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We describe and examine a test for a general class of shape constraints,
such as signs of derivatives, U-shape, quasi-convexity, log-convexity, among
others, in a nonparametric framework using partial sums empirical processes.
We show that, after a suitable transformation, its asymptotic distribution is
a functional of a Brownian motion index by the c.d.f. of the regressor. As
a result, the test is distribution-free and critical values are readily available.
However, due to the possible poor approximation of the asymptotic critical
values to the finite sample ones, we also describe a valid bootstrap algorithm.

1. Introduction. Hypothesis testing is one of the most relevant tasks in empirical work.
In this paper, we are interested in a type of testing where neither the null hypothesis nor the
alternative have a specific parametric form. This type of hypothesis testing can be denoted
as testing for qualitative or shape restrictions. Examples, widespread in economics and other
disciplines, include monotonicity, convexity/concavity, strong convexity, log-convexity, as
well as shapes, which switch the pattern, being two (related) classical examples the U-shape
and the quasi-convexity/concavity.

The class of shape constraints that we are concerned with is quite broad. One example
is shape constraints that involve some derivatives of m(x) (see (1.1) below), and in partic-
ular whether drm(x)/dxr ≥ 0 (≤ 0). When r = 1 or 2, we respectively have the classical
examples of monotonicity or convexity/concavity. A second example involves shapes well
examined in the mathematics literature such as log-convexity/concavity. However, the appli-
cability of the methodology proposed below goes beyond these examples and they should be
viewed as just an illustration of the scope of the approach. In Section 2, we provide precise
conditions for the shape constraints we consider, accompanied by relevant examples. Further-
more, the supplementary material [34] includes additional noteworthy shape examples, such
as quasi-convexity, as well as r- and ρ- convexity/concavity.

Although ample literature exists on shape constraint testing, the majority of it focuses on
monotonicity and/or convexity. Notable examples include [1, 3, 5, 8, 13, 18, 20, 23, 27, 32,
46, 50]. It is worth mentioning an exception in [35], which proposes a consistent test for
U-shape.

Regarding the regularity conditions in these references, some of them, such as [5, 20, 32],
focus on regression functions in a Gaussian white noise model or in models with deterministic
explanatory variables, as seen in [3, 5, 18] or [27]. However, when dealing with random ex-
planatory variables, as in [1, 13] and [23], the assumption is either that they are stochastically
independent of the unobserved regression error or that the error’s conditional distribution is
symmetric given the explanatory variable. On the other hand, other papers either lack asymp-
totic limit theory useful for inference or are tailored to specific types of shapes, making their
extension to more general shape properties nontrivial, such as [8, 27] or [35]. Consequently,
one of the paper’s objectives is to examine a testing methodology that not only applies to a
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wide range of shape properties but also (a) enables valid statistical inferences under weak
conditions and (b) offers the flexibility to test for multiple shape constraints simultaneously
such as monotonicity and log-convexity. Furthermore, the proposed methodology is easy to
implement, as it only requires the computation of the CUSUM (least squares) of “recursive”
residuals.

The methodology we suggest in this paper is related to methods used in goodness-of-fit
tests that involve a null hypothesis belonging to a parametric family while allowing for a
nonparametric alternative. Specifically, we consider the nonparametric regression model

yi = m(xi) + ui , E[ui |xi] = 0,(1.1)

where xi are realizations of random variable X with a bounded support X = : [x, x] and
m(·) is smooth. Section 5 will provide Condition C1, which offers more detailed conditions
concerning the sequences {ui}i∈N and {xi}i∈N. Our aim is testing whether the regression
function m(·) possesses the shape properties captured by the null hypothesis

(1.2) H0 : m ∈ M0,

where the class of interest M0 is a subset of smooth functions from X to R, say convexity.
Following [48] or [4], we might base the testing procedure on functionals of the partial sums
empirical process

(1.3) Kn(x) = 1

n

n∑
i=1

ûiIi (x), x ∈ [x, x].

Here, I(·) is the indicator function and Ii (x) is the abbreviation of I(xi < x), and ûi =
yi − m̂B(xi;L), i = 1, . . . , n are the residuals obtained after m(·) has been estimated by
some nonparametric estimator m̂B(·;L); see Section 2 for details.

Unfortunately, after normalization, the limit covariance structure of Kn(x) depends on
M0, making inferences based on Kn(x) very difficult to perform, if at all possible. Indeed,
suppose for a moment that M0 is the set of some parametric functions, say m(x) =: m(x; θ).
We then have that

Kn(x) = 1

n

n∑
i=1

uiIi (x) + 1

n

n∑
i=1

(
m(xi; θ) − m(xi; θ̂ )

)
Ii (x)

is such that (Eu2
i )

−1/2n−1/2 ∑n
i=1 uiIi (x) converges to a Brownian motion indexed by the

c.d.f. of the regressor whereas the second term normalized by n1/2 converges to a Gaussian
random variable, which depends on m(x; θ), and hence on M0. This was first noticed and
shown in [21], and later in a regression model context by [48]. However, in our scenario, we
have that

(1.4) Kn(x) = 1

n

n∑
i=1

uiIi (x) + 1

n

n∑
i=1

(
m(xi) − m̂B(xi;L)

)
Ii (x),

where the second term is Op(n−ν), for some ν < 1/2, becoming then the dominant term
in the behavior of Kn(x). As we describe in Section 5, a consequence is that the asymp-
totic distribution of Kn(x) might not be even Gaussian and difficult to characterize, making
inferences very cumbersome.

Due to the possible drawbacks of Kn(x) for the purpose of inference, we shall proceed by
considering a transformation of Kn(x) related to the CUSUM of “recursive” residuals pro-
posed by [9]. The consequence is that the asymptotic behavior of the transformation follows
a Brownian motion indexed by the c.d.f. of the regressor, allowing testing to be implemented
using functionals such as Kolmogorov–Smirnov, Cramér–von Mises or Anderson–Darling,
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among others. As a byproduct, a nice feature of the transformation is that its asymptotic
distribution is pivotal, that is, it is the same regardless of the shape constraint under consid-
eration.

The remainder of the paper is organized as follows. Section 2 introduces and motivates
B-splines to estimate our nonparametric regression function m(x). We then examine how our
estimated model captures the shape property of interest, by relating different shapes to the
coefficients of the B-spline approximation. In Section 3, we present algorithmic steps of our
testing procedure with the purpose to provide practitioners with useful guidance. Section 4
gives two sets of examples of shape properties. One example focuses on shapes described
by an increasing number of linear inequalities, while the second example shape properties
are described by an increasing number of nonlinear inequalities. In Section 5, we state the
regularity conditions, and we motivate and describe a pivotal transformation of Kn(x) based
on the CUSUM of “recursive” residuals. We also describe the local alternatives and show
the consistency of the test. Because the Monte Carlo experiment suggests that the asymptotic
critical values do not provide a good approximation to the finite sample ones, Section 6 intro-
duces a valid bootstrap algorithm. Section 7 presents Monte Carlo experiments and Section 8
concludes with a summary. All the proofs, which employ a series of lemmas, are confined to
the Supplementary Material. The Supplementary Material also contains some extra material
such as (i) additional simulation results for our test including its performance when using the
asymptotic critical values, and comparison of its performance to some other tests in the lit-
erature in the context of testing for monotonicity, (ii) empirical applications, (iii) motivation
for using B-splines instead of some other sieve-type estimator and (iv) additional examples
of shape constraints of interest.

