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Many of the world’s fisheries are “data-limited” where the information does not

allow precise determination of fish stock status and limits the development of

appropriate management responses. Two approaches are proposed for use in

data-limited stock management strategy evaluations to guide the evaluations

and to understand the sources of uncertainty: rejection sampling methods and

the incorporation of more complex socio-economic dynamics into

management evaluations using agent-based models. In rejection sampling (or

rejection filtering) a model is simulated many times with a wide range of priors on

parameters and outcomes are compared multiple filtering criteria. Those

simulations that pass all the filters form an ensemble of feasible models. The

ensemble can be used to look for robust management strategies, robust to both

model uncertainties. Agent-based models of fishery economics can be

implemented within the rejection framework, integrating the biological and

economic understanding of the fishery. A simple artificial example of a

difference equation bio-economic model is given to demonstrate the

approach. Then rejection sampling is applied to an agent-based model for the

hairtail (Trichiurus japonicas) fishery, where an operating model is constructed

with rejection/agent-based methods and compared to known data and analyses

of the fishery. The usefulness of information and rejection filters are illuminated

and efficacy examined. The methods can be helpful for strategic guidance

where multiple states of nature are possible as a part of management

strategy evaluation.
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1 Introduction

Stock assessment models are used in fisheries analysis to

determine status of a fish population relative to management

criteria and to evaluate the change in status in response to

management measures (Quinn and Deriso, 1999). The models are

based on data obtained from the fishery, data obtained independent

of the fishery and an underlying model (understanding) of the

relationships of growth, mortality and reproduction. There is a wide

continuum of models being implemented based on the availability

of data and the management objectives that are being addressed.

However, the central theme is that some parameters of the model

are statistically estimated based on the data observations, other

parameters are assumed based on prior knowledge and the

uncertainty (probability distributions) of both are evaluated to the

extent feasible. The methods to do this vary with data availability,

but the ultimate goal is to provide estimates of management

quantities, the uncertainties associated with those quantities and

to provide advice on feasible policies for achieving management

objectives. The latter activity, collectively called management

strategy evaluations (MSEs) is the process of constructing

(conditioning) an operating model of basic understanding of

stock and fishery dynamics, to explore different management

strategies in the face of uncertain scenarios and to evaluate

performance metrics through projections, looking for strategies

that are robust to uncertainty and which achieve acceptable

tradeoffs between those performance metrics (Punt et al., 2016;

Miller et al., 2019). The focus of this paper is on methods to develop

MSES for fisheries which are data-limited.

Data-limited fisheries are ubiquitous and often are important

components of the fisheries economy (Prince and Hordyk, 2018).

Thus, recent research has addressed methods which can be used in

data-poor fisheries (Carruthers et al., 2014; Hordyk and Carruthers,

2018; Dowling et al., 2022; Carruthers et al., 2023). While

inadequacies of management advice resulting from the lack of

data are not solved by modeling alone, data-limited MSEs can be

designed to appropriately use the data that are available and to

organize the results so that they can be cogently provided in terms

that are useful for management. To that end, two approaches are

proposed herein for use in data-limited MSEs. The approaches are:

1) rejection sampling methods for conditioning operating models

for data-limited MSEs and 2) the incorporation of more complex

socio-economic dynamics into that conditioning and also into the

MSE projections using agent-based models that depict fishery

socio-economic behavior of individuals and/or vessels on a daily

basis. These methods may be viewed as adding to the continuum of

modeling approaches and procedures for providing MSEs for data-

limited fisheries (Dowling et al., 2022; Carruthers et al., 2023).

This manuscript is organized into a short explanation of rejection

sampling methods, followed by a simple artificial example of suing

rejection-sampling in conditioning an operating model based on a

difference equation bio-economic model. Then rejection sampling is

applied with agent-based modeling (Bailey et al., 2018) to the Bungo

Channel Usuki troll fishery for hairtail (Trichiurus japonicas). This

fishery was chosen as an example because of the unique

documentation of stock assessment (Watari et al., 2017), socio-
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economics and initial MSEs of the fishery (Makino et al., 2017)

and technical fishery operations (Hirose et al., 2017). Given this

documentation, the hairtail fishery would not be considered data-

limited. However, for this example Bungo Channel Usuki fishery is

modeled as if it were data-limited and then results compared to the

original documentation of Watari et al. (2017); Makino et al. (2017)

and Hirose et al. (2017). By doing so, the usefulness of the agent-

based approach and rejection filters are illuminated and the efficacy of

the approach is examined.
2 Rejection sampling methods

Rejection sampling methods are used with models

encompassing multiple parameters and, also, generic observation

data or knowledge such as perceptions of catch and abundance

history. The model simulates the dynamics of, for example, a fishery

and stock abundance providing outputs. These outputs are matched

with generic observations of the fishery. Those outcomes that are

inconsistent with the limited observation data are rejected and the

simulations remaining allow conclusions to be drawn that are more

robust to misspecification. An ensemble can be built using rejection

sampling (see chapter 14 in Russell and Norvig, 2009; see also

“rejection filtering” in Hartig et al., 2011). At its core this simply

means running the model many times with random parameters and

rejecting all runs that do not match the data that was observed. If

priors on the parameter space are provided, the resulting ensemble

is the Bayesian posterior of all the “close enough” fisheries (this is

the rejection approximate Bayesian computation of Beaumont et al.,

2009. Beaumont et al., 2002). If priors are not provided, the

ensemble can still be used to look for robust policies (those that

work unanimously for every member of the ensemble) or can be

split into groups to gain a better understanding of which policies

work when (scenario-based uncertainty). This can be useful for

strategic guidance where multiple states of nature are possible and is

the basic goal of MSEs.

