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A B S T R A C T   

Avoiding the ‘tragedy of the commons’ remains a challenge in many natural resource systems, and open-access 
fisheries are well-studied in this context. Here, an agent-based model is used to investigate how variation in 
fisher goals change what policies best solve the tragedy. When fishers’ goals are easily satisfied, commons 
problems are avoided without management interventions, but the imposition of quota limits triggers the tragedy. 
Thus, commons problems are not necessarily inevitable and sophisticated governance institutions or regulations 
are not always required to manage them; the same policy may prevent the tragedy or trigger it, depending on the 
fisher’s goals. Given that it is difficult to ascertain them, by using a simulation model we can find patterns that 
help us identify fishers’ goals and incorporate these patterns within our management procedure. This can assist 
adaptive management to better incorporate behaviour into policy evaluation.   

1. Introduction 

The ‘tragedy of the commons’ (Hardin, 1968) remains an on-going 
problem in many natural resource use contexts. In a characteristic 
description, open access resources become overexploited when users are 
difficult to exclude and no user has any incentive to conserve the 
resource in the face of competition (Hardin, 1968). This makes natural 
resource management necessary to ensure sustainability. Fisheries 
classically suffer from ‘commons problems’ (Ostrom, 2008) where it 
may take the following form: fishers are motivated to invest in fishing 
capacity (e.g. larger boats, improved detection technology, increased 
effort), and join a ‘race to fish’, creating a depleted fishery (Emery et al., 
2014). From this relatively simple perspective, and in the absence of 
additional factors such as group cooperation (Ostrom 2015) the system 
is inherently flawed, requiring management intervention to curtail 
‘inevitable’ tragedy. 

It is well-acknowledged that ‘fisheries management is the manage-
ment of people, not fish’ (Jentoft, 1997), yet the majority of manage-
ment research focuses on the biological side of the system, despite 
long-standing calls for a better understanding of fisher behaviour and 
strategy (Wilen et al., 2002; Wilen, 1979). Behaviour and strategy, in 
this context, are principally decisions and actions pertaining to gear 

choice, distribution of effort and trip durations, employed to achieve 
objectives under the constraints of regulation and other conditions 
(Béné, 1996; Salas and Gaertner, 2004). Individual goals clearly 
contribute significantly to the decisions driving these behaviours. Thus, 
fishers’ personal goals are an important aspect to incorporate into 
fishery management research to better understand the implication of 
policy changes. 

In this paper, we investigate the effect of individual goals on fishing 
behaviours, using an agent-based model (ABM). ABMs are numerical 
models that incorporate autonomous, interacting agents, and have been 
used to simulate real-world systems (Axtell and Epstein, 1994; Axtell, 
2000; Rauch, 2002; Crooks and Heppenstall, 2012). This is a bottom-up 
modelling approach, whereby individual agents can be assigned het-
erogeneous behaviours and objectives (Railsback and Grimm, 2011; 
Scott, 2016). Agents can be placed in spatially and temporally explicit 
landscapes and interactively perform actions that may lead to emergent 
behaviours not present in more prescribed top-down models. ABMs can 
also potentially capture agents’ adaptive (and heterogenous) responses 
to changing policies. As such, these models are useful tools for investi-
gating the effects of alternative fisher behaviours and policy in-
terventions (Little et al., 2004). 

While studies show fishers may consider a number of factors when 
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they decide how to behave, including in-group fairness, conservation, 
and compliance with social norms (see ‘discussion’ for a presentation of 
some of these studies), bio-economic models typically conceptualise 
fisher behaviour as profit maximising (e.g. Clark 2010; Anderson 2015). 
In this paper, we are exploring the behavioural consequences of varying 
economic goals (see below). This simplification allows for model runs to 
test the specific behavioural impact of economic concerns. 

This paper explores a stylised, homogenous agent concerned solely 
with a particular economic goal. To reflect different concepts of eco-
nomic satisfaction, we implement three types of goals in the model: (i) to 
maintain a consistent and sufficient income; (ii) to maintain a relative 
income in comparison to one’s peers; (iii) profit-maximisation. These 
have been identified as prominent fisher goals through interviews 
(Holland, 2008), and economic and psychological research (Hoff and 
Stiglitz, 2016). For example, Holland (2008) shows fishers in Maine 
prefer to fish known areas with a projected moderate, consistent income 
than move to unknown sites with potentially higher payoffs. This is 
exemplified by the following interview extracts: 

“I’m a consistency person. I’d rather come in with a little bit less and 
have it every day than go for the risky, pound your chest, I caught 
‘em all” (p.332) (Holland, 2008) 

Critically, in the simulations we explore economic goals as inde-
pendent factors. That is, fishers do not pursue multiple goals at the same 
time. Instead, one simulation run implements fishers who maintain a 
consistent and sufficient income while another simulation run imple-
ments fishers who maintain a relative income in comparison to one’s 
peers. In other words, simulations are compared where every constraint 
is kept constant (biology, number of agents, spatial distribution, etc.) 
except for the economic goal each fisher targets. 

In pursuing their goals, the fishers choose between exploring (gain-
ing information) and exploiting (gaining returns). Exploration can be 
thought of, following Wilson (1990), as a production of knowledge 
problem (Wilson, 1990). In generating information (exploration) a 
fisher is forfeiting action (fishing), however they are also learning and 
using inference to generate potentially higher yields. There are multiple 
ways to model exploration (Hutniczak and Münch, 2018; Little and 
McDonald, 2007; Dorn, 2001; Bastardie et al., 2013). One way, is to see 
it as a ‘bandit problem’, invoking a choice to balance trade-offs (Kule-
shov and Precup, 2000). Algorithms for simulating ‘multi-armed’ bandit 
problems (where there are many competing choices) are used to simu-
late fisher behaviour in this study (see Methods). Similar behaviour al-
gorithms have been used in lab experiments to understand how humans 
learn and search in spatial environments with a vast set of possible ac-
tions, as well as how social learning coupled with bandit problems af-
fects outcomes (Wu et al., 2018; Toyokawa et al., 2019). 