2. Nonparametric estimation methodology. A preliminary and key step in providing a
test for H0 in (1.2) is to compute a nonparametric estimator of m(·) subject to the constraints
imposed in H0. When testing for the null hypothesis of either monotonicity or convexity,
several nonparametric estimators have been considered in the literature. Early works on iso-
tone/monotone regressions are [10] and [51]. Later approaches include [28, 39, 43] and [17].
When the null hypothesis is convexity, the approach in [31] estimates m(·) using least squares.
Statistical properties for this estimator are established in [25, 29, 40] and [26]. An alternative
estimator discussed in [6] involves first obtaining an unconstrained derivative estimate of the
regression function, which is then isotonized and integrated.

However, the previous techniques have some limitations, such as implementation diffi-
culties, narrow scope or lack of useful asymptotic theory for inference. Hence, we adopt a
different approach based on B-splines and/or penalized B-splines, known as P-splines. Using
B-splines (P-splines) offer several advantages for our purposes in this paper. As discussed
later in this section, first there is no dependence between base splines separated by a certain
distance, as outlined in the properties of the B-spline basis. Second, B-splines (P-splines) are
well suited for testing properties based on regression function derivatives. Additionally, we
can express M0 in (1.2) in terms of constraints on the coefficients of the B-spline approxi-
mation to m(·), enabling the implementation of valid asymptotic theory for the test.

Note that [45], and later extended by [42], introduced monotone regression splines, closely
related to B-splines, to estimate convex functions or functions that are both monotone and
convex. However, our approach differs in that we allow the number of B-spline coefficients
and constraints to increase to infinity, whereas [45] and [42] considered a fixed number of
constraints. Wang and Meyer [50] employed quadratic B-splines for a monotonicity test and
cubic B-splines for a convexity test, allowing for an increasing number of knots. Their ap-
proach and implementation differ from ours, and it may not be applicable to general shapes.
For a comparison of the performance between the monotonicity test in [50] and our test,
please refer to the Supplementary Material.
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Let us delve into the details of B-splines (P-splines). They are constructed by connecting
polynomial pieces at specific points called knots. The computation of these splines is achieved
recursively, as described in [15], for any polynomial degree. By construction, the B-spline
basis of degree q (i) takes positive values on the domain spanned by q + 2 adjacent knots,
and is zero otherwise; (ii) consists of q + 1 polynomial pieces each of degree q , and the
polynomial pieces join at q inner knots; (iii) at the joining points, the (q − 1)th derivatives
are continuous.

Suppose that one is interested in approximating the regression function m(·) on X . Here-
after, we shall assume, without loss of generality, that X =: [0,1]. Then we split the interval
[0,1] into L′ equal length subintervals with L′ +1 knots,1 where each subinterval will be cov-
ered with q + 1 B-splines of degree q . The total number of knots needed will be L′ + 2q + 1
(each boundary point 0, 1 is a knot of multiplicity q + 1) and the number of B-splines is
L = L′ + q . Then, denoting the B-spline basis of degree q by

(2.1) P L(x) =: (
p1,L(x;q), . . . , pL,L(x;q)

)′,
we approximate m(x) by a linear combination mB(x;L) = ∑L

�=1 β�p�,L(x;q) of P L(x).
Henceforth, we shall denote the knots as {zk}, k = 1 − q, . . .0,1, . . . ,L + 1, where 0 =
z1−q = · · · = z1 and 1 = zL′+1 = · · · = zL+1.

It is well understood that the choice of the number of knots determines the trade-off be-
tween overfitting and underfitting when there are respectively too many or too few knots. The
main difference between B-splines and P-splines is that the latter tend to employ a large num-
ber of knots but to avoid overfitting they incorporate a penalty function based on the second
difference �2β�, where �β� = β� − β�−1.

The methodology and applications of constrained B-splines and P-splines (i.e., those com-
puted under certain constraints on the coefficients) are discussed by many authors, too many
to review here. For more detailed discussions, see, among others, [15] and [19] for B-splines
and [7, 22] for P-splines. Some literature on shape-preserving splines (for standard shapes
such as monotonicity or convexity) includes [38, 41, 42] and [45].

B-splines possess some properties, which turn out to be very useful for the purpose of
testing shape constraints. Among them are

(a)

L∑
�=1

p�,L(x;q) = 1 for all x and q.

(b)
dmB(x;L)

dx
=

L−1∑
�=1

q�β�+1

z�+1 − z�+1−q

p�+1,L(x;q − 1).

(2.2)

Specifically, (a) indicates that B-splines are a partition of 1, whereas (b) states that the
derivative of a B-spline of degree q becomes a B-spline of degree q − 1. One can derive
an expression for the second derivative, and so forth. Other sieve estimators might be used,
(see the survey in [11], and in particular the Bernstein polynomials basis as they share some
properties similar to those in (2.2). However, because the Bernstein polynomials have an
undesirable property of being highly correlated and having a slow bias convergence, they are
not useful for the methodology proposed below.2

We now describe estimators of m(·) under the null hypothesis. More importantly, we dis-
cuss how one can relate the B-spline approximation mB(·;L) to (1.2). Namely, because any

1Although one can, of course, choose nonequidistant subintervals, for simplicity we consider equally-spaced
knots. One alternative way to locate the knots may be based on the quantiles of the x distribution.

2A further discussion of our motivation to not use other sieves bases can be found in the Supplementary Mate-
rial.
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mB(·;L) can be fully characterized by β =: (β1, . . . , βL)′ ∈ R
L, a first step will be to ex-

amine how we can map the null hypothesis into a set of constraints on β , captured by some
subset Sq,L ⊂ R

L, denoting its associated constraint B-splines approximation by

(2.3) MSq,L
=: {

mB(·;L)|β ∈ Sq,L

}
.

We can summarize it in the form of the following condition.

CONDITION C0. There is a set Sq,L ⊆ R
L for any L = L′ +q that satisfies the following

properties:

(a) Sq,L does not depend on the data {xi}i∈Z, and thus, it is nonstochastic.
(b) The boundary of Sq,L consists of a finite number of surfaces, each of which can be

explicitly represented by a continuously differentiable function relating one component of β

to the other components. In other words, each such surface can be described as β� = s(β−�)

for some � with s(·) being a continuously differentiable function.
(c) Let H represent the Hausdorff distance calculated in the supremum norm within the

space of continuous functions from X to R.3 Then

H(M0,MSq,L
) → 0 as L → ∞.

