distribution are computed
from a micro ICE normally distributed around a central IC
point X0 in the attractor, with variance σX0 being O(10−2)

for atmosphere variables, O(10−3) for the ocean temperature
and O(10−4) for ocean salinity (as per Daron and Stainforth,
20138; see also Supplementary Materials). Note that, soon
after the experiment starts, the initial micro cluster of trajec-
tories disperses quickly and cover most of the attractor within
a few years. The exact number of years depends on the vari-
able of consideration though. For example, the time taken is
visibly long for the ocean temperature (Figure 1(a)), and even
longer for the salinity (Figure 1(b)), but very short for the fast,

atmospheric variable X (Figure 1(c)). The latter is in line with
what has been reported by Drotós et al. (2015)23 and Tél et al.
(2020)14 for the L84 atmospheric model.

B. Convergence time

The convergence time, which we shall denote as tconv, can
be loosely defined as the time taken by a localised ensemble
to become indistinguishable from the pullback attractor. A
statistically formal way to compute tconv is by comparing, at
each instant of time, the distribution of interest with a snapshot
of the numerically estimated pullback invariant distribution,
via a hypothesis test using some suitable statistics, where the
null hypothesis H0 is that both distributions come from the
same population. If we define a function of time h such that
h(t) = 1 if the null hypothesis is rejected at time t and h(t) = 0
if not rejected, then we could define tconv such that

tconv = inf{(t/K) ∈ [(t0/K),∞) : h(t) = 0}, (11)

where we opted to define tconv as normalised by K, so that the
corresponding unit is year, instead of LTU.

In the definition above, there might exist t > (tconvK) such
that h(t) = 1, which might put into question whether the con-
vergence has been achieved. To avoid that, a statistically ro-
bust way to define tconv would be to take the distribution of
h(t) in the time interval of consideration, repeat the experi-
ment several times, and build the distribution of h(t) values
for all those experiments, which can then be translated into a
distribution of t values, with associated uncertainties. This re-
sulting distribution should cluster around a value t that would
be taken as tconv.

Both ways of estimating tconv are clearly dependent on the
system of interest, as well as the initial condition and also
the dynamical variable in question. Crucially, in practice,
when dealing with computationally-generated distributions,
such computation is also dependent on the size of the ensem-
ble. There is not a unique way of doing it, and hence tconv is
also dependent on the test35 used, as well as the significance
level chosen. In this work, we use a two-sample Kolmogorov-
Smirnov (KS) test36. For two cumulative distribution func-
tions P1,n1(x) and P2,n2(x) of sizes n1 and n2 respectively, the
KS test is defined as

D(P1,n1 ,P2,n2) = sup
x
|P1,n1(x)−P2,n2(x)|. (12)
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The evolution of a non-autonomous chaotic system under non-periodic forcing 5

FIG. 1. Left column: Pullback attractor and its natural distribution for L84-S61 computed from a 500 years micro ICE simulation, where
green solid line shows the numerical solution starting from the central IC. Right column: Corresponding convergence time computed using
Equation (11) and the KS statistic based on a 100,000 single trajectory simulation. Panels (a-f) show: (a,d) ocean temperature; (b,e) ocean
salinity; (c,f) atmosphere variable X (intensity of westerly wind).

For the KS test, null hypothesis H0 should be rejected at
significance at level α if D(P1,n1 ,P2,n2) > Cn1,n2,1−α , where
Cn1,n2,1−α can be found in Dodge (2008)37 and references
therein. For convenience, in this work we use MATLAB’s
built-in function kstest2 instead. This function rejects the
null hypothesis based on the p-value, and not by comparing
the test statistic with a reference value.