Interviews with fishers in the US Pacific groundfish fishery and the 
Indonesian mixed snapper fishery1 suggested that fishers aim to match 
their peers’ incomes, or at least a portion of it. This aligns with the 
theory of social comparative processes, which argue that people eval-
uate their social context by comparison with others of similar socio- 
economic circumstances, and judge their subjective well-being accord-
ingly (Fetsinger, 1954; Campbell et al., 1976; Smith et al., 1989; Par-
ducci, 1995; Diener and Lucas, 2000). 

The existence of profit-maximising behaviour by fishers has found 
empirical support in commercial fisheries (Robinson and Pascoe, 1997; 
Pascoe and Tingley, 2006; Bockstael and Opaluch, 1984; Lane, 1988). 
For example, Pascoe and Tingley (Pascoe and Tingley, 2006) demon-
strate that the Scottish fleet tends to operate where marginal revenue 
equals marginal cost. As such, economic models of fisher behaviour 

draw on micro-economic theory where individuals are represented as 
producers and assumed to make decisions based on profit-maximising 
imperatives (Van Putten et al., 2012). This can be done through the 
use of random utility models as based upon expected utility theory and 
discrete choice modelling. This approach has seen a growing number of 
applications in the past two decades (Bockstael and Opaluch, 1983; 
Eales and Wilen, 1986; Holland and Sutinen, 2000; Curtis and Hicks, 
2000; Smith, 2002; Hutton et al., 2001; Tidd et al., 2011). However, an 
analysis entitled “Exploring the Validity of the Profit-maximising 
Assumption” concludes that it is true for some fishers but does not 
explain all behaviour (Robinson and Pascoe, 1997). 

Seeking a consistent income and comparing oneself to the average 
are forms of satisficing. Satisficing is a decision-making strategy that 
takes account of the relevant availabilities and pursues options that meet 
acceptable thresholds required to achieve a goal (Simon, 1947). In this 
paper, fisher goals are simulated by varying fishers’ ‘satisficing thresh-
olds’ - the point where fishers’ goals are satisfied. These ‘satisficing 
thresholds’ have been incorporated into a simplified, conceptual level 
version of the POSEIDON agent based model. This model depicts a 
spatially explicit near-shore capture fishery. As explained in ‘methods’, a 
fleet of 200 fishers target a single species of fish (also modelled as agents 
who respond to these fishing pressures) in order to make an income and 
achieve their goals. Their income is made by selling the fish they catch 
according to ex-vessel prices that are set exogenously and fixed, and 
offsetting their day to day costs (fuel). Furthermore, policy interventions 
such as Total Allowable Catch Limits (TACs), Marine Protected Areas or 
Individual Transferable Quotas can be imposed on the fishery. Here, 
TACs are used to show how fisher’s goals influence the long-term 
biomass and income of the fishery and how this changes when 
different quota limits are imposed. This shows that when fishers have 
certain goals, a tragedy of the commons like situation can be avoided 
even under an open access fishery and that management interventions 
aiming to conserve the fishery can perversely ‘trigger the tragedy’. 

2. Methods 

The crux of this study is to understand how various fisher goals bring 
about different goal-orientated behaviours and how these potentially 
affect the outcomes of management interventions. To investigate this, 
scenario modelling using an ABM is employed to show the effects of 
three alternative fisher goals against different policies (namely open- 
access and TAC limits). This is achieved by simulating different goals 
and running experiments where policy and fleet makeup are varied 
(each experiment, its motivation and parameters are described under 
Experiments and Results). The performance of goal-orientated behav-
iours against policy interventions are assessed by noting the final stock 
biomass and cumulative fishery income. It is expected that alternative 
goals, other than profit-maximisation (which is commonly assumed in 
models that incorporate fisher behaviour) are likely to produce different 
behaviour patterns. This is hypothesised to impact the effectiveness of 
management such that some interventions are appropriate given certain 
behaviour but inappropriate otherwise. This is done to show how fisher 
behaviour is a crucial aspect of fisheries that should not be excluded 
from modelling and how doing so can help to ensure more successful 
natural resource management. 

A conceptual version of the POSEIDON ABM is utilised in this study 
(Bailey et al., 2019). The model and the units of its outputs are purely 
representative. This analysis is interested in the overall effects of 
different fisher objectives on the simulated system but not in the discrete 
units themselves. The model illustrates general potential outcomes and 
key points in the fishery management space. This version of POSEIDON 
has been chosen to isolate the effects of fisher behaviour from the noise 
and idiosyncrasies that models of specific real-world fisheries bring. 1 Dr Richard Bailey and Dr Jens Koed Madsen, members of CoHESyS Lab, at 

the University of Oxford conducted interviews with fishers in the US Pacific 
Groundfish Fishery and the Indonesian Mixed Snapper fishery in April 2016 and 
April 2018 respectively.https://www.cohesys-lab.net/ 
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2.1. The model 

The model is an abstract, spatially explicit ABM depicting a stylized 
map of a near-shore capture fishery (Bailey et al., 2019). The model 
domain is of a shoreline with a single port, an ocean and a fleet of 200 
fishers. A single species of fish, modelled as agents, grow according to a 
logistic growth function (following Cabral et al., 2010 and Soulié and 
Thébaud, 2006). They grow locally (per cell) and diffuse spatially in 
their environment according to the local gradient. The fish biomass re-
sponds to and is depleted by fishing pressure (Bailey et al., 2019). 
Ex-vessel prices are set exogenously and remain fixed. Constant demand 
is assumed with zero inflation or discount rates. Agents incur input costs 
in the form of fuel, the price of which remains constant (Fixed costs are 
not included in this conceptual model). Different policy interventions, 
such as MPAs, TACs, individual transferable quotas (ITQs) or seasonal 
closures, can be imposed on the modelled environment with full 
compliance (Bailey et al., 2019). Here, various TACs are imposed. 

