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Abstract
For a graph G and p ∈ [0, 1], we denote by Gp the ran-

dom sparsification of G obtained by keeping each edge of

G independently, with probability p. We show that there

exists a C > 0 such that if p ≥ C(log n)1∕3n−2∕3
and G is

an n-vertex graph with n ∈ 3N and 𝛿(G) ≥ 2n
3

, then with

high probability Gp contains a triangle factor. Both the min-

imum degree condition and the probability condition, up to

the choice of C, are tight. Our result can be viewed as a

common strengthening of the seminal theorems of Corrádi

and Hajnal, which deals with the extremal minimum degree

condition for containing triangle factors (corresponding to

p = 1 in our result), and Johansson, Kahn and Vu, which

deals with the threshold for the appearance of a triangle fac-

tor in G(n, p) (corresponding to G = Kn in our result). It

also implies a lower bound on the number of triangle fac-

tors in graphs with minimum degree at least
2n
3

which gets

close to the truth.

KEYWORDS

clique factors, extremal graph theory, random graphs,

robustness

1 INTRODUCTION

As a natural generalisation of perfect matchings in graphs, triangle factors are a fundamental object in

graph theory with a wealth of results studying their appearance. Here, a triangle factor in a graph G is a

collection of vertex-disjoint triangles which completely cover the vertex set of G. Note that for a graph
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2 ALLEN ET AL.

G to contain a triangle factor, the number of vertices of G must be divisible by 3. In extremal graph

theory, a fundamental result is the well-known theorem of Corrádi and Hajnal [11], which determines

the smallest minimum degree 𝛿(G) guaranteeing the existence of a triangle factor.

Theorem 1.1 (Corrádi, Hajnal [11]). Any n-vertex graph G with n ∈ 3N and 𝛿(G) ≥ 2n
3

contains a triangle factor.

A breakthrough by Johansson, Kahn and Vu [23] in probabilistic graph theory, on the other hand,

established the threshold for the binomial random graph G(n, p) to contain a triangle-factor. Here,

G(n, p) is obtained by including each possible edge among n vertices independently at random with

probability p = p(n), and p∗(n) is a threshold for a graph property P if the probability that G(n, p)
has P tends to 0 as n tends to infinity whenever p(n)∕p∗(n) → 0 and to 1 whenever p∗(n)∕p(n) → 0.

Johansson, Kahn and Vu [23] showed that the threshold for the appearance of a triangle-factor is

(log n)1∕3n−2∕3
.

In this article, we are interested in a combination of these two results, giving a so-called robustness
version of the Corrádi–Hajnal Theorem. More precisely, we consider graphs G satisfying a mini-

mum degree condition and ask for which p their random sparsification Gp, which is obtained by

keeping every edge of G independently with probability p, contains a triangle-factor. Such a robust-

ness result follows already from the sparse blow-up lemma [3, Theorem 1.11]: For every 𝛾 > 0 and

p ≥ C
(

log n
n

)1∕2

any n-vertex graph G with minimum degree 𝛿(G) ≥ ( 2

3
+ 𝛾)n satisfies that Gp has

a triangle factor whp. Here, we say a property holds with high probability, abbreviated whp, if the

probability it holds tends to 1 as n tends to infinity.

Turning this into an exact result (in terms of the minimum degree condition) requires more work,

and moving to smaller probabilities p is substantially harder. Here we achieve both, showing that

graphs G satisfying the properties of the Corrádi–Hajnal Theorem are strongly robust for triangle fac-

tors: Gp retains a triangle factor all the way down to the threshold probability p for triangle factors.

Hence, our result is a common strengthening of two cornerstone theorems in extremal and probabilistic

graph theory, implying that both the minimum degree condition and the condition on the probability

are tight.

Theorem 1.2 (main result). There is C > 0 such that for all n ∈ 3N and p ≥
C(log n)1∕3n−2∕3 the following holds. If G is an n-vertex graph with 𝛿(G) ≥ 2n

3
then whp

Gp has a triangle factor.

Our proof of Theorem 1.2 builds on an alternative proof of the threshold for triangle factors in

G(n, p) due to Kohayakawa and a subset of the authors [2]. This proof in turn shares some of the key

ideas with that of Johansson, Kahn and Vu [23] (as well as [25, 26]), in particular the use of entropy,

but follows a different scheme of ‘building’ our triangle factor one triangle at a time. This scheme

provides the opportunity for us to strengthen the proof to deal with incomplete graphs G. We defer a

detailed discussion of our proof to Section 3.

As a corollary to Theorem 1.2, we can provide a lower bound on the number of triangle factors in

every graph G with 𝛿(G) ≥ 2n
3

.

Corollary 1.3. There is c > 0 such that any graph G on n ∈ 3N vertices with 𝛿(G) ≥ 2n
3

contains at least
(

cn
(log n)1∕2

)2n∕3

triangle factors.
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ALLEN ET AL. 3

Corollary 1.3 follows easily from Theorem 1.2 by considering the expected number of triangle

factors in Gp and the fact that each triangle factor survives in Gp with probability pn
. Indeed, for a

graph F let T(F) denote the number of triangle factors in F. Theorem 1.2 implies P
[
T(Gp) ≥ 1

]
≥

1

2
for

p ≥ C(log n)1∕3n−2∕3
, for G as in Corollary 1.3, and for n sufficiently large. Since further E

[
T(Gp)

]
=

T(G) ⋅ pn
we get

1

2
≤ P
[
T(Gp) ≥ 1

]
≤ E
[
T(Gp)

]
= T(G) ⋅

(
C (log n)1∕3

n2∕3

)n

,

implying Corollary 1.3 for c sufficiently small.

To our knowledge, Corollary 1.3 is the first of its kind and it gets close to the truth. Indeed, letting

n ∈ 3N and H = G(n, q) be the binomial random graph with q = 2

3
+ o(1), we have that whp H has

minimum degree at least
2n
3

and the expected number of triangle factors in H is

qnn!
(n∕3)!6n∕3

=

(
(1 + o(1)) 2

e(
√

3)3
n

)2n∕3

.

It is believable that every graph as in Corollary 1.3 has at least this many triangle factors. As a first

step, removing the (log n)1∕2
from the expression in Corollary 1.3 poses an interesting open problem.

Related work: Hamiltonicity. To put our work into context, let us briefly discuss robustness results

with respect to another graph property, where these types of questions have been explored extensively.

A Hamilton cycle in a graph G is a cycle covering all the vertices of G and a graph that contains a

Hamilton cycle is said to Hamiltonian. The classical extremal theorem of Dirac [14] states that any

n-vertex graph G with 𝛿(G) ≥ n
2

is Hamiltonian. The idea that graphs satisfying Dirac’s condition

are robustly Hamiltonian in some sense, has been around for some time, with various measures of

robustness being proposed. For example, Sárközy, Selkow and Szemerédi [38] showed that there is

c > 0 such that any n-vertex graph G with 𝛿(G) ≥ n
2

contains at least cnn! ≥ (c2n)n Hamilton cycles.

This is tight up to the value of c and the authors of [38] conjectured that one can in fact take c =
1

2
− o(1), which was settled by Cuckler and Kahn [13]. This value of c is best possible, as can be seen

by considering a G(n, p) with p = 1

2
+ o(1).

Having a large number of Hamilton cycles is compelling evidence for such graphs being robustly

Hamiltonian but this property alone does not preclude the possibility that these Hamilton cycles are

somehow concentrated on a small part of the graph, for example that many of them share a small subset

of edges. Further research has gone into proving stronger notions of robustness, for example showing

the existence of many edge-disjoint Hamilton cycles or the existence of a Hamilton cycle when an

adversary forbids the use of certain combinations of edges (see the nice survey of Sudakov [42] and

the references therein).

An essentially optimal robustness result concerning random sparsifications of graphs satisfying

Dirac’s condition was obtained by Krivelevich, Lee and Sudakov [32], who proved that for any n-vertex

graph G with 𝛿(G) ≥ n
2
, whp Gp is Hamiltonian when p ≥ C(log n)∕n for sufficiently large C. For

comparison, as proved by Koršunov [31] and Pósa [35] the threshold for G(n, p) to be Hamiltonian is

also (log n)∕n.

The robustness given by the theorem of Krivelevich, Lee and Sudakov [32] is relatively strong in

that is can easily be used to infer other notions of robustness. For example, as every Hamilton cycle

in a graph G survives in Gp with probability pn
, by considering the expected number of Hamilton

cycles in Gp analogously to our derivation of Corollary 1.3, we can conclude that any graph G with
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4 ALLEN ET AL.

𝛿(G) ≥ n
2

has at least

(
cn

log n

)n
Hamilton cycles for some c > 0, which is only slightly weaker than the

aforementioned results counting Hamilton cycles. One can also obtain many edge-disjoint Hamilton

cycles by considering a random partition of the edges of G.

Several further results have built on the idea of using random sparsifications to give robustness,

such as those of Johansson [24] and Alon and Krivelevich [6] concerning ‘hitting times’. Other

graph properties, such as the existence of long paths and cycles or perfect matchings, have also been

investigated in the random sparsification setting; we refer again to the survey [42] for details.

Additional note. Since this paper was first submitted and a preprint posted online, Pham, Sah,

Sawhney and Simkin [34] have provided a general method for proving robust threshold results. Their

approach uses spread measures and the pioneering result of Frankston, Kahn, Narayanan and Park [17]

which allows one to upper bound thresholds in terms of how spread the graph property is. In the context

of clique factors, they could use their methods to prove an analogue to Theorem 1.2 for Kk-factors for all

k ≥ 3 and also to answer Problem 10.1 from our concluding remarks in the affirmative, establishing a

lower bound on the number of clique factors in graphs above the extremal threshold. In particular, they

provide an alternative proof of Theorem 1.2 and remove the log factor in Corollary 1.3. Their proof

follows the same general scheme as ours in first reducing to a partite super-regular setting which we

give here as our main technical theorem, Theorem 3.1. The reduction is very similar to ours given here

and indeed they use some of the tools we develop here including a stability version for the fractional

Hajnal-Szemerédi theorem (Theorem 7.3 of this paper). It is in the proof of Theorem 3.1, that our

approaches diverge completely. As previously mentioned, they use the recent breakthrough result [17]

on thresholds which reduces the problem to finding an appropriate spread measure. In order to get the

correct log factor in the robust threshold, they also need to transition to finding perfect matchings in

random hypergraphs, by using coupling results of Riordan [37]. On the other hand, our approach to

Theorem 3.1 is based on entropy, builds on the original proof of Johansson, Kahn and Vu [23] for the

threshold of clique factors and is self-contained. Whilst the proof of Pham, Sah, Sawhney and Simkin

is more succinct and generalises immediately to other settings, we believe that both proof methods

develop exciting new ideas and have great potential to be used in further work.

Organisation. The remainder of the paper is organised as follows. In Section 2 we collect some

basic definitions and a variety of tools that we shall need for our proof. In particular, we discuss

large matchings of cliques in Section 2.2, mention concentration inequalities we use in Section 2.3,

introduce what we need from the regularity method in Section 2.4, and list useful facts about entropy

in Section 2.5.

In Section 3 we explain that the main instrument for proving Theorem 1.2 is a result on triangle

factors in random sparsifications of super-regular tripartite graphs, Theorem 3.1. We then give an

overview of the proof of this main technical theorem, state the main propositions and lemmas needed

for this and show how these imply Theorem 3.1. More precisely, we shall formulate one proposition,

Proposition 3.2, allowing us to count certain partial triangle factors, one proposition, Proposition 3.3,

allowing us to extend a partial triangle factor by one triangle, and a key lemma, which we call the Local

Distribution Lemma (Lemma 3.4). After this, we provide some results on triangle counts in Section 4,

which will be useful in the proofs of our propositions. In Section 5, we prove Proposition 3.2 and

Proposition 3.3, using Lemma 3.4 as a black box. In Section 6, we show Lemma 3.4. An important

ingredient of this proof is a lemma which we call the Entropy Lemma (Lemma 6.4).

This will complete the proof of the main technical theorem, Theorem 3.1, and it will remain

to deduce Theorem 1.2 from Theorem 3.1. Before embarking on this, we need to build some more

theory. We begin in Section 7 by providing a stability statement of a fractional version of the

Hajnal–Szemerédi theorem, which may be of independent interest. Next, in Section 8, we derive
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ALLEN ET AL. 5

a sequence of probabilistic lemmas which imply the existence of K3-matchings in various random

sparsification settings. In Section 9, finally, we show how Theorem 3.1 implies Theorem 1.2. The basic

approach we use is a combination of the regularity method with an analysis of the extremal cases, as

is common in the area.

Finally in Section 10 we provide some concluding remarks.

2 PRELIMINARIES

Here we collect the notation we will use and provide some of the necessary definitions and tools.

2.1 Notation

Basics. We use [n]0 to denote [n] ∪ {0}. For 0 ≤ t ≤ n ∈ N, we define n!t to be the number of ways

to select a list of t distinct numbers from [n]. That is, n!0 ∶= 1 and for 1 ≤ t ≤ n, we have

n!t ∶=
n!

(n − t)!
= n ⋅ (n − 1) · · · (n − t + 1).

We use the notation x = y± z to denote that x ≤ y+ z and x ≥ y− z. Throughout we use log to denote

the natural (base e) logarithm function. Finally, we drop ceilings and floors unless necessary, so as not

to clutter the arguments.

Constants. At times we will define constant hierarchies within proofs, writing statements such as

the following: Choose constants

0 < c1 ≪ c2 ≪ · · ·≪ c𝓁 ≪ 𝑑. (2.1)

This should be taken to mean that given some constant 𝑑 (given by the statement we aim to prove), one

can choose all the remaining constants (the ci) from right to left so that all the subsequent constraints

are satisfied. That is, there exist increasing functions fi for i ∈ [𝓁+1] such that whenever ci ≤ fi+1(ci+1)
for all i ∈ [𝓁−1] and c𝓁 ≤ f𝓁+1(𝑑), all constraints on these constants that are in the proof, are satisfied.

Neighbourhoods and degrees. Given a graph G, a vertex v ∈ V(G) and a set U ⊆ V(G), we

define the neighbourhood of v in U as NG(v;U) ∶= {u ∈ U ∶ uv ∈ E(G)}. If U = V(G), we simply

write NG(v) and if G is clear from context we drop the subscript. If two vertices u1, u2 ∈ V(G) are given,

then NG(u1, u2) ∶= NG(u1) ∩ NG(u2) denotes the common neighbourhood of u1 and u2. We will also

use this notation for an edge e = u1u2, taking that NG(e) = NG(u1, u2). Similarly, if S ⊂ V(G) is some

subset of vertices, NG(S) ∶= ∩u∈SNG(u) denotes the common neighbourhood of the vertices in S and

if u = (u1, … , u𝓁) is a tuple of vertices (an ordered set), NG(u) ∶= ∩j∈[𝓁]NG(uj) denotes the common

neighbourhood of the set of vertices in u. The parameters NG(u1, u2;U), NG(S;U) and NG(u;U) are

all defined analogously as the sets of common neighbours that lie in U. We follow the convention

that NG(∅) = V(G). We also define degrees degG(u) = |NG(u)| with degG(u;U), degG(S), degG(S;U),
degG(u) and degG(u;U) defined analogously. Again, if the graph G is clear from the context then we

drop the subscripts. Finally, we let 𝛿(G) ∶= minu∈V(G) degG(u) denote the minimum degree of the

graph G and Δ(G) ∶= maxu∈V(G) degG(u) the maximum degree.

Edge subsets as subgraphs. Sometimes, given a graph G and a subset of edges E′ ⊆ E(G), we will

think of E′ as the subgraph HE′ ∶= (V(E′),E′) of G, where V(E′) is the set of vertices that lie in edges

in E′. We then use notation like 𝛿(E′) ∶= 𝛿(HE′ ) and degE′ (v) ∶= degHE′
(v). Furthermore, for a vertex

set A ⊂ V(G), E′[A] denotes the edges induced by HE′ on A. That is, E′[A] ∶= {e ∈ E′ ∶ e ⊂ A}.
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6 ALLEN ET AL.

Triangles and cliques. For a graph G and r ∈ N, r ≥ 2, we define Kr(G) to be the set of copies

of Kr in G. For example, K2(G) = E(G). Given a set of r-cliquesΣ ⊆ Kr(G), we use the notation V(Σ) to

denote all vertices that feature in cliques in Σ, that is, V(Σ) ∶= ∪S∈ΣS. For u ∈ V(G) we let Kr(G, u) ⊆
Kr(G) denote the subset of cliques containing u.

Now for a vertex v ∈ V(G), we let Trv(G) denote the triangle neighbourhood of v: the set of

edges in E(G) that form a triangle with v in G. That is, Trv(G) = {e ∈ E(G) ∶ v ∈ NG(e)}. Note

that K3(G, u) = {f ∪ {u} ∶ f ∈ Tru(G)}.
Matchings and factors. For r ≥ 2, a Kr-matching in G is a collection of vertex-disjoint copies

of Kr in G. The size of a Kr-matching is the number of vertex-disjoint copies of Kr in the collection.

Note that when r = 2 is a single edge, a Kr-matching is simply a matching and when r = 3, we will also

refer to a K3-matching as a triangle matching. If a Kr-matching covers the vertex set of G (implying

that n ∈ rN), then we refer to the Kr-matching as a Kr-factor in G. Thus, when r = 2, a K2-factor

is a perfect matching and when r = 3, we also refer to a K3-factor as a triangle factor. At times, we

will refer to a Kr-matching as a partial Kr-factor. Although these two terms refer to the same objects,

we reserve the use of partial factors for when there is an aim for the partial Kr-factor/Kr-matching to

contribute to a full Kr-factor.

Vertex sets and tuples in tripartite graphs. For a large part of our proof, we will be concerned

with the host graph being a balanced tripartite graph. In such a setting, we will take as convention

that the disjoint vertex sets that form the tripartition are labelled V1
,V2

and V3
and are each of size n.

It will be useful for us to considered ordered tuples of vertices from these vertex sets. We therefore

fix  ∶= {∅} ∪ V1 ∪ (V1 × V2) ∪ (V1 × V2 × V3). That is, an element u ∈  is a vector of some

length 0 ≤ 𝓁(u) ≤ 3 such that for each i ≤ 𝓁(u), we have that u contains exactly one vertex from Vi
.

Vertex sets with elements removed. Given a graph G, a collection of vertices u1, … , u𝓁 ∈ V(G)
and a subset of vertices W ⊆ V(G), we use the notation Wû

1
,… ,û𝓁 to denote the subset W with the ui

removed. That is,

Wû
1
,… ,û𝓁 ∶= W ⧵ (W ∩ {u1, … , u𝓁}).

Note that we do not impose that the ui need lie in W. We remark that we add a hat on the removed

vertices ui in this notation to distinguish it from similar notation (see below) where vertices appear in

subscripts without hats, signalling that these vertices are used for certain purposes.

To ease notation, we will sometimes group together some of the collection of vertices we wish

to omit, as an ordered tuple. For example, if u = (u1, … , u𝓁) ∈  for some 𝓁 ∈ [3]0 as above, we

define Wû ∶= Wû
1
,… ,û𝓁 .

Partial triangle factors in tripartite graphs. We will be concerned with embedding partial tri-

angle factors in a given host tripartite graph. For t ∈ [n]0, we therefore define Dt to be the graph on

vertex set [t] × [3], whose edge set consists of the edges {{(s, i), (s, j)} ∶ s ∈ [t], i ≠ j ∈ [3]}. Thus Dt

simply consists of t labelled vertex-disjoint triangles.

Given a graph G on a fixed vertex partition V1 ∪ V2 ∪ V3
as above, we define Ψt(G) to be the

collection of labelled embeddings of Dt into G, that map [t] × {i} to a subset of Vi
for i ∈ [3]. We

will be interested in embeddings that fix certain vertices to be isolated. Given u = (u1, … , u𝓁) ∈ 
of length 𝓁 ≤ 3 as above and t ∈ [n − 1], we define Ψt

û(G) ⊆ Ψt(G) to be those 𝜓 ∈ Ψt(G) for

which 𝜓((s, i)) ≠ ui for all i ∈ [𝓁] and s ∈ [t]. That is, we fix the 𝓁 vertices in u to be isolated in the

embedding of Dt.

We remark that if u = ∅, then Ψt
û(G) = Ψt(G) and also note that for an arbitrary u ∈  one has

that Ψt
û(G) = Ψt(Gû) where Gû is considered as a tripartite graph on partition V1

û ∪ V2

û ∪ V3

û .
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ALLEN ET AL. 7

Finally, given a vertex v ∈ V1
, we denote by Ψt

v(G) ⊆ Ψt(G) the set of embeddings 𝜓 ∈ Ψt(G) for

which 𝜓((1, 1)) = v.

Induced subgraphs. For a graph G = (V ,E) and some U ⊆ V , we define G[U] to be the subgraph

of G induced by U, that is V(G[U]) = U and E(G[U]) = {e ∈ E ∶ e ⊂ U}. Similarly, given

disjoint subsets U1, … ,Uk ⊂ V , we define G[U1, … ,Uk] to be the k-partite subgraph of G induced

by U1, … ,Uk, that is V(G[U]) = U1 ∪ … ∪ Uk and

E(G[U1, … ,Uk]) = {e ∈ E ∶ e ⊂ U1 ∪ … ∪ Uk and |e ∩ Ui| ≤ 1 for all i ∈ [k]}.

Given a graph G and a collection of vertices u1, … , u𝓁 , we consider the graph induced after removing

the ui, by defining the shorthand Gû
1
,… ,ûk ∶= G[Vû

1
,… ,ûk ], where V = V(G). For a tuple of vertices u,

the graph Gû is defined analogously.

2.2 Kk-matchings in dense graphs

The Hajnal–Szemerédi Theorem [19] states that any graph with maximum degree Δ has an equitable
colouring withΔ+1 colours, that is, a colouring where the colour classes differ in size by at most one.

Applying this to the complement of G, which has maximum degree n− 1− 𝛿(G), we find a collection

of n − 𝛿(G) vertex-disjoint cliques in G whose sizes differ by at most one and that cover V(G). We

will make use of the following corollary, which we obtain from the fact that when 𝛿(G) =
(

k−1

k
− x
)

n

for some 0 ≤ x < 1, then the Hajnal–Szemerédi Theorem provides us with ( 1

k
+ x)n vertex-disjoint

cliques. If 0 < x < 1

k(k−1)
, some of these cliques, say 𝛼, are of size k, and the others are of size k − 1,

hence we have n = 𝛼k +
((

1

k
+ x
)

n − 𝛼
)
(k − 1) = 𝛼 + n

k
(1 + kx)(k − 1). Solving this for 𝛼 gives the

following result.

Theorem 2.1 (Hajnal, Szemerédi [19]). Let n, k ≥ 2 be integers and let 0 ≤ x < 1. Sup-
pose that G is an n-vertex graph with 𝛿(G) ≥

(
k−1

k
− x
)

n. Then G contains a Kk-matching
of size at least (1 − (k − 1)kx)⌊ n

k
⌋.

This statement is often used in extremal graph theory, and in particular the case x = 0, which gives

the best possible minimum degree condition for containing a Kk-factor.

2.3 Concentration inequalities

We will frequently use the following concentration inequalities for random variables. The first such

inequality, Chernoff’s inequality [9] (see also [22, Corollary 2.3]), deals with the case of binomial

random variables.

Theorem 2.2 (Chernoff’s concentration inequality). Let X be the sum of a set of mutually
independent Bernoulli random variables and let 𝜆 = E[X]. Then for any 0 < 𝛿 <

3

2
, we

have that

P[X ≥ (1 + 𝛿)𝜆] ≤ e−𝛿2
𝜆∕3

and P[X ≤ (1 − 𝛿)𝜆] ≤ e−𝛿2
𝜆∕2
.

Recall that given a graph G and some p ∈ [0, 1], we denote by Gp the random subgraph of G with

V(Gp) = V(G) in which every edge of G is present independently with probability p. Given a subgraph

F ⊂ E(G) of G (given by its edge set), we denote by IF the indicator random variable which is 1 if F
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8 ALLEN ET AL.

is present in Gp and 0 otherwise. Chernoff’s inequality is particularly useful to give sharp bounds on

random variables of the form X =
∑

F∈ IF, where  ⊂ 2
E(G)

is a collection of edge-disjoint subgraphs

of G.

However, when  consists of not-necessarily edge disjoint subgraphs of G, the situation becomes

more complicated. Janson’s inequality [21] (see also [22, Theorem 2.14]) provides a bound for the

lower tail in this case.

Lemma 2.3 (Janson’s concentration inequality). Let G be a graph and  ⊂ 2
E(G) be a

collection of subgraphs of G and let p ∈ [0, 1]. Let X =
∑

F∈ IF, let 𝜆 = E[X] and let

Δ =
∑

(F,F′)∈2∶ F∩F′≠∅
E[IFIF′ ].

Then, for every 𝜀 ∈ (0, 1), we have

P[X ≤ (1 − 𝜀)𝜆] ≤ exp

(
−𝜀

2
𝜆

2

2Δ

)
.

If we additionally require a bound for the upper tail, we will use the Kim–Vu inequality [28] (see

also [5, Theorem 7.8.1]). Let X =
∑

F∈ IF as above. Given an edge e ∈ E(G), we write te for I{e}.
With this we can write X as a polynomial with variables te:

X =
∑
F∈

∏
e∈F

te.

Given some A ⊂ E(G), we obtain XA from X by deleting all summands corresponding to F ∈  which

do not contain A and replacing every te with e ∈ A by 1. That is,

XA =
∑

F∈∶ A⊆F

∏
e∈F⧵A

te.

In other words, XA is the number of F ∈  that contain A and are present in Gp ∪ A.

Lemma 2.4 (Kim–Vu polynomial concentration). For every k ∈ N, there is a constant
c = c(k) > 0 such that the following is true. Let G be a graph and  ⊂ 2

E(G) be a
collection of subgraphs of G, each with at most k edges. Let X =

∑
F∈ IF as above and

𝜆 ∶= E[X]. For i ∈ [k], define Ei ∶= max{E[XA] ∶ A ⊂ E(G), |A| = i}. Further define
E′ ∶= maxi∈[k] Ei and E = max{𝜆,E′}. Then, for every 𝜇 > 1, we have

P
[|X − 𝜆| > c ⋅ (EE′)1∕2

𝜇

k]
≤ c ⋅ e(G)k−1e−𝜇.

Finally we will need a basic concentration result for the hypergeometric distribution: A random

variable X is hypergeometrically distributed with parameters N ∈ N and K, t ∈ [N]0 if for all k ∈
[K]0, P[X = k] is the probability that when drawing t balls from a set of N balls (K of which are blue

and N − K red) without replacement, exactly k are blue. That is,

P[X = k] =

(
K
k

)(
N−K
t−k

)
(

N
t

) .
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ALLEN ET AL. 9

We will use the following concentration inequality, which Chvátal [10] deduced from Hoeffding’s

inequality [20], see also [40].

Lemma 2.5. Let X be hypergeometrically distributed with parameters N ∈ N, K ∈ [N]0
and t ∈ [N]0 and let 𝜆 ∶= E[X] = tK

N
. Then, for all 𝜀 > 0, we have

P[|X − 𝜆| > 𝜀𝜆] ≤ 2e−2𝜀
2(K∕N)𝜆

.

2.4 Regularity

We will use the famous regularity lemma due to Szemerédi [43] which is an extremely powerful tool

in modern extremal combinatorics. The lemma and its consequences appeared in the form we give

here, in a survey of Komlós and Simonovits [30], which we also recommend for further details on

the subject. First we introduce some necessary terminology. Let G be a graph and let A,B ⊂ V(G) be

disjoint subsets of the vertices of G. For nonempty sets X ⊆ A, Y ⊆ B, we define the density of G[X,Y]
to be 𝑑G(X,Y) ∶= eG(X,Y)

|X||Y| . Given 𝜀 > 0, we say that a pair (A,B) is 𝜀-regular in G if for all sets X ⊆ A
and Y ⊆ B with |X| ≥ 𝜀|A| and |Y| ≥ 𝜀|B| we have |𝑑G(A,B) − 𝑑G(X,Y)| < 𝜀. We say that (A,B)
is (𝜀, 𝑑)-regular if (A,B) is 𝜀-regular and 𝑑G(A,B) = 𝑑.

Furthermore, we say (A,B) is (𝜀, 𝑑, 𝛿)-super-regular if (A,B) is (𝜀, 𝑑)-regular and satisfies

degG(v;A) ≥ 𝛿|A| for all v ∈ B and likewise deg(v;B) ≥ 𝛿|B| for all v ∈ A. We say that (A,B)
is (𝜀, 𝑑)-super-regular if it is (𝜀, 𝑑, 𝑑 − 𝜀)-super-regular. We say that a k-tuple (A1, … ,Ak) of (pair-

wise disjoint) subsets of V(G) is (𝜀, 𝑑)-(super-)regular if each of the pairs (Ai,Aj) with i ≠ j ∈ [k]
is (𝜀, 𝑑)-(super-)regular. We call a k-partite graph G with parts A1, … ,Ak, (𝜀, 𝑑)-(super-)regular
if (A1, … ,Ak) is an (𝜀, 𝑑)-(super-)regular tuple in G. In the interest of brevity, we use the term

(super-)regular tuple interchangeably to refer to the tuple of vertex sets (A1, … ,Ak) and also to refer

to the (super-)regular k-partite graph G[A1, … ,Ak] that G induces on A1 ∪ … ∪ Ak. Finally we

say that (A,B) is (𝜀, 𝑑+)-regular if it is (𝜀, 𝑑′)-regular for some 𝑑
′ ≥ 𝑑. Similarly, we say (A,B)

is (𝜀, 𝑑+, 𝛿)-super-regular if it is (𝜀, 𝑑′, 𝛿)-super-regular for some 𝑑

′ ≥ 𝑑 and we say (A,B)
is (𝜀, 𝑑+)-super-regular if it is (𝜀, 𝑑′, 𝑑 − 𝜀)-super-regular for some 𝑑

′ ≥ 𝑑. The corresponding defini-

tions are made analogously for regular tuples where we require the densities between all pairs involved

to be at least 𝑑 (and do not require these densities to be equal).

We say that a partition V(G) = V0∪V1∪· · ·∪Vt is an 𝜀-regular partition if |V0| ≤ 𝜀|V(G)|, |V1| =
· · · = |Vt|, and for all but at most 𝜀t2

pairs (i, j) ∈ [t] × [t], the pair (Vi,Vj) is 𝜀-regular. We refer to

the sets Vi for i ∈ [t] as clusters and also use this term to refer to subsets V ′
i ⊂ Vi for i ∈ [t]. We refer

to V0 as the exceptional set and the vertices in V0 are exceptional vertices. Given an 𝜀-regular partition

and 𝑑 ∈ [0, 1], we say R is the (𝜀, 𝑑)-reduced graph of G (with respect to the partition) if V(R) = [t]
and ij ∈ E(R) if and only if (Vi,Vj) is (𝜀, 𝑑+)-regular. We will use Szemerédi’s Regularity Lemma [43]

in the following form which follows easily from for example, [30, Theorem 1.10].

Lemma 2.6 (Regularity Lemma). For all 0 < 𝜀 ≤ 1 and m0 ∈ N there exists M0 ∈ N

such that for every 0 < 𝑑 < 𝛾 < 1, every graph G on n > M0 vertices with minimum
degree 𝛿(G) ≥ 𝛾n has an 𝜀-regular partition V0∪V1∪· · ·∪Vm with (𝜀, 𝑑)-reduced graph R
on m vertices such that m0 ≤ m ≤ M0 and 𝛿(R) ≥ (𝛾 − 𝑑 − 2𝜀)m.

We will further make use of the following well-known results about (super-)regular tuples. See,

for example, [30, Facts 1.3 and 1.5].
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10 ALLEN ET AL.

Lemma 2.7 (Slicing Lemma). Let 0 < 𝜀 < 𝛽, 𝑑 ≤ 1 and let (V1,V2) be an (𝜀, 𝑑)-regular
pair. Then any pair (U1,U2) with |Ui| ≥ 𝛽|Vi| and Ui ⊆ Vi, i = 1, 2, is (𝜀′, 𝑑′)-regular
with 𝜀′ = max{ 𝜀

𝛽

, 2𝜀} and some 𝑑′ > 0 such that |𝑑′ − 𝑑| ≤ 𝜀.

Lemma 2.8. Let 0 < 𝜀 < 𝑑 ≤ 1 and (V1,V2) be an (𝜀, 𝑑)-regular pair and let X2 ⊆ V2

with |X2| ≥ 𝜀|V2|. Then all but at most 𝜀|V1| vertices v ∈ V1 satisfy deg(v;X2) ≥ (𝑑 −
𝜀)|X2|. Likewise, all but at most 𝜀|V1| vertices v ∈ V1 satisfy deg(v;X2) ≤ (𝑑 + 𝜀)|X2|

The following lemma can be proven by combining the two previous lemmas.