We illustrate this approach by computing tconv for the dis-
tributions shown in Figures 1(a-c). To do so, we test H0 with
significance level α = 0.05, where the reference distribution
is given by a 100,000 years single-trajectory solution starting

from the same central IC (Supplementary Materials). This is
presented in Figures 1(d-f), which shows that tconv is 90 years
for salinity, 50 years for temperature, but only 19 years for
atmosphere. The latter is substantially higher than what has
been reported by Drotós et al. (2015)23, which found a tconv of
only 5 years for the L84 system, suggesting that the coupling
with slow-mixing variables increases the relaxation period for
the atmosphere variables in this context.

An alternative way to define a convergence time would be to
assume that initially the statistic D (in this case the KS statis-
tic) decays exponentially, such that D(t) ≈ D(t0)exp−τ(t−t0).
In this case, such a convergence time could be taken as 1/τ .

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

01
80

87
0



The evolution of a non-autonomous chaotic system under non-periodic forcing 6

The characteristic decay exponent can be estimated by look-
ing at the logarithm of D, which is presented in Figure S.1,
and computing the angular coefficient of the straight line it
approaches in the first few years of decay. This gives τ equals
0.0378, 0.264 and 0.1221 for T , S and X respectively. These
correspond to estimated times of approximately 26 years, 38
years and 8 years respectively, which is roughly half the values
of tconv estimated via Equation (11). Hence although quanti-
tatively different, both approaches provide very similar infor-
mation.

We also suspect a connection between convergence times
(as defined here) and the classical concept of mixing times.
Mixing is a concept from ergodic theory (see e.g. Halmos
(1956)38, Klenke (2014)39, Brin and Stuck (2015)40); very
broadly speaking, a dynamical system exhibits mixing if a
distribution of initial conditions relaxes or converges to the
invariant distribution under the action of the dynamics. In
case this happens exponentially fast, the inverse of the rate
could be termed the mixing time. The mixing time however
will, in general, depend on the class of initial distributions and
on how distances between distributions are measured (among
other things). Probably most importantly, mixing is a concept
from autonomous dynamical systems. Application of mixing
to the present situation requires generalising this concept to
non-autonomous systems (using the pullback invariant mea-
sure). Although possible, to the best of our knowledge, this
has yet to be fully developed.

C. Caveats with the pullback attractor approach

The pullback attractor approach has been proposed as an
alternative way of defining climate: it gives a mathematically
sound measure of the system’s internal variability, and being
time dependent, provides both a natural set of plausible states
at each instant of time - the snapshot attractor - and a natural
probability distribution of events at each instant of time - the
pullback invariant distribution. This has been discussed and
illustrated by several authors1,41, and has proven to be a more
rigorous and useful definition of climate for long-term (e.g.
IPCC-like) future scenarios.

This approach comes with some caveats though. By defini-
tion, the computation of such object requires an ensemble to
be initialised in the infinite past, which is impractical from the
computational point of view. In general, it is possible to ap-
proximately compute the attractor provided that the system is
run for longer than tconv. But again, this is problematic, partic-
ularly in climate modelling: on one hand, some components
of the Earth System evolve on long timescales of hundreds to
thousands of years; on the other hand, anthropogenic, non-
periodic forcing started only a couple of centuries ago.

Another caveat is that, while the pullback attractor repre-
sents all the internal variability of the mathematical model, it
is known that only a few of these states can be representative
of today’s climate. Therefore, using the pullback attractor to
measure “tomorrow’s" climate might include a large number
of unrealistic states - they are part of the internal dynamics of
the model but not attainable within that time frame for a given

initial condition. This will be discussed in the next section.

IV. MICRO INITIAL CONDITION ENSEMBLES AND THE
EVOLUTION SET

Although the pullback attractor provides a useful, mathe-
matically sound definition for long-term climate (beyond the
convergence time), it is less useful in quantifying the variabil-
ity in the short-mid term (months to years, or even decades),
when the intermittency of the dynamics is still dependent on
the initial state of the system. This is because it overestimates
the forecast uncertainty by allowing all possible states within
the attractor, including those that do not reflect our knowledge
of the present state of the system.