Central to the model is a fleet of individual vessels that act as 
autonomous agents. These agents form social networks and exchange 
information. Each agent has two ‘friends’ with which they do this. De-
cisions are made at the start of and during each simulated day (Bailey 
et al., 2019). Decisions include whether to fish, where to go and which 
gear to use (Fig. 1, from Bailey et al. (2019)). Such decisions are made 
without perfect information but are based on experience and the expe-
rience of those in their social network (Bailey et al., 2019). The value of 
this information implicitly decays as the environment changes and as the 
biomass is exploited. 

Fisher decisions are modelled as ‘bandit problems’. These are 
sequential choice problems where agents must decide between a number 
of possible actions at each stage (Soulié and Thébaud, 2006; Wu et al., 
2017; Berry and Fristedt, 1985; Bubeck and Cesa-Bianchi, 2012). Each 
choice provides information about the reward for the action taken but 
not for the alternatives. The goal is to maximise the present value of 
payoffs by allocating resources (time spent fishing) amongst competing 

alternatives (fishing locations) (Bailey et al., 2019; Berry and Fristedt, 
1985). Agents must decide between exploitation (making the best choice 
given current information) or exploration (gathering more information) 
(Wu et al., 2017). A balance should be struck between gaining infor-
mation and rewards. In POSEIDON this is modelled as the following: 
initially agents randomly choose a site, evaluate their rewards and 
compare this with the outcomes of those in their network. Agents then 
stochastically decide whether to continue exploiting the current site, 
randomly explore or copy their friend (Bailey et al., 2019). This has been 
termed explore-exploit-imitate (EEI). An evolving group response that 
maximises agents’ goals is formed. E.g. if the goal is to maximise profits, 
behaviours that result in larger profits will be reinforced and adopted 
(Bailey et al., 2019). Bandit algorithms applied to spatial exploitation 
have been used in Wu et al. (2018). Toyokawa et al. (2019) also augment 
bandit problems with social interactions. However, these other experi-
ments have not explored the policy implications of these behaviours. In 
the model, policies do not change the behaviour algorithms but impose 
different constraints and/or incentives; indirectly altering behaviours. 
This demonstrates a key feature of ABMs in which ‘micro-motives lead to 
macro-behaviour’ (Ferguson, 2016). 

For a full list of the parameters and values used, please refer to the 
Table 1. 

2.2. Fisher goals 

Three different objective functions within the EEI structure are 
modelled: maintaining a consistent income (consistent income goal), 
achieving a proportion of the average fisher income (relative income 
goals) and profit-maximisation. These goals are simulated as they are 
mentioned in interviews with fishers (Holland, 2008) and evidence of 
them from the psychological and economic literature (Hoff and Stiglitz, 
2016; Smith et al., 1989). Profit-maximisation is used as a control. 

Profit-maximising behaviour is simulated through an ε-greedy bandit 
algorithm. Agents will always choose the action (fishing locations) with 

Fig. 1. Flow chart indicating decisions made by autonomous agents in the POSEIDON model.  

A. Arton et al.                                                                                                                                                                                                                                   
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the ‘best’ outcome (based on previous experience) except when a uni-
formly random action is selected instead. Here an adaptive parameter of 
ε=0.2 is selected. At each step the location with the highest mean reward 
is ‘greedily’ played with probability 1- ε and a random location is chosen 
with probability ε (Wu et al., 2017). The parameter is adaptive in that 
the ε value increases or decreases by 2% each time an exploratory trip is 
successful or unsuccessful respectively. The algorithm assumes that 
agents are not risk averse and are not given any additional information 
beyond that received from their ‘friends’ or their experience. An 
ε-greedy bandit algorithm is selected over other bandit algorithms as it 
was found to perform better than others in this model (Schelling, 1978). 
Altogether this was deemed an appropriate means to simulate 
profit-maximising behaviour. 

To simulate the aims of different satisficing behaviours (achieving a 
consistent income and/or achieving a percentage of the mean income), 
the exploration-exploitation procedure of fishers is modified. Agents still 
choose between exploring and exploiting but do so depending on 
different satisficing thresholds (i.e. points at which agents’ goals have 
been achieved and they are satisfied) rather than each trip with proba-
bility ε. For different consistent income goals, a profit threshold is set, 
measured as dollars made per hour ($/hr). I.e. a threshold of 4 indicates 
that fishers are satisfied when they are making $4/hr. For relative in-
come goals, a proportionate threshold is set, measured as the fraction of 
the average income. I.e. a threshold of 0.4 indicates that fishers aim to 
achieve 40% of the average income (Kuleshov and Precup, 2000). 
Fishers then explore or exploit based on whether they are achieving a 
given threshold. They will exploit if they are at or above it (satisfied) and 
explore otherwise (dissatisfied). 

2.3. Optimization methods 

In some of this study’s experiments, a Bayesian Optimiser determines 
the ‘optimal’ policy under alternative goal-orientated behaviours. The 
‘optimal’ policy is defined with respect to an objective function. It is 
essential to define the objective carefully as the optimiser is unable to 
make judgement calls. E.g. if the optimiser is programmed to maximise 
profits within a 10-year period, it may suggest the best policy to achieve 

this, but in such a way that biomass reaches zero by year 10. Thus, 
additional constraints must be set and modellers should be cognisant of 
the way the optimiser interprets ‘best’ practice. 