Lemma 2.9. Let k ∈ N and 0 < 𝜀 < 𝑑 ≤ 1 with 𝜀 ≤
1

2k
. If Z = (V1, … ,Vk)

is an (𝜀, 𝑑+)-regular tuple of disjoint vertex sets of size n, then there are subsets ̃V1 ⊆

V1, … ,
̃Vk ⊆ Vk with | ̃Vi| = ⌈(1−k𝜀)n⌉ for all i ∈ [k] so that the k-tuple ̃Z = ( ̃V1, … ,

̃Vk)
is (2𝜀, (𝑑 − 𝜀)+, 𝑑 − k𝜀)-super-regular.

Our next lemma shows that any sufficiently dense pair is automatically regular. It follows directly

from the definition of regularity.

Lemma 2.10. Let 0 < 𝜀 < 1 and (V1,V2) be a pair of vertex sets such
that deg(vi;V3−i) ≥

(
1 − 𝜀2

)|V3−i| for all i ∈ [2] and vi ∈ Vi. Then (V1,V2) form
an
(
𝜀,

(
1 − 𝜀2

)+)-super-regular pair.

We will also need the following lemma which is closely related to the well-known counting lemma

and can be derived easily from the definition of 𝜀-regularity, we omit the proof here.

Lemma 2.11. Let 0 < 𝜀 < 𝑑1,2, 𝑑1,3, 𝑑2,3 ≤ 1 and let Γ be a tripartite graph with
parts V1

,V2
,V3 of size n such that (Vi

,Vj) is (𝜀, 𝑑i,j)-regular for all 1 ≤ i < j ≤ 3.

Let Xi ⊆ Vi with |Xi| ≥ 𝜀n for all i ∈ [3]. Then,

|K3(Γ[X1 ∪ X2 ∪ X3])| = 𝑑1,2𝑑1,3𝑑2,3|X1||X2||X3| ± 10𝜀n3
.

Finally, the following lemma further allows us to control the exact density of a super-regular

pair by deleting edges if necessary. We recall here that we say a pair (A,B) of disjoint vertex sets in

(𝜀, 𝑑+)-super-regular if it is (𝜀, 𝑑′, 𝑑 − 𝜀)-super-regular for some 𝑑
′ ≥ 𝑑.

Lemma 2.12. For all 0 < 𝜀 < 1, there is some n0 > 0, such that the following is true for
every n ≥ n0 and every bipartite graph G with parts V1,V2 of size n. Suppose that (V1,V2)
is (𝜀2

, 𝑑

+)-super-regular for some 𝑑 such that 4𝜀 ≤ 𝑑 ≤ 1 and 𝑑n2 ∈ N. Then there is a
spanning subgraph G′

⊆ G so that (V1,V2) is (4𝜀, 𝑑)-super-regular in G′
.

Proof. Let 𝑑
′ ≥ 𝑑 be the density of (V1,V2). For i ∈ [2], let Yi ∶= {v ∈ Vi ∶

deg(v;V3−i) ≤
(
𝑑

′ − 𝜀2
)

n} and observe that by the 𝜀

2
-regularity of (V1,V2) and

Lemma 2.8, we have |Yi| ≤ 𝜀2n for both i ∈ [2]. Let EY ⊂ E(G) be the set of edges with

at least one vertex in Y ∶= Y1 ∪ Y2 and let E ∶= E(G) ⧵ EY . Let m ∶= |EY | ≤ 2𝜀
2n2

.

Let p ∶= 𝑑n2−m
|E| = 𝑑±2𝜀

2

𝑑
′ . Let E′ be a uniformly random subset of E of size exactly p|E| ∈ N

and let G′
be the spanning subgraph of G with edge set E′ ∪ EY . By construction, we

have 𝑑G′ (V1,V2) = 𝑑; we will show that (V1,V2) is whp (4𝜀, 𝑑, 𝑑 − 𝜀)-super-regular in G′
.

Let Ai ⊆ Vi with Ai ≥ 4𝜀n, and let A′i = Ai ⧵ Yi and Bi = Ai ⧵ A′i for both i ∈ [2].
By 𝜀

2
-regularity in G, we have Z ∶= ||EG(A′1,A′2)|| = (𝑑′ ± 𝜀2)|A′

1
||A′

2
|. Let now X ∶=

||EG′ (A′
1
,A′

2
)||. Then X is hypergeometrically distributed with parameters N = |E|,K =

Z, t = p|E| and thus 𝜆 ∶= E[X] = pZ = (𝑑 ± 2𝜀)|A′
1
||A′

2
|. Since 𝜆 ≥ 8𝜀

3n2
, it follows
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ALLEN ET AL. 11

from Lemma 2.5 that

P[|X − 𝜆| > 𝜀𝜆] ≤ 2e−2𝜀
2(K∕N)𝜆

≤ 2e−𝜀8n2

.

In particular, we have P[𝑑G′ (A1,A2) = 𝑑 ± 4𝜀] ≥ 1 − 2e−𝜀8n2

. By taking a union bound

over all choices of A1,A2, we deduce that (V1,V2) is 4𝜀-regular with probability at least 1−
2e2n−𝜀8n2

. Similarly, we deduce that degG′ (vi;V3−i) ≥ (𝑑 − 𝜀)n for each i ∈ [2] and vi ∈ Vi
with probability at least 1−4ne−𝜀8n

. Note that this is automatically true for all v ∈ Y as these

vertices retain their neighbours from G. Hence, taking another union bound, it follows

that (V1,V2) is whp (4𝜀, 𝑑, 𝑑 − 𝜀)-super-regular in G′
. Therefore, for all large enough n,

there is a suitable choice for E′. ▪

2.5 Entropy

In this section we explain basic definitions and properties related to the entropy function, which will

play a central rôle in our proof. We will be following the notes of Galvin [18] and all proofs we do not

include here can be found or follow immediately from the results there. Throughout this subsection we

fix a finite probability space (Ω,P). Recall also that log denotes the natural logarithm function.

Let X ∶ Ω → S be a random variable, and note that we will sometimes use the notation X(𝜔),
which is an element of S, for the value of X given the outcome 𝜔 ∈ Ω. Given x ∈ S, we denote p(x) ∶=
P[X = x]. We define the entropy of X by

h(X) ∶=
∑
x∈S

− p(x) log p(x).

Entropy can be interpreted as a measure of the ‘uncertainty’ of a random variable, or of how much

information is ‘gained’ by revealing X. The following lemma shows that the entropy is maximised

when X is uniform, corresponding to maximal ‘uncertainty’. Define the range of X as the set of values

that X takes with positive probability, that is rg(X) = {x ∈ S ∶ p(x) > 0}.

Lemma 2.13 (maximal entropy). For every random variable X ∶ Ω → S, we have
h(X) ≤ log(|rg(X)|) ≤ log(|S|) with equality if and only if p(x) = 1

|S| for all x ∈ S.

Lemma 2.13 provides the key to using entropy in combinatorial arguments. Indeed, the basic

method relies on taking a uniformly random object F from some family  whose cardinality we are

interested in estimating. By analysing the entropy of the random variable F, using the tools listed below,

we can obtain bounds on the entropy which translate to bounds on the size of  via Lemma 2.13. We

now further develop the theory.

Given random variables Xi ∶ Ω → Si for i ∈ [n], we denote the entropy of the random

vector (X1, … ,Xn) by h(X1, … ,Xn) ∶= h((X1, … ,Xn)). The entropy function has the following

subadditivity property.

Lemma 2.14 (subadditivity). Given random variables Xi ∶ Ω→ Si, i ∈ [n], we have

h(X1, … ,Xn) ≤
n∑

i=1

h(Xi),

with equality if and only if the Xi are mutually independent.
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12 ALLEN ET AL.

Intuitively, this means that revealing a random vector cannot give us more information than reveal-

ing each component separately. We say a random variable X ∶ Ω → SX determines another random

variable Y ∶ Ω → SY if the outcome of Y is completely determined by X. For example if X is the

outcome of rolling a regular six-sided die and Y is 1 if this outcome is even, and 0 otherwise, then X
determines Y . Formally, X determines Y if there is a function f ∶ SX → SY such that Y(𝜔) = f (X(𝜔)) for

all 𝜔 ∈ Ω. If X determines Y , then no additional information is needed to reveal Y once X is revealed.

This is formalised in the following lemma.

Lemma 2.15 (redundancy). If X ∶ Ω → SX and Y ∶ Ω → SY are random variables
and X determines Y , then h(X) = h(X,Y).

If E ⊂ Ω is an event with positive probability, we define the conditional entropy given the event as

h(X|E) ∶=∑
x∈S

− p(x|E) log p(x|E),

where p(x|E) = P[X = x|E]. Note that h(X|E) is the entropy of the random variable obtained from X
by conditioning on E, so that if Z has distribution P[Z = x] = P[X = x|E] then h(Z) = h(X|E). Given

two random variables X ∶ Ω → SX and Y ∶ Ω → SY , the conditional entropy of X given Y is defined

as

h(X|Y) ∶= EY [h(X|Y = y)] =
∑
y∈SY

p(y)h(X|Y = y) (2.2)

=
∑
𝜔∈Ω

P[𝜔]h(X|Y = Y(𝜔)), (2.3)

where p(y) = P
[
Y = y

]
. As conditioning on an event or another random variable only gives us more

information, we have the following inequalities.

Lemma 2.16 (dropping conditioning). Given random variables X ∶ Ω → SX and Y ∶
Ω → SY , and an event E ⊂ Ω we have

h(X|Y) ≤ h(X) and h(X) ≥ P[E]h(X|E).

Furthermore, if Y ′ ∶ Ω→ SY ′ is another random variable and Y determines Y ′, then

h(X|Y) ≤ h(X|Y ′).
The following chain rule strengthens Lemma 2.14.

Lemma 2.17 (chain rule). Given random variables X ∶ Ω → SX and Y ∶ Ω → SY , we
have

h(X,Y) = h(X) + h(Y|X)

and more generally, for random variables Xi ∶ Ω→ Si, i ∈ [n], we have

h(X1, … ,Xn) =
n∑

i=1

h(Xi|X1, … ,Xi−1).
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ALLEN ET AL. 13

Lemmas 2.13,2.14 and 2.17 have the following conditional versions. Given a random variable X ∶
Ω → SX and an event E ⊂ Ω, we define the conditional range of X given E by rg(X|E) = {x ∈ SX ∶
p(x|E) > 0}.

Lemma 2.18 (maximal conditional entropy). For every random variable X ∶ Ω → S
and event E ⊂ Ω, we have

h(X|E) ≤ log(|rg(X|E)|).
Lemma 2.19 (conditional subadditivity). Given random variables Xi ∶ Ω→ Si, i ∈ [n],
and Y ∶ Ω→ SY , we have

h(X1, … ,Xn|Y) ≤
n∑

i=1

h(Xi|Y),

with equality if and only if the Xi are mutually independent conditioned on Y .

Lemma 2.20 (conditional chain rule). Given random variables Xi ∶ Ω → Si, i ∈ [n],
and Y ∶ Ω→ SY , we have

h(X1, … ,Xn|Y) =
n∑

i=1

h(Xi|X1, … ,Xi−1,Y).

The following lemma will play an essential rôle in our proof. It sharpens a similar lemma that

appeared in [23]. It states that if a random variable has almost maximal entropy, then it must be close

to uniform. This can be seen as a stability result for Lemma 2.13.

Lemma 2.21 (almost maximal entropy). For all 𝛽 > 0, there is some 𝛽′ > 0 such that
the following is true for every finite set S and every random variable X ∶ Ω→ S. If h(X) ≥
log(|S|) − 𝛽′, then letting a ∶= 1

|S| and J ∶= {x ∈ S ∶ (1 − 𝛽)a ≤ P[X = x] ≤ (1 + 𝛽)a},
we have that

|J| ≥ (1 − 𝛽)|S| and P[X ∈ J] ≥ (1 − 𝛽). (2.4)

Proof. Let 𝛽 > 0 be given and assume that 𝛽 <

1

10
. Fix 𝛽

′ = 𝛽

4

2000
. Let X ∶ Ω → S

be a random variable with h(X) ≥ log(|S|) − 𝛽

′
and let a and J be as defined in the

statement of the lemma. Further, we define J+ = {y ∈ S ∶ P
[
X = y

]
>

(
1 + 𝛽

4

)
a}

and J− = {y ∈ S ∶ P
[
X = y

]
<

(
1 − 𝛽

4

)
a}. Note that |J| ≥ |S| − (|J+| + |J−|).

Claim 2.22. We have |J+| ≤ 𝛽

4
|S|.

Proof of Claim. Choose 𝜂 ≤
𝛽

4
so that 𝜂|S| = ⌊ 𝛽

4
|S|⌋. Assume for contradiction that |J+| >

𝜂|S| and let ̃J+ ⊂ J+ be a set of size exactly 𝜂|S|. Define X+ by

P
[
X+ = y

]
=

{
(1 + 𝜂)a if y ∈ ̃J+

(1 − 𝜉)a if y ∉ ̃J+,

where 𝜉 ∶= 𝜂

2

1−𝜂
is chosen so that

∑
y∈S P

[
X+ = y

]
= 1. Now it follows from Karamata’s

inequality and the fact that −x log(x) is concave on [0, 1], that h(X+) ≥ h(X). We further
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14 ALLEN ET AL.

let Y = 1 if X+ ∈ ̃J+ and 0 otherwise. We then have that

h(X) ≤ h(X+) = h(X+,Y) = h(X+|Y = 1)P[Y = 1] + h(X+|Y = 0)P[Y = 0] + h(Y),

where we used Lemma 2.15, the chain rule (Lemma 2.17) and the definition of conditional

entropy. Note that P[Y = 1] = 𝜂(1 + 𝜂) and

h(Y) = −𝜂(1 + 𝜂) log(𝜂(1 + 𝜂)) − (1 − 𝜂(1 + 𝜂)) log(1 − (𝜂(1 + 𝜂))).

Therefore, using also Lemma 2.18, we get

h(X) ≤ log(𝜂|S|)𝜂(1 + 𝜂) + log((1 − 𝜂)|S|)(1 − 𝜂(1 + 𝜂)) + h(Y)
= log(|S|) + log(𝜂)𝜂(1 + 𝜂) + log(1 − 𝜂)(1 − 𝜂(1 + 𝜂)) + h(Y)
= log(|S|) + 𝜂(1 + 𝜂)(log(𝜂) − log(𝜂(1 + 𝜂)))
+ (1 − 𝜂(1 + 𝜂))(log(1 − 𝜂) − log(1 − 𝜂(1 + 𝜂)))

= log(|S|) − 𝜂(1 + 𝜂) log(1 + 𝜂) +
(
1 − 𝜂 − 𝜂2

)
log

(
1 − 𝜂

1 − 𝜂 − 𝜂2

)
.

Using the approximation x − x2

2
≤ log(1 + x) ≤ x, which holds for all x ∈ (0, 1), in the

forms log(1+𝜂) ≥ 𝜂
(

1 − 𝜂

2

)
and log

(
1−𝜂

1−𝜂−𝜂2

)
= log

(
1 + 𝜂

2

1−𝜂−𝜂2

)
≤

𝜂

2

1−𝜂−𝜂2
, we conclude

h(X) ≤ log(|S|) − 𝜂2(1 + 𝜂)
(

1 − 𝜂

2

)
+ (1 − 𝜂 − 𝜂2) 𝜂

2

1 − 𝜂 − 𝜂2

= log(|S|) − 𝜂2 − 𝜂

3

2
+ 𝜂

4

2
+ 𝜂2

≤ log(|S|) − 𝜂

3

4
< log(|S|) − 𝛽′,

a contradiction. ▪

Similarly, we can show that |J−| ≤ 𝛽

4
|S| and conclude that |J| ≥ |S|− (|J+|+ |J−|) ≥

(1 − 𝛽)|S|. Furthermore, by the definition of J− we have

∑
y∈J

P
[
X = y

]
≥

∑
y∈S⧵(J+∪J−)

(
1 − 𝛽

4

)
a ≥
(

1 − 𝛽

2

)
|S|
(

1 − 𝛽

4

)
a ≥ (1 − 𝛽).

This completes the proof. ▪

3 THE MAIN TECHNICAL RESULT AND ITS PROOF OVERVIEW

The main technical result we reduce Theorem 1.2 to is the following partite version with the minimum

degree condition replaced by regularity.

Theorem 3.1 (main technical theorem). For every 0 < 𝑑 ≤ 1 there exists con-
stants 𝜀 > 0 and C > 0 such that the following holds for every n ∈ N and p ∈ (0, 1) such
that p ≥ C(log n)1∕3n−2∕3

. If Γ is an (𝜀, 𝑑+)-super-regular tripartite graph with parts of
size n then Γp whp contains a triangle factor.
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ALLEN ET AL. 15

The reduction of Theorem 1.2 to this partite version uses the regularity method together with a

stability result for the fractional Hajnal–Szemerédi Theorem developed in Section 7 and an analysis

of the extremal cases. We give the full details in Section 9.

The main challenge of this paper is proving Theorem 3.1, and in this section we will reduce

Theorem 3.1 further to two intermediate propositions. We will then discuss the proof of these propo-

sitions, outlining the remainder of the paper and some of the key ideas involved. We encourage the

reader to recall the relevant terminology from the notation section (Section 2.1) on embedding partial

factors in tripartite graphs, in particular the definition of Ψt
.

The first proposition counts partial triangle factors.

Proposition 3.2 (counting partial-factors). For all 0 < 𝜂, 𝑑 ≤ 1 there exists 𝜀 > 0

and C > 0 such that the following holds for all sufficiently large n ∈ N and for any p ≥
C(log n)1∕3n−2∕3

. If Γ is an (𝜀, 𝑑)-regular tripartite graph with parts of size n, then whp
we have that

||Ψt(Γp)|| ≥ (1 − 𝜂)t(p𝑑)3t(n!t)3, (3.1)

for all t ∈ N with t ≤ (1 − 𝜂)n.

Here the condition (3.1) should be read as Γp having roughly the ‘correct’ number of embeddings

of Dt, the graph with t labelled disjoint triangles. Indeed, the term (p𝑑)3t(n!t)3 is the expected number

of embeddings of Dt in a random sparsification of the complete tripartite graph with probability p𝑑,

which provides a sensible benchmark for our model Γp. The (1 − 𝜂)t factor is then an error term which

we can control. In order to go beyond Proposition 3.2 to counting subgraphs Dt with larger t, we need

different techniques. Our second proposition allows us to extend partial triangle factors by embedding

further triangles one by one.

Proposition 3.3 (extending by one triangle). For all 0 < 𝑑 ≤ 1 there exists 𝛼, 𝜂, 𝜀 > 0

and C > 0 such that for all sufficiently large n ∈ N and for any p ≥ C(log n)1∕3n−2∕3
,

if Γ is an (𝜀, 𝑑)-super-regular tripartite graph with parts of size n, then whp the following
holds in Γp for every t ∈ N with (1 − 𝜂)n ≤ t < n. If

||Ψt(Γp)|| ≥ (1 − 𝜂)n(p𝑑)3t(n!t)3, (3.2)

then
|||Ψ

t+1(Γp)
||| ≥ 𝛼(p𝑑)

3(n − t)3||Ψt(Γp)||. (3.3)

Again the condition (3.2) in Proposition 3.3 should be read as Γp having roughly the ‘correct’

number of embeddings of Dt and condition (3.3) then implies that Γp has roughly the ‘correct’ number

of embeddings of Dt+1. In contrast to Proposition 3.2 we now lose control of the error term (given

by 𝛼) but as we will only apply Proposition 3.3 for large t, we can make sure the error term does not

accumulate too much. Indeed, recall that our goal is merely to obtain one triangle factor in the end.

We now show how Theorem 3.1 follows from these two intermediate propositions before outlining

the proofs of these propositions.

Proof of Theorem 3.1. Given 𝑑 choose 0 < 𝜀,

1

C
≪ 𝜂 ≪ 𝛼 ≪ 𝑑 and note that by choos-

ing C > 0 sufficiently large, we can assume that n is sufficiently large in what follows,

as otherwise the statement is trivially true. Let us fix Γ to be an (𝜀, 𝑑+)-super-regular tri-

partite graph with parts of size n. We can assume that 𝑑n2 ∈ N. Indeed, if this is not
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16 ALLEN ET AL.

the case, then replace 𝑑 with the minimum 𝑑

′
> 𝑑 such that 𝑑

′n2 ∈ N and note that,

after redefining 𝑑 (if necessary), we maintain that Γ is (𝜀, 𝑑+)-super-regular. Now let Γ′

be the (4
√
𝜀, 𝑑)-super-regular tripartite graph obtained by applying Lemma 2.12 between

each of the parts of Γ. As Γ′ is a spanning subgraph of Γ it suffices to find our triangle

factor in Γ′.
Note that by our choice of constants, we have that whp both the conclusion of Propo-

sition 3.2 (with 𝜂 replaced by 𝜂

2
) and the conclusion of Proposition 3.3 hold in Γ′

simultaneously. We will now assume they hold and show that this implies

||Ψt(Γ′p)|| ≥
(
1 − 𝜂2

)n
𝛼

t−(1−𝜂2)n(p𝑑)3t(n!t)3, (3.4)

for all
(
1 − 𝜂2

)
n ≤ t ≤ n. Indeed, for t =

(
1 − 𝜂2

)
n, (3.4) readily follows from (the

assumed conclusion of) Proposition 3.2. Assume now (3.4) holds for some
(
1 − 𝜂2

)
n ≤

t < n. Since 𝜂 ≪ 𝛼, we have that

(
1 − 𝜂2

)n
𝛼

t−(1−𝜂2)n ≥
(
1 − 𝜂2

)n
𝛼

𝜂

2n =
(
1 − 𝜂2

)ne− log(1∕𝛼)𝜂2n

≥
(
1 − 𝜂2

)n
(

1 − log

(
1

𝛼

)
𝜂

2

)n
≥ (1 − 𝜂)n.

It follows from (the assumed conclusion of) Proposition 3.3 that (3.4) holds for t + 1. In

particular, we have

||Ψn(Γp)|| ≥ ||Ψn(Γ′p)|| ≥
(
1 − 𝜂2

)n
𝛼

𝜂

2n(p𝑑)3n(n!)3 ≥ 1,

completing the proof. ▪

Thus it remains to prove Propositions 3.2 and 3.3. Proving Proposition 3.2 is relatively straightfor-

ward: It follows from embedding the triangles of Dt one by one greedily and counting in how many

ways we can embed each such triangle by using that all large enough vertex sets whp induce roughly

the ‘correct’ number of triangles in Γp, which we establish in Lemma 4.1 using regularity and Janson’s

inequality (Lemma 2.3). The details for deriving Proposition 3.2 are provided in Section 5.1.

The proof of Proposition 3.3 is much more involved and the main challenge of this paper. In order

to count embeddings of partial triangle factors in Ψt+1(Γp), one naïve idea would be to proceed as

follows: We fix any triple u = (u1, u2, u3) ∈  of vertices and count in how many partial triangle

factors from Ψt(Γp) these are isolated. If this number were roughly the same for each triple of vertices

then we would be able to bound the size of Ψt+1(Γp) using bounds on how many triples actually form

triangles in Γp to extend a partial triangle factor fromΨt(Γp) by one triangle. However, we do not know

how to prove that all triples of vertices behave similarly in this sense. Hence, we need to resort to a

more refined strategy, still considering embeddings which leave certain vertices isolated, but doing so

in stages, growing our set of isolated vertices one vertex at a time. This step-by-step process is made

precise in the following Local Distribution Lemma, which is a key step of our argument. We will show

that this lemma implies Proposition 3.3 in Section 5.2.

Lemma 3.4 (local distribution lemma). For all 0 < 𝛼, 𝑑 ≤ 1 and K > 0 there
exists 𝜂, 𝜀 > 0 and C > 0 such that for all sufficiently large n ∈ N and for any p ≥
C(log n)1∕3n−2∕3

, if Γ is an (𝜀, 𝑑)-super-regular tripartite graph with parts of size n, if
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ALLEN ET AL. 17

t ∈ N is such that (1 − 𝜂)n ≤ t < n, if 𝓁 ∈ [3] and u = (u1, … , u𝓁−1) ∈  then the
following holds in Γp with probability at least 1 − n−K

. If

|||Ψ
t
û(Γp)

||| ≥ (1 − 𝜂)
n(p𝑑)3t((n − 1)!t)𝓁−1(n!t)4−𝓁 , (3.5)

then for all but at most 𝛼n vertices u𝓁 ∈ V𝓁 we have, with v = (u, u𝓁) ∈  , that

|||Ψ
t
v̂(Γp)

||| ≥
(
𝑑

10

)2(n − t
n

)|||Ψ
t
û(Γp)

|||. (3.6)

Again, (3.5) should be read asΓp having roughly the ‘correct’ number (up to the error term (1 − 𝜂)n)

of embeddings of Dt that avoid using vertices in u, where correct means what we expect in a random

sparsification of the complete tripartite graph with probability p𝑑. The conclusion of Lemma 3.4 then

tells us that that for most choices of extending u to v, we have roughly the correct number of embeddings

of Dt that avoid using the vertices in v.

For proving Proposition 3.3 in Section 5.2, we shall use Lemma 3.4 with 𝓁 = 2 and 𝓁 = 3 to prove

a lemma, Lemma 5.1, which states that if for a vertex w ∈ V1
we have

||Ψt
ŵ(Γp)|| ≥ (1 − 𝜂)n(p𝑑)3t(n − 1)!t(n!t)2, (3.7)

then

|||Ψ
t+1

w (Γp)
||| ≥ 𝛼(p𝑑)

3(n − t)2||Ψt
ŵ(Γp)||, (3.8)

where we recall that Ψt
w(G) is the set of embeddings 𝜓 ∈ Ψt(G) for which 𝜓((1, 1)) = w, that is, the

first triangle is embedded so that its first vertex is w. Indeed, using Lemma 3.4, we can see that if there

are many embeddings of Dt avoiding w (3.7), then for almost all choices of further vertices w2 ∈ V2

and w3 ∈ V3
, there will be many embeddings of Dt avoiding all 3 vertices w,w2,w3. Intuitively, (3.8)

then follows due to the fact that we can expect many of these triangles w,w2,w3 to feature in Γp and

each triangle that does, gives an embedding of Dt+1 which maps w to a triangle. We have to be very

careful with the dependence of these different random variables here and the essence of the proof of

Lemma 5.1 (which is done in Section 5.2) is to work with random variables that are independent of

each other. Now together with Lemma 3.4 for 𝓁 = 1 and our assumption (3.2), using the conclu-

sion of Lemma 5.1 (namely (3.8)), Proposition 3.3 follows readily as almost all choices of w ∈ V1

satisfy (3.7).

We will now sketch some of the ideas involved in proving Lemma 3.4. To ease the discussion, let

us fix 𝓁 = 1 and hence u = ∅; the other cases are similar. In this case our assumption (3.5) simply

states that Γp has roughly the correct number of embeddings of Dt and a simple averaging argument

will find some u = u𝓁 for which (3.6) holds with v = u. Fix some such vertex u. The challenge now is

to show that (3.6) holds for almost all choices of u𝓁 .

In order to do this, we fix some typical vertex v ∈ V1 ⧵ {u}. We will aim to lower bound the size

of Ψt
v̂(Γp) by comparing it to the size of Ψt

û(Γp). Let us suppose, momentarily, that Tru(Γp) = Trv(Γp).
In such a case, we can easily compare the sizes ofΨt

v̂(Γp) andΨt
û(Γp). Indeed, for every embedding𝜓 ∈

Ψt
û(Γp) there are two cases. Firstly, if v is not in a triangle in 𝜓(Dt) then 𝜓 ∈ Ψt

v̂(Γp) already. Secondly,

if v is in a triangle {v,w2,w3} of 𝜓(Dt), then Tru(Γp) = Trv(Γp) implies that {u,w2,w3} is also a

triangle, hence we can switch the triangle {v,w2,w3} with {u,w2,w3} in 𝜓 to get an embedding 𝜓
′ ∈

Ψt
v̂(Γp). This gives an injection from Ψt

û(Γp) to Ψt
v̂(Γp), proving that Ψt

v̂(Γp) is also of roughly the

‘correct’ size.
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18 ALLEN ET AL.

Of course, the situation that Tru(Γp) = Trv(Γp) is wildly unrealistic. Let us loosen this and suppose

instead that

||Tru(Γp) ∩ Trv(Γp)|| = Ω(p3n2). (3.9)

As we expect every vertex to be in Θ(p3n2) triangles, (3.9) can be interpreted as saying that a constant

fraction of the set of edges that form a triangle with v, also form a triangle with u. We can only expect

this to happen when p is constant and this is also a gross oversimplification of our setting but serves

to demonstrate a key idea of the proof. So for now, we take (3.9) to be the case and note that as

above, we can perform a switching, replacing triangles containing v with triangles containing u to

map embeddings in Ψt
û(Γp) to embeddings in Ψt

v̂(Γp), whenever the embedding 𝜓 ∈ Ψt
û(Γp) has v in a

triangle {v,w2,w3} such that {w2,w3} ∈ Tru(Γp). We have, by (3.9), that a constant proportion of the

triangles containing v can be switched in this way but we do not know that this translates to having a

constant proportion of the embeddings in Ψt
û(Γp) being switchable. It could well be that almost all (or

even all) of the embeddings in Ψt
û(Γp) map v to a triangle {v,w2,w3} such that {u,w2,w3} ∉ K3(Γp).

What we need then, is to be able to discount such a situation and show that each triangle containing v
contributes to roughly the same number of embeddings 𝜓 ∈ Ψt

û(Γp). Put differently, when we consider

a uniformly random embedding 𝜓∗ ∈ Ψt
û(Γp), we want that the random variable Tv, which encodes the

triangle containing v in 𝜓
∗(Dt), induces a roughly uniform distribution on the set Trv(Γp). Note that it

is possible that 𝜓
∗

leaves v isolated but this is unlikely (as t is large) and so we ignore this possibility

for this discussion.

We can now see how entropy enters the picture as it provides a tool for studying distributions, and

how far they are from being uniform. Let us now consider v as not fixed any more. Our argument will

take a uniformly random𝜓

∗ ∈ Ψt
û(Γp) and consider the random variables Tv which describe the triangle

containing each vertex v ∈ V1
. Due to the fact thatΨt

û(Γp) is roughly the ‘correct’ size, we have that𝜓
∗

has large entropy. Moreover, 𝜓
∗

is completely described (up to labelling) by the set {Tv ∶ v ∈ V1}
and so the entropy of 𝜓

∗
can be decomposed as a sum of individual entropy values h(Tv) of the Tv,

using the chain rule (Lemma 2.17) for example. We will be able to use random properties of Γp (for

example that no vertex is in too many triangles) to conclude that no single Tv has too large entropy. This

will thus imply that for almost all vertices v ∈ V1
, the entropy of Tv is large. Therefore, by applying

Lemma 2.21, we will be able to conclude that for a typical vertex v ∈ V1
, the random variable Tv

induces a roughly uniform distribution on Trv(Γp), as desired. This idea is formalised in what we call

the Entropy Lemma (Lemma 6.4).

Our discussion above is premised on (3.9). In reality, a typical vertex v will have Trv(Γp) completely

disjoint from Tru(Γp) and so the switching argument outlined above cannot possibly work. However,

we can still compare the sizes of Ψt
û(Γp) and Ψt

v̂(Γp) by noting that a constant proportion of Tru(Γp)
and Trv(Γp) are drawn from the same distribution. By this we mean the following. For a typical v,

by using regularity properties, there will be Ω(n2) edges F ⊂ E(Γ) in the joint neighbourhood (with

respect to Γ) of u and v. Consider revealing all edges in Γp apart from those incident to u or v. After

this, Fp ∶= F ∩ E(Γp) is revealed and whp has size ||Fp|| = Ω(pn2); each edge e ∈ Fp has the potential

to land in both Trv(Γp) and Tru(Γp), depending on which random edges incident to u and v appear.