For example, considering the snapshot attractor for a given
day (say “today”), it corresponds to a large range of possible
values. But given sufficient information, it might be that only
one of those states is possible (up to a certain level of resid-
ual uncertainty), so many of the states on the snapshot attrac-
tor are unrealistic given our knowledge of “today’s” system.
We also know that the climate today constrains the climate
of tomorrow, in the range whose the system still carries the
memory from the initial state - that therefore excludes a large
portion of the pullback attractor. This means that any snap-
shots of the pullback attractor over-quantifies the variability
and distorts the probability of events in the short and mid-
term.

This is illustrated in Figure 2, where we present the evolu-
tion of a micro ICE under climate change next to the evolu-
tion of the pullback ICE of Figure 1. This side-by-side com-
parison (see also Figure S.2 in the Supplementary Materials)
shows that, in the first few decades, the pullback attractor and
its natural distribution, which are intrinsic to the mathemat-
ical system, over-represent climate uncertainty. This over-
representation is particularly evident for the ocean variables,
where the discrepancy can be visually observed for at least
40 years, in line with the convergence times computed in Fig-
ure 1. For the atmosphere variables (see also Figure S.2 in
Supplementary Materials), the distinction is less evident visu-
ally, mainly due to a shorter convergence time.

Note that the evolution of the micro ICE is initially con-
strained to a smaller set, which is evolving over time, and
seems to converge to the pullback attractor A (t) only after
a few decades. For this reason, we name this as the evolution
set E (t).

For a given non-autonomous chaotic system, this set is
solely dependent on the initial state X0, on the initial micro-
uncertainty given by the variance σX0 and on the initial
time t0. Therefore, we shall denote the evolution set as
E (t;X0, t0,σX0). Some basic properties of this set are straight-
forward. First, its existence is guaranteed by the existence and
uniqueness of solutions to the IVP for (9). Second, by the def-
inition, we have that E (t0) = DX0 , the ICE set. Also by defi-
nition, we have that E (t;X0, t0,σX0)−→ A (t) as t0 −→−∞.
It also follows that, for an initial ensemble set within the pull-
back attractor, i.e. DX0 ⊆ A (t0), we have that E (t) ⊆ A (t),
for all t ≥ t0. In practice, when estimating both E (t) and A (t)
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The evolution of a non-autonomous chaotic system under non-periodic forcing 7

FIG. 2. Comparing the pullback invariant distribution with the distribution generated by a micro ICE, with H = 0.01 in the first 100 years,
and H = 0 in the remaining 100 years. Left column shows the evolution of an ensemble which initially covers the entire pullback attractor.
Right column shows the evolution of a micro ICE. Panels (a-f) show: (a,d) ocean temperature; (b,e) ocean salinity; (c,f) atmosphere variable
X (intensity of westerly wind). An alternative version of this figure, which includes the atmosphere variables Y and Z, is available in the
Supplementary Materials.

numerically, these properties do not hold ipsis literis, and the
design of the ensemble becomes quite important (for instance,
any numerical estimate of E will also depend on the size and
possibly the shape of the initial ensemble). We also note that,
associated to E (t), this numerical example suggests the exis-
tence of a distribution µE supported on this set, which we will
assume to be true. Its relationship to the pullback invariant
distribution µA is not as clear though.

Climate modellers are familiar with the idea of exploring
ICU using micro ICEs. Nevertheless, they are in general taken
simply as an exploration of uncertainty, rather than the ob-

ject we are trying to characterise. Here, we bring together
the ideas of the pullback attractor with the methods applied in
climate modelling and produce an attractor-like object which
essentially represents future climate under climate change -
which we called the evolution set.