Rejection sampling (also under the name of rejection filtering)

is popular in ecology as operationalization of pattern-oriented

modeling (Grimm et al., 2005). Rejection sampling is also at the

basis of the “ensemble ecosystem” approach of Baker et al. (2017)

who generated a large set of qualitative Lotka-Volterra models and

rejected those that did not match a set of known responses to

shocks. Rejection sampling was also implicit in the Catch-MSY

method (Martell and Froese, 2013; note Maximum Sustainable

Yield is referred to as MSY). Rejection sampling can be structured

such that the history and parameter combinations can be used to

generate outcomes that are the result of simulated policy shocks

across all accepted ensemble sets to look for patterns and

vulnerabilities, i.e. MSEs (Carruthers et al., 2014; Hordyk and

Carruthers, 2018). Rejection sampling requires no likelihood

function. That feature allows matching of models with data that

would otherwise be hard to use, in particular qualitative or socio-

economic observations. Therefore, more complex socio-economic

dynamics can be implemented through agent-based models for use

in MSEs. This is not a substitute for data and more statistical

assessment methods. However, it is a framework for simulating the
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fishery based on a large ensemble of unknowns and then evaluating

the results in a consistent manner.

Start with a set of k pieces of evidence E = e1,…ek. The eimight be

quantitative evidence like “catch this year is 1000 mt” or qualitative like

“abundance this year is lower than it was 10 years ago”. Assume there is

a model (simulation) that uses n parameters Q = q1,…qn to generate

synthetic evidence Ê = ê 1,…ê k. Define a set of k filters, one for each

item of evidence, f1(E, Ê ),…, fk(E, Ê ); these are predicate functions

returning true if for some aspect of the evidence, the predicted Ê is

“close enough” to the real observed one E. The definitions offilters may

be statistical if the evidence warrants it, effectively turning this into an

indirect inference problem (Gourieroux et al., 1993). The filters may

also be vague and more anecdotal.

The rejection sampling algorithm is implemented as follows:

Draw a set of random model parameters Q̂ = q̂ 1,…q̂ n from

prior distributions p(Q).

Run a simulation to generate set of synthetic evidence   Ê = ê 1,…ê k
Reject that simulation if at least one filter returns false (i.e., is

not “close enough” to true)

This loop is repeated until the computational budget is exhausted.

(Note that in many fisheries applications computational time is not a

major issue. However, this is discussed further in the context of the

hairtail example later in this paper.) The remaining simulations

represent a plausible outcome based on the prior knowledge

(distributions) of the parameters and the knowledge (filters) rejecting

implausible evidence.

The ensemble of accepted simulations can be used to

accomplish three analytical tasks. First, the individual effect of

each piece of evidence and its associated filter on the distribution

of parameters or outcomes of the model can be examined. Second,

management policies can be simulated on the whole ensemble to

examine their likely outcomes and uncertainties. Third, one can

examine the evolution of the posterior distribution of parameters as

the number of simulations accumulate to identify stopping criteria

for the rejection sampling as a whole.
3 Rejection sampling example -
simple bioeconomic model

The bioeconomic model of Seijo et al. (1998) is presented here

as a simple illustrative example, where a fish stock exhibiting logistic

growth is targeted by vessels whose number change annually in

proportion to profits:

Dft = j½p   q  Bt − c�ft  ,        DBt

= rBt ½1 − Bt=K� − q   ftBt    ,        Yt = q   ftBt   (1)

where Bt is the biomass in year t, Yt is the catch in year t and ft
is the effort in number of vessels. Other parameters and their

prior distributions are defined in Table 1. Uniform prior

distributions for each parameter were chosen and then using

these priors and three conditions or filters, the rejection sampling

process was implemented.

The filters were conditioned on three pieces of information: 1)

Catch filter: the landings in the current year were between 10,000
Frontiers in Marine Science 03
and 15,000 t; 2) Profit filter: the current fishery is not profitable; and

3) CPUE filter: catch-per-unit effort (CPUEt=Yt/ft) was higher ten

years ago than it is currently. These, rather loose, criteria were

translated into filters for Equation 1 and the rejection sampling

algorithm was applied.

Onemillion parameter sets were drawn from their uniform priors

When the current catch filter was applied the accepted number of

simulations was reduced to 10718. When the current catch and

current profit filters were applied, then the accepted number of

simulations was further reduced to 4427. Finally, when all 3 filters

were imposed then only 3,435 simulations passed, an acceptance rate

of 0.3%. Each simulation generated a time series of biomass, catch

and effort based on the selected parameters starting at T years before

and ending at what is referred to as the “current” time. The impact of

the filters on MSY (MSY=rK/4, Figure 1) and Depletion (current

biomass relative to the biomass at the beginning of the fishery

(BCurrent/K), Figure 2) was examined by looking at the posterior

probability distributions using all 106 simulations (the priors) and

then the results sequentially when only the catch filter was passed;

then results if both the catch and profit filters were passed and then

finally if all three filters were fulfilled. The mean MSY from the priors

was 383,000 t. The mean shifted to 236,000 twhen the catch filter was

imposed, then to 225,000 t when the catch and profit filters were

imposed and remained at 225,000 t when all filters were imposed

(Figure 1). The depletion distribution arising from the priors was

bimodal with a mean depletion of 0.41. Imposition of the catch filter

did not alter the mean or the bimodality (Figure 2). However, the

additional profit filter (and subsequently the CPUE filter) reduced

mean depletion to 0.11 and effectively eliminated the bimodality.