Bayesian optimisation (Wilson, 1990) “works by creating a 
meta-model of the simulation outcomes, iteratively simulating new 
policies and using the outcomes to update the meta-model” (Bailey et al., 
2019). The optimiser then indicates the policy (in this case, quota limit) 
that achieves this ‘best’ response (Bailey et al., 2019). An advantage of 
combining the optimiser with the ABM is that the agents are adaptive 
and thus the ‘optimal’ policy takes the counter-measures potentially 
employed by agents into account. For a full explanation of the optimi-
sation technique as utilised in this model, please see Bailey et al. (2019). 

2.4. Classification 

In Experiment 5, a logistic regression is run to estimate the associa-
tion between average distance form port and exploration rate and 
relative income satisficing thresholds to identify indicators of goal- 
orientated behaviours. Average distance from port and exploration 
rate were chosen based on the way that relative goals have been 
modelled and on the results from experiments 1–3. The fitted logistic 
regression model was used to generate predicted probabilities for rela-
tive income satisficing thresholds. Predicted probabilities were then 
used to generate a binary variable where satisficing thresholds less than 
0.6 indicated easily satisficed agents and values greater than 0.5 were 
used to indicate agents that were not easily satisficed (‘greedy’). This 
binary variable for predicted satisficing threshold was then compared to 
the observed data to generate a predicted success rate for classifying 
relative income satisficing thresholds. 

3. Experiments and results 

To explore the impacts of alternative goal-orientated behaviours on 
the fishery, from an income and biomass perspective, multiple experi-
ments, described below, were run. Each experiment is simulated using 
the POSEIDON model (Bailey et al., 2019). A summary of the conditions 
for each experiment is provided in Table 1. All experiments held effort, 
catchability, and all other parameters constant. Only the fishers’ goals 
(satisficing goals (i.e. aiming for a consistent income, or relative income) 
or profit maximization) and management interventions (quota and 
quota limits) were varied. Each simulation experiment was run 100 
times, as multiple runs are required to estimate the outcome distribu-
tions. In preliminary tests, results stabilised after 100 runs (the means of 
fish biomass and income, our dependant variables, remaining largely 
unchanged outside of uncertainties). Each model run covered 30 years 
to observe the full dynamic responses of the model and allow the sim-
ulations to stabilise. 

Experiment 1 investigates the effects of consistent income, relative 
income and profit maximisation goals on an open-access fishery. This 
provides a baseline to understand how fisher goals effect behaviour 
without confounding management interventions. Experiments 2 and 3 
investigate how the goal of maintaining a proportion of the average 
income effects fish biomass and income when quotas are limited (by a 
fishery-wide TAC limit). The experiments show that some management 
interventions can be inappropriate given different fisher goals. 
Following this, experiments 4 and 5 explore whether adaptive man-
agement is an effective way to manage fisheries when fisher behaviour is 
uncertain. See Fig. 2 for the logical flow of the experiments. 

Income comparisons are conducted at the end of each trip. Specif-
ically, upon returning to port, the fisher computes their income (units of 
harvest fish * market price – litres of fuel spent/hour * numbers of hours 
at sea * gas price). Thus, while fishers have hourly costs (e.g. litres of 
fuel/hour they travel), the fisher computes their total income for that 
trip upon arrival in the port. At this point, the fisher compares their 
income with that of other fishers to determine whether the trip was 
satisfactory. 

Table 1 
Model parameters.  

Parameter Value Meaning 

Biology Logistic   
5000 max units of fish per cell  
0.001 Diffusion rate  
0.7 r (Malthusian growth parameter) 

Fisher Explore- 
Exploit-Imitate  

rest hours 12 rest at ports in hours 
fishers 200 number of fishers 
friendships 2 number of friends each fisher has with 

which to exchange information 
max days at sea 5 time after which boats must return to port 
Map   
width 50 map size (in number of cells) horizontally. 

Each cell represents 10 × 10km 
height 50 map size (in number of cells) vertically. 

Each cell represents 10 × 10km 
port position 40,25 location of port (cell coordinates) 
cell width 10 width (and height) of each cell (in km) 
Market   
market price 10 $ per unit of fish sold 
gas price 0.01 $ per litre of fuel 
Gear   
catchability 0.01 % biomass caught per tow hour 
speed 5.0 km/h 
hold size 100 max units of fish storable in boat 
litres per unit of 

distance 
10 Litres of fuel consumed per km travelled 

(each cell is 10 × 10 km) 
litres per trawling 

hour 
5 litres of fuel consumed per hour trawled  

A. Arton et al.                                                                                                                                                                                                                                   
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As described, to simulate satisficing behaviour, different satisficing 
thresholds (i.e. the point at which an agent is satisfied) are set. For 
relative income goals, satisficing thresholds (relative income goal) are 
set from 0.1 to 2.5, indicating the proportion of the average income that 
fishers are satisfied with achieving (e.g. for relative income goal=0.1, a 
fisher is satisfied with 10% of the average income). Thus, for relative 
comparisons, a fisher may have a positive income, but may consider this 
unsatisfactory if fishers in their social network are making more money. 
If this is the case, the unsatisfied fisher will explore on the next trip. 

For consistent income goals, satisficing thresholds were set from $1/ 
hr to $35/hr. Thus, if a fisher has a goal of $5 earns $5.24/hour, they 
will be satisfied and will return to that area on the following trip, but will 
explore new areas if they earn less than the required amount on that trip. 
Table 2 gives a summary of the different experiments, satisficing be-
haviours and management interventions that are simulated. 

Fig. 2. Description of the logical progression from one experiment to the next. It shows the high-level results of each experiment and the reasoning for the 
following experiment. 

Table 2 
Fisher goals and management interventions in the experiments.  