The formalism above allow us to revisit the content of
previous section, and reframe it as a kind of “forward”
convergence42. There, the existence of a convergence time
tconv might suggest that E (t) ≈ A (t) almost everywhere for
t > tconv. Hence, the question is: does that really happen?
In other words, which conditions are necessary to prove that,
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The evolution of a non-autonomous chaotic system under non-periodic forcing 8

for t >> t0: 1) E (t) and A (t) are sufficiently close43; 2) µA

approximates µE as t −→ tconv? If such statements are true,
the pair (A ,µA ) would hold key mathematical information
regarding the future climate.

In the next section, we will explore some features of the
evolution set by looking at its dependence on the choice of
ICEs.

V. MACRO INITIAL CONDITION UNCERTAINTY

Another issue related to the short-to-mid-term climate pre-
diction is the level of uncertainty of the actual state of the sys-
tem in some variables. While small (in general irreducible)
uncertainty can be covered by a micro IC ensemble, the un-
certainty in the initial state of some variables might be of the
same order of magnitude of the typical values for the vari-
able itself. For instance if the initial state is based on a model
spinup, or derived from the interpolation of sparse datasets, or
even because of a lack of data.

From a climate prediction point of view, these are relevant,
and macroscale variations in ocean quantities such as tem-
perature and salinity, and atmospheric ICU have already been
linked to decadal variations in regional climate in the North-
ern Hemisphere7. The question is therefore how would such
macro uncertainty impacts the evolution of the system, via its
evolution E (t) set.

A. Macro ICU from a control simulation (single trajectory)

One of the sources of macro ICU is the potential to initi-
ate climate ensembles from different states - including ocean
states - from a long control run with an ESM. To illustrate
this, we chose four different points in the attractor, all cor-
responding to a point in an existing trajectory after an initial
3,000-year long spinup. For simplicity, we name those ICs by
IC 1, IC 2, IC 3 and IC 4, with corresponding micro ICEs re-
ferred as ICE 1, ICE 2 and so on. Note that those ICs differ in
all five dependent variables, and are illustrated in Figure 3 for
the ocean variables. All ensemble distributions have the same
variance, as noted in Section II B.

Figure 4 shows that, for the ocean variables, the depen-
dence on the initial condition is significant. A first remark
is that all four micro-initialised resulting distributions differ
substantially from the pullback invariant distributions shown
in Figures 2(a,b). Further to that, they are also different among
themselves. For instance, in Figure 4(b), the micro ICE cen-
tred at IC 2 starting from a low temperature tends to decrease
for a few years before increasing again, despite the monotonic
increase in forcing. This is not followed by the micro ICE cen-
tred at the nearby IC 1, as shown in Figure 4(a) which spreads
out very quickly after initialisation and is visually (increas-
ing) monotonic from the beginning. In the case of IC 2, the
decrease in temperature is accompanied by an initial increase
in salinity as shown in Figure 4(f), which is then followed by
a steady decrease. Nevertheless, in all four cases, the distribu-
tions seems to coincide after a few decades, becoming visu-

FIG. 3. Attractor for the system L84-S61 with H = 0 when Fm = 7
(blue) and Fm = 8 (red) projected on the ocean temperature-salinity
(T,S) subspace. The black dots on the Fm = 7 attractor indicated the
location of ICs 1 to 4.

ally indistinguishable from each other and from the pullback
invariant distribution (see also Figure S.4).

This macro ICU dependence has important consequences
for climate prediction in seasonal to decadal time scales. A
common practice in climate modelling is to start a simulation
from initial conditions obtained from a spinup “control” run.
This control run allows one to find the system’s attractor, but
does not resolve the uncertainty about where in the attractor
one should start from. As we have seen, different micro ICEs
could lead to different evolution distributions, representing a
different climate in the short-to-mid term - even if the initial
condition is obtained from the same solution after spinup. In
this work, this difference in distribution is led primarily by the
macro ICU in ocean temperature and salinity. Although the
four ICs also differ in the atmosphere variables, their much
smaller convergence times mean that the overall difference in
evolution is quickly dominated by that in the ocean variables.