Condition C0 states that M0 can be captured by constraints on the coefficient vector β ∈
R

L, which become both necessary and sufficient as the knot system becomes increasingly
dense in X . The requirement for an increasingly dense knot system is implied by part (c).
Moreover, these constraints on β are independent of the available data, making the approach
appealing for implementation purposes. Part (b) is required for practical reasons, ensuring
that constrained estimation only requires a finite number of inequality constraints for any
finite L.

The idea is then to test the null hypothesis

(2.4) HB
0 : (β1, . . . , βL)′ ∈ Sq,L

with a suitable choice of Sq,L. Under C0, for fixed L, the test in (2.4) can be conceptually
regarded as the approximation of the original testing problem in (1.2). As L → ∞, however,
the shape property of interest is satisfied on an increasingly dense set of points in X . In
addition, for the typical shapes given in Example 1 below, that is, monotonicity or convexity,
the restrictions given in (2.4) are equivalent to the restrictions in the whole domain X .

One can easily obtain the unconstrained estimator of m(·) defined as

m̆B(x;L) = b̆′P L(x),(2.5)

where b̆ = (b̆1, . . . , b̆L)′ = ( 1
n

∑n
k=1 P kP

′
k)

+ 1
n

∑n
k=1 P kyk , and B+ denotes the Moore–

Penrose inverse of the matrix B . Additionally, P k is an abbreviation for P L(xk) in (2.1). To
obtain an estimator under the null hypothesis, we consider estimation under the constraints
in (2.4), that is,

(2.6) b̂ =: arg min
(b1,b2,...,bL)′∈Sq,L

n∑
i=1

(
yi −

L∑
�=1

b�p�,L(xi;q)

)2

,

so that under (1.2)/(2.4) the estimator of m(·) is

(2.7) m̂B(x;L) = b̂′P L(x).

3If dm,mB =: supx∈X |m(x) − mB(x;L)|, then the Hausdorff distance is H(M0,MSq,L
) =

max{supm(·)∈M0
infmB(·;L)∈MSq,L

dm,mB , supmB(·;L)∈MSq,L
infm(·)∈M0

dm,mB }.
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In the remainder of the paper, we will use notation “ ˘ ” for unconstrained estimation and
notation “̂” for the constrained one.

As an illustration, suppose that we are interested in testing for nondecreasing functions.
Then, as Example 1 below will explain, (2.6) becomes

(2.8) b̂ = (b̂1, . . . , b̂L)′ =: arg min
b1≤b2≤···≤bL

n∑
i=1

(
yi −

L∑
�=1

b�p�,L(xi;q)

)2

,

which is a quadratic programming problem with linear constraints. When the constraints
are nonlinear, such as those in Example 2 appearing later in the paper, the estimation may
be implemented using global optimization techniques.4 A further discussion of nonlinear
constraints based on Example 2 and their implementation can be found in the Supplementary
Material.

The next section provides a succinct overview of the algorithm used to perform the trans-
formation of the process K(x) and construct test statistics. Subsequently, the paper develops
the statistical theory that substantiates the aforementioned approach. Prior to delving into
that, however, it is important to address a fundamental implementation concern pertaining
to the power of our test. Specifically, to ensure that the power of our test is not trivial, it is
essential to uphold the binding constraints during the transformation.

Let us illustrate how we can write (2.7) and transform the linear space of the B-splines
basis when some constraints are binding in the constrained monotonicity estimation. Suppose
we have b̂�0 = b̂�0+1 in (2.8). Denote

p̃�,L(x;q) =

⎧⎪⎪⎨⎪⎪⎩
p�,L(x;q), � < �0,

p�0,L(x;q) + p�0+1,L(x;q), � = �0,

p�+1,L(x;q), �0 < � ≤ L − 1.

Then (2.7) can be written as

m̂B(x;L) =
�0−1∑
�=1

b̂�p̃�,L(x;q) + b̂�0p̃�0,L(x;q) +
L−1∑

�=�0+1

b̂�+1p̃�,L(x;q),

that is, {p̃�,L(x;q)}L−1
�=1 is the set of “effective” polynomials used in the estimated constrained

approximation m̂B(·;L). Such a system of “effective”polynomials can be defined for any
situation of binding set constraints. We will denote the system as P̃ L(x) and further denote

(2.9) P̃ k =: P̃ L(xk).

It is P̃ L(x), and not the original system P L(x), that has to be used in the transformation.
Further examples on how the binding constraints can be enforced in the CUSUM/Khmaladze
transformation are in Section 5.2.

3. Algorithm. Below are algorithmic steps of our testing procedure giving a quick guide
to the practitioners.

STEP 1 Order the sample {(xi, yi)}ni=1 in the ascending order of x. Without a loss of gener-
ality, we will assume that the original sample is already ordered in this way.

4If the unconstrained least squares estimator is in the interior of Sq,L then, of course, none of the constraints
are binding and the constrained estimation is standard. The computational complications may only happen when
some of the constraints are binding.
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STEP 2 Find a constrained estimator (2.7), compute the residuals ûi = yi − m̂B(xi;L), i =
1, . . . , n and define the system P̃L(x) of “effective polynomials” using all the binding
constraints participating in m̂B(·;L). Let Le denote the number of polynomials in this
system.

STEP 3 For each j = 1, . . . , ñ, where ñ =: n − Le − 1, compute

(3.1) v̂j = ûj − P̃
′
j

(
n∑

k=1

P̃ kP̃
′
kIj (xk)

)+ n∑
k=1

P̃ kIj (xk)ûk .

STEP 4 Compute the estimate of the variance of ui , σ 2
u , as σ̆ 2

u = 1
n

∑n
i=1 ŭ2

i , where ŭi are
unconstrained residuals ŭi = yi − m̆B(xi;L).

STEP 5 Compute M̃ñ(xi) = 1√
ñ

∑ñ
j=1 v̂jIj (xi) and calculate the values of standard func-

tionals such as the Kolmogorov–Smirnov, Cramér–von Mises and Anderson–Darling de-
fined respectively as

(3.2) KS ñ = sup
i=1,...,ñ

∣∣∣∣M̃ñ(xi)

σ̆u

∣∣∣∣, CvMñ =
ñ∑

i=1

M̃ñ(xi)
2

ñσ̆ 2
u

, ADñ =
ñ∑

i=1

M̃ñ(xi)
2/ñ

σ̆ 2
u F̂X(xi)

,

where F̂X denotes the empirical c.d.f. of X.5 Compare them to the critical values KS∗
ñ(α0),

CvM∗
ñ
(α0), AD∗

ñ(α0), respectively, for a chosen significance level α0. If, for example,
KS ñ > KS∗

ñ(α0), reject the null by Kolmogorov–Smirnov at the significance level α0.

4. Examples. We give two sets of examples of shape constraints. In Example 1, the
shapes in Sq,L are described by linear inequalities, whereas in Example 2, the constraints are
given by nonlinear inequalities (except for some special cases). These examples are meant
to illustrate the scope of applicability of the proposed testing methodology rather than to
give an exhaustive list of potential applications. Additional examples can be found in the
Supplementary Material.