Experiment Fisher Goal Management Intervention 

1 Aiming for consistent income 
(1–35); relative income 
(0.1–2.5); profit maximisation 

Open-access 

2 Aiming relative income (0.1–1) TAC 
3 Aiming relative income (0.1–1) TAC 
4 Aiming relative income (0.7) TAC imposed at year 0 and 

removed at years 1, 3, 5 and 10 
years after imposition 

5 Aiming relative income (0.7) TAC imposed at year 0 and 
removed at years 1, 3, 5 and 10 
years after imposition  

A. Arton et al.                                                                                                                                                                                                                                   
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3.1. Experiment 1: how do alternative fisher goals effect income and 
biomass in an open-access fishery? 

For relative income goals, satisficing thresholds (relative income 
goal) from 0.1 to 2.5 were set. For consistent income goals, satisficing 
thresholds were set from $1–35/hr. For each simulation, we measure the 
final biomass (i.e. the total quantity/weight of fish remaining in the 
simulated environment at the end of the year) and cumulative annual 
fishery income (i.e. the total income across all agents for one year of 
fishing). In the model, fish biomass grows according to a logistic func-
tion in each cell and diffuses from one cell to the next (for more infor-
mation, see Section 1.2 Appendix of Bailey et al., 2019). Fishers incomes 
are made according to their catch (which is sold for an exogenous fixed 
market price) and costs (which comprises of fuel used whilst fishing). 

3.1.1. Experiment 1: results 
Fig. 3 shows final simulated biomass and cumulative fishery income 

resulting from different satisficing thresholds, with agents aiming for a 
relative income shown in blue and agents aiming for a consistent income 
represented in pink. In both simulations, we compare their outcomes 
with profit maximizing agents. Each box plot shows the results of 100 
simulations compared with the profit maximizing agents (baseline). 
Notably, the profit maximizing agents deplete the fishery within 30- 
years. As we can see from Fig. 3, agents who are easily satisfied (rela-
tive income goal≤0.5 and consistent income goal ≤5) conserve biomass 
and achieve higher cumulative income than profit maximisers. This is 
due to the fact that agents in these simulations do not find the most 
effective places to fish, as there are happy with less catches. Compara-
tively, agents with medium thresholds satisfaction collapse the fishery 
like profit maximisers, generate higher levels of competing, which in 
turn makes them highly effective fishers. Finally, agents who are very 

hard to satisfy (relative income goal≥2.1 and consistent income goal 
≥7) generate extreme levels of competing, which in turn makes them 
explore too much and fish ineffectively, as they are almost never satis-
fied with their current trip. This causes over-exploration, which even-
tually maintains biomass but with lower levels of income. In sum, 
experiment 1 shows that fishers who are easy to satisfy maintain high 
levels of biomass and have higher income than profit maximisers (who 
collapse the fishery), fishers with medium satisfaction thresholds 
collapse the fisher due to competition while fishers who are difficult to 
satisfy earn very little and maintain the biomass because of over- 
exploration due to extreme levels of competition. 

Fishers’ goals influence the long-term biomass and income of the 
fishery even when effort, gear and fleet are kept constant. This is because 
different goals generate different spatial allocations of effort. Profit 
maximisers and satisficers with high thresholds congregate near port, 
fishing intensely, and slowly fish further from port as resources are 
depleted. Satisficers with low thresholds tend to spread out with each 
vessel focussing on a specific fishing location (cell). 

Fig. 4 shows intensity and spatial configuration of fishing effort 
(number of tows) per cell for relative income goal=0.4 and relative in-
come goal=1 respectively. The ‘checkerboard’ appearance when rela-
tive income goal=0.4 demonstrates that some cells are heavily exploited 
while the rest see little effort. When relative income goal=1, fishers ‘fan- 
out’, starting close to port and spreading over time. As stated, fish 
biomass grows according to a logistic function in each cell and diffuses 
from one cell to the next. The logistic growth model responds badly to 
the concentrated effort exhibited by profit maximisers because these 
fishers serially deplete areas near port without allowing for the biomass 
to grow and diffuse to neighbouring cells (for more information on the 
diffusion rate, see Section 1.2, Appendix, Bailey et al., 2019). 

Satisficing agents on the other hand, distribute their effort with 

Fig. 3. Final biomass and cumulative income over a 30-year period for relative income satisficing thresholds from 0 to 2,5 (blue/left) and consistent income sat-
isficing thresholds from 0 to 35 (pink/right) in an open-access regime. The horizontal line indicates the cumulative income/biomass outcome under a goal of profit- 
maximisation. Note that the outcome under profit maximisation is ‘constant’ in comparison to the satisficing thresholds. This allows for a comparison to understand if 
the outcomes under different satisficing thresholds is above/below the outcome achieved under profit maximisation. 
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rarely more than one boat fishing one cell at a time. This effort is not 
enough to deplete the biomass in the cell but enough to leave space for 
further growth and movement of fish from the fished cell to unfished 
areas surrounding it. The exploration rate (the number of exploratory 
trips over the total number of trips) drives configuration of the effort. At 
lower thresholds, fishers are satisfied and so do not explore, staying in a 
single cell. If another fisher (or more) were to join them in that cell, they 
are more likely to become dissatisfied and leave, until eventually fishers 
are broadly distributed with one boat in a cell. At higher thresholds 
fishers are seldom satisfied whereas at lower thresholds it is the oppo-
site. Dissatisfaction triggers exploration, which distributes effort (see 
Fig. 4), and drives biomass (and income) down. 

Counter intuitively, even though fishers with lower thresholds (i.e. 
below 0.5 or 5 for relative or consistent income goals) are satisfied with 
less profits or smaller proportions of the average income they perform 
better in aggregate, as behaviours at these thresholds create a social 

equilibrium. As each fisher returns time and again to fish in the same 
preferred cell, they reduce the biomass in their preferred cell and their 
generated income. However, if the fisher is easily satisfied, the initial 
depletion may not be enough to prompt the fisher to explore, and the 
spill-over effect from unexploited cells ensures that exploited cells are 
never fully depleted; in the long run this spill-over will increase in 
magnitude eventually raising the income of the fisher beyond the orig-
inal level. This scenario also occurs when agents have relative income 
goals.. This establishes a state where all fishers target a single area and 
receive a consistent relative level of income. For the same effort and 
exploitation levels, agents with low satisficing thresholds conserve the 
fishery while profit maximisers or agents with higher thresholds collapse 
it. 