B. Macro ICU that reflect uncertainty in one variable

Another source of macro ICU is when initialising the model
from observations, in which case the uncertainty in some vari-
ables could be orders of magnitude higher than others. As an
example, if in-situ data is being used to initialise the model, it
is possible that one might have measurements for one variable
but not for others, for instance in case of defective equipment
(e.g. via bio-fouling). In this case, the initial state of the vari-
able is subjected to macro uncertainty.

This scenario is illustrated in Figure 5, where we high-
lighted four possible initial conditions, named by IC 5, IC 6,
IC 7 and IC 8, which are identical in the atmosphere variables
X ,Y,Z, but may differ in temperature and salinity (Supple-
mentary Materials). For instance, IC 5 and IC 6 has identical
temperature but differ in salinity; the converse is true for IC 6
and IC 7, and so on.

The sensitivity to macro ICU with respect to a single vari-
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The evolution of a non-autonomous chaotic system under non-periodic forcing 9

FIG. 4. Macro ICU from a control run simulation: comparing the evolution set and distribution of the slow-mixing ocean variables for different
micro ICEs in a macro ICU scenario, with H = 0.01 in the first 100 years, and H = 0 in the remaining 100 years. Left column shows the ocean
temperature. Right column shows ocean salinity. Panels (a-h) show: (a,e) IC 1; (b,f) IC 2; (c,g) IC 3; and (d,h) IC 4. An alternative version of
this figure, which includes the atmosphere variables X , Y and Z, is available in the Supplementary Materials.

able is illustrated in Figure 6, which shows the results for mi-
cro ICEs starting from the ICs indicated in Figure 5. Note
that macro uncertainty in salinity does not seem to alter the
evolution set and its distribution, as indicated in Figure 6(a,b).
On the other hand, macro uncertainty in temperature has a
significant effect on salinity, as shown in Figures 6(e,g): the
evolution sets and their distributions for salinity are signifi-

cantly different, despite having ensembles around the same
initial salinity state (see also Figure S.6).

This sensitivity of both E (t) and µE to macro ICU in a sin-
gle, slow variable is remarkable, and suggests that a proper
quantification of the uncertainty in predictions of the future
climate requires an assessment of macro ICU as well.
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The evolution of a non-autonomous chaotic system under non-periodic forcing 10

FIG. 5. Attractor for the system L84-S61 with H = 0 when Fm = 7
(blue) and Fm = 8 (red) projected on the ocean temperature-salinity
(T,S) subspace. The black dots on the Fm = 7 attractor indicated the
location of ICs 5 to 8.

C. Convergence time and macro ICU

As macro ICU impact the evolution set and its distribution,
one might asks whether the convergence time tconv is also af-
fected by it. Here we revisit the concept of convergence time
and show how it can vary with in a macro ICU scenario. We
illustrate this by computing tconv, using Equation (11), for the
eight micro ICEs shown in Figure 3 and Figure 5. The result-
ing tconv and corresponding evolution of the KS statistics are
shown in Figure 7 for the ocean variables.

When starting from a control run trajectory (as per Fig-
ure 3), the resulting tconv can vary dramatically. This is shown
in Figures 7(a,c). First, IC 1 provides a short tconv for both
temperature and salinity, being of 14 years and 46 years, re-
spectively. This tconv increases substantially from IC 1 to IC
2, being of 30 years for temperature and 70 for salinity. For
IC 3 and IC 4, while the tconv for temperature remains of the
same order (34 and 32 years, respectively), it still varies sub-
stantially for salinity, resulting in a tconv of 101 years for IC 3
and and 92 years for IC 4. We also note that the order of tconv
is the same for both variables in this case: IC 1 has shortest
tconv for both temperature and salinity, IC 2 is second, and so
on.

When starting from chosen-values within the attractor (as
per Figure 5), the results are rather different. This is shown in
Figures 7(b,d). In particular, both variability and order of tconv
differs from those shown in Figures 7(a,c). For instance, the
variability in tconv is 27 to 34 years for temperature (instead of
14 to 34 years) and 69 to 112 years (instead of 46 to 112) for
salinity. Also, the shortest tconv for temperature (27 years) is
given by IC 5, while the shortest for salinity is given by IC 6
(69 years).