EXAMPLE 1. Our first set of examples is mainly described by derivatives on m(·). More
specifically,

(4.1) H0 : ar · drm(x)/dxr ≥ cr ∀x ∈ X ,r ∈ R,

where R is a finite subset of N
+, ar ∈ {−1,1} and cr are known constants, so that (4.1)

allows for inequalities on several derivatives simultaneously. Special cases include testing for
(i) monotonicity (r = 1 and c1 = 0), (ii) convexity/concavity (r = 2 and c2 = 0), (iii) strong
λ-convexity (r = 2 and c2 = λ > 0), (iv) monotonicity and concavity simultaneously, etc.

The corresponding set Sq,L associated to (4.1) is

Sq,L = {
β ∈ R

L|∀r ∈ R,∀zk, ar · drmB(zk;L)/dxr ≥ cr

}
.

Note that Sq,L imposes only shape constraints at the knots. However, in the leading cases
when cr = 0, r ∈ R, Sq,L has a more familiar structure, which guarantees that the shape
properties are not only valid at the knots but on the whole domain. For instance, let R = {1}
and c1 = 0. Then, using the property (b) of B-splines, we conclude that

Sq,L = {
β ∈R

L|a1(β�+1 − β�) ≥ 0, � = 1, . . . ,L − 1
}
,

5One could, of course, center the process M̃ñ(x) to ensure that it converges to a Brownian bridge in-
dexed by the empirical c.d.f. of X. Then ADñ would be defined in a standard manner as follows: ADñ =∑ñ

i=1
M̃ñ(xi )

2/ñ

σ̆ 2
u F̂X(xi )(1−F̂X(xi ))

.
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which, together with the fact that the B-splines in the basis are nonnegative, guarantees that
the approximation is monotone on the whole domain.

More generally, for R = {r}, r > 1, cr = 0, splitting [0,1] into equidistant subintervals
leads to the following form of Sq,L:

Sq,L =
{
β ∈ R

L|ar

r∑
k=0

(−1)r−k

(
r

k

)
β�+k ≥ 0, � = q, . . . ,L − q + 1 − r

}
.

An even more refined form of Sq,L, which may be beneficial for small L, would also in-
volve constraints that capture the behavior of mB(·;L) around the boundary. This is further
discussed in the Supplementary Material.

Our second set of examples illustrates shape properties well developed in the mathematical
literature. It builds on a general notion of a mean function given in [44] and the Supplementary
Material to this paper. Examples of mean functions include the arithmetic (A), the geometric
(G), the harmonic (H), the logarithmic and the identric means.

EXAMPLE 2 (MN -convexity). For any two mean functions M and N , the class of MN-
convex functions is defined as

M0 = {
φ(·) : φ(·) > 0,∀x1, x2 ∈ Xφ

(
M(x1, x2)

) ≤ N
(
φ(x1), φ(x2)

)}
.

Using different combinations of arithmetic (A), geometric (G) and harmonic (H) means,
we end up with many cases of MN -convex functions. Among them are: (a) m is AG-convex
if and only if m′(x)/m(x) is increasing; (b) m is GG-convex if and only if xm′(x)/m(x)

is increasing; (c) m is HG-convex if and only if x2m′(x)/m(x) is increasing; (d) m is HH-
convex if and only if x2m′(x)/m2(x) is increasing.

AG-convexity is known as log-convexity. To illustrate the form of Sq,L, consider the case
of HG-convexity in which we can take

Sq,L =
{
β ∈R

L|∀zk1 < zk2, k1, k2 ∈ {1 − q, . . . ,L + 1},

(zk1)
2m′

B(zk1;L)

m2
B(zk1;L)

≤ (zk2)
2m′

B(zk2;L)

m2
B(zk2;L)

, and β� > 0, � = 1, . . . ,L

}
.

Sets Sq,L for other MN -convex functions are constructed similarly. This is further discussed
in the Supplementary Material, along with a longer list of specific MN -convex functions.

We want to emphasize that the properties of B-splines are key for the testing of these
hypotheses to be easily implemented.

5. Regularity conditions and the testing methodology. We shall now present statistical
foundations of our testing methodology. For that purpose, we introduce regularity conditions.

CONDITION C1. {(xi, ui)
′}i∈Z is a sequence of independent and identically distributed

random vectors, where xi has support on X =: [0,1] and its probability density function,
fX(·), is bounded away from zero. In addition, E[ui |xi] = 0, E[u2

i |xi] = σ 2
u , and ui has

finite 4th moments.

CONDITION C2. m(·) is η times continuously differentiable on [0,1], η ≥ 1 and
dηm(x)/dxη is Hölder continuous with exponent 0 < α ≤ 1:∣∣dηm(x1)/dxη − dηm(x2)/dxη

∣∣ ≤ M0|x1 − x2|α ,

for some finite positive constant M0.
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CONDITION C3. As n → ∞, L satisfies(
L1+η+α

n
+ n

L2(η+α)

)
I(η + α < 2) +

(
L3

n
+ n

L4

)
I(2 ≤ η + α) = o(1).

As in [48], Condition C1 can be weakened to allow for heteroscedastic errors, that is
E[u2

i |x] = σ 2
u (x). Heteroscedasticity complicates technical arguments, and thus, for expo-

sitional simplicity we omit a detailed analysis of this case. In our empirical applications in
the Supplementary Material, however, we present examples of models with heteroscedastic
errors and illustrate how to deal with them in practice. Condition C2 is a regularity condition
on the regression function m(·). Essentially, it asserts that, at the minimum, we need slightly
more than continuous differentiability of m(·). It guarantees that the approximation error or
the bias m†(x) =: mB(x;L) − m(x) is O(L−η−α); see Theorems 3.1 and 4.1 in [2] or [52],
and also see [12] and the references therein. In case of using P-splines, we also refer to [14]
Theorem 2. Condition C3 bounds the rate at which L increases to infinity with n.

We now give details of the testing methodology. Naturally, we shall focus on the null
hypothesis (2.4), which is given in terms of the coefficients β , with the alternative hypothesis
being the negation of the null. Then our testing problem translates into the more familiar
testing scenario when the null hypothesis is given as a set of constraints on the parameters of
the model. However, the main and key difference here is that the number of such constraints
increases with the sample size.

With the objective of conducting tests for (2.4), we employ functionals of (1.3) with the
purpose of detecting if they are significantly different than zero. In (1.3), ûi are the con-
strained residuals given by

(5.1) ûi = yi − m̂B(xi;L), i = 1, . . . , n,

so that Kn(x) can be interpreted as a LM type of test. Recall that in a standard re-
gression model, the LM test would be based on the first-order conditions LMn(L) =
1
n

∑n
i=1 P L(xi)ûi , so that one tests if the residuals and regressors P L(xi) satisfy the orthog-

onality moment condition induced by Condition C1.
We have that (1.4) is

Kn(x) = 1

n

n∑
i=1

(
ui −

L∑
�=1

(b̂� − β�)p�,L(xi;q)

)
Ii (x) − 1

n

n∑
i=1

m†(xi)Ii (x).