Moreover, without having revealed the random edges incident to u or v yet, we can associate a

weight to the edges e in Fp, which encodes the number of embeddings of Dt−1 in Γp, which avoid u, v
and the vertices of e. Now, revealing the edges incident to v, we have that for every e ∈ Trv(Γp) ∩ Fp,

the probability that a uniformly random embedding 𝜓
∗ ∈ Ψt

û(Γp) uses the triangle {v} ∪ e, is directly

proportional to the weight of e in Fp. The Entropy Lemma (Lemma 6.4) discussed above tells us that the

random variable Tv ∈ Trv(Γp), encoding the triangle containing v in a uniformly random 𝜓

∗ ∈ Ψt
û(Γp),
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ALLEN ET AL. 19

has a roughly uniform distribution in Trv(Γp). From this, we can deduce that the weights of edges in Fp
are ‘well-behaved’ in that many of the edges in Fp have a sufficiently large weight. This in turn gives

thatΨt
v̂(Γp)will be large, as when we reveal the edges incident to u, we can expect that Tru(Γp) contains

many (i.e., Ω(p3n2)) edges of large weight from Fp. Each such edge e contributes many embeddings

in Ψt
v̂(Γp) which map u to a triangle with e.

In order for all of this to work, we need our Entropy Lemma (Lemma 6.4) to be very strong, due

to the fact that the edges in the Fp defined above contribute only a small fraction of edges in Trv(Γp).
Pushing the strength of the Entropy Lemma is one of the main novelties of the current work, in com-

parison to previous arguments for triangle factors in random graphs [2, 23], and requires a delicate

analysis.

4 COUNTING TRIANGLES IN Γp

The purpose of this section is to prove that certain properties of Γp hold with high probability when Γ
is a (super-)regular tripartite graph and p is sufficiently large. These properties regard triangle counts

in Γp and their proofs use the properties of regular tuples given in Section 2.4 and the probabilistic

tools outlined in Section 2.3. Our first lemma gives an estimate on the number of triangles induced on

vertex subsets.

Lemma 4.1. For all 0 < 𝜀

′
< 𝑑 ≤ 1 and L > 0 there exists 𝜀 > 0 and C > 0 such that

the following holds for all sufficiently large n ∈ N and for any p ≥ C(log n)1∕3n−2∕3
. If Γ

is an (𝜀, 𝑑)-regular tripartite graph with parts V1
,V2

,V3 of size n, then with probability
at least 1 − n−L we have that

||K3(Γp[X1 ∪ X2 ∪ X3])|| = (p𝑑)3|X1||X2||X3| ± 𝜀′p3n3
, (4.1)

for all X1 ⊆ V1
, X2 ⊆ V2 and X3 ⊆ V3

.

Proof. Choose 0 < 𝜀,

1

C
≪ 𝜀

′
, 𝑑,

1

L
and fix Γ and p ≥ C(log n)1∕3n−2∕3

. We first show (a

stronger version of) the lower bound holds using Janson’s inequality.

Claim 4.2. With probability at least 1 − e−n
, we have

||K3(Γp[X1 ∪ X2 ∪ X3])|| ≥ (p𝑑)3|X1||X2||X3| − 𝜀

′p3n3

8
, (4.2)

for all X1 ⊆ V1
, X2 ⊆ V2 and X3 ⊆ V3

.

Proof of Claim. Fix X1 ⊆ V1
, X2 ⊆ V2

and X3 ⊆ V3
and let Y ∶= K3(Γ[X1 ∪ X2 ∪ X3]).

We may assume that

|X1||X2||X3| ≥ 𝜀

′n3

8𝑑3
≥
√
𝜀n3

, (4.3)

with the first inequality holding as otherwise (4.2) is trivially true and the second inequality

holding by our choice of 𝜀. In particular, we have |Xi| ≥ 𝜀n for all i ∈ [3] and thus

Lemma 2.11 implies |Y| ≥ 𝑑3|X1||X2||X3| − 10𝜀n3
. Consider now the random variable

X ∶= ||K3(Γp[X1 ∪ X2 ∪ X3])|| =
∑
T∈Y

IT ,
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20 ALLEN ET AL.

where for each triangle T ∈ Y , IT is the indicator random variable for the event that T is

present in Γp. Let

𝜆 ∶= E[X] = p3|Y| ≥ (p𝑑)3|X1||X2||X3| − 10𝜀p3n3
, (4.4)

which in combination with (4.3) implies 𝜆 ≥ 𝜀p3n3
. Furthermore, we have

Δ ∶=
∑

T ,T ′∈Y∶ T∩T ′≠∅
E[ITIT ′ ] ≤ p5 ⋅ |Y| ⋅ 3n + p3 ⋅ |Y| = 𝜆(3np2 + 1), (4.5)

where the inequality follows from the fact that there are at most |Y| ⋅ 3n pairs of triangles

intersecting in exactly one edge, no pairs intersecting in exactly two edges and |Y| pairs

intersecting in three edges. Hence Janson’s inequality (Lemma 2.3) implies

P[X ≤ (1 − 𝜀)𝜆] ≤ exp

(
−𝜀

2
𝜆

2

2Δ

)
≤ exp

(
−𝜀

3p3n3
𝜆

2Δ

)

≤ exp

(
−𝜀

3p3n3

12np2

)
+ exp

(
−𝜀

3p3n3

4

)

≤ exp(−4n)

for all large enough n. Here, we used that 𝜆 ≥ 𝜀p3n3
(see (4.4)) in the second inequality,

and (4.5) in the third (more precisely, we used that (4.5) implies that Δ ≤ 6𝜆np2
or Δ ≤

2𝜆).

By (4.4), we have (1 − 𝜀)𝜆 ≥ (p𝑑)3|X1||X2||X3| − 11𝜀p3n3 ≥ (p𝑑)3|X1||X2||X3| −(
𝜀

′

8

)
p3n3

. Hence, taking a union bound over all choices of X1 ⊆ V1
,X2 ⊆ V2

,X3 ⊆ V3
,

we deduce that, (4.2) holds with probability at least 1 − 2
3n ⋅ e−4n ≥ 1 − e−n

for all X1 ⊆

V1
,X2 ⊆ V2

,X3 ⊆ V3
. ▪

We now show that the upper bound holds in the case when Xi = Vi
for all i ∈ [3].

Claim 4.3. With probability at least 1 − n−2L we have

||K3(Γp)|| ≤ (p𝑑)3n3 + 𝜀

′p3n3

8
.

Proof of Claim. Let Y = K3(Γ) and let X = ||K3(Γp)|| =
∑

T∈Y IT with IT being the indicator

random variable for the event that a triangle T appears in Γp, as above. By Lemma 2.11,

we have |Y| = 𝑑3n3 ± 10𝜀n3
. It follows that

𝜆 ∶= E[X] = (p𝑑)3n3 ± 10𝜀p3n3
. (4.6)

Using notations from the Kim–Vu inequality (Lemma 2.4), we have E1 ≤ np2
, E2 = p

and E3 = 1. Hence E′ = max{1, np2} ≤ 𝜆1∕2
and E = 𝜆. Let 𝜇 = 𝜆

1∕16
and let c = c(3)

be the constant from Lemma 2.4. Then, for large enough n,

c(EE′)1∕2
𝜇

3
≤ c𝜆3∕4 ⋅ 𝜆3∕16

≤ 𝜀𝜆.
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ALLEN ET AL. 21

Hence, we have

P[X ≥ (1 + 𝜀)𝜆] ≤ 10cn4e−𝜇 ≤ e−n1∕16

≤ n−2L

for all large enough n. Here, the middle inequality follows from (4.6) which implies 𝜆 ≥

n log n, due to our choice of 𝜀 and C. This finishes the proof of the claim as (1 + 𝜀)𝜆 ≤
(p𝑑)3n3 +

(
𝜀

′

8

)
p3n3

by (4.6) and our choice of 𝜀. ▪

We now conclude the proof of the lemma. With probability at least 1 − n−L
both

claims above hold simultaneously. Suppose now both claims hold and fix X1 ⊆ V1
,X2 ⊆

V2
,X3 ⊆ V3

. Let  =
(
{X1,V1 ⧵ X1} × {X2,V2 ⧵ X2} × {X3,V3 ⧵ X3}

)
⧵ {(X1,X2,X3)}

and observe that

||K3(Γp[X1 ∪ X2 ∪ X3])|| = ||K3(Γp)|| −
∑

(U
1
,U

2
,U

3
)∈

||K3(Γp[U1 ∪ U2 ∪ U3])||

≤ (p𝑑)3|X1||X2||X3| + 𝜀′p3n3
.

Here we used Claim 4.3 to bound ||K3(Γp)|| and (4.2) to bound

each ||K3(Γp[U1 ∪ U2 ∪ U3])||. This completes the proof. ▪

As a corollary, we can conclude that we have the expected count of triangles at almost all vertices.

Corollary 4.4. For all 0 < 𝜀

′
< 𝑑 ≤ 1 and L > 0 there exists 𝜀 > 0 and C > 0 such

that the following holds for all sufficiently large n ∈ N and for any p ≥ C(log n)1∕3n−2∕3
.

If Γ is an (𝜀, 𝑑)-regular tripartite graph with parts of size n, then with probability at
least 1 − n−L we have that

||Trv(Γp)|| = (1 ± 𝜀′)(p𝑑)3n2
,

for all but at most 𝜀′n vertices v ∈ V(Γ).

Proof. Choose 0 < 𝜀,
1

C
≪ �̃� ≪ 𝜀

′
, 𝑑,

1

L
and let G ⊆ Γ be any graph with

|K3(G[X1 ∪ X2 ∪ X3])| = (p𝑑)3|X1||X2||X3| ± �̃�p3n3
, (4.7)

for all X1 ⊆ V1
, X2 ⊆ V2

and X3 ⊆ V3
. Since (by Lemma 4.1 and our choice of constants)

this is satisfied by Γp with probability 1 − n−L
, it suffices to show that G satisfies the

conclusion of Corollary 4.4. For i ∈ [3], let Xi be the set of vertices v ∈ Vi
with |Trv(G)| ≤

(1 − 𝜀′)(p𝑑)3n2
, and let Yi be the set of vertices v ∈ Vi

with |Trv(G)| ≥ (1 + 𝜀′)(p𝑑)3n2
.

We claim that |X1| ≤ 𝜀

′n
10

. Indeed, assuming the contrary, we have

|||K3(G[X1 ∪ V2 ∪ V3])||| ≤ (p𝑑)
3|X1||V2||V3| − 𝜀

′2(p𝑑)3n3

10
< (p𝑑)3|X1||V2||V3| − �̃�p3n3

,

by our choice of �̃�. This contradicts (4.7). Similarly, we can bound the sizes of X2 and X3,

and Y1, Y2 and Y3, completing the proof. ▪
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22 ALLEN ET AL.

Sometimes, we will need an upper bound on ||Trv(Γp)|| which works for all v ∈ V(Γ). For this we

simply upper bound this quantity by the number of triangles in G(3n, p) containing a specific vertex

using a result of Spencer [41] (see also [39]).

Lemma 4.5. For all L > 0 there exists C > 0 such that the following holds for all suffi-
ciently large n ∈ N and for any p ≥ C(log n)1∕3n−2∕3

. If Γ is a tripartite graph with parts
of size n, then with probability at least 1 − n−L we have that

||Trv(Γp)|| ≤ 10p3n2
,

for all vertices v ∈ V(Γ).

In the remainder of this section we prove some more technical properties of Γp which will be useful

in the proofs of Proposition 3.3 and Lemma 3.4. The ultimate goal will be to lower bound the number

of triangles at a fixed vertex but we will need this lower bound to hold in a robust way, allowing us to

apply the count with respect to various prescribed sets of edges and vertices which we either want to

avoid or want to be included in the triangles.

Our next lemma follows simply from well-known concentration bounds but we wish to highlight

the slightly subtle (in-)dependencies of the random variables involved. Recall that, given a vertex u of

our graph Γ, by saying that a random variable is determined by (Γû)p, we mean that the random variable

is completely determined by revealing (Γû)p. In other words, the random variable is independent of

the status of edges adjacent to u in Γp. We will now use this concept with the random variable being a

vertex set or an edge set.

Lemma 4.6. For any 0 < 𝛼 ≤ 1 and L > 0, there exists a C > 0 such that the following
holds for all sufficiently large n ∈ N and for any p ≥ C(log n)1∕3n−2∕3

. Suppose Γ is a
tripartite graph with parts of size n and u ∈ V(Γ). Then we have the following.

(i) Suppose X ⊆ NΓ(u) is a random subset of vertices determined by (Γû)p. Then
with probability at least 1 − n−L we have that the following statement holds
in Γp.

If |X| ≥ 𝛼n then
|||X ∩ NΓp(u)

||| ≥
𝛼pn

2
.

(ii) Suppose F ⊆ Tru(Γ)∩E(Γp) is a random subset of edges determined by (Γû)p.

Then with probability at least 1 − n−L we have that the following statement
holds in Γp.

If |F| ≥ 𝛼pn2
then ||F ∩ Tru(Γp)|| ≥ 𝛼p3n2

2
.

Proof. Choose
1

C
≪

1

L
, 𝛼. Let G1 ⊂ Γp be the graph on V(Γ) consisting of all edges

adjacent to u and G2 = (Γû)p = Γp ⧵G1. For all w ∈ NΓ(u), let Iw be the indicator random

variable for the event that the edge uw appears. By assumption, our random sets X and F
depend only on G2 and clearly the random variables Iw depend only on G1.

Part (i) now follows from Chernoff’s inequality (Theorem 2.2). Indeed we have that

P

[|||X ∩ NΓp(u)
||| <

𝛼pn
2

and |X| ≥ 𝛼n
]
≤ P

[|||X ∩ NΓp(u)
||| <

𝛼pn
2

||| |X| ≥ 𝛼n
]
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ALLEN ET AL. 23

and it suffices to show that P

[|||X ∩ NΓp(u)
||| <

𝛼pn
2

]
≤ n−L

holds for any instance of G2

and X with |X| ≥ 𝛼n. Fixing such an instance and letting Y = |||X ∩ NΓp (u)
||| =
∑

w∈X Iw, we

have that Y is a sum of independent random variables with expectation 𝜆 = E[Y] = p|X|
and so

P

[
Y <

𝛼pn
2

]
≤ P

[
Y <

𝜆

2

]
≤ e−𝜆∕8

≤ e−𝛼pn∕8
≤ n−L

,

for sufficiently large n, as required.

For part (ii), we start by noting that Δ(G2) ≤ 4pn with probability at least 1− n−2L
by

another simple application of Chernoff’s bound (Theorem 2.2) and a union bound over all

vertices. We have that

P

[
||F ∩ Tru(Γp)|| < 𝛼p3n2

2
and |F| ≥ 𝛼pn2

]

≤ P

[
||F ∩ Tru(Γp)|| < 𝛼p3n2

2
, |F| ≥ 𝛼pn2

and Δ(G2) ≤ 4pn
]
+ P
[
Δ(G2) > 4pn

]

≤ P

[
||F ∩ Tru(Γp)|| < 𝛼p3n2

2

||| |F| ≥ 𝛼pn2
and Δ(G2) ≤ 4pn

]
+ n−2L

.

Thus it suffices to prove that P

[||F ∩ Tru(Γp)|| < 𝛼p3n2

2

]
≤ n−2L

for any instance of G2 such

that Δ(G2) ≤ 4pn and |F| ≥ 𝛼pn2
. So let us fix such an instance of G2 and F ⊆ Tru(Γ).

Let  = {{uw1, uw2} ∶ w1w2 ∈ F} and for A = {uw1, uw2} ∈  , let IA = Iw
1
Iw

2
be the

indicator random variable for the event that both edges of A appear in G1. We will now

use Janson’s inequality to show that many pairs of edges in  are present in G1. Let

Z = ||F ∩ Tru(Γp)|| =
∑
A∈

IA

be the random variable counting the number of triangles containing u and an edge in F.

Then

𝜆 ∶= E[Z] = p2| | ≥ 𝛼p3n2
≥ C2

log n. (4.8)

Furthermore, we have that

Δ ∶=
∑

(A,A′)∈2∶ A∩A′≠∅
E[IAIA′ ] ≤ 8p4| |n + p2| | = 𝜆(1 + 8p2n). (4.9)

Here, the inequality follows from the fact that there are at most | | ⋅ 2 ⋅Δ(G2) = | | ⋅ 8pn
pairs (A,A′) ∈ 2

intersecting in exactly one edge, and | | pairs intersecting in two edges.

Hence Janson’s inequality (Lemma 2.3) implies

P

[
Z ≤ 𝜆

2

]
≤ exp

(
− 𝜆

2

8Δ

)
≤ exp

(
− 𝜆

8(1 + 8p2n)

)

≤ exp

(
− 𝜆

16

)
+ exp

(
− 𝜆

128p2n

)

≤ n−C + e−n1∕3

≤ n−2L
,
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24 ALLEN ET AL.

for all large enough n. Here, we used (4.9) in the second inequality, the fact that 1+8pn2 ≤

2 or 1 + 8pn2 ≤ 16pn2
in the third, (4.8) in the fourth and our choice of C in the final

inequality. This completes the proof. ▪

Finally, we show that for most pairs of vertices u and v in the same part, there are many edges

appearing in Γp that lie in their common neighbourhood (with respect to Γ). We need this to hold even

when we forbid certain vertices from being used. This leads to the following statement, for which we

direct the reader to Section 2.1 for the relevant definitions of for example,  and Tru(G).

Lemma 4.7. For all 0 < 𝑑 ≤ 1 there exists 𝜀 > 0 and C > 0 such that the fol-
lowing holds for all sufficiently large n ∈ N and for any p ≥ C(log n)1∕3n−2∕3

. If Γ
is an (𝜀, 𝑑)-super-regular tripartite graph with parts V1

,V2
,V3 of size n, 𝓁 ∈ [3],

u = (u1, … , u𝓁−1) ∈  and u ∈ V𝓁 then with probability at least 1 − e−n we have that

|||Tru(Γû) ∩ Trv(Γû) ∩ E(Γp)
||| ≥

𝑑

5pn2

4
,

for all but at most 2𝜀n vertices v ∈ V𝓁
.

Proof. Choose 0 < 𝜀,

1

C
≪ 𝑑 and fix Γ, 𝓁 ∈ [3], u = (u1, … , u𝓁−1) ∈  and u ∈ V𝓁

as

in the statement of the lemma. We first use regularity to show that there are many edges

in the deterministic graph.

Claim. We have

|||Tru(Γû) ∩ Trv(Γû)
||| ≥

𝑑

5n2

2
,

for all but at most 2𝜀n vertices v ∈ V𝓁
.

Proof of Claim. We will prove the claim in the case that 𝓁 = 3, the other cases are identi-

cal. For i ∈ [2], let Xi = NΓ
(

u;Vi
û

)
and for v ∈ V3 ⧵ {u}, let Yi(v) = NΓ

(
u, v;Vi

û

)
⊆ Xi.

Since Γ is (𝜀, 𝑑)-super-regular, we have |Xi| ≥ (𝑑 − 2𝜀)n for both i ∈ [2] (we need

the factor of 2 in front of the 𝜀 here to take account of the fact that we are poten-

tially missing a vertex in u). For i ∈ [2], let Ri ⊂ V3
be the set of vertices v ∈ V3

for which |Yi(v)| < (𝑑 − 2𝜀)2n and let R = R1 ∪ R2. It follows from the 𝜀-regularity

of (Vi
,V3) and Lemma 2.8, that |Ri| ≤ 𝜀n for both i ∈ [2] and hence |R| ≤ 2𝜀n. Fur-

thermore, for every v ∈ V3 ⧵ R, it follows from the 𝜀-regularity of the pair (V2
,V3) that

|E(Γ) ∩ (Y1(v) ∪ Y2(v))| ≥ (𝑑 − 2𝜀)5n2
. This completes the proof by our choice of 𝜀. ▪

Observe now that each edge in E(Γ) ∩ NΓû(u, v) = Tru(Γû) ∩ Trv(Γû) is present inde-

pendently in Γp and hence it follows from Chernoff’s inequality (Theorem 2.2) that for all

vertices v satisfying the conclusion of the claim, we have that

P

[|||Tru(Γû) ∩ Trv(Γû) ∩ E(Γp)
||| <

𝑑

5pn2

4

]
≤ exp

(
−𝑑

5pn2

16

)
≤ e−2n

,

for sufficiently large n. This completes the proof after a union bound over choices of

v ∈ V𝓁
. ▪
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ALLEN ET AL. 25

5 EMBEDDING (PARTIAL) TRIANGLE FACTORS

In this section we will prove Proposition 3.2 and reduce Proposition 3.3 to Lemma 3.4. As we have

already shown in Section 3 that Theorem 3.1 follows from Propositions 3.2 and 3.3, after this section

the only tool used in the proof of Theorem 3.1 that still needs to be established is Lemma 3.4.

5.1 Counting almost triangle factors

Here we prove Proposition 3.2.

Proof of Proposition 3.2. Choose 𝜀,
1

C
≪ 𝜀

′
≪ 𝜂, 𝑑 and fix some Γ and p as in the

statement of the proposition. By Lemma 4.1, we have whp that

||K3(Γp[X1 ∪ X2 ∪ X3])|| = (p𝑑)3|X1||X2||X3| ± 𝜀′p3n3
, (5.1)

for all X1 ⊆ V1
, X2 ⊆ V2

and X3 ⊆ V3
. We will show by induction on t that if Γp

satisfies (5.1), then it satisfies

||Ψt(Γp)|| ≥ (1 − 𝜂)t(p𝑑)3t(n!t)3, (5.2)

for all integers t ≤ (1− 𝜂)n, as claimed. Firstly, note that (5.2) is trivial for t = 0, recalling

that by definition n!0 = 1. Suppose now (5.2) holds for some integer 0 ≤ t ≤ (1− 𝜂)n. Fix

some 𝜓 ∈ Ψt(Γp) and let Xi ⊆ Vi
, i ∈ [3], be the sets of vertices which are not in 𝜓(Dt).

Note that |Xi| = n − t for all i ∈ [3]. Now the number of triangles which extend 𝜓 to an

embedding in Ψt+1(Γp) is precisely ||K3(Γp[X1 ∪ X2 ∪ X3])|| and by (5.1), we have

||K3(Γp[X1 ∪ X2 ∪ X3])|| ≥ (p𝑑)3|X1||X2||X3| − 𝜀′p3n3

≥ (p𝑑)3(n − t)3 − 𝜀

′

𝜂
3
𝑑

3
(p𝑑)3(n − t)3

≥ (1 − 𝜂)(p𝑑)3(n − t)3,

by our choice of constants. It follows from the induction hypothesis that

|||Ψ
t+1(Γp)

||| ≥ ||Ψ
t(Γp)||(1 − 𝜂)(p𝑑)3(n − t)3

≥ (1 − 𝜂)t+1(p𝑑)3(t+1)(n!t+1)3,

finishing the proof. ▪

5.2 Extending almost triangle factors

In this subsection, we will prove Proposition 3.3 using the Local Distribution Lemma (see Lemma 3.4)

as a black box for now. We first reduce Proposition 3.3 to the following lemma, which concentrates

on adding a triangle at a fixed vertex. Recall that given G ⊆ Γ, a vertex v ∈ V1
and some t ∈ N, we

denote by Ψt
v(G) ⊆ Ψt(G) the set of embeddings 𝜓 ∈ Ψt(G) for which 𝜓((1, 1)) = v.

Lemma 5.1 (adding a triangle at a fixed vertex). For all 0 < 𝑑 ≤ 1 there exists 𝛼, 𝜂, 𝜀 > 0

and C > 0 such that for all sufficiently large n ∈ N and for any p ≥ C(log n)1∕3n−2∕3
,
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26 ALLEN ET AL.

if Γ is an (𝜀, 𝑑)-super-regular tripartite graph with parts of size n, then whp the following
holds in Γp for all t ∈ N with (1 − 𝜂)n ≤ t < n and for all v ∈ V1

. If

||Ψt
v̂(Γp)|| ≥ (1 − 𝜂)n(p𝑑)3t(n − 1)!t(n!t)2,

then
|||Ψ

t+1

v (Γp)
||| ≥ 𝛼(p𝑑)

3(n − t)2||Ψt
v̂(Γp)||.

We first show how Proposition 3.3 follows from this and Lemma 3.4.

Proof of Proposition 3.3. Choose 0 < 𝜀,

1

C
≪ 𝜂 ≪ 𝜂

′
≪ 𝛼 ≪ 𝛼

′
≪ 𝑑. Now by our

choice of constants (also choosing K ≥ 5) and taking a union bound over all choices

of t with (1 − 𝜂)n ≤ t < n, 𝓁 ∈ [3] and u = (u1, … , u𝓁−1) ∈  we have whp that

the conclusion of Lemma 3.4 holds in Γp for all such choices and also the conclusion of

Lemma 5.1 holds with 𝜂
′

and 𝛼
′

replacing 𝜂 and 𝛼. We will now show that given these

conclusions hold inΓp, we have the desired statement of Proposition 3.3. So fix some t ∈ N

with (1 − 𝜂)n ≤ t < n and suppose that

||Ψt(Γp)|| ≥ (1 − 𝜂)n(p𝑑)3t(n!t)3.

Let U1 ⊆ V1
be the set of vertices u1 ∈ V1

for which

|||Ψ
t
û

1
(Γp)
||| ≥
(
𝑑

10

)2(n − t
n

)||Ψt(Γp)||. (5.3)

It follows from (the assumed conclusion of) Lemma 3.4 (with 𝓁 = 1) that we have |U1| ≥
n
2
. Now as

(
𝑑

10

)2(n − t
n

)||Ψt(Γp)|| ≥
(
𝑑

10

)2

(1 − 𝜂)n(p𝑑)3t(n − 1)!t(n!t)2,

and

(
𝑑

10

)2

(1 − 𝜂)n ≥ (1 − 𝜂′)n, we have that

|||Ψ
t+1

u
1
(Γp)
||| ≥ 𝛼

′
(
𝑑

10

)2

(p𝑑)3 (n − t)3
n

||Ψt(Γp)||,

for every u1 ∈ U1, from (the assumed conclusion of) Lemma 5.1 and (5.3). Therefore, we

have that

|||Ψ
t+1(G)||| ≥

∑
u

1
∈U

1

|||Ψ
t+1

u
1
(Γp)
|||

≥
𝛼

′

2

(
𝑑

10

)2

(p𝑑)3(n − t)3||Ψt(Γp)||
≥ 𝛼(p𝑑)3(n − t)3||Ψt(Γp)||,

by our choice of constants. This finishes the proof. ▪
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ALLEN ET AL. 27

It remains to prove Lemma 5.1. Before embarking on this, we sketch some of the key ideas involved.

For this discussion, we fix some t ∈ [n] and v ∈ V1
that we think of as satisfying the conditions of

Lemma 5.1 (including the ‘if’ statement). We will say that a pair (w2,w3) ∈ V2 × V3
is good if

|||Ψ
t
ŵ(Γp)

||| = Ω
((n − t

n

)2||Ψt
v̂(Γp)||

)
,

here w = (v,w2,w3). Note that we can appeal to the Local Distribution Lemma (Lemma 3.4) twice

(once with 𝓁 = 2 and once with 𝓁 = 3) to conclude that almost all pairs (w2,w3) ∈ V2 × V3
are

good. That is, for almost all choices of (w2,w3) ∈ V2×V3
, we have that there are roughly the ‘correct’

number of embeddings of Dt that avoid w = (v,w2,w3). Moreover, due to Γ being super-regular, there

will be some proportion of these (w2,w3) (say, at least
1

2
𝑑

3n2
) that form triangles with v in Γ. So we

have some set W ⊂ V2 × V3
of size at least

1

2
𝑑

3n2
such that all (w2,w3) ∈ W are good and have

that {v,w2,w3} ∈ K3(Γ). The conclusion of Lemma 5.1 will then follow if we can prove that at least,

say,
p3

2
|W| triangles {v,w2,w3}with (w2,w3) ∈ W, appear in Γp. Of course, every triangle in Γ appears

in Γp with probability p3
and so this is something we can expect to be true but we cannot appeal to

standard tools to prove this.

The issue here is that W itself is a random set as the property of being good depends on the random

edges that appear in Γp. Indeed, in order to determine whether an edge (w2,w3) ∈ V2 × V3
is good or

not, we need to count the number of embeddings of Dt in Γp that avoid w = (v,w2,w3) and so certainly

need to know the random status of edges in Γp to carry out this count. However, crucially, W does not

depend on all the random edges. Indeed, for any (w2,w3) ∈ V2×V3
, we can determine whether (w2,w3)

is in our set W without knowing the random status of edges adjacent to v. Indeed, as the property of

being good only depends on counting embeddings that avoid v, the random status of edges adjacent to

v has no bearing on whether an edge (w2,w3) ∈ V2 × V3
is good or not. Therefore, by appealing to a

two-stage revealing process (see Lemma 4.6(ii)), we will be able to prove Lemma 5.1 if we know that

at least, say,
p
2
|W| of the pairs (w2,w3) ∈ W host edges in Γp, as then we will be able to conclude that

roughly a p2
proportion of these edges in W ∩ E(Γp) extend to triangles with v in Γp.

Again, requiring that
p
2
|W| edges in W appear in Γp is certainly a natural thing to expect as each

edge appears with probability p, but again the set W containing good edges, depends heavily on the

random status of edges in Γ[V2
,V3]. Our aim is to use a two-stage revealing process, manipulating

independence, as above. Again here, it is crucial that we are counting embeddings that avoid ver-

tices. That is, if e = {w2,w3} ∈ E(Γ[V2
,V3]), then in order to determine the number of embeddings

that avoid (v,w2,w3), we do not need to know the random status of e and in fact more is true. The

number of embeddings of Dt avoiding (v,w2,w3) is independent of the random status of all (w2, u3)
with u3 ∈ NΓ(w2;V3). Therefore our approach is to lower bound the number of edges in |W ∩ Γp| by

grouping together edges in W according to their V2
-endpoint. This gives hope to use a two-stage ran-

dom revealing argument (appealing to Lemma 4.6(i)) to conclude that roughly the expected number

of good edges appear in Γp.

However, there is an oversight in the discussion above. The point is that our definition of whether an

edge (w2,w3) ∈ V2 × V3
is good does not only rely on counting embeddings avoiding w = (v,w2,w3),

we also need to know the size of ||Ψt
v̂(Γp)||. Therefore, if e = {w2,w3} ∈ E(Γ[V2

,V3]), then in order

to determine if (w2,w3) is good, we actually need to reveal the random status of e itself as well as

all the random edges between V2
and V3

(to determine ||Ψt
v̂(Γp)||). To remedy this, we adjust our

definition of good to be independent of ||Ψt
v̂(Γp)||. We will therefore give a grading of the possible range

of ||Ψt
v̂(Γp)|| and show that the desired conclusion holds with respect to each grade (see Claim 5.3 in

the proof). In order to be able to perform a union bound over all of the possible grades, we need an
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28 ALLEN ET AL.

upper bound on how large ||Ψt
v̂(Γp)|| can be (whp) and this is provided by Claim 5.2. This idea allows

us to remove ||Ψt
v̂(Γp)|| from the definition of being good, leading to the definition of being sound in

the proof. Hence we have that for e = {w2,w3} ∈ Γ[V2
,V3], whether (w2,w3) is sound or not relies

only on counting embeddings avoiding w = (v,w2,w3) and so is independent of whether e appears

in Γp and in fact, as sketched above, the ‘soundness’ of (w2,w3) is independent of the random status

of all (w2, u3) with u3 ∈ NΓ(w2;V3). We therefore consider potential triangles one vertex at a time and

we refine our definition of sound to handle this, leading to the definition of sound tuples in the proof.

We now give the full details of the proof of Lemma 5.1.

Proof of Lemma 5.1. Choose K = L = 10 and 0 ≪ 𝜀,

1

C
≪ 𝜂 ≪ 𝜂

′
≪ 𝛼 ≪ 𝑑,

1

K
,

1

L
and

fix p and Γ as in the statement of the lemma. We begin by showing the following simple

claim which gives a weak upper bound on the number of embeddings that avoid a fixed

vertex v1.

Claim 5.2. We have that the following statement holds whp in Γp. For any t ∈ N such
that (1 − 𝜂)n ≤ t < n and v1 ∈ V1

, we have that

|||Ψ
t
v̂

1
(Γp)
||| ≤ n3p3t(n − 1)!t(n!t)2. (5.4)

Proof of Claim. Fix some t ∈ N and v1 ∈ V1
as in the statement of the claim. Then

|||Ψ
t
v̂

1
(Γ)||| ≤

|||Ψ
t
v̂

1
(Kn,n,n)

||| ≤ (n − 1)!t(n!t)2,

and so, as each embedding of Dt in Γ appears in Γp with probability p3t
, we have that 𝜆 ∶=

E

[|||Ψ
t
v̂

1
(Γp)
|||
]
≤ p3t(n − 1)!t(n!t)2. Therefore, appealing to Markov’s inequality gives that

P

[|||Ψ
t
v̂

1
(Γp)
||| > n3p3t(n − 1)!t(n!t)2

]
≤ P

[|||Ψ
t
v̂

1
(Γp)
||| > n3

𝜆

]
≤

1

n3
.