The starkest contrast is observed when comparing IC 6 and
IC 8. Note that, while both ICs have the same value of salin-
ity, their respective micro ICEs have a tconv that differs by 43
years, highlighting the impact that macro ICU in a single vari-

able (in this case ocean temperature) can have in other vari-
ables as well.

In Herein et al. (2016)24 (where the authors looked at ICU
using an intermediate-complexity ESM under non-periodic
external forcing), the authors noted that tconv did not change
for micro ICEs starting at different instants of time (even
though the system was not autonomous). However, the micro
ICEs used in their study were generated by perturbing only
one dependent variable (the surface pressure field), keeping
all the others equal for all ensemble members, while the re-
sults were presented for a different variable, the annual mean
surface temperature in a single grid point of the model (what
they called a small scale) located within continental Europe.
Contrasting to that, the results presented here for a much sim-
pler model suggest that the ICU in a single variables (in this
case ocean salinity) can indeed have a significant impact on
the evolution distribution and its convergence time for others
(in this case ocean temperature), highlighting the role of slow
time scales in propagating uncertainty.

VI. HOW RATE OF CHANGE IN FORCING AFFECTS
THE UNCERTAINTY OF CLIMATE PREDICTIONS

In a climate change setting, the Earth system is under an ex-
ternal forcing (e.g. change in temperature due to anthopogenic
carbon dioxide emissions) that is both dynamic and uncertain.
This uncertainty is usually investigated via scenarios, which
in the context of IPCC, have shown to dramatically affect the
climatology predicted by CMIP models. In the case of this
work, such external forcing uncertainty may also affect the
evolution of an ICE as a distribution in a non-trivial way.

We illustrate this by looking at the evolution of the micro
ICE centred at IC 2 (shown in Figure 3) but under a slower
rate of “climate” change regime. Here, we reduce the rate of
change in forcing by a quarter, from H = 0.01 to H = 0.0025,
meaning that it now takes 400 years for the baseline forcing
Fm to increase by one unit. The resulting time series are shown
in Figure 8 for ocean temperature and salinity, where we also
included the H = 0.01 time series for reference.

Changing, or in this case reducing, the speed of climate
change has important effects on the resulting distributions.
While the ICE distributions in Figure 8(c) shows a mildly
monotonic decrease in the first 5 years, Figure 8(a) shows that
this behaviour is much more pronounced and persistent under
a weaker forcing. As the distribution in Figure 8(a) evolves,
another distinct behaviour emerges at around year 120: the
distribution suddenly gets broader, with the temperature of
several ensemble members decreasing sharply. About 40 to
50 years later, the ensemble narrows again and regain a shape
akin to that of Figure 8(c). These behaviour are mirrored by
the salinity distribution, as shown in Figures 8(b,d).

These curious behaviour, which is consequence solely of
altering the rate of change in forcing, can be better seen when
looking at the projection of the phase space onto the ocean
variables subspace, as shown in Figure 9, and can be infor-
mally explained as follows. At a faster climate change rate,
shown in Figure 9(b), the distribution has comparatively less
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The evolution of a non-autonomous chaotic system under non-periodic forcing 11

FIG. 6. Macro ICU in a single variable: comparing the evolution set and distribution of the slow-mixing ocean variables for different micro
ICEs in a macro ICU scenario, with H = 0.01 in the first 100 years, and H = 0 in the remaining 100 years. Left column shows the ocean
temperature. Right column shows ocean salinity. Panels (a-h) show: (a,e) IC 5; (b,f) IC 6; (c,g) IC 7; and (d,h) IC 8. An alternative version of
this figure, which includes the atmosphere variables X , Y and Z, is available in the Supplementary Materials.

freedom to explore the phase space and has its way forced
towards the attractor Fm = 8. At a slower climate change
rate, presented in Figure 9(a), the ensemble members have
now more freedom - and time - to explore the phase space
and the intermediate attractors between those of Fm = 7 and
Fm = 8. As suggested by Figure 10, one of those interme-
diate attractors is somewhat broader (in the ocean variables)

than the neighbour ones, and trajectories entering there might
eventually reach (time allowing) lower values of temperature
and higher values of salinity.