Fig. 4. Spatial distribution and intensity of fishing effort under a relative income satisficing threshold of 0.4. (top) and 1 (bottom). The intensity of fishing effort is 
calculated as number of tows per cell over the maximum number of tows in a single cell over the 30-year period. Green indicates land mass. 
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3.2. Experiment 2: how do alternative goal-orientated behaviours effect 
optimal quota limits? 

Given the impacts of alternative fisher goals on biomass and income 
observed in Experiment 1, Experiment 2 investigates the implications of 
fisher goal behaviours on management intervention outcomes and es-
tablishes ‘optimal’ management measures for different goals using 
Bayesian Optimization (Smith et al., 1989; Van Putten et al., 2012; 
White and Mace, 1988; Kolody et al., 2008; Fulton et al., 2011). Total 
Allowable Catch limits (TACs) (Karagiannakos, 1996) are used as the 
management tool in this case. The optimal TAC under relative income 
satisficing thresholds from 0 to 1 is set by the Bayesian Optimiser. Here, 
the ‘optimal’ TAC is the quota that maximises total cumulative income 
across the fleet over the 30-year simulated period. 

3.2.1. Experiment 2 results 
Results are shown in Fig. 5, where satisficing thresholds and optimal 

quotas are non-linearly associated. When relative income satisficing 
thresholds are less than 60% of the average income (relative income 
goal≤0.6) having no TAC at all is optimal (which the optimiser reports 
as 2 million units). As explained in relation to Fig. 3, this is due to the 
fact that fishers who are easy to satisfy do not generate a highly 
competitive environment, meaning that they are likely to be content to 
fish on areas they have fished on previous trips due to the low nature of 
competition. As they are unlikely to ever reach a TAC of 2 million units, 
thus it is equivalent to having no fishing limits. Comparatively, as 
illustrated in the above, agents who are more difficult to satisfy are likely 
to generate competitive and highly effective fishing behaviours, which 
eventually collapses the fishery. Thus, when relative income goal=0.7, a 
relatively conservative TAC of 580,811 units is identified. Fishers aim-
ing for higher proportions of the average income warrant more con-
servative TACs (to counter their tendency to over-fish for profit). The 
difference in optimal quotas between relative income goal=0.6 and 
relative income goal=0.7 suggests policy outcomes are sensitive to 
alternative fisher goals. This substantiates the claim that understanding 
fisher decision-making and fisher goals is crucial to managing the 
fishery. 

3.3. Experiment 3: what are the implications of imposing the ‘optimal’ 
quota to the wrong fishery? 

As illustrated in experiment 2, fisher goals and behaviour signifi-
cantly affect optimal TAC settings. Thus, it is important to investigate 

the implications of imposing what is optimal under one satisficing 
threshold to a fleet with a different satisficing threshold. In other words, 
what would occur if policy-makers impose interventions that are not 
appropriate to a given fishery? 

To explore this, relative income goal=0.7 optimal quota (580,811 
units) was imposed on fleets with relative income goal=0.1–1. relative 
income goal=0.7 was chosen as it is the point where social equilibrium 
does not emerge (see Experiment 1). At this threshold, the system shifts 
from exhibiting high, stable biomass and income levels to lower, less 
stable levels of each. To understand how TAC alters the system and its 
sensitivity, the simulation was compared to open-access conditions. 

3.3.1. Experiment 3 results 
For fishers who are easy to satisfy, the imposed TAC breaks the social 

equilibrium and causes collapse of fisheries that would have otherwise 
settled into a high-biomass high-profits equilibrium (see Fig. 6). In an 
open-access regime, fishers settles into the social equilibrium after 5 
years for values relative income goal=0.1–0.5. However, when a TAC is 
imposed on the same fishery, biomass declines rapidly. This is due to the 
fact that the quota produces inequality and competition between fishers, 
which in turn unsettles the social equilibrium and causes increasing 
exploratory trips. This reinforces the findings of Experiment 1: low 
exploration rates are a driver of the social equilibrium. 

This finding is primarily driven by the emergence of inequality, as 
the TAC creates an inequality-driven ‘exploration race’. When the TAC is 
reached, the fishery closes for the season. Thus, only agents fishing close 
to port land their catches before the quota is exhausted, resulting in 
increased income inequality as agents who fail to land catches receive 
reduced incomes. As such, these agents fail to satisfy their income 
threshold (a function of the average income) and react by exploring new 
fishing grounds. Under an open-access regime (relative income 
goal=0.1–0.5) exploration rate is 0. When the TAC is introduced the 
exploration rate never falls to 0 but instead steadily increases from year 
5 in conjunction with falling biomass. Fishers start fishing closer to port 
to increase income (by reducing fuel costs) and decrease the chance of 
being unable to land catches when the quota is exhausted. Fishers are 
thus pushed to fish more efficiently to keep up with their neighbours 
and/or their income thresholds in ways they weren’t compelled to under 
open access. Thus, average distance from port declines for relative in-
come goal=0.1–0.5. Fishers exhibiting this behaviour achieve higher 
income, pushing average income up further. This causes further 
inequality, triggering a consecutive round of exploratory behaviour with 
still more vessels fishing closer to port. An inequality driven feedback 

Fig. 5. Optimal TACs calculated by the Bayesian Optimiser under relative income satisficing thresholds from 0.1 to 1.  
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loop is created, reinforcing this behaviour. By conglomerating nearer to 
shore in a ‘fishing front’, fishers negatively affect the biomass, exhibiting 
similar behaviour to that generated in Fig. 4 by profit maximisers. 
Effectively, the TAC produces the effect of agents with medium satis-
faction parameters from Experiment 1 who collapsed the fishery due to 
increased competition. In other words, via emergent inequality, the TAC 
introduces competition in simulations where fishers would otherwise be 
in a competitive equilibrium. Thus, the TAC destabilises the social 
equilibrium achieved at lower thresholds under open-access with 
negative impacts on both fish biomass and income. 