Using Conditions C2 and C3 and following Lee and Robinson [37] or Chen and Christensen
[12] in a more general context, we obtain that

L∑
�=1

(b̂� − β�)
1

n

n∑
i=1

p�,L(xi;q) = Op

(
(L/n)1/2)

.

Denoting Pn,�(x;q) =: n−1 ∑n
i=1 p�,L(xi;q)Ii (x), we conclude that

(n/L)1/2Kn(x) =: −(n/L)1/2
L∑

�=1

(b̂� − β�)Pn,�(x;q)
(
1 + op(1)

)
.

The last displayed expression suggests that when β is at the boundary of Sq,L, the asymp-
totic distribution is not Gaussian, and thus obtaining the asymptotic distribution of Kn(x) for
inference purposes appears quite difficult, if at all possible.

However, as shown in the proof of Theorem 2, Kn(x) can be expressed as Kn(x) =
1
n

∑n
i=1 ũiIi (x) + op(n−1/2), where

(5.2) ũi = ui − P̃
′
i

(
n∑

k=1

P̃ kP̃
′
k

)+ n∑
k=1

P̃ kuk,
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and P̃ k is as defined in (2.9) (and thus, already incorporating all the binding constraints in
the estimation).6

Now ũi in (5.2) represents the least squares residuals in a regression model with the depen-
dent variable ui and the vector of “effective” polynomials P̃ L(xi) as the set of explanatory
variables. This observation suggests the use of the CUSUM of “recursive” residuals to con-
struct asymptotically pivotal tests, as proposed by Brown, Durbin and Evans [9]; see also Sen
[47]. First, we describe the implementation of the CUSUM of “recursive” residuals when the
restrictions in Sq,L are linear. More general scenarios, where some constraints are nonlinear,
are addressed later.

5.1. All the constraints on β� are linear. To describe our pivotal transformation, we first
recall our notation in (2.1) and (2.9) when testing for monotonicity,

P k =: P L(xk), P̃ k =: P̃ L(xk), with

P L(x) =: (
p1(x), . . . , pL(x)

)′
,

P̃ L(x) =: set of “effective”polynomials in the constrained m̂B(x;L),

where for notational simplicity we suppress the reference to q and L in p�,L(·;q). For exam-
ple, when the only binding constraint is b̂�0 = b̂�0+1, as described earlier, we have

P̃ L(x) =: (
p1(x), . . . , p�0−1(x), p̃�0(x),p�0+2(x), . . . , pL(x)

)
.

It is obvious that if there were no binding constraints then P L(x) ≡ P̃ L(x). The use of the
“correct” P̃ L(x) is crucial for the power of the test. Using P L(x) without taking into account
the binding constraints will make the test to have only trivial power; see the discussion in
Section 5.3 and the Supplementary Material. However, for the sake of expositional simplicity,
in this section we shall consider the case of no binding constraints (thus, P̃ L(x) = P L(x)).7

With this in mind, for any x ∈ X , let us define

(5.3) Cn(x) = 1

n

n∑
k=1

P kukJk(x), An(x) = 1

n

n∑
k=1

P kP
′
kJk(x),

where I(x ≤ xk) =: Jk(x) = 1 − Ik(x). We will use the abbreviations

Cn,i =: Cn(x̃i), An,i =: An(x̃i),

where x̃i = xi if xi + n−ς < zk(xi) and = zk(xi) otherwise, with zk(x) denoting the closest
knot zk , k = 2, . . . ,L′ + 1, bigger than x and 1/2 < ς < 1.8 Then the CUSUM of (forward)
“recursive” least squares is defined as

(5.4) Mn(x) =: 1

n1/2

n∑
i=1

viIi (x),

6∑L
�=1(b̂� − β�)p�,L(xi;q) can be rewritten in terms of P̃ i only. However, to convey some intuition about its

asymptotic behavior, it is convenient to leave this term as it is.
7When examining the local power of the test in Section 5.3 we shall make explicit the consideration of bind-

ing constraints. An additional discussion of the role of the binding constraints is outlined in the Supplementary
Material.

8We make this “trimming” because when xi is too close to zk(xi ), the B-spline is close but not equal to zero,
which induces some technical complications in the proof of our main results. However, in small samples this
“trimming” does not appear to be needed, becoming a purely technical argument.
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where vi = ui −P ′
iA

+
n,iCn,i . Note that because

∑n
i=1 φ(xi) = ∑n

i=1 φ(x(i)), where x(i) is the
ith order statistic of {xi}ni=1, we could write (5.4) as

Mn(x) =: 1

n1/2

n∑
i=1

v(i)I(i)(x), where

v(i) = u(i) − P ′
(i)

(
1

n

n∑
k=i

P (k)P
′
(k)

)+
1

n

n∑
k=i

P (k)u(k) with P (i) =: PL(x(i)).

The latter has the more familiar formulation of CUSUM of “recursive” least squares residuals
when the dependent variable is now u(i) and the explanatory variables are P (i), as proposed
and formulated by [9].

Now denoting K1
n(x) =: n−1 ∑n

i=1 uiIi (x), the process Mn(x) becomes a linear transfor-
mation of K1

n(x), that is, Mn(x) =: n1/2(TnK1
n)(x), x ∈ (0,1), where, for any real-valued

function g ∈ D[0,1],

(Tng)(x) = g(x) − 1

n

n∑
i=1

P ′
iA

+
n,i

∫ 1

x̃i

P L(w)g(dw).

Thus, because the process (TnKn)(x) = (TnK1
n)(x) + op(n−1/2), we can interpret (TnKn)(x)

as being the martingale innovation of Kn(x) and where the transformation (Tng)(x) has the
limiting version (T g)(x), defined as

(T g)(x) = g(x) −
∫ x

0
P ′

L(z)A+
L(z)

(∫ 1

z
P L(w)g(dw)

)
fX(z) dz, x < 1,

with AL(x) =
∫ 1

x

(
P L(w)P ′

L(w)
)
fX(w)dw.

This type of martingale transformation was proposed by [33] in the standard goodness-of-fit
testing problem, and later used by [36, 49] or [16].

Finally, it is worth mentioning that in (5.3) we could have employed Jk(x) = I(x < xk)

instead of our definition Jk(x) = I(x ≤ xk). However, because by definition of B-splines the
matrix An,i , and hence AL(xi), might be singular, if we employed Jk(x) = I(x < xk), then
it would not be guaranteed that P ′

i − P ′
iA

+
n,iAn,i = 0. On the other hand, Theorem 12.3.4 in

[30] yields that the last displayed equation holds true when Jk(x) = I(x ≤ xk).
Denote U(x) =: σuB(FX(x)), where B(z) is the standard Brownian motion and FX(·) is

the distribution function of X. Then we have the following.

THEOREM 1. Assuming that H0 holds true, under Conditions C1–C3, we have that

Mn(x)
weakly⇒ U(x), x ∈ [0,1].