The behaviour illustrated in Figures 8(a,b) is yet to be seen
in state-of-the-art climate projections, and might require a dif-
ferent experimental design to be captured. This include the
use of large ensembles with several hundreds of ensemble
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The evolution of a non-autonomous chaotic system under non-periodic forcing 12

FIG. 7. Distance between the micro ICE distributions to the pullback invariant distribution, measured through the KS statistics (solid lines),
and convergence time (dashed-dot lines) computed using Equation (11): (a,b) ocean temperature; (c,d) ocean salinity, for the micro ICEs
centred at: ICs 1 to 4 (left column) as per Figure 4; ICs 5 to 8, as per Figure 6.

members, as suggested by Daron and Stainforth (2013)8. We
also note that the variables of interest in the L84-S61 are basin
differences in temperature and salinity, and not the actual tem-
perature and salinity - which are the usual output variables in
ESMs.

VII. IMPLICATIONS TO ENSEMBLE DESIGN AND
INITALISATION IN ESMS

With the findings presented so far come an immediate ques-
tion: how to deal with the different types of macro and micro
uncertainty when performing ESM simulations?

In ESMs, macro ICU is likely to be mostly found in slowly-
changing components such as the ocean, ice and land surface,
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The evolution of a non-autonomous chaotic system under non-periodic forcing 13

FIG. 8. ICE distributions starting from IC 2 in Figure 3, for H = 0.0025 (400 years of climate change, followed by 100 years of non-forced
climate with Fm = 8) shown in the left column panels, and H = 0.01 (100 years of climate change, followed by 100 years of non-forced climate
with Fm = 8) shown in the right column panels. Upper column panels show temperature for (a) H = 0.0025, (c) H = 0.01. Bottom column
panels show salinity for (b) H = 0.0025, (d) H = 0.01. Note that the panels (b,d) in this figure are the same as panels (b,f) in Figure 4.

FIG. 9. Projection of the phase space onto the (T,S) subspace, with a heatmap indicating the number of ensemble members that passes
through each point at least once (no repetitions are counted): (a) H = 0.01; (b) H = 0.0025. These correspond to the joint distributions shown
in Figure 8(a,c) and Figure 8(b,d), respectively.
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The evolution of a non-autonomous chaotic system under non-periodic forcing 14

FIG. 10. Attractor for the non-forced L84-S61, projected over the ocean temperature-salinity (T,S) subspace, for several values of Fm between
7 and 7.5. All attractors shown correspond to a single trajectory starting from the same IC (black dots).

although certain aspects of the atmosphere - particularly the
stratosphere - could also be vulnerable. And although how
to explore macro ICU effectively remains an open question,
computing evolution sets and distributions offers a starting
point. In fact, for simulations of the 20th and 21st century
- those designed to inform society about future anthropogenic
climate change - we might want to search for macro states that
lead to significantly different evolution distributions (such as
those presented in Figures 8(a,b)) on a multi-decadal basis on
regional (if not necessarily global) scales. Such information
would be valuable in understanding the diversity of potential
future behaviour. Constraining it with observations, however,
is a non-trivial task: first, it requires the development of new
(or serious modification of existing) data assimilation method-
ologies; second, it might be hampered by model error, as the
substantial differences between the model attractor and real-
world attractor - should one exist - prevents a simple transla-
tion of observational variables to model variables.