Conversely the TAC has positive impacts under situations where 
fishers have higher satisficing thresholds as the limit ensures stocks are 
not decimated. Under open-access, when relative income goal>0.6 
vessels already congregate in a ‘fishing front’ and deplete biomass 
(Fig. 4). Thus, the TAC does not directly alter the spatial distribution of 
effort as it does under lower thresholds. 

3.4. Experiment 4: can dynamic policies be employed to rectify the 
unintended consequences of a failure to appropriately incorporate fisher 
goals into fishery management? 

Under some satisficing thresholds the TAC has deleterious effects 

while under others it is an appropriate management measure. Therefore, 
understanding fisher goals is important as it directly influences adap-
tation and, as a consequence, policy optimisation. Unfortunately, policy- 
makers are unlikely to know fisher goals explicitly. If policy-makers 
incorrectly estimate satisficing thresholds, experiments 1 and 2 show 
the system may collapse. Here, we explore whether such situations can 
be avoided using adaptive management. Adaptive management are 
flexible measures that alter given new information regarding systems. 

For adaptive policies to work, two questions must be answered; If the 
fishery would have achieved social equilibrium but a TAC is erroneously 
imposed, can the situation be recovered by removing the TAC at a later 
stage? And how late can managers remove the TAC to ensure a recovery? 

To test these questions, 4 experiments were run. The optimal TAC for 
relative income goal=0.7 (580,811 units) is imposed but then removed 
after 1, 3, 5 and 10 years respectively. A homogenous fleet of 200 fishers 
(relative income goal=0.4) was used. relative income goal=0.4 was 
chosen as the social equilibrium is secured 100% of the time under this 
threshold and the imposition of the TAC ‘breaks’ the equilibrium as 
described under Experiment 3 (due to the increased competition caused 
by the emergent inequality). Each experiment was run for 60 years with 
100 runs. Running it 100 times allows for a good understanding of the 
probability of collapse and 60 years of simulation allows for slow 

Fig. 6. Biomass, income and exploration rates over a 30-year period for relative income thresholds from 0 to 1 under an open-access regime (left) and a TAC of 
580,811 units (right). Under the TAC, incomes are limited by catch restrictions and so stabilise at approximately $30,000. 
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recovery rates, as stock recovery can take a significant amount of time 
(Britten et al., 2017). The system is considered ‘collapsed’ if final 
biomass is below 1 million units and recovered otherwise (Shahriari 
et al., 2016). 

3.4.1. Experiment 4 results 
As mentioned, we chose model settings where Open Access fishing 

reached equilibrium, but where the introduction of a TAC triggered a 
collapse due to increased competition. The following measurements 
describe whether the fishery can return to equilibrium following the 
removal of the TAC or if the damage is irreparable. Fig. 7 illustrate 
yearly biomass outcomes following the TAC’s removal at different pe-
riods. The recovery likelihood is 100%, 81%, 37% and 0% for removing 
the TAC in years 1, 3, 5 and 10 respectively. In other words, if the TAC is 
removed swiftly, the fishery recovers. However, the longer the TAC is in 
place, the more likely it is that the fishery cannot recover again. 
Removing the TAC restores social equilibrium if done early, but only if 
the fishery achieves social equilibrium under open-access. 

Thus, employing adaptive policies may be a means to avoid a fishery 
collapse if inappropriate TACs can be removed in time. The current 
result is directly informed by the behavioural component. As described 
in the above, agent satisfaction levels are relative income goal=0.4, 
which was chosen as this condition reached equilibrium, yet collapsed 
under a TAC. For different economic goals and different parameter 
settings, the impact of the introduction and removal of the TAC would be 
different. Thus, aside from providing an interesting exploration of a 
particular type of agent, the experiment points to the deeper point that 
we must have a good understanding of fishers aims and behaviours in 
order to understand how they will adapt and respond to economic, 
policy, and biological changes. 

3.5. Experiment 5: can an indicator be found to determine fisher goal- 
orientated behaviour? 

In the experiment described above, for adaptive policy management 
to work, policy-makers would benefit from determining whether a 
fishery would achieve social equilibrium by estimating fishers’ moti-
vations. Furthermore, they must be able to do so in time to remove the 
TAC to allow for a chance of recovery. 

Determining the goals of fishers would entail resource-intensive so-
cial surveys. Given the nonlinearity of satisficing thresholds, even small 
errors in surveys could spoil their effectiveness and result in collapse 
(which can occur rapidly, see Fig. 5). The model may provide variables 
that estimate fisher’s goals and satisficing thresholds. Such lessons from 
representational models may then be translated to real world fisheries 
with readily available fishery data (such as data on average trip dura-
tion, landings, catch per unit effort etc.). Modelling this provides a cost- 
effective strategy that allows policymakers to analyse existing data to 
provide insights into fleet behaviour and dynamics. 

Distance from port and exploration rates were investigated as po-
tential indicators of fishers satisfaction goals. A logistic classifier was 
trained on 1000 runs of each of the experiments for relative income 
goal=0.1–1. The classifier was trained to discover if relative income 
goal≤0.5 by looking only at distance from port or exploration rate. Two 
regressions were run for each potential indicator at year 2 and 4. This 
allows hypothetical policy-makers to decide whether to remove the TAC 
at year 3 or 5 respectively (giving the fishery an 81% and 37% chance of 
recovery respectively, see Experiment 4). 