Unfortunately, we do not observe ui , so that to implement the pivotal transformation
(Tng)(x), we replace vi by v̂i , where v̂i is defined analogously to vi but where ui is replaced
with ûi as defined in (5.1), yielding the statistic

(5.5) M̃n(x) =: 1

n1/2

n∑
i=1

v̂iIi (x).

THEOREM 2. Assuming that H0 holds true, under Conditions C1–C3, we have that

M̃n(x)
weakly⇒ U(x), x ∈ [0,1].
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We compute the estimate of σ 2
u as σ̆ 2

u = 1/n
∑n

i=1 ŭ2
i , where ŭi are the unconstrained

residuals ŭi = yi − m̆B(xi;L). We then have the following.

PROPOSITION 1. Under Conditions C1–C3, σ̆ 2
u

P→ σ 2
u .

COROLLARY 1. Under H0 and assuming Conditions C1–C3, for any continuous func-

tional g :R→R
+, g(M̃n(x)/σ̆u)

d→ g(U(x)/σu).

Corollary 1 forms a basis for testing for H0 using functionals of M̃n(x)/σ̆u, such as the
ones given in (3.2).

5.2. Nonlinear constraints on β�. Now let us turn our attention to the CUSUM of “recur-
sive” residuals with nonlinear constraints defining Sq,L. If none of the constraints are binding,
the pivotal transformation proceeds in a manner akin to the previous section. Therefore, our
focus will mainly be on scenarios where some constraints are binding, indicating that certain
elements in b̂ are at the boundary of the set Sq,L.

To that end, we first describe P̃ L(x). The main difference with the linear scenario is that the
constraints described by the boundary of Sq,L are now given by implicit functions. In particu-
lar, for the type of shapes in Example 2, we have that the boundary is given by implicit func-
tions of the form H(β�0−2, β�0−1, β�0) = 0 whose explicit solutions β�0 = h(β�0−2, β�0−1)

are obtained either analytically or numerically.9 Then if, for instance, we have only one bind-
ing constraint, for the purpose of conducting our (asymptotic) pivotal transformation, instead
of approximating m(·) by the linear function

∑L
k=1 βkpk(x), we would consider the approxi-

mation given by

g(x;β−�0) =:
�0−1∑
k=1

βkpk(x) + h(β−�0)p�0(x) +
L∑

k=�0+1

βkpk(x),

where β−�0 = (β�0−2, β�0−1). Then P̃ L(x) will be given by the vector of first derivatives of
g(x;β−�0) with respect to the parameters. That is,

P̃ L(x) =: P̃ L(x;β−�0) = ∂

∂β−�0

g(x;β−�0) =: {
p̃�(x;β−�0)

}L
�=1;�=�0

.

It is easy to see that p̃�(x;β−�0) =: p�(x) + ∂h(β−�0 )

∂β�
p�0(x), for � �= �0. Then the CUSUM of

“recursive” residuals becomes

M̃n(x) =: 1

n1/2

n∑
i=1

v̂iIi (x),

where v̂i = ûi − P̃
′
i (b̂−�0)D+

n (i; b̂−�0)
∑n

k=1 P̃ k(b̂−�0)ûkJk(x̃i), and we set P̃ i (β−�0) =:
P̃ L(xi;β−�0), Dn(x;β−�0) =: ∑n

k=1 P̃ k(β−�0)P̃
′
k(β−�0)Jk(x) and Dn(i;β−�0) =:

Dn(x̃i;β−�0) with x̃i determined in the same way as in Section 5.1, and ûi = yi −g(xi; β̂−�0).
By employing p̃�(xi;β−�0) instead of p�(xi), we have incorporated the binding restriction in
our pivotal transformation. As when the constraints were linear, we have the following result.

THEOREM 3. Assuming that H0 holds true, under Conditions C1–C3, we have that

M̃n(x)
weakly⇒ U(x), x ∈ [0,1].

9Please see the Supplementary Material for more details on the form of constraints in Example 2.
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5.3. Power and local alternatives. We now discuss the power and Pitman’s alternatives
of our tests. For that purpose, consider the alternative hypothesis

(5.6) H1 : E[y|x] = m(x); m(·) /∈ M0

in a set X1 =: [a1, a2] ⊆ X , which is assumed to be an interval for notational simplicity. Let
m�(·) represent the best approximation in M0 to m(·) based on the L2-norm. Furthermore,
let X2 denote the set where m�(·) resides on the “boundary”of the null hypothesis. When
M0 is the set of nondecreasing functions, the “boundary” function is a constant. If we are
interested in testing for convexity, the “boundary” function is a straight line. Analogously,
the notion of “boundary” can be extended to any shape property. Note that X2 does not need
to coincide with the set X1 even though it holds that X2 ⊇ X1. For instance, if M0 is the set
of nondecreasing functions and

m(x) = xI(x < 1/4) + (1/2 − x)I(1/4 ≤ x < 3/4) + (x − 1)I(3/4 ≤ x < 1),

then m�(x) = 0 in X =[0,1]. However, X1 = (1/4,3/4) whereas X2 = [0,1].
We can rewrite (5.6) as

E[y|x] = m(x) =: m�(x) + m�
1(x),

where by construction we can take m�
1(x) = 0 if x /∈ X2.

To fix ideas, we shall explicitly consider the case when M0 is the set of nondecreasing
functions, discussing more general scenarios in the Supplementary Material. Suppose that
our optimization problem given in (2.8) ended up with b̂�0 = · · · = b̂L0 , so that

m̂B(xi;L) = (b̂1, . . . , b̂�0−1, b̂�0, b̂L0+1, . . . , b̂L)P̃ i ,

=
�0−1∑
k=1

b̂kpk(xi) + b̂�0

L0∑
k=�0

pk(xi) +
L∑

k=L0+1

b̂kpk(xi),

and where P̃ L(x) in (2.9) is P̃ L(x) = (p1(x), . . . , p�0−1(x), p̃�0(x),pL0+1(x), . . . , pL(x)).
Due to the properties of the B-splines, p̃�0(x) = ∑L0

k=�0
pk(x) is equal to 1 when x ∈

[ �0
L′ ,

L0−q
L′ ]. In this case, mB(·;L) in (2.3) becomes

m�
B(x;L) =

�−1∑
k=1

βkpk(x) + β�

L∑
k=�

pk(x) +
L∑

k=L+1

βkpk(x)

= (β1, . . . , β�̄−1, β�̄, βL̄+1, . . . , βL)Ṗ L(x)

with Ṗ L(x) = (p1(x), . . . , p�−1(x), ṗ�(x),pL+1(x), . . . , pL(x)) and ṗ�(x) = ∑L
k=�

pk(x).

Similar to above, ṗ�(x) equals 1 when x ∈ X2 = [�/L′,L − q/L′]. The latter implies that
we can consider �0/L

′ and L0/L
′ as estimators of �/L′ and L/L′, respectively, which we

will show in the proof of Proposition 2 below to be consistent in the sense that |�0 − �|/L′ +
|L0 − L|/L′ = op(1).