Taking a union bound over the choices of v ∈ V1
and t ∈ N with (1 − 𝜂)n ≤ t ≤ n

completes the proof of the claim. ▪

Claim 5.2 gives us an upper bound on the size of Ψt
v̂

1
(Γp) that holds whp, whilst the

statement of the lemma gives a lower bound. Our next claim replaces the lower bound

in the statement of the lemma, with lower bounds independent of
|||Ψ

t
v̂

1
(Γp)
|||. These lower

bounds will depend on a parameter s ∈ Z and we make the following definitions which

will define the range of s we are interested in. Firstly let s0 be the largest (negative) s ∈ Z

such that 2
s
≤ (1 − 𝜂)n. Further, let s1 be the minimum integer s ∈ N such that 2

s
𝑑

3t ≥ n3
.

So we have that

s0 ≥ n log(1 − 𝜂)
log 2

− 1 ≥ −n and s1 ≤
3 log n − 3t log(𝑑)

log 2
+ 1 ≤

n
𝛼

.

Finally, let S ∶= {s ∈ Z ∶ s0 ≤ s ≤ s1}. We now state our second claim.

Claim 5.3. For any t ∈ N with (1 − 𝜂)n ≤ t < n, s ∈ S and v1 ∈ V1
, with probability at

least 1 − n−4
, the following statement holds in Γp. If

|||Ψ
t
v̂

1
(Γp)
||| ≥ 2

s(p𝑑)3t(n − 1)!t(n!t)2, (5.5)
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ALLEN ET AL. 29

then

||Ψt
v

1
(Γp)|| ≥ 2

s+1
𝛼(p𝑑)3(t+1)(n − 1)!t(n!t+1)2.

Before proving Claim 5.3, we show how the lemma follows from the two claims. Tak-

ing a union bound, we can conclude that whp the conclusion of Claim 5.3 holds for all

choices of t, s and v1 (noting that |S| ≤ (1+𝛼−1)n), as well as the conclusion of Claim 5.2.

Now suppose that this is the case and let t ∈ N with (1 − 𝜂)n ≤ t < n and v ∈ V1
. If, as in

the assumption of Lemma 5.1, we have

||Ψt
v̂(Γp)|| ≥ (1 − 𝜂)n(p𝑑)3t(n − 1)!t(n!t)2, (5.6)

then, letting s∗ ∈ Z be the maximum integer s ∈ Z such that

||Ψt
v̂(Γp)|| ≥ 2

s(p𝑑)3t(n − 1)!t(n!t)2,

we conclude from (5.6) that s∗ ≥ s0 and from (the assumed conclusion of) Claim 5.2 that

s∗ ≤ s1 and hence s∗ ∈ S. Therefore, from (the assumed conclusion of) Claim 5.3, we

obtain that

||Ψt
v(Γp)|| ≥ 2

s∗+1
𝛼(p𝑑)3(t+1)(n − 1)!t(n!t+1)2 ≥ 𝛼(p𝑑)3(n − t)2||Ψt

v̂(Γp)||,

as required for the conclusion of Lemma 5.1, where we used that

||Ψt
v̂(Γp)|| ≤ 2

s∗+1(p𝑑)3t(n − 1)!t(n!t)2,

by the definition of s∗. Thus it remains to prove Claim 5.3.

Proof of Claim 5.3. Let us fix t ∈ N with (1 − 𝜂)n ≤ t < n, s ∈ S and v1 ∈ V1
. Given

some 𝓁 ∈ [3], we call a sequence of vertices u = (u1, … , u𝓁) ∈  sound if

|||Ψ
t
û(Γp)

||| ≥
(

8

√
𝛼

)𝓁−1

2
s(p𝑑)3t((n − 1)!t)𝓁(n!t)3−𝓁 .

Note that (5.5) holds if and only if (v1) is sound. Also note that for any u = (u1, … , u𝓁)
and i ∈ [𝓁], we can determine whether u is sound or not without knowing the random

status of edges adjacent to ui in Γ, as determining whether u is sound relies on counting

embeddings that avoid ui.

We now formulate a sequence of steps, that we will prove later, claiming that cer-

tain properties hold. Let X2(v1) ⊆ NΓ(v1;V2) be the set of vertices u2 ∈ NΓ(v1;V2) such

that (v1, u2) is sound and degΓ(v1, u2;V3) ≥ 𝑑

2n
2

.

Step 1. With probability at least 1 − n−6
, the following statement holds in Γp.

If (v1) is sound, then |X2(v1)| ≥ 𝑑n
2
.

Given v2 ∈ V2
, let X3(v1, v2) ⊆ NΓ(v1, v2;V3) be the set of vertices u3 ∈ NΓ(v1, v2;V3)

such that (v1, v2, u3) is sound. Furthermore, let Y3(v1, v2) ⊆ X3(v1, v2) be the set of those u3

such that v2u3 ∈ E(Γp).
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30 ALLEN ET AL.

Step 2. With probability at least 1 − n−6 the following statement holds in Γp for every
v2 ∈ V2

.

If (v1) is sound and v2 ∈ X2(v1), then we have |Y3(v1, v2)| ≥ p𝑑2n
8

.

Let now Z′(v1) =
{
(u2, u3) ∈ V2 × V3 ∶ u2 ∈ X2(v1), u3 ∈ Y3(v1, u2)

}
and

Z(v1) = {(u2, u3) ∈ Z′(v1) ∶ {v1, u2, u3} is a triangle in Γp} = Trv
1
(Γp) ∩ Z′(v1).

We will use Steps 1 and 2 to deduce the following.

Step 3. With probability at least 1 − n−5
, the following statement holds in Γp.

If (v1) is sound, then |Z′(v1)| ≥ p𝑑3n2

16
.

The claim in the following last step will be a consequence of Lemma 4.6.

Step 4. With probability at least 1 − n−5
, the following statement holds in Γp.

If |Z′(v1)| ≥ p𝑑3n2

16
, then we have |Z(v1)| ≥ (p𝑑)

3n2

32
.

Before we prove the claims in Steps 1 to 4, let us use them to deduce Claim 5.3. Note

that assuming the statements in Steps 3 and 4 hold in Γp we have with probability at least

1 − 2n−5
that if (v1) is sound then |Z(v1)| ≥ (p𝑑)3n2

32
. Furthermore, by the definition of

Z′
1
(v1) ⊇ Z(v1) and of X3(v1, u2) ⊇ Y3(v1, u2) we have that for all (u2, u3) ∈ Z(v1), the

vector (v1, u2, u3) is sound, that is,

|||Ψ
t
v̂

1
,û

2
,û

3
(Γp)
||| ≥ 64𝛼2

s(p𝑑)3t((n − 1)!t)3.

Therefore, with probability at least 1 − 2n−5
,

|||Ψ
t+1

v
1
(Γp)
||| ≥

∑
(u

2
,u

3
)∈Z(v

1
)

|||Ψ
t
v̂

1
,û

2
,û

3
(Γp)
|||

≥
(p𝑑)3n2

32
⋅ 64𝛼2

s(p𝑑)3t((n − 1)!t)3

≥ 2
s+1
𝛼(p𝑑)3(t+1)((n − 1)!t)(n!t+1)2,

as required for the claim. It remains to prove Steps 1 to 4.

Proof of Step 1: For i = 2, 3, let Ai ∶= NΓ(v1;Vi). Furthermore, let A′
2
⊆ V2

be

the set of vertices u2 ∈ V2
for which (v1, u2) is sound and let A′′

2
⊆ V2

be the set of

vertices u2 ∈ V2
for which deg(v1, u2;V3) ≥ 𝑑

2n
2

. Note that X2(v1) = A2 ∩ A′
2
∩ A′′

2
.

Since (V1
,Vi) is (𝜀, 𝑑)-super-regular, we have |Ai| ≥ (𝑑 − 𝜀)n for i = 2, 3. Since (V2

,V3)
is 𝜀-regular, we have |A′′

2
| ≥ (1−𝜀)n by Lemma 2.8. Finally, observe that (v1) being sound

implies that

|||Ψ
t
v̂

1
(Γp)
||| ≥ 2

s(p𝑑)3t(n − 1)!t(n!t)2 ≥ 2
s

0(p𝑑)3t(n − 1)!t(n!t)2

≥ (1 − 𝜂)n(p𝑑)3t(n − 1)!t(n!t)2.
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ALLEN ET AL. 31

Hence, it follows from Lemma 3.4 with 𝓁 = 2 that with probability at least 1− n−6
, if (v1)

is sound then for all but at most 𝛼n vertices u2 ∈ V2
we have

|||Ψ
t
v̂

1
,û

2
(Γp)
||| ≥
(
𝑑

10

)2 n − t
n
|||Ψ

t
v̂

1
(Γp)
||| ≥
(
𝑑

10

)2
1

n
⋅ 2

s(p𝑑)3t(n − 1)!t(n!t)2

≥ 8

√
𝛼2

s(p𝑑)3t((n − 1)!t)2(n!t),

showing that (v1, u2) is sound. Thus, we get |A′
2
| ≥ (1−𝛼)n with probability at least 1−n−6

and hence

|X2(v1)| = ||A2 ∩ A′
2
∩ A′′

2
|| ≥ 𝑑n

2
,

as claimed.

Proof of Step 2: Fix some v2 ∈ V2
. Let X3 = X3(v1, v2) and Y3 = Y3(v1, v2) ⊆ X3. It

follows from an application of Lemma 3.4 with 𝓁 = 3 and 𝜂
′
replacing 𝜂, that the following

statement holds in Γp with probability at least 1 − n−8
.

If (v1) is sound and v2 ∈ X2(v1), then |X3| ≥ 𝑑

2n
4
.

Here we used here that v2 ∈ X2(v1) implies that degΓ(v1, v2;V3) ≥ 𝑑

2n
2

as well as the fact

that (v1, v2) being sound implies that

|||Ψ
t
v̂

1
,v̂

2
(Γp)
||| ≥ 8

√
𝛼2

s
0(p𝑑)3t((n − 1)!t)2(n!t) ≥ (1 − 𝜂′)n(p𝑑)3t((n − 1)!t)2(n!t),

in order to appeal to Lemma 3.4.

Now note that, in order to determine X3, we do not need to reveal edges adjacent to v2.

That is, the random set of vertices X3 is determined by (Γv̂
2
)p. Therefore, by Lemma 4.6(i)

we have that with probability at least 1 − n−8
the following statement holds in Γp.

If |X3| ≥ 𝑑

2n
4
, then |Y3| ≥ p𝑑2n

8
.

Therefore with probability at least 1 − n−7
, both the above statements hold in Γp and so

by combining them we have the desired statement of this step for v2 ∈ V2
. Taking a union

bound over all v2 ∈ V2
then completes the proof.

Proof of Step 3: This is a simple case of combining Steps 1 and 2. Indeed with prob-

ability at least 1 − n−5
both the statements of Steps 1 and 2 hold in Γp. Taking this to be

the case, if (v1) is sound, we then have that

|Z′(v1)| =
∑

u
2
∈X

2
(v

1
)
|Y3(v1, u2)| ≥ 𝑑n

2
⋅

p𝑑2n
8

= p𝑑3n2

16
,

as required.

Proof of Step 4: This is a direct application of Lemma 4.6(ii). Indeed, note that Z′(v1) ⊆
Trv

1
(Γ) is a random subset of edges determined by (Γv̂

1
)p. The conclusion of Step 4 then

follows immediately from Lemma 4.6(ii).

This concludes the proof of Claim 5.3 and hence the proof of the lemma. ▪
▪
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32 ALLEN ET AL.

6 PROOF OF THE LOCAL DISTRIBUTION LEMMA

The purpose of this section is to prove the Local Distribution Lemma, Lemma 3.4. We will begin by

reducing Lemma 3.4 to another lemma, Lemma 6.1 below, using a simple averaging argument. Before

proving Lemma 6.1, we will then take a detour, establishing an Entropy Lemma (Lemma 6.4) which

will be crucial for the proof of Lemma 6.1, which is finally given in Section 6.3.

6.1 A simplification

Given some t,𝓁 and u = (u1, … , u𝓁−1) as in the statement of Lemma 3.4, we aim to prove a lower

bound on the size of Ψt
û,û𝓁 for almost all of the u𝓁 ∈ V𝓁

. The key step for this is given in the following

lemma, which we now motivate. Given that Ψt
û is large, a simple averaging argument shows that (3.6)

is true ‘on average’ (i.e., if we take the average of |Ψt
û,û𝓁 (Γp)| over all u𝓁 ∈ V𝓁

). That is, there is a

vertex u such that the assumption on |Ψt
û,û(Γp)| in Lemma 6.1 below holds. Lemma 6.1 then states that

this implies that (3.6) holds indeed for almost all choices of u𝓁 , which is the challenging part in the

proof of Lemma 3.4. In order to prove Lemma 6.1 in Section 6.3, we compare the difference in the

sizes of Ψt
û,û𝓁 for different choices of u𝓁 ∈ V𝓁

using the Entropy Lemma (Lemma 6.4).

Lemma 6.1. For all 0 < 𝛼, 𝑑 ≤ 1 and K > 0 there exists 𝜂, 𝜀 > 0 and C > 0

such that for all sufficiently large n ∈ N and for any p ≥ C(log n)1∕3n−2∕3
, if Γ is

an (𝜀, 𝑑)-super-regular tripartite graph with parts of size n, t ∈ N such that (1 − 𝜂)n ≤
t < n, 𝓁 ∈ [3], u = (u1, … , u𝓁−1) ∈  and u ∈ V𝓁 then the following holds in Γp with
probability at least 1 − n−K

. If

|||Ψ
t
û,û(Γp)

||| ≥ (1 − 𝜂)
n(p𝑑)3t((n − 1)!t)𝓁(n!t)3−𝓁 ,

then
|||Ψ

t
û,v̂(Γp)

||| ≥
(
𝑑

10

)2

⋅ |||Ψ
t
û,û(Γp)

|||

for at least (1 − 𝛼)n vertices v ∈ V𝓁
.

Indeed, with Lemma 6.1 in hand, Lemma 3.4 follows easily.

Proof of Lemma 3.4. Fix 𝜀,
1

C
≪ 𝜂 ≪ 𝑑, 𝛼. Fix Γ, t ∈ N with (1 − 𝜂)n ≤ t < n, 𝓁 ∈ [3]

and u = (u1 … , u𝓁−1) ∈  . By applying Lemma 6.1 with K + 1 replacing K and taking a

union bound, we have that with probability at least 1− n−K
, the conclusion of Lemma 6.1

holds in G = Γp for all u ∈ V𝓁
. So suppose that this is the case and further suppose that

|||Ψ
t
û(G)
||| ≥ (1 − 𝜂)

n(p𝑑)3t((n − 1)!t)𝓁−1(n!t)4−𝓁 .

Now, for each 𝜓 ∈ Ψt
û(G), we have 𝜓 ∈ Ψt

û,û𝓁 (G) for exactly n − t choices of u𝓁 ∈ V𝓁
.

Therefore, we have that

∑
u∈V𝓁

|||Ψ
t
û,û(G)

||| = (n − t)|||Ψ
t
û(G)
|||.
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ALLEN ET AL. 33

By averaging, there must be some u∗ ∈ V𝓁
such that

|||Ψ
t
û,û∗ (G)

||| ≥
(n − t

n

)|||Ψ
t
û(G)
|||

≥

(n − t
n

)
(1 − 𝜂)n(p𝑑)3t((n − 1)!t)𝓁−1(n!t)4−𝓁

= (1 − 𝜂)n(p𝑑)3t((n − 1)!t)𝓁(n!t)3−𝓁 .

The result now follows from applying the assumed conclusion of Lemma 6.1 with u∗
playing the rôle of u. ▪

6.2 The entropy lemma

In this section, we will prove a key lemma, Lemma 6.4, which we call the Entropy Lemma. We start

with some definitions. Given some tripartite Γ with parts of size n, some 𝓁 ∈ [3], t ∈ [n] and

some 𝜓 ∈ Ψt(Γ), we define I𝓁(𝜓) ⊂ V𝓁
to be the vertices in V𝓁

which are isolated in the embed-

ded subgraph 𝜓(Dt). If 𝓁 is clear from context, we will drop the superscript. If we are further given

some v ∈ V𝓁
, we define

𝜓v =

{
∅ if v ∈ I(𝜓),(
N
𝜓(Dt)
(
v;Vj) ∶ j ∈ J

)
if v ∉ I(𝜓),

where J = [3]⧵{𝓁}. So 𝜓v either returns an empty set, indicating that the vertex v is isolated in 𝜓(Dt),
or it returns the pair of vertices which are contained in the triangle containing v in 𝜓(Dt). We also

define the function

Yv(𝜓) = �[{𝜓v ≠ ∅}] =

{
1 if 𝜓v ≠ ∅,
0 if 𝜓v = ∅,

which returns 1 if v ∉ I(𝜓) and 0 otherwise. Note that for any 𝓁 ∈ [3] the set {𝜓v ∶ v ∈ V𝓁}
completely determines the (unordered) subgraph 𝜓(Dt).

For a fixed u ∈ V𝓁
and v ∈ V𝓁 ⧵{u}, we will be interested in the distribution of 𝜓

∗
v if 𝜓

∗
is chosen

randomly among a set of embeddings we wish to extend. In order to analyse this, we use entropy.

See Section 2.5 for the definition and basic properties. We remark that there will be two independent

stages of randomness in the argument. First, there is the random subgraph Γp ⊆ Γ, and second, there

will be a randomly chosen 𝜓
∗ ∈ Ψt(Γp). In particular, the values of the entropy function h(𝜓∗), h(𝜓∗v )

are random variables themselves. However, once we fix a particular instance G = Γp, these values are

deterministic. We proceed with the following definition which will be convenient to ease notation in

what follows.

Definition 6.2. For n ∈ N, p = p(n) ∈ (0, 1) and 0 < 𝑑 ≤ 1, we define

H = H(n, p, 𝑑) ∶= log
(
(p𝑑)3 ⋅ n2

)
.

To see the relevance of this function, note that in a random sparsification of the complete tripartite

graph Kn,n,n with probability p𝑑, we would expect a given vertex to lie in (p𝑑)3n2
triangles. Therefore

if we fix a vertex v and take a uniformly random triangle containing v, we expect the entropy of the

random variable which chooses this triangle, to be roughly H(n, p, 𝑑). The function H can thus be
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34 ALLEN ET AL.

seen as benchmark for the maximum entropy (recalling Lemma 2.13) of a randomly chosen triangle

containing a fixed vertex. Our aim will be to show that, for most choices of fixed vertex v, H is a good

approximation for the entropy of the random variable 𝜓
∗
v discussed above.

We begin with observing that the function H provides an appropriate upper bound on the entropy

we will be interested in.

Observation 6.3. For all 0 < 𝜀

′
< 𝑑 ≤ 1 and L > 0 there exists 𝜀 > 0 and C > 0

such that for all sufficiently large n ∈ N and for any p ≥ C(log n)1∕3n−2∕3
, if Γ is

an (𝜀, 𝑑)-super-regular tripartite graph with parts of size n, t ∈ [n], 𝓁 ∈ [3], u =
(u1, … , u𝓁−1) ∈  and u ∈ V𝓁 then the following holds in Γp with probability at
least 1 − n−L

.

For 𝜓∗ chosen uniformly fromΨt
û,û(Γp), we have that h(𝜓∗v |Yv(𝜓∗) = 1) ≤ H(n, p, 𝑑)+

𝜀

′ for all but at most 𝜀′n vertices v ∈ V𝓁
.

Proof. Choose 0 < 𝜀,

1

C
≪ 𝜀

′
, 𝑑,

1

L
. By Corollary 4.4, we have that with probability at

least 1 − n−L
,

||Trv(Γp)|| = (1 ± 𝜀′)(p𝑑)3n2
,

for all but at most 𝜀

′n vertices v ∈ V𝓁
. In particular, for each such v,

we have log
|||Trv((Γp)û,û)

||| ≤ H(n, p, 𝑑) + 𝜀

′
. Therefore, by Lemma 2.13, we

have h(𝜓∗v |Yv(𝜓∗) = 1) ≤ H(n, p, 𝑑) + 𝜀′ for all v as above and for 𝜓
∗ ∈ Ψt

û,û(Γp) chosen

uniformly at random. ▪

The main purpose of this section is to provide a partial converse to the above observation, showing

that for almost all vertices v ∈ V𝓁
, H is a good approximation for the entropy h(𝜓∗v |Yv(𝜓∗) = 1). The

full statement is as follows.

Lemma 6.4 (Entropy Lemma). For all 0 < 𝛽, 𝑑 ≤ 1 and L > 0 there exists 𝜂, 𝜀 > 0

and C > 0 such that for all sufficiently large n ∈ N and for any p ≥ C(log n)1∕3n−2∕3
, if Γ

is an (𝜀, 𝑑)-super-regular tripartite graph with parts of size n, t ∈ N such that (1 − 𝜂)n ≤
t < n, 𝓁 ∈ [3], u = (u1, … , u𝓁−1) ∈  and u ∈ V𝓁 then the following holds in Γp with
probability at least 1 − n−L

. If

|||Ψ
t
û,û(Γp)

||| ≥ (1 − 𝜂)
n(p𝑑)3t((n − 1)!t)𝓁(n!t)3−𝓁 ,

and 𝜓

∗ is chosen uniformly from Ψt
û,û(Γp), then we have that h(𝜓∗v |Yv(𝜓∗) = 1) ≥

H(n, p, 𝑑) − 𝛽 for all but at most 𝛽n vertices v ∈ V𝓁
.

In the remainder of this section, we will prove Lemma 6.4. Recall that we have V(Γ) = V(Γp) =
V1∪V2∪V3

with each Vi
of size n. As above, for t ∈ [n], an embedding 𝜓 ∈ Ψt(Γ) and some 𝓁 ∈ [3],

we denote by I(𝜓) = I𝓁(𝜓) the vertices in V𝓁
which are not contained in the subgraph 𝜓(Dt). In the

proof, we will describe 𝜓 by revealing the status of 𝜓v one by one for each v ∈ V𝓁
according to some

linear order 𝜎 of V𝓁
. In order to do so, we need to make some further definitions. Firstly we denote

by w <
𝜎

v that w occurs before v in the ordering 𝜎. Now given some fixed t, 𝜓 and 𝓁 as above and

an ordering 𝜎 of V𝓁
, we will be interested in revealing 𝜓 ∈ Ψt(Γ) according to the ordering 𝜎 as

follows. We imagine processing the vertices v ∈ V𝓁
in order and as we process each vertex v we reveal

its status in 𝜓 by revealing 𝜓v. Either v is not in a triangle in 𝜓(Dt) or v is in a triangle, in which

case, we are given the other vertices of the triangle containing v in 𝜓(Dt). Now consider the moment
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ALLEN ET AL. 35

before processing some vertex v ∈ V𝓁
. At this point, we know all the triangles in 𝜓(Dt) that contain

vertices w ∈ V𝓁
such that w <

𝜎
v. We are interested in which vertices are candidates to feature in 𝜓v

at this point and the following definition captures this.

For some fixed t, 𝜓 and 𝓁 as above, an ordering 𝜎 of V𝓁
, some u ∈  , some j ∈ [3] ⧵ {𝓁} and

some v ∈ V𝓁
we define

Aj
v(𝜓, 𝜎, u) ∶=

{
a ∈ Vj

û ∶ a ∉
⋃

w∈V𝓁∶ w<
𝜎

v

𝜓w

}

and Av(𝜓, 𝜎, u) ∶=
⋃

j∈J Aj
v(𝜓, 𝜎, u), where J ∶= [3] ⧵ {𝓁}. We think of these vertices as being ‘alive’

at the point just before processing v (when we are about to reveal 𝜓v). By ‘alive’, we mean that it is still

possible that𝜓v reveals that a ∈ Aj
v(𝜓, 𝜎, u) is in a triangle with v. All other vertices a ∈ Vj⧵Aj

v(𝜓, 𝜎, u)
are already embedded in triangles with vertices w ∈ V𝓁

which come before v in the ordering 𝜎 (or lie

in u in which case we are forbidden from including them in a triangle in 𝜓).

6.2.1 Triangles with alive vertices

In this subsection, we will prove that most vertices v ∈ V𝓁
are in the expected number of triangles

with the other two vertices still being ‘alive’. This will be useful in the proof of the Entropy Lemma,

Lemma 6.4.

Lemma 6.5. For all 0 < 𝜏 < 𝑑 ≤ 1 and L > 0 there exists 𝜀 > 0 and C > 0 such that
for all sufficiently large n ∈ N and for any p ≥ C(log n)1∕3n−2∕3

, if Γ is an (𝜀, 𝑑)-regular
tripartite graph with parts of size n then the following holds in Γp with probability at
least 1 − n−L

. If t ∈ [n − 1], 𝓁 ∈ [3], u = (u1, … , u𝓁−1) ∈  , u ∈ V𝓁
, 𝜓 ∈ Ψt

û,û(Γp)
and 𝜎 is an ordering of V𝓁

, then there are at most 𝜏n vertices v ∈ V𝓁 for which

||Trv(Γp) ∩ E(Γ[Av(𝜓, 𝜎, u)])|| > (p𝑑)3
∏
j∈J

|||A
j
v(𝜓, 𝜎, u)||| + 𝜏(p𝑑)

3n2
, (6.1)

where, as above, J = [3] ⧵ {𝓁}.

Proof. Choose 0 < 𝜀,
1

C
≪ 𝜀

′
≪ 𝜏, 𝑑,

1

L
. Let G ⊆ Γ be any subgraph satisfying

|K3(G[X1 ∪ X2 ∪ X3])| ≤ (p𝑑)3|X1||X2||X3| + 𝜀′p3n3
, (6.2)

for all X1 ⊆ V1
, X2 ⊆ V2

, X3 ⊆ V3
and note that Γp is such a subgraph with probability

at least 1 − n−L
by Lemma 4.1. We will show that G already satisfies the conclusion

of Lemma 6.5. Let 𝓁 ∈ [3], t ∈ [n − 1], u = (u1 … , u𝓁−1) ∈  , u𝓁 ∈ V𝓁
, 𝜓 ∈

Ψt
û,û(G) and let 𝜎 be an ordering of V𝓁

. Enumerate V𝓁 = {v𝓁
1
, … , v𝓁n} according to the

ordering 𝜎, that is, in such a way that v𝓁
1
<
𝜎
· · · <

𝜎
v𝓁n . Define U ⊆ V𝓁

to be the set of

vertices satisfying (6.1). We will show that |U| < 𝜏n. We split V𝓁
into intervals as follows.

Let 𝜏
′ ∶= 𝜏

4
, K ∶= ⌈ 1

𝜏
′ ⌉ and for k = 1, … ,K, let

Wk = {v𝓁i ∶ 1 + (k − 1) ⋅ 𝜏′n ≤ i < 1 + k ⋅ 𝜏′n}
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36 ALLEN ET AL.

and Uk ∶= U ∩Wk. Fix some k ∈ [K] and let ik ∶= 1+ ⌈(k − 1) ⋅ 𝜏′n⌉ and wk ∶= v𝓁ik (that

is, wk is the first vertex in Wk). Let X𝓁 = Uk and Xj = Aj
wk (𝜓, 𝜎, u) for j ∈ J = [3] ⧵ {𝓁}.

It follows that, for any z ∈ Uk,

||Trz(G[∪i∈[3]Xi])|| ≥ |Trz(G[X𝓁 ∪ Az(𝜓, 𝜎, u)])|
≥ (p𝑑)3

∏
j∈J

|||A
j
z(𝜓, 𝜎, u)||| + 𝜏(p𝑑)

3n2

≥ (p𝑑)3
∏
j∈J

(||Xj|| − 𝜏′n
)
+ 𝜏(p𝑑)3n2

≥ (p𝑑)3
∏
j∈J

||Xj|| + 𝜏

2
(p𝑑)3n2

.

Here, the first inequality follows from the fact that z >
𝜎

wk and thus Az(𝜓, 𝜎, u) ⊆
Awk (𝜓, 𝜎, u) for every z ∈ Uk. The second inequality follows from the fact that z ∈ U and

the third from the fact that
|||A

j
z(𝜓, 𝜎, u)||| ≥

|||A
j
wk (𝜓, 𝜎, u)

|||−𝜏
′n for all z ∈ Uk since z and wk

are close in the ordering 𝜎. By summing over all z ∈ Uk, it follows that

|K3(G[X1 ∪ X2 ∪ X3])| ≥ (p𝑑)3|X1||X2||X3| + 𝜏

2
(p𝑑)3|X𝓁|n2

.

Combining this with (6.2) gives |Uk| = |X𝓁| ≤ 2𝜀
′

𝜏𝑑
3
n < 𝜏

2

8
n, by our choice of constants. It

follows that |U| = ∑K
k=1
|Uk| < 𝜏n, as claimed. ▪

6.2.2 Proof of the entropy lemma

Here, we will prove Lemma 6.4. The proof is quite long and so we will break it up into smaller claims

along the way. Our proof works by contradiction. As
|||Ψ

t
û,û(Γp)

||| is large, we know that h(𝜓∗) is large

as 𝜓
∗

is chosen uniformly at random from Ψt
û,û(Γp). Moreover, using the chain rule (Lemma 2.17), we

can decompose h(𝜓∗) as the sum of local entropy values depending on the 𝜓
∗
v . Now we assume that

there are a significant number of bad vertices v for which the local entropy value h(𝜓∗v |Yv(𝜓∗) = 1)
is too small. We will then apply the chain rule (Lemma 2.17) using an ordering on the vertices which

places these bad vertices at the beginning of the ordering. This has the effect that the shortcoming of

their contribution to the overall entropy h(𝜓∗) is felt the most. We then upper bound the contribution

of the entropy values at other (good) vertices, and hence conclude that the overall entropy h(𝜓∗) is

too small, giving a contradiction. In order to achieve this upper bound, we rely on random properties

of Γp and we have to split the entropy values further, delving into the average that outputs the entropy

values and looking at individual embeddings.

Proof of Lemma 6.4. Choose 0 < 𝜀,

1

C
≪ 𝜏 ≪ 𝜂 ≪ 𝛿 ≪ 𝛾 ≪ 𝛽, 𝑑,

1

L
. Fix Γ, t ∈ N, 𝓁 ∈

[3], u = (u1 … , u𝓁−1) ∈  , and u ∈ V𝓁
as in the statement of Lemma 6.4. Assume G ⊆ Γ

is a subgraph of Γ with V(G) = V(Γ) which satisfies the following properties for all 𝜓 ∈
Ψt

û,û(G) and every ordering 𝜎 of V𝓁
.

(P.1) For all vertices v ∈ V(G), we have

|Trv(G)| ≤ 10p3n2
.
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ALLEN ET AL. 37

(P.2) There are at most 𝜏n vertices v ∈ V𝓁
for which

|Trv(G) ∩ E(G[Av(𝜓, 𝜎, u)])| > (p𝑑)3
∏

j∈[3]⧵{𝓁}

|||A
j
v(𝜓, 𝜎, u)||| + 𝜏(p𝑑)

3n2
.

By Lemmas 6.5, 4.5 and a union bound, Γp satisfies these properties with probability

at least 1−n−L
and therefore it suffices to show that any G satisfying the above properties,

satisfies the conclusion of Lemma 6.4.

To ease notation, let Ψ ∶= Ψt
û,û(G). Furthermore, let 𝜓

∗
be chosen uniformly from Ψ.

We may assume that

|Ψ| ≥ (1 − 𝜂)n(p𝑑)3t((n − 1)!t)𝓁(n!t)3−𝓁 ,

as otherwise there is nothing to prove. In particular, by Lemma 2.13, we have

h(𝜓∗) ≥ n log(1 − 𝜂) + 3t log(p𝑑) + 3 log(n!t) − 3 log(n)
≥ 3t log(p𝑑) + 3 log(n!t) − 𝛿n, (6.3)

where we used 𝜂 ≪ 𝛿 and that n is large enough in the last step.

Assume for a contradiction that there are at least 𝛽n vertices v ∈ V𝓁
such

that h(𝜓∗v |Yv(𝜓∗) = 1) < H(n, p, 𝑑) − 𝛽 and let U ⊂ V𝓁
be a set of these exceptional ver-

tices of size |U| = 𝛾n. We will derive an upper bound on h(𝜓∗) which contradicts (6.3).