The exact correspondence between the results presented
here and ESM ensemble design and forecasts is yet to be
established. What is clear, however, is the importance of
developing ensemble designs which explore both micro and
macro ICUs. This will require much larger ensembles than is
currently the case in state-of-the-art ESMs just to be able to
understand the response of climate within a model – for in-
stance estimating evolution sets and distributions. The need
for such large ensembles also suggests a shift away from the
current emphasis on increasing resolution and complexity and
towards ensemble methods.

VIII. CONCLUSIONS

This article discussed several aspects related to the climate
predictability in short- and mid-time scales, including annual
to multi-decadal. To do so, we introduced the idea of an evolu-
tion set, where we combined the concepts of pullback attractor
and micro ICU to produce an object lying within the system’s
phase space (and likely the pullback attractor) whose shape is
constrained by a more refined knowledge of the initial state of
the system - via a micro ICE. While the evolution set is usually
bounded by the pullback attractor set, the latter is much larger,
and their respective distributions, or climate projections, are
different.

In addition to that, we attempted at defining a convergence
time, as the time taken for an ICE distribution to become in-
distinguishable from the pullback invariant distribution, and
highlighted a possible connection with the concept of mixing
time from ergodic theory. We also explored micro and macro
ICU, revisited the concept of pullback attractor, and discussed
the influence of those in the evolution set and the convergence
time. We also discussed the effect of different rates of change
in forcing in the evolution set. Given the significant differ-
ences produced, these results suggest that all these aspects
should be considered when designing ensembles for chaotic,
non-autonomous systems, in particular for ESMs in a climate-
change scenario - i.e. under non-periodic external forcing.

Although the results obtained are dependent on the par-
ticular low-dimensional model used, the ideas are model-
independent and should be applicable to any chaotic non-
autonomous system. This includes the concepts of evolution
set, evolution distribution, micro and macro ICUs, and con-
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vergence time. While some of the results presented are most
noticeable for the ocean variables, we also expect those con-
cepts to be relevant for other variables, including the atmo-
sphere ones, as the convergence time for atmospheric variable
in high-dimensional ESMs can be much longer - with a con-
vergence time of 150 years observed for an atmosphere ICE
initialised in the basin of attraction of the pullback attractor
within a intermediate-complexity ESM24.

From a theoretical point of view, this work leaves many
questions to be answered, which we believe to be of both
mathematical and climate science relevance. The first set of
questions relate to the evolution set E = E (t; t0,X0,σX0):

• Is it possible to prove rigorous results regarding the sen-
sitivity and dependence of E to the central IC X0, initial
time t0 and variance σX0?

• What is the relationship of E to the pullback attractor
A ? Is there any other relationship beyond E ⊆A when
DX0 ⊆ A (t0)?

• How many ensemble members are needed to charac-
terise E for a given X0, t0 and uncertainty as measured
by σX0?

• How dependent is E on the shape of the ICE? For in-
stance, would a highly singular distribution (e.g. with
fractal support) lead to a very different E ?

• How does the distribution µE relates to the pullback in-
variant distribution µA of the pullback attractor?

Another important question is how does uncertainty in one
variable propagates, or rather influence others? For example,
we saw that macro ICU in temperature seems to greatly affect
salinity, but the converse is not true.

A final but more ambitious question relates to the “size” of
attractors, as illustrated in Figure 10. How large are attractors
in ESMs? In other words:

• Is it possible to estimate their shape without resourcing
to brute force, given the computational limitations of
running such models?

A final note on the evolution set E is that there can be many,
depending on what observations ones uses to constrain the
possible climate scenarios with. The same applies to the the
evolution distribution µE . In this practical sense, the central
IC and variance used in the definition of E are just fudges to
simulate the residual uncertainty after the information from
the observations has been brought in. So the questions above,
although generically formulated, might be asked in relation to
an E constructed from assimilating some observation into a
more realistic climate model for example. Nevertheless, an-
swers to those questions would be a valuable resource in the
design of relevant and influential climate model ensembles.
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