The rejection sampling phase is a mechanism to condition an

“operating model”. The operating model is an expression of basic

understanding of the biological and fishery dynamics of the stock

and fishery. It is understood that there is uncertainty in that

understanding, as exemplified by the broad distribution of key

quantities in this example (e.g. Figures 1, 2). In this case, the

operating model is Equation 1 with the accepted (filtered)

parameter set. The operating model generated a time series of

biomass, catch and effort from the beginning of the fishery to
TABLE 1 Maximum and minimum values for uniform prior distributions
for the parameters of Equation 1 [chosen from values in Table 2.1 in
Seijo et al. (1998)].

Parameter Minimum Maximum Definition

p 30$ 90$ Revenue per ton of fish

c 15,000$ 60,000$ Annual cost per vessel

q 0.0002 0.0008 Catchability {Bt=q (Yt/ft)]

K 1,750,000 t 7,000,000 t Carrying capacity

f 0.0000025 0.000050 Rate of vessel entry/exit of
fishery as a proportion of
profits observed

r 0.1 0.6 Logistic
population parameter

T 40yr 65yr No. years fishery
has existed
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“current” time for each of the 3435 simulations and the parameter

set for each simulation. The operating model can then be used to

explore management strategies, evaluate scenarios where

knowledge is uncertain (such as parameter uncertainty or non-

stationarity of parameters or models) and the effect on performance

metrics. To demonstrate this for this simple example 5 alternative

management strategies were evaluated: 1) No Regulation, where no

regulations were imposed; 2) Effort Restriction, where the number

of vessels was not allowed to exceed 80% of the current number of

vessels in the fishery; 3) Maintain Catch, where a total allowable

catch (TAC) is set equal to the current catch; 4) TAC at MSY, where

TAC is set at the MSY= rK/4 from each simulation; and 5) No

Fishing, where TAC=0. Each of the accepted simulations (those

simulations which pass all three filters) were projected ahead from

current conditions for 50 years using Equation 1 using those 5

alternative management strategies. The performance metrics were:

total landings, total profits, percent of years when biomass was less

than ¼ carrying capacity and less than ½ carrying capacity)

reflecting both utilization and conservation objectives. Tradeoffs

between landings and profits and between landings and biomass

depletion indicate effects of catch restrictions (TACs) versus effort

restrictions (Table 2). Other results are consistent with the

underlying theory of Equation 1 (Seijo et al., 1998).

This example demonstrates several key points about the

conditioning of operating models and their use of in moving
Frontiers in Marine Science 04
forward to management strategy evaluations in data-limited

fisheries. First, a more comprehensive set of filters will always

help in conditioning. Even an anecdotal understanding of the

catch history or other features can be developed into filters and

will improve the conditioning. Also, if there is socio-economic data

available it can be used even in rudimentary form with filters. Often

these data relate to effort dynamics resulting in fishery responses to

regulations and to stock dynamics. Interestingly, the effort

dynamics and the profit filter in this example also constrained the

accepted biological dynamics, as well.

To further demonstrate these key points, a more realistic

example is given in the following where the economic dynamics

are driven by an agent-based model (still data-limited) coupled with

the rejection-based approach for conditioning the operating model.
4 Agent-based model of Bungo
Channel troll fishery for hairtail
(Trichiurus japonicas) based in Usuki,
Japan conditioned with
rejection sampling

The Usuki troll fishery model provides a more realistic example

that integrates a more complex agent-based economic model with
A B

DC

FIGURE 1

Relative frequency distribution (Density) of MSY estimates from 106 simulations: (A) using all 106 simulations generated from the Priors; (B) using only
simulations that passed the Catch filter; (C) using simulations passing the Catch and profit filters; and (D) using simulations that passed all three
filters (Catch, profit and CPUE).
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rejection sampling in order to demonstrate the usefulness for MSE’s

and policy analysis. The Usuki troll fishery is not data-limited, since

assessments, technical analyses and policy analyses have been

performed (Hirose et al., 2017; Makino et al., 2017; Watari et al.,

2017). But, the actual Watari-Makino-Hirose results (referred as the

Watari results) provide a basis for comparison to using data-limited

methods. The conditioning of the operating model in the study, herein,

assumes a large measure of naivety. More uncertainty is imposed than

is warranted by the Watari et al. results. In essence the example

operating model assumes little is known about the hairtail population

and fishery and there are very broad prior distributions of parameters.

Then the effects of the imposition of rejection filters and the resultant

effect on MSEs are evaluated and compared to the Watari results.

This exercise combines data degradation (pretending to have

less data) and biological uncertainty (reflected in large priors
Frontiers in Marine Science 05
around life-history parameters) with model misspecification as

the operating model derived from rejection sampling differs

significantly from Watari. However, this exercise demonstrates

the use of data-limited methods.