Define

LL(x) =
∫

[0;x]∩X2

{
m�

1(v) − Ṗ
′
L(v)Ã+

L(v)

∫
[v;1]∩X2

Ṗ L(w)m�
1(w)fX(w)dw

}
fX(v) dv,

which is different from zero in X2. Indeed, because fX(·) > 0, we have that LL(x) = 0 a.e.
on X2 iff for v a.e. on X2,

(5.7) m�
1(v) − Ṗ

′
L(v)Ã+

L(v)

∫
[v;1]∩X ′

2

Ṗ L(w)m�
1(w)fX(w)dw = 0.
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The latter means that m�
1(·) belongs to the space spanned by Ṗ L(·). This, however, is ruled

out since m�
1(x) /∈ M0 in X2 and any linear combination of Ṗ L(w) is a constant function

in X2, and hence belonging to M0. We shall remark that Ṗ L(w) depends on M0, via the
boundary component of m�(·).

PROPOSITION 2. Assuming Conditions C1–C3, under H1 in (5.6),

M̃n(x) − n1/2LL(x)
weakly⇒ U(x) + V(x), x ∈ [0,1],

where V(x) is a nondegenerate random variable.

The first consequence of Proposition 2 is that our tests would reject H0 with a probability
of 1 as n → ∞. This is because L(x) is a nonzero function in X2, so that for any continuous
functional g : R→R

+ such that 1/g(x) → 0 as |x| → ∞, standard arguments establish that

1/g(M̃n(x))
p→ 0.

Next, we examine the Pitman’s alternatives for which the test has nontrivial power. For
that purpose, consider the Pitman’s alternatives

Ha ≡ E[yi |xi] =: m�(xi) + n−1/2m�
1(xi),

where m�(·) and m�
1(·) satisfy respectively the same conditions as above. Then Proposition 2

yields that

M̃n(x) −LL(x)
weakly⇒ U(x) + V(x), x ∈ [0,1].

REMARK 1. If P̃ L(w) = P L(w), then (5.7) would be op(1) regardless of whether
m(·) ∈ M0 or not. Consequently, a test based on M̃n(x) in (5.5) would lack power. There-
fore, to ensure the test has power, it is crucial to use P̃ L(w) when performing the pivotal
transformation in (5.4) or (5.5).10

The Supplementary Material considers general cases when the null hypothesis is written
in terms of the r th derivative of m(·), as in Example 1, and also the scenarios described in
Example 2.

6. Bootstrap algorithm. We introduce a bootstrap algorithm for our test to address the
small sample biases observed in our Monte Carlo experiments, despite the pivotal nature of
our test. When the asymptotic distribution fails to adequately approximate the finite sample
distribution, employing bootstrap algorithms is a standard approach to improve performance
and provide small sample refinements. Our Monte Carlo simulations confirm that the boot-
strap algorithm, to be described below, yields a superior finite sample approximation. We will
utilize the fast WARP algorithm developed by [24] in our Monte Carlo experiments.

The bootstrap is based on the following 3 STEPS.

STEP 1 Compute the unconstrained residuals ŭi = yi − m̆B(xi;L), i = 1, . . . , n, with
m̆B(xi;L) as defined in (2.5).

STEP 2 Obtain a random sample of size n from the empirical distribution of {ŭi −
1
n

∑n
i=1 ŭi}ni=1. Denote it as {u∗

i }ni=1 and compute the bootstrap analogue of the regres-
sion model using m̂B(xi;L), that is,

y∗
i = m̂B(xi;L) + u∗

i , i = 1, . . . , n.

10See some additional discussion in the Supplementary Material.
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STEP 3 Compute the bootstrap analogue of M̃n(x) as

M̃∗
n(x) =: 1

n1/2

n∑
i=1

v̂∗
i Ii(x), where

v̂∗
i = û∗

i − P̃
′
i

(
n∑

k=1

P̃ kP̃
′
kJk(xi)

)+ n∑
k=1

P̃ kJk(xi)û
∗
k,

and û∗
i = y∗

i − P̃
′
i (

∑n
k=1 P̃ kP̃

′
k)

+ ∑n
k=1 P̃ ky

∗
k , i = 1, . . . , n.

THEOREM 4. Under Conditions C1–C3, we have that g(M̃∗
n(x))

d→ g(U(x)) for any
continuous (with probability 1) function g :R →R

+.

Corollary 2 shows that û∗
i can be substituted with y∗

i in the computation of M̃∗
n(x).

COROLLARY 2. Under C1–C3, we have M̃∗
n(x) − ˜̃M∗

n(x) = 0, where

˜̃M∗
n(x) =: 1

n1/2

n∑
i=1

(
y∗
i − P̃

′
i

(
n∑

k=1

P̃ kP̃
′
kJk(xi)

)+ n∑
k=1

P̃ ky
∗
kJk(xi)

)
Ii (x).

7. Monte Carlo experiments. In our computational experiments, all the results are for
cubic splines with varying numbers of knots. We include results for both B-splines and P-
splines, with penalties on the second differences of coefficients determined through cross-
validation as described in [22]. We use the modal value of these cross-validation parameters
obtained across simulation draws. The tables provide the results of Kolmogorov–Smirnov
(“KS”), Cramér–von Mises (“CvM”) and Anderson–Darling (“AD”) test statistics.11 The
number of equidistant knots (including boundary points) on the interval of interest is denoted
as L′ + 1. In all the scenarios, X ∼ U[0,1], U ∼ N (0, σ 2) and U ⊥ X.

The rejection rates are based on the bootstrap critical values derived from the WARP boot-
strap implementation where the demeaned residuals and x are drawn independently. The
rejection rates are determined based on 2000 simulations. n represents the number of obser-
vations in each simulation.

Even though B-splines and P-splines deliver asymptotically equivalent results, the results
in Scenario 3 suggest that in finite samples, P-splines yield better test power and stability
across different L (or L′) compared to B-splines. Therefore, we recommend using P-splines
in practice.

The Supplementary Material contains additional results. Specifically, Scenario 4 gives ad-
ditional illustrations of the power of the test, and Scenario 5 shows the performance of the
test when nonlinear constraints on β are involved (log-convex regression function). It also
shows the performance of our test for Scenarios 1–3 using asymptotic critical values. The
results support our proposal to use bootstrap critical values in practice. The Supplementary
Material also gives testing results for sample sizes n = 100 and n = 200. In addition, in
the Supplementary Material we compare our test to those in [23, 27] and [50] when testing
for monotonicity. Regarding the power of the test in Scenario 3, we find that when using
P-splines, our test has a superior performance to those for large noise to signal ratios and
performs at least as well as these alternative tests for small noise to signal ratios (when power
is very close to 1). In particular, this further supports our recommendation of using P-splines
in practice.