Prediction quality is expressed as a percentage of the number of 
times the classifier predicts correctly over the total number of times the 
experiment was run. 

3.5.1. Experiment 5 results 
At both years 2 and 4, if the average distance from port is approxi-

mately greater than 200 km then it is predicted that relative income 
goal≤0.5 (Fig. 5). The same can be said if exploration rate is 0.1 or 
lower. Prediction quality for average distance form port is 99% and 84% 
at years 2 and 4 respectively. For the exploration rate the quality of out 
of sample prediction is 99.8% at year 2 and 100% at year 4. That clas-
sifier precision is best when done early indicates that chance of the 
system returning to the social equilibrium following the TAC removal is 
greater the sooner it is done. 

4. Discussion and conclusion 

The results shown above demonstrate, as might be expected, that 
fishers’ goals influence long-term biomass and fishery income even 
when effort levels are kept constant. More importantly, ‘tragedy of the 

Fig. 7. Yearly biomass outcomes over 100 runs, TAC removed at year 1, 3, 5 and 10, respectively. 0%, 19%, 37% and 100% of the simulation runs end in biomass 
collapse, respectively. 
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commons’-type problems are not inevitable under open access regimes. 
Rather, given certain goal-orientated behaviours, a stable situation 
where biomass is protected, and fishers receive relatively high, stable 
income levels can be achieved. Further, inappropriate management in-
terventions that fail to take fisher goals into account can trigger a 
resource collapse. The simulations illustrate that fisher’s goals and the 
strategies they employ to achieve them affect how they react to man-
agement and thus are an important factor to include in modelling ex-
ercises. The simulations demonstrate that, through modelling, readily 
available fishery-dependant data (e.g. distance travelled from port, 
average trip duration, landings, catch per unit effort) can be used to 
indicate the likely goal-orientated behaviours which can inform man-
agement and policy intervention. Such information can facilitate the 
efficient use of adaptive management and avoid the need for time 
consuming and resource intensive surveys to determine harvester be-
haviours. It also provides an argument for incorporating cognitively 
realistic goal-orientated behaviours when designing interventions for 
‘managing the commons’. Of course, resource managers should carefully 
monitor changes in fleet behaviours and the environment as any shifts 
may mean adaptations in fisher goals. While these observations are 
drawn from a single species proof-of-concept model, care should always 
be taken to understand to ensure management is reflective of real-world 
circumstances. 

Scholars have argued that the only means to curtail the tragedy of the 
commons is through public control or private property rights (Pinsky 
et al., 2011; Carruthers and Stoner, 1981; Smith, 1981). According to 
Hardin (1968) ‘ruin is the destination toward all men rush’ when rival 
and non-excludable (common pool) resources are left to the devices of 
self-serving harvesters. Yet, when fishers are easily satisfied, commons 
are maintained at relatively high levels (Experiment 1) and a social 
equilibrium is created. By maintaining low exploration rates, fishers 
concentrate effort in a few locations. The system stabilises with fishers 
seldom vacating their fishing spots whilst harvesting consistently and 
not significantly reducing biomass (Fig. 4). In this case, neither 
top-down control nor private property rights are required to protect 
common-pool resources (CPR). 

Showing that the tragedy is not inevitable is not a novel result; 
Ostrom (2015), Berkes (1986), San Martín et al. (2010) and Dietz et al. 
(2003) have documented cases where CPR was preserved through 
binding contracts or cooperative strategies. Indeed, a situation 
remarkably similar to the outcomes of experiment 1 occurred in Alanya, 
Turkey (Berkes, 1986) where fishers were assigned fishing locations, 
spaced to optimise production capacity. After 10 years of experimen-
tation, negotiation and cooperation, Alanya devised a strategy reflecting 
the spatial allocation of effort, exploration rates (i.e. zero exploration) 
and stability, which emerges in the POSEIDON model when fishers have 
low relative income goals. The difference between Alanya and the model 
is that the social equilibrium is achieved without institutions. Ostrom 
(2015) argues that the capacity to communicate, develop trust, social 
norms and share a common future contribute to the success of 
self-governing institutions. However, in our model, none of these factors 
exist. The agents do not communicate (beyond sharing catch informa-
tion within their social networks to allow for imitation), have no social 
norms and cannot develop trust. They cannot create agreements or 
negotiate strategies. Furthermore, the agents have no concept of these. 
The tragedy is avoided without any cooperation or regulation 
whatsoever. 

There is a growing literature that questions whether fishers are 
purely driven by economic and profit maximising features. For example, 
Polania-Reyes and Echeverry Perez (2015) show that fishers may forego 
some profit due to deference to in-group fairness, similarly, Holland 
(2008 p. 339) reports concerns about conservation, and Cárdenas et al. 
(2000) and Hatcher et al. (2000) show that fishers consider compliance 
with social norms. Further, Klein et al. (2017) suggest consistency, 
sustainability and neighbourliness may be as important as income to 
some fishers. However, as discussed in the above, the current paper 

focuses exclusively on different concepts of economic considerations. 
Future research and simulations should explore how competing choice 
considerations that go beyond economic concerns impact behaviour and 
management. 

The model outputs presented above, together with empirical case 
studies already published, suggest behaviour and goals of individuals 
are essential components in the analysis of management effectiveness. 
Inappropriate management interventions can trigger a ‘tragedy of the 
commons’, where previously none existed. It is shown that the results of 
models, such as this proof-of-concept ABM can highlight relatively 
simple metrics (e.g. distance travelled from port) that can (if the ABM is 
representative of the system it is simulating) substitute for resource- 
intensive social surveys necessary to understand the true fleet make- 
up with regard to goals. Goal-orientated behaviour can be incorpo-
rated into fisheries models, and we argue that without it, such models 
(which make other implicit assumptions about goals) may be system-
atically erroneous in their predictions of management intervention ef-
fects as context-specific solutions to commons problems. 
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