There are a number of differences between the Watari and

operating model: the Watari model is age-structured while the

operating model is length-based; Watari updates every three

months while the operating model through its agent-based

approach updates daily; Watari models recruits as proportional to

current biomass while the operating model follows a Beverton-Holt

recruitment function; the Watari model allows periodical strong

recruitment years (about 3 times the usual number of recruits) while

the operating model has only limited noise; finally, the Watari

model has fixed catch volumes while the operating model fishing

mortality emerges from bio-economic incentives in the agent-based
A B

DC

FIGURE 2

Relative frequency distribution (Density) of current depletion (Bcurrent/K) from 106 simulations: (A) using all 106 simulations generated from the Priors;
(B) using only simulations that passed the Catch filter; (C) using simulations passing the Catch and profit filters; and (D) using simulations that passed
all three filters (Catch, profit and CPUE).
TABLE 2 Average outcomes (the mean over 3435 simulations). Total landings and total profits are the accumulation over the 50 year projections.

Policy Total Landings (Millions of t) Total Profits (Millions of $) % Years Bt ≤ ¼ K % Years Bt ≤ ½ K

No Regulation 6.5 $ −5 70 76

Effort Restriction 7.8 $ 286 43 63

Maintain Catch 0.4 $ −57 40 49

TAC at MSY 9.5 $ 68 42 57

No Fishing 0 $ 0 30 40
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approach. This allows us to test the ability of rejection sampling to

account for lack of data, biological uncertainties and mis-

specifications while still providing both a determination of stock

dynamics and its uncertainty.
4.1 Fishery description

Hairtail Trichiurus japonicas is a widely distributed

commercially exploited fish species found around Japan and

adjacent seas. Several major fishing grounds exist around Japan

where large numbers of hairtail were landed in the 1960s. But the

annual catch in those areas decreased since the 1970s (Watari et al.,

2017). However, landings of hairtail from waters around the Bungo

Channel increased since the 1970s, increasing the importance of

these coastal fishing grounds to the troll fishery based in Usuki,

Japan. Waters within and around the Bungo Channel provide an

important hairtail habitat, where most of the life cycle of this species

occurs. The area is considered to be a single stock for fisheries

resource management (Watari et al., 2017). Hairtail are caught

around the Bungo Channel by trolling and net fisheries (primarily

purse seine). Troll-caught hairtail are of higher quality than those

caught by net and, thus, a higher market price is obtained. Hairtail

caught using nets are processed mainly into fish paste (Makino

et al., 2017). Catches are not regulated other than by market forces

and local customs. Catch sells for different prices depending on its

length, with fish below 25cm being unsellable. Although hairtail is

one of the most important fishery resources in this area for both

gears and the processing industry, landings of it have decreased

since the late 1990s. As of 2011, the troll fishery consisted of 45

vessels, all less than 5 gross tons with the number of vessels in

decline (Makino et al., 2017). Preliminary stock assessments suggest

it will be difficult to maintain the current biomass under current

exploitation rates (Watari et al., 2017).
4.2 Operating model – spatial dynamics

The hairtail fishery operating model was created using a 5x5

spatial grid with each grid cell being a 12 x 12 km square. The home

port is assumed to be the same for all vessels and is placed at the top

right corner of the grid. Hairtail were distributed in the grid by

randomly defining a cell with “peak” biomass and then allocating

biomass to other cells proportional to dl, where d is the distance

between the new and peak cells and where the parameter l defines

the rate of decline in density as the distance from the peak increases.

Distance was measured as the sum of the differences between the x

and y coordinates between two cells. This method was used to

distribute the biomass in the initial year of the simulations and thus

to define the equilibrium cell biomass with no fishing (carrying

capacity) and then to distribute annual recruitment into the cells.

Once spatial abundance was defined, fish were assumed to stay

within a cell while undergoing natural and fishing mortality

and growth.

Geography has two effects: distance from port represents

increasing costs (in terms of time traveled as well as monetarily)
Frontiers in Marine Science 06
and unequal distribution of fish represents some areas being more

productive and better for fishing than others.
4.3 Operating model – biological dynamics

The biological dynamics of the operating model were computed

using the length-based method (Hordyk et al., 2014; Mildenberger

et al., 2017; Froese et al., 2019a; Froese et al., 2019b; Hordyk et al.,

2019). In this example, fish were allocated into 5 cm total length

bins using daily increments by

Graduatest→t+1 = Nt(K   L∞ − At)=(365*5)

where Nt is the abundance in the bin, At is the midpoint of the

5 cm bin t, t is the day and K and L∞ are the von Bertalanffy growth

rate and asymptotic length, respectively. Then natural mortality

(M) was imposed daily Nt+1 = Ntexp( −M=365). Length to weight

conversions were done with the standard allometric equation W=a

Lb using the length bin midpoint.

As in Watari et al. (2017) two breeding events were modeled: an

autumn brood (Oct) and a spring brood (May). Total annual

recruits R were computed for the entire pooled spawning stock

biomass (SSB) by the Beverton-Holt formula.

R = u   (4   h  R0   SSB)= R0  j   (1 − h) + (5h − 1)SSBf g
where R0 is the equilibrium recruitment with no fishing and is

the ratio of unfished equilibrium spawning biomass (SSB0) per

recruitment (R0) calculated using life history data. Steepness (h) is

the ratio of R to R0 when SSB is 20% of SSB0, thus, by definition

limits h to 0.2≤h ≤ 1. Total recruits were distributed between spring

and autumn using random uniform proportions ranging between

0.25 and 0.75. Thus, on average the recruitment broods would be

equal for a given SSB (u=0.5). Note that in the Watari et al. (2017)

assessment a virtual population assessment method was used, thus

the determination of current status did not require the specification

of a recruitment function. However, in evaluating future

management scenarios, they assumed that future recruitment was

proportional to the observed SSB where the proportionality was

defined by the mean of the observed recruits per spawn and random

draws were taken from those observations. Hence, recruitment was

projected within recruits per spawn observations. In this study, the

common Beverton-Holt recruitment function was used in both the

operating model and projection phases.