11We first center the empirical process in a way that it converges to a Brownian bridge indexed by the c.d.f. of
X. Our additional simulations confirm that results with such a centering are very similar to results based on the
original process without the centering.
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TABLE 1
Tests for monotonically increasing regression function in Scenarios 1a and 1b

Scenario 1a Scenario 1b

B-splines P-splines B-splines P-splines

Setting Method 10% 5% 10% 5% 10% 5% 10% 5%

L′ = 6 KS 0.113 0.054 0.101 0.05 0.097 0.0525 0.1065 0.053
n = 1000 CvM 0.1035 0.0475 0.1005 0.044 0.1005 0.0515 0.0975 0.0445
σ = 0.25 AD 0.1065 0.054 0.104 0.052 0.0975 0.058 0.096 0.045
L′ = 14 KS 0.0945 0.043 0.105 0.0555 0.0925 0.048 0.092 0.044
n = 1000 CvM 0.098 0.0425 0.0955 0.045 0.0885 0.046 0.0925 0.049
σ = 0.25 AD 0.093 0.043 0.096 0.049 0.0875 0.0465 0.0965 0.0425
L′ = 19 KS 0.089 0.0485 0.101 0.058 0.093 0.04 0.098 0.042
n = 1000 CvM 0.105 0.0555 0.1025 0.0495 0.0915 0.049 0.098 0.0475
σ = 0.25 AD 0.1085 0.0545 0.1065 0.049 0.0885 0.043 0.1005 0.0465

SCENARIO 1 (Test for monotonicity). Regression functions on [0,1] are

m(x) = x13/4, (Scenario 1a)

m(x) = −(x − 0.5)2 · I(x < 0.5) + (x − 0.5)2 · I(x ≥ 0.5), (Scenario 1b).

In Scenario 1a, the function is twice continuously differentiable and its second derivative is
Hölder continuous with the exponent 1

4 , whereas in Scenario 1b the function is smooth and
its first derivative is Lipschitz. The results are summarized in Table 1.

Since it might be of interest to explore a broader spectrum of cases involving different
levels of smoothness for m(·), in the Supplementary Material we consider two additional
Scenarios 1c and 1d. In Scenario 1c, m(·) is smooth but its derivative is not Hölder continu-
ous. In 1d, m(·) is infinitely differentiable.

SCENARIO 2 (Test for U-shape). The regression function is defined as

m(x) = 10
(
log(1 + x) − 0.33

)2
.

The graph of this function is U-shaped with the switch point at s0 = e0.33 − 1. In simulations,
s0 is taken to be known.

The results are summarized in Table 2. We use two different B-splines—one on [0, s0] and
the other on [s0,1]. We join these B-splines continuously at s0, and in another approach join
them smoothly at s0.

SCENARIO 3 (Analysis of power of the test). The regression function is

m(x) = x + 0.415e−ax2
, a > 0,

(its graph can be found in the Supplementary Material). We consider a = 50 and a = 20. In
the latter case, the nonmonotonicity dip is smaller. These situations are deemed challenging
for monotonicity tests as these functions are close to the set of monotone functions (in any
conventional metric). As expected, the power of the test depends on the value of a and also
depends on the variance of the error. The results for σ = 0.25 and σ = 0.1 are summarized
in Table 3. The Supplementary Material contains additional results for σ = 0.5.

The power of monotonicity tests for such m(·) is examined in [23]. A similar regression
function is studied in [8]. Note that [23] uses smaller sample sizes and also only a = 50 and
σ = 0.1 to analyze power implications.
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TABLE 2
Tests for U-shape with the switch at s0 = e0.33 − 1 in Scenario 2. L′ + 1 denotes the number of equidistant knots

on each subinterval [0, s0] and [s0,1]

Continuously joined Smoothly joined

B-splines P-splines B-splines P-splines

Setting Method 10% 5% 10% 5% 10% 5% 10% 5%

L′ = 4 KS 0.0935 0.048 0.113 0.051 0.098 0.062 0.1105 0.055
n = 1000 CvM 0.106 0.046 0.1 0.0515 0.101 0.0575 0.1005 0.05
σ = 0.25 AD 0.107 0.048 0.098 0.055 0.1015 0.0615 0.094 0.0505
L′ = 6 KS 0.1105 0.0555 0.112 0.051 0.107 0.0575 0.0935 0.0495
n = 1000 CvM 0.101 0.0585 0.099 0.0525 0.1 0.0575 0.0955 0.048
σ = 0.25 AD 0.1015 0.0565 0.098 0.047 0.1055 0.055 0.0965 0.0485

8. Conclusion. This paper proposes a methodology to test various shape properties of
a regression function. The methodology involves applying a transformation to the empirical
process of partial sums in a nonparametric setting, where B-splines or P-splines are used to
approximate the functional space under the null. We prove that the proposed transformation
eliminates the impact of nonparametric estimation and yields asymptotically pivotal testing.
To the best of our knowledge, this paper is the first to implement this transformation in a
nonparametric context.

In our main examples, we examine shape constraints expressed as inequality constraints
on the coefficients of the approximating regression splines. The flexibility of our approach
enables the simultaneous testing of multiple shape properties. When the inequality constraints
are linear, the implementation becomes particularly straightforward, as is the case for shape
properties expressed as linear inequality constraints on the derivatives.

TABLE 3
Tests for monotonicity in Scenario 3

a = 50 a = 20

B-splines P-splines B-splines P-splines

Setting Method 10% 5% 10% 5% 10% 5% 10% 5%

L′ = 6 KS 0.9 0.8405 0.986 0.9625 0.5795 0.4605 0.756 0.6415
n = 1000 CvM 0.8295 0.7025 0.9615 0.913 0.5895 0.4195 0.741 0.626
σ = 0.25 AD 0.939 0.854 0.9835 0.9665 0.608 0.4505 0.7275 0.6295
L′ = 12 KS 0.9235 0.842 0.9865 0.9705 0.461 0.334 0.6785 0.5585
n = 1000 CvM 0.863 0.756 0.97 0.9325 0.436 0.318 0.6525 0.4965
σ = 0.25 AD 0.951 0.8895 0.9865 0.9705 0.492 0.3575 0.658 0.517
L′ = 19 KS 0.925 0.8505 0.9865 0.974 0.4835 0.3505 0.698 0.585
n = 1000 CvM 0.8835 0.802 0.9745 0.9355 0.4595 0.345 0.6625 0.495
σ = 0.25 AD 0.941 0.8985 0.987 0.9695 0.486 0.3665 0.666 0.5105
L′ = 6 KS 1 1 1 1 1 0.998 1 1
n = 1000 CvM 1 1 1 1 0.9985 0.9965 1 1
σ = 0.1 AD 1 1 1 1 0.9995 0.9975 1 1
L′ = 12 KS 1 1 1 1 0.968 0.9535 0.9995 0.998
n = 1000 CvM 1 1 1 1 0.9539 0.932 0.9975 0.995
σ = 0.1 AD 1 1 1 1 0.969 0.951 0.998 0.997
L′ = 19 KS 1 1 1 1 0.973 0.9515 0.9995 0.9995
n = 1000 CvM 1 1 1 1 0.9525 0.9285 0.9985 0.9955
σ = 0.1 AD 1 1 1 1 0.966 0..948 0.999 0.997
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