Recall that I(𝜓) = I𝓁(𝜓) ⊂ V𝓁
is the set of vertices which are isolated in 𝜓(Dt). We begin

as follows

h(𝜓∗) = h(𝜓∗, {𝜓∗v }v∈V𝓁 , I(𝜓∗)) (6.4)

= h({𝜓∗v }v∈V𝓁 , I(𝜓∗)) + h(𝜓∗|{𝜓∗v }v∈V𝓁 , I(𝜓∗)) (6.5)

≤ h({𝜓∗v }v∈V𝓁 , I(𝜓∗)) + log(t!) (6.6)

= h({𝜓∗v }v∈V𝓁 |I(𝜓∗)) + h(I(𝜓∗)) + log(t!) (6.7)

≤ h({𝜓∗v }v∈V𝓁 |I(𝜓∗)) + log(t!) + log

((n
t

))
(6.8)

= h({𝜓∗v }v∈V𝓁 |I(𝜓∗)) + log(n!t). (6.9)

Here, we used Lemma 2.15 in (6.4) and the chain rule (Lemma 2.17) in (6.5) and (6.7).

In (6.6), we used Lemma 2.18 coupled with the fact that the set {𝜓v}v∈V𝓁 completely

determines the (unordered) subgraph𝜓(Dt). Indeed, note that there are t! embeddings𝜓 ∈
Ψ which map to the same subgraph 𝜓(Dt), namely one for each choice of ordering of the

triangles. Finally, in (6.8) we used Lemma 2.13.

Now, in order to estimate this sum further, we fix some ordering 𝜎 of V𝓁
in which the

vertices in U come first, that is w <
𝜎

w′ for all w ∈ U and w′ ∈ V𝓁 ⧵ U. We then reveal

vertices in that order and apply the conditional chain rule (Lemma 2.20). That is,

h({𝜓∗v }v∈V𝓁 |I(𝜓∗)) = ∑
v∈V𝓁

h(𝜓∗v |{𝜓∗w ∶ w <
𝜎

v}, I(𝜓∗))

≤

∑
v∈U

h(𝜓∗v |I(𝜓∗)) +
∑

v∈V𝓁⧵U

h(𝜓∗v |{𝜓∗w ∶ w <
𝜎

v}, I(𝜓∗)), (6.10)
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38 ALLEN ET AL.

where we applied Lemma 2.16 in the second step. We treat the vertices in U separately to

those in V𝓁⧵U. To ease notation, we make the following definition. For𝜓 ∈ Ψ and v ∈ V𝓁
,

we let tv(𝜓) denote the number of vertices w ∈ V𝓁
such that w <

𝜎
v and w ∉ I(𝜓). Let us

first address the vertices in U.

Claim 6.6. For all v ∈ U, we have that

h(𝜓∗v |I(𝜓∗)) ≤ 1

|Ψ|
∑
𝜓∈Ψ

Yv(𝜓)
(

log
(
(p𝑑)3(n − tv(𝜓))2

)
− 𝛽

2

)
.

Proof of Claim. Now, for each v ∈ U, we have

h(𝜓∗v |I(𝜓∗)) ≤ h(𝜓∗v |Yv(𝜓∗))
= P
[
Yv(𝜓∗) = 1

]
h(𝜓∗v |Yv(𝜓∗) = 1) + P

[
Yv(𝜓∗) = 0

]
h(𝜓∗v |Yv(𝜓∗) = 0)

≤ P
[
Yv(𝜓∗) = 1

]
(H(n, p, 𝑑) − 𝛽)

= 1

|Ψ|
∑
𝜓∈Ψ

Yv(𝜓)(H(n, p, 𝑑) − 𝛽).

Here we used Lemma 2.16 and the fact that I(𝜓∗) determines Yv(𝜓∗), the definition of

conditional entropy (2.2), and the definition of U. Furthermore, we have tv(𝜓) ≤ 𝛾n for

all v ∈ U and 𝜓 ∈ Ψ since U comes at the beginning of the ordering 𝜎. Therefore,

log
(
(p𝑑)3(n − tv(𝜓))2

)
≥ log

(
(p𝑑)3(1 − 𝛾)2n2

)

= H(n, p, 𝑑) + 2 log(1 − 𝛾)
≥ H(n, p, 𝑑) − 4𝛾

≥ H(n, p, 𝑑) − 𝛽

2
.

Combining this with our upper bound on h(𝜓∗v |I(𝜓∗)) above completes the proof of the

claim. ▪

We will now deal with the vertices outside U. Given v ∈ V𝓁
and 𝜓 ∈ Ψ, we write

h′(v, 𝜓) ∶= h
(
𝜓

∗
v |I(𝜓∗) = I(𝜓), {𝜓∗w = 𝜓w}w<

𝜎

v
)
.

Claim 6.7. The following is true for all 𝜓 ∈ Ψ.

(i) For all v ∈ V𝓁
, we have

h′(v, 𝜓) ≤ log
(
(p𝑑)3(n − tv(𝜓))2

)
+ log

(
10

𝑑
3

)
+ log

(
n2

(n − tv(𝜓))2

)
.

(ii) There exists a set B(𝜓) ⊂ V𝓁 with |B(𝜓)| ≤ 𝛿n, such that for all v ∈
V𝓁 ⧵ B(𝜓), we have

h′(v, 𝜓) ≤ log
(
(p𝑑)3(n − tv(𝜓))2

)
+ 𝛿.
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ALLEN ET AL. 39

Proof of Claim. The first inequality follows from (P.1) and Lemma 2.18. Indeed, for

all v ∈ V𝓁
, we have

h′(v, 𝜓) ≤ log(|Trv(G)|)
≤ log(10p3n2)

= log
(
(p𝑑)3(n − tv(𝜓))2

)
+ log

(
10

𝑑
3

)
+ log

(
n2

(n − tv(𝜓))2

)
.

For the second inequality, we will use (P.2) in combination with Lemma 2.18. We have

that for all but at most 𝜏n vertices,

h′(v, 𝜓) ≤ log(|Trv(G) ∩ E(G[Av(𝜓, 𝜎, u)])|)

≤ log

(
(p𝑑)3

∏
j∈J

|||A
j
v(𝜓, 𝜎, u)||| + 𝜏(p𝑑)

3n2

)

≤ log
(
(p𝑑)3(n − tv(𝜓))2 + 𝜏(p𝑑)3n2

)
. (6.11)

Observe that tv(𝜓) ≤
(

1 − 𝛿

2

)
n for all but at most

𝛿n
2

vertices v ∈ V𝓁
. In particular, we

have

(n − tv(𝜓))2 ≥
𝛿

2n2

4
≥
𝛿

2

4𝜏
⋅ 𝜏n2

≥
1

𝛿

⋅ 𝜏n2
,

for all but at most
𝛿n
2

vertices v ∈ V𝓁
(we used that 𝜏 ≪ 𝛿 here). Plugging this back

into (6.11), we get

h′(v, 𝜓) ≤ log
(
(1 + 𝛿) ⋅ (p𝑑)3(n − tv(𝜓))2

)
≤ 𝛿 + log

(
(p𝑑)3(n − tv(𝜓))2

)

for all but at most

(
𝜏 + 𝛿

2

)
n ≤ 𝛿n vertices v ∈ V𝓁

. ▪

We will now use Claims 6.6 and 6.7 to finish the proof. Indeed, it follows from

Claim 6.6 that

∑
v∈U

h(𝜓∗v |I(𝜓∗)) ≤ 1

|Ψ|
∑
𝜓∈Ψ

∑
v∈U

Yv(𝜓)
(

log
(
(p𝑑)3(n − tv(𝜓))2

)
− 𝛽

2

)
. (6.12)

Furthermore, using Claim 6.7, the definition of conditional entropy (2.3) (and Lemma 2.18

to conclude that h′(v, 𝜓) = 0 if Yv(𝜓) = 0), we have

∑
v∈V𝓁⧵U

h(𝜓∗v |{𝜓∗w ∶ w <
𝜎

v}, I(𝜓∗)) =
∑

v∈V𝓁⧵U

1

|Ψ|
∑
𝜓∈Ψ

Yv(𝜓)h′(v, 𝜓)

≤
1

|Ψ|
∑
𝜓∈Ψ

(
𝛿n + N1(𝜓) +

∑
v∈V𝓁⧵U

Yv(𝜓) log
(
(p𝑑)3(n − tv(𝜓))2

))
, (6.13)

where

N1(𝜓) =
∑

v∈B(𝜓)
Yv(𝜓)

(
log

(
10

𝑑
3

)
+ 2 log

(
n

n − tv(𝜓)

))
.

 10982418, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rsa.21209 by T

est, W
iley O

nline L
ibrary on [15/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



40 ALLEN ET AL.

Let now

M(𝜓) ∶=
∑
v∈V𝓁

Yv(𝜓) log
(
(p𝑑)3(n − tv(𝜓))2

)
, and N2(𝜓) ∶=

∑
v∈U

Yv(𝜓) ⋅
𝛽

2
.

Then, combining (6.10), (6.12) and (6.13), we get

h({𝜓∗v }v∈V𝓁 |I(𝜓∗)) ≤ 1

|Ψ|
∑
𝜓∈Ψ

(M(𝜓) + N1(𝜓) + 𝛿n − N2(𝜓)). (6.14)

We will bound each of these terms one by one.

Claim 6.8. For all 𝜓 ∈ Ψ, we have that

M(𝜓) = 3t log(p𝑑) + 2 log(n!t), N1(𝜓) ≤
√
𝛿n and N2(𝜓) ≥ 𝛾2n.

Before we prove Claim 6.8, let us finish the main proof. Combining Claim 6.8

with (6.14), we get (using 𝛿 ≪ 𝛾) that

h({𝜓∗v }v∈V𝓁 |I(𝜓∗)) ≤ 3t log(p𝑑) + 2 log(n!t) + (𝛿 +
√
𝛿 − 𝛾2)n

≤ 3t log(p𝑑) + 2 log(n!t) − 2𝛿n.

Plugging this back into (6.9), we get that h(𝜓∗) ≤ 3t log(p𝑑) + 3 log(n!t) − 2𝛿n,
contradicting (6.3). Hence it remains to prove Claim 6.8.

Proof of Claim. Let 𝜓 ∈ Ψ and observe that {tv(𝜓) ∶ v ∈ V𝓁 ⧵ I(𝜓)} = [t − 1]0. Thus

M(𝜓) =
∑

v∈V𝓁⧵I(𝜓)
log
(
(p𝑑)3(n − tv(𝜓))2

)

=
t−1∑
k=0

log
(
(p𝑑)3(n − k)2

)
= 3t log(p𝑑) + 2 log(n!t).

We now turn to bounding N1(𝜓). We define B′ =∶ B(𝜓) ⧵ I(𝜓) and observe that |B′| ≤
|B(𝜓)| ≤ 𝛿n. Further, let K = {tv(𝜓) ∶ v ∈ B′}. Enumerate K = {k1, … , k|B′|} so

that k1 ≥ … ≥ k|B′| and observe that ki ≤ n − i for all i ∈ [|B′|], by virtue of the fact

that tv(𝜓) ≤ t ≤ n−1 for all v ∈ B′ and, as B′∩I(𝜓) = ∅, we cannot have that tv(𝜓) = tv′ (𝜓)
for v ≠ v′ ∈ B′. Hence,

N1(𝜓) =
∑
v∈B′

Yv(𝜓)
(

log

(
10

𝑑
3

)
+ 2 log

(
n

(n − tv(𝜓))

))

≤ 𝛿n log

(
10

𝑑
3

)
+

𝛿n∑
𝓁=1

2 log

( n
𝓁

)

≤ 𝛿n log

(
10

𝑑
3

)
+ 2𝛿n log(n) − 2 log((𝛿n)!)

≤ 𝛿n log

(
10

𝑑
3

)
+ 2𝛿n

(
log(n) − log

(
𝛿n
e

))

≤

√
𝛿n,

 10982418, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rsa.21209 by T

est, W
iley O

nline L
ibrary on [15/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ALLEN ET AL. 41

where we used (𝛿n)! ≥
(
𝛿n
e

)
𝛿n

in the second to last line. Finally, let U′ = U ⧵ I(𝜓) and

observe that, since 𝜂 ≪ 𝛾 , we have |U′| ≥ 𝛾n
2

. Therefore,

N2(𝜓) =
∑
v∈U′

𝛽

2
≥ 𝛾

2n,

as claimed. ▪
▪

6.3 Counting via comparison

In this subsection, we will prove Lemma 6.1 which we used in Section 6.1 to prove the Local Distribu-

tion Lemma (Lemma 3.4). Elements of the proof of Lemma 6.1 were already sketched in Section 3 but

before embarking on the details, we outline and reiterate some of the key ideas, ignoring the technicali-

ties in order to elucidate the general proof scheme. For this discussion, we fix some (𝜀, 𝑑)-super-regular

tripartite graph Γ, fix 𝓁 = 1 and some t ∈ [n] close to n. We also fix a vertex u ∈ V𝓁
which we think of

as satisfying the ‘if’ statement in Lemma 6.1 and some typical v ∈ V𝓁
which we aim to show satisfies

the conclusion of Lemma 6.1. By typical, we mean that v ∈ V𝓁
satisfies certain conditions that we have

shown whp almost all vertices in V𝓁
satisfy. For example, we can assume that 𝜓

∗
v has large entropy,

when 𝜓
∗

is a uniformly random embedding in Ψt
û(Γp), from the Entropy Lemma (Lemma 6.4).

Now our aim is to lower bound the number of embeddings 𝜓 of Dt that leave v isolated and we

concentrate on the subset of embeddings that place u in some triangle (as t is large we can expect that

almost all embeddings do place u in a triangle). Refining further, we will only count embeddings that

place u in a triangle with an edge that lies in some special set F ⊂ E(Γ[V2
,V3]). To define F, we begin

by concentrating on edges in Tru(Γ) ∩ Trv(Γ). That is, any edge in F will form a triangle with both u
and v. We then take F to be the edges in Tru(Γ)∩Trv(Γ)which appear in Γp. Note that we do not require

that for an edge w2w3 ∈ F, any of the edges vwi or uwi with i = 2, 3, lie in Γp, just that they lie in Γ.

To motivate this definition, we consider a multistage revealing process. First, we reveal all edges

of Γp that are not adjacent to u or v. The definition of F comes from the fact that at this point in the

process, any edge in F has the potential to lie in Tru(Γp) and also Trv(Γp), depending on which random

edges are adjacent to the vertices u and v. Now note that, in particular, if an edge e = w2w3 ∈ F
does end up in Tru(Γp), then it will contribute to embeddings that avoid v and place u in a triangle.

We introduce a weight function 𝜁 on F (we will in fact define it more generally on E(Γ[V2
,V3]))

which precisely counts the contribution to our desired lower bound, from embeddings which use the

triangle u ∪ e = {u,w2,w3}. That is, for all w2w3 ∈ F, we have that 𝜁(w2w3) encodes the number of

embeddings of Dt−1 (with t− 1 triangles) in Γ, that avoid v and the vertices u,w2,w3. Therefore, as we

can assume F is large (as v is typical, using Lemma 4.7), our desired conclusion will follow if we can

lower bound the 𝜁 values in (some subset of) F.

The central idea of the proof is that we can lower bound 𝜁 values in F by reasoning about

embeddings that place v in a triangle (and avoid u). Indeed, if we consider a uniformly random embed-

ding 𝜓
∗ ∈ Ψt

û(Γp), as v is typical, we know from Lemma 6.4, that the random variable 𝜓
∗
v , which

encodes the triangle containing v in 𝜓(Dt), has high entropy. Appealing to Lemma 2.21 then implies

that the distribution of 𝜓
∗
v in Trv(Γp) is close to uniform and hence for almost all edges f ∈ Trv(Γp),

we have that P
[
𝜓

∗
v = f

]
is large (in that it is close to the average). Moreover, we have that P

[
𝜓

∗
v = f

]
is directly proportional to 𝜁(f ) by the definition of 𝜁 . Therefore, using Lemma 4.6(ii) (and observing

that the 𝜁 values do not depend on random edges adjacent to u or v), we can see that we must have a
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42 ALLEN ET AL.

significant proportion of the edges in F having large 𝜁 values. Indeed, if this were not the case, then it

would be very unlikely that almost all edges in Trv(Γp) have large 𝜁 values.

We can therefore conclude that there is some subset FL ⊂ F of half the edges in F such that 𝜁(f )
is large for all f ∈ FL. Finally, through another application of Lemma 4.6(ii), we can show that many

edges in FL end up in Tru(Γp) and therefore contribute to the lower bound on the number of embeddings

that leave v isolated. We now give the full details of the proof.

Proof of Lemma 6.1. Choose 0 < 𝜀,

1

C
≪ 𝜀

′
≪ 𝜂 ≪ 𝛽

′
≪ 𝛽 ≪

1

L
≪ 𝛼, 𝑑,

1

K
. Fix Γ, p =

p(n), 𝓁 ∈ [3], (1 − 𝜂)n ≤ t < n, u = (u1 … , u𝓁−1) ∈  and u ∈ V𝓁
as in the statement

of Lemma 6.1. We define J ∶= [3] ⧵ {𝓁} and label the indices of J by j1, j2 ∈ [3] so

that J = {j1, j2}.
Now for a subgraph G of Γ, we will make some definitions relative to G and posit

certain properties of G. Our proof will then proceed by first proving that any G satisfying

all the properties, satisfies the desired conclusion of the lemma. After this we will show

that whp we can take that Γp satisfies all the defined properties, which will complete the

proof. Herein, we fix some subgraph G of Γ for the discussion. Our first property comes

from the statement of the lemma.

(Q.1) We have

|||Ψ
t
û,û(G)

||| ≥ (1 − 𝜂)
n(p𝑑)3t((n − 1)!t)𝓁(n!t)3−𝓁 .

For v ∈ V𝓁
, we now define the set of edges which lie in G and in the common

neighbourhood (with respect to Γ) of both u and v. In symbols,

F(v) ∶= Tru(Γû) ∩ Trv(Γû) ∩ E(G) ⊆ Vj
1

û × Vj
2

û . (6.15)

Note that here (and throughout this proof), for convenience, we will think of edges in e =
{y1, y2} ∈ E(Γ[Vj

1 ∪ Vj
2]) as ordered pairs (y1, y2) ∈ Vj

1 × Vj
2 .

Now let 𝜓
∗

be chosen uniformly fromΨt
û,û(G). We define the following subsets of V𝓁

,

recalling the definition of H(n, p, 𝑑) from (6.2).

Z1 ∶= {v ∈ V𝓁 ∶ h(𝜓∗v |Yv(𝜓∗) = 1) ≥ H(n, p, 𝑑) − 𝛽′},
Z2 ∶=

{
v ∈ V𝓁 ∶ |Trv(G)| = (1 ± 𝜀′)(p𝑑)3n2

}
,

Z3 ∶=
{

v ∈ V𝓁 ∶ |F(v)| ≥ 𝑑

5pn2

4

}
,

Z ∶= Z1 ∩ Z2 ∩ Z3.

Our second property of G posits that Z is large.

(Q.2) If (Q.1) holds in G then

|Z| ≥ (1 − 𝛼)n.
We now define the weight functions we will be interested in. For v ∈ V𝓁 ⧵ {u}

and (w1,w2) ∈ Vj
1

û ×Vj
2

û , define 𝜁v(w1,w2) to be t times the number of labelled embeddings

of Dt−1 into Gû,û,v̂ in which both w1 and w2 are isolated vertices. That is,

𝜁v(w1,w2) ∶= t ⋅ |||Ψ
(t−1)
ŵ

1
,ŵ

2

(
Gû,û,v̂

)|||. (6.16)
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ALLEN ET AL. 43

For our last property of G, we need a further definition. For v ∈ V𝓁
, consider F(v) as

in (6.15). We split F(v) in half according to the values of the weight function 𝜁v. That is

we partition F(v) into FS(v) and FL(v) so that 𝜁(y1, y2) ≤ 𝜁(z1, z2) for all (y1, y2) ∈ FS(v)
and (z1, z2) ∈ FL(v), and |FS(v)| = |FL(v)| ± 1. Our final property gives that G has many

triangles containing u (resp. v) and the edges of FL(v) (resp. FS(v)).

(Q.3) If v ∈ Z, then

||F′|| ≥ 𝑑

5p3n2

20
,

for both F′ = FL(v) ∩ Tru(G) and F′ = FS(v) ∩ Trv(G).

We now proceed by taking that G satisfies (Q.2) and (Q.3) and showing that it then

satisfies the desired conclusion of the lemma. We will do this by proving that if G satisfies

(Q.1) then every v ∈ Z satisfies

|||Ψ
t
û,v̂(G)

||| ≥
(
𝑑

10

)2

⋅ |||Ψ
t
û,û(G)

|||,

which in combination with the fact that G satisfies (Q.2), gives what is needed. So let us

fix some v ∈ Z. We define the following sets of embeddings.

Ψûv̂ ∶= Ψt
û,û(G) ∩ Ψt

û,v̂(G),

Ψvû ∶= Ψt
û,û(G) ⧵Ψûv̂ and

Ψuv̂ ∶= Ψt
û,v̂(G) ⧵Ψûv̂.

In words, Ψûv̂ consists of those embeddings which leave both u and v isolated whilst

embeddings in Ψvû leave u isolated but have v contained in a triangle, and vice versa

for Ψuv̂. Clearly, we have

|||Ψ
t
û,û(G)

||| = |Ψûv̂| + |Ψvû|, and

|||Ψ
t
û,v̂(G)

||| = |Ψûv̂| + |Ψuv̂|.

If |Ψûv̂| ≥
(
𝑑

10

)2|||Ψ
t
û,û(G)

|||, we are done and so we may assume that

|Ψvû| ≥
(

1 −
(
𝑑

10

)2
)|||Ψ

t
û,û(G)

||| ≥
1

2

|||Ψ
t
û,û(G)

|||. (6.17)

In what remains, we will compare the sizes of Ψvû and Ψuv̂. Let 𝜁 = 𝜁v be the weight

function as defined in (6.16). Observe that

|Ψvû| =
∑

(y
1
,y

2
)∈Trv

(
Gû

)
𝜁(y1, y2), and

|Ψuv̂| =
∑

(y
1
,y

2
)∈Tru

(
Gû

)
𝜁(y1, y2).
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44 ALLEN ET AL.

Recall that we took 𝜓

∗
to be a uniformly random embedding in Ψt

û,û(G). Note

that 𝜓
∗
v |Yv(𝜓∗) = 1 is a random variable taking values in S ∶= Trv

(
Gû
)

and the

distribution of 𝜓
∗
v |Yv(𝜓∗) = 1 is determined by 𝜁 . That is, for all (z1, z2) ∈ S,

P
[
𝜓

∗
v = (z1, z2)|Yv(𝜓∗) = 1

]
= 𝜁(z1, z2)∑

(y
1
,y

2
)∈S 𝜁(y1, y2)

= 𝜁(z1, z2)
|Ψvû| . (6.18)

Moreover, as v ∈ Z ⊆ Z2, we have that log(|S|) ≤ log(1 + 𝜀′) + H(n, p, 𝑑) and therefore,

using also that v ∈ Z ⊆ Z1, we can apply Lemma 2.21 (with 2𝛽
′

replacing 𝛽
′
) to obtain

some set W∗
⊆ S = Trv

(
Gû
)

with the following properties (using (6.18) to unpack the

conclusions here):

(i)
∑
(w

1
,w

2
)∈W∗ 𝜁(w1,w2) ≥ (1 − 𝛽)|Ψvû|;

(ii) There exists some value 𝜁 such that for each (w1,w2) ∈ W∗
, we have that

𝜁(w1,w2) = (1 ± 𝛽)𝜁 ;

(iii) We have (1 − 𝛽)|S| ≤ |W∗| ≤ |S|.
Therefore we can estimate the size of Ψvû using (i) to (iii) in that order, as follows:

|Ψvû| ≤
(

1

1 − 𝛽

) ∑
(w

1
,w

2
)∈W∗

𝜁(w1,w2)

≤

(
1 + 𝛽
1 − 𝛽

)
|W∗|𝜁

≤

(
1 + 𝛽
1 − 𝛽

)
|S|𝜁 ≤ 2𝜁 (p𝑑)3n2

. (6.19)

In the last inequality, we used that |S| = |||Trv
(
Gû
)||| ≤ (1 + 𝜀

′)(p𝑑)3n2
since v ∈ Z ⊆ Z2.

We are now going to lower bound |Ψuv̂| in a similar way. However, the entropy

argument above only shows that 𝜁 is ‘well-behaved’ on S = Trv
(
Gû
)

but nothing

about Tru
(
Gû
)
. Using (Q.3) though, we can infer though that 𝜁 is ‘well-behaved’ on a

large part of F(v), as defined in (6.15). Recall also our definitions of FL(v) and FS(v).

Claim 6.9. We have 𝜁(y1, y2) ≥ (1 − 𝛽)𝜁 for all (y1, y2) ∈ FL(v).

Proof of Claim. By (Q.3), we have that

|||Trv
(
Gû
)
∩ FS(v)

||| ≥
𝑑

5p3n2

20
,

noting that Trv
(
Gû
)
∩ FS(v) = Trv(G) ∩ FS(v) due to the fact that FS(v) ⊂ E(Γû).

Furthermore, it follows from (iii) and the fact that v ∈ Z ⊆ Z2, that

|||Trv
(
Gû
)
⧵W∗||| ≤ 𝛽

|||Trv
(
Gû
)||| ≤ 2𝛽(p𝑑)3n2

.

Hence, as 𝛽 ≪ 𝑑, we can conclude that W∗ ∩ FS(v) ≠ ∅ and so

(1 − 𝛽)𝜁 ≤ min
(y

1
,y

2
)∈W∗

𝜁(y1, y2) ≤ max
(y

1
,y

2
)∈FS(v)

𝜁(y1, y2) ≤ min
(y

1
,y

2
)∈FL(v)

𝜁(y1, y2),
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ALLEN ET AL. 45

using (ii) in the first inequality. ▪

We now appeal to (Q.3) to lower bound the size of |Ψuv̂| as follows:

|Ψuv̂| =
∑

(y
1
,y

2
)∈Tru

(
Gû

)
𝜁(y1, y2)

≥

∑

(y
1
,y

2
)∈Tru

(
Gû

)
∩FL(v)

𝜁(y1, y2)

≥ (1 − 𝛽)𝜁 |||Tru
(
Gû
)
∩ FL(v)

|||
≥
𝜁𝑑

5p3n2

25
, (6.20)

where we used Claim 6.9. Putting (6.17), (6.19) and (6.20) together, we get that

|||Ψ
t
û,v̂(G)

||| ≥ |Ψuv̂| ≥ 𝜁𝑑

5p3n2

25
≥
𝑑

2

50
|Ψvû| ≥ 𝑑

2

100

|||Ψ
t
û,û(G)

|||,

as required.

It remains to verify that for G = Γp the statements in (Q.2) and (Q.3) hold with prob-

ability at least 1− n−K
. We start with (Q.2), which follows simply from Corollary 4.4 and

Lemmas 6.4 and 4.7. Indeed, from those results (using that
1

L
≪

1

K
) and a union bound,

with probability at least 1 − n−2K
, we have that |Z2| ≥ (1 − 𝜀′)n, |Z3| ≥ (1 − 2𝜀)n and

if (Q.1) holds in G = Γp then |Z1| ≥ (1 − 𝛽′)n. It then follows easily by our choice of

constants that the statement of (Q.2) holds in G = Γp with probability at least 1 − n−2K
.

For (Q.3), we will appeal to Lemma 4.6(ii). Note that for a fixed v ∈ V𝓁 ⧵ {u} the

value of 𝜁v(w1,w2) for (w1,w2) ∈ Vj
1

û × Vj
2

û does not depend on the random status of any

of the edges containing u or v. Indeed, our definition of 𝜁v counts only embeddings that

leave both u and v isolated. We also have that the random set of edges F(v), as defined

in (6.15), is independent of the random status of any edges adjacent to u or v. Consequently,

in the language of Lemma 4.6, we have that the random sets of edges FL(v) and FS(v)
are determined by (Γû)p (resp. (Γv̂)p). Therefore, for a fixed v ∈ V𝓁

, two applications of

Lemma 4.6(ii) (once for u and FL(v) and once for v and FS(v)) give that with probability

at least 1− n−(2K+1)
, we have that (Q.3) holds for v. Here we used that v ∈ Z ⊆ Z3 implies

that |FL(v)|, |FS(v)| ≥ 𝑑

5pn2

10
. Taking a union bound over all v ∈ V𝓁

, we have that (Q.3)

holds in G = Γp for all v ∈ V𝓁
, with probability at least 1 − n−2K

. A final union bound

gives that with probability at least 1 − n−K
, both (Q.2) and (Q.3) hold in G = Γp which

completes the proof. ▪

7 STABILITY FOR A FRACTIONAL VERSION OF THE
HAJNAL–SZEMERÉDI THEOREM

In this section we discuss some fractional variants of the Hajnal–Szemerédi theorem for clique fac-

tors (Theorem 2.1 with x = 0). We will use the results here in our proof reducing Theorem 1.2 to

Theorem 3.1 in Section 9. The starting point is to relax the notion of a Kk-factor to that of a frac-
tional Kk-factor. That is, for a graph G, a fractional Kk-factor in G is a weighting 𝜔 ∶ Kk(G) → R≥0
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46 ALLEN ET AL.

such that
∑

K∈Kk(G,u)
𝜔(K) = 1 for all u ∈ V(G). If all cliques K ∈ Kk(G) are assigned weights in {0, 1},

we recover the notion of a Kk-factor and so the definition of a fractional Kk-factor is more general.

However, from an extremal point of view, the same minimum degree condition is needed to force both

objects. Indeed, focusing on the case when n ∈ kN, the Hajnal–Szemerédi theorem (Theorem 2.1

with x = 0) gives that graphs G with n vertices and minimum degree at least

(
k−1

k

)
n have Kk-factors

and hence fractional Kk-factors whilst the same construction proving tightness for Kk-factors can be

used to show tightness for fractional factors, as we now show. Take a graph G to be a complete graph

with n ∈ kN vertices with a clique of size
n
k
+ 1 removed to leave an independent set of vertices I.

Therefore G has minimum degree 𝛿(G) =
(

k−1

k

)
n−1 and suppose for a contradiction that G has a frac-

tional Kk-factor given by a weight function 𝜔 ∶ Kk(G) → R≥0. Then we have that
∑

K∈Kk(G,u)
𝜔(K) = 1

for all u ∈ V(G) and note that for w ≠ w′ ∈ I, we have that Kk(G,w) ∩ Kk(G,w′) = ∅ as I is an

independent set. Therefore

∑
K∈Kk(G)

𝜔(K) ≥
∑
w∈I

∑
K∈Kk(G,w)

𝜔(K) ≥ |I| = n
k
+ 1

but we also have that

∑
K∈Kk(G)

𝜔(K) = 1

k
∑

u∈V(G)

∑
K∈Kk(G,u)

𝜔(K) = n
k
,

a contradiction. The results of this section, which may be of independent interest, will give stability for

this phenomenon, showing that if we avoid the construction detailed above (and other similar construc-

tions), by imposing that 𝛼(G) ≤
(

1

k
− 𝜂
)

n for some 𝜂 > 0, then a weaker minimum degree condition

of 𝛿(G) ≥
(

k−1

k
− 𝛾
)

n for some 𝛾 = 𝛾(𝜂) > 0, suffices to force a fractional Kk-factor.

We will use that the existence of a fractional Kk-factor can be encoded by a linear program whose

dual is a covering linear program which assigns weights to vertices such that every clique is sufficiently

‘covered’. The duality theorem from linear programming will then be used to transfer between the two

settings.

Theorem 7.1 (stability for fractional Hajnal–Szemerédi). For every 𝜂 > 0 and 2 ≤

k ∈ N, there is some 𝛾 > 0 such that the following is true for all n ∈ N. Let G be
an n-vertex graph with 𝛿(G) ≥

(
k−1

k
− 𝛾
)

n and 𝛼(G) <
(

1

k
− 𝜂
)

n. Then G contains a
fractional Kk-factor.

Proof. We will prove the theorem for 𝛾 = 𝜂

8
k(k!)2

. Observe that the existence of a fractional

Kk-factor is the same as saying that the value of the following packing linear program is
n
k
. We ask for non-negative real weights on the elements of Kk(G) with maximum sum,

subject to the condition that the total weight on copies of Kk at any given vertex is at most

1. The dual of this is the covering linear program in which we place nonnegative weights

on the vertices of G, and are aiming at minimising their sum, subject to the constraint that

the total weight on the vertices of each element of Kk(G) is at least 1. The strong duality

theorem for linear programs implies that these two linear programs have the same optimal

objective function value. So it is enough to show that the latter linear program has optimal

objective function value at least
n
k

(and thus exactly
n
k
), which we do inductively. More

precisely, we want to prove the following claim by induction on k. We define z2 = 3 and

inductively zk = 8k2zk−1 for k ≥ 3.
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ALLEN ET AL. 47

Claim 7.2. Given any k ≥ 2 and 𝛾 > 0, suppose that G is an n-vertex graph with
minimum degree at least

(
k−1

k
− 𝛾
)

n and no independent set of size
(

1

k
− zk𝛾

)
n. Sup-

pose c ∶ V(G) → R≥0 is any weight function such that for each Q ∈ Kk(G) we have∑
v∈Q c(v) ≥ 1. Then

∑
v∈V(G) c(v) ≥ n

k
.