The spawning potential ratio (SPR) measures the reproductive

output per recruit given a schedule of growth and mortality (both

fishing and natural mortality) over all ages. This is expressed

relative to that reproductive output with the same schedule but

with no fishing. Therefore, SPR is expressed as a percent where

changes are a result of alternative fishing mortality rates at age or

length. Both empirical and theoretical analyses suggest that SPR can

be used as sustainability criteria (Hordyk et al., 2014). The fishing

mortality rate that would result in an SPR of “x” percent (Fx%SPR)

and the spawning biomass that results from that fishing (SSBx%SPR)

are often used as surrogates for F at MSY and the SSB at MSY where

the value of “x” often ranges between 20% and 40% for marine

fishes. However, SPR and related status criteria using SPR are
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dependent on the life history characteristics and exploitation

patterns of that fish population, i.e. growth, natural mortality,

maturity/fecundity and fishing rates at age or length.

In this study, SPR was computed using the length-based method

(Hordyk et al., 2014; Mildenberger et al., 2017; Froese et al., 2019a;

Froese et al., 2019b; Hordyk et al., 2019). Given some simplifying

assumptions, SPR can be calculated as a function of M/K (the ratio

of the natural mortality rate to the von Bertalanffy growth rate),

F/M (the ratio of the fishing mortality rate to M), the lengths at

maturity and at asymptotic age (Lmat, L∞) and observations of

length distributions. Length distributions resulting from the

simulated population of hairtail and its fishery are coupled with

life history parameters (M, K, Lmat, L∞) to calculate SPR for each

time period in the simulation.
4.4 Operating model – agent-based
vessel dynamics

Fishing mortality rates and fleet dynamics were described using an

agent-based model where each trolling vessel is a separate agent (Lee

et al., 2015; Carrella et al., 2019). Each active vessel is randomly

assigned to fish on a given day with a probability P and then a

spatial cell for fishing by that vessel was chosen using an explore-

exploit-imitate algorithm (Carrella et al., 2019). The explore-exploit-

imitate algorithm is an epsilon-greedy bandit algorithm where each

boat returns to the last best cell fished but with a fixed probability of

trying a new cell at random (Szepesvari and Lattimore, 2019;

Goudriaan, 1986). The difference with the standard bandit algorithm

is that each agent can “imitate” two other random agents and target the

cell they are fishing if on a previous trip they had made higher profits.

Exploration here is fixed at 20%. Each trip lasts no more than 9 hours

of active fishing and never more than 2 days total and the fishing

activity on each trip occurs solely within the chosen spatial cell. Each

vessel has the same variable and fixed costs: an hourly cost for

travelling, an additional hourly cost for each hour spent fishing and

a yearly fixed cost for cooperative memberships, repairs and

depreciation. Vessels also have a maximum hold size (described in

weight rather than volume) which limits the amount of hairtail they

can land in a single trip. Vessels fishing in a cell transform local

biomass into catch through a logistic selectivity curve (logistic with

respect to mid-length of each bin). Catch sells for different prices

depending on its length, with fish below 25cm being unsellable.

Profitable vessels accumulate savings. Accumulated savings beyond

a threshold can be used to purchase a new vessel, thereby, additional

vessels may be added to the fishery. Vessels that exhibited consistent

losses and had negative “savings” reduced their total effort in the next

year such that they only fish fourmonths a year. But if savings continue

to be negative, they withdraw from the fishery entirely.
4.5 Operating model parameters and
rejection filters

Prior distributions for the operating model parameters are given

in Table 3. The goal in defining prior distributions in this example
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was to assume naivety about the underlying biological and fishery

dynamics. Thus, uniform distributions were usually employed. Or

in the case of the spatial cell with peak abundance, one of the 25

spatial cells was randomly selected. Life history parameters were

randomly chosen from global databases of species characteristics

(rFishbase, FishLife) with no special attention to hairtail

characteristics. Thus, most of the biological parameters have very

wide ranges and were selected assuming extreme naivety. The

exception to this was the combination of f (spawning biomass

per recruit with no fishing) and equilibrium recruitment with no

fishing (R0) that combined to constrain the initial spawning

biomass within a factor of 2, when the life-history parameters

were fixed at their median value. This choice was guided by the

assessment of Watari et al. (2017). However, it is well known that

the definition of the stock recruitment relation is integral in defining

overall stock productivity (Brooks et al., 2010) and, thus, this

assumption may well be constraining. Otherwise, biological

parameters were allowed to take very large ranges (see steepness,

life history, catchability in Table 3). Prior distributions for

economic parameters (Table 4) were also assumed to be uniform.

While the parameters (Tables 3, 4) are the first step in

conditioning the operating model of population and fishery

dynamics, a set of six filters were imposed to further constrain
TABLE 3 Definitions of biological and population variables and their
prior distributions used in the simulations.