Proof of Claim. It is convenient to let the vertices of G be v1, … , vn in order of decreasing

weight, that is, c(vi) ≥ c(vj) if i ≤ j. If
∑

i∈[n] c(vi) ≥ n
k

there is nothing to prove, so we can

assume the sum is less than
n
k
, and hence in particular that c(vn) < 1

k
. We next argue that

we can assume c(vn) = 0. Indeed, if c(vn) > 0, then we can define a new weight function

by c′(vi) ∶= 1

k
+ 𝜇
(

c(vi) − 1

k

)
for all i ∈ [n], where 𝜇 is chosen so that c′(vn) = 0. Here,

𝜇 > 1 because c(vn) < 1

k
. Observe that the vi remain ordered by weight with this new

weight function. We have

∑
i∈[n]

c′(vi) =
n
k
+ 𝜇
∑
i∈[n]

(
c(vi) −

1

k

)

=
∑
i∈[n]

c(vi) + (𝜇 − 1)

(∑
i∈[n]

c(vi) −
n
k

)
<

∑
i∈[n]

c(vi).

However, for every Q ∈ Kk(G),

∑
v∈Q

c′(v) =
∑
v∈Q

(
1

k
+ 𝜇
(

c(v) − 1

k

))
= 1 + 𝜇

(∑
v∈Q

c(v) − 1

)
≥ 1.

Therefore, c′ also satisfies the condition of Claim 7.2 and we thus can assume c(vn) = 0.

We are now in a position to prove the base case k = 2. Since vn has at least

(
1

2
− 𝛾
)

n
neighbours, and c(vn) = 0, we see that for each i such that vivn ∈ E(G), we have

c(vi) = 1. In particular, c(vi) = 1 for each i ≤
(

1

2
− 𝛾
)

n. Furthermore, the vertices

{vi ∶ i ≥ n
2
+ 2𝛾n} do not form an independent set, so there is an edge within this set. At

least one endpoint of this edge has weight at least
1

2
. As vertices are ordered by weight,

this implies that each vertex vi with
n
2
− 𝛾n < i < n

2
+2𝛾n has weight at least

1

2
. Summing,

we obtain weight at least
n
2

as desired.

Next, we prove the induction step; let k ≥ 3. We build a copy of Kk containing vn
as follows: we take u1 = vn, and then for each 2 ≤ i ≤ k − 2 in succession, we take

ui to be the common neighbour of u1, … , ui−1 with smallest weight. From the minimum

degree condition, when we choose ui there are at least n
(

1 − (i − 1)
(

1

k
+ 𝛾
))

common

neighbours to choose from; in particular, the common neighbourhood of all k− 2 vertices

we choose has size at least
2n
k
−(k−2)𝛾n. Now consider the last

(
1

k
− k(k − 1)𝛾

)
n of these

common neighbours. Since zk ≥ k(k− 1), they do not form an independent set, so contain

an edge uk−1uk. Since
∑k

i=1
c(ui) ≥ 1, and c(u1) = 0, one of these vertices has weight at

least
1

k−1
. In particular, c(vi) ≥ 1

k−1
whenever i ≤

(
1

k
+ (k − 1)2𝛾

)
n.

Now let c∗ ∶= c(vn∕k−(k−1)𝛾n), and let G′
denote the subgraph of G induced by vertices

vi with i ≥
(

1

k
+ (k − 1)2𝛾

)
n. If c∗ ≥ 1 then we have

∑
i∈[n]

c(vi) ≥
n
k
− (k − 1)𝛾n + 1

k − 1
⋅ k(k − 1)𝛾n > n

k

 10982418, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rsa.21209 by T

est, W
iley O

nline L
ibrary on [15/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



48 ALLEN ET AL.

and we are done; so we can assume c∗ < 1. If Q is any copy of Kk−1 in G′
, then Q

has a common neighbourhood in G of size at least
n
k
− (k − 1)𝛾n, and so in particular Q

extends to a copy of Kk in G by adding a vertex whose weight is at most c∗. Thus the

function c′(u) ∶= 1

1−c∗
c(u) on V(G′) is a weight function on V(G′) taking values in R≥0

and such that
∑

u∈Q c′(u) ≥ 1 for each Q ∈ Kk−1(G′). Furthermore every vertex in G′

has at most
n
k
+ 𝛾n non-neighbours in G, at most all of which are in G′

, so the minimum

degree of G′
is at least

(k−2)n
k

− ((k − 1)2 + 1)𝛾n. Since v(G′) = (k−1)n
k

− (k − 1)2𝛾n, we

have 𝛿(G′) ≥ k−2

k−1
v(G′) − 𝛾 ′v(G′) where 𝛾

′ ∶= 2k2
𝛾 . Furthermore G′

has no independent

set of size

1

k
n − zk𝛾n = 1

k
n − 4zk−1𝛾

′n ≤ 1

k − 1
v(G′) − zk−1𝛾

′v(G′).

We are therefore in a position to apply the induction hypothesis (that is, Claim 7.2 for k−1)

to G′
, with 𝛾

′
replacing 𝛾 . We conclude that

∑
u∈V(G′)

c′(u) ≥ 1

k − 1
v(G′) ≥

(
1 − 1

k
− (k − 1)2𝛾

)
n

k − 1
=
(

1

k
− (k − 1)𝛾

)
n

and so

∑
i∈[n]

c(vi) ≥ c∗
(

1

k
− (k − 1)𝛾

)
n + 1

k − 1
⋅ k(k − 1)𝛾n + (1 − c∗) ⋅

(
1

k
− (k − 1)𝛾

)
n

=
(

1

k
− (k − 1)𝛾

)
n + k𝛾n > n

k
,

as desired. ▪

This completes the proof by strong LP-duality. ▪

Note that we obtain from this proof a little more: the unique optimal cover is the uniform cover

(since after assuming c(vn) < 1

k
we eventually conclude the total weight is strictly bigger than

n
k
).

However we will not need this fact. We will also need only the k = 2 and k = 3 cases, but for future

use give the general result.

Next, we need some modifications of Theorem 7.1. First we want to be able to set (potentially

different but close to uniform) weights 𝜆(u) for each u ∈ V and obtain a weighting 𝜔 ∶ Kk(G) → R≥0

such that
∑

K∈Kk(G,u)
𝜔(K) = 𝜆(u) for all u ∈ V(G). The case of fractional Kk-factors corresponds to

setting 𝜆(u) = 1 for all u ∈ V(G).

Corollary 7.3. For every integer k ≥ 2 and every 𝜂 > 0, there is some 𝛾 > 0 such that
the following is true for all n ∈ N. Let G be an n-vertex graph with 𝛿(G) ≥

(
k−1

k
− 𝛾
)

n

and 𝛼(G) <
(

1

k
− 𝜂
)

n. Let 𝜆 ∶ V(G) → N be a weight function with 𝜆(u) = (1 ±

𝛾) 1

n

∑
v∈V(G) 𝜆(v) for all u ∈ V(G). Then there is a weight function 𝜔 ∶ Kk(G) → R≥0 such

that
∑

K∈Kk(G,u)
𝜔(K) = 𝜆(u) for all u ∈ V(G).

Proof. Fix some 2 ≤ k ∈ N and 𝜂 > 0. Choose 0 ≪ 𝛾 ≪ 𝛾

′
≪ 𝜂. Now let G and 𝜆 be as

in the statement of the corollary. We define an auxiliary graph H by blowing-up every v ∈
V(G) to an independent set of size 𝜆(v) (that is, every edge is replaced by a complete
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ALLEN ET AL. 49

bipartite graph). Then, with N ∶= v(H) =
∑

v∈V(G) 𝜆(v), we have 𝛿(H) ≥
(

k
k−1

− 𝛾 ′
)

N

and 𝛼(H) ≤
(

1

k
− 𝜂

2

)
N. Hence, we can apply Theorem 7.1 to H and obtain a weight

function 𝜔H ∶ Kk(H) → R≥0 such that
∑

K′∈Kk(G,x)
𝜔H(K′) = 1 for all x ∈ V(H). We

define 𝜔 ∶ Kk(G) → R≥0 by 𝜔(K) =
∑

K′∈Kk(H[K])
𝜔H(K′), where H[K] is the subgraph

of H induced by the blown-up vertices of K. This weight function 𝜔 satisfies the desired

conditions. ▪

We now extend yet further to guarantee an integer-valued weight-function 𝜔 ∶ Kk(G) → N. In

order for this to work, we need that our function 𝜆 assigns each vertex a sufficiently large weight. In

applications this will be guaranteed as our weights 𝜆will be proportional to the number of vertices n of a

host graph but Theorem 7.4 will actually be applied to the reduced graph R after applying the regularity

lemma to the host graph and hence the number of vertices of R (the parameter n in Theorem 7.4) will

be bounded by some constant.

Theorem 7.4 (stability for fractional Hajnal–Szemerédi with integer weights). For every
integer k ≥ 2 and every 𝜂 > 0, there is some 𝛾 > 0 such that the following is true for all n ∈
N. Let G be a connected n-vertex graph with 𝛿(G) ≥

(
k−1

k
− 𝛾
)

n and 𝛼(G) <
(

1

k
− 𝜂
)

n.

Let 𝜆 ∶ V(G) → N be a weight function such that 𝜆(u) =
(

1 ± 𝛾

2

)
1

n

∑
v∈V(G) 𝜆(v), 𝜆(u) ≥

n2k for all u ∈ V(G) and k divides
∑

v∈V(G) 𝜆(v). Then there is a weight function 𝜔 ∶
Kk(G) → N0 such that

∑
K∈Kk(G,u)

𝜔(K) = 𝜆(u) for all u ∈ V(G).

Note that for k ≥ 3 the requirement that G is connected is readily implied by the minimum degree

condition in this theorem.

Proof of Theorem 7.4. Suppose that k, 𝜂,G and 𝜆 are given as in the statement and suppose

that 𝛾 is small enough to apply Theorem 7.3 and 𝛾 ≪ 𝜂∕k. We will construct 𝜔 in three

steps. Define 𝜆
′ ∶ V(G)→ N by 𝜆

′(u) = 𝜆(u) − k|Kk(G, u)|nk ≥ 0. By Theorem 7.3, there

is some weight function 𝜔
′ ∶ Kk(G) → R≥0 such that

∑
K∈Kk(G,u)

𝜔

′(K) = 𝜆

′(u) for all

u ∈ V(G). We define 𝜔
′′ ∶ V(G)→ N0 such that, for each K ∈ Kk(G),

(i) 𝜔

′′(K) ∈
{⌊𝜔′(K) + knk⌋, ⌈𝜔′(K) + knk⌉}, and

(ii) k
∑

K∈Kk(G)
𝜔

′′(K) =
∑

v∈V(G) 𝜆(v).

Note that this is possible since by construction the unrounded sum satisfies

(ii) and since k divides
∑

v∈V(G) 𝜆(v). Furthermore, for each u ∈ V(G), we have∑
K∈Kk(G,u)

𝜔

′′(K) = 𝜆(u) ± nk−1
(since the unrounded sum would be exactly correct and

|Kk(G, u)| ≤ nk−1
).

Finally, we obtain 𝜔 from 𝜔

′′
via the following iterative process. As long as possible,

we identify pairs u, v ∈ V(G) such that
∑

K∈Kk(G,u)
𝜔

′′(K) > 𝜆(u) and
∑

K∈Kk(G,v)
𝜔

′′(K) <
𝜆(v). If k ≥ 3, we claim that there is a clique of size k−1 in the common neighbourhood of

u and v. Indeed, since 𝛿(G) ≥
(

k−1

k
− 𝛾
)

n, we can iteratively find a clique with vertices

u2, … , uk−2 in the common neighbourhood of u and v and the common neighbourhood of

u, v, u2, … , uk−2 has size at least ( 1

k
−(k−1)𝛾))n > ( 1

k
−𝜂)n. In particular, there is an edge

uk−1uk in there, completing the clique. Let Ku = {u, u2, … , uk} and Kv = {v, u2, … , uk},
and decrease the weight of Ku by 1 and increase the weight of Kv by 1. If k = 2, we do the

following: Since 𝛼(G) < n∕2, G is not bipartite and hence contains an odd cycle. Since

G is connected, this implies that there is a walk from u to v of even length (even number
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50 ALLEN ET AL.

of edges). We take a shortest such walk (in terms of edges) and note that every edge is

traversed at most twice by this walk. We decrease the weight of the edge at u and then

alternate increasing and decreasing the weight of the edges along the walk. Note that in

both cases the total weight at u decreases by 1 and the total weight at v increases by 1, and

the total weight at any other vertex remains unchanged.

Note that
∑

v∈V(G)
|||𝜆(v) −

∑
K∈Kk(v,G)

𝜔(K)||| decreases by 2 in every step. So this pro-

cess finishes after at most nk
steps. Clearly, at this time, we have

∑
K∈Kk(v,G)

𝜔(K) = 𝜆(v)
for all v ∈ V(G) and 𝜔(K) ≥ 𝜔′′(K) − 2nk ≥ 0 for all K ∈ Kk(G), completing the proof. ▪

8 TRIANGLE MATCHINGS

In this section, we detail some probabilistic lemmas which allow us to find a triangle matching, that is, a

collection of vertex-disjoint triangles, in various settings. These will be useful in proving Theorem 1.2

in Section 9. Recall that the size of a triangle matching is the number of triangles it contains and we

write V( ) for the set of vertices covered by a triangle matching  . The first lemma allows us to find

a triangle matching in Gp if G contains many triangles. We refer the reader to the Section 2.1 for any

notational conventions (for example, the definition of G[X1,X2,X3]).

Lemma 8.1. For all 𝜇 > 0 there exists C > 0 such that the following holds. Let k, n ∈ N,

p ≥ Cn−2∕3 and let G be an n-vertex graph.

(i) Assume that for every set X ⊆ V(G)with |X| ≥ 3k, G[X] contains at least 𝜇n3

triangles. Then, whp, Gp contains a triangle matching of size at least n
3
− k.

(ii) Assume that n0 ≥ k and V(G) = V1 ∪V2 ∪V3 is a partition into sets of size at
least n0 so that for every Xi ⊆ Vi with |Xi| ≥ k for all i ∈ [3], G[X1,X2,X3]
contains at least 𝜇n3 triangles. Then, whp, Gp contains triangle matching of
size at least n0 − k.

Proof. Let 𝜇 > 0 and set C = 50𝜇
−2

. Let p, k, n,G be given as in the statement. We will

deduce the lemma from the following claim.

Claim 8.2. The following holds whp for all X ⊆ V(G). If G[X] contains at least t ≥ 𝜇n3

copies of K3, then the number of triangles in Gp[X] is at least 1

2
p3t.

Proof of Claim. This is a straightforward application of Janson’s inequality (Lemma 2.3)

and the union bound. Note that the total number of choices of X is at most 2
n
. Fix one

such choice. The expected number of triangles in Gp[X] is p3t ≥ 𝜇p3n3
, and we have Δ ≤

2 max(p5n4
, p3n3). Hence Janson’s inequality tells us that the probability of having less

than
1

2
p3t triangles is at most

exp

(
− 𝜇

2p6n6

16 max(p5n4
, p3n3)

)
≤ exp

(
−𝜇

2

16
min(pn2

, p3n3)
)
≤ exp

(
−C𝜇2

16
n
)

and by our choice of C and the union bound, the claim follows. ▪

We only prove (i) as (ii) is similar. Suppose that  is a maximal collection of

vertex-disjoint triangles with | | < n
3
− k. Then X ∶= V(G) ⧵ V( ) has size at least 3k
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ALLEN ET AL. 51

but Gp[X] does not contain a triangle. Thus, the claimed result follows from the above

claim. ▪

The next lemma allows us to find triangles which cover a given small set of vertices, using edges

in specified places.

Lemma 8.3. For any 0 < 𝜇 <

1

100
, there exists C > 0 such that the following holds for

every n ∈ N and p ≥ Cn−2∕3(log n)1∕3
. Let G be an n-vertex graph, and let v1, … , v𝓁 ∈

V(G) be distinct vertices with 𝓁 ≤ 𝜇2n. For each i ∈ [𝓁], let Ei ⊆ Trvi (G) be a set of edges
that form a triangle with vi such that |Ei| ≥ 𝜇n2

. Moreover, suppose A1, … ,At ⊂ V(G) ⧵
{v1, … , v𝓁} are disjoint sets for some t ∈ N. Then, whp, there is a triangle matching  =
{T1, … ,T𝓁} in Gp such that for each i ∈ [𝓁] the triangle Ti consists of vi joined to an
edge of Ei and |Ak ∩ V( )| ≤ 12𝜇|Ak| + 1 for all k ∈ [t].

Proof. Given 0 < 𝜇 <

1

100
, we set C = 1000𝜇

−1
. We can assume p = Cn−2∕3(log n)1∕3

,

since the probability of any given collection of triangles of G appearing in Gp is monotone

increasing in p.

We use a careful step-by-step revealing argument and choose T1, … ,T𝓁 one at a time.

We will call an edge e ∈ E(G) alive if its random status is yet to be revealed. Given k ∈ [t]
and i ∈ [𝓁], say that Ak is full at time i if |Ak ∩ V({T1, … ,Ti−1})| ≥ 12𝜇|Ak|. Let Xi be

the union of the sets Ak that are full at time i. For each step i ∈ [𝓁] in succession, we

will reveal certain edges of Gp and then choose a triangle Ti among the edges revealed.

Specifically, we first reveal the random status of all edges in G adjacent to vi, which do not

go to v1, … , v𝓁 , Xi or a vertex of T1, … ,Ti−1. Let the edges amongst these that appear

in Gp be denoted by Si. We then reveal all alive edges of Ei which form a triangle with vi
using two edges of Si. From these edges we pick any that appears, fixing the resulting

triangle Ti, and move on to the next i.
Observe that by definition we do not reveal any edge of Gp twice; and if we successfully

choose a triangle at each step we indeed obtain the desired triangle matching. To begin

with, we argue that when we come to vi, most edges of Ei are potential candidates to be

in Ti. Note that any edge of Ei which is adjacent to any vj or Tj will not be a candidate;

there are at most 3𝜇
2n such vertices, which are adjacent to at most 3𝜇

2n2
edges of Ei. Any

edge adjacent to Xi is also not a candidate; we have |Xi| ≤ 3𝓁
12𝜇
≤

𝜇

4
n and hence there are at

most
𝜇

4
n2

edges adjacent to Xi. We also have that any candidate edge of Ei must be alive.

When we reveal edges at some vj, with probability at least 1−n−2
by Chernoff’s inequality

(Theorem 2.2), we reveal at most 2pn = 2Cn1∕3(log n)1∕3
edges, and hence we reveal at

most 4C2n2∕3
log

2∕3n edges of Ei in this step. Since there are at most 𝜇
2n steps, in total

we will have revealed less than n7∕4
edges of Ei whp. Note that any edge in Ei which has

not been ruled out for reasons outlined above, is a candidate at the beginning of step i, for

forming Ti with vi. Putting this together then, we have that whp, for each i there remains at

least
1

2
𝜇n2

candidate edges of Ei at the beginning of step i. We denote this set of candidate

edges by Fi.

When we reveal edges at vi, for each edge of Fi we keep the edges from vi to the

endpoints of Fi with probability p2
, and so the expected number of edges of Fi whose

ends are both adjacent to vi in Gp is p2|Fi| ≥ 1

2
p2
𝜇n2

. Now we want to apply Janson’s

inequality (Lemma 2.3): We have Δ ≤ p3n3
, which is tiny compared to the square of the

expectation, so by Janson’s inequality with probability at least 1 − n−2
, at least

1

4
p2
𝜇n2
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52 ALLEN ET AL.

edges of Fi are revealed to lie in NGp(vi). We now reveal which of these edges survive

in Gp; by Chernoff’s inequality (Theorem 2.2) and by our choice of C, with probability at

least 1 − n−2
, at least

1

8
p3
𝜇n2

of these edges survive in Gp, and in particular Ti exists.

Taking a union bound, the probability of failure at any step is o(1). ▪

The next lemma allows us to find a reasonably large triangle matching using a possibly sparse set

of edges, each of which extends to many triangles; we will use this to deal with nearly independent

sets which have size larger than
1

3
n. Recall that we denote by degG(e;X) the size of the common

neighbourhood of the endpoints of an edge e inside a set X. Recall also that given a set of edges E,

we will sometimes think of E as the graph HE ∶= (V(E),E) where V(E) denotes the set of vertices

contained in edges in E. We use notation like 𝛿(E) ∶= 𝛿(HE) and degE(v) ∶= degHE
(v). Furthermore,

given a set of vertices A ⊆ V(G), E[A] is used to denote the set of edges in E that are contained in A,

that is, E[A] ∶= {e ∈ E ∶ e ⊂ A}.

Lemma 8.4. For any 0 < 𝜇 <

1

1000
there exists C > 0 such that the following holds for

all n, 𝛿, 𝛿1, 𝛿2 ∈ N, every n-vertex graph G and every p ≥ Cn−2∕3(log n)1∕3
.

(i) Let X1,X2,X3 ⊂ V(G) be disjoint sets of size at least n
10

, and let E ⊆ E(G[X1])
be a set of edges such that degE(v) ≥ 𝛿 for all v ∈ X1 and degG(e;Xi) ≥ 𝜇n
for all e ∈ E and i = 2, 3. Let n2, n3 ∈ N with n2 + n3 ≤ min(𝛿, 𝜇5n). Then,
whp, there is a triangle matching  = {T1, … ,Tn

2
+n

3
} in Gp with ni triangles

consisting of an edge e ∈ E together with a vertex of Xi for each i = 2, 3.

(ii) Let X1,X2 ⊂ V(G) be disjoint sets of size at least n
10

. Let Ei ⊆ E(G[Xi]) be
sets of edges such that degEi

(v) ≥ 𝛿i for all v ∈ Xi and deg(e;X3−i) ≥ 𝜇n for
all e ∈ Ei and i ∈ [2]. Let ni ∈ N with ni ≤ min(𝛿i, 𝜇

5n) for each i ∈ [2].
Then, whp, there is a triangle matching  = {T1, … ,Tn

1
+n

2
} in Gp with ni

triangles consisting of an edge e ∈ Ei together with a vertex of X3−i for
each i ∈ [2].

Observe that, unlike other lemmas in this section, both cases of this lemma are very tight and we

cannot even guarantee more vertex-disjoint triangles in the underlying graph G. Indeed, this is the

case when we have complete unbalanced bipartite graphs. If the edges E have small maximum degree

however, the situation is somewhat easier as the following lemma shows and we will make use of this

in the proof of Lemma 8.4.

Lemma 8.5. For all 𝜇 > 0 there exists C > 0 such that the following holds for all n ∈ N,

every n-vertex graph G and every p ≥ Cn−2∕3(log n)1∕3
. Suppose that E is a subset of E(G)

with Δ(E) ≤ 𝜇n and 𝜇n ≤ |E| ≤ 𝜇

2n2
. Suppose in addition that for each edge e ∈ E

there is a given set Xe of size |Xe| ≥ 𝜇n consisting of vertices v ∈ V(G) ⧵ V(E) such
that e ∈ Trv(G). Then, whp, there is a triangle matching T1, … ,T𝓁 in Gp, where each Ti

consists of an edge e ∈ E together with a vertex of Xe, such that 𝓁 ≥ |E|
10𝜇n

.

Proof. Let 0 <

1

C
≪ 𝜇. We may assume that p = Cn−2∕3(log n)1∕3

and that n is large

enough for the following arguments. We will deduce the lemma from the following claim.

Claim 8.6. Whp the following is true for all X ⊂ V(G) with |X| ≤ |E|
𝜇n

. If |E[V(G) ⧵X]| ≥
|E|
2

and |Xe ⧵ X| ≥ 𝜇n
2

for all e ∈ E, then there is a triangle in Gp[V(G) ⧵ X] consisting of
an edge e ∈ E together with a vertex of Xe.
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ALLEN ET AL. 53

Proof of Claim. This is a straightforward application of Janson’s inequality and the

union bound. Note that the total number of choices of X is at most n|E|∕(𝜇n)
. Fix one

such choice. Let Y denote the number of suitable triangles in Gp[V(G) ⧵ X] and note

that 𝜆 ∶= E[Y] ≥ p3
𝜇|E|n
4
≥ C2

log(n) |E|
n

. Furthermore, we have Δ ≤ 2 max(p5|E|n2
, 𝜆) ≤

2 max( 4

𝜇

p2n𝜆, 𝜆) ≤ 2𝜆. Hence, by Janson’s inequality (see Lemma 2.3), the probability of

having less than
𝜆

2
triangles is at most

exp

(
− 𝜆

2

8Δ

)
≤ n−C|E|∕n

.

The claim now follows by taking a union bound and noting C ≫

1

𝜇

. ▪

Assume now the high probability event in the claim occurs and let T1, … ,T𝓁 be

a maximal triangle matching as in the statement of the lemma. Suppose for contra-

diction that 𝓁 <

|E|
10𝜇n

and let X be the set of vertices covered by T1, … ,T𝓁 . We

have |E[V(G) ⧵ X]| ≥ |E|− |X|𝜇n ≥ |E|
2

and |Xe ⧵ X| ≥ 𝜇n− 3|E|
10𝜇n

≥
𝜇n
2

for all e ∈ E, and

hence there is a suitable triangle in Gp[V(G) ⧵ X] which extends the triangle matching, a

contradiction. ▪

We are now ready to prove Lemma 8.4.

Proof of Lemma 8.4. Let 0 <
1

C
≪ 𝜇. We begin by proving (i). We may assume that 𝛿 ≤

𝜇

5n and that n is large enough for the following arguments.

Let G1,G2,G3 be independent copies of Gp∕3. Observe that G1∪G2∪G3 is distributed

like Gp′ for some p′ ≤ p and therefore it suffices to show that G1 ∪ G2 ∪ G3 contains our

desired triangle matching  whp. In what follows we will find  as the disjoint union of

three triangle matchings 1, 2 and 3. For i ∈ [3], the edges of Gi will be used to find the

triangles in i and we will reveal G1,G2 and G3 at different stages of our process, making

use of their independence.

Let B ∶= {v ∈ X1 ∶ degE(v;X1) ≥ 𝜇n}, and let S ∶= X1 ⧵ B. If |B| ≥ n2 + n3,

let 1 = 2 = ∅, n′
2
= n′

3
= 0, and move to the last stage of the process, in which we find 3.

Otherwise, fix n′
2
∶= min(n2+n3−|B|, n2) and n′

3
∶= n2+n3−|B|−n′

2
= max(0, n3−|B|).

In a first round of probability we find a triangle matching 1 of size n′
2

in G1, each triangle

containing an edge in E[S] and a vertex in X2. This triangle matching exists whp due to

Lemma 8.5. Indeed we have thatΔ(E[S]) ≤ 𝜇n (by the definition of S) and deg(e;X2) ≥ 𝜇n
for all e ∈ E[S]. It remains to estimate |E[S]|. For this, note that

|E[S]| ≥ 1

2
|S|(𝛿 − |B|)

≥
1

2

( n
10
− 𝛿
)
(n2 + n3 − |B|)

≥
n

40
(n2 + n3 − |B|) ≥ 𝜇n. (8.1)

Furthermore, if |E[S]| > 𝜇

2n2
then we can shrink E[S] to some subset having size

exactly 𝜇
2n2

. Applying Lemma 8.5 then gives a triangle matching of size at least t ≥ |E[S]|
10𝜇n

.
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54 ALLEN ET AL.

If E[S] was shrunk to have size 𝜇
2n2

, then t ≥ 𝜇

10
n ≥ n′

2
and if not, then

t ≥ n(n2 + n3 − |B|)
400𝜇n

≥ n2 + n3 − |B| ≥ n′
2
,

using (8.1). In either case we can pick a subtriangle matching 1 of the desired size n′
2
.

We now fix S′ = S ⧵ V(1). Similarly to the previous stage, we will use G2 to find

a triangle matching 2 of size n′
3

such that each triangle contains an edge in E[S′] and a

vertex in X3. We still clearly have thatΔ(E[S′]) ≤ 𝜇n and deg(e;X3) ≥ 𝜇n for all e ∈ E[S′].
Moreover, we have that

|E[S′]| ≥ |E[S]| − 𝜇n ⋅ 2n′
2
≥

( n
40
− 2𝜇n

)
(n2 + n3 − |B|) ≥ 𝜇n,

where we used (8.1) and the fact that 2n′
2

vertices of S were used in 1, each of which

has degree at most 𝜇n in E[S]. Therefore, as in the previous phase, Lemma 8.5 gives

the existence of at least n′
3

vertex-disjoint triangles in G3, each of which contain an edge

of E[S′] and a vertex in X3. From this, we choose our triangle matching 2 of size n′
3
.

In our final phase we find a triangle matching 3 in G3 to complete  = 1∪2∪3 as

desired. Let X′′i = Xi ⧵ (V(1 ∪ 2)) for i ∈ [3] and note that B ⊂ X′′
1

. Further, for i ∈ [2],
let n′′i = ni − n′i and note that each n′′i ≥ 0 and n′′

2
+ n′′

3
= min(|B|, n2 + n3). Pick

disjoint subsets Bi ⊂ B of size n′′i for each i = 2, 3. Since n′′
2
+ n′′

3
≤ n2 + n3 ≤ 𝛿 ≤

𝜇

5n, it follows from Lemma 8.3, that whp there is a triangle matching 3 of size n′′
2
+ n′′

3

in G3[X′′1 ∪ X′′
2
∪ X′′

3
] consisting of n′′i triangles which contain an edge in E[X′′

1
] and one

vertex in X′′i , for each i = 2, 3. Indeed, in applying Lemma 8.3, we can fix t = 0 (we do

not need to use the full extent of the lemma here) and for i = 2, 3 and v ∈ Bi, we choose a

collection of at least
𝜇

2n2

4
edges f in Trv(G) such that |f ∩X′′

1
| = |f ∩X′′i | = 1. These edges

exist as

degE(v;X′′1 ) ≥ degE(v;X1) − |V(1 ∪ 2)| ≥ 𝜇n − 4𝛿 ≥
𝜇n
2

and for each edge e ∈ E[X′′
1
], degG(e,X′′i ) ≥ 𝜇n − |V(1 ∪ 2)| ≥ 𝜇n

2
for i = 1, 2. To

conclude, we have that whp all three stages of the process above succeed and we have a

triangle matching  = 1 ∪ 2 ∪ 3 in Gp as in (i).
Part (ii) is similar to part (i). We begin again by noting that we can assume 𝛿i ≤ 𝜇

5n
for i = 1, 2. We will again find three triangle matchings 1, 2, 3 whose union will give

us our desired triangle matching  and we again use three independent copies G1,G2,G3

of Gp∕3, finding the triangles in i using the edges of Gi for i ∈ [3]. For convenience, let us

also fix 𝜇
′ = 𝜇

2
. Now for i = 1, 2, let Bi ∶= {v ∈ Xi ∶ degEi

(v;Xi) ≥ 𝜇′n} and if |Bi| ≥ ni,

then shrink Bi to have size ni (that is, take Bi to be a subset of {v ∈ Xi ∶ degEi
(v;Xi) ≥ 𝜇′n}

of size ni). Further, for i ∈ [2], let Si ∶= Xi ⧵ Bi and define n′i = ni − |Bi|. Let us assume

for now that n′
1
≤ n′

2
.

In G1, we now find 1, a triangle matching of size n′
1

with each triangle containing an

edge in E[S1] and a vertex of S2. If n′
1
= 0 there is nothing to prove here and in the case

that n′
1
≥ 1 (and so |B1| < n1), such a triangle matching exists whp due to Lemma 8.5

(applied with 𝜇
′

replacing 𝜇). Indeed, the verification of the conditions of Lemma 8.5 is

almost identical to our proof of the existence of 1 in part (i), noting that Δ(E1[S1]) ≤ 𝜇n
as we have removed all vertices in B1. One slight difference is that, for an edge e ∈ E1[S1]
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ALLEN ET AL. 55

we cannot use all of N(e;X2) to give the set Xe needed in Lemma 8.5. Indeed, we need to

discount vertices in B2 but as |B2| ≤ n2 ≤ 𝜇
5n and |N(e;X2)| ≥ 𝜇n, we can certainly have

at least 𝜇
′n vertices in N(e; S2).