Variable Distribution Definition

Peak Random Cell with peak abundance, randomly select
from all 5x5 spatial cells

L,
spatial
dispersal

U(0.1, 1) See text

L∞, K,
Lmat, M

Random von Bertalanffy asymptotic length, growth
rate; Length at maturity, Natural mortality
rate (lengths in cm); randomly drawn from
Fishlife multi-normal distribution. Boettiger
et al., 2012.

a,b Bootstrap Weight(kg)=a Length(kg) b; bootstrap
sampled with replacement from rFishbase

j was calculated for each iteration of the
simulation using the life history parameters
above, selected for each simulation

R0,
unfished
recruitment

U(37, 62) x 106 From Watari et al. (2017). A mean SSB0/R0

= j was computed from Fishlife, rFishbase.
Then SSB0’s were computed from R0 x

h,
steepness

U(0.2, 0.99) Steepness of the Beverton-Holt stock
recruitment function. See text. Note that by
definition, steepness can be no lower than
0.2 and no greater than 1.

SSB/SSB0 U(0.7, 1) SSB/SSB0 when troll fishery began

Q,
catchability

U(10-5, 10-9) Proportion of available biomass caught per
hour fished

Selectivity
S1
S2

U(6.2, 9.3)
U(0.17, 0.20)

Selectivity (Sel): proportion of fishing
mortality rate at length: Selectivity(L) =

1=(1 + eS1 − S2*L)

where L is the length in cm.
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the conditioning (Table 5). These filters largely functioned as

determinates of the range of predicted conditions that are feasible

(“current” relating to 2011 conditions fromWatari et al. (2017). The

filters address the history of catches, current troll landings, current
Frontiers in Marine Science 08
SPR, current number of vessels, current proportion of total catch

comprised by the troll fishery and the historical duration (years) of

the troll fishery.
4.6 Model rejection filtering

The rejection modeling phase models the time horizon from the

initiation of the fishery.

Models were run from 2001 until 2011 where 2011 was the last

year of data in the Watari analyses. The agent-based model with

combined parameters was implemented using the six rejection

filters. In total, the model was run for 354,775 iterations

(approximately 24 hrs of computing time). and of these only 743

iterations satisfied all six of the filters. The extremely low acceptance

rate (0.2%) demonstrates the effect of the wide priors in biological

and fishery parameters. The original 354,775 iterations generated a

suite of results where frequency distributions were based solely on

the prior distributions (the solid lines and right-hand vertical axes

in Figure 3). Then the results were screened by imposing first the F1

filter, then the F1 and F2 filter, F1, F2 and F3 filters and so on until

all filters were imposed. At each of these steps the number of

simulations which passed the filters decreases (the frequency

histograms in Figure 3 using the left-hand vertical axes and the

central tendency shifts.

Adding additional filters does not materially change the

frequency outcomes of virgin spawning biomass (SSB0). The

distribution remains nearly uniform with the ends of the range

being truncated (Figure 3). Steepness is also poorly determined but

with frequencies accumulating at the higher end of the range (h > 0.7

more likely). The M/K distribution after application of the filters

shows a modal value near 1 with a range of approximately 0.5 to 2

which is consistent with common “rules of thumb” for marine fishes

(Beverton, 1992). Interestingly, the distribution of biomass in 2011

using just the priors exhibits a bimodal distribution (Figure 4A).

Essentially, this results from the uniform priors generating a subset of

parameters where biomass is on one side of the production curve

(where the stock is not depleted) and another set on the depleted side.

Then once the filters are added the biomass distribution reduces to

unimodal and contracted to the lower end of the biomass range. The

catch-related filters (F1, F2, F3) eliminate a large number of outliers

and centralizes the distribution, but the current effort and SPR filters

(F5 and F6) shift the mean biomass to higher levels. Note that the

catch-related filters only address current conditions and not the

history of catches. Additional filters relating to historical catch

would be useful in defining fishery trends. Biomass in the stock

assessment produced in Watari et al. (2017) is estimated at 4,896t in

2011. Here the mean biomass in 2011 after all filters were

implemented was 3,477t with a standard deviation of 1,806t.

The biomass in Watari et al., 2017 (combining the two brood

populations) was compared to the operating model from the

rejection sampling (Figure 4). The operating model approaches

Watari in the final year (2011), but exhibits more deviation in the

preceding years. This is partially due to the filtering conditions

(F2 to F5) focusing on current observations rather than trends

but is primarily due to model misspecification. The Watari model
TABLE 4 Definitions of economic and fishery variables and their prior
distributions used in the simulations.

Variable Distribution Definition

Hourly
variable cost

U(100, 140) Fuel, engine costs in Japanese Yen
(JPY) per hr; Makino et al., 2017

Hold size U(1, 3) Maximum tonnage of fish on vessel;
based on 5GT vessels; Makino
et al., 2017

Price of
new vessel

U(20, 30) In JPY x 106; Makino et al., 2017

Annual expenses U(4.5, 7) Fixed+living costs in JPY x 106;
Makino et al., 2017 census

Probability of
fishing in a
given day

U(0.75, 0.9) Comparing boat numbers with total
effort recorded

Fnet U(0.3, 0.8) annual fishing mortality rate by net
fisheries (Makino et al., 2017)
TABLE 5 Filters used to define the Usuki hairtail fishery
operating model.

Filter
Definition

Justification
Note: “Current time” in these
simulations relates to conditions
in 2011 (Watari et al., 2017)

F1 Landings (trolling
and purse seine
combined) have
never exceeded
15,000 t

Figure 2 in Watari et al. (2017)

F2 Landings of the
Usuki trolling fleet
are currently
between 250 t and
1,850 t

The lower bound is used as an historical target in
Makino et al. (2017), the upper bound is the troll
fishing mortality computed for 2011 in Watari
et al. (2017).

F3 The current Usuki
trolling fishery
landings are 30% or
less of the total
landings (in wt)

Makino et al. (2017) caption to their Figure 4.

F4 Fishing on the
stock by the Usuki
troll fishery was
initiated 30-45
years before the
current time.

Watari et al. (2017) reports catch statistics from
1970 to 2011. Presumably the net fisheries existed
prior to that.

F5 The current Usuki
trolling fishery is
comprised of fewer
than 60 vessels

Makino et al. (2017)

F6 Current spawning
potential ratio
(SPR) is between
10% and 25%

SPR estimated to be 21% in 2011 Watari
et al. (2017)
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estimated two large recruitment pulses in 2003 and 2005, and the

biomass trends reflect this anomalous influx as it progressively

entered and then disappears from the total biomass. The

operating model was not conditioned on such large recruitment

events and in fact does not allow such large yearly variations

in recruitment.
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4.7 Projection of management strategies

Projections using the 743 operating model simulations

(accepted by rejection sampling) were conducted in a simple

management strategy evaluation. Three management strategies

were evaluated and compared to the No Regulation case (no
A

B

C

FIGURE 3

Frequency distributions of M/K (A), virgin spawning biomass (B) and steepness (C) from hairtail fishery simulations. The solid line is the frequency
distribution of outcomes from the priors in Tables 3, 4 before being subjected to any of the filters (the prior frequencies are given in the right vertical
axis). The left vertical axes are the histograms of frequencies of outcomes sequentially imposing the filters in Table 5: F1 means filter F1 passed, +F2
means F1 and F2 passed, etc. +F6 are the outcomes that passed all of the filters.
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changes in fishing behavior from the operating model). The three

strategies were: 1) No new entries, i.e. closed accessdisallowing new

entrants or re-entry to the fishery and re-entry; 2) Seasonal closure,

where fishing is limited to 200 days a year (combined with closed

access), and 3) Increased selectivity, where a mandated gear

modification is implemented changing hook and bait types that

selects for larger fish as suggested by Hirose et al. (2017). This was

modeled as a 10% increase in S1 and 10% decrease in S2 of the

logistic selectivity (see Table 3). It was assumed these management

strategies address the Usuki trolling fleet solely and that the fishing

mortality by nets (primarily purse seines) are not affected.

Three performance metrics were evaluated that related to stock

size and fishing effort. These were trajectories over a 15-year

projection period of biomass, number of troll vessels in the fishery

(a measure of effort) and Percent of Catch which relate to stock

dynamics and fleet composition (Figure 5). The latter metric (Percent

of Catch) is the percent of total catch (troll and purse seine) that is

represented by the troll catch. Additionally, three economic metrics

were evaluated (Figure 6). These were average annual savings per

vessel, profits per vessel trip and revenue per hairtail catch (JPY/kg).
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Projecting a business-as-usual scenario with No Regulation

shows a general stabilization over time (Figure 5) with little

recovery in the median biomass. The landings are dominated by a

stable net fishery in these projections with relatively small changes in

the median number of troll vessels. Since the net catch is dominate

and stable, the biomass does remains relatively stable but at a

depletion level of 15%. All the three management strategies in one

form or another are modifying fishing effort and reducing troll fishing

effort. Thus, they all show a slow recovery of median biomass over the

15-year time horizon. Of these Seasonal closures perform best in

terms of biomass recovery. However, this is achieved by decreases in

vessel participation (Figure 5). Conversely, Increased selectivity

performs well in terms of revenue per unit catch (Figure 6), as that

strategy modifies the catch selectivity toward larger fish which

achieves higher prices. Seasonal closures also, improves on this

metric to a lesser degree. Seasonal closures also perform well in

terms of profit per trip (Figure 6), as the reduced number of vessel

trips capitalizes on the increased revenue per trip. However, these

benefits are negated over time by the unmanaged purse seine fishery

which increases its relative importance in landings as landings from
A

B

FIGURE 4

Frequency distributions of biomass in 2011 hairtail fishery simulations (A). The solid line is the frequency distribution of outcomes from the priors in
Tables 3 and 4 before being subjected to any of the filters (the prior frequencies are given in the right vertical axis). The left vertical axis is the
histogram of frequencies of outcomes sequentially imposing the filters in Table 5: F1 means filter F1 passed, +F2 means F1 and F2 passed, etc. +F6
are the outcomes that passed all of the filters. (B) the median, 90% CI and range of biomass trajectories compared to Watari et al., 2017. Additionally,
the trajectories from 10 randomly selected simulations are plotted.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1243954
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Carrella et al. 10.3389/fmars.2024.1243954
the Usuki fleet decline. Further, while Seasonal closures generate

higher profits per trip, these fail to cover fixed costs. A general feature

of all these projections is the wide confidence intervals especially as

projections extend beyond 4 or 5 years. Further exploration using

subsets of the original parameter sets (i.e. alternative scenarios chosen
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from the rejection phase), would be important in defining

robust strategies.

Also, there was a mismatch between the historical Watari et al.

(2017) biomass and the median biomass from the rejection sampling

(Figure 4). However, the current conditions (the conditions used for
A

B

C

FIGURE 5

Median (bold) simulations of performance indicators under three policy options of 1) No new entries, i.e. closed access disallowing new entrants or
re-entry to the fishery and re-entry; 2) Seasonal closure, where fishing is limited to 200 days a year (combined with closed access), and 3) Increased
selectivity, where a mandated gear modification is implemented changing hook and bait types that selects for larger fish (see text). Indicators are: (A)
hairtail biomass, (B) number active vessels and (C) percent of total landings comprised of troll catch. Shaded areas are 95% confidence intervals.
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the start of the management strategy projections) were similar. In

general, the historical mismatch would not detract from the

projections as long as the starting conditions and production

parameters were determined to be close to the real situation. The

exception to this would be if a large recruitment deviation occurred
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shortly before the projection starting year and carried over into the

projection phase. In that instance, the projections would also be

mismatched. Therefore, the management strategy evaluation in this

example (and for data-limited fisheries in general) is best viewed in a

relative sense: does strategy “x” perform better than strategy “y”. One
A

B

C

FIGURE 6

Median (bold) simulations of performance indicators under three policy options of 1) No new entries, i.e. closed access disallowing new entrants or
re-entry to the fishery and re-entry; 2) Seasonal closure, where fishing is limited to 200 days a year (combined with closed access), and 3) Increased
selectivity, where a mandated gear modification is implemented changing hook and bait types that selects for larger fish (see text). Indicators are: (A)
average savings per vessel, (B) profit per vessel and (C) revenue per catch. Shaded areas are 95% confidence intervals.
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reason for this is the underlying lack of data to guide the conditioning

phase (through the specification of filters). The reality of data-limited

fisheries is the lack of a catch history. In this example, simple filters

(F1, F2 and F3) only peripherally get at the catch history. And yet

having a catch history is an important feature in stock assessments

that help to define the scale of biomass of the stock.

The use of an agent-based approach in the context of a data-

limited management strategy evaluation can be useful in that it builds

in the dynamics of fishing effort directly into the evaluation

through the underlying economic behavior model. This example

demonstrates that the agent-based model can be conditioned with

limited data. However, the actual computing time and the basic

knowledge of the model required by users make it, perhaps, more

difficult to implement than other approaches (Dowling et al., 2022;

Carruthers et al., 2023).
5 Discussions and conclusions

The conditioning of any operating model relies on the

integration of basic fishery statistics of catch, effort and

abundance trends. In data-limited fisheries, methods have been

developed to infer trends in these statistics for the fishery (Goethel

et al., 2019; Dowling et al., 2022; Carruthers et al., 2023). This agent-

based/rejection approach is an addition to these methods. In most

cases the primary data-limitation is the lack of a history of fishery

catches and effort. The agent-based approach essentially generates

trends in effort based upon economic principles that are integrated

with the model of stock dynamics. Then the rejection process filters

the results to adhere to what is known about the fishery. In the

hairtail example the filters on catch F1, F2 and F3 (Table 5) provide

information on the scale, but implicitly the dynamics of the agent-

based model provides information on trends in effort and, thus,

fishing mortality. These effort dynamics are carried forward into the

management strategy projections. Additionally, since MSE

performance metrics often include effort (Goethel et al., 2019, i.e.

vessels, participation), the agent-based approach explicitly models

these quantities, as well as other economic indicators.

Rejection sampling is a procedure that lies within the

continuum of methods to describe and bound uncertainty in

stock assessments and operating models and to carry that

uncertainty forward into MSEs. For example, using a parameter

grid effectively is assuming that parameters in the grid are equally

likely to have occurred (quasi-uniform fixed prior distributions);

Monte Carlo simulations assume prior distributions of parameters

are known and fixed; Bayesian approaches assume prior

distributions of the parameters and then updates those

distributions based on data. Rejection sampling assumes very

vague parameter priors and implements those into an operating

model through Monte Carlo methods, rejecting those model

outcomes that are not feasible. Each of these methods is

addressing uncertainty in the parameters and using that as

guidance for determining an appropriate operating model for

management projections and evaluations. All depend on the data

and prior assumptions to generate those projections.
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An important aspect of operating model conditioning and

MSEs is to evaluate the effect of alternative scenarios (uncertainty

in parameters and/or data) on current status and performance

metrics. Essentially, this can be used to prioritize data collection

(Goethel et al., 2019). In data-limited methods this is translated into

testing alternative priors and their effect on results. In the hairtail

case, the agent-based/rejection filtering provides an example. The

distribution of current biomass (Figure 4A) shifts with

the imposition of filters. The largest shifts occurred with the

imposition of current effort and current SPR filters, indicating the

importance of those data sources. Similar plots of performance

metric distributions in response to filters can be made for selected

times in the projections. Additionally, refined filters (alternative

data scenarios) and the order in which the filters are imposed might

be tested. An examination of the value of information to the

determination of current conditions from the operating model

and MSE projections can be useful. The effect of variations in

parameter estimates on key status measures is especially useful with

data-limited fisheries where parameter estimates have broad

uncertainty. These types of analyses can assist in prioritizing

data collection.

Rejection/agent-based methods of conditioning and MSEs can

be used as an alternative to questionnaires, expert opinion

(Dowling et al., 2022; Carruthers et al., 2023). However,

ultimately all data-limited methods including rejection/agent-

based are based on priors of individuals familiar with the

fishery. The choice of methods will likely be made based on the

practicalities of what is known about the fishery, the modeling

expertise available and the suite of management strategies that are

to be tested.
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