Given that we succeed in finding 1, we now turn to finding 2 in G2. For this we

define S′i = Si ⧵ V(1) for i = 1, 2 and we aim to find n′
2

vertex-disjoint triangles, each

containing an edge in E2[S′2] and a vertex of S′
1
. If n′

2
= 0, then the existence of 2 is

immediate. For the case when n′
2
≥ 1, we again appeal to Lemma 8.5 (with 𝜇

′
replacing 𝜇).

Note that due to the fact that n′
2
≥ 1, we have that B2 contains all high degree vertices and

so, in particular, Δ(E2[S′2]) ≤ 𝜇′n. Also using this, we have that

|E[S′
2
]| ≥ |E[S2]| − |V(1) ∩ S2|𝜇′n
≥

1

2
(|X2| − |B2|)(𝛿2 − |B2|) − n′

1
𝜇

′n

≥
n

40
n′

2
− n′

1
𝜇

′n

≥ n
(

1

40
− 𝜇′
)

n′
2
≥ 𝜇

′n,

where in the last two inequalities, we used that n′
1
≤ n′

2
and that we are in the case that n′

2
≥

1. Finally, it is not hard to see that |N(e; S′
1
)| ≥ 𝜇′n for all e ∈ E2[S′2] and so the conditions

of Lemma 8.5 are indeed satisfied and whp we get our desired triangle matching 2. For

the above, we needed that n′
1
≤ n′

2
. In the case that n′

2
> n′

1
, we can run exactly the same

proof except that we first find 2 and then find 1 after.

Finally, we find 3 in G3 by applying Lemma 8.3. Indeed, similarly to our proof for

part (i), we fix S′′i = S′i ⧵ V(2) for i ∈ [2] and we know that for each i ∈ [2] and v ∈ Bi,

we have at least
𝜇

′2n2

8
edges f ∈ Trv(G) such that |f ∩ S′′i | = |f ∩ S′′

3−i| = 1. Therefore,

as |B1| + |B2| = n1 + n2 − n′
1
− n′

2
≤ 2𝜇

5n, Lemma 8.3 gives that whp, there exists a

triangle matching 3 in G3, of size |B1|+ |B2|, such that for each i ∈ [2] and v ∈ Bi, there

is a triangle in 3 containing v, some vertex in S′′i and a vertex in S′′
3−i. Altogether, we have

that whp, we can find all the triangle matchings i and  = 1 ∪ 2 ∪ 3 provides the

desired triangle matching, completing the lemma. ▪

9 REDUCTION

We are now in a position to prove Theorem 1.2, assuming Theorem 3.1. Our proof relies on the use

of the Regularity Lemma (Lemma 2.6), we refer the reader to Section 2.4 for the relevant defini-

tions. Before giving the details, let us briefly sketch the approach. Given G with n ∈ 3N vertices and

minimum degree at least
2

3
n, we separate three cases.

Our first case is that there is no set S of about
n
3

vertices such that G[S] has small maximum degree.

In this case, we apply the Regularity Lemma (Lemma 2.6) and observe that the (𝜀, 𝑑)-reduced graph R
has no large independent set. By the Hajnal–Szemerédi Theorem for K3-matchings (Theorem 2.1), we

find a large triangle matching  ∗ in R, and make the corresponding pairs of clusters super-regular by

removing a few vertices to obtain a subgraph T of G. If T were spanning in G, and the clusters were

balanced, we would be done by Theorem 3.1. To arrive at this scenario we need to remove a few more

triangles covering the vertices outside T (which we do using Lemma 8.3) and then further triangles to

balance the clusters of T (using Lemma 8.1). For the latter we use the k = 3 case of Theorem 7.4 to
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56 ALLEN ET AL.

find a fractional triangle factor which tells us where to remove triangles. This is the point where we

use the fact that G has no large sparse set. We obtain the following lemma, whose proof we defer to

Section 9.1. Note that this lemma shows that in the case that there is no large sparse set, we can reduce

the minimum degree necessary slightly.

Lemma 9.1 (no large sparse set). For every sufficiently small 𝜇 > 0 there exist C > 0

and 0 < 𝑑 ≤ 𝜇 such that the following holds. Let n ∈ 3N, p ≥ Cn−2∕3(log n)1∕3 and
suppose G is an n-vertex graph with 𝛿(G) ≥

(
2

3
− 𝑑

2

)
n such that there is no S ⊆ V(G) of

size at least
(

1

3
− 2𝜇

)
n with Δ (G[S]) ≤ 2𝑑n. Then whp Gp contains a triangle factor.

Our second case is that there is a set S of about
n
3

vertices such that G[S] has maximum degree at

most 2𝑑n, but there is no second such set in G−S. The idea here is that we will remove a few triangles

from G in order to obtain a subgraph of G which can be partitioned into sets X1,X2 of sizes |X2| =
2|X1| ≈ 2n

3
, such that all vertices of X1 are adjacent to almost all vertices of X2 and vice versa (here

Lemma 8.4 will be very useful). Note that, with this degree condition, X2 can be very close to the union

of two cliques of size about
n
3
; this leads to a ‘parity case’ in which we have to be very careful, which

is something of a complication. If we can arrange for the correct parities however, it will be easy to

split X1 into two sets, each of which induces a super-regular triple with one of the ‘near-cliques’ and

apply our Theorem 3.1. If we are not in the parity case, we will apply the Regularity Lemma to X2

and find an almost-spanning matching ∗
in the reduced graph R. We proceed similarly as in the

previous case, making these pairs super-regular, removing ‘atypical’ vertices and then balancing the

pairs. Here, we make sure that every triangle we remove has two vertices in X2 and one in X1 to keep

the right balance between the two parts. Finally we can partition X1 into smaller sets and form balanced

super-regular triples with the edges of∗
in order to apply our Theorem 3.1. We obtain the following

lemma, whose proof we defer to Section 9.3.

Lemma 9.2 (one large sparse set). For every sufficiently small 𝜇 > 0, there exist C > 0

and 0 < 𝜏, 𝑑 ≤ 𝜇 such that the following holds for all n ∈ 3N and p ≥ Cn−2∕3(log n)1∕3
.

Suppose G is an n-vertex graph with 𝛿(G) ≥ 2

3
n, and suppose S is a subset of V(G)

with |S| ≥ big( 1

3
−𝜏)n and Δ(G[S]) ≤ 𝜏n. Suppose further that there is no S′ ⊆ V(G)⧵S of

size at least
(

1

3
− 2𝜇

)
n with Δ

(
G[S′]

)
≤ 2𝑑n. Then whp Gp contains a triangle factor.

Our third and final case is that there are two vertex-disjoint sets S1, S2 each of which has size about
n
3

in G and small maximum degree. In this case G must be very close to a balanced complete tripartite

graph. We start by partitioning V(G) into sets X1, X2 and X3 of size around
n
3
, so that (X1,X2,X3) is

an (𝜀, 𝑑+, 𝛿)-super-regular triple, where 𝑑 is close to 1, but 𝛿 can be quite small (we need 𝛿 ≫ 𝜀 in order

to apply Theorem 3.1). We remove some carefully chosen vertex-disjoint triangles in order to balance

the Xi and to remove some ‘atypical’ vertices. This leaves us with a balanced (𝜀, 𝑑+)-super-regular

triple for some 𝑑 close to 1, and Theorem 3.1 finds the required triangle factor, giving the following

lemma, which is proved in Section 9.2.

Lemma 9.3 (two large sparse sets). There exist C, 𝜏 > 0 such that the following holds
for all n ∈ 3N and p ≥ Cn−2∕3(log n)1∕3

. Suppose G is an n-vertex graph with 𝛿(G) ≥ 2

3
n,

and suppose S1 and S2 are disjoint subsets of V(G)with |Si| ≥
(

1

3
−𝜏)n andΔ(G[Si]) ≤ 𝜏n

for i = 1, 2. Then whp Gp contains a triangle factor.

Before we give proofs of these three lemmas, we show how they imply Theorem 1.2.
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ALLEN ET AL. 57

Proof of Theorem 1.2. Choose 0 < 𝜇2 ≪ 𝜏3 ≪ 1 where 𝜏3 is chosen small enough to

apply Lemma 9.3. Let 𝜏2, 𝑑2 ≤ 𝜇2 be the constants returned by Lemma 9.2 with input 𝜇2

and choose 0 < 𝜇1 ≪ 𝜏2, 𝑑2. Finally, let 𝑑1 ≤ 𝜇1 be the constant returned by Lemma 9.1

with input 𝜇1 and choose 0 <

1

C
≪ 𝑑1. Let n ∈ 3N and let p ≥ Cn−2∕3(log n)1∕3

and

suppose that G is an n-vertex graph with 𝛿(G) ≥ 2n
3

.

If G contains no subset of size at least

(
1

3
− 2𝜇1

)
n vertices with maximum (induced)

degree at most 2𝑑1n, then by Lemma 9.1, Gp contains a triangle factor whp. We may there-

fore suppose G contains a subset S1 of vertices of size at least

(
1

3
− 2𝜇1

)
n ≥
(

1

3
− 𝜏2

)
n

with maximum degreeΔ(G[S1]) at most 2𝑑1n ≤ 𝜏2n. If there is no S2 ⊆ V(G)⧵S1 of size at

least

(
1

3
− 2𝜇2

)
n with maximum degree Δ(G[S2]) at most 2𝑑2n, then by Lemma 9.2, Gp

contains a triangle factor whp. We can therefore suppose that G contains a subset S2 dis-

joint from S1 of size at least

(
1

3
− 2𝜇2

)
n ≥
(

1

3
− 𝜏3

)
n with maximum (induced) degree

at most 2𝑑2n ≤ 𝜏3n. So by Lemma 9.3, Gp contains a triangle factor whp. ▪

The remainder of the section is devoted to proving the three lemmas.

9.1 Case: No large sparse set

In this section, we prove Lemma 9.1.

Proof of Lemma 9.1. Fix some 0 < 𝜇 ≪ 1 and choose 0 <
1

m
0

≪ 𝜀 ≪ 𝑑 ≪ 𝜇. Let M0 ≥

m0 be returned by Lemma 2.6 with input m0, 𝜀 and fix 𝛾 = 2

3
− 𝑑

2
and 0 <

1

C
≪

1

M
0

. Assume

also that n ≫ M0. Let p and G be as in the statement and let G1,G2,G3 be independent

copies of Gp∕3; we will show that G1 ∪ G2 ∪ G3 satisfies the desired properties whp.

We apply Lemma 2.6 to G, and obtain an (𝜀, 𝑑)-reduced graph R on m vertices

with m0 ≤ m ≤ M0 and minimum degree at least

(
2

3
− 𝑑

2
− 𝑑 − 2𝜀

)
m ≥

(
2

3
− 2𝑑

)
m.

Recall that we identify the vertex set of R as [m] with each i ∈ [m] corresponding to a

cluster Vi in the 𝜀-regular partition of V(G).

Claim 9.4. We have 𝛼(R) <
(

1

3
− 𝜇
)

m.

Proof of Claim. Suppose for a contradiction that R contains an independent set I of

size

(
1

3
− 𝜇
)

m. Now call an index i ∈ I bad if there are more than
√
𝜀m indices j ∈

[m]⧵{i} such that (Vi,Vj) is not 𝜀-regular. Due to the fact that the Vi form an 𝜀-regular par-

tition, we have that there are at most 2
√
𝜀m bad indices. Let I′ be the set obtained from I

after removing bad indices and so |I′| ≥
(

1

3
− 3𝜇

2

)
m. Now in

⋃
i∈I′ Vi there must exist at

least
𝜇

4
n vertices, each of whose degree into

⋃
i∈I′ Vi exceeds 2𝑑n, otherwise removing all

such vertices would leave a set S whose existence is forbidden in the lemma statement. By

averaging, there is some i∗ ∈ I′ such that
𝜇

4
|Vi∗ | of these vertices are in Vi∗ . Let Ui∗ ⊆ Vi∗

be this subset of high degree vertices. Now vertices of Vi∗ can have at most |Vi∗ | neigh-

bours in Vi∗ , and at most
√
𝜀m ⋅ n

m
≤
√
𝜀n neighbours in sets Vj such that j ∈ I and (Vi∗ ,Vj)

is not 𝜀-regular (as i∗ ∈ I′). So the vertices of Ui∗ all have at least
3𝑑

2
n neighbours in total

in sets Vj such that j ∈ I, j ≠ i∗ and (Vi∗ ,Vj) is 𝜀-regular. By averaging, there is one of these

sets Vj such that the density between Ui∗ and Vj exceeds
3

2
𝑑. But since I is independent,
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58 ALLEN ET AL.

the fact that (Vi∗ ,Vj) is 𝜀-regular implies that it has density less than 𝑑. This is a

contradiction. ▪

We apply the Hajnal–Szemerédi Theorem for K3-matchings (Theorem 2.1) to R, which

gives us a triangle matching  ∗ in R covering at least (1 − 13𝑑)m vertices. We denote

by T∗ ∶= V( ∗) the set of indices in triangles of  ∗. By Lemma 2.9, there are V ′
i ⊂ Vi

for each i ∈ T∗ such that |V ′
i | = ⌈(1 − 3𝜀)|Vi|⌉ and, for every triangle ijk ∈  ∗, the

triple (V ′
i ,V ′

j ,V ′
k) is (2𝜀, (𝑑 − 𝜀)+, 𝑑 − 3𝜀)-super-regular. Let T =

⋃
i∈T∗ V ′

i be the set of

vertices in G which are in a cluster V ′
i corresponding to a triangle of  ∗. Let X = V(G)⧵T .

Observe that |X| ≤ 𝜀n + 13𝑑n + 3𝜀n ≤ 14𝑑n. Let W ⊂ T be a set such that

(i) ||W ∩ V ′
i
|| =
(

1

2
± 1

20

)
n
m

for each i ∈ T∗,

(ii) degG(v;W) ≥
3

5
|W| for each v ∈ V(G), and

(iii) we have that degG(v;V ′
i ∩W) =

(
1

2
± 1

4

)
degG(v;V ′

i ) for each i ∈ T∗ and v ∈ V(G)
with degG(v;V ′

i ) ≥ 𝜀|V ′
i |.

Such a set W can be found by choosing each vertex of T independently with probabil-

ity
1

2
and applying Chernoff’s inequality (Theorem 2.2) and a union bound.

We now start building our triangle factor by covering X. For this, we will not use

vertices that belong to T ⧵W in order to maintain super-regularity properties.

Claim 9.5. Whp in G1, there is a triangle matching 1 ⊂ K3(G1[W∪X]) so that X ⊂ V(1)
and ||V(1) ∩ V ′

i
|| ≤ 50

√
𝑑|V ′

i | for all i ∈ T∗.

Proof of Claim. Let �̃� ∶= 4

√
𝑑 and enumerate X = {v1, … , v𝓁}, noting that 𝓁 ≤ �̃�2n.

For each i ∈ [𝓁], let Ei ∶= E(G[W]) ∩ Trvi(G). Note that, since deg(v;W) ≥ 3

5
|W| for

all v ∈ V(G), we have |Ei| ≥ �̃�n2
for all i ∈ [𝓁]. Finally, let Ai = V ′

i for each i ∈ T∗. The

claim now follows readily from Lemma 8.3. ▪

Let now V ′′
i = V ′

i ⧵ V(1) for each i ∈ T∗. We would like to apply Theorem 3.1 to

the super-regular triples (V ′′
i ,V ′′

j ,V ′′
k ) for each ijk ∈  ∗. However, these triples are not

necessarily balanced. The next claim corrects this.

Claim 9.6. Whp in G2, there is a triangle matching 2 ⊂ K3(G2[W ⧵V(1)]) so that |V ′′
i ⧵

V(2)| = ⌊ 9

10

n
m
⌋ for all i ∈ T∗.

Proof of Claim. The key idea in this proof is to use fractional factors to dictate how we

remove triangles in order to balance the parts. More specifically, we will apply our stability

theorem for the fractional Hajnal–Szemerédi theorem with integer weights (Theorem 7.4),

using that the reduced graph has large minimum degree and no large independent sets.

In detail, let R′ = R[T∗] and let 𝜆 ∶ T∗ → N be given by 𝜆(i) = |V ′′
i | − ⌊ 9

10

n
m
⌋. Note

that

(
1

10
− 60

√
𝑑

)
n
m
≤ 𝜆(i) ≤ ⌈ 1

10

n
m
⌉, and that

∑
i∈T∗ 𝜆(i) = n − 3|1| − 3| ∗|⌊ 9

10

n
m
⌋ is

divisible by 3. Also, we have that 𝛿(R′) ≥ 𝛿(R) − 13𝑑m ≥
(

2

3
− 15𝑑

)
|R′| and 𝛼(R′) ≤(

1

3
− 𝜇
)

m ≤
(

1

3
− 𝜇

2

)
|R′|. Hence, by Theorem 7.4 (and the fact that 𝑑 ≪ 𝜇), there is a

weight function 𝜔 ∶ K3(R′) → N such that for each i ∈ T∗ we have
∑

K∈K
3
(R′,i) 𝜔(K) =

𝜆(i). We claim that we can remove 𝜔(ijk) triangles from G2[V ′′
i ∩ W,V ′′

j ∩ W,V ′′
k ∩ W]

for each triangle ijk of R′, making sure that all our choices are vertex-disjoint. Indeed,
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ALLEN ET AL. 59

observe that for any choice of Xh ⊂ V ′′
h ∩ W such that |Xh| ≥ 𝑑

n
m

for h ∈ {i, j, k},
we have |K3(G[Xi,Xj,Xk])| ≥ 𝑑

6

10m3
n3

due to Lemma 2.11 and the (𝜀, 𝑑+) regularity

of G[Vi,Vj,Vk]. Furthermore, observe that |V ′′
i ∩ W| ≥ 2

5
⋅ n

m
for each i ∈ T∗. Hence,

Lemma 8.1 (ii) implies that whp there are
7

20
⋅ n

m
> 3 ⋅ ⌈ 1

10

n
m
⌉ vertex-disjoint triangles

in G2[V ′′
i ∩W,V ′′

j ∩W,V ′′
k ∩W] for each ijk ∈ K3(R′), so we can select the desired number

of triangles for each K ∈ K3(R′) one at a time. ▪

Let now V ′′′
i = V ′′

i ⧵ V(2) for all i ∈ T∗ and observe that we have

covered all vertices except for those in
⋃

i∈T∗ V ′′′
i . We claim that (V ′′′

i ,V ′′′
j ,V ′′′

k )
is (5𝜀, (𝑑∕2)+, 𝑑∕8)-super-regular for all ijk ∈  ∗. Indeed, this follows from the Slicing

Lemma (Lemma 2.7), and from deg(v;V ′′′
j ) ≥ deg(v;V ′

j ⧵W) ≥ 1

4
degG(v;V ′

j ) ≥
𝑑

8
|V ′

j | for

all v ∈ Vi and the analogous inequalities for other pairs. Finally, we apply Theorem 3.1

to each of these triples individually in G3 to obtain (whp) a triangle matching 3 covering

exactly
⋃

i∈T∗ V ′′′
i . ▪

9.2 Case: Two large sparse sets

Next, we deal with the case when G has two large sparse sets; that is, it looks similar to the extremal

complete tripartite graph. This is the easiest case; we will not need the regularity lemma.

Proof of Lemma 9.3. Choose 0 <
1

C
≪ 𝜏 ≪ 𝜌 ≪

1

1000
. Let n ∈ 3N be large enough for

the following arguments and let p ≥ Cn−2∕3(log n)1∕3
. Let G and sparse sets S1 and S2 be

given as in the statement. Let G1,G2,G3 be independent copies of Gp∕3. We will find a

triangle factor in G1 ∪ G2 ∪ G3.

Claim 9.7. There is a partition V(G) = X1 ∪ X2 ∪ X3 such that

(i) |Xi| =
(

1

3
± 𝜌6

)
n for all i ∈ [3],

(ii) deg(v;Xj) ≥ 𝜌n for all i ≠ j ∈ [3] and v ∈ Xi,

(iii) 𝑑(Xi,Xj) ≥ 1 − 𝜌6 for all 1 ≤ i < j ≤ 3,

(iv) For each i ∈ [3], if |Xi| ≥ n
3
, then deg(v;Xj) ≥ |Xj| − 4𝜌n for all v ∈ Xi

and j ∈ [3] ⧵ {i}.

Proof of Claim. For i ∈ [2], let Zi = {v ∈ V(G) ⧵ (S1 ∪ S2) ∶ deg(v; Si) ≤ 𝜌n}. Let Ui =
Si∪Zi for i ∈ [2] and U3 =

{
v ∈ V(G) ∶ deg(v; Si) ≥

(
1

3
− 2𝜌

)
n for each i ∈ [2]

}
. Note

that, since 𝛿(G) ≥ 2

3
n, Z1 and Z2 are disjoint and hence U1 and U2 are disjoint as well.

Furthermore, by definition, U3 is disjoint from U1 and U2. Let Z′ ∶= V(G)⧵(U1∪U2∪U3)
be the set of remaining vertices. Partition Z′ = Z′

1
∪ Z′

2
∪ Z′

3
so that Z′i = ∅ if |Ui| ≥ n

3

and |Ui| + |Z′i | ≤ n
3

otherwise. Finally, let Xi = Ui ∪ Z′i for all i ∈ [3]. Note that V(G) =
X1 ∪ X2 ∪ X3 is indeed a partition.

We will first show that the sets Z1,Z2 and Z′ are small. Let i ∈ [2]. Since |Si| ≥(
1

3
− 𝜏
)

n, each vertex of Si has at least

(
1

3
− 2𝜏

)
n non-neighbours in Si, and so at

most 2𝜏n non-neighbours outside Si. Therefore, the total number of nonedges between Si
and V(G)⧵ Si is at most 𝜏n2

(using here that we certainly have |Si| ≤ n
2

for i = 1, 2). Since

every v ∈ Zi has at least
n
4

non-neighbours in Si, this implies |Zi| ≤ 4𝜏n. Moreover, the

number of nonedges between U1 ∪ U2 and Z′ is at most 2𝜏n2 + (|Z1| + |Z2|)n ≤ 10𝜏n2
.
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60 ALLEN ET AL.

Observe that every v ∈ Z′ has at least 𝜌n non-neighbours in U1 ∪ U2 (otherwise it would

be in U3), and therefore |Z′| ≤ 𝜌

8n, by our choice of 𝜏. We now show that this implies

condition (i). Indeed, we have that |S1|, |S2| =
(

1

3
± 𝜏
)

n where the lower bounds are

directly from our assumption and the upper bounds are due to the fact that every vertex in Si

has

(
2

3
− 𝜏
)

n neighbours outside of Si for i = 1, 2. For each i, we add at most (4𝜏 + 𝜌8)n

vertices to Si to obtain Xi and so we have that |Xi| =
(

1

3
± 𝜌7

)
n for i = 1, 2. Finally, the

bounds on |X3| can be deduced from the fact that the Xi partition V(G).
Furthermore, for each v ∈ Z′, we have deg(v; Si) ≥ 𝜌n since v ∉ Zi for i ∈ [2], and

deg(v;U3) ≥ 𝜌n for otherwise v would be in U3. Clearly, we also have that deg(v;Xj) ≥
𝜌n for all i ∈ [2], j ∈ [3] ⧵ {i} and v ∈ Xi and so (ii) holds. Moreover, we

have deg(v;Xi) ≥ |Xi|−2𝜏n for all v ∈ S1 and i = 2, 3 as v already has at least

(
1

3
− 2𝜏

)
n

non-neighbours in S1. Since |Z1 ∪ Z′
1
| ≤ 𝜌7n, this implies 𝑑(X1,Xi) ≥ 1 − 𝜌6

for i = 2, 3.

Similarly 𝑑(X2,X3) ≥ 1 − 𝜌6
.

Finally, let i, j ∈ [3] be distinct. If |Xi| ≥ n
3
, then Xi ∩ Z′ = ∅ by construction. Now

if i = 1 or i = 2, then it is clear that deg(v;Xj) ≥ |Xj|−4𝜌n for all v ∈ Xi as v as deg(v;Xi) ≤
2𝜌n and so v already has many non-neighbours in Xi (considering the size of Xi given

in (i)). If i = 3, then for any v ∈ Xi, we have that deg(v;Xj) ≥ deg(v; Sj) ≥
(

1

3
− 2𝜌

)
n ≥

|Xj| − 4𝜌n. This establishes (iv). ▪

We now perform a stage of removing some vertex-disjoint triangles in order to obtain

a balanced tripartite graph.

Claim 9.8. Whp in G1, there is triangle matching 1 ⊂ K3(G1) so that |X1 ⧵ V(1)| =
|X2 ⧵ V(1)| = |X3 ⧵ V(1)| ≥ ( 1

3
− 𝜌6)n.

Proof of Claim. If all three sets X1,X2,X3 have size exactly
n
3
, we are done. Otherwise,

one or two of these sets has size exceeding
n
3
.

Case 1. Assume first that only one set exceeds
n
3

in size and, without loss of generality,

this set is X1. Let n2 ∶= n
3
− |X3| and n3 ∶= n

3
− |X2|, and let E = E(G[X1]). Observe

that 𝛿(E) ≥ |X1| − n
3
= n2 + n3. Furthermore, we have deg(e;Xi) ≥ |Xi| − 10𝜌n ≥ n

4
for

both i = 2, 3. Therefore, by Lemma 8.4 (i), there is a triangle matching 1 of size n2 + n3

in G1 such that the triangles in 1 all have two vertices in X1, n2 of them have their third

vertex in X2, and n3 of them have their third vertex in X3. We then have |X1 ⧵ V(1)| =
|X2 ⧵ V(1)| = |X3 ⧵ V(1)| = 2n

3
− |X1| ≥ ( 1

3
− 𝜌6)n, as claimed, by our definitions of n2

and n3.

Case 2. Assume now that there are two sets (say X1 and X2) exceeding
n
3

in size.

For i ∈ [2], let ni ∶= |Xi| − n
3

and Ei = E(G[Xi]). Observe that, for i ∈ [2], 𝛿(Ei) ≥ ni
and deg(e;X3−i) ≥ |X3−i| − 10𝜌n ≥ n

4
for all e ∈ Ei. Therefore, by Lemma 8.4 (ii),

there is a triangle matching 1 of size n1 + n2 in G1, with n1 triangles having two ver-

tices in X1 and one in X2, and n2 triangles having two vertices in X2 and one in X1.

Therefore, we have |X1 ⧵ V(1)| = |X2 ⧵ V(1)| = |X3 ⧵ V(1)| = |X3| ≥ ( 1

3
− 𝜌6)n, as

claimed. ▪

Let now X′i = Xi ⧵ V(1) and observe that |X′
1
| = |X′

2
| = |X′

3
|. Define

Y ′i ∶=
{

v ∈ X′i ∶ deg(v;X′j ) ≤
(

1 − 𝜌

2

)
|X′j | for some j ∈ [3] ⧵ {i}

}
.
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ALLEN ET AL. 61

Since 𝑑(X′i ,X′j ) ≥ 1 − 4𝜌
6

for all 1 ≤ i < j ≤ 3, we have ||Y ′i || ≤ 4𝜌
5n for each i ∈ [3].

Furthermore, for each i ∈ [3] and vertex v ∈ Y ′i there are at least
1

8
𝜌

2n2
triangles of G

containing v and one vertex in each X′j ⧵ Y ′j for j ∈ [3] ⧵ {i}. Indeed, we have that

deg(v;X′j ⧵ Y ′j ) ≥ deg(v;Xj) − 2|V(1)| − |||Y
′
j
||| ≥

3𝜌

4
n,

for each j ∈ [3] ⧵ {i} =∶ {j1, j2}. Due to the defining condition of the Y ′j , we then have

that for each x ∈ N(v;X′j
1

⧵ Y ′j
1

), we have that deg(v, x;X′j
2

⧵ Y ′j
2

) ≥ 𝜌

4
n. This implies the

claimed lower bound on the number of triangles containing v ∈ Y ′i .

By applying Lemma 8.3 (with t = 0), whp in G2, we can find a triangle matching 2 ⊂

K3(G2) with each triangle using one vertex from each part and such that Y ′
1
∪ Y ′

2
∪ Y ′

3
⊂

V(2) ⊂ X′
1
∪ X′

2
∪ X′

3
and |V(2)| ≤ 3(|Y ′

1
| + |Y ′

2
| + |Y ′

3
|) ≤ 𝜌4n.

Let now X′′i ∶= X′i ⧵V(2) for each i ∈ [3] and observe that |X′′
1
| = |X′′

2
| = |X′′

3
| ≥ ( 1

3
−

2𝜌
4)n. Furthermore, (X′′

1
,X′′

2
,X′′

3
) is (
√
𝜌, (1 − 𝜌)+)-super-regular by Lemma 2.10. Hence,

by Theorem 3.1, whp there is a triangle matching 3 in G3 covering the X′′i . Together

with 1 and 2 this gives a full triangle factor in Gp. ▪

9.3 Case: One large sparse set

Finally, we deal with the second case sketched in the discussion at the beginning of Section 9, when

there is one large sparse set but not a further disjoint one. We will use several of the ideas from the

previous two lemmas, and so will abbreviate the details in places.

Proof of Lemma 9.2. Fix some 0 < 𝜇 ≪ 1 and choose 0 <
1

m
0

≪ 𝜀 ≪ 𝑑 ≪ 𝜇. Let M0 ≥

m0 be returned by Lemma 2.6 with input m0, 𝜀 and fix 0 <
1

C
≪ 𝜏 ≪ 𝜌 ≪

1

M
0

. Assume

that n ∈ 3N is large enough for the following arguments. Let p, G and S be as in the

statement of the lemma and let G1, … ,G5 be independent copies of Gp∕5. We will show

that G1 ∪ … ∪ G5 contains a triangle factor whp.

We begin with a claim that gives us a lot of structure. For 𝜂 > 0 we will call a set X ⊆

V(G) 𝜂-strongly connected if e(X′,X ⧵ X′) ≤ |X|2
4
− 𝜂n2

for all X′ ⊆ X, where we denote

by e(X,Y) = |X||Y| − e(X,Y) the number of nonedges between X and Y . (This definition

might appear somewhat strange now but will assure that the reduced graph in this proof is

connected.) Furthermore, we say that X is 𝜂-close to complete if e(G[X]) ≥
(

1

2
− 𝜂
)
|X|2

and deg(v;X) ≥ 1

10
|X| for all v ∈ X.

Claim 9.9. Whp there is a triangle matching 1 in G1∪G2 and disjoint sets X1,X2 ⊂ V(G)
so that

(i) X1 ∪ X2 = V(G) ⧵ V(1) and |X1| = |X
2
|

2
=
(

1

3
± 𝜌
)

n,

(ii) deg(v;X3−i) ≥ (1 − 4𝜌)|X3−i| for all i ∈ [2] and v ∈ Xi,

(iii) X2 is 8𝑑-strongly connected or there is a partition X2 = X2,1 ∪ X2,2 so that,
for each j ∈ [2], we have that |X2,j| ≥ n

4
is even and X2,j is 200𝑑-close to

complete.

Proof of Claim. Let Y1 = {v ∈ V(G) ⧵ S ∶ deg(v; S) ≤ 𝜌n}. Let U1 = S ∪ Y1 and U2 =
V(G) ⧵ U1. With a similar (and simpler) proof to that of Claim 9.7, one can show that
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62 ALLEN ET AL.

(P1) deg(v;U2) ≥ |U2| − 2𝜌n for all v ∈ U1 and deg(v;U1) ≥ 𝜌n for all v ∈ U2,

(P2) |U1| = ( 1

3
± 𝜌6)n and |U2| = ( 2

3
± 𝜌6)n, and

(P3) 𝑑(U1,U2) ≥ 1 − 𝜌6
.

Let 𝜎 = 10𝑑 and let U2 = U2,1 ∪ U2,2 be the partition of U2 which max-

imises e(U2,1,U2,2). Throughout this proof, we will have to distinguish between two cases:

either U2 is 𝜎-strongly-connected (this we will call the connected case from now on)

or e(U2,1,U2,2) ≥ |U
2
|2

4
−𝜎n2

(which we call the disconnected case). Although the process

is very similar for both, we will handle them separately, starting with the disconnected

case.

The disconnected case. We claim that

(Q1) |U2,j| =
(

1

3
± 2𝜎

)
n and e(U2,j) ≥ 1

2
|U2,j|2 − 2𝜎n2

for both j ∈ [2], and

(Q2) deg(v;U2,j) ≥ n
10

for any j ∈ [2] and v ∈ U2,j.

Indeed, (Q1) follows from the case assumption and the fact that 𝛿(G) ≥ 2n
3

, and (Q2)

since U2,1,U2,2 are chosen to maximise nonedges in between (otherwise, moving a vertex

violating (Q2) to the other set increases the count).

In a first round of probability (G1), our goal is to balance the sizes. Assume first

that |U1| > n
3
. Let n2 = 0 if ||U2,1

|| is even and n2 = 1 otherwise, and let n3 =
|U1| − n

3
− n2 ≥ 0. Let E = E(G[U1]), and observe that 𝛿(E) ≥ n2 + n3. Furthermore, we

have deg(e;U2,j) ≥ |U2,j| − 10𝜌n ≥ n
4

for both j ∈ [2] by (P1) and (Q1). Therefore, by

Lemma 8.4 (i), whp there is a triangle matching 
′

1
of size n2 + n3 = |U1| − n

3
in G1 with

each triangle having two vertices in U1 and one vertex in U2 (n2 have their third vertex

in U2,1 and n3 have their third vertex in U2,2). Let U′
i = Ui ⧵V( ′

1
) and U′

2,j = U2,j ⧵V( ′
1
)

for i, j ∈ [2]. By construction, we have |U′
2
| = 2|U′

1
| = 4n

3
− 2|U1| ≥ 2

(
1

3
− 𝜌5

)
n

and |U′
2,j| is even for both j ∈ [2].

Assume now that |U2| > 2n
3

. Observe that for each j ∈ [2] and X ⊆ U2,j of

size |X| ≥ n
9
, we have |K3(G[X])| ≥ n3

1000
by (Q1). Thus, by Lemma 8.1 (i), there are tri-

angle matchings of size
n

15
in each of G1[U2,j] whp for both j = 1, 2. Thus, we can pick a

triangle matching 
′

1
of exactly

n
3
− |U1| from these, again taking either one or no triangle

in U2,1 depending on its parity. By construction, we then have |U′
2
| = 2|U′

1
| = 2|U1| ≥

2

(
1

3
− 𝜌5

,

)
n and |U′

2,j| is even for both j ∈ [2] (where U′
i and U′

2,j are defined as above

by removing the vertices of 
′

1
from the sets Ui and U2,j).

Finally it remains to deal with the case that |U2| = 2|U1| = 2n
3

. Note that as |U2|
is even in this case, we have that |U2,1| and |U2,2| have the same parity. If they are both

even, there is no need to take any triangles in 
′

1
and we can move to the next stage.

However, if they are odd in size, we have to do a little more work. We say a triangle T
is transversal if |V(T) ∩ U1| = |V(T) ∩ U2,1| = |V(T) ∩ U2,2| = 1. We aim to prove

the existence of a single transversal triangle in G1. In order to do this, we first show that

there are at least 𝜏n2
transversal triangles in G. Indeed, without loss of generality suppose

that |U2,1| ≤ |U2,2| and let Y0 ⊆ U2,1 be the set of vertices y in U2,1 such that deg(y;U1) ≥
(1− 𝜌2)|U1|. Due to (P3), we have that |Y0| ≥ n

10
. Now for each vertex y ∈ Y0, as |U2,1| ≤

|U2,2| we have that y has some neighbour z in U2,2 and due to (P1) and the fact that y ∈
Y0, we have that deg(y, z;U1) ≥ 𝜌

2
n and hence y is contained in at least

𝜌

2
n transversal

triangles. Considering all y ∈ Y0 thus gives the existence of 𝜏n2
transversal triangles in G.
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ALLEN ET AL. 63

A simple application of Janson’s inequality (Lemma 2.3) gives that whp at least one of

these transversal triangles survives in G1 and so taking 
′

1
to be this single triangle, U′

i =
Ui ⧵ V( ′

1
) for i ∈ [2] and U′

2,j = U2,j ⧵ V( ′
1
) for j ∈ [2], we again have in this case

that |U′
2
| = 2|U′

1
| = 2(|U1| − 1) ≥ 2

(
1

3
− 𝜌5

)
n and |U′

2,j| is even for both j ∈ [2].
In a second round of probability (G2), we will remove ‘atypical’ vertices in U′

2
. From

this point onwards, we will only remove triangles with one vertex in U′
1

and two vertices

in U′
2,j for some j ∈ [2], thus maintaining the right balance between U′

1
and U′

2
and the

parity of U′
2,1

and U′
2,2

. For j ∈ [2], let Y2,j ∶= {v ∈ U′
2,j ∶ deg(v;U′

1
) ≤ |U′

1
| − 𝜌

2
n}

and for each v ∈ Y2,j let Ev ∶= {u1u2 ∶ u1 ∈ U′
1
, u2 ∈ U′

2,j ⧵ Y2,j, vu1u2 ∈ K3(G)}.
It follows from (P3) (and counting nonedges between U1 and U2) that |Y2,j| ≤ 2𝜌

5n for

both j ∈ [2]. Furthermore, (P1) and (Q2) imply that |Ev| ≥ (𝜌 − 𝜌

2
)n ⋅
(

1

10
− 𝜌4

)
n ≥ 𝜌2n

for all v ∈ Y2,1 ∪ Y2,2. Thus, by Lemma 8.3, whp there is a triangle matching 
′′

1
of size at

most 4𝜌
5n in G2[U′

1
∪ U′

2
] of the desired form (each triangle having one vertex in U′

1
and

two vertices in U′
2,j for some j ∈ [2]) such that Y2,1∪Y2,2 ⊂ V( ′′

1
). Let 1 =  ′1 ∪ ′′1

, Xi =
U′

i ⧵ V( ′′
1
) and X2,j = U′

2,j ⧵ V( ′′
1
) for each i, j ∈ [2]. These resulting sets have all the

desired properties (i)-(iii).
The connected case. This case is very similar but less technical since we do not have

to worry about the sets U2,1 and U2,2. We will therefore skip some details.

In a first round of probability (G1), our goal is to balance the sizes. The case |U1| > n
3

is completely analogous to the disconnected case and we find a triangle matching 
′

1
of

size |U1| − n
3

in G1 with each triangle having two vertices in U1 and one vertex in U2.

Let U′
i = Ui ⧵ V( ′

1
) for i ∈ [2]. By construction, we have |U′

2
| = 2|U′

1
| = 4n

3
− 2|U1| ≥

2

(
1

3
− 𝜌5

)
n.

Assume now that |U2| ≥ 2n
3

. Observe that for every set Z ⊂ U2 with |Z| ≤ 𝑑n and

every v ∈ U2 ⧵ Z, we have deg(v;U2 ⧵ Z) ≥
(

1

3
− 𝑑
)

n and thus there are at least 𝑑n2

edges in N(v;U2 ⧵ Z). Indeed due to the fact that there is no set S′ ⊆ X2 with |S′| ≥(
1

3
− 2𝜇

)
n and Δ(G[S′]) ≤ 2𝑑n, we can find 𝑑n2

edges by repeatedly removing high

degree vertices from N(v;U2 ⧵ Z) and taking the edges adjacent to them. Thus there are

at least
𝑑

10
n3

triangles in G[U2 ⧵ Z]. It follows from Lemma 8.1 (i) that whp there are

at least
𝑑

3
n vertex-disjoint triangles in G1[U2]. Let 

′
1

be a triangle matching consisting

of exactly
n
3
− |U1| of these and let U′

i = Ui ⧵ V( ′
1
) for i = 1, 2. By construction, we

have |U′
2
| = 2|U′

1
| = 2|U1| ≥ 2

(
1

3
− 𝜌5

)
n.

The process of removing bad vertices v in U′
2

such that deg(v;U′
1
) ≤ ||U′

1
|| − 𝜌

2
n is

analogous to (and simpler than) the disconnected case and an application of Lemma 8.3

gives a triangle matching 
′′

1
⊂ K3(G2[U′

1
∪U′

2
]) containing all the bad vertices and such

that defining 1 =  ′1 ∪ ′′1
and Xi = U′

i ⧵V( ′′
1
) for i = 1, 2, gives the required conditions

for the claim. Here in order to verify condition (iii), we use that for any X ⊂ X2, we have

e(X,X2 ⧵ X) ≤ e(X,U2 ⧵ X) ≤ |U2|2
4

− 10𝑑n2
≤
|X2|2

4
− 8𝑑n2

,

using that |U2| − |X2| ≤ 3|V(1)| ≤ 𝜌n. ▪

The disconnected case now follows without much more work, as we show now. Let

us first remove more atypical vertices of our near-cliques. For j ∈ [2], let Z2,j ∶= {v ∈
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64 ALLEN ET AL.

X2,j ∶ deg(v;X2,j) ≤ |X2,j| −
√
𝑑n}. Observe that, since X2,j is 200𝑑-close to com-

plete, by counting nonedges in X2,j we have |Z2,j| ≤ 10

√
𝑑n for both j ∈ [2]. Note that

any two vertices in X2 have at least
n
4

common neighbours in X1 by Claim 9.9 (ii) and

for j ∈ [2], any vertex v ∈ X2,j has deg(v;X2,j ⧵ Z2,j) ≥ n
50

by Claim 9.9 (iii) and our

upper bound on |Z2,j|. Hence it follows from Lemma 8.3 that whp (in G3) there is a tri-

angle matching 2 of size at most 20

√
𝑑n in G3[X1 ∪ X2] with each triangle having one

vertex in X1 and two vertices in X2 (both of which are in the same X2,j) covering Z2,1∪Z2,2.

Let X′i = Xi ⧵ V(2) and X′
2,j = X2,j ⧵ V(2) for each i, j ∈ [2]. Let X′

1
= X′

1,1
∪ X′

1,2
be

a partition such that |X′
1,j| = 1

2
|X′

2,j| for each j ∈ [2] (note that here the parity of |X′
2,j| is

important). Now, for both j ∈ [2], X′
1,j ∪ X′

2,j induces a

(
𝑑

1∕6
,

(
1 − 𝑑1∕3

)+)
-super-regular

triple (after splitting X′
2,j arbitrarily in two sets of equal sizes) by Lemma 2.10. There-

fore, by Theorem 3.1, whp there are vertex-disjoint triangles in G4 covering the remaining

vertices.

Thus, we may assume that X2 is 8𝑑-strongly connected. This case is very similar to

the proof of Lemma 9.1. Let ni ∶= |Xi| for both i ∈ [2] and recall that n2 = 2n1. We

apply Lemma 2.6 to G[X2] with input m0, 𝜀 and fixing 𝛾 ∶= 1

2
− 𝜀 to get an 𝜀-regular

partition X2 = V0 ∪ V1 ∪ … ∪ Vm for some m0 ≤ m ≤ M0. Let R be the corre-

sponding (𝜀, 𝑑)-reduced graph (seen as a graph on [m]) and observe that we have 𝛿(R) ≥(
1

2
− 2𝑑

)
m and, as in the proof of Lemma 9.1, we have 𝛼(R) <

(
1

2
− 𝜇
)

m. It is

well-known that every graph H contains a matching of size min{𝛿(H), ⌊ v(H)
2
⌋}. Indeed,

if v(H) is even this is the k = 2 case of Theorem 2.1, whilst if n is odd this can be derived

from Theorem 2.1 by adding a vertex to H that is adjacent to all other vertices. We con-

clude that R contains a matching ∗
of size

(
1

2
− 2𝑑

)
m; let R′ be the subgraph of R

induced by M∗ ∶= V(∗). Note that 𝛿(R′) ≥
(

1

2
− 6𝑑

)
m and we claim that R′ is con-

nected. Indeed, if not, there is a set B ⊂ V(R′) such that e(B,V(R′) ⧵ B) = 0. Observe

that |B|, |V(R′) ⧵ B| ≥ 𝛿(R′) ≥
(

1

2
− 6𝑑

)
m. Let now X′ ∶=

⋃
h∈B Vh and observe

that |X′| =
(

1

2
± 20𝑑

)
|X2|. Furthermore, we have e(X′,X2 ⧵ X′) ≤ (𝑑 + 4𝑑 + 2𝜀)n2

and

consequently

e(X′,X2 ⧵ X′) ≥|X′||X2 ⧵ X′| − 6𝑑n2
≥

(|X2|
2

+ 20𝑑|X2|
)
⋅
(|X2|

2
− 20𝑑|X2|

)

− 6𝑑n2
>

|X2|2
4

− 8𝑑n2
,

contradicting the fact that X2 is 8𝑑-strongly connected.

By Lemma 2.9, there are V ′
h ⊂ Vh for each h ∈ M∗

such that |V ′
h| = ⌈(1−2𝜀)|Vh|⌉ and,

for every edge h𝓁 ∈∗
, the pair (V ′

h,V ′
𝓁) is (2𝜀, (𝑑 − 𝜀)+, 𝑑 − 2𝜀)-super-regular. Let Y =

X2 ⧵
⋃

h∈M∗ V ′
h be the set of vertices in X2 which are not in a cluster V ′

h corresponding to a

vertex in an edge of∗
. Observe that |Y| ≤ 2𝜀n+𝜀n+4𝑑n ≤ 5𝑑n, where the terms in the

upper bound come from bounding the number of vertices in sets Vh ⧵ V ′
h for h ∈ M∗

, the

number of vertices in V0 and number of vertices in a set Vh for h ∈ [m]⧵M∗
, respectively.

Let W ⊂ X2 ⧵ Y be a set such that

(i) ||W ∩ V ′
h
|| =
(

1

2
± 1

20

)
n

2

m
for each h ∈ M∗

,
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ALLEN ET AL. 65

(ii) degG(v;W) ≥
1

3
|W| for each v ∈ X2, and

(iii) we have that degG(v;V ′
h ∩ W) =

(
1

2
± 1

4

)
degG(v;V ′

h) for each h ∈ M∗
and v ∈ X2

with degG(v;V ′
h) ≥ 𝜀|V ′

h|.
Such a set W can be found by choosing each vertex of X2 ⧵ Y independently with

probability
1

2
and applying Chernoff’s inequality (Theorem 2.2) and a union bound.

We will start by covering Y . We will not touch vertices outside of W in order to

maintain super-regularity properties.

Claim 9.10. Whp in G3, there is a triangle matching 2 ⊂ K3(G1) of size |Y| with
each triangle having two vertices in W ∪ Y ⊂ X2 and one in X1, so that Y ⊂ V(2)
and ||V(2) ∩ V ′

h
|| ≤ 50

√
𝑑|V ′

h| for all h ∈ M∗
.

The proof is essentially identical to the proof of Claim 9.5 (appealing to Lemma 8.3)

and we omit the details. Let now X′′i = Xi ⧵V(2) for each i ∈ [2] and let V ′′
h = V ′

h ⧵V(2)
for each h ∈ M∗

. We will now balance the sizes of the clusters V ′′
h .

Claim 9.11. Whp in G4, there is a triangle matching 3 ⊂ K3(G4) with each triangle
having one vertex in X′′

1
and two vertices in W, so that |V ′′

h ⧵ V(3)| = ⌊ 9

10

n
2

m
⌋ for all

h ∈ M∗
.

Proof of Claim. Let 𝜆 ∶ M∗ → N be given by 𝜆(h) = |V ′′
h | − ⌊ 9

10

n
m
⌋. Note that

we have

(
1

10
− 60

√
𝑑

)
n

2

m
≤ 𝜆(h) ≤ ⌈ 1

10

n
2

m
⌉, and that

∑
h∈M∗ 𝜆(h) = n2 − 2|2| −

2|∗|⌊ 9

10

n
m
⌋ is even. Note also that 𝛿(R′) ≥

(
1

2
− 6𝑑

)
m ≥

(
1

2
− 6𝑑

)
|R′| and 𝛼(R′) ≤

𝛼(R) ≤
(

1

2
− 𝜇
)

m ≤
(

1

2
− 𝜇

2

)
|R′|. Hence, by applying Theorem 7.4 to the connected

graph R′, there is a weight function 𝜔 ∶ E(R′) → N such that for each h ∈ M∗
we

have
∑
𝓁∈NR′ (h)

𝜔(h𝓁) = 𝜆(h). We claim that we can remove 𝜔(h𝓁) triangles from

G4[X′′1 ,V ′′
h ∩ W,V ′′

𝓁 ∩ W] for each edge h𝓁 of R′, making sure that all our choices are

vertex-disjoint. Indeed, let Y1, … ,Ym ⊂ X′′
1

be disjoint sets of size at least
2

5
⋅ ⌈ n

2

m
⌉

and observe that for i = 1, 2 we have that deg(v;X′′
3−i) ≥ |X′′

3−i| − 4𝜌n for each

v ∈ X′′i by Claim 9.9. Since 𝜌 ≪
1

m
≪ 𝜀, this implies that, for each k ∈ [m] and h ∈ M∗

,

the pair (Yk,V ′′
h ∩ W) is

(
𝜀,

(
1 − 𝜀2

)+)
-super-regular, appealing to Lemma 2.10.

It further follows from the Slicing Lemma (Lemma 2.7) and the choice of W
that (V ′′

h ∩ W,V ′′
𝓁 ∩ W) is (10𝜀, (𝑑∕10)+)-super-regular for each h𝓁 ∈ E(R′).

Hence the triple (Yk,V ′′
h ∩ W,V ′′

𝓁 ∩ W) is (10𝜀, (𝑑∕10)+)-super-regular for each

h𝓁 ∈ E(R′) and k ∈ [m]. Furthermore, we have |V ′′
h ∩ W| ≥

2

5
⋅ n

2

m
.

Hence, an application of Lemma 2.11 and Lemma 8.1 (ii) implies that whp, there are
7

20
⋅ n

2

m
vertex-disjoint triangles in G4[Yk,V ′′

h ∩ W,V ′′
𝓁 ∩ W] for each h𝓁 ∈ E(R′)

and k ∈ [m]. Thus we can select the desired number of triangles for each

e ∈ E(R′) one at a time greedily as follows. When we look to find a triangle

corresponding to the edge h𝓁 ∈ E(R′) with h < 𝓁 (one of 𝜔(h𝓁) many), we

take the triangle from G4[Yh,V ′′
h ∩ W,V ′′

𝓁 ∩ W], ensuring that it is vertex-disjoint

from previous choices. From above we have that there is a collection of at

least
7

20
⋅ n

2

m
vertex-disjoint triangles in G4[Yh,V ′′

h ∩ W,V ′′
𝓁 ∩ W] to choose

from and at most 3 max{𝜆(h), 𝜆(𝓁)} ≤ 3

10
⋅ n

2

m
<

7

20
⋅ n

2

m
are unavailable due to their vertices

having already been used in triangles in our triangle matching. This shows that the greedy
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66 ALLEN ET AL.

process will succeed in finding a triangle matching 3 in G4 such that 3 contains 𝜔(h𝓁)
triangles in G4[X′′1 ,V ′′

h ∩W,V ′′
𝓁 ∩W] for each edge h𝓁 of R′. ▪

Let now X′′′i = X′′i ⧵ V(3) for each i ∈ [2] and V ′′′
h = V ′′

h ⧵ V(3) for

all h ∈ M∗
and observe that we have covered all vertices except for those in X′′′

1
∪ X′′′

2
.

Since |X′′′
1
| = 1

2
|X′′′

2
|, we can partition X′′′

1
=
⋃

e∈∗ X′′′e into |∗| sets of size

exactly ⌊ 9

10

n
2

m
⌋. Observe that deg(v;X′′′

2
) ≥ |X′′′

2
| − 4𝜌n for each v ∈ X′′′

1
and vice versa

by Claim 9.9. Since 𝜌 ≪
1

m
≪ 𝜀, Lemma 2.10 implies that, for each e ∈ ∗

and h ∈

M∗
, the pair (X′′′e ,V ′′′

h ) is

(
𝜀,

(
1 − 𝜀2

)+)
-super-regular. Furthermore, the pair (V ′′′

h ,V ′′′
𝓁 )

is (8𝜀, (𝑑∕8)+)-super-regular for each h𝓁 ∈ ∗
by the Slicing Lemma (Lemma 2.7)

and deg(v;V ′′′
𝓁 ) ≥ deg(v;V ′

𝓁 ⧵W) ≥ 1

4
degG(v;V ′

𝓁) ≥
𝑑

8
|V ′
𝓁| for all v ∈ V ′′′

h and vice versa.

Therefore, (X′′′h𝓁 ,V ′′′
h ,V ′′′

𝓁 ) is (8𝜀, (𝑑∕8)+)-super-regular for all h𝓁 ∈∗
. Finally, we apply

Theorem 3.1 to each of these triples individually in G5 to obtain whp a triangle matching 4

covering exactly X′′′
1
∪ X′′′

2
. So we have that whp all of the triangle matchings 1, … , 4

exist and taking  = 1 ∪ 2 ∪ 3 ∪ 4, we have that  is a triangle factor in Gp as

required. ▪

10 CONCLUDING REMARKS

Clique factors. Generalising the definition of a triangle factor, a Kk-factor in a graph G is a collection

of vertex-disjoint copies of Kk covering the vertex set of G. We say that an n-vertex graph G is k-full
if n ∈ kN and 𝛿(G) ≥ (1 − 1

k
)n. Analogously to Theorem 1.1, Hajnal and Szemerédi [19] proved that

for any k ≥ 2, any k-full graph contains a Kk-factor, and this is tight. Moreover, Johansson, Kahn and

Vu [23] also proved the threshold for the existence of clique factors (and indeed many other factors in

graphs and hypergraphs), showing that it is

p∗k (n) ∶= (log n)2∕(k2−k)n−2∕k
.

We believe that our methods can also be used to give a robust Hajnal–Szemerédi theorem. That is,

there is C > 0 such that for p ≥ Cp∗k (n) and any k-full graph G the random sparsification Gp contains

a Kk-factor. We do not believe that significant new ideas would be needed for this, but that it would

be technically much more involved, in particular in the analysis of the extremal cases in the proof of

Theorem 1.2. Consequently, we concentrated on triangle factors here.

It would also be interesting to establish how many Kk-factors are necessarily contained in a k-full

graph. In particular, it would be interesting to establish the following.

Problem 10.1. Show that there is some constant c = c(k) such that in any n-vertex k-full
graph the number of distinct Kk-factors is at least (cn)n(1−1∕k)

.

This would be tight up to the value of c and is established for triangle factors in Corollary 1.3 with

an extra log-factor.

Similarly, it is interesting to consider edge-disjoint Kk-factors. By considering a random par-

tition of edges, Theorem 1.2 implies that any n-vertex 3-full graph contains a family of at

least Ω(n2∕3(log n)−1∕3) edge-disjoint triangle factors. In terms of upper bounds, by considering trian-

gles at a fixed vertex v with deg(v) = 2n
3

, it is clear that one cannot hope for more than
n
3

edge-disjoint

triangle factors. In fact one can do slightly better than this by considering a construction similar to
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ALLEN ET AL. 67

that of Nash-Williams [33] for the number of edge-disjoint Hamilton cycles in Dirac graphs. Indeed,

let n ∈ 3N and m ∶= n
3
. Consider the n-vertex complete tripartite graph on vertex parts X ∪ Y ∪ Z

such that |X| = m + 2 and |Y| = |Z| = m − 1. Let G be the graph obtained from this tripartite graph

by adding the edges of some cycle C of length m + 2 on the vertices of X. It is easy to check that G
is 3-full. Moreover, any triangle factor in G must contain at least 2 edges of C. Hence G contains

at most ⌊m+2

2
⌋ = ⌊ n

6
⌋ + 1 edge-disjoint triangle factors. This leaves a big gap and it would be very

interesting to bring these bounds closer together.

Problem 10.2. Determine the number maximal number of edge-disjoint triangle factors
guaranteed in any n-vertex 3-full graph.

Universality. For 2 ≤ k ∈ N, we say an n-vertex graph G is k-universal if it contains a copy of

every graph F on at most n vertices with maximum degree at most k. Understanding universality in

graphs seems to be a considerable challenge and many beautiful conjectures remain open.

A moment’s thought may suggest that a Kk+1-factor is the ‘hardest’ maximum degree k graph

to find in a graph G, as a clique is the densest graph with maximum degree k and a clique factor

maximises the number of cliques. This intuition appears to hold true and has manifested in various

settings. For example, we know from the theorem of Hajnal and Szemerédi [19] that any n-vertex

graph G with 𝛿(G) ≥
(

k
k+1

)
n contains a Kk+1-factor and that this is tight. Bollobás and Eldridge [7],

and independently Catlin [8], conjectured that the same minimum degree condition actually guaran-

tees k-universality. This has been proven for k = 2, 3 [1, 4, 12] (and large n when k = 3) but remains

open in general. In the case of random graphs, we know from the theorem of Johansson, Kahn and Vu

[23] that the threshold for the appearance of a Kk+1-factor is p∗k+1
(n). The recent breakthrough result

of Frankston, Kahn, Narayanan and Park [17] on thresholds implies that for any n-vertex graph F with

maximum degree k, the threshold for the appearance of F in G(n, p) is at most p∗k+1
(n). Note that this is

not implying that G(n, p) is k-universal whp when p = 𝜔(p∗k+1
(n)) as we can only guarantee that some

fixed F appears whp. However, the stronger version that p∗k+1
(n) is the threshold for k-universality is

believed to be true but only verified for k = 2 [15]. We remark that in general the 2-universality ques-

tion is considerably more assailable than the general case due to the fact that every maximum degree 2

graph is of a relatively simple structure, that is, a union of disjoint cycles and paths, and thus this class

of graphs is comparatively small.

We also believe that a robustness version for universality holds true as follows.

Conjecture 10.3. For any k ≥ 2, there exists a C > 0 such that for all n ∈ N

and p ≥ Cp∗k+1
, the following holds. If G is a graph with 𝛿(G) ≥

(
k

k+1

)
n then whp Gp

is k-universal.

Conjecture 10.3 is a common strengthening of the conjecture of Bollobás–Eldridge–Catlin and the

threshold for universality and so a full solution to this conjecture at this point would be remarkable.

However, establishing the case k = 2 seems attainable and would be interesting.

Powers of Hamilton cycles. For 1 ≤ k ∈ N, we say an n-vertex graph G contains the kth power
of a Hamilton cycle if it contains a copy of the graph obtained by taking a cycle Cn of length n and

adding an edge between any pair of vertices that have distance at most k in Cn. When k = 1, this just

corresponds to G being Hamiltonian. For k = 2, we say G contains the square of a Hamilton cycle.

Powers of Hamilton cycles are a natural generalisation of Hamilton cycles and are well-studied. Note

that for k ≥ 2, if G has n ∈ (k + 1)N vertices then the existence of the kth power of a Hamilton cycle

in G implies the existence of a Kk+1-factor in G. Therefore any threshold for containing the kth power

of a Hamilton cycle must be at least as large as the threshold for a Kk+1-factor.
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68 ALLEN ET AL.

In the extremal setting, perhaps surprisingly, it turns out that the minimum degree thresholds coin-

cide. Indeed, Komlós, Sárközy and Szemerédi [29] confirmed conjectures of Pósa and Seymour for

large n by showing that any n-vertex graph with 𝛿(G) ≥
(

k
k+1

)
n contains the kth power of a Hamilton

cycle. In the probabilistic setting, the situation is different and we see a separation between the thresh-

olds for Kk+1-factors, which as discussed earlier is p∗k+1
= n−2∕(k+1)(log n)2∕(k2+k)

, and the thresholds

for kth powers of Hamilton cycles, which has been shown to be n−1∕k
. For k ≥ 3, this threshold fol-

lows from a general result of Riordan [36] using an argument based on the second moment method.

For squares of Hamilton cycles, the problem of establishing the threshold took much longer and was

only recently proven by Kahn, Narayanan and Park [27].

In the robustness setting, the sparse blow-up lemma [3] gives that for all 𝜀 > 0 and n-vertex

graphs G with 𝛿(G) ≥
(

k
k+1

+ 𝜀
)

n, if p = 𝜔

(
log n

n

)1∕2k
, then Gp whp contains the kth power of a

Hamilton cycle. For squares of Hamilton cycles, this bound on p was improved to p ≥ n−1∕2+𝜀
by

Fischer [16]. It is believable that for all k ≥ 2, an analogue of Theorem 1.2 holds in this setting and

that the conclusions of the above results remain true without the 𝜀 in the minimum degree condition

and with probability values all the way down to the threshold n−1∕k
observed in random graphs.

Conjecture 10.4. For every k there is C such that for p ≥ Cn−1∕k and every n-vertex
graph G with 𝛿(G) ≥ k

k+1
n the random sparsification Gp whp contains the kth power of a

Hamilton cycle.
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31. A. D. Koršunov, Solution of a problem of P. Erdős and A. Rényi on Hamiltonian cycles in undirected graphs, Dokl.

Akad. Nauk SSSR 228 (1976), no. 3, 529–532.

32. M. Krivelevich, C. Lee, and B. Sudakov, Robust hamiltonicity of Dirac graphs, Trans. Amer. Math. Soc. 366 (2014),

no. 6, 3095–3130.

33. C. S. J. A. Nash-Williams, “Hamiltonian lines in graphs whose vertices have sufficiently large valencies,” Com-

binatorial Theory and Its Applications, III (Proc. Colloq., Balatonfüred, 1969), North-Holland, Amsterdam, 1970,

pp. 813–819.

34. H. Pham, A. Sah, M. Sawhney, and M. Simkin. A Toolkit for Robust Thresholds. arXiv preprint, arXiv:2210.03064

2022.

35. L. Pósa, Hamiltonian circuits in random graphs, Discrete Math. 14 (1976), no. 4, 359–364.

36. O. Riordan, Spanning subgraphs of random graphs, Combin. Probab. Comput. 9 (2000), no. 2, 125–148.

37. O. Riordan, Random cliques in random graphs and sharp thresholds for F-factors, Random Struct. Algorithms 61
(2022), no. 4, 619–637.

 10982418, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rsa.21209 by T

est, W
iley O

nline L
ibrary on [15/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



70 ALLEN ET AL.

38. G. N. Sárközy, S. M. Selkow, and E. Szemerédi, On the number of Hamiltonian cycles in Dirac graphs, Discrete

Math. 265 (2003), no. 1-3, 237–250.

39. M. Šileikis and L. Warnke. Counting extensions revisited. arXiv:1911.03012 2019.

40. M. Skala. Hypergeometric tail inequalities: ending the insanity. arXiv:1311.5939 2013.

41. J. Spencer, Counting extensions, J. Combin. Theory Ser. A 55 (1990), no. 2, 247–255.

42. B. Sudakov, “Robustness of graph properties,” Surveys in Combinatorics 2017, London Math. Soc. Lecture Note

Ser., Vol 440, Cambridge Univ. Press, Cambridge, 2017, pp. 372–408.

43. E. Szemerédi, Regular partitions of graphs, Problémes Combinatoires et Théorie des Graphes Colloques Interna-

tionaux CNRS 260 (1978), 399–401.

How to cite this article: P. Allen, J. Böttcher, J. Corsten, E. Davies, M. Jenssen, P. Morris,

B. Roberts, and J. Skokan, A robust Corrádi–Hajnal theorem, Random Struct. Alg. (2024),

1–70. https://doi.org/10.1002/rsa.21209

 10982418, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rsa.21209 by T

est, W
iley O

nline L
ibrary on [15/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1002/rsa.21209
https://doi.org/10.1002/rsa.21209
https://doi.org/10.1002/rsa.21209
https://doi.org/10.1002/rsa.21209
https://doi.org/10.1002/rsa.21209
https://doi.org/10.1002/rsa.21209
https://doi.org/10.1002/rsa.21209

	{A robust Corradi--Hajnal theorem}
	1 INTRODUCTION
	2 PRELIMINARIES
	2.1 Notation
	2.2 [[math]]-matchings in dense graphs
	2.3 Concentration inequalities
	2.4 Regularity
	2.5 Entropy

	3 THE MAIN TECHNICAL RESULT AND ITS PROOF OVERVIEW
	4 COUNTING TRIANGLES IN [[math]]
	5 EMBEDDING (PARTIAL) TRIANGLE FACTORS
	5.1 Counting almost triangle factors
	5.2 Extending almost triangle factors

	6 PROOF OF THE LOCAL DISTRIBUTION LEMMA
	6.1 A simplification
	6.2 The entropy lemma
	6.2.1 Triangles with alive vertices
	6.2.2 Proof of the entropy lemma

	6.3 Counting via comparison

	7 STABILITY FOR A FRACTIONAL VERSION OF THE HAJNAL--SZEMER&Eacute;DI THEOREM
	8 TRIANGLE MATCHINGS
	9 REDUCTION
	9.1 Case: No large sparse set
	9.2 Case: Two large sparse sets
	9.3 Case: One large sparse set

	10 CONCLUDING REMARKS

	ACKNOWLEDGMENTS
	FUNDING INFORMATION
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES

