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Abstract 
We study how individual inventors respond to incentives to work on “clean” electricity 
technologies. Using natural gas price variation, we estimate output and entry elasticities of 
inventors and measure the medium-term impacts of a price increase mirroring the social cost of 
carbon. We find that the induced clean innovation response primarily comes from existing clean 
inventors. New inventors are less responsive on the margin than their average contribution to clean 
energy patenting would indicate. Our findings suggest a role for policy to increase the supply of 
clean inventors to help mitigate climate change. 
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1 INTRODUCTION

Clean energy innovation is critical to reducing the costs of climate change mitigation and allowing

society to avert the worst-case scenarios projected by climate scientists. A long literature in

economics provides empirical evidence that innovation in clean energy responds to economic

incentives, and recent research on directed technical change provides a theoretical justification for

subsidizing clean technology research and development. But crafting effective subsidies requires

understanding the sources and mechanisms of induced innovation.

This paper focuses on individual inventors to shed light on the origins of clean energy innovation.

A vast body of research in economics underscores the pivotal role of human capital in the innovation

process. However, the role of individual scientists and inventors in the energy sector has received

relatively little attention from economists. What is the evolution of a typical energy inventor’s

career? Given the extensive training required to reach the frontier of specialized fields, are inventors

likely to shift their research focus from conventional fossil fuel technologies to emerging clean

technologies? What is the role of new entrants relative to incumbents? Addressing these questions

is vital to understanding and influencing the pace of future clean energy innovation.

We use comprehensive global data on patent applications to characterize the careers of individual

inventors working on electricity generation technologies. We extract these inventors’ patent applica-

tions and classify them as either “clean,” “grey,” or “dirty” electricity technologies.1 We document

two new stylized facts about energy inventors. First, we find that most inventors specialize in

either clean or dirty technologies. This is consistent with returns to specialization in human capital

accumulation, and it raises the question of whether future government policies to encourage a shift

from dirty to clean technologies may be impeded by frictions that make it difficult for individual

inventors to work in different fields. Second, about half of the clean patent families in the data came

from inventors who had not patented before in clean. This sizeable number highlights the crucial

1. Although emissions intensities vary significantly across different fuels and technologies, we use the simplistic
terminology clean and dirty for broad categorizations in keeping with prior work (e.g., Acemoglu et al. 2012; Aghion
et al. 2016). In our main definition of “clean,” we include renewable and nuclear energy, while “dirty” includes patents
related to the combustion of fossil fuels. “Grey” encompasses energy efficiency and biomass and waste combustion
since they still emit greenhouse gases despite being cleaner than traditional fossil fuels.
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role of new entrants in clean innovation.

We then study how individual inventors respond to economic incentives in order to develop

a deeper understanding of the forces determining these stylized facts. Our primary measure of

economic incentives is the price of natural gas, which is arguably the most important factor price in

electricity markets. When natural gas is more expensive, clean technologies become relatively more

competitive, and demand for them increases. Thus, if firms and inventors expect higher natural gas

prices to persist, they have a greater incentive to improve clean electricity technologies.

Our empirical strategy leverages variation in natural gas prices over both countries and time to

examine how inventors respond to changes in factor prices at both the intensive and the extensive

margins. The residual variation in natural gas prices that we exploit stems primarily from supply

shocks that are not transmitted globally due to transportation constraints. We also implement an

instrumental variable strategy that isolates variation from the shale gas revolution, which shifted

out the supply of natural gas and generated a persistent reduction in the price of natural gas in

North America relative to other regions due to natural gas transportation constraints. This strategy

mitigates concerns about the potential endogeneity of natural gas prices and the fact that inventors

are likely to respond differently to transient shocks than to persistent shocks.

First, we focus on active clean inventors and estimate an intensive margin output elasticity to

quantify how the number of patents an inventor produces responds to natural gas prices. We use

panel data methods to model how natural gas prices affect the number of clean energy patents

an inventor produces, including inventor and time fixed effects to account for cross-sectional

differences as well as common shocks to innovation incentives. To do so, we first construct prices

using information on the firms that individual inventors patent with. This leverages the role of firms,

which effectively act as intermediaries that observe market signals and respond by organizing and

directing inventors’ research activities.

Second, we examine the extent to which economic incentives induce new inventors to enter

clean patenting. We estimate an extensive margin elasticity, which we refer to as an entry elasticity,

to quantify how the number of inventors entering clean technology responds to natural gas prices.
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To do so, we shift our analysis to the firm level. We assemble a panel of firms patenting in clean

energy and identify inventors listed on a firm’s patents in a given year. Within those, we focus on

inventors who are filing their first clean patent. We use inventors’ patenting history to classify them

as either: having never patented before; having patented outside of energy; or having patented in

grey or dirty but not clean technologies. We count the number of inventors in each group and then

estimate the elasticity of the number of new clean technology inventors with respect to natural gas

prices for each group.

Together, these empirical strategies allow us to characterize how inventors respond along both

the intensive and extensive margins and to compare the magnitudes of the responses. At the intensive

margin, we find that a 10% increase in natural gas prices induces about 5% more clean families

for the average clean incumbent. The direction and magnitude of this effect are consistent with

prior work at the firm and technology levels. The instrumented elasticity estimates are similar to the

non-instrumented estimates. At the extensive margin, we find that a 10% increase in natural gas

prices leads to an increase in entry of up to 6% depending on the time horizon and type of entrant.

We combine these econometric estimates to study the potential effects of an increase in natural

gas prices equivalent to a social cost of carbon of $51 per metric ton of carbon dioxide. We find

that total clean patenting would increase roughly one-fourth relative to baseline patenting rates in

the medium run. The dominant mechanisms of this aggregate response are increased patenting by

existing clean inventors and, to a lesser extent, patenting by new entrants who had not previously

produced patents.

Overall, these findings show that induced innovation in the medium run relies primarily on the

intensive margin, that is, on already-active inventors, and that the entry of new inventors plays a

more minor role. These results suggest a role for policy to increase the supply of clean inventors.

They also emphasize the need for further research to understand better what drives individuals to

become clean inventors and what policies could help produce more clean inventors.

This paper provides new empirical evidence to the literature on the economics of energy and

environmental innovation. Prior research has shown that the optimal climate policy combines carbon
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pricing and R&D subsidies to effectively redirect scientists from dirty to clean technologies (e.g.,

Acemoglu et al. 2012; Acemoglu et al. 2016; Fried 2018; Hart 2019; Lemoine 2020). Empirical

analyses have shown that energy price increases and environmental policies induce innovation in

clean technologies (e.g., Newell et al. 1999; Popp 2002; Johnstone et al. 2010; Popp and Newell

2012; Noailly and Smeets 2015; Aghion et al. 2016; Dugoua 2021; Myers and Lanahan 2022;

Gerarden 2023). Such effects have been documented both at the technology and firm levels, but

there is no empirical evidence on how such incentives influence the work, and especially the research

direction, of individual inventors. We provide new empirical evidence on how high-skilled workers

respond to incentives that can be used to guide future modeling assumptions and policy design.2

This paper also relates to the literature studying the role of human capital in innovation, and

especially how individual inventors respond to incentives (e.g., Jones 2009, 2010; Azoulay et

al. 2011; Bell et al. 2019; Agarwal and Gaule 2020; Van Reenen 2021; Akcigit et al. 2022). In

particular, Azoulay et al. (2019) and Myers (2020) highlight the role of new entrants in biomedical

research and find that it is costly to influence the direction of their work. We contribute to this

literature by documenting similar patterns in the context of climate change mitigation technologies.

We also build on a growing literature that studies the impacts of the shale gas revolution. Much

of this literature focuses on the implications of lower natural gas prices on the electricity sector and

environmental outcomes in the short run (e.g., Cullen and Mansur 2017; Linn and Muehlenbachs

2018; Knittel et al. 2019; Coglianese et al. 2020).3 We contribute to this literature by exploiting

slightly different variation and studying different outcomes. Prior papers primarily use variation

within the U.S. for estimation.4 By contrast, we leverage the significant change in natural gas

prices in North America relative to other regions of the world to study how fuel price changes

induce innovation by individual inventors.5 This innovation could have transformational effects on

environmental, electricity sector, and broader economic outcomes in the long run.

2. Popp et al. (2022b) argue government investments in human capital will be needed to scale low-carbon energy.
3. Hausman and Kellogg (2015) assess welfare and distributional implications for the broader economy.
4. For example, Fowlie and Reguant (2022) exploit variation in the shale revolution’s effects on natural gas prices

across locations and industries to simulate the effects of a domestic carbon price on U.S. manufacturing.
5. Acemoglu et al. (2019) present suggestive evidence of the impact of shale gas development on clean innovation as

motivation for a theoretical model of the long-run consequences of the shale gas revolution.
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2 STYLIZED FACTS ABOUT ENERGY INVENTORS

2.1 Data

Energy Patent Data. We extract electricity generation-related patent applications from the

PATSTAT database (European Patent Office 2022) using specific patent classification codes.6

These codes help us classify patents as relating to either clean, grey, or dirty technologies. Clean

technologies include zero or low-carbon electricity generation technologies (i.e., solar, wind, marine,

geothermal, hydro, and nuclear).7 Dirty technologies include patents related to the combustion

of fossil fuels (i.e., coal, oil, and natural gas). In grey technologies, we group patents related to

improving the efficiency of combustion processes and electricity generation from biomass and

waste.

We aggregate patent applications at the level of patent families, which are collections of patents

that are considered to cover the same technical content and, therefore, represent the same invention.

We date families by their priority year, which is the year when the earliest application within the

family was filed.

Online Appendix Figure C.1 plots the number of clean, grey, and dirty patent families over time

in our sample. The trends are similar to those documented previously by Acemoglu et al. (2019)

and Popp et al. (2022a), with the number of clean patent families increasing rapidly over the 2000s,

followed by a decline in clean patenting since 2010. By contrast, the number of new patent families

in grey and dirty technologies has been more stable over the past three decades.

Inventor Data. Next, we identify individual inventors to construct a panel dataset of their patenting

activity over time. Intellectual property authorities require that all individuals who contributed to

an invention be listed as inventors on the application, but they do not use unique identifiers for

6. We use codes from the Cooperative Patent Classification and the International Patent Classification building
on previous studies that have listed relevant energy codes (Johnstone et al. 2010; Lanzi et al. 2011; Dechezleprêtre
et al. 2014; Popp et al. 2022a). See Online Appendix A.3 for a detailed list of codes.

7. A patent family is classified as clean if it has at least one code related to renewable or nuclear energy. We also
consider an alternative definition of clean that includes some enabling technologies relevant to electricity and excludes
families that include any grey or dirty codes. Results for that definition are in the appendix.
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individual inventors. To analyze inventors’ activities over their careers, researchers must, therefore,

use the inventor names written on patent applications to identify unique inventors.

Our starting point is to use the PATSTAT Standardized Name identifier, which results from

a harmonization procedure completed prior to data publication.8 This harmonization, however,

is incomplete: 70% of the inventors in our sample are not included. We improve the PATSTAT

identifier by standardizing inventors’ names and disambiguating inventors based on string matching.9

For our analysis, we focus on inventors who are listed on at least one energy patent application

filed in an OECD country after 1990.10 We define the year when the inventor becomes connected to

a family as the earliest year when the inventor appears on any of the applications in the family. In

the end, our sample contains a total of 873,256 energy inventors.

2.2 Stylized Facts

Most Energy Inventors Specialize in Clean or Dirty Technologies. Figures 1a and 1b show

the extent to which energy inventors specialize in either clean, grey, or dirty patenting based on

inventors’ global patent portfolios between 1990 and 2019. To construct the graphs, we classify

inventors with at least one energy patent family in a given year according to their last three years of

patenting.

On average throughout the period, 30% of energy inventors patent in clean energy only. Inventors

who patent in grey and/or dirty energy are more numerous, making up 60% of energy inventors.11

By contrast, the share of energy inventors who are active in both clean and dirty or grey energy

patenting is only 10%.

Figures 1a and 1b also show how specialization has changed over time. The total number of

energy inventors increased until 2012, led by a rapid rise in the number of clean inventors during

8. Li et al. (2014) provides disambiguated identifiers for USPTO inventors only. Our study requires disambiguation
of all inventors globally.

9. Online Appendices A.2 and B explain this procedure in detail.
10. We limit our geographic scope because natural gas price data is available for OECD countries only.
11. Here, for simplicity, we restrict our attention to energy-related patents. Hence, when we say that an inventor

patents only in clean, we mean that all of the energy patents the inventor produces are in clean. The inventor may also
patent in other non-energy fields.
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the 2000s. During that period, the share of inventors working in clean energy roughly doubled. On

the other hand, the number of inventors working on dirty and/or grey energy grew more gradually

over time, so that their share fell significantly over the 2000s. Finally, while the number of inventors

working in both areas has increased over time, it remains small relative to the clean and dirty

categories.
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FIGURE 1
Type of Energy Inventors and Clean Patent Families

Note: Figures 1a and 1b show the extent to which energy inventors specialize in either clean, grey, or dirty patenting.
We focus on inventors’ global patent portfolios for inventors with at least one energy patent in an OECD country after
1990. To construct the graphs, we first identify inventors with at least one energy family filed in year t, and then classify
them according to their last three years of patenting activity. Figures 1c and 1d illustrate the types of inventors behind
clean families over time. They plot trends over time in the levels and shares of clean families produced by inventors with
previous clean patents, inventors new to patenting, inventors with previous patents outside the set of energy technologies
under study, and inventors with previous grey and/or dirty patents. Families with multiple inventors are fractionally
attributed to the inventors to avoid double-counting.
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New Entrants are a Quantitatively Important Source of Clean Patenting To assess the

contribution of different types of inventors to innovation output, we document the number of

clean families produced by inventors based on their prior patenting behavior. Figures 1c and 1d

summarize the distribution of clean families over the sample period. To compute these numbers, we

inversely weight patent counts by the number of inventors associated with each patent family to

avoid double-counting, and then aggregate patent counts across inventors of each type.

On average, throughout the period, we find that only about half of clean families (46%) are from

clean incumbents, either inventors with prior patenting in clean only (30%) or in clean as well as

grey and/or dirty (16%). Roughly one-third of families (32%) come from inventors who did not

previously appear in the patent data. About 19% come from inventors that had previously patented

in fields that we do not classify as energy. Finally, a small fraction of clean families (4%) come

from inventors with prior patenting in grey and/or dirty but not clean.12

3 EMPIRICAL STRATEGY

The remainder of the paper focuses on how innovation in clean electricity generation technologies

responds to changes in economic incentives, which we proxy by changes in natural gas prices. In

this section, we discuss the sources of price variation that we exploit. We then explain our approach

to estimating clean innovation responses on both the intensive and extensive margins.

3.1 Identifying Variation

Our empirical strategy builds on a literature on induced innovation dating to Hicks (1932). Hicks

hypothesized that a change in relative factor prices would spur innovation to use less of the factor

which had become relatively expensive. We use natural gas prices as a proxy for relative factor

prices in electricity generation, and therefore as an indirect proxy for the expected returns from

innovation in renewable and nuclear electricity generation technologies that compete with natural

12. We find similar distributions of incumbents versus entrants for grey and dirty families (see Online Appendix C.3).
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gas-fired electricity generation.13

We use data on natural gas prices from the International Energy Agency (2020) and exploit

variation across countries and time, visualized in Figure 2a.14 The price variation across countries

at a given point in time stems primarily from constraints on the transportation of natural gas. The

clearest example of this is the shale gas revolution. The development of horizontal drilling and

hydraulic fracturing caused prices for natural gas in North America to decline significantly in 2009.

These price reductions were not seen in other regions for many years due to short-run capacity

constraints on the export of natural gas. The identifying variation used in our primary empirical

strategy comes from residual variation in natural gas prices after conditioning on country and time

fixed effects, plotted in Figure 2b.

(a) Prices (b) Residuals

FIGURE 2
Natural Gas Prices and Residuals across Countries and Time

Note: Panel a plots the price of natural gas in each country over time using data from the International Energy Agency
(2020). Prices are in U.S. dollars per megawatt-hour (MWh). Panel b plots residuals from a regression of the natural
logarithm of the natural gas prices from Panel a on country and year fixed effects.

13. While renewable and nuclear technologies primarily serve as substitutes to fossil fuel technologies, they can also
be complements in some markets and time periods. The role of these technologies as substitutes versus complements
generates opposing innovation incentives. Our empirical strategy estimates the net effect of these countervailing forces.
The Online Appendix also presents results using a broader definition of clean that includes enabling technologies
such as smart grid and energy storage. However, the extent to which those enabling technologies are substitutes or
complements to natural gas electricity generation is less clear than for clean electricity generation technologies.

14. Natural gas prices are in nominal U.S. dollars per megawatt-hour. All econometric analysis in the paper includes
time fixed effects, which absorb common time-varying factors including changes in the value of U.S. dollars due to
inflation, so the results are invariant to using prices in real terms.
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To mitigate concerns about potential endogeneity of natural gas prices due to reverse causality –

that clean technology developments may affect demand for natural gas, and therefore affect natural

gas prices – we also implement an instrumental variable strategy that restricts attention to the

variation in natural gas prices caused by the shale gas revolution. We use a binary instrument that

is one for the United States and Canada starting in 2009 and is zero in all other countries and

time periods. This instrument explains 51% of the residual variation in natural gas prices after

accounting for country fixed effects, time fixed effects, and other control variables included in our

main specifications. We use a control function approach based on Lin and Wooldridge (2019) to

implement the instrumental variable strategy, detailed in Appendix E.

We use a shift-share research design to utilize this country-level identifying variation to study

outcomes at the inventor and firm levels, as described in the subsequent sections. In doing so, we

build upon recent methodological papers by Adão et al. (2019), Goldsmith-Pinkham et al. (2020),

and Borusyak et al. (2022). For identification we rely on exogeneity of the natural gas price

shocks rather than exogeneity of the shares (i.e., weights), as in Adão et al. (2019) and Borusyak

et al. (2022).15

3.2 Response at the Intensive Margin: Output Elasticity of Incumbents

To quantify the magnitude of the induced innovation response at the intensive margin, we focus on

inventors who have produced at least one clean patent and study how their clean patenting activity

responds to natural gas prices. Specifically, we model patenting as a function of energy prices and

inventor characteristics:

PATC
it = exp(βP lnPit−1 +βX Xit−1 + γt +ηi)+uit , (1)

15. These papers focus on linear models and provide new procedures for inference that are robust to correlated
residuals among units with similar exposure shares. Unfortunately, we are not aware of analogous results for nonlinear
models. Thus, we cluster regressions by unit (i.e., inventor or firm).
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where PATC
it is the count of clean families filed by inventor i in year t;16 Pit−1 is the price of natural

gas that inventor i is exposed to in year t −1;17 Xit−1 is a set of controls; γt and ηi denote year and

inventor fixed effects; and uit is an error term. In some specifications, we also include tenure fixed

effects to account for how productivity evolves over the course of inventors’ careers.18 We estimate

equation 1 via Poisson pseudo maximum likelihood under the assumption that natural gas prices are

conditionally weakly exogenous.

Our empirical model requires a measure of the natural gas price(s) that individual inventors

use to form beliefs, which we do not directly observe. Most inventors patent in conjunction with

corporations, and we view their incentives as primarily mediated by firms. Thus, we construct price

measures for each individual that depend upon the prices that the firm(s) they are associated with

are exposed to.19

We, therefore, construct inventor-specific prices in two steps. First, we compute firm-specific

prices as the weighted average of country-level prices. Second, we compute inventor-specific prices

as the weighted average of firm-level prices. The resulting prices are given by

lnPit = ∑
j

si j ∑
c

s jcGDPc

∑c s jcGDPc
lnPct ,

where Pct is the average tax-inclusive natural gas price in country c in year t; si j is the share of

16. We construct inventors’ time-series such that the first year corresponds to the first observed clean patent filed by
the inventor, and the last year corresponds to the year of the last observed patent (of any type). Our results are robust to
arbitrarily truncating inventors’ time-series at 50% of their observed tenure. See Online Appendix F.4.

17. We use the previous year’s prices as a proxy for individual inventors’ beliefs about future prices while still
allowing a lag that gives inventors time to respond to variation in price. While we do not have direct evidence on
individual inventors’ beliefs about natural gas prices, Anderson et al. (2013) find that U.S. consumer beliefs about
gasoline prices are indistinguishable from a no-change forecast. We also estimate more flexible distributed lag models
that include prices from the previous three years. This choice of lags is supported by survey evidence on inventor
activities from Nagaoka and Walsh (2009), who report that the average amount of time spent on research leading up to
a patent application is less than two years, and that between 80% and 90% of patents involve three or fewer years of
research leading up to an application.

18. The tenure variable is the number of years since we observe an inventor’s first patent (of any type).
19. Patent applications provide the names of applicants (i.e., the entities retaining the intellectual property rights), and

most applicants are for-profit organizations. We connect inventors to firms based on the applicants that appear on their
patents. The link between PATSTAT inventors and Orbis firms is provided by Orbis IP. Independent “garage” inventors
who are not associated with any firms represent 16% of individual inventors in the data. For these inventors, we use the
price of their country of residence.
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inventor i’s patent families that are associated with firm j;20 and s jc captures exposure of firm j

to country c. We calculate s jc as firm j’s share of energy patents in country c.21 This method of

constructing firm-specific prices is similar to prior analyses of induced innovation at the firm level

(e.g., Noailly and Smeets 2015; Aghion et al. 2016). Finally, GDPc is the average GDP of country c

from 1990 to 2018 and adjusts for differences in market size across countries.

We use the same weighting method to construct inventor-specific measures of the country-level

controls contained in Xit−1. These variables include GDP per capita (World Bank 2020a, 2020b)

and public spending on energy and low-carbon research, development, and demonstration (RD&D)

(International Energy Agency 2019). These factors are included because they are likely to influence

patenting, and they may be correlated with natural gas prices.

3.3 Response at the Extensive Margin: Entry Elasticity of Inventors

Next, we examine whether changes in natural gas prices induce inventors who have not previously

worked on clean energy technology to enter clean patenting. Because we only observe inventors once

they patent and do not observe their education or career history, we are unable to use within-inventor

variation in natural gas prices to study extensive margin responses. Instead, we use firm-level

information on patenting portfolios and the inventors they patent with. For each firm in each year,

we count the number of inventors filing clean families with the firm for the first time.22 We use

these data to estimate a firm-level model analogous to the inventor-level model in equation 1:

Ek
jt = exp(β k

P lnPjt−1 +β
k
X X jt−1 + γ

k
t +η

k
j )+uk

jt , (2)

20. We use observations across all years to construct these shares because 71% of inventors do not patent before 2000.
21. We use observations across all years to construct these shares because 65% of firms do not apply for patents prior

to 2000. Our results are robust to using pre-period patenting, which mitigates concerns about the potential endogeneity
of the shares. See Online Appendix F.5 for details.

22. The coverage of the correspondence between PATSTAT and Orbis is severely limited after 2014. For this reason,
we restrict our firm-level sample to years between 2000 and 2014.
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where Ek
jt is the number of new entrant inventors of type k filing a clean family with firm j in year

t.23 We classify entrants into three types: those who previously patented in grey and/or dirty but not

clean energy, those who previously patented outside of energy, and those who had not previously

patented. Pjt−1 is the price of natural gas that firm j is exposed to in year t −1 and X jt−1 include

GDP per capita, energy, and low-carbon public RD&D spending that firm j is exposed to in year

t −1. These variables are constructed as described in Section 3.2. Year and firm fixed effects are

denoted γk
t and ηk

j , and uk
jt is an error term. We estimate these models separately by type.

4 RESULTS

4.1 Output Elasticity Estimates

Table 1 contains estimates of the elasticity of clean patenting with respect to lagged natural gas

prices. Panel A presents baseline results from models that include fixed effects and use all residual

variation in natural gas prices. Panel B presents results from instrumental variable models that only

use price variation from the shale gas revolution. Panel C presents results from a distributed lag

model which uses all residual variation in natural gas prices in the three years prior to patenting. The

columns contain alternative specifications of Equation 1.24 The first two columns use the simple

count of clean families as the outcome variable. The third and fourth columns use the count of

clean families weighted by the number of citations they received.25 The last two columns use the

simple count of clean families inversely weighted by the number of coinventors associated with

each family (i.e., “fractional” count).26

In Panel A, all six specifications yield output elasticities of around 0.5. The effect is somewhat

larger when families are weighted by citations, indicating that price variation affects the production

23. To avoid double-counting inventors who file patents with multiple firms, we weigh the relationship between a
firm and an inventor by the inverse number of firms the inventor patented with in that year.

24. We document results with additional outcome variables in Online Appendix F.3.
25. Specifically, for a family filed in year t, the weight is equal to the ratio of the number of citations the family

received within three years over the number of citations that the average energy family filed in year t received.
26. For example, if an inventor produced one clean family in a given year in conjunction with another inventor, the

outcome would be 0.5 rather than 1. We use this approach to avoid double-counting.
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TABLE 1
Estimates of Incumbent Inventors’ Elasticity of Patenting with Respect to Natural Gas Prices

Count of Clean Patent Families

Simple Count Citation-Weighted Coinventor-Weighted
(1) (2) (3) (4) (5) (6)

Panel A: Baseline Poisson estimates
Prices (log, t-1) 0.548 0.463 0.635 0.533 0.468 0.389

(0.037) (0.037) (0.047) (0.048) (0.047) (0.047)

Inventors 110,454 110,454 110,454 110,454 110,454 110,454
Observations 763,630 763,630 763,630 763,630 763,630 763,630
Pseudo-R2 0.285 0.286 0.369 0.371 0.261 0.262

Panel B: Instrumental variable estimates
Prices (log, t-1) 0.512 0.299 0.963 0.703 0.360 0.162

(0.069) (0.071) (0.081) (0.084) (0.085) (0.087)

Inventors 110,454 110,454 110,454 110,454 110,454 110,454
Observations 763,630 763,630 763,630 763,630 763,630 763,630
First-stage F-statistic 163 163 163 163 163 163

Panel C: Distributed lag estimates
Cumulative effect (3 lags) 0.642 0.546 0.652 0.565 0.622 0.511

(0.050) (0.052) (0.069) (0.070) (0.057) (0.061)

Inventors 85,905 85,905 85,905 85,905 85,905 85,905
Observations 590,767 590,767 590,767 590,767 590,767 590,767
Pseudo-R2 0.289 0.290 0.366 0.367 0.264 0.265

Year fixed effects X X X X X X
Inventor fixed effects X X X X X X
Tenure fixed effects X X X
Country-year covariates X X X X X X

Note: The dependent variables are the number of clean patent families, either unweighted, weighted by citations, or
inversely weighted by the number of coinventors, depending on the column. Panels A, B, and C contain estimates of the
same parameters using different estimation strategies. Panel A presents estimates of equation 1 estimated via Poisson
pseudo-maximum likelihood. Standard errors are clustered by inventor and reported in parentheses. Panel B presents
estimates of equation E.2 estimated via the control function approach described in the text, using the shale gas revolution
as an instrument for natural gas prices. Standard errors are constructed via block bootstrap of the two-step control
function approach, sampling inventors 250 times with replacement. The first-stage F-statistic for the instrumental
variable estimates is from estimating equation E.1 at the country-year level rather than the inventor-year level, since the
instrument varies at the country level and it thus provides a more conservative assessment of the instrument’s strength.
Panel C is analogous to Panel A except that the models include three lags of natural gas prices and all other covariates
that vary across both countries and time, and the coefficients represent cumulative effects.

of higher-quality patents on the margin. By contrast, it is somewhat smaller when using fractional

patent families, suggesting that price variation affects patenting by teams more than by individual

inventors on the margin.

Panel B of Table 1 presents estimates from the instrumental variable strategy. Overall, the
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qualitative patterns across columns are similar to those in Panel A, though the magnitudes differ

somewhat. The most likely explanation for the differences between Panels A and B is that the

price variation used to identify the output elasticity is different and that the local average treatment

effect of the instrument is different from the average treatment effect.27 The shale gas revolution

generated a large decline in natural gas prices in North America that was expected to persist far

into the future. This expectation of persistent price changes could have had a larger impact on the

incentives for engaging in high-risk, high-reward innovation that is more likely to be cited than it

had on the incentives for more incremental innovation (relative to other, potentially transient price

variation).

In Panel C, we present results from a distributed lag version of the baseline Poisson model as

a complementary approach to capture the medium-run effects of persistent price changes. The

elasticity estimates are quite consistent across columns. The cumulative effect estimates for the

citation-weighted outcomes lie in between the estimates from Panels A and B. This is consistent

with the transient versus persistent nature of the price variation explaining the differences between

the baseline and instrumental variable estimates. Given this, and given that a large fraction of the

overall variation in the data is driven by the shale revolution, we focus on the non-instrumented

results for the remainder of the paper.28

4.2 Entry Elasticity Estimates

Table 2 contains estimates for the entry elasticity with respect to lagged natural gas prices. Each

column corresponds to a different type of entrant. Panel A presents estimates from models with one

lag. Panel B presents the cumulative effect from distributed lag models with three lags. In Panel A,

the estimates are positive but somewhat imprecise. The entry elasticity point estimate is largest for

new inventors who had not previously patented. In Panel B, the estimates for new-to-patenting and

27. Other potential explanations for the differences include price endogeneity and sampling variation.
28. Appendix F also contains results for a broader definition of clean patenting that includes enabling technologies.

The estimates are smaller in magnitude than the main estimates, which is as expected since enabling technologies are
not direct substitutes for electricity generated from natural gas.
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grey/dirty entrants are larger and more precisely estimated. The change in magnitude is intuitive

because inventors and firms may need time to respond to price changes, and because they are likely

to respond less to transient than to persistent price changes. On the other hand, we do not find clear

evidence that non-energy inventors respond to price shocks.

TABLE 2
Estimates of the Elasticity of Inventor Entry with Respect to Natural Gas Prices

Number of Clean Inventors

New to Patenting From Grey/Dirty From Non-Energy
(1) (2) (3)

Panel A: Baseline Poisson estimates
Prices (log, t-1) 0.258 0.167 0.044

(0.110) (0.096) (0.127)

Firms 3,933 4,993 4,912
Observations 53,921 67,617 66,541
Pseudo-R2 0.692 0.605 0.643

Panel B: Distributed lag estimates
Cumulative effect (3 lags) 0.618 0.456 -0.062

(0.166) (0.124) (0.181)

Firms 3,779 4,703 4,642
Observations 43,733 53,109 52,559
Pseudo-R2 0.699 0.605 0.647

Year fixed effects X X X
Firm fixed effects X X X
Country-year covariates X X X

Note: The dependent variables are the fractional number of inventors (that is, inversely weighted by the number of firms
they are associated with) of each type within each firm who are new to patenting in clean patent families in that year.
The sample used for estimation is a balanced panel of firms from 2000 to 2014. Panel A presents estimates of equation
2 estimated via Poisson pseudo-maximum likelihood. Standard errors are clustered by firm and reported in parentheses.
Panel B is analogous to Panel A, except that the models include three lags of natural gas prices and all other covariates
that vary across both countries and time, and the coefficients represent cumulative effects.

5 HOW WOULD CARBON PRICING INDUCE INNOVATION?

To place the intensive and extensive elasticity estimates in context, we analyze the effects of a

persistent natural gas price increase equivalent to the U.S. Government’s social cost of carbon of

$51 per metric ton of carbon dioxide. This corresponds to 54% of the GDP-weighted global average

price of natural gas in 2014. We model the medium-run effects of this price increase over 10 years.
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To calculate the aggregate impact of this change in natural gas prices, we use a first-order

approximation that combines responses along the intensive and extensive margins. We use the

estimated elasticities from the distributed lag models in Sections 4.1 and 4.2 along with data on

baseline rates of patenting and entry to compute the contribution of each margin.29 The extensive

margin responses are computed separately by entrant type and take into account typical patenting

rates over the first 10 years after an inventor enters clean patenting. Appendix H provides a formal

description of our approach and more details on its implementation as well as its limitations.

Table 3 summarizes the results. In the medium run, intensive margin responses by incumbent

inventors are the largest source of induced patenting. Within the extensive margin responses, entry

to patenting by new inventors is quantitatively most important. Responses by inventors who had

previously produced patents related to grey or dirty technologies are next most important. Finally,

entry by inventors who had previously worked on technologies outside energy contributes a small

negative and imprecisely estimated amount. In total, this represents a clean patenting increase of

26% relative to a scenario in which the baseline rate of clean patenting from 2014 had been constant

over 10 years.

To assess the sensitivity of these results, we present analogous estimates using alternative

specifications and samples in Online Appendix H.3. While the absolute magnitudes of patenting

activity depend on the specification, the relative importance of each margin does not: in all cases,

the largest sources of induced patenting activity are increased patenting by incumbent inventors,

followed by entry of new inventors without prior patents.

29. To avoid double-counting, we use elasticities estimated using the count of clean families inversely weighted by the
number of coinventors and the number of inventors inversely weighted by the number of firms they are associated with.
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TABLE 3
Predicted Impacts of Carbon Pricing on Clean Patenting

Source Patents Share (%)

Intensive margin response
Incumbent inventors 48,234 71.2

(5,758) (5.7)

Extensive margin response
Entry from grey/dirty 4,410 6.5

(1,199) (1.8)

Entry from non-energy -760 -1.1
(2,218) (3.3)

Entry to patenting 15,839 23.4
(4,255) (5.3)

Total 67,724 100.0
(7,590) .

Note: Predicted changes in the number of clean patent families due to a persistent 54% increase in natural gas prices
over the course of 10 years, relative to a base year of 2014. The total change in patenting represents an increase of 26%
relative to baseline patenting rates. Output and entry elasticities are estimated using three lags of natural gas prices as in
Panel C of Table 1 and Panel B of 2. Inputs for the extensive margin analysis are derived from a balanced panel of firms
from 2000 through 2014 as in Table 2. Standard errors are constructed using the delta method.

6 CONCLUSION

We draw two sets of conclusions from the empirical evidence in this paper. First, inventors are

highly specialized: most inventors patenting in electricity generation technologies work exclusively

on either clean, grey, or dirty technology. About half of clean patents are produced by inventors with

prior clean patents, and clean patenting output by these inventors is fairly responsive to changes in

natural gas prices.

Second, new entrants play an important role in clean innovation: half of clean patents come

from inventors who had not previously produced a clean patent. But perhaps surprisingly, we find

that entry by these inventors does not respond strongly to variation in natural gas prices, particularly

for inventors with a prior patenting history outside of energy.

Consequently, our analysis of carbon pricing shows that induced innovation is driven primarily

by intensive margin increases in the patenting output of incumbent inventors. Extensive margin
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entry of new inventors plays a more minor role. These responses on the margin contrast with the

roughly equal split of patenting between the two groups on average.

These findings raise the question of whether government policies to encourage a shift from dirty

to clean technologies may be impeded by frictions that make it difficult for individual inventors to

work in different fields. In particular, our finding that induced innovation relies primarily on the

intensive margin highlights the need for further work to understand better what drives individuals to

become clean inventors and what specific policies could help produce more clean inventors.
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A Data Cleaning and Construction

A.1 Overview of Patent Data Cleaning and Construction
We used the Spring 2022 Edition of PATSTAT from the European Patent Office (2022). There’s a
time lag between when patents are filed and when they appear in the database. As a result, data
after 2019 is incomplete, with many patent applications missing.

We group patents by DOCDB simple patent families to prevent counting the same invention
multiple times. Sometimes, multiple patents are filed for the same invention. This can happen if the
patents have slightly different details about the same invention or if identical patents are filed in
different countries.

PATSTAT provides the names and identifiers of the inventors and applicants listed on patent
applications. However, only a subset of the identifiers is disambiguated. For this reason, we further
process inventor names and improve inventor disambiguation (see next section for details). For
applicants, we leverage Orbis Intellectual Property (Orbis IP), a database from Bureau van Dijk
that contains links between private organizations and their patent applications. We match data from
Orbis IP with PATSTAT using patent application numbers. In the end, this allows us to link DOCDB
families in PATSTAT to BvD ids of Orbis establishments associated with these families.

Furthermore, PATSTAT provides extensive information about each patent family, especially
where each application was filed. Since our data on natural gas prices only covers OECD countries,
we concentrate on inventors who have submitted at least one energy patent in an OECD country.
When categorizing inventors (like clean, grey/dirty, or non-energy), we consider their entire patent
history in PATSTAT, no matter where the patent was filed.

A.2 Summary of Inventor Disambiguation and Cleaning
This section provides a summary of cleaning steps on inventor names. For more details, see Section
B.

We standardize inventor names by starting with the PATSTAT Standard Name identifier and
then removing special characters, changing all middle names to middle initials, and keeping only
the first middle initial for people with multiple middle names.

We then use granted patent applications from the USPTO to compare the performance of our
approach with the disambiguation effort done by Li et al. (2014). We find that for the subsample of
inventors listed on USPTO patent grants between 1975 and 2010, our approach yields 92.1% of
correct matches.

One concern is that our approach is susceptible to a “John Smith” problem, whereby we
wrongly tag two identifiers as being the same inventor. Here, we adopt a conservative approach
to limit the potential for false positives. We count the number of countries and the number of
PATSTAT Standardized Name identifiers associated with each unique name that remains after our
standardization procedure. For unique names for which either the number of countries or the number
of PATSTAT identifiers is above the 99th percentile, we revert back to identifying unique inventors
based solely on their PATSTAT identifiers. To be conservative, when inventors have patenting gaps
of more than 15 years, we ignore observations before the gap. We also drop inventors whose patent
history spans more than 60 years.
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A.3 Clean, Grey, and Dirty Classification using Patent Technological Codes
To study the type of energy technologies in patent applications, we use the codes given on the
patent filings. These codes tell us if the patent is about clean, grey, or dirty energy technologies.
We use codes from both the Cooperative Patent Classification (CPC) and the International Patent
Classification (IPC). This way, we can include many patent families. Specifically, we need IPC
codes to include patents from China and Japan, as they don’t use the CPC.

We make a list of energy codes that are relevant to electricity generation based on previous
studies (Johnstone et al. 2010; Lanzi et al. 2011; Dechezleprêtre et al. 2014; Popp et al. 2022).
These codes are shown in Tables A.1, A.2, and A.3. Note that we do not include codes related to
fracking in “dirty” since this would introduce endogeneity with respect to changes in natural gas
prices. We also do not include patents related to carbon capture and storage in “clean” since such
technologies are complementary to fossil fuels.

In our main method, we say a patent family is “clean” if it has at least one code about renewable
or nuclear energy. With this method, even if a patent has grey or dirty codes, it’s still “clean” if it
has a renewable or nuclear code.

We also use another, broader, method to define “clean.” This method is different in two ways.
First, it includes more than just renewables and nuclear; it also includes other enabling technologies
related to electricity (see Table A.1). Second, it does not consider patents “clean” if they have any
grey or dirty codes. Robustness results using this broader definition are contained throughout this
Online Appendix.

A “dirty” patent family is one that has at least one “dirty” code and no “clean” or “grey” codes.
“Grey” patent families are those that: 1) have at least one “grey” code, irrespective of whether they
also have “clean” or “dirty” codes; or 2) have both “clean” and “dirty” codes.
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Table A.1: CPC and IPC Codes for Clean Electricity Generation Technologies

Sub-sector Code Description

Wind
Energy

F03D Wind motors

H01L27/142 Devices consisting of a plurality of semiconductor components sensitive to infra-red radiation, light -
specially adapted for the conversion of the energy of such radiation into electrical energy

Y02E10/70 Wind energy

Solar
Energy

E04D13/18 Aspects of roofing for energy collecting devices - e.g. incl. solar panels
F03G6 Devices for producing mechanical power from solar energy
F24J2 Use of solar heat e.g. solar heat collectors

F26B3/28 Drying solid materials or objects by processes involving the application of heat by radiation e.g. from the sun
H01L31/04 Semiconductor devices sensitive to infra-red radiation, light - adapted as conversion devices

H02N6 Generators in which light radiation is directly converted into electrical energy
Y02E10/40 Solar thermal energy, e.g. solar towers
Y02E10/50 Photovoltaic [PV] energy
Y02E10/60 Thermal-PV hybrids

Renewables Y02B10 Integration of renewable energy sources in buildings
Y02E10 Energy generation through renewable energy sources

Nuclear
Energy Y02E30 Energy generation of nuclear origin

Marine
Energy

E02B9/08 Tide or wave power plants
F03B13/10 Submerged units incorporating electric generators or motors characterized by using wave or tide energy
F03B13/12 Submerged units incorporating electric generators or motors characterized by using wave or tide energy
F03G7/05 Ocean thermal energy conversion

Y02E10/30 Energy from the sea, e.g. using wave energy or salinity gradient
Hydro
Energy Y02E10/20 Hydro energy

Geothermal
Energy

F03G4 Devices for producing mechanical power from geothermal energy

F03G7/04 Mechanical-power-producing mechanisms - using pressure differences or thermal differences occurring in
nature

F24J3 Production or use of heat, not derived from combustion - using natural or geothermal heat
Y02E10/10 Geothermal energy

Enabling
Technologies

Y02B70/30
Systems integrating technologies related to power network operation and ICT for improving the carbon
footprint of the management of residential or tertiary loads, i.e. smart grids as CCMT in the buildings sector
or as enabling technology in buildings sector.

Y02B90/20
Systems integrating technologies related to power network operation and communication or information
technologies mediating in the improvement of the carbon footprint of the management of residential or
tertiary loads, i.e. smart grids as enabling technology in buildings sector

Y02E40/70 Smart grids as climate change mitigation technology in the energy generation sector
Y02E60 Enabling technologies (storage, hydrogen. . . )

Y02E60/10 Energy storage using batteries, capacitors, Mechanical energy storage, e.g. flywheels or pressurised fluids
Y02E60/30 Hydrogen Technology
Y02E60/50 Fuel Cells

Y02E60/70
Systems integrating technologies related to power network operation and communication or information
technologies mediating in the improvement of the carbon footprint of electrical power generation,
transmission or distribution, i.e. smart grids as enabling technology in the energy generation sector

Y04S
Systems integrating technologies related to power network operation, communication or information
technologies for improving the electrical power generation, transmission, distribution, management or usage,
i.e. smart grids.
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Table A.2: CPC and IPC Codes for Grey Electricity Generation Technologies

Sub-sector Code Description

Energy
Efficiency

B01J8/20 Chemical or physical processes (and apparatus therefor) conducted in the presence of fluidised particles,
with liquid as a fluidising medium

B01J8/24 Chemical or physical processes (and apparatus therefor) conducted in the presence of fluidised particles,
according to fluidised bed furnaces

C10J3 Production of combustible gases containing carbon monoxide from solid carbonaceous fuels

F01K17/06 Use of steam or condensate extracted or exhausted from steam engine plant; Returning energy of steam, in
exchanged form, to process, e.g. use of exhaust steam for drying solid fuel of plant

F01K23 Plants characterised by more than one engine delivering power external to the plant, the engines being driven
by different fluids

F01K27 Plants for converting heat or fluid energy into mechanical energy; use of waste heat;
F01K3 Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein

F01K5 Plants characterised by use of means for storing steam in an alkali to increase steam pressure, e.g. of
Honigmann or Koenemann type

F02B1/12 Engines characterised by fuel-air mixture compression ignition

F02B11 Engines characterised by both fuel-air mixture compression and air compression, or characterised by both
positive ignition and compression ignition, e.g. in different cylinders

F02B13/02 Engines characterised by the introduction of liquid fuel into cylinders by use of auxiliary fluid; Compression
ignition engines using air or gas for blowing fuel into compressed air in cylinder

F02B3/06 Engines characterised by air compression and subsequent fuel addition; with compression ignition
F02B49 Methods of operating air - compressing compression - ignition engines involving introduction of small
F02B7 Engines characterised by the fuel-air charge being ignited by compression ignition of an additional fuel

F02C3/20 Gas turbine plants characterised by the use of combustion products as the working fuel
F02C3/32 Gas turbine plants characterised by the use of combustion products as the working fuel
F02C3/34 Gas turbine plants characterised by the use of combustion products as the working fuel
F02C3/36 Gas turbine plants characterised by the use of combustion products as the working fuel

F02C6/10 Combinations of gas-turbine plants with other apparatus; Supplying working fluid to a user, e.g. a chemical
process, which returns working fluid to a turbine of the plant

F02C7/30 Gas turbine plants - Preventing corrosion in gas-swept spaces
F02G5 Profiting from waste heat of combustion engines;

F22B31 Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus;
Arrangements or dispositions of combustion apparatus

F22B33/14 Steam generation plants, e.g. comprising steam boilers of different types in mutual association;
Combinations of low- and high-pressure boilers

F22G Superheating of steam (steam separating arrangements in boilers)

F23B10 Combustion apparatus characterized by the combination of two or more combustion chambers (using only
solid fuel)

F23B30 Combustion apparatus with driven means for agitating the burning fuel; Combustion apparatus with driven
means for advancing the burning fuel through the combustion chamber

F23B70 Combustion apparatus characterized by means for returning solid combustion residues to the combustion
chamber

F23B80 Combustion apparatus characterized by means creating a distinct flow path for flue gases or for
non-combusted gases given off by the fuel

F23C1 Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or
alternately, at least one kind of fuel being fluent

F23C10 Apparatus in which combustion takes place in a fluidised bed of fuel or other particles

F23C5/24 Combustion apparatus characterized by the arrangement or mounting of burners; Disposition of burners to
obtain a loop flame.

F23C6 Combustion apparatus characterized by the combination of two or more combustion chambers (using fluent
fuel)

F23D1 Burners for combustion of pulverulent fuel
F23D17 Burners for combustion simultaneously or alternatively of gaseous or liquid or pulverulent fuel
F23D7 Burners in which drops of liquid fuel impinge on a surface
F27B15 Fluidised-bed furnaces; Other furnaces using or treating finely-divided materials in dispersion

Y02E20/10 Combined combustion
Y02E20/30 Technologies for a more efficient combustion or heat usage

Y02E40 Technologies For An Efficient Electrical Power Generation, Transmission Or Distribution

Biomass
and

Waste

C10L5/40 Solid fuels essentially based on materials of non-mineral origin - animal or vegetable substances; sewage,
town, or house refuse; industrial residues or waste materials

F01K25/14 Plants or engines characterized by use of industrial or other waste gases
F02B43/08 Engines or plants operating on gaseous fuel generated from solid fuel, e.g. wood

Y02E20 Combustion Technologies With Mitigation Potential (E.G. Using Fossil Fuels, Biomass, Waste, Etc.)

Y02E50 Technologies for the production of fuel of non-fossil origin (Biofuels, e.g. bio-diesel, Fuel from waste, e.g.
synthetic alcohol or diesel)
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Table A.3: CPC and IPC Codes for Dirty Electricity Generation Technologies

Sub-sector Code Description

Traditional
Fossil
Fuels

C10J Production of fuel gases by carburetting air or other gases
C10L1 Liquid carbonaceous fuels; Gaseous fuels; Solid fuels

C10L3 Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G,
C10K; Liquefied petroleum gas

C10L5 Solid fuels

F01K Steam engine plans; steam accumulators; engine plants not otherwise provided for engines using special
working fluids or cycles

F02C Gas-turbine plants; air intakes for jet-propulsion plants; controlling fuel supply in air-breathing
jet-propulsion plants

F22 Steam generation
F23 Combustion apparatus; combustion processes
F24J Production or use of heat not otherwise provided for
F27 Furnaces; kilns; ovens; retorts
F28 Heat exchange in general
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A.4 Inventor-Level Patenting Outcomes
To determine how often an inventor patents, we look at the number of patent families of different
types (e.g., clean) that are connected to inventor i in year t. We use the first application in that
family where the inventor’s name is mentioned to assign a year for the family for that inventor.

Imagine an inventor applied for a patent that is classified both as “renewable energy” and as
“grey” (this is a rare but possible case concerning only 3.6% of renewable energy families). Using
our basic definition of “clean”, this inventor would be noted as having one “clean” patent and one
“grey” patent. However, using the broader definition of “clean”, the inventor would only have one
“grey” patent and zero “clean” ones.

Note that, with our baseline definition, the patent is therefore counted twice, once as “clean”
and once as “grey.” While this has no bearing on our regression analyses, which center on clean
patenting, it does mean that in Section 2, the inventor is labeled as “Clean and Grey/Dirty.” If we
adopt the broader definition of “clean”, the entire patent family is then classified as “grey”, and
consequently, so is the inventor.

We construct an alternative count of inventor-level clean families by weighting families by the
number of citations they received. The number of citations received is often used as a proxy of
patent quality (Jaffe et al. 2000; Jaffe and Rassenfosse 2017). Our weighting procedure lets us give
more weight to families that may be of higher quality. Specifically, for a family filed in year t, the
weight is equal to the ratio of the number of citations the family received within three years over the
number of citations that the average energy family filed in year t received.

This weighting approach presents two defining features: 1) it uses a particular time window
(three years in our baseline measure) and 2) it makes the weight relative to the citation count of the
average energy family filed in that same year (as opposed to the average energy family filed in any
year). We provide further explanations regarding these features below.

First, we use a particular time window because the older a patent family is, the more chances
there are for others to cite it. Comparing old and new patents directly on their number of citations
wouldn’t be inappropriate since newer ones haven’t had as much time to get cited. For this reason,
we count citations that occur within a particular time window. We use three years in our baseline
measure but, as an extra check, we also look at citations from the first five years.

In fact, since we’re using citations from a fixed time frame to compare patents, the exact time
frame shouldn’t change much as long as citations happen at about the same rate over time for all
patents. In our sample, citations peak on average after four years, and so our robustness check using
citations received within five years ensure that our measure covers the majority of citations.

Second, we use the citation count of the average energy family filed in the same year in the
denominator which makes the weight relative to the citation behavior of a contemporaneous family.
This is useful because citation patterns may change significantly over time without necessarily
indicating a change in quality. For example, the average family filed in 2000 may have a lower
number of citations received within three years compared to a family filed in 2014, simply because
the overall inventors and firms in the economy, and thereby a citing pool of patents, was much larger
in 2014. But this does not necessarily mean the 2000 families are of lower value.

Another issue may arise since the 2022 version of PATSTAT provides good coverage of applica-
tions only up to 2019, and the number of citations that occurred within 3 or 5 years for a family
filed in, e.g., 2017, may be incomplete. Constructing citation weights based on the average behavior
of the energy families filed in the same year circumvents these potential problems.
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We also construct an alternative count of inventor-level clean families by weighting families by
the number of coinventors that are listed on the patent. In this case, the weight equals 1/n where n
is the total number of coinventors on the patent. So if two inventors worked on a “clean” patent
together, each would get credit for half a patent. We use this approach to avoid double-counting and
to facilitate comparisons to extensive margin responses in Section 5.

Finally, while we can easily observe when inventors produce their first patent, it is more difficult
to ascertain when they exit. For this reason, if an inventor didn’t patent in a year but did later on, we
impute that they produced zero patents that year. But after the last year we observe a patent from an
inventor, we do not impute any more data. That means the record for each inventor stops the last
year in which they produced a patent family.

A.5 Natural Gas Price Data
We use data on natural gas prices from the International Energy Agency (2020). Prices are available
for three sectors: electricity generation, industry, and households. Our baseline prices use industrial
prices because the coverage of prices for electricity is much poorer, and the industrial prices are
highly correlated with electricity sector prices. The International Energy Agency (2020) natural
gas prices are in nominal U.S. dollars per megawatt-hour. As discussed in the text, all econometric
analysis in the paper includes time fixed effects, which absorb common time-varying factors
including changes in the value of U.S. dollars due to inflation, so the results are invariant to using
prices in real terms.

A.6 Ancillary Data for Regressions
We use country-year level data from the International Energy Agency (2019) on government
spending on energy RD&D, both in aggregate and specifically for low-carbon technologies. Country-
year level data on GDP and GDP per capita in 2017 U.S. dollars purchasing power parity terms
come from the World Bank (2020a, 2020b).

A.7 Construction of Exposure Measures
As explained in the main manuscript, our baseline inventor-specific prices take the following form:

lnPit = ∑
j

si j ∑
c

s jcGDPc

∑c s jcGDPc
lnPct ,

where

• Pct represents the average tax-inclusive natural gas price in country c during year t. Our
baseline approach uses industry prices. However, for robustness checks, we introduce
alternative measures based on prices in the electricity generation and household sectors.
Furthermore, price data might be incomplete for some countries. In our primary approach, we
construct prices only for countries with data consistently available from 2000 to 2017 or with
at most one year missing. This approach yields what we term a “balanced” panel of prices.
For further robustness, we also formulate an “unbalanced” version, incorporating all available
country-year price data, irrespective of its duration or consistency.
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• GDPc represents the average GDP of country c from 1990 to 2018, expressed in PPP terms
using constant 2017 international dollars. For added robustness, we also consider measures
without GDP-weighting the prices.

• s jc quantifies firm j’s exposure to country c. In our primary approach, this is determined by
the proportion of firm j’s energy patents in country c spanning 1990 to 2015. To enhance
robustness, we consider three alternative methods to compute this weight: 1) Based on the
proportion of all of firm j’s patents in country c from 1990 to 2015. 2) Using the proportion
of firm j’s energy patents in country c during a pre-defined period from 1990 to 2000. 3)
Reflecting the proportion of all of firm j’s patents in country c within the same pre-defined
period from 1990 to 2000. Firms lacking patent activity during the pre-period are allocated
uniform weights across all countries.

• si j measures the association between inventor i and firm j. Specifically, it’s determined by
the fraction of patent families of inventor i linked with firm j. This weight is constructed
using the full time series of each inventor’s activities. Inventors who file independently, often
termed “garage” inventors, are presumed to be influenced by the price in their country of
residence.
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B Inventor Disambiguation

B.1 Background
The challenge of accurately distinguishing authors and institutions is a significant concern in patent
data. The same entity, be it an organization or an individual, can be represented with variations
in their names, depending on the channels they’ve used for patent applications over time. Such
inconsistencies arise from spelling errors, typographical mistakes, and different name variants,
among others. While the initial PATSTAT data provided names and addresses of inventors, it lacked
a system to uniquely identify inventors chronologically. For our study, creating a consistent and
unique identifier for each inventor is crucial as we aim to monitor patents registered by individual
inventors over time. Patent data frequently suffers from name misspellings, leading to multiple
variants for a single inventor’s name (e.g., JONSSON, NILS-AKE might also appear as JONSSON,
NILS A.). The primary difficulty in disambiguation lies in associating all variants of an inventor’s
name without inadvertently merging distinct inventors with similar names.

Numerous studies have endeavored to disambiguate names and establish trustworthy inventor
identifiers within patent databases, predominantly within the USPTO and EPO repositories. For
instance, Li et al. (2014) (hereforth LLDD) undertook a disambiguation exercise on patents regis-
tered with the USPTO between 1975 and 2010, yielding unique identifiers for each inventor within
their sample timeframe. A parallel initiative on European patent data was carried out by Coffano
and Tarasconi (2014), crafting distinct inventor identifiers for the EPO database spanning 1970 to
2010. Research endeavors focusing on tracking activities at the inventor level typically lean on such
disambiguated databases.

For our current study, given the absence of previous disambiguation work on the most recent
PATSTAT dataset, our aim is to design straightforward disambiguation rules for the PATSTAT
database. This will facilitate the efficient identification of unique inventors over time, while
significantly alleviating issues related to name misspelling.

B.2 Harmonized Names in PATSTAT Data
PATSTAT provides multiple name versions for a single inventor: the nonharmonized inventor name
(person name), the name in its original language, and several harmonized renditions.

The initial harmonized version in PATSTAT is the DOCDB standardized name, designated for
applicant and inventor names set for inclusion in DOCDB. An issue with the DOCDB standardized
name is its occasional misalignment with accurate person names. For instance, an inventor named
“Charquet, Daniel” might be erroneously linked with “MARDON JEAN-PAUL”, a clear mismatch.
Such errors are particularly prevalent in USPTO patents.

Another available harmonized version is the HAN name, formulated primarily by the OECD
HAN (Harmonized Applicant Name) project of the OECD. However, this applies solely to patent
applicants and excludes inventors. ‘ The final harmonized version is the PATSTAT standardized
name (PSN name), derived through automation and manual refinements, with non-harmonized
names being directly lifted from the person name variable1. This standardization aims to rectify
spelling variations, typographical errors, and acronym inconsistencies.

1. Details on PSN name and PSN ID construction in PATSTAT can be found in Magerman et al. (2006)
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While PSN name harmonization undoubtedly reduces data discrepancies, it can fall short. A
number of issues arise in particular related to presence of special characters (e.g., “TAKAHASHI,
YUKIO” and “TAKAHASHI YUKIO”) or the treatment of middle names (e.g., “JONSSON NILS
AKE” vs. “JONSSON NILS A.” or “SCHULZ, JOHANN G.” vs. “SCHULZ, JOHANN G. D.”).

Such issues are widespread, necessitating further refinement to the harmonized name variables
for more accurate inventor identification. In addition, existing IDs anchored solely to harmonized
name spellings disregard the locational/address data, potentially misidentifying distinct inventors
with identical names.

B.3 Simple Rules for Further Name Disambiguation
As outlined in the previous section, two primary challenges arise when directly utilizing the
PATSTAT standardized name ID (PSN ID) as a singular inventor identifier: 1) Variations in the
spelling or format of an inventor’s name lead to multiple identifiers for the same individual. 2)
Conversely, distinct inventors sharing identical names may be erroneously grouped under one
identifier.

For our analysis, we devised three straightforward rules to clean PATSTAT standardized names
(PSN name) and forge unique inventor identifiers based on these refined names. We then examine
the efficacy of these rules by comparing our approach to the disambiguated USPTO inventor data
from LLDD.

We implemented the series of different rules:

• Rule 0: No modification (i.e., keeping the PSN name as provided by PATSTAT)

• Rule 1: Character cleaning and punctuation cleaning

• Rule 2: Rule 1 + changing all the middle names to middle initials

• Rule 3: Rule 1 + Rule 2 + keeping only 1 middle initial for people with multiple middle
names

We also created two new inventor identifiers:

• Inventor ID 1: unique disambiguated PSN names as inventor identifier (without using any
address information)

• Inventor ID 2: unique combinations of disambiguated PSN names and reported country of
residence as inventor identifier

B.4 Comparing to Li et al. (2014)
To assess the efficacy of our disambiguation rules and the resultant inventor IDs for PSN names in
PATSTAT, we compare our approach to the disambiguated inventor IDs of LLDD. To do so, we
first narrow our PATSTAT sample to inventors that filed granted energy-related patents through the
USPTO between 1975 and 2010. This data subset is then integrated with the OECD triadic patent
family database via PATSTAT IDs, allowing us to retrieve the original USPTO IDs for these patents.
Using these USPTO IDs, we extract an identical subset of patent grants from LLDD.



15

Table B.1 displays our data summary. We found more unique inventors using the original PSN
names (38,853) than in LLDD (36,546). This suggests that the PSN IDs might be mixing up some
inventors, seeing them as different people when they’re actually the same. Consequently, we also
find a higher average patent applications per inventor in LLDD.

Table B.1: Summary Statistics of Comparable Sample Used for Analysis

PATSTAT subsample Li et al. (2014) subsample

Number of Unique Inventors 38,853 36,546
Number of Patent Grants 26,018 26,018
Number of OECD Triadic Families 20,257 20,257
Number of DOCDB Families 22,135 -
Number of Inventors w/ Reported Address in 2 Countries 199 252
Number of Inventors w/ Reported Address in 3 Countries 3 6
Average Number of Patent Applications Per Inventor 0.670 0.712

Note: The number of unique inventors from PATSTAT sample is identified by the number of unique PSN IDs (hence
unique PSN names).

Next, we match the inventor IDs from LLDD with our various cleaned-up versions of PATSTAT
inventor IDs. We start by pairing inventors in each patent record using their cleaned-up last names.
If a patent record has more than one inventor with the same last name, we use both their first and
last names to match them. This ensures that each name from PATSTAT is checked against all its
versions in the LLDD data.

Table B.2 gives an overview of how well each method works.2 Row 1 displays the total number
of unique inventors in LLDD. Row 2 the total number of unique inventors in PATSTAT with the
original PSN ID. These totals stay the same, no matter which rules we use. They’re there to help
compare results. Row 3 reports the number of unique inventors in PATSTAT based on the rule used
in each column.

Rows 4 and 5 provide information on mismatches between the two sets of data. Row 4 shows
instances where an inventor has a unique ID in LLDD but gets multiple IDs in PATSTAT. For
example, using Rule 1 with inventor ID 1, 1,298 inventors from LLDD get treated as different
people in PATSTAT when they should be the same. Row 5 is the opposite: it lists cases where
PATSTAT thinks inventors are the same person, but LLDD treats them as different people. There
are 760 such instances.

Rows 6 and 7 tell us the number of inventors we are not able to match between the two datasets.
These are less informative because as long as these inventors show up only one time in the data, this
will not lead to over or under disambiguation. As a result, the numbers in Row 6 and 7 are simply
an indication of the matched sample size.

Finally, Row 8 shows the number of correctly matched inventors. This is calculated by taking
the unique inventors in PATSTAT and subtracting the ones with matching problems (multiple match
in either way and unable to match). The percentage of these correctly matched inventors (Row 9)
is then the correctly matched number divided by PATSTAT’s total unique inventors based on the
particular rule used in each column.

2. We do not include results for Rule 0 (which doesn’t change the PSN names) because very few matches were
found using this rule.
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The fraction of correctly matched inventors is largest for Column 5 with 92.1%. This corresponds
to using Rule 3 with inventor ID 1.

Table B.2: Summary of Performance of Different Disambiguation Rules

Rule 1& INV ID 1 Rule 1& INV ID 2 Rule 2& INV ID 1 Rule 2& INV ID 2 Rule 3& INV ID 1 Rule 3& INV ID 2
Number of unique inventors in LLDD 36,546 36,546 36,546 36,546 36,546 36,546
Number of unique inventors in PATSTAT (by PSN ID) 38,853 38,853 38,853 38,853 38,853 38,853
Number of unique inventors in PATSTAT 37,170 37,440 36,147 36,472 36,257 36,565
Inventors with non-unique IDs in PATSTAT but unique ID in LLDD 1,298 1,395 522 628 572 668
Inventors with non-unique IDs in LLDD but unique ID in PATSTAT 760 619 894 726 754 699
Number of inventors in LLDD we cannot match to PATSTAT 1,417 1,417 1,416 1,417 1,417 1,417
Number of inventors in PATSTAT we cannot match to LLDD 1,591 1,601 1,530 1,546 1,550 1,570
Number of correctly matched inventors 33,521 33,825 33,201 33,572 33,381 33,628
Fraction of correctly matched inventors 0.902 0.903 0.918 0.920 0.921 0.920
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C Descriptives

C.1 Trends in Families Over Time
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(a) Baseline Definition of Clean
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(b) Broader Definition of Clean

Figure C.1: Patent Families by Type Over Time

Note: The figures plot the number of patent families classified as clean, grey, and dirty over time. Panel a uses the
baseline definition of clean and Panel b uses the broader definition.
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C.2 Inventor Types
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(a) Energy Inventors with Energy Patents in at least Two Different Years
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(b) Energy Inventors with at least Two Energy Patents

Figure C.2: Trends in the Number and Composition of Energy Iventors over Time

Note: These figures are alternative versions of Figures 1a and 1b from the main text. The figures illustrate the extent
to which energy inventors specialize in either clean, grey, or dirty patenting. We focus on inventors’ global patent
portfolios for inventors with at least one energy patent in an OECD country after 1990. To construct the graphs, we first
identify inventors with at least one energy family filed in year t, and then classify them according to their last three
years of patenting activity.
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Table C.1: Energy Inventors by Type

(a) Using the Baseline Definition of Clean

Inventor Type All Inventors Serial Inventors Serial Inventors (2 years +) Energy Serial Inventors Top 10th Inventors

Grey/Dirty only 60% 55% 52% 50% 28%
Clean only 30% 30% 30% 29% 25%

Clean and Grey/Dirty 10% 15% 17% 21% 47%
Total Number of Energy Inventors 873,256 525,652 442,405 324,310 91,848

(b) Using the Broader Definition of Clean

Inventor Type All Inventors Serial Inventors Serial Inventors (2 years +) Energy Serial Inventors Top 10th Inventors

Grey/Dirty only 45% 40% 38% 36% 20%
Clean only 45% 44% 43% 40% 33%

Clean and Grey/Dirty 10% 16% 19% 23% 47%
Total Number of Energy Inventors 1,188,768 733,534 619,120 459,086 128,395

Note: These tables show the average share of energy inventors by type for different definitions of clean. These shares
correspond to the average of the trends shown on Figures 1a, 1b and C.2. Details about the different definitions of clean
are provided in Subsection A.3.
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C.3 Clean, Grey, and Dirty Patent Families by Origin of Inventors
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(a) Clean - Levels
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(b) Clean - Percentage
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(c) Grey - Levels
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(d) Grey - Percentage
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(e) Dirty - Levels
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Figure C.3: Clean, Grey, and Dirty Patent Families by Origin of Inventor

Note: These figures illustrate the types of inventors that produce clean, grey, and dirty patent families over time. They
plot the trend over time in the number and share of families connected to incumbents, inventors new to patenting,
inventors with previous patents outside the set of energy technologies under study, and inventors with previous energy
technology patents. Families with multiple inventors are fractionally attributed to the inventors to avoid double-counting.
Figures C.3a and C.3b are reproductions of Figures 1c and 1d from the main text for convenience.
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C.4 Descriptives using a Broader Definition of Clean
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(a) Levels
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Figure C.4: Energy Inventors By Type (All Inventors)
Note: These figures are alternative versions of Figures 1a and 1b from the main text using a broader definition of clean
as described in Subsection A.3.
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Figure C.5: Clean Patent Families by Origin of Inventor
Note: These figures are alternative versions of Figures 1c and 1d from the main text using a broader definition of clean
as described in Subsection A.3.
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C.5 Other Information about Patent Codes

Figure C.6: Technological Areas Most Often Combined by Energy Inventors
Note: This bar plot depicts the specific technology areas that energy inventors focus on. The highest bar shows that
over 25% of the energy inventors in our sample have patents exclusively in fossil-related technologies, while just over
15% specialize in enabling technologies. The most frequent other clean area is solar with about 10%. The label “Other”
corresponds to all other combinations of technologies that are not listed.
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Figure C.7: Clean and Grey/Dirty Technological Areas Most Often Combined by Inventors
Note: This graph shows the 20 most common combinations of clean and grey/dirty areas. The highest bar indicates that
about 45% of mixed-type inventors combine technologies related to fossil and enabling. 40% also combine fossil and
any renewables. The percentages are calculated such that an inventor that combines fossil, enabling, and renewable
technologies will count towards both the first and the second bars, as well as one or more other bars for the specific
renewable technologies they combine.

Figure C.8: CPC Codes of Non-Energy Patents of Clean Entrants
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D Summary Statistics

D.1 Inventor-Level Summary Statistics

Table D.1: Summary Statistics for Patenting Variables - Baseline Definition of Clean

count mean sd min p50 p90 p95 p99 max

Simple Count 1190738 0.51 1.06 0.00 0.00 1.00 2.00 4.00 113.00
Coinventor-Weighted 1190738 0.21 0.52 0.00 0.00 0.58 1.00 2.00 76.50
Citation-Weighted (3 years) 1190738 0.53 1.62 0.00 0.00 1.47 2.47 6.52 164.76
Citation-Weighted (5 years) 1190738 0.53 1.71 0.00 0.00 1.44 2.56 6.84 161.74
Triadic 1190738 0.11 0.42 0.00 0.00 0.00 1.00 2.00 30.00
Triadic (Coinventor-Weighted) 1190738 0.04 0.19 0.00 0.00 0.00 0.25 1.00 31.50
Granted 1190738 0.37 0.83 0.00 0.00 1.00 2.00 3.00 45.00
Granted (Coinventor-Weighted) 1190738 0.14 0.39 0.00 0.00 0.50 1.00 1.75 49.00
Triadic Granted 1190738 0.10 0.39 0.00 0.00 0.00 1.00 2.00 30.00
Triadic Granted (Coinventor-Weighted) 1190738 0.03 0.18 0.00 0.00 0.00 0.25 0.83 31.50
More than 2 countries 1190738 0.27 0.67 0.00 0.00 1.00 1.00 3.00 37.00
More than 2 countries (Coinventor-Weighted) 1190738 0.10 0.31 0.00 0.00 0.33 0.50 1.20 38.00
More than 2 OECD 1190738 0.23 0.61 0.00 0.00 1.00 1.00 3.00 36.00
More than 2 OECD (Coinventor-Weighted) 1190738 0.09 0.28 0.00 0.00 0.33 0.50 1.00 37.00

Note: These summary statistics are for the sample of clean incumbent inventors used in the incumbent regressions.

Table D.2: Summary Statistics for Patenting Variables - Broader Definition of Clean

count mean sd min p50 p90 p95 p99 max

Simple Count 2290321 0.66 1.49 0.00 0.00 2.00 3.00 6.00 98.00
Coinventor-Weighted 2290321 0.23 0.58 0.00 0.00 0.67 1.00 2.40 50.50
Citation-Weighted (3 years) 2290321 0.66 2.31 0.00 0.00 1.72 2.97 7.63 368.52
Citation-Weighted (5 years) 2290321 0.66 2.37 0.00 0.00 1.73 2.98 7.89 337.94
Triadic 2290321 0.14 0.52 0.00 0.00 1.00 1.00 2.00 50.00
Triadic (Coinventor-Weighted) 2290321 0.04 0.19 0.00 0.00 0.12 0.33 1.00 28.50
Granted 2290321 0.48 1.12 0.00 0.00 1.00 2.00 5.00 75.00
Granted (Coinventor-Weighted) 2290321 0.16 0.42 0.00 0.00 0.50 1.00 1.83 37.00
Triadic Granted 2290321 0.13 0.49 0.00 0.00 1.00 1.00 2.00 39.00
Triadic Granted (Coinventor-Weighted) 2290321 0.04 0.18 0.00 0.00 0.07 0.29 1.00 28.50
More than 2 countries 2290321 0.35 0.85 0.00 0.00 1.00 2.00 4.00 52.00
More than 2 countries (Coinventor-Weighted) 2290321 0.11 0.32 0.00 0.00 0.33 0.53 1.33 36.33
More than 2 OECD 2290321 0.31 0.80 0.00 0.00 1.00 1.00 3.00 52.00
More than 2 OECD (Coinventor-Weighted) 2290321 0.10 0.30 0.00 0.00 0.33 0.50 1.18 36.33

Note: These summary statistics are for the sample of clean incumbent inventors used in the incumbent regressions,
based on the broader definition of clean as described in Subsection A.3.
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Table D.3: Summary Statistics for Different Measures of Natural Gas Prices - Incumbents Sample

count mean sd min max

Prices GDP-Weighted Balanced (log, t-1) 1,164,850 31.2 11.5 5.51 73.5
Prices GDP-Weighted Unbalanced (log, t-1) 1,166,456 31.3 11.4 5.51 73.5
Prices Not GDP-Weighted Balanced (log, t-1) 1,164,850 36.9 13 5.51 73.5
Prices Not GDP-Weighted Unbalanced (log, t-1) 1,166,456 37.1 12.9 5.51 73.5
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D.2 Firm-Level Summary Statistics
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(a) Baseline Definition of Clean
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(b) Broader Definition of Clean

Note: The graphs depict the distribution of firms based on their specialization degree. The x-axis consists of the
following ratio: FamilyCountClean−FamilyCountGrey−FamilyCountDirty

FamilyCountClean+FamilyCountGrey+FamilyCountDirty , where FamilyCountClean is the average number of
clean patent families firm j filed annually between 1990 and 2014. This ratio holds a value of 0 when a firm files
an equal number of clean and grey/dirty patent families. It registers a value of 1 when a firm exclusively specializes
in clean patents and -1 when it focuses purely on grey or dirty patents. The graphs suggest that most firms in our
sample are specialized in either clean or dirty. However, larger firms exhibit greater diversification, combining clean and
grey/dirty patents. Notably, Figure D.1b emphasizes that when adopting the broader definition of clean, many larger
firms focus predominantly on clean energy. This tendency can be attributed to sizeable conglomerates like Panasonic,
which patent extensively on battery-related technologies and little on grey or dirty technologies.

Figure D.1: Density Plots for the Degree of Specialization
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Table D.4: Firm-Level Summary Statistics

(a) Mean

Family Count Percent Family Count Percent in Energy If Diversified If Specialized in
Total Energy Energy ReNu Clean Grey Dirty Clean Grey/Dirty

Row Sample Description 1 2 3 4 5 6 7 8 9 10 Row

1 Firms with energy patents 11.2 45 1.2 25 43 16 41 0.1 0.4 0.5 1
2 Firms with Re/Nu patents 25.9 44 2.1 79 83 8 9 0.2 0.7 0.1 2
3 Firms with clean patents 19.7 41 1.7 49 87 5 8 0.2 0.8 0.0 3
4 Firms connected to energy inventors 11.2 45 1.2 25 43 16 41 0.1 0.4 0.5 4
5 Firms connected to Re/Nu inventors 17.9 36 1.5 38 56 14 31 0.2 0.5 0.4 5
6 Firms connected to clean inventors 15.8 38 1.4 32 57 13 30 0.2 0.5 0.4 6
7 Firms connected to non-energy entrants before the year of entry 51.8 10 2.8 28 54 13 34 0.3 0.4 0.3 7
8 New Firms connected to non-energy entrants the year of entry 52.4 32 3.4 59 73 9 17 0.3 0.5 0.1 8
9 All Firms connected to non-energy entrants the year of entry 43.5 27 2.8 59 73 9 18 0.3 0.6 0.1 9

10 Firms connected to grey/dirty inventors 18.6 38 1.5 11 23 23 54 0.2 0.1 0.7 10
11 Firms connected to grey/dirty entrants before the year of entry 45.4 19 2.7 21 41 17 42 0.3 0.2 0.4 11
12 New Firms connected to grey/dirty entrants the year of entry 85.2 25 5.2 46 64 12 24 0.4 0.4 0.2 12
13 All Firms connected to grey/dirty entrants the year of entry 69.3 23 4.2 42 59 13 27 0.4 0.4 0.2 13
14 Firms connected to new to patenting entrants the year of entry 59.7 12 3.3 40 62 11 27 0.4 0.4 0.2 14

(b) Median

Family Count Percent Family Count Percent in Energy If Diversified If Specialized in
Total Energy Energy ReNu Clean Grey Dirty Clean Grey/Dirty

Row Sample Description 1 2 3 4 5 6 7 8 9 10 Row

1 Firms with energy patents 2.0 33 0.7 0 0 0 0 0.0 0.0 1.0 1
2 Firms with Re/Nu patents 2.1 30 1.0 100 100 0 0 0.0 1.0 0.0 2
3 Firms with clean patents 2.2 25 0.7 44 100 0 0 0.0 1.0 0.0 3
4 Firms connected to energy inventors 2.0 33 0.7 0 0 0 0 0.0 0.0 1.0 4
5 Firms connected to Re/Nu inventors 2.6 19 0.5 0 75 0 0 0.0 0.0 0.0 5
6 Firms connected to clean inventors 2.3 20 0.5 0 83 0 0 0.0 0.0 0.0 6
7 Firms connected to non-energy entrants before the year of entry 8.2 4 0.3 1 60 0 13 0.0 0.0 0.0 7
8 New Firms connected to non-energy entrants the year of entry 4.3 13 0.9 67 100 0 0 0.0 1.0 0.0 8
9 All Firms connected to non-energy entrants the year of entry 4.2 11 0.6 67 100 0 0 0.0 1.0 0.0 9

10 Firms connected to grey/dirty inventors 2.1 21 0.5 0 0 0 63 0.0 0.0 1.0 10
11 Firms connected to grey/dirty entrants before the year of entry 6.1 7 0.5 0 27 0 31 0.0 0.0 0.0 11
12 New Firms connected to grey/dirty entrants the year of entry 9.5 8 1.0 36 79 0 5 0.0 0.0 0.0 12
13 All Firms connected to grey/dirty entrants the year of entry 8.5 8 0.8 29 71 0 9 0.0 0.0 0.0 13
14 Firms connected to new to patenting entrants the year of entry 8.8 5 0.4 25 77 0 5 0.0 0.0 0.0 14

Note: The tables present summary statistics of various firm samples. For instance, the first row examines firms that filed
at least one energy patent between 1990 and 2014. In contrast, the 8th row delves into a specific subsample: firms that
connected with a non-energy entrant in their year of clean entry but had no prior connection with them. Table D.4a
reports values for the mean firm while Table D.4b reports values for the median firm.
Below is more information about each variable in the columns. All variables are calculated using firm-level patent data
for the period between 1990 and 2014.

• “Family Count Total” (Column 1) is the average number of patent families filed annually, irrespective of type.

• “Percent Energy” is the proportion of energy-related patent families out of the total count.

• “Family Count Energy” is the average number of energy-related patent families, filed annually.

• The section labeled “Percent in Energy” breaks down firms’ energy patent portfolio into the following categories:
Renewables and Nuclear (“ReNu”), Clean (our broad definition of “Clean” that include enabling technologies),
Grey, and Dirty.

• Columns “If Diversified” and “If Specialized in” show the mean or median values of binary variables that indicate
whether a firm is diversified and if not, whether it i specialized in Clean or in Grey/Dirty. This classification
relies on the following ratio:
FamilyCountClean−FamilyCountGrey−FamilyCountDirty
FamilyCountClean+FamilyCountGrey+FamilyCountDirty .
Where FamilyCountType represents the average yearly count of patent families of type k filed by firm j between
1990 and 2014. The binary variables are constructed as follows:

– Firms with a ratio greater than 0.8 are classified as specialized in Clean.

– Firms with a ratio less than -0.8 are seen as specialized in Grey or Dirty.

– Firms with a ratio between -0.8 and 0.8 are termed diversified.
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Take-Aways from Table D.4

• Regarding firms that have at least one energy patent:

From Row 1, we learn that, on average, these firms file 11.2 patents annually (Column
1), with 45% of these patents being energy-related (Column 2). In contrast, the median
value for the total patent family count is significantly lower at 2.0 (Table D.4b Column
1). This suggests a skewed distribution with a long right tail, meaning that while the
typical firm patents only two families per year, some firms patent extensively. Most
firms specialize in clean or grey/dirty; about 10% only are diversified (Column 8).

• Regarding inventors that enter clean from non-energy:

– Row 7: Before patenting in clean energy, non-energy entrants typically are connected
with firms that: 1) patent more frequently than the average energy-patenting firm (51.8
in Column 1 vs 11.2 in Row 1 Column 1); 2) focus less on energy, with only 10% of
their patents being related to energy (Column 2); 3) are more likely to be diversified (0.3
in Column 8 vs. 0.1 in Row 1).

– Row 8: When non-energy inventors enter and file their first clean patent, we typically
observe that they file patents with firms they have never patented with. The newly
associated firms have a greater focus on energy (32% in Column 2 vs. 10% in Row 7)
compared to the firms these inventors were previously patenting with (32% in Column 2
vs. 10% in Row 7). They are also considerably less likely to specialize in grey/dirty (0.1
in Column 10 vs. 0.3 in Row 7).

• Regarding inventors that enter clean from grey and/or dirty:

– Row 11: Before patenting in clean, grey/dirty entrants are connected with firms that:
1) patent more frequently than the average grey/dirty firm (45.4 in Column 1 vs 18.6
in Row 10); 2) are not as heavily focused on energy, with their energy-related patents
constituting only 19% of their portfolio (Column 2), compared to 38% for the average
grey/dirty firm (Column 2 Row 10); 3) exhibit greater diversification between clean and
grey/dirty technologies (reflected by a value of 0.3 in Column 8); 4) are less inclined to
specialize solely in the grey/dirty sector (0.4 in Column 10 vs 0.7 in Row 10).

– Row 12: When grey/dirty inventors enter clean, we observe that they tend to file patents
with firms they have never patented with before. These newly associated firms patent
significantly more than the firms these inventors were previously patenting with (85.2
in Column 1 vs 45.4 in Row 11). Additionally, these firms are more likely to be
diversified (0.4 in Column 8 vs. 0.3 in Row 11) and less likely to specialize in grey/dirty
technologies (0.2 in Column 10 vs. 0.4 in Row 11).
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E Instrumental Variable Estimation
As described in Section 3, some estimates come from an instrumental variable strategy that utilizes
variation in natural gas prices caused by the shale gas revolution. Since the model in equation 1 is
nonlinear and contains inventor fixed effects, we use a control function approach to implement the
instrumental variable strategy. Our approach is based on the control function method outlined in
Lin and Wooldridge (2019). We start by estimating a first-stage linear regression of prices on the
shale revolution instrument, as well as all other covariates used in estimating equation 1:

lnPit−1 = β̃zzit−1 + β̃X Xit−1 + γ̃t−1 + η̃i + ũit−1, (E.1)

where zit is an inventor-specific measure of the binary instrument for the shale gas revolution.
The shale gas revolution instrument is determined at the country level. It takes on a value

of one for the United States and Canada starting in 2009 (when the shale revolution began to
take effect), and is zero in all other countries and time periods. To construct the inventor-specific
instrument zit , we take the same approach described in Section 3 for constructing inventor-specific
natural gas prices: First, we compute firm-specific values of the instrument as a weighted average
of the country-specific instrument, where the weights for each firm depend on the location of
their patenting activity. Then, we use these firm-specific values of the instrument to compute the
inventor-specific instrument. Here, the weights depend on the share of each inventor’s patents that
are associated with each firm.

The first-stage estimating equation is identical to the first stage of two-stage least-squares.
However, it is not appropriate to use predicted values in place of the potentially endogenous
regressor in equation 1 because the model is nonlinear. Instead, we recover the residuals from
estimating E.1, ˆ̃uit , and modify equation 1 to include those residuals:

PATC
it = exp(βP lnPit−1 +βũ ˆ̃uit−1 +βX Xit−1 + γt +ηi)+uit . (E.2)

We estimate this augmented model via Poisson pseudo maximum likelihood. To conduct inference,
we use a block bootstrap of this two-step procedure at the inventor level, sampling inventors 250
times with replacement.



30

F Robustness of Incumbent Patenting Results

F.1 Main Results Showing All Controls

Table F.1: Baseline estimates showing all controls

(1) (2) (3) (4) (5) (6)
Simple Count Simple Count Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted

Prices (log, t-1) 0.548∗∗∗ 0.463∗∗∗ 0.635∗∗∗ 0.533∗∗∗ 0.468∗∗∗ 0.389∗∗∗

(0.037) (0.037) (0.047) (0.048) (0.047) (0.047)

GDP per capita (log, t-1) 2.999∗∗∗ 3.565∗∗∗ 6.716∗∗∗ 6.802∗∗∗ 1.582∗∗ 2.254∗∗∗

(0.503) (0.470) (0.465) (0.435) (0.620) (0.570)

Energy RD&D (log, t-1) -0.108∗ -0.210∗∗∗ 0.018 -0.193∗∗ -0.077 -0.139∗∗

(0.057) (0.061) (0.071) (0.084) (0.062) (0.064)

Low-Carbon RD&D (log, t-1) 0.004 0.258∗∗∗ -0.635∗∗∗ -0.078 0.020 0.193∗∗

(0.074) (0.077) (0.098) (0.107) (0.074) (0.075)

Year FEs X X X X X X
Inventor FEs X X X X X X
Tenure FEs X X X
Country-Year Covariates X X X X X X
Inventor Clusters (SEs) 110,454 110,454 110,454 110,454 110,454 110,454
Observations 763,630 763,630 763,630 763,630 763,630 763,630
Pseudo-R2 0.285 0.286 0.369 0.371 0.261 0.262
Dependent variable: Number of Renewable/Nuclear docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.

Table F.2: IV estimates showing all controls

(1) (2) (3) (4) (5) (6)
Simple Count Simple Count Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted

Prices (log, t-1) 0.512∗∗∗ 0.299∗∗∗ 0.963∗∗∗ 0.703∗∗∗ 0.360∗∗∗ 0.162∗

(0.069) (0.071) (0.081) (0.084) (0.085) (0.087)
GDP per capita (log, t-1) 3.06∗∗∗ 3.85∗∗∗ 6.00∗∗∗ 6.44∗∗∗ 1.77∗∗∗ 2.66∗∗∗

(0.153) (0.154) (0.195) (0.193) (0.205) (0.206)
Energy RD&D (log, t-1) -0.111∗∗∗ -0.228∗∗∗ 0.066 -0.161∗∗∗ -0.085∗ -0.162∗∗∗

(0.040) (0.043) (0.048) (0.053) (0.051) (0.055)
Low-Carbon RD&D (log, t-1) -0.006 0.225∗∗∗ -0.502∗∗∗ -0.031 0.001 0.167∗∗∗

(0.045) (0.048) (0.056) (0.061) (0.056) (0.060)

Year FEs X X X X X X
Inventor FEs X X X X X X
Tenure FEs X X X
Inventor Clusters (SEs) 110,454 110,454 110,454 110,454 110,454 110,454
Observations 763,630 763,630 763,630 763,630 763,630 763,630
First-stage F-statistic 163 163 163 163 163 163
Dependent variable: Number of Renewable/Nuclear docdb patent families .

Poisson pseudo-maximum likelihood. Bootstrapped (N=250) standard errors in parentheses.



31

Table F.3: Distributed lags estimates showing all controls

(1) (2) (3) (4) (5) (6)
Simple Count Simple Count Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted

Prices (log, t-1) 0.282∗∗∗ 0.279∗∗∗ 0.304∗∗∗ 0.327∗∗∗ 0.297∗∗∗ 0.278∗∗∗

(0.044) (0.044) (0.061) (0.061) (0.054) (0.054)

Prices (log, t-2) 0.180∗∗∗ 0.107∗∗ 0.215∗∗∗ 0.132∗∗ 0.296∗∗∗ 0.221∗∗∗

(0.045) (0.045) (0.064) (0.064) (0.053) (0.053)

Prices (log, t-3) 0.180∗∗∗ 0.160∗∗∗ 0.134∗∗ 0.107∗∗ 0.029 0.011
(0.047) (0.046) (0.053) (0.054) (0.056) (0.055)

L.GDP per capita (log, k$) 3.820∗∗∗ 4.116∗∗∗ 5.380∗∗∗ 5.543∗∗∗ 4.032∗∗ 4.440∗∗∗

(1.437) (1.328) (0.864) (0.817) (1.757) (1.596)

L2.GDP per capita (log, k$) -0.036 0.382 2.206∗∗∗ 2.572∗∗∗ -0.963 -0.401
(0.862) (0.812) (0.580) (0.565) (1.133) (1.044)

L3.GDP per capita (log, k$) -0.988∗∗ -1.054∗∗∗ 1.323∗∗∗ 1.051∗∗ -2.371∗∗∗ -2.400∗∗∗

(0.413) (0.393) (0.421) (0.418) (0.472) (0.460)

L.Energy RD&D (log, m$) -0.431∗∗∗ -0.487∗∗∗ -0.396∗∗∗ -0.505∗∗∗ -0.297∗∗∗ -0.344∗∗∗

(0.088) (0.091) (0.108) (0.114) (0.089) (0.092)

L2.Energy RD&D (log, m$) -0.441∗∗∗ -0.459∗∗∗ -0.272∗∗∗ -0.294∗∗∗ -0.287∗∗∗ -0.300∗∗∗

(0.076) (0.076) (0.103) (0.107) (0.085) (0.085)

L3.Energy RD&D (log, m$) -0.161∗∗∗ -0.174∗∗∗ -0.045 -0.063 -0.163∗∗∗ -0.174∗∗∗

(0.058) (0.058) (0.087) (0.089) (0.062) (0.062)

L.Low-Carbon RD&D (log, m$) 0.304∗∗∗ 0.567∗∗∗ -0.252∗ 0.200 0.173 0.402∗∗∗

(0.110) (0.113) (0.136) (0.144) (0.112) (0.113)

L2.Low-Carbon RD&D (log, m$) 0.363∗∗∗ 0.473∗∗∗ 0.007 0.204∗ 0.370∗∗∗ 0.453∗∗∗

(0.082) (0.084) (0.116) (0.121) (0.091) (0.093)

L3.Low-Carbon RD&D (log, m$) 0.156∗ 0.223∗∗∗ 0.058 0.173 0.165∗∗ 0.233∗∗∗

(0.081) (0.081) (0.110) (0.112) (0.080) (0.079)

Cumulative Effect 0.642*** 0.546*** 0.652*** 0.565*** 0.622*** 0.511***
(0.050) (0.052) (0.069) (0.070) (0.057) (0.061)

Year FEs X X X X X X
Inventor FEs X X X X X X
Tenure FEs X X X
Country-Year Covariates X X X X X X
Inventor Clusters (SEs) 85,905 85,905 85,905 85,905 85,905 85,905
Observations 590,767 590,767 590,767 590,767 590,767 590,767
Pseudo-R2 0.289 0.290 0.366 0.367 0.264 0.265
Dependent variable: Number of Renewable/Nuclear docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.
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F.2 Alternative Outcome: Broader Definition of Clean Patenting

Table F.4: Main Results with Clean Patenting as Outcome

Count of Clean Patent Families

Simple Count Citation-Weighted Coinventor-Weighted
(1) (2) (3) (4) (5) (6)

Panel A: Baseline Poisson estimates
Prices (log, t-1) 0.417∗∗∗ 0.375∗∗∗ 0.448∗∗∗ 0.392∗∗∗ 0.373∗∗∗ 0.328∗∗∗

(0.024) (0.024) (0.037) (0.037) (0.026) (0.027)

Inventors 211,411 211,411 211,411 211,411 211,411 211,411
Observations 1,541,861 1,541,861 1,541,861 1,541,861 1,541,861 1,541,861
Pseudo-R2 0.330 0.331 0.386 0.387 0.278 0.279

Panel B: Instrumental variable estimates
Prices (log, t-1) 0.438∗∗∗ 0.287∗∗∗ 0.751∗∗∗ 0.552∗∗∗ 0.381∗∗∗ 0.227∗∗∗

(0.042) (0.041) (0.055) (0.054) (0.044) (0.044)

Inventors 211,411 211,411 211,411 211,411 211,411 211,411
Observations 1,541,861 1,541,861 1,541,861 1,541,861 1,541,861 1,541,861
First-stage F-statistic 163 163 163 163 163 163

Panel C: Distributed lag estimates
Cumulative effect (3 lags) 0.419*** 0.399*** 0.305*** 0.285*** 0.476*** 0.446***

(0.036) (0.037) (0.058) (0.058) (0.039) (0.039)

Inventors 161,990 161,990 161,990 161,990 161,990 161,990
Observations 1,178,924 1,178,924 1,178,924 1,178,924 1,178,924 1,178,924
Pseudo-R2 0.337 0.337 0.389 0.389 0.284 0.284

Year fixed effects X X X X X X
Inventor fixed effects X X X X X X
Tenure fixed effects X X X
Country-year covariates X X X X X X

Note: The dependent variables are the number of clean patent families, either unweighted, weighted by citations, or
inversely weighted by the number of inventors, depending on the column. Panels A, B, and C contain estimates of the
same parameters using different estimation strategies. Panel A presents estimates of equation 1 estimated via Poisson
pseudo-maximum likelihood. Standard errors are clustered by inventor and reported in parentheses. Panel B presents
estimates of equation E.2 estimated via the control function approach described in the text, using the shale gas revolution
as an instrument for natural gas prices. Standard errors are constructed via block bootstrap of the two-step control
function approach, sampling inventors 250 times with replacement. The first-stage F-statistic for the instrumental
variable estimates is from estimating equation E.1 at the country-year level rather than the inventor-year level, since the
instrument varies at the country level and it thus provides a more conservative assessment of the instrument’s strength.
Panel C is analogous to Panel A except that the models include three lags of natural gas prices and all other covariates
that vary across both countries and time, and the coefficients represent cumulative effects.
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F.3 Alternative Outcome: International and Triadic Families
F.3.1 Baseline Definition of Clean

Table F.5: Baseline Poisson Estimates with Alternatives Outcome Variables

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)
Simple Count Coinventor-Weighted Citation-Weighted (3y) Citation-Weighted (5y) Triadic Triadic Granted Granted Triadic granted Triadic granted More than 2 countries More than 2 countries More than 2 OECD More than 2 OECD

Prices (log, t-1) 0.463∗∗∗ 0.389∗∗∗ 0.533∗∗∗ 0.459∗∗∗ 0.018 -0.143 0.321∗∗∗ 0.262∗∗∗ -0.078 -0.257∗∗ 0.452∗∗∗ 0.352∗∗∗ 0.343∗∗∗ 0.221∗∗∗

(0.037) (0.047) (0.048) (0.049) (0.077) (0.119) (0.038) (0.050) (0.079) (0.119) (0.047) (0.066) (0.050) (0.072)

GDP per capita (log, t-1) 3.565∗∗∗ 2.254∗∗∗ 6.802∗∗∗ 7.688∗∗∗ 3.288∗∗∗ 2.834∗∗∗ 3.722∗∗∗ 2.049∗∗∗ 3.611∗∗∗ 3.264∗∗∗ 4.688∗∗∗ 2.916∗∗∗ 4.832∗∗∗ 3.151∗∗∗

(0.470) (0.570) (0.435) (0.455) (0.966) (1.017) (0.370) (0.404) (1.006) (1.080) (0.567) (0.569) (0.586) (0.586)

Energy RD&D (log, t-1) -0.210∗∗∗ -0.139∗∗ -0.193∗∗ -0.250∗∗∗ -0.601∗∗∗ -0.525∗ -0.365∗∗∗ -0.309∗∗∗ -0.423∗∗ -0.310 -0.208∗ -0.066 -0.301∗∗∗ -0.116
(0.061) (0.064) (0.084) (0.092) (0.215) (0.276) (0.069) (0.075) (0.210) (0.260) (0.108) (0.127) (0.115) (0.138)

Low-Carbon RD&D (log, t-1) 0.258∗∗∗ 0.193∗∗ -0.078 -0.110 -0.495∗ -0.235 0.318∗∗∗ 0.298∗∗∗ -0.734∗∗ -0.568 -0.116 -0.083 -0.065 -0.055
(0.077) (0.075) (0.107) (0.120) (0.291) (0.360) (0.084) (0.085) (0.289) (0.357) (0.142) (0.157) (0.149) (0.170)

Year FEs X X X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X X X
Coinventor-Weighted X X X X X X
Inventor Clusters (SEs) 110,454 110,454 110,454 110,454 31,543 31,543 91,786 91,786 29,547 29,547 70,786 70,786 62,245 62,245
Observations 763,630 763,630 763,630 763,630 229,664 229,664 636,886 636,886 215,773 215,773 487,116 487,116 438,252 438,252
Pseudo-R2 0.286 0.262 0.371 0.387 0.212 0.214 0.254 0.236 0.205 0.210 0.235 0.227 0.227 0.222
Dependent variable: Number of Renewable/Nuclear docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.

Note: This table show specifications similar to Panel a of Table 1 in the main text but using different left-hand side
variables. Columns 1, 2, and 3 are the same as Column 2, 6, and 4 in Panel a of Table 1. The other columns present
results for the count of clean families that are “triadic” (i.e., filed at the USPTO, EPO and JPO), granted in at least one
jurisdiction, filed in more than two countries, or filed in more than two OECD countries. Most results are consistent
with the baseline results shown in Table 1 except for specifications using triadic families as outcome variables. Triadic
families are not very common in our dataset. As shown in Table D.1, the number of clean families for the average
clean incumbent is 0.5, but it is only 0.1 for triadic families. The standard deviation is also much lower, and the 90th
percentile is 0.

Table F.6: Distributed Lag Estimates with Alternatives Outcome Variables

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)
Simple Count Coinventor-Weighted Citation-Weighted (3y) Citation-Weighted (5y) Triadic Triadic Granted Granted Triadic granted Triadic granted More than 2 countries More than 2 countries More than 2 OECD More than 2 OECD

Prices (log, t-1) 0.279∗∗∗ 0.278∗∗∗ 0.327∗∗∗ 0.183∗∗∗ 0.066 0.207 0.176∗∗∗ 0.165∗∗ -0.074 -0.018 0.218∗∗∗ 0.244∗∗∗ 0.209∗∗∗ 0.206∗∗

(0.044) (0.054) (0.061) (0.063) (0.108) (0.141) (0.050) (0.065) (0.110) (0.141) (0.061) (0.072) (0.067) (0.082)

Prices (log, t-2) 0.107∗∗ 0.221∗∗∗ 0.132∗∗ 0.120∗ -0.079 -0.109 0.000 0.125∗∗ -0.145 -0.133 0.241∗∗∗ 0.173∗∗ 0.170∗∗ 0.113
(0.045) (0.053) (0.064) (0.066) (0.115) (0.149) (0.049) (0.060) (0.121) (0.162) (0.063) (0.080) (0.069) (0.088)

Prices (log, t-3) 0.160∗∗∗ 0.011 0.107∗∗ 0.199∗∗∗ -0.296∗∗∗ -0.411∗∗∗ 0.205∗∗∗ 0.114∗∗ -0.277∗∗∗ -0.362∗∗ 0.152∗∗∗ 0.108 0.018 0.002
(0.046) (0.055) (0.054) (0.058) (0.101) (0.133) (0.045) (0.053) (0.103) (0.141) (0.058) (0.072) (0.063) (0.077)

L.GDP per capita (log, k$) 4.116∗∗∗ 4.440∗∗∗ 5.543∗∗∗ 5.553∗∗∗ 3.084∗∗∗ 2.707∗∗ 3.077∗∗∗ 2.841∗∗∗ 3.430∗∗∗ 2.784∗∗ 3.240∗∗∗ 2.295∗∗∗ 3.627∗∗∗ 2.705∗∗∗

(1.328) (1.596) (0.817) (0.710) (0.972) (1.138) (0.445) (0.526) (1.013) (1.201) (0.574) (0.670) (0.599) (0.694)

L2.GDP per capita (log, k$) 0.382 -0.401 2.572∗∗∗ 3.141∗∗∗ 1.341 0.531 1.536∗∗∗ 1.271∗∗ 1.111 0.740 2.210∗∗∗ 1.601∗∗∗ 2.155∗∗∗ 1.467∗∗

(0.812) (1.044) (0.565) (0.513) (0.844) (0.976) (0.408) (0.496) (0.864) (1.015) (0.505) (0.593) (0.519) (0.611)

L3.GDP per capita (log, k$) -1.054∗∗∗ -2.400∗∗∗ 1.051∗∗ 1.839∗∗∗ 2.404∗∗∗ 1.376 -0.496 -2.090∗∗∗ 2.911∗∗∗ 1.504 1.441∗∗∗ 0.415 1.849∗∗∗ 0.879
(0.393) (0.460) (0.418) (0.435) (0.862) (0.996) (0.399) (0.556) (0.879) (1.033) (0.511) (0.596) (0.519) (0.617)

L.Energy RD&D (log, m$) -0.487∗∗∗ -0.344∗∗∗ -0.505∗∗∗ -0.634∗∗∗ -0.461 -0.231 -0.598∗∗∗ -0.548∗∗∗ -0.274 -0.112 -0.692∗∗∗ -0.352∗ -0.627∗∗∗ -0.296
(0.091) (0.092) (0.114) (0.126) (0.302) (0.339) (0.095) (0.101) (0.303) (0.337) (0.157) (0.180) (0.163) (0.190)

L2.Energy RD&D (log, m$) -0.459∗∗∗ -0.300∗∗∗ -0.294∗∗∗ -0.355∗∗∗ -0.521∗ -0.375 -0.522∗∗∗ -0.321∗∗∗ -0.627∗∗ -0.460 -0.065 -0.016 -0.090 -0.051
(0.076) (0.085) (0.107) (0.120) (0.281) (0.326) (0.077) (0.094) (0.288) (0.333) (0.144) (0.158) (0.147) (0.161)

L3.Energy RD&D (log, m$) -0.174∗∗∗ -0.174∗∗∗ -0.063 -0.093 0.245 0.263 -0.048 -0.008 0.140 0.110 0.090 0.157 0.037 0.148
(0.058) (0.062) (0.089) (0.104) (0.190) (0.211) (0.064) (0.072) (0.197) (0.221) (0.102) (0.115) (0.107) (0.119)

L.Low-Carbon RD&D (log, m$) 0.567∗∗∗ 0.402∗∗∗ 0.200 0.208 -0.743∗∗ -0.782∗ 0.634∗∗∗ 0.574∗∗∗ -1.015∗∗∗ -1.035∗∗ 0.176 -0.003 0.117 -0.058
(0.113) (0.113) (0.144) (0.158) (0.366) (0.412) (0.113) (0.118) (0.368) (0.415) (0.189) (0.217) (0.195) (0.223)

L2.Low-Carbon RD&D (log, m$) 0.473∗∗∗ 0.453∗∗∗ 0.204∗ 0.230∗ 0.193 0.419 0.469∗∗∗ 0.359∗∗∗ 0.251 0.382 -0.206 -0.028 -0.198 -0.020
(0.084) (0.093) (0.121) (0.136) (0.306) (0.342) (0.090) (0.106) (0.315) (0.349) (0.162) (0.180) (0.163) (0.181)

L3.Low-Carbon RD&D (log, m$) 0.223∗∗∗ 0.233∗∗∗ 0.173 0.218∗ -0.384∗ -0.101 0.040 0.038 -0.401∗ -0.090 0.162 0.081 0.096 0.043
(0.081) (0.079) (0.112) (0.129) (0.226) (0.239) (0.082) (0.084) (0.238) (0.261) (0.130) (0.142) (0.134) (0.149)

Cumulative Effect 0.546*** 0.511*** 0.565*** 0.502*** -0.308*** -0.313** 0.381*** 0.404*** -0.496*** -0.513*** 0.611*** 0.525*** 0.398*** 0.321***
(0.052) (0.061) (0.070) (0.073) (0.108) (0.136) (0.055) (0.068) (0.109) (0.134) (0.066) (0.078) (0.070) (0.086)

Year FEs X X X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X X X
Coinventor-Weighted X X X X X X
Inventor Clusters (SEs) 85,905 85,905 85,905 85,905 24,027 24,027 71,093 71,093 22,413 22,413 54,110 54,110 47,350 47,350
Observations 590,767 590,767 590,767 590,767 175,139 175,139 493,385 493,385 163,736 163,736 374,002 374,002 335,082 335,082
Pseudo-R2 0.290 0.265 0.367 0.382 0.212 0.215 0.256 0.236 0.205 0.210 0.233 0.226 0.225 0.220
Dependent variable: Number of Renewable/Nuclear docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.

Note: This table show specifications similar to Table F.5 but with three lags of natural gas prices and other variables that
vary by country and year.
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F.3.2 Broader Definition of Clean

Table F.7: Baseline Poisson Estimates with Alternatives Outcome Variables

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)
Simple Count Coinventor-Weighted Citation-Weighted (3y) Citation-Weighted (5y) Triadic Triadic Granted Granted Triadic granted Triadic granted More than 2 countries More than 2 countries More than 2 OECD More than 2 OECD

Prices (log, t-1) 0.375∗∗∗ 0.328∗∗∗ 0.392∗∗∗ 0.359∗∗∗ 0.328∗∗∗ 0.256∗∗∗ 0.315∗∗∗ 0.289∗∗∗ 0.293∗∗∗ 0.212∗∗∗ 0.410∗∗∗ 0.343∗∗∗ 0.372∗∗∗ 0.255∗∗∗

(0.024) (0.027) (0.037) (0.039) (0.046) (0.063) (0.026) (0.030) (0.047) (0.063) (0.031) (0.037) (0.032) (0.040)

GDP per capita (log, t-1) 4.671∗∗∗ 3.372∗∗∗ 7.148∗∗∗ 7.911∗∗∗ 5.291∗∗∗ 4.969∗∗∗ 4.637∗∗∗ 3.436∗∗∗ 5.708∗∗∗ 5.354∗∗∗ 5.221∗∗∗ 4.363∗∗∗ 5.499∗∗∗ 4.640∗∗∗

(0.234) (0.242) (0.303) (0.320) (0.587) (0.621) (0.253) (0.275) (0.609) (0.655) (0.358) (0.366) (0.367) (0.380)

Energy RD&D (log, t-1) -0.162∗∗∗ -0.069∗ -0.039 -0.047 0.247∗∗∗ 0.337∗∗∗ -0.221∗∗∗ -0.135∗∗∗ 0.260∗∗∗ 0.361∗∗∗ 0.279∗∗∗ 0.412∗∗∗ 0.228∗∗∗ 0.355∗∗∗

(0.038) (0.038) (0.048) (0.051) (0.084) (0.096) (0.041) (0.043) (0.084) (0.095) (0.054) (0.061) (0.057) (0.064)

Low-Carbon RD&D (log, t-1) 0.077 0.009 -0.391∗∗∗ -0.514∗∗∗ -1.744∗∗∗ -1.661∗∗∗ -0.103∗ -0.178∗∗∗ -1.890∗∗∗ -1.831∗∗∗ -1.128∗∗∗ -1.275∗∗∗ -1.202∗∗∗ -1.312∗∗∗

(0.050) (0.047) (0.069) (0.073) (0.122) (0.142) (0.055) (0.054) (0.123) (0.146) (0.078) (0.084) (0.078) (0.087)

Year FEs X X X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X X X
Coinventor-Weighted X X X X X X
Inventor Clusters (SEs) 211,411 211,411 211,411 211,411 73,644 73,644 180,860 180,860 69,561 69,561 145,881 145,881 131,270 131,270
Observations 1,541,861 1,541,861 1,541,861 1,541,861 584,648 584,648 1,335,760 1,335,760 554,843 554,843 1,077,717 1,077,717 991,728 991,728
Pseudo-R2 0.331 0.279 0.387 0.397 0.209 0.192 0.289 0.242 0.203 0.188 0.253 0.223 0.249 0.220
Dependent variable: Number of Renewable/Nuclear docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.

Note: This table show specifications similar to Table F.5 but for the broader definition of clean.

Table F.8: Distributed Lag Estimates with Alternatives Outcome Variables

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)
Simple Count Coinventor-Weighted Citation-Weighted (3y) Citation-Weighted (5y) Triadic Triadic Granted Granted Triadic granted Triadic granted More than 2 countries More than 2 countries More than 2 OECD More than 2 OECD

Prices (log, t-1) -0.111∗∗∗ -0.074∗∗ 0.033 -0.065 -0.087 -0.052 -0.190∗∗∗ -0.158∗∗∗ -0.213∗∗∗ -0.198∗∗ -0.078∗ -0.100∗∗ -0.093∗ -0.143∗∗∗

(0.034) (0.037) (0.080) (0.079) (0.073) (0.085) (0.037) (0.041) (0.074) (0.084) (0.045) (0.051) (0.048) (0.055)

Prices (log, t-2) 0.180∗∗∗ 0.227∗∗∗ 0.100 0.068 -0.036 0.025 0.133∗∗∗ 0.192∗∗∗ -0.070 0.015 0.159∗∗∗ 0.211∗∗∗ 0.144∗∗∗ 0.176∗∗∗

(0.031) (0.035) (0.063) (0.064) (0.072) (0.099) (0.034) (0.039) (0.075) (0.107) (0.043) (0.052) (0.046) (0.056)

Prices (log, t-3) 0.331∗∗∗ 0.293∗∗∗ 0.152∗∗ 0.271∗∗∗ 0.105 0.044 0.365∗∗∗ 0.343∗∗∗ 0.169∗∗∗ 0.090 0.361∗∗∗ 0.356∗∗∗ 0.323∗∗∗ 0.314∗∗∗

(0.030) (0.034) (0.063) (0.066) (0.064) (0.087) (0.033) (0.037) (0.066) (0.092) (0.038) (0.047) (0.042) (0.051)

L.GDP per capita (log, k$) 2.536∗∗∗ 2.122∗∗∗ 4.399∗∗∗ 4.658∗∗∗ 3.498∗∗∗ 3.431∗∗∗ 2.698∗∗∗ 2.299∗∗∗ 3.792∗∗∗ 3.478∗∗∗ 3.107∗∗∗ 2.592∗∗∗ 3.570∗∗∗ 3.131∗∗∗

(0.312) (0.353) (0.336) (0.345) (0.588) (0.668) (0.283) (0.314) (0.607) (0.703) (0.364) (0.402) (0.372) (0.418)

L2.GDP per capita (log, k$) 1.854∗∗∗ 1.316∗∗∗ 2.889∗∗∗ 3.292∗∗∗ 2.367∗∗∗ 2.221∗∗∗ 1.780∗∗∗ 1.366∗∗∗ 2.332∗∗∗ 2.584∗∗∗ 1.993∗∗∗ 1.822∗∗∗ 1.992∗∗∗ 1.737∗∗∗

(0.259) (0.301) (0.273) (0.280) (0.509) (0.605) (0.250) (0.291) (0.521) (0.634) (0.316) (0.361) (0.325) (0.375)

L3.GDP per capita (log, k$) 0.914∗∗∗ 0.055 2.656∗∗∗ 3.298∗∗∗ 3.129∗∗∗ 2.560∗∗∗ 1.210∗∗∗ 0.416 3.536∗∗∗ 2.732∗∗∗ 2.887∗∗∗ 2.450∗∗∗ 3.166∗∗∗ 2.725∗∗∗

(0.228) (0.255) (0.286) (0.298) (0.497) (0.584) (0.250) (0.301) (0.511) (0.613) (0.311) (0.344) (0.322) (0.358)

L.Energy RD&D (log, m$) -0.470∗∗∗ -0.338∗∗∗ -0.070 -0.067 0.104 0.132 -0.490∗∗∗ -0.378∗∗∗ 0.057 0.110 -0.024 0.077 0.017 0.120
(0.060) (0.063) (0.099) (0.103) (0.159) (0.177) (0.065) (0.071) (0.164) (0.181) (0.097) (0.110) (0.101) (0.115)

L2.Energy RD&D (log, m$) -0.361∗∗∗ -0.258∗∗∗ -0.242∗∗∗ -0.188∗∗ -0.219 -0.133 -0.380∗∗∗ -0.247∗∗∗ -0.336∗∗ -0.252 -0.077 0.071 -0.109 0.028
(0.052) (0.053) (0.071) (0.076) (0.133) (0.164) (0.053) (0.058) (0.138) (0.169) (0.086) (0.097) (0.089) (0.100)

L3.Energy RD&D (log, m$) 0.003 -0.099∗∗ 0.051 0.115∗∗ 0.236∗∗ 0.095 0.133∗∗∗ 0.033 0.179∗ 0.035 0.298∗∗∗ 0.218∗∗∗ 0.252∗∗∗ 0.178∗∗

(0.037) (0.040) (0.051) (0.057) (0.102) (0.125) (0.038) (0.043) (0.106) (0.128) (0.065) (0.071) (0.068) (0.074)

L.Low-Carbon RD&D (log, m$) 0.464∗∗∗ 0.298∗∗∗ -0.129 -0.265∗∗∗ -0.996∗∗∗ -0.986∗∗∗ 0.349∗∗∗ 0.197∗∗ -1.068∗∗∗ -1.072∗∗∗ -0.542∗∗∗ -0.738∗∗∗ -0.683∗∗∗ -0.836∗∗∗

(0.073) (0.072) (0.094) (0.102) (0.184) (0.229) (0.080) (0.084) (0.191) (0.239) (0.113) (0.131) (0.116) (0.134)

L2.Low-Carbon RD&D (log, m$) 0.140∗∗ 0.169∗∗∗ -0.014 -0.095 -0.763∗∗∗ -0.685∗∗∗ 0.011 -0.017 -0.782∗∗∗ -0.694∗∗∗ -0.521∗∗∗ -0.599∗∗∗ -0.528∗∗∗ -0.596∗∗∗

(0.060) (0.063) (0.085) (0.090) (0.152) (0.204) (0.061) (0.068) (0.158) (0.214) (0.096) (0.111) (0.098) (0.112)

L3.Low-Carbon RD&D (log, m$) -0.110∗∗ 0.079 -0.393∗∗∗ -0.473∗∗∗ -0.872∗∗∗ -0.577∗∗∗ -0.340∗∗∗ -0.176∗∗∗ -0.865∗∗∗ -0.603∗∗∗ -0.541∗∗∗ -0.335∗∗∗ -0.588∗∗∗ -0.392∗∗∗

(0.050) (0.055) (0.066) (0.074) (0.130) (0.152) (0.049) (0.056) (0.137) (0.162) (0.084) (0.090) (0.086) (0.093)

Cumulative Effect 0.399*** 0.446*** 0.285*** 0.274*** -0.018 0.017 0.308*** 0.377*** -0.113 -0.093 0.441*** 0.467*** 0.374*** 0.346***
(0.037) (0.039) (0.058) (0.061) (0.070) (0.085) (0.040) (0.043) (0.069) (0.081) (0.049) (0.054) (0.048) (0.057)

Year FEs X X X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X X X
Coinventor-Weighted X X X X X X
Inventor Clusters (SEs) 161,990 161,990 161,990 161,990 55,389 55,389 138,129 138,129 52,162 52,162 110,262 110,262 98,907 98,907
Observations 1,178,924 1,178,924 1,178,924 1,178,924 438,875 438,875 1,021,574 1,021,574 414,871 414,871 817,411 817,411 749,816 749,816
Pseudo-R2 0.337 0.284 0.389 0.398 0.208 0.193 0.295 0.246 0.203 0.188 0.255 0.225 0.251 0.222
Dependent variable: Number of Renewable/Nuclear docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.

Note: This table show specifications similar to Table F.5 but for the broader definition of clean and with three lags of
natural gas prices and other variables that vary by country and year.
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F.4 Robustness Check: Truncated Inventor Panel
Here we implement a robustness check where we arbitrarily truncate each inventor’s time series to
half of its original length. For example, if we observe an inventor filing their first patent in 2000 and
their last patent in 2005 (i.e., total length of six years), we would keep observations for this inventor
only up to and including 2002.

This robustness check is useful because, although we directly observe when inventors produce
their first patent, we do not know for sure when they “exit.” We can, therefore, only safely input
zeros for years when inventors do not file patents when these years come in between the first and
last filing years of the inventor. This robustness check shows that our results are not sensitive to the
timing of an inventors’ last observed patent.

F.4.1 Baseline Definition of Clean

Table F.9: Baseline Poisson Estimates for Baseline Definition of Clean

(1) (2) (3) (4) (5) (6)
Simple Count Simple Count Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted

Prices (log, t-1) 0.471∗∗∗ 0.473∗∗∗ 0.639∗∗∗ 0.638∗∗∗ 0.456∗∗∗ 0.460∗∗∗

(0.085) (0.084) (0.117) (0.116) (0.106) (0.105)

Year FEs X X X X X X
Inventor FEs X X X X X X
Tenure FEs X X X
Country-Year Covariates X X X X X X
Inventor Clusters (SEs) 28,506 28,506 28,506 28,506 28,506 28,506
Observations 102,967 102,967 102,967 102,967 102,967 102,967
Pseudo-R2 0.302 0.302 0.435 0.436 0.285 0.286
Dependent variable: Number of Renewable/Nuclear docdb patent families (citation weighted or not).

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.

Table F.10: Distributed Lag Estimates for Baseline Definition of Clean

(1) (2) (3) (4) (5) (6)
Simple Count Simple Count Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted

Prices (log, t-1) 0.494∗∗∗ 0.501∗∗∗ 0.590∗∗∗ 0.595∗∗∗ 0.615∗∗∗ 0.616∗∗∗

(0.142) (0.142) (0.189) (0.189) (0.161) (0.162)

Prices (log, t-2) 0.134 0.135 0.320 0.310 0.277∗ 0.280∗

(0.136) (0.135) (0.208) (0.204) (0.152) (0.151)

Prices (log, t-3) 0.011 0.017 0.253 0.261 -0.300∗ -0.293∗

(0.134) (0.134) (0.189) (0.188) (0.157) (0.157)

Cumulative Effect 0.639*** 0.654*** 1.163*** 1.166*** 0.592*** 0.603***
(0.189) (0.188) (0.275) (0.272) (0.220) (0.219)

Year FEs X X X X X X
Inventor FEs X X X X X X
Tenure FEs X X X
Country-Year Covariates X X X X X X
Inventor Clusters (SEs) 14,088 14,088 14,088 14,088 14,088 14,088
Observations 46,507 46,507 46,507 46,507 46,507 46,507
Pseudo-R2 0.304 0.305 0.443 0.444 0.284 0.285
Dependent variable: Number of Renewable/Nuclear docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.
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F.4.2 Broader Definition of Clean

Table F.11: Baseline Poisson Estimates for Broader Definition of Clean

(1) (2) (3) (4) (5) (6)
Simple Count Simple Count Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted

Prices (log, t-1) 0.294∗∗∗ 0.297∗∗∗ 0.338∗∗∗ 0.348∗∗∗ 0.112∗ 0.113∗

(0.059) (0.058) (0.082) (0.081) (0.067) (0.066)

Year FEs X X X X X X
Inventor FEs X X X X X X
Tenure FEs X X X
Country-Year Covariates X X X X X X
Inventor Clusters (SEs) 61,102 61,102 61,102 61,102 61,102 61,102
Observations 233,505 233,505 233,505 233,505 233,505 233,505
Pseudo-R2 0.351 0.352 0.428 0.429 0.300 0.300
Dependent variable: Number of Renewable/Nuclear/Enabling docdb patent families (citation weighted or not).

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.

Table F.12: Distributed Lag Estimates for Broader Definition of Clean

(1) (2) (3) (4) (5) (6)
Simple Count Simple Count Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted

Prices (log, t-1) 0.242∗∗ 0.254∗∗ 0.104 0.123 0.248∗∗ 0.256∗∗

(0.100) (0.100) (0.145) (0.146) (0.113) (0.113)

Prices (log, t-2) 0.215∗∗ 0.211∗∗ 0.387∗∗∗ 0.384∗∗∗ 0.218∗∗ 0.213∗∗

(0.093) (0.092) (0.144) (0.144) (0.102) (0.101)

Prices (log, t-3) -0.058 -0.048 0.098 0.103 -0.303∗∗∗ -0.292∗∗∗

(0.087) (0.087) (0.126) (0.126) (0.098) (0.098)

Cumulative Effect 0.400*** 0.417*** 0.588*** 0.609*** 0.163 0.176
(0.130) (0.129) (0.185) (0.185) (0.145) (0.144)

Year FEs X X X X X X
Inventor FEs X X X X X X
Tenure FEs X X X
Country-Year Covariates X X X X X X
Inventor Clusters (SEs) 30,072 30,072 30,072 30,072 30,072 30,072
Observations 105,114 105,114 105,114 105,114 105,114 105,114
Pseudo-R2 0.363 0.363 0.437 0.438 0.309 0.310
Dependent variable: Number of Renewable/Nuclear/Enabling docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.
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F.5 Robustness Check: Alternative Prices
Here, we conduct robustness checks using various measures of exposure to natural gas prices.
Details on the construction of these exposure measures can be found in Subsection A.7. Results
from Table F.13 to Table F.36 confirm that our baseline findings for incumbents remain consistent
across different methods of measuring exposure to natural gas prices.

F.5.1 Baseline Clean Definition and Baseline Geographic Weights (Based on Energy Patents
in All Periods)

Table F.13: Industry Prices: Baseline Poisson Estimates for Baseline Definition of Clean

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Simple Count Simple Count Simple Count Simple Count Citation-Weighted Citation-Weighted Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted

Prices (log, t-1) 0.588∗∗∗ 0.608∗∗∗ 0.463∗∗∗ 0.467∗∗∗ 0.637∗∗∗ 0.655∗∗∗ 0.533∗∗∗ 0.538∗∗∗ 0.501∗∗∗ 0.525∗∗∗ 0.389∗∗∗ 0.393∗∗∗

(0.039) (0.039) (0.037) (0.037) (0.055) (0.055) (0.048) (0.048) (0.049) (0.049) (0.047) (0.047)

Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X
Inventor Clusters (SEs) 110,454 110,543 110,454 110,543 110,454 110,543 110,454 110,543 110,454 110,543 110,454 110,543
Price Panel Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced
Price Weights - - GDP GDP - - GDP GDP - - GDP GDP
Observations 763,630 763,940 763,630 763,940 763,630 763,940 763,630 763,940 763,630 763,940 763,630 763,940
Pseudo-R2 0.286 0.286 0.286 0.286 0.371 0.371 0.371 0.371 0.262 0.262 0.262 0.262
Dependent variable: Number of Renewable/Nuclear docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.

Table F.14: Electricity Prices: Baseline Poisson Estimates for Baseline Definition of Clean

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Simple Count Simple Count Simple Count Simple Count Citation-Weighted Citation-Weighted Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted

Prices (log, t-1) 0.491∗∗∗ 0.529∗∗∗ 0.390∗∗∗ 0.388∗∗∗ 0.848∗∗∗ 0.864∗∗∗ 0.861∗∗∗ 0.863∗∗∗ 0.209∗∗∗ 0.255∗∗∗ 0.140∗ 0.137∗

(0.062) (0.063) (0.063) (0.063) (0.073) (0.075) (0.069) (0.069) (0.070) (0.072) (0.073) (0.073)

Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X
Inventor Clusters (SEs) 108,348 108,460 108,348 108,460 108,348 108,460 108,348 108,460 108,348 108,460 108,348 108,460
Price Panel Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced
Price Weights - - GDP GDP - - GDP GDP - - GDP GDP
Observations 752,331 752,833 752,331 752,833 752,331 752,833 752,331 752,833 752,331 752,833 752,331 752,833
Pseudo-R2 0.287 0.287 0.287 0.287 0.371 0.371 0.371 0.371 0.263 0.262 0.262 0.262
Dependent variable: Number of Renewable/Nuclear docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.

Table F.15: Household Prices: Baseline Poisson Estimates for Baseline Definition of Clean

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Simple Count Simple Count Simple Count Simple Count Citation-Weighted Citation-Weighted Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted

Prices (log, t-1) 0.347∗∗∗ 0.351∗∗∗ 0.315∗∗∗ 0.316∗∗∗ 0.396∗∗∗ 0.402∗∗∗ 0.326∗∗∗ 0.329∗∗∗ 0.354∗∗∗ 0.360∗∗∗ 0.319∗∗∗ 0.320∗∗∗

(0.030) (0.030) (0.031) (0.031) (0.042) (0.042) (0.041) (0.041) (0.039) (0.039) (0.041) (0.041)

Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X
Inventor Clusters (SEs) 110,498 110,562 110,498 110,562 110,498 110,562 110,498 110,562 110,498 110,562 110,498 110,562
Price Panel Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced
Price Weights - - GDP GDP - - GDP GDP - - GDP GDP
Observations 763,944 764,165 763,944 764,165 763,944 764,165 763,944 764,165 763,944 764,165 763,944 764,165
Pseudo-R2 0.286 0.286 0.286 0.286 0.371 0.371 0.371 0.371 0.262 0.262 0.262 0.262
Dependent variable: Number of Renewable/Nuclear docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.
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F.5.2 Baseline Clean Definition and Geographic Weights Based on Energy Patents in Pre-
Period

Table F.16: Industry Prices: Baseline Poisson Estimates for Baseline Definition of Clean

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Simple Count Simple Count Simple Count Simple Count Citation-Weighted Citation-Weighted Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted

Prices (log, t-1) 0.585∗∗∗ 0.595∗∗∗ 0.471∗∗∗ 0.476∗∗∗ 0.550∗∗∗ 0.549∗∗∗ 0.485∗∗∗ 0.486∗∗∗ 0.537∗∗∗ 0.548∗∗∗ 0.434∗∗∗ 0.438∗∗∗

(0.044) (0.045) (0.038) (0.039) (0.061) (0.061) (0.049) (0.049) (0.056) (0.056) (0.049) (0.050)

Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X
Inventor Clusters (SEs) 110,632 110,636 110,632 110,636 110,632 110,636 110,632 110,636 110,632 110,636 110,632 110,636
Price Panel Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced
Price Weights - - GDP GDP - - GDP GDP - - GDP GDP
Observations 764,481 764,499 764,481 764,499 764,481 764,499 764,481 764,499 764,481 764,499 764,481 764,499
Pseudo-R2 0.286 0.286 0.286 0.286 0.371 0.371 0.371 0.371 0.262 0.262 0.262 0.262
Dependent variable: Number of Renewable/Nuclear docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.

Table F.17: Electricity Prices: Baseline Poisson Estimates for Baseline Definition of Clean

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Simple Count Simple Count Simple Count Simple Count Citation-Weighted Citation-Weighted Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted

Prices (log, t-1) 0.441∗∗∗ 0.444∗∗∗ 0.328∗∗∗ 0.333∗∗∗ 0.800∗∗∗ 0.772∗∗∗ 0.714∗∗∗ 0.723∗∗∗ 0.233∗∗∗ 0.242∗∗∗ 0.149∗∗ 0.154∗∗

(0.068) (0.068) (0.059) (0.059) (0.081) (0.081) (0.064) (0.065) (0.078) (0.078) (0.070) (0.070)

Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X
Inventor Clusters (SEs) 108,730 108,758 108,730 108,758 108,730 108,758 108,730 108,758 108,730 108,758 108,730 108,758
Price Panel Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced
Price Weights - - GDP GDP - - GDP GDP - - GDP GDP
Observations 754,412 754,545 754,412 754,545 754,412 754,545 754,412 754,545 754,412 754,545 754,412 754,545
Pseudo-R2 0.286 0.286 0.286 0.286 0.371 0.371 0.371 0.371 0.262 0.262 0.262 0.262
Dependent variable: Number of Renewable/Nuclear docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.

Table F.18: Household Prices: Baseline Poisson Estimates for Baseline Definition of Clean

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Simple Count Simple Count Simple Count Simple Count Citation-Weighted Citation-Weighted Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted

Prices (log, t-1) 0.359∗∗∗ 0.360∗∗∗ 0.322∗∗∗ 0.322∗∗∗ 0.334∗∗∗ 0.326∗∗∗ 0.305∗∗∗ 0.300∗∗∗ 0.393∗∗∗ 0.396∗∗∗ 0.305∗∗∗ 0.300∗∗∗

(0.037) (0.037) (0.033) (0.033) (0.048) (0.048) (0.042) (0.042) (0.047) (0.047) (0.042) (0.042)

Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X
Inventor Clusters (SEs) 110,646 110,649 110,646 110,649 110,646 110,649 110,646 110,649 110,646 110,649 110,646 110,649
Price Panel Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced
Price Weights - - GDP GDP - - GDP GDP - - GDP GDP
Observations 764,668 764,684 764,668 764,684 764,668 764,684 764,668 764,684 764,668 764,684 764,668 764,684
Pseudo-R2 0.286 0.286 0.286 0.286 0.371 0.371 0.371 0.371 0.262 0.262 0.371 0.371
Dependent variable: Number of Renewable/Nuclear docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.
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F.5.3 Baseline Clean Definition and Geographic Weights Based on All Patents in All Periods

Table F.19: Industry Prices: Baseline Poisson Estimates for Baseline Definition of Clean

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Simple Count Simple Count Simple Count Simple Count Citation-Weighted Citation-Weighted Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted

Prices (log, t-1) 0.565∗∗∗ 0.585∗∗∗ 0.451∗∗∗ 0.455∗∗∗ 0.594∗∗∗ 0.616∗∗∗ 0.497∗∗∗ 0.502∗∗∗ 0.492∗∗∗ 0.516∗∗∗ 0.384∗∗∗ 0.388∗∗∗

(0.038) (0.039) (0.036) (0.036) (0.055) (0.055) (0.048) (0.048) (0.048) (0.049) (0.046) (0.046)

Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X
Inventor Clusters (SEs) 110,574 110,637 110,574 110,637 110,574 110,637 110,574 110,637 110,574 110,637 110,574 110,637
Price Panel Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced
Price Weights - - GDP GDP - - GDP GDP - - GDP GDP
Observations 764,414 764,630 764,414 764,630 764,414 764,630 764,414 764,630 764,414 764,630 764,414 764,630
Pseudo-R2 0.286 0.286 0.286 0.286 0.371 0.371 0.371 0.371 0.262 0.262 0.262 0.262
Dependent variable: Number of Renewable/Nuclear docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.

Table F.20: Electricity Prices: Baseline Poisson Estimates for Baseline Definition of Clean

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Simple Count Simple Count Simple Count Simple Count Citation-Weighted Citation-Weighted Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted

Prices (log, t-1) 0.438∗∗∗ 0.475∗∗∗ 0.378∗∗∗ 0.377∗∗∗ 0.768∗∗∗ 0.786∗∗∗ 0.801∗∗∗ 0.807∗∗∗ 0.212∗∗∗ 0.252∗∗∗ 0.161∗∗∗ 0.160∗∗∗

(0.054) (0.056) (0.053) (0.053) (0.072) (0.074) (0.066) (0.066) (0.060) (0.062) (0.061) (0.062)

Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X
Inventor Clusters (SEs) 108,939 109,027 108,939 109,027 108,939 109,027 108,939 109,027 108,939 109,027 108,939 109,027
Price Panel Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced
Price Weights - - GDP GDP - - GDP GDP - - GDP GDP
Observations 755,558 755,966 755,558 755,966 755,558 755,966 755,558 755,966 755,558 755,966 755,558 755,966
Pseudo-R2 0.287 0.287 0.286 0.286 0.371 0.371 0.371 0.371 0.262 0.262 0.262 0.262
Dependent variable: Number of Renewable/Nuclear docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.

Table F.21: Household Prices: Baseline Poisson Estimates for Baseline Definition of Clean

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Simple Count Simple Count Simple Count Simple Count Citation-Weighted Citation-Weighted Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted

Prices (log, t-1) 0.340∗∗∗ 0.343∗∗∗ 0.309∗∗∗ 0.309∗∗∗ 0.387∗∗∗ 0.391∗∗∗ 0.314∗∗∗ 0.315∗∗∗ 0.350∗∗∗ 0.354∗∗∗ 0.314∗∗∗ 0.314∗∗∗

(0.031) (0.031) (0.032) (0.032) (0.043) (0.043) (0.041) (0.041) (0.041) (0.041) (0.043) (0.043)

Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X
Inventor Clusters (SEs) 110,613 110,652 110,613 110,652 110,613 110,652 110,613 110,652 110,613 110,652 110,613 110,652
Price Panel Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced
Price Weights - - GDP GDP - - GDP GDP - - GDP GDP
Observations 764,711 764,846 764,711 764,846 764,711 764,846 764,711 764,846 764,711 764,846 764,711 764,846
Pseudo-R2 0.286 0.286 0.286 0.286 0.371 0.371 0.371 0.371 0.262 0.262 0.262 0.262
Dependent variable: Number of Renewable/Nuclear docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.
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F.5.4 Baseline Clean Definition and Geographic Weights Based on All Patents in Pre-Period

Table F.22: Industry Prices: Baseline Poisson Estimates for Baseline Definition of Clean

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Simple Count Simple Count Simple Count Simple Count Citation-Weighted Citation-Weighted Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted

Prices (log, t-1) 0.566∗∗∗ 0.587∗∗∗ 0.461∗∗∗ 0.469∗∗∗ 0.542∗∗∗ 0.553∗∗∗ 0.458∗∗∗ 0.465∗∗∗ 0.503∗∗∗ 0.520∗∗∗ 0.396∗∗∗ 0.403∗∗∗

(0.043) (0.044) (0.039) (0.039) (0.061) (0.062) (0.050) (0.050) (0.056) (0.057) (0.050) (0.050)

Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X
Inventor Clusters (SEs) 110,603 110,630 110,603 110,630 110,603 110,630 110,603 110,630 110,603 110,630 110,603 110,630
Price Panel Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced
Price Weights - - GDP GDP - - GDP GDP - - GDP GDP
Observations 764,523 764,641 764,523 764,641 764,523 764,641 764,523 764,641 764,523 764,641 764,523 764,641
Pseudo-R2 0.286 0.286 0.286 0.286 0.371 0.371 0.371 0.371 0.262 0.262 0.262 0.262
Dependent variable: Number of Renewable/Nuclear docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.

Table F.23: Electricity Prices: Baseline Poisson Estimates for Baseline Definition of Clean

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Simple Count Simple Count Simple Count Simple Count Citation-Weighted Citation-Weighted Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted

Prices (log, t-1) 0.422∗∗∗ 0.432∗∗∗ 0.309∗∗∗ 0.312∗∗∗ 0.727∗∗∗ 0.722∗∗∗ 0.643∗∗∗ 0.657∗∗∗ 0.236∗∗∗ 0.251∗∗∗ 0.156∗∗∗ 0.158∗∗∗

(0.057) (0.058) (0.051) (0.051) (0.076) (0.077) (0.060) (0.061) (0.064) (0.065) (0.058) (0.059)

Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X
Inventor Clusters (SEs) 108,995 109,043 108,995 109,043 108,995 109,043 108,995 109,043 108,995 109,043 108,995 109,043
Price Panel Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced
Price Weights - - GDP GDP - - GDP GDP - - GDP GDP
Observations 755,854 756,034 755,854 756,034 755,854 756,034 755,854 756,034 755,854 756,034 755,854 756,034
Pseudo-R2 0.287 0.287 0.287 0.287 0.372 0.372 0.372 0.372 0.262 0.262 0.262 0.262
Dependent variable: Number of Renewable/Nuclear docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.

Table F.24: Household Prices: Baseline Poisson Estimates for Baseline Definition of Clean

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Simple Count Simple Count Simple Count Simple Count Citation-Weighted Citation-Weighted Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted

Prices (log, t-1) 0.321∗∗∗ 0.324∗∗∗ 0.296∗∗∗ 0.297∗∗∗ 0.325∗∗∗ 0.324∗∗∗ 0.278∗∗∗ 0.278∗∗∗ 0.346∗∗∗ 0.349∗∗∗ 0.307∗∗∗ 0.308∗∗∗

(0.035) (0.035) (0.033) (0.033) (0.048) (0.048) (0.043) (0.042) (0.048) (0.048) (0.046) (0.046)

Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X
Inventor Clusters (SEs) 110,627 110,644 110,627 110,644 110,627 110,644 110,627 110,644 110,627 110,644 110,627 110,644
Price Panel Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced
Price Weights - - GDP GDP - - GDP GDP - - GDP GDP
Observations 764,769 764,836 764,769 764,836 764,769 764,836 764,769 764,836 764,769 764,836 764,769 764,836
Pseudo-R2 0.286 0.286 0.286 0.286 0.371 0.371 0.371 0.371 0.262 0.262 0.262 0.262
Dependent variable: Number of Renewable/Nuclear docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.
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F.5.5 Broader Clean Definition and Baseline Geographic Weights (Based on Energy Patents
in All Periods)

Table F.25: Industry Prices: Baseline Poisson Estimates for Broader Definition of Clean

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Simple Count Simple Count Simple Count Simple Count Citation-Weighted Citation-Weighted Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted

Prices (log, t-1) 0.386∗∗∗ 0.385∗∗∗ 0.375∗∗∗ 0.374∗∗∗ 0.373∗∗∗ 0.364∗∗∗ 0.392∗∗∗ 0.391∗∗∗ 0.348∗∗∗ 0.349∗∗∗ 0.328∗∗∗ 0.328∗∗∗

(0.028) (0.028) (0.024) (0.024) (0.046) (0.046) (0.037) (0.037) (0.030) (0.030) (0.027) (0.027)

Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X
Inventor Clusters (SEs) 211,411 211,508 211,411 211,508 211,411 211,508 211,411 211,508 211,411 211,508 211,411 211,508
Price Panel Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced
Price Weights - - GDP GDP - - GDP GDP - - GDP GDP
Observations 1,541,861 1,542,203 1,541,861 1,542,203 1,541,861 1,542,203 1,541,861 1,542,203 1,541,861 1,542,203 1,541,861 1,542,203
Pseudo-R2 0.331 0.331 0.331 0.331 0.387 0.387 0.387 0.387 0.279 0.279 0.279 0.279
Dependent variable: Number of Renewable/Nuclear/Enabling docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.

Table F.26: Electricity Prices: Baseline Poisson Estimates for Broader Definition of Clean

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Simple Count Simple Count Simple Count Simple Count Citation-Weighted Citation-Weighted Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted

Prices (log, t-1) 0.610∗∗∗ 0.636∗∗∗ 0.650∗∗∗ 0.650∗∗∗ 0.784∗∗∗ 0.786∗∗∗ 0.978∗∗∗ 0.974∗∗∗ 0.557∗∗∗ 0.585∗∗∗ 0.534∗∗∗ 0.534∗∗∗

(0.042) (0.042) (0.039) (0.039) (0.058) (0.060) (0.049) (0.049) (0.041) (0.042) (0.041) (0.041)

Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X
Inventor Clusters (SEs) 208,830 208,969 208,830 208,969 208,830 208,969 208,830 208,969 208,830 208,969 208,830 208,969
Price Panel Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced
Price Weights - - GDP GDP - - GDP GDP - - GDP GDP
Observations 1,528,281 1,528,890 1,528,281 1,528,890 1,528,281 1,528,890 1,528,281 1,528,890 1,528,281 1,528,890 1,528,281 1,528,890
Pseudo-R2 0.331 0.331 0.331 0.331 0.387 0.387 0.387 0.387 0.280 0.280 0.280 0.280
Dependent variable: Number of Renewable/Nuclear/Enabling docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.

Table F.27: Household Prices: Baseline Poisson Estimates for Broader Definition of Clean

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Simple Count Simple Count Simple Count Simple Count Citation-Weighted Citation-Weighted Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted

Prices (log, t-1) 0.248∗∗∗ 0.250∗∗∗ 0.256∗∗∗ 0.256∗∗∗ 0.283∗∗∗ 0.288∗∗∗ 0.295∗∗∗ 0.297∗∗∗ 0.239∗∗∗ 0.242∗∗∗ 0.238∗∗∗ 0.240∗∗∗

(0.021) (0.021) (0.021) (0.020) (0.031) (0.031) (0.029) (0.029) (0.023) (0.023) (0.023) (0.023)

Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X
Inventor Clusters (SEs) 211,464 211,534 211,464 211,534 211,464 211,534 211,464 211,534 211,464 211,534 211,464 211,534
Price Panel Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced
Price Weights - - GDP GDP - - GDP GDP - - GDP GDP
Observations 1,542,154 1,542,399 1,542,154 1,542,399 1,542,154 1,542,399 1,542,154 1,542,399 1,542,154 1,542,399 1,542,154 1,542,399
Pseudo-R2 0.331 0.331 0.331 0.331 0.387 0.387 0.387 0.387 0.279 0.279 0.279 0.279
Dependent variable: Number of Renewable/Nuclear/Enabling docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.
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F.5.6 Broader Clean Definition and Geographic Weights Based on Energy Patents in Pre-
Period

Table F.28: Industry Prices: Baseline Poisson Estimates for Broader Definition of Clean

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Simple Count Simple Count Simple Count Simple Count Citation-Weighted Citation-Weighted Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted

Prices (log, t-1) 0.311∗∗∗ 0.310∗∗∗ 0.320∗∗∗ 0.320∗∗∗ 0.261∗∗∗ 0.249∗∗∗ 0.322∗∗∗ 0.319∗∗∗ 0.298∗∗∗ 0.297∗∗∗ 0.301∗∗∗ 0.302∗∗∗

(0.030) (0.030) (0.025) (0.025) (0.046) (0.046) (0.037) (0.037) (0.032) (0.032) (0.027) (0.027)

Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X
Inventor Clusters (SEs) 211,586 211,591 211,586 211,591 211,586 211,591 211,586 211,591 211,586 211,591 211,586 211,591
Price Panel Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced
Price Weights - - GDP GDP - - GDP GDP - - GDP GDP
Observations 1,542,696 1,542,718 1,542,696 1,542,718 1,542,696 1,542,718 1,542,696 1,542,718 1,542,696 1,542,718 1,542,696 1,542,718
Pseudo-R2 0.331 0.331 0.331 0.331 0.387 0.387 0.387 0.387 0.279 0.279 0.279 0.279
Dependent variable: Number of Renewable/Nuclear/Enabling docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.

Table F.29: Electricity Prices: Baseline Poisson Estimates for Broader Definition of Clean

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Simple Count Simple Count Simple Count Simple Count Citation-Weighted Citation-Weighted Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted

Prices (log, t-1) 0.418∗∗∗ 0.436∗∗∗ 0.478∗∗∗ 0.481∗∗∗ 0.507∗∗∗ 0.509∗∗∗ 0.708∗∗∗ 0.711∗∗∗ 0.440∗∗∗ 0.463∗∗∗ 0.431∗∗∗ 0.436∗∗∗

(0.043) (0.044) (0.037) (0.037) (0.055) (0.056) (0.044) (0.044) (0.044) (0.044) (0.037) (0.037)

Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X
Inventor Clusters (SEs) 208,900 208,943 208,900 208,943 208,900 208,943 208,900 208,943 208,900 208,943 208,900 208,943
Price Panel Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced
Price Weights - - GDP GDP - - GDP GDP - - GDP GDP
Observations 1,528,726 1,528,923 1,528,726 1,528,923 1,528,726 1,528,923 1,528,726 1,528,923 1,528,726 1,528,923 1,528,726 1,528,923
Pseudo-R2 0.331 0.331 0.331 0.331 0.387 0.387 0.387 0.387 0.279 0.279 0.279 0.279
Dependent variable: Number of Renewable/Nuclear/Enabling docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.

Table F.30: Household Prices: Baseline Poisson Estimates for Broader Definition of Clean

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Simple Count Simple Count Simple Count Simple Count Citation-Weighted Citation-Weighted Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted

Prices (log, t-1) 0.212∗∗∗ 0.214∗∗∗ 0.228∗∗∗ 0.228∗∗∗ 0.203∗∗∗ 0.203∗∗∗ 0.239∗∗∗ 0.238∗∗∗ 0.222∗∗∗ 0.224∗∗∗ 0.239∗∗∗ 0.238∗∗∗

(0.024) (0.024) (0.021) (0.021) (0.034) (0.034) (0.030) (0.030) (0.026) (0.026) (0.030) (0.030)

Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X
Inventor Clusters (SEs) 211,611 211,615 211,611 211,615 211,611 211,615 211,611 211,615 211,611 211,615 211,611 211,615
Price Panel Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced
Price Weights - - GDP GDP - - GDP GDP - - GDP GDP
Observations 1,542,909 1,542,929 1,542,909 1,542,929 1,542,909 1,542,929 1,542,909 1,542,929 1,542,909 1,542,929 1,542,909 1,542,929
Pseudo-R2 0.331 0.331 0.331 0.331 0.387 0.387 0.387 0.387 0.279 0.279 0.387 0.387
Dependent variable: Number of Renewable/Nuclear/Enabling docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.
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F.5.7 Broader Clean Definition and Geographic Weights Based on All Patents in All Periods

Table F.31: Industry Prices: Baseline Poisson Estimates for Broader Definition of Clean

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Simple Count Simple Count Simple Count Simple Count Citation-Weighted Citation-Weighted Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted

Prices (log, t-1) 0.351∗∗∗ 0.349∗∗∗ 0.350∗∗∗ 0.351∗∗∗ 0.340∗∗∗ 0.334∗∗∗ 0.364∗∗∗ 0.364∗∗∗ 0.318∗∗∗ 0.318∗∗∗ 0.308∗∗∗ 0.308∗∗∗

(0.027) (0.028) (0.024) (0.024) (0.045) (0.045) (0.036) (0.036) (0.029) (0.029) (0.026) (0.026)

Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X
Inventor Clusters (SEs) 211,574 211,641 211,574 211,641 211,574 211,641 211,574 211,641 211,574 211,641 211,574 211,641
Price Panel Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced
Price Weights - - GDP GDP - - GDP GDP - - GDP GDP
Observations 1,542,985 1,543,225 1,542,985 1,543,225 1,542,985 1,543,225 1,542,985 1,543,225 1,542,985 1,543,225 1,542,985 1,543,225
Pseudo-R2 0.331 0.331 0.331 0.331 0.387 0.387 0.387 0.387 0.279 0.279 0.279 0.279
Dependent variable: Number of Renewable/Nuclear/Enabling docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.

Table F.32: Electricity Prices: Baseline Poisson Estimates for Broader Definition of Clean

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Simple Count Simple Count Simple Count Simple Count Citation-Weighted Citation-Weighted Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted

Prices (log, t-1) 0.567∗∗∗ 0.588∗∗∗ 0.589∗∗∗ 0.589∗∗∗ 0.726∗∗∗ 0.723∗∗∗ 0.898∗∗∗ 0.896∗∗∗ 0.551∗∗∗ 0.570∗∗∗ 0.501∗∗∗ 0.499∗∗∗

(0.041) (0.042) (0.037) (0.038) (0.056) (0.058) (0.048) (0.048) (0.040) (0.041) (0.039) (0.039)

Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X
Inventor Clusters (SEs) 209,750 209,846 209,750 209,846 209,750 209,846 209,750 209,846 209,750 209,846 209,750 209,846
Price Panel Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced
Price Weights - - GDP GDP - - GDP GDP - - GDP GDP
Observations 1,533,243 1,533,677 1,533,243 1,533,677 1,533,243 1,533,677 1,533,243 1,533,677 1,533,243 1,533,677 1,533,243 1,533,677
Pseudo-R2 0.331 0.331 0.331 0.331 0.387 0.387 0.387 0.387 0.280 0.280 0.280 0.280
Dependent variable: Number of Renewable/Nuclear/Enabling docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.

Table F.33: Household Prices: Baseline Poisson Estimates for Broader Definition of Clean

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Simple Count Simple Count Simple Count Simple Count Citation-Weighted Citation-Weighted Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted

Prices (log, t-1) 0.224∗∗∗ 0.226∗∗∗ 0.239∗∗∗ 0.239∗∗∗ 0.269∗∗∗ 0.273∗∗∗ 0.277∗∗∗ 0.278∗∗∗ 0.219∗∗∗ 0.221∗∗∗ 0.225∗∗∗ 0.225∗∗∗

(0.021) (0.021) (0.020) (0.020) (0.031) (0.031) (0.029) (0.029) (0.023) (0.023) (0.022) (0.022)

Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X
Inventor Clusters (SEs) 211,619 211,660 211,619 211,660 211,619 211,660 211,619 211,660 211,619 211,660 211,619 211,660
Price Panel Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced
Price Weights - - GDP GDP - - GDP GDP - - GDP GDP
Observations 1,543,247 1,543,398 1,543,247 1,543,398 1,543,247 1,543,398 1,543,247 1,543,398 1,543,247 1,543,398 1,543,247 1,543,398
Pseudo-R2 0.331 0.331 0.331 0.331 0.387 0.387 0.387 0.387 0.279 0.279 0.279 0.279
Dependent variable: Number of Renewable/Nuclear/Enabling docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.
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F.5.8 Broader Clean Definition and Geographic Weights Based on All Patents in Pre-Period

Table F.34: Industry Prices: Baseline Poisson Estimates for Broader Definition of Clean

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Simple Count Simple Count Simple Count Simple Count Citation-Weighted Citation-Weighted Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted

Prices (log, t-1) 0.267∗∗∗ 0.268∗∗∗ 0.287∗∗∗ 0.289∗∗∗ 0.209∗∗∗ 0.198∗∗∗ 0.263∗∗∗ 0.264∗∗∗ 0.258∗∗∗ 0.258∗∗∗ 0.261∗∗∗ 0.265∗∗∗

(0.031) (0.031) (0.025) (0.025) (0.053) (0.054) (0.040) (0.040) (0.033) (0.033) (0.028) (0.028)

Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X
Inventor Clusters (SEs) 211,590 211,621 211,590 211,621 211,590 211,621 211,590 211,621 211,590 211,621 211,590 211,621
Price Panel Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced
Price Weights - - GDP GDP - - GDP GDP - - GDP GDP
Observations 1,543,072 1,543,217 1,543,072 1,543,217 1,543,072 1,543,217 1,543,072 1,543,217 1,543,072 1,543,217 1,543,072 1,543,217
Pseudo-R2 0.331 0.331 0.331 0.331 0.387 0.387 0.387 0.387 0.279 0.279 0.279 0.279
Dependent variable: Number of Renewable/Nuclear/Enabling docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.

Table F.35: Electricity Prices: Baseline Poisson Estimates for Broader Definition of Clean

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Simple Count Simple Count Simple Count Simple Count Citation-Weighted Citation-Weighted Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted

Prices (log, t-1) 0.451∗∗∗ 0.476∗∗∗ 0.439∗∗∗ 0.442∗∗∗ 0.534∗∗∗ 0.558∗∗∗ 0.650∗∗∗ 0.655∗∗∗ 0.483∗∗∗ 0.507∗∗∗ 0.423∗∗∗ 0.424∗∗∗

(0.042) (0.043) (0.035) (0.035) (0.060) (0.063) (0.043) (0.043) (0.042) (0.043) (0.036) (0.036)

Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X
Inventor Clusters (SEs) 209,699 209,769 209,699 209,769 209,699 209,769 209,699 209,769 209,699 209,769 209,699 209,769
Price Panel Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced
Price Weights - - GDP GDP - - GDP GDP - - GDP GDP
Observations 1,533,090 1,533,372 1,533,090 1,533,372 1,533,090 1,533,372 1,533,090 1,533,372 1,533,090 1,533,372 1,533,090 1,533,372
Pseudo-R2 0.331 0.331 0.331 0.331 0.387 0.388 0.388 0.388 0.280 0.280 0.280 0.280
Dependent variable: Number of Renewable/Nuclear/Enabling docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.

Table F.36: Household Prices: Baseline Poisson Estimates for Broader Definition of Clean

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Simple Count Simple Count Simple Count Simple Count Citation-Weighted Citation-Weighted Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted Coinventor-Weighted

Prices (log, t-1) 0.164∗∗∗ 0.166∗∗∗ 0.192∗∗∗ 0.194∗∗∗ 0.191∗∗∗ 0.194∗∗∗ 0.213∗∗∗ 0.213∗∗∗ 0.182∗∗∗ 0.185∗∗∗ 0.197∗∗∗ 0.199∗∗∗

(0.023) (0.023) (0.021) (0.021) (0.036) (0.036) (0.031) (0.031) (0.026) (0.026) (0.024) (0.024)

Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X
Inventor Clusters (SEs) 211,622 211,644 211,622 211,644 211,622 211,644 211,622 211,644 211,622 211,644 211,622 211,644
Price Panel Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced
Price Weights - - GDP GDP - - GDP GDP - - GDP GDP
Observations 1,543,282 1,543,378 1,543,282 1,543,378 1,543,282 1,543,378 1,543,282 1,543,378 1,543,282 1,543,378 1,543,282 1,543,378
Pseudo-R2 0.331 0.331 0.331 0.331 0.387 0.387 0.387 0.387 0.279 0.279 0.279 0.279
Dependent variable: Number of Renewable/Nuclear/Enabling docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.
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F.6 Additional Results: Effect on Grey, Dirty, and Non-Energy Patenting
In this section, we look at the effect of changes in natural gas prices on other types of patenting,
mainly: grey, dirty, and non-energy. The regression tables below replicate the specifications shown
in Panels a and b of Table 1 but with different outcome variables. The data sample used in these
regressions is also the same as in Table 1, meaning it focuses on clean incumbents. Since only a few
clean incumbents also patent in grey and dirty, the number of observations in regressions using grey
or dirty patenting as outcome variables is smaller.

We find that increases in natural gas prices lead to a higher number of grey and dirty patents.
One caveat here is that this effect concerns only the sample of inventors patenting both in clean
and grey or dirty. We interpret this effect as increased incentives to innovate in efficient natural
gas technologies or other fossil fuel technologies, such as coal, that could replace natural gas for
electricity generation.

We also find that increases in natural gas prices lead to a lower number of non-energy patents.
This indicates that the induced innovation effect in energy technologies might come at the expense
of innovation in other sectors.

F.6.1 Effect on Grey Patenting

Table F.37: Baseline Poisson Estimates for Grey Patenting (Baseline Definition of Clean)

(1) (2) (3) (4) (5) (6)
Simple Count Simple Count Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted

Prices (log, t-1) 0.426∗∗∗ 0.411∗∗∗ 0.641∗∗∗ 0.586∗∗∗ 0.369∗∗∗ 0.362∗∗∗

(0.078) (0.085) (0.090) (0.095) (0.100) (0.110)

GDP per capita (log, t-1) 6.941∗∗∗ 6.997∗∗∗ 7.426∗∗∗ 7.428∗∗∗ 5.666∗∗∗ 5.769∗∗∗

(1.149) (1.155) (0.881) (0.878) (1.419) (1.421)

Energy RD&D (log, t-1) 0.045 -0.026 0.342∗∗ 0.193 0.144 0.111
(0.160) (0.168) (0.142) (0.162) (0.174) (0.180)

Low-Carbon RD&D (log, t-1) 0.064 0.193 -0.312∗ 0.005 -0.106 -0.041
(0.199) (0.201) (0.187) (0.203) (0.208) (0.207)

Year FEs X X X X X X
Inventor FEs X X X X X X
Tenure FEs X X X
Country-Year Covariates X X X X X X
Inventor Clusters (SEs) 19,932 19,932 19,932 19,932 19,932 19,932
Observations 180,621 180,607 180,621 180,607 180,621 180,607
Pseudo-R2 0.231 0.231 0.294 0.295 0.211 0.212
Dependent variable: Number of grey docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.
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Table F.38: Baseline Poisson Estimates for Grey Patenting (Broader Definition of Clean)

(1) (2) (3) (4) (5) (6)
Simple Count Simple Count Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted

Prices (log, t-1) 0.219∗∗∗ 0.264∗∗∗ 0.232∗∗∗ 0.257∗∗∗ 0.221∗∗∗ 0.265∗∗∗

(0.065) (0.072) (0.075) (0.080) (0.079) (0.091)

GDP per capita (log, t-1) 6.483∗∗∗ 5.941∗∗∗ 7.154∗∗∗ 7.046∗∗∗ 5.487∗∗∗ 4.931∗∗∗

(0.801) (0.924) (0.644) (0.686) (1.015) (1.164)

Energy RD&D (log, t-1) -0.042 0.019 0.274∗ 0.286∗∗ 0.111 0.145
(0.151) (0.140) (0.146) (0.143) (0.177) (0.160)

Low-Carbon RD&D (log, t-1) 0.401∗∗ 0.214 -0.218 -0.279 0.227 0.077
(0.178) (0.167) (0.183) (0.179) (0.197) (0.182)

Year FEs X X X X X X
Inventor FEs X X X X X X
Tenure FEs X X X
Country-Year Covariates X X X X X X
Inventor Clusters (SEs) 28,425 28,425 28,425 28,425 28,425 28,425
Observations 285,764 285,746 285,764 285,746 285,764 285,746
Pseudo-R2 0.213 0.214 0.264 0.264 0.200 0.201
Dependent variable: Number of grey docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.
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Table F.39: Distributed Lag Estimates for Grey Patenting (Baseline Definition of Clean)

(1) (2) (3) (4) (5) (6)
Simple Count Simple Count Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted

Prices (log, t-1) -0.083 -0.068 0.016 0.036 -0.216 -0.201
(0.105) (0.110) (0.133) (0.135) (0.131) (0.137)

Prices (log, t-2) 0.193∗ 0.164 0.128 0.092 0.383∗∗∗ 0.357∗∗∗

(0.110) (0.110) (0.151) (0.149) (0.125) (0.125)

Prices (log, t-3) 0.512∗∗∗ 0.511∗∗∗ 0.833∗∗∗ 0.803∗∗∗ 0.374∗∗∗ 0.377∗∗∗

(0.103) (0.103) (0.140) (0.139) (0.117) (0.117)

L.GDP per capita (log, k$) 7.676∗∗∗ 7.802∗∗∗ 6.662∗∗∗ 6.785∗∗∗ 7.485∗∗∗ 7.589∗∗∗

(1.881) (1.824) (1.755) (1.752) (1.893) (1.824)

L2.GDP per capita (log, k$) -1.468∗ -1.222 -0.996 -0.743 -2.746∗∗∗ -2.444∗∗∗

(0.825) (0.812) (1.019) (1.030) (0.925) (0.901)

L3.GDP per capita (log, k$) -1.250 -1.241 0.632 0.448 -1.204 -1.165
(1.006) (0.970) (0.919) (0.906) (1.142) (1.106)

L.Energy RD&D (log, m$) -0.395∗ -0.452∗ -0.179 -0.251 -0.158 -0.189
(0.232) (0.236) (0.235) (0.240) (0.275) (0.283)

L2.Energy RD&D (log, m$) -0.523∗∗∗ -0.540∗∗∗ -0.346∗ -0.360∗ -0.301 -0.320
(0.170) (0.172) (0.192) (0.196) (0.200) (0.202)

L3.Energy RD&D (log, m$) -0.123 -0.124 0.087 0.069 -0.249∗ -0.246∗

(0.113) (0.112) (0.173) (0.171) (0.138) (0.138)

L.Low-Carbon RD&D (log, m$) 0.475∗ 0.623∗∗ 0.197 0.424 0.082 0.167
(0.252) (0.259) (0.260) (0.269) (0.280) (0.291)

L2.Low-Carbon RD&D (log, m$) 0.580∗∗∗ 0.612∗∗∗ 0.325 0.402∗ 0.500∗∗ 0.526∗∗

(0.198) (0.200) (0.223) (0.223) (0.241) (0.243)

L3.Low-Carbon RD&D (log, m$) 0.228 0.248∗ -0.032 0.030 0.289 0.295
(0.146) (0.143) (0.210) (0.205) (0.196) (0.194)

Cumulative Effect 0.623*** 0.606*** 0.977*** 0.931*** 0.542*** 0.533***
(0.095) (0.102) (0.125) (0.126) (0.111) (0.125)

Year FEs X X X X X X
Inventor FEs X X X X X X
Tenure FEs X X X
Country-Year Covariates X X X X X X
Inventor Clusters (SEs) 16,856 16,856 16,856 16,856 16,856 16,856
Observations 147,576 147,566 147,576 147,566 147,576 147,566
Pseudo-R2 0.232 0.233 0.295 0.296 0.213 0.213
Dependent variable: Number of grey docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.
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Table F.40: Distributed Lag Estimates for Grey Patenting (Broader Definition of Clean)

(1) (2) (3) (4) (5) (6)
Simple Count Simple Count Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted

Prices (log, t-1) -0.083 -0.068 0.016 0.036 -0.216 -0.201
(0.105) (0.110) (0.133) (0.135) (0.131) (0.137)

Prices (log, t-2) 0.193∗ 0.164 0.128 0.092 0.383∗∗∗ 0.357∗∗∗

(0.110) (0.110) (0.151) (0.149) (0.125) (0.125)

Prices (log, t-3) 0.512∗∗∗ 0.511∗∗∗ 0.833∗∗∗ 0.803∗∗∗ 0.374∗∗∗ 0.377∗∗∗

(0.103) (0.103) (0.140) (0.139) (0.117) (0.117)

L.GDP per capita (log, k$) 7.676∗∗∗ 7.802∗∗∗ 6.662∗∗∗ 6.785∗∗∗ 7.485∗∗∗ 7.589∗∗∗

(1.881) (1.824) (1.755) (1.752) (1.893) (1.824)

L2.GDP per capita (log, k$) -1.468∗ -1.222 -0.996 -0.743 -2.746∗∗∗ -2.444∗∗∗

(0.825) (0.812) (1.019) (1.030) (0.925) (0.901)

L3.GDP per capita (log, k$) -1.250 -1.241 0.632 0.448 -1.204 -1.165
(1.006) (0.970) (0.919) (0.906) (1.142) (1.106)

L.Energy RD&D (log, m$) -0.395∗ -0.452∗ -0.179 -0.251 -0.158 -0.189
(0.232) (0.236) (0.235) (0.240) (0.275) (0.283)

L2.Energy RD&D (log, m$) -0.523∗∗∗ -0.540∗∗∗ -0.346∗ -0.360∗ -0.301 -0.320
(0.170) (0.172) (0.192) (0.196) (0.200) (0.202)

L3.Energy RD&D (log, m$) -0.123 -0.124 0.087 0.069 -0.249∗ -0.246∗

(0.113) (0.112) (0.173) (0.171) (0.138) (0.138)

L.Low-Carbon RD&D (log, m$) 0.475∗ 0.623∗∗ 0.197 0.424 0.082 0.167
(0.252) (0.259) (0.260) (0.269) (0.280) (0.291)

L2.Low-Carbon RD&D (log, m$) 0.580∗∗∗ 0.612∗∗∗ 0.325 0.402∗ 0.500∗∗ 0.526∗∗

(0.198) (0.200) (0.223) (0.223) (0.241) (0.243)

L3.Low-Carbon RD&D (log, m$) 0.228 0.248∗ -0.032 0.030 0.289 0.295
(0.146) (0.143) (0.210) (0.205) (0.196) (0.194)

Cumulative Effect 0.623*** 0.606*** 0.977*** 0.931*** 0.542*** 0.533***
(0.095) (0.102) (0.125) (0.126) (0.111) (0.125)

Year FEs X X X X X X
Inventor FEs X X X X X X
Tenure FEs X X X
Country-Year Covariates X X X X X X
Inventor Clusters (SEs) 16,856 16,856 16,856 16,856 16,856 16,856
Observations 147,576 147,566 147,576 147,566 147,576 147,566
Pseudo-R2 0.232 0.233 0.295 0.296 0.213 0.213
Dependent variable: Number of grey docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.
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F.6.2 Effect on Dirty Patenting

Table F.41: Baseline Poisson Estimates for Dirty Patenting (Baseline Definition of Clean)

(1) (2) (3) (4) (5) (6)
Simple Count Simple Count Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted

Prices (log, t-1) 0.278∗∗∗ 0.384∗∗∗ 0.278∗∗∗ 0.359∗∗∗ 0.239∗∗∗ 0.339∗∗∗

(0.073) (0.076) (0.098) (0.099) (0.083) (0.089)

GDP per capita (log, t-1) 2.032∗∗∗ 0.832 3.034∗∗∗ 2.280∗∗∗ 1.620∗∗ 0.307
(0.516) (0.569) (0.566) (0.632) (0.637) (0.664)

Energy RD&D (log, t-1) -0.222∗ -0.137 -0.178 -0.062 -0.244∗ -0.189
(0.125) (0.112) (0.151) (0.131) (0.139) (0.126)

Low-Carbon RD&D (log, t-1) 0.567∗∗∗ 0.323∗∗ 0.481∗∗∗ 0.159 0.517∗∗∗ 0.326∗∗

(0.146) (0.132) (0.174) (0.154) (0.153) (0.139)

Year FEs X X X X X X
Inventor FEs X X X X X X
Tenure FEs X X X
Country-Year Covariates X X X X X X
Inventor Clusters (SEs) 19,703 19,703 19,703 19,703 19,703 19,703
Observations 202,886 202,878 202,886 202,878 202,886 202,878
Pseudo-R2 0.246 0.247 0.300 0.302 0.227 0.228
Dependent variable: Number of dirty docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.

Table F.42: Baseline Poisson Estimates for Dirty Patenting (Broad Definition of Clean)

(1) (2) (3) (4) (5) (6)
Simple Count Simple Count Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted

Prices (log, t-1) 0.200∗∗∗ 0.289∗∗∗ 0.187∗∗ 0.247∗∗∗ 0.219∗∗∗ 0.318∗∗∗

(0.057) (0.059) (0.074) (0.076) (0.068) (0.070)

GDP per capita (log, t-1) 2.486∗∗∗ 1.127∗∗ 3.514∗∗∗ 2.805∗∗∗ 1.893∗∗∗ 0.381
(0.416) (0.459) (0.494) (0.553) (0.483) (0.515)

Energy RD&D (log, t-1) -0.232∗∗ -0.169∗ -0.215∗ -0.133 -0.159 -0.122
(0.107) (0.094) (0.123) (0.109) (0.122) (0.108)

Low-Carbon RD&D (log, t-1) 0.696∗∗∗ 0.410∗∗∗ 0.507∗∗∗ 0.174 0.600∗∗∗ 0.380∗∗∗

(0.125) (0.112) (0.144) (0.128) (0.137) (0.122)

Year FEs X X X X X X
Inventor FEs X X X X X X
Tenure FEs X X X
Country-Year Covariates X X X X X X
Inventor Clusters (SEs) 31,843 31,843 31,843 31,843 31,843 31,843
Observations 343,803 343,795 343,803 343,795 343,803 343,795
Pseudo-R2 0.230 0.232 0.270 0.272 0.220 0.221
Dependent variable: Number of dirty docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.
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Table F.43: Distributed Lag Estimates for Dirty Patenting (Baseline Definition of Clean)

(1) (2) (3) (4) (5) (6)
Simple Count Simple Count Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted

Prices (log, t-1) -0.056 -0.090 -0.032 -0.105 -0.061 -0.077
(0.102) (0.106) (0.138) (0.141) (0.118) (0.123)

Prices (log, t-2) 0.107 0.207∗∗ 0.128 0.212 0.049 0.136
(0.099) (0.101) (0.160) (0.157) (0.119) (0.120)

Prices (log, t-3) 0.320∗∗∗ 0.418∗∗∗ 0.268∗∗ 0.373∗∗∗ 0.360∗∗∗ 0.448∗∗∗

(0.092) (0.097) (0.135) (0.137) (0.099) (0.103)

L.GDP per capita (log, k$) 1.925∗∗ 1.407 2.637∗∗∗ 2.227∗∗ 1.050 0.460
(0.894) (0.968) (1.013) (1.074) (0.947) (1.033)

L2.GDP per capita (log, k$) -1.766∗∗ -2.466∗∗∗ -0.972 -1.506 -0.988 -1.684
(0.838) (0.884) (0.977) (1.024) (1.003) (1.060)

L3.GDP per capita (log, k$) 0.292 0.428 1.038 1.155 0.339 0.399
(0.747) (0.767) (0.878) (0.909) (0.914) (0.930)

L.Energy RD&D (log, m$) -0.415∗∗ -0.419∗∗∗ -0.451∗∗ -0.446∗∗ -0.388∗∗ -0.394∗∗

(0.162) (0.160) (0.207) (0.204) (0.175) (0.173)

L2.Energy RD&D (log, m$) -0.204∗ -0.224∗ 0.082 0.047 -0.127 -0.155
(0.119) (0.123) (0.151) (0.150) (0.138) (0.142)

L3.Energy RD&D (log, m$) -0.219∗∗ -0.204∗ -0.094 -0.091 -0.139 -0.135
(0.100) (0.104) (0.117) (0.118) (0.116) (0.123)

L.Low-Carbon RD&D (log, m$) 0.683∗∗∗ 0.452∗∗ 0.545∗∗ 0.301 0.542∗∗∗ 0.362∗

(0.190) (0.191) (0.237) (0.239) (0.205) (0.206)

L2.Low-Carbon RD&D (log, m$) 0.345∗∗∗ 0.283∗∗ -0.034 -0.102 0.306∗∗ 0.265∗

(0.131) (0.133) (0.175) (0.177) (0.152) (0.154)

L3.Low-Carbon RD&D (log, m$) 0.272∗∗ 0.221∗ 0.212 0.149 0.227∗ 0.183
(0.120) (0.125) (0.141) (0.145) (0.135) (0.143)

Cumulative Effect 0.371*** 0.535*** 0.364*** 0.480*** 0.348*** 0.508***
(0.097) (0.103) (0.137) (0.138) (0.112) (0.121)

Year FEs X X X X X X
Inventor FEs X X X X X X
Tenure FEs X X X
Country-Year Covariates X X X X X X
Inventor Clusters (SEs) 17,553 17,553 17,553 17,553 17,553 17,553
Observations 169,872 169,864 169,872 169,864 169,872 169,864
Pseudo-R2 0.244 0.245 0.302 0.303 0.225 0.226
Dependent variable: Number of dirty docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.
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Table F.44: Distributed Lag Estimates for Dirty Patenting (Broad Definition of Clean)

(1) (2) (3) (4) (5) (6)
Simple Count Simple Count Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted

Prices (log, t-1) -0.082 -0.138 -0.111 -0.190∗ -0.012 -0.037
(0.086) (0.089) (0.111) (0.113) (0.100) (0.103)

Prices (log, t-2) 0.046 0.151∗ 0.226∗∗ 0.312∗∗∗ -0.026 0.078
(0.081) (0.082) (0.110) (0.111) (0.098) (0.098)

Prices (log, t-3) 0.284∗∗∗ 0.381∗∗∗ 0.128 0.222∗∗ 0.347∗∗∗ 0.432∗∗∗

(0.072) (0.074) (0.097) (0.099) (0.084) (0.085)

L.GDP per capita (log, k$) 2.514∗∗∗ 2.033∗∗∗ 3.900∗∗∗ 3.627∗∗∗ 1.826∗∗ 1.301∗

(0.700) (0.745) (0.842) (0.873) (0.730) (0.785)

L2.GDP per capita (log, k$) -1.093 -1.765∗∗ -0.100 -0.619 -0.562 -1.273
(0.671) (0.708) (0.825) (0.872) (0.792) (0.838)

L3.GDP per capita (log, k$) -0.515 -0.495 -0.425 -0.496 -0.929 -0.999
(0.617) (0.633) (0.727) (0.751) (0.747) (0.757)

L.Energy RD&D (log, m$) -0.413∗∗∗ -0.447∗∗∗ -0.476∗∗∗ -0.506∗∗∗ -0.297∗∗ -0.328∗∗

(0.134) (0.133) (0.173) (0.172) (0.149) (0.147)

L2.Energy RD&D (log, m$) -0.207∗∗ -0.240∗∗ 0.028 -0.023 -0.117 -0.148
(0.099) (0.101) (0.119) (0.120) (0.113) (0.116)

L3.Energy RD&D (log, m$) -0.274∗∗∗ -0.276∗∗∗ -0.160 -0.181∗ -0.264∗∗∗ -0.270∗∗∗

(0.084) (0.086) (0.099) (0.099) (0.099) (0.104)

L.Low-Carbon RD&D (log, m$) 0.747∗∗∗ 0.507∗∗∗ 0.479∗∗ 0.253 0.610∗∗∗ 0.413∗∗

(0.159) (0.159) (0.195) (0.194) (0.171) (0.170)

L2.Low-Carbon RD&D (log, m$) 0.342∗∗∗ 0.281∗∗∗ 0.043 -0.004 0.307∗∗ 0.266∗∗

(0.107) (0.108) (0.145) (0.146) (0.129) (0.130)

L3.Low-Carbon RD&D (log, m$) 0.331∗∗∗ 0.292∗∗∗ 0.291∗∗ 0.255∗∗ 0.363∗∗∗ 0.331∗∗∗

(0.101) (0.104) (0.124) (0.126) (0.119) (0.124)

Cumulative Effect 0.249*** 0.395*** 0.243** 0.344*** 0.309*** 0.473***
(0.078) (0.081) (0.102) (0.104) (0.091) (0.095)

Year FEs X X X X X X
Inventor FEs X X X X X X
Tenure FEs X X X
Country-Year Covariates X X X X X X
Inventor Clusters (SEs) 28,049 28,049 28,049 28,049 28,049 28,049
Observations 283,264 283,256 283,264 283,256 283,264 283,256
Pseudo-R2 0.227 0.229 0.270 0.271 0.218 0.220
Dependent variable: Number of dirty docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.
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F.6.3 Effect on Non-Energy Patenting

Table F.45: Baseline Poisson Estimates for Non-Energy Patenting (Baseline Definition of Clean)

(1) (2) (3) (4) (5) (6)
Simple Count Simple Count Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted

Prices (log, t-1) -0.130∗∗∗ -0.086∗∗∗ -0.365∗∗∗ -0.324∗∗∗ -0.099∗∗∗ -0.069∗∗

(0.029) (0.027) (0.040) (0.042) (0.034) (0.032)

GDP per capita (log, t-1) 7.266∗∗∗ 5.189∗∗∗ 7.540∗∗∗ 6.293∗∗∗ 6.182∗∗∗ 4.050∗∗∗

(0.434) (0.451) (0.412) (0.407) (0.592) (0.612)

Energy RD&D (log, t-1) -0.280∗∗∗ -0.208∗∗∗ -0.260∗∗∗ -0.204∗∗∗ -0.138∗∗ -0.113∗∗

(0.058) (0.043) (0.055) (0.047) (0.054) (0.045)

Low-Carbon RD&D (log, t-1) 0.580∗∗∗ 0.242∗∗∗ 0.175∗ -0.057 0.408∗∗∗ 0.175∗

(0.078) (0.073) (0.092) (0.091) (0.097) (0.099)

Year FEs X X X X X X
Inventor FEs X X X X X X
Tenure FEs X X X
Country-Year Covariates X X X X X X
Inventor Clusters (SEs) 104,410 104,410 104,410 104,410 104,410 104,410
Observations 795,653 795,653 795,653 795,653 795,653 795,653
Pseudo-R2 0.659 0.662 0.633 0.635 0.601 0.604
Dependent variable: Number of non-energy docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.

Table F.46: Baseline Poisson Estimates for Non-Energy Patenting (Broader Definition of Clean)

(1) (2) (3) (4) (5) (6)
Simple Count Simple Count Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted

Prices (log, t-1) -0.093∗∗∗ -0.043∗∗ -0.264∗∗∗ -0.214∗∗∗ -0.083∗∗∗ -0.052∗∗

(0.022) (0.022) (0.039) (0.038) (0.025) (0.023)

GDP per capita (log, t-1) 7.583∗∗∗ 5.621∗∗∗ 7.431∗∗∗ 6.165∗∗∗ 6.579∗∗∗ 4.549∗∗∗

(0.299) (0.318) (0.297) (0.314) (0.402) (0.426)

Energy RD&D (log, t-1) -0.246∗∗∗ -0.180∗∗∗ -0.255∗∗∗ -0.182∗∗∗ -0.074∗∗ -0.056∗

(0.036) (0.028) (0.045) (0.038) (0.035) (0.031)

Low-Carbon RD&D (log, t-1) 0.521∗∗∗ 0.168∗∗∗ 0.267∗∗∗ -0.041 0.306∗∗∗ 0.058
(0.052) (0.050) (0.067) (0.063) (0.065) (0.068)

Year FEs X X X X X X
Inventor FEs X X X X X X
Tenure FEs X X X
Country-Year Covariates X X X X X X
Inventor Clusters (SEs) 189,357 189,357 189,357 189,357 189,357 189,357
Observations 1,481,872 1,481,872 1,481,872 1,481,872 1,481,872 1,481,872
Pseudo-R2 0.622 0.626 0.649 0.651 0.568 0.572
Dependent variable: Number of non-energy docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.
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Table F.47: Distributed Lag Estimates for Non-Energy Patenting (Baseline Definition of Clean)

(1) (2) (3) (4) (5) (6)
Simple Count Simple Count Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted

Prices (log, t-1) 0.605∗∗∗ 0.410∗∗∗ 0.323∗∗∗ 0.194∗∗∗ 0.664∗∗∗ 0.458∗∗∗

(0.037) (0.038) (0.069) (0.075) (0.043) (0.044)

Prices (log, t-2) -0.551∗∗∗ -0.469∗∗∗ -0.526∗∗∗ -0.496∗∗∗ -0.523∗∗∗ -0.430∗∗∗

(0.032) (0.032) (0.051) (0.051) (0.046) (0.045)

Prices (log, t-3) -0.689∗∗∗ -0.520∗∗∗ -0.641∗∗∗ -0.512∗∗∗ -0.714∗∗∗ -0.531∗∗∗

(0.037) (0.036) (0.081) (0.080) (0.052) (0.048)

L.GDP per capita (log, k$) 4.803∗∗∗ 4.073∗∗∗ 4.386∗∗∗ 3.872∗∗∗ 5.131∗∗∗ 4.243∗∗∗

(0.515) (0.523) (0.539) (0.536) (0.663) (0.658)

L2.GDP per capita (log, k$) 1.487∗∗∗ 0.919∗ 2.894∗∗∗ 2.490∗∗∗ 0.518 -0.116
(0.484) (0.498) (0.395) (0.420) (0.806) (0.821)

L3.GDP per capita (log, k$) 1.259∗∗ 1.104∗ 2.245∗∗∗ 2.073∗∗∗ 1.717∗ 1.610
(0.597) (0.609) (0.422) (0.430) (1.028) (1.037)

L.Energy RD&D (log, m$) 0.266∗∗∗ 0.166∗∗∗ 0.417∗∗∗ 0.349∗∗∗ 0.339∗∗∗ 0.229∗∗∗

(0.066) (0.064) (0.077) (0.076) (0.075) (0.071)

L2.Energy RD&D (log, m$) -0.079 -0.153∗∗∗ -0.131∗ -0.180∗∗ 0.089 0.007
(0.055) (0.053) (0.072) (0.070) (0.068) (0.067)

L3.Energy RD&D (log, m$) -0.109∗∗∗ -0.136∗∗∗ -0.083 -0.096∗ -0.012 -0.046
(0.040) (0.038) (0.053) (0.054) (0.055) (0.053)

L.Low-Carbon RD&D (log, m$) 0.642∗∗∗ 0.501∗∗∗ 0.132 0.128 0.441∗∗∗ 0.287∗∗

(0.102) (0.106) (0.105) (0.113) (0.134) (0.138)

L2.Low-Carbon RD&D (log, m$) 0.251∗∗∗ 0.212∗∗∗ 0.197∗∗∗ 0.180∗∗∗ 0.094 0.064
(0.047) (0.045) (0.067) (0.069) (0.062) (0.061)

L3.Low-Carbon RD&D (log, m$) -0.045 -0.072∗ -0.234∗∗∗ -0.254∗∗∗ -0.035 -0.064
(0.038) (0.038) (0.055) (0.058) (0.050) (0.050)

Cumulative Effect -0.635*** -0.579*** -0.844*** -0.814*** -0.573*** -0.503***
(0.047) (0.046) (0.062) (0.063) (0.054) (0.054)

Year FEs X X X X X X
Inventor FEs X X X X X X
Tenure FEs X X X
Country-Year Covariates X X X X X X
Inventor Clusters (SEs) 90,951 90,951 90,951 90,951 90,951 90,951
Observations 676,925 676,925 676,925 676,925 676,925 676,925
Pseudo-R2 0.664 0.665 0.639 0.640 0.601 0.603
Dependent variable: Number of non-energy docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.
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Table F.48: Distributed Lag Estimates with Non-Energy Patenting (Broader Definition of Clean)

(1) (2) (3) (4) (5) (6)
Simple Count Simple Count Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted

Prices (log, t-1) 0.531∗∗∗ 0.355∗∗∗ 0.395∗∗∗ 0.281∗∗∗ 0.576∗∗∗ 0.389∗∗∗

(0.028) (0.029) (0.087) (0.086) (0.035) (0.035)

Prices (log, t-2) -0.587∗∗∗ -0.485∗∗∗ -0.504∗∗∗ -0.450∗∗∗ -0.568∗∗∗ -0.457∗∗∗

(0.024) (0.024) (0.054) (0.053) (0.033) (0.033)

Prices (log, t-3) -0.573∗∗∗ -0.416∗∗∗ -0.651∗∗∗ -0.540∗∗∗ -0.610∗∗∗ -0.444∗∗∗

(0.028) (0.027) (0.077) (0.077) (0.037) (0.036)

L.GDP per capita (log, k$) 4.233∗∗∗ 3.542∗∗∗ 3.743∗∗∗ 3.240∗∗∗ 4.500∗∗∗ 3.679∗∗∗

(0.342) (0.352) (0.390) (0.388) (0.449) (0.457)

L2.GDP per capita (log, k$) 2.333∗∗∗ 1.722∗∗∗ 3.522∗∗∗ 3.037∗∗∗ 1.627∗∗∗ 0.948∗

(0.322) (0.332) (0.304) (0.308) (0.548) (0.562)

L3.GDP per capita (log, k$) 0.909∗∗ 0.817∗ 1.715∗∗∗ 1.555∗∗∗ 1.171 1.122
(0.411) (0.421) (0.333) (0.336) (0.743) (0.756)

L.Energy RD&D (log, m$) 0.293∗∗∗ 0.198∗∗∗ 0.479∗∗∗ 0.417∗∗∗ 0.401∗∗∗ 0.293∗∗∗

(0.047) (0.046) (0.087) (0.084) (0.054) (0.051)

L2.Energy RD&D (log, m$) -0.134∗∗∗ -0.201∗∗∗ -0.127∗∗ -0.176∗∗∗ 0.034 -0.043
(0.039) (0.037) (0.056) (0.053) (0.049) (0.048)

L3.Energy RD&D (log, m$) -0.111∗∗∗ -0.135∗∗∗ -0.129∗∗∗ -0.143∗∗∗ -0.021 -0.053
(0.029) (0.027) (0.040) (0.041) (0.040) (0.038)

L.Low-Carbon RD&D (log, m$) 0.705∗∗∗ 0.517∗∗∗ 0.242∗∗∗ 0.160∗ 0.474∗∗∗ 0.279∗∗∗

(0.069) (0.071) (0.080) (0.082) (0.090) (0.092)

L2.Low-Carbon RD&D (log, m$) 0.253∗∗∗ 0.203∗∗∗ 0.255∗∗∗ 0.226∗∗∗ 0.101∗∗ 0.065
(0.035) (0.033) (0.062) (0.064) (0.045) (0.043)

L3.Low-Carbon RD&D (log, m$) -0.091∗∗∗ -0.122∗∗∗ -0.234∗∗∗ -0.257∗∗∗ -0.079∗∗ -0.109∗∗∗

(0.030) (0.029) (0.050) (0.049) (0.038) (0.037)

Cumulative Effect -0.629*** -0.546*** -0.760*** -0.710*** -0.602*** -0.512***
(0.036) (0.036) (0.050) (0.050) (0.041) (0.041)

Year FEs X X X X X X
Inventor FEs X X X X X X
Tenure FEs X X X
Country-Year Covariates X X X X X X
Inventor Clusters (SEs) 161,994 161,994 161,994 161,994 161,994 161,994
Observations 1,238,822 1,238,822 1,238,822 1,238,822 1,238,822 1,238,822
Pseudo-R2 0.629 0.630 0.656 0.657 0.570 0.572
Dependent variable: Number of non-energy docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.



55

G Robustness of Inventor Entry Results

G.1 Primary Outcomes: Entry by Renewable and Nuclear Inventors

Table G.1: Renewable and Nuclear Inventor Entry Elasticities, Balanced Panel

(1) (2) (3) (4) (5) (6)
New to Patenting New to Patenting From Grey/Dirty From Grey/Dirty From Non-Energy From Non-Energy

Prices (log, t-1) 0.258∗∗ -0.046 0.167∗ 0.017 0.044 -0.119
(0.110) (0.144) (0.096) (0.131) (0.127) (0.146)

Prices (log, t-2) 0.128 -0.240∗ -0.257∗

(0.171) (0.137) (0.148)

Prices (log, t-3) 0.536∗∗∗ 0.679∗∗∗ 0.314∗∗

(0.195) (0.134) (0.151)

Cumulative Effect 0.618*** 0.456*** -0.062
(0.166) (0.124) (0.181)

Year FEs X X X X X X
Firm FEs X X X X X X
Country-Year Covariates X X X X X X
Firm Clusters (SEs) 3,933 3,779 4,993 4,703 4,912 4,642
Observations 53,921 43,733 67,617 53,109 66,541 52,559
Pseudo-R2 0.692 0.699 0.605 0.605 0.643 0.647
Dependent variables: number of renewable/nuclear inventors per group.
Sample: balanced panel from 2000 to 2014.
Poisson pseudo-maximum likelihood. Standard errors clustered by firm in parentheses.

Table G.2: Renewable and Nuclear Inventor Entry Elasticities, Unbalanced Panel

(1) (2) (3) (4) (5) (6)
New to Patenting New to Patenting From Grey/Dirty From Grey/Dirty From Non-Energy From Non-Energy

Prices (log, t-1) 0.169∗ -0.049 0.022 -0.000 0.036 -0.094
(0.089) (0.122) (0.096) (0.115) (0.104) (0.125)

Prices (log, t-2) 0.178 -0.311∗∗ -0.146
(0.138) (0.121) (0.126)

Prices (log, t-3) 0.422∗∗∗ 0.587∗∗∗ 0.195
(0.163) (0.119) (0.134)

Cumulative Effect 0.551*** 0.276** -0.045
(0.140) (0.126) (0.152)

Year FEs X X X X X X
Firm FEs X X X X X X
Country-Year Covariates X X X X X X
Firm Clusters (SEs) 8,724 7,101 9,503 8,212 9,538 7,993
Observations 89,046 65,648 104,019 77,108 102,932 75,509
Pseudo-R2 0.634 0.658 0.556 0.565 0.586 0.602
Dependent variables: number of renewable/nuclear inventors per group.
Sample: unbalanced panel from 2000 to 2014.
Poisson pseudo-maximum likelihood. Standard errors clustered by firm in parentheses.
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G.2 Alternative Outcomes: Broader Definition of Clean

Table G.3: Clean Inventor Entry Elasticities, Balanced Panel

(1) (2) (3) (4) (5) (6)
New to Patenting New to Patenting From Grey/Dirty From Grey/Dirty From Non-Energy From Non-Energy

Prices (log, t-1) 0.212∗∗ -0.099 0.066 0.006 -0.087 -0.135
(0.090) (0.112) (0.083) (0.126) (0.085) (0.106)

Prices (log, t-2) 0.126 0.074 -0.340∗∗∗

(0.121) (0.133) (0.114)

Prices (log, t-3) 0.553∗∗∗ 0.269∗∗ 0.310∗∗∗

(0.137) (0.120) (0.105)

Cumulative Effect 0.580*** 0.349*** -0.165
(0.124) (0.107) (0.118)

Year FEs X X X X X X
Firm FEs X X X X X X
Country-Year Covariates X X X X X X
Firm Clusters (SEs) 5,898 5,626 5,065 4,747 6,722 6,346
Observations 80,816 65,023 68,913 54,060 91,158 71,800
Pseudo-R2 0.741 0.749 0.582 0.580 0.699 0.705
Dependent variables: number of clean inventors per group.
Sample: balanced panel from 2000 to 2014.
Poisson pseudo-maximum likelihood. Standard errors clustered by firm in parentheses.

Table G.4: Clean Inventor Entry Elasticities, Unbalanced Panel

(1) (2) (3) (4) (5) (6)
New to Patenting New to Patenting From Grey/Dirty From Grey/Dirty From Non-Energy From Non-Energy

Prices (log, t-1) 0.150∗ -0.085 -0.122 -0.111 -0.110 -0.101
(0.077) (0.097) (0.091) (0.124) (0.073) (0.092)

Prices (log, t-2) 0.117 0.037 -0.296∗∗∗

(0.101) (0.120) (0.099)

Prices (log, t-3) 0.451∗∗∗ 0.196∗ 0.226∗∗

(0.121) (0.108) (0.094)

Cumulative Effect 0.483*** 0.122 -0.171*
(0.109) (0.117) (0.102)

Year FEs X X X X X X
Firm FEs X X X X X X
Country-Year Covariates X X X X X X
Firm Clusters (SEs) 13,617 11,027 9,645 8,242 13,999 11,574
Observations 137,558 100,413 105,871 78,124 147,863 107,325
Pseudo-R2 0.685 0.707 0.530 0.537 0.647 0.663
Dependent variables: number of clean inventors per group.
Sample: unbalanced panel from 2000 to 2014.
Poisson pseudo-maximum likelihood. Standard errors clustered by firm in parentheses.
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H Carbon Pricing Details and Robustness

H.1 Implementation
Our empirical strategy allows us to estimate elasticities that characterize how natural gas price
variation induces innovation through the intensive margin by increasing the rate at which incumbent
inventors patent, and through the extensive margin by increasing the number of inventors that work
on clean technology. This section details the back-of-the-envelope calculation we use to combine
the effects along those two margins and to analyze the potential impacts of a broad-based policy to
price carbon.

The total number of clean patent families in a given year can be written as the product of the
average number of patents filed per year by an inventor and the number of active inventors:

PATC
t = PATC

t Nt . (H.1)

To study the role of entry by inventors of different types, we decompose the number of incumbent
inventors based on its evolution over time:

Nt = Nt−1 +Eg/d
t +Enon−energy

t +Enew
t −Xt (H.2)

where Ek
t denotes the number of inventors of type k who enter at the beginning of period t, and Xt

denotes the number of incumbent inventors who exit at the beginning of period t.3

Taking the derivative of both sides of equation H.1 with respect to lagged natural gas prices and
substituting equation H.2 yields

dPATC
t

dPt−1
=

dPATC
t

dPt−1
Nt +PATC

t
dNt

dPt−1
(H.3)

=
dPATC

t
dPt−1

Nt +PATC
t

(
dNt−1

dPt−1
+

dEg/d
t

dPt−1
+

dEnon−energy
t

dPt−1
+

dEnew
t

dPt−1
− dXt

dPt−1

)
(H.4)

The first term captures the intensive margin change in patenting from a change in natural gas
prices, holding the number of incumbent inventors fixed.

The second term captures the extensive margin change in patenting from a change in the number
of inventors of each type, holding expected patenting per entrant fixed. This term is comprised of
several parts. For clarity, the measure of average patenting output, PATC

t , is unconditional and does
not depend directly on the type of inventor (we relax this below). Within the parentheses, the first
derivative is assumed to be zero based on timing: individuals enter and exit at the beginning of
the year based on prices in the prior year, before prices for the coming year are realized, so there
is no contemporaneous effect of prices on the number of incumbents. We use firm-level data to

3. Entrants are classified into types based on their prior patenting activity. g/d denotes inventors who have previously
patented in grey and/or dirty technology but not in clean technology. non−energy denotes inventors who have previously
patented in technology areas outside of the set of energy technologies studied in this paper. new denotes inventors who
were not previously observed in the patent data.
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estimate the effects of natural gas prices on entry by inventors of each type, as described in Section
3.3. Since we do not directly observe exit, we assume that the rate of exit is not affected by natural
gas prices. If higher natural gas prices led to lower rates of exit, this analysis would understate the
role of extensive margin responses (and vice versa).

We approximate the aggregate impact of a change in natural gas prices by rewriting equation
H.4 in terms of elasticities and multiplying both sides by the percentage change in prices, ∆Pt(%):

∆PATC
t = ε

PATC

P PATC
t Nt∆Pt(%)+∑

k
PATC,k

t Ek
t ε

Ek

P ∆Pt(%), (H.5)

where ε
PATC

t
P is the elasticity of output with respect to natural gas prices, and εEk

P is the elasticity of the
number of entrants of type k with respect to natural gas prices. To provide a richer characterization
of the mechanisms of induced innovation, we allow for average patenting rates to vary by entrant
type, as denoted by the k subscript in PATC,k

t . To compute effects of a persistent price change over a
time horizon longer than one year, we further allow for average patenting by new entrants to vary
over the course of their tenure. We also account for how a persistent price change has persistent
effects on entry.

We use this framework to quantify the potential effects of carbon pricing on the amount and
sources of clean innovation. To do so, we first compute how pricing carbon would increase the
price of natural gas. For the social cost of carbon, we use the current U.S. Government value of
$51 per metric ton of CO2 (in 2020 terms). We deflate this value to base year dollars using the U.S.
GDP implicit price deflator from OECD (2023). We then convert the social cost of carbon into the
same units as the natural gas price data (dollars per megawatt-hour) using conversion factors of
2,204.6 pounds per metric ton,4 0.97 pounds CO2 per kilowatt-hour for electricity generation from
natural gas,5 and 1,000 kilowatt-hours per megawatt-hour. After deflation and conversion, the U.S.
Government value of the social cost of carbon corresponds to 54% of the GDP-weighted global
average price of natural gas in 2014.

Focusing on 2014 as our base year, we compute the predicted number of additional clean patents
that would be generated over the course of 10 years in response to a permanent increase in the
natural gas price equivalent to the social cost of carbon. Table 3 in the main text presents the
resulting predictions in aggregate and by margin of response. Tables H.1 and H.3 in this appendix
present analogous results from different model specifications and outcome variables to assess the
robustness of the results.6

Inference. We compute standard errors via the delta method. To simplify notation, equation H.5
can be rewritten as

4. Source: EPA’s Greenhouse Gases Equivalencies Calculator - Calculations and References, https://www.epa.gov/
energy/greenhouse-gases-equivalencies-calculator-calculations-and-references, accessed May 10, 2023.

5. Source: U.S. Energy Information Administration State Electricity Profiles Tables 5 and 7, with data from 2021,
https://www.eia.gov/tools/faqs/faq.php?id=74&t=11, accessed May 10, 2023.

6. For the appendix results that use distributed lag models, we use the cumulative effect estimates and treat them as if
they take effect immediately rather than phasing in over three years for simplicity. This approach is conservative insofar
as accounting for the gradual phase in of the effects would shrink the contribution of the extensive margin relative to the
intensive margin, which is the main focus of our analysis. This is because the intensive margin effects phase in quickly
(Table F.3), whereas the extensive margin effects phase in more slowly (Table G.1).

https://www.epa.gov/energy/greenhouse-gases-equivalencies-calculator-calculations-and-references
https://www.epa.gov/energy/greenhouse-gases-equivalencies-calculator-calculations-and-references
https://www.eia.gov/tools/faqs/faq.php?id=74&t=11
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∆PATC
t = cinc

ε
PATC

P +∑
k

ck
ε

Ek

P

where all the non-stochastic terms are subsumed into a type-specific constant, ck, with cinc denoting
the constant for incumbents.

Using this notation, the level of the change in patents attributable to incumbents is cincεPATC

P and
the derivative of the level with respect to the output elasticity is cinc. Applying the delta method, we
approximate the standard error of the change in patenting attributable to incumbents as the product
of the standard error of the output elasticity and cinc. Standard errors for the other level changes are
computed analogously using their respective elasticities’ standard errors and type-specific constants.

The share of the change in patents attributable to incumbents can be written as:

sinc(ε) =
(

cinc
ε

PATC

P

)(
cinc

ε
PATC

P +∑
k

ck
ε

Ek

P

)−1

.

By the delta method, the variance of the share is approximately

Var
(
sinc(ε)

)
≈ ∇sinc(ε)T Σ

n
∇sinc(ε)

where the gradient of the share with respect to the elasticities is
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.

Since the elasticities are estimated separately using different data, their covariances are unknown,
so we assume they are independent and use the individual variance estimates to construct the
variance-covariance matrix Σ. Standard errors for the other shares are computed analogously using
their respective gradients.

H.2 Limitations
First, this analysis is an approximation. While the price change we study is on the same order of
magnitude as the country-level natural gas price variation observed in the raw data, our first-order
approximation does not account for higher-order effects of natural gas prices on innovation by
incumbents and entry by new inventors. If the supply of patents or inventors are highly convex, our
predictions may overstate the magnitude of induced innovation.
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Second, our analysis focuses on the effects of a change in natural gas prices. In reality, carbon
pricing would also increase the price of other emitting sources of electricity generation such as coal.
Furthermore, economy-wide carbon pricing could lead to increased demand for electricity from
other sectors, such as electric vehicle charging from the transportation sector, which would also
affect the returns to clean innovation. Both of these effects are beyond the scope of our analysis.

Third, our analysis does not account for differences in the quality of different patents. The
results in Tables 3 and H.1 through H.3 are simple counts of patent families. Given the relative
magnitudes of the estimates in Table 1, the effects are likely to be larger for alternative measures
such as citation-weighted patents that attempt to proxy for the quality of innovations.
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H.3 Robustness of Carbon Pricing Simulation Results
H.3.1 Alternative Specifications

Source Patents Share (%)

Intensive margin response
Incumbent inventors 36,710 80.7

(4,438) (6.2)

Extensive margin response
Entry from grey/dirty 1,615 3.6

(927) (2.0)

Entry from non-energy 540 1.2
(1,557) (3.4)

Entry to patenting 6,616 14.5
(2,807) (5.5)

Total 45,481 100.0
(5,555) .

(a) Single lag, balanced firm panel

Source Patents Share (%)

Intensive margin response
Incumbent inventors 48,234 71.2

(5,758) (5.7)

Extensive margin response
Entry from grey/dirty 4,410 6.5

(1,199) (1.8)

Entry from non-energy -760 -1.1
(2,218) (3.3)

Entry to patenting 15,839 23.4
(4,255) (5.3)

Total 67,724 100.0
(7,590) .

(b) Distributed lag, balanced firm panel

Source Patents Share (%)

Intensive margin response
Incumbent inventors 36,710 84.1

(4,438) (7.5)

Extensive margin response
Entry from grey/dirty 279 0.6

(1,233) (2.8)

Entry from non-energy 555 1.3
(1,576) (3.6)

Entry to patenting 6,108 14.0
(3,221) (6.5)

Total 43,651 100.0
(5,837) .

(c) Single lag, unbalanced firm panel

Source Patents Share (%)

Intensive margin response
Incumbent inventors 48,234 67.9

(5,758) (6.1)

Extensive margin response
Entry from grey/dirty 3,554 5.0

(1,622) (2.2)

Entry from non-energy -685 -1.0
(2,315) (3.3)

Entry to patenting 19,908 28.0
(5,058) (5.7)

Total 71,010 100.0
(8,169) .

(d) Distributed lag, unbalanced firm panel

Table H.1: Predicted Impacts of Carbon Pricing for Narrow Definition of Clean

Note: Predicted changes in the number of renewable and nuclear patent families due to a persistent 54% increase in
natural gas prices over the course of 10 years, relative to a base year of 2014. Each panel uses elasticities and other
inputs based on a different lag structure and firm dataset. Both the balanced and unbalanced firm panels range from
2000 to 2014. Standard errors are constructed using the delta method. Panel a reproduces the results from Table 3 in the
main text. The total change in patenting in Panel a represents an increase of 26% relative to baseline patenting rates.
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H.3.2 Alternative Base Year: 2010

The qualitative findings are robust to using alternative base years other than 2014. Table H.2 presents
results using 2010 as the base year. Both the level of induced patenting and the share of induced
patenting attributable to incumbent inventors are higher than in Table H.1.

Source Patents Share (%)

Intensive margin response
Incumbent inventors 50,964 83.2

(6,161) (6.2)

Extensive margin response
Entry from grey/dirty 2,179 3.6

(1,250) (2.0)

Entry from non-energy 1,024 1.7
(2,951) (4.7)

Entry to patenting 7,118 11.6
(3,020) (4.6)

Total 61,284 100.0
(7,573) .

(a) Single lag, balanced firm panel

Source Patents Share (%)

Intensive margin response
Incumbent inventors 66,963 75.7

(7,994) (5.9)

Extensive margin response
Entry from grey/dirty 5,949 6.7

(1,618) (1.9)

Entry from non-energy -1,440 -1.6
(4,203) (4.8)

Entry to patenting 17,041 19.3
(4,577) (4.6)

Total 88,512 100.0
(10,253) .

(b) Distributed lag, balanced firm panel

Source Patents Share (%)

Intensive margin response
Incumbent inventors 50,964 85.3

(6,161) (7.6)

Extensive margin response
Entry from grey/dirty 366 0.6

(1,620) (2.7)

Entry from non-energy 1,102 1.8
(3,129) (5.1)

Entry to patenting 7,296 12.2
(3,847) (5.8)

Total 59,728 100.0
(8,073) .

(c) Single lag, unbalanced firm panel

Source Patents Share (%)

Intensive margin response
Incumbent inventors 66,963 71.2

(7,994) (6.5)

Extensive margin response
Entry from grey/dirty 4,670 5.0

(2,132) (2.2)

Entry from non-energy -1,360 -1.4
(4,594) (5.0)

Entry to patenting 23,781 25.3
(6,042) (5.4)

Total 94,053 100.0
(11,228) .

(d) Distributed lag, unbalanced firm panel

Table H.2: Predicted Impacts of Carbon Pricing for Narrow Definition of Clean

Note: Predicted changes in the number of renewable and nuclear patent families due to a persistent 58% increase in
natural gas prices over the course of 10 years, relative to a base year of 2010. Each panel uses elasticities and other
inputs based on a different lag structure and firm dataset. Both the balanced and unbalanced firm panels range from 2000
to 2014. Standard errors are constructed using the delta method. The total change in patenting in Panel a represents an
increase of 27% relative to baseline patenting rates.
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H.3.3 Alternative Outcome: Clean Patenting

Source Patents Share (%)

Intensive margin response
Incumbent inventors 67,821 87.7

(5,492) (6.3)

Extensive margin response
Entry from grey/dirty 711 0.9

(886) (1.1)

Entry from non-energy -2,510 -3.2
(2,469) (3.3)

Entry to patenting 11,347 14.7
(4,811) (5.4)

Total 77,369 100.0
(7,758) .

(a) Single lag, balanced firm panel

Source Patents Share (%)

Intensive margin response
Incumbent inventors 92,106 75.4

(8,054) (4.9)

Extensive margin response
Entry from grey/dirty 3,739 3.1

(1,146) (1.0)

Entry from non-energy -4,765 -3.9
(3,407) (2.9)

Entry to patenting 31,073 25.4
(6,643) (4.5)

Total 122,153 100.0
(11,042) .

(b) Distributed lag, balanced firm panel

Source Patents Share (%)

Intensive margin response
Incumbent inventors 67,821 93.0

(5,492) (8.0)

Extensive margin response
Entry from grey/dirty -1,739 -2.4

(1,286) (1.8)

Entry from non-energy -3,861 -5.3
(2,554) (3.7)

Entry to patenting 10,743 14.7
(5,535) (6.6)

Total 72,964 100.0
(8,305) .

(c) Single lag, unbalanced firm panel

Source Patents Share (%)

Intensive margin response
Incumbent inventors 92,106 75.3

(8,054) (5.6)

Extensive margin response
Entry from grey/dirty 1,732 1.4

(1,661) (1.3)

Entry from non-energy -6,021 -4.9
(3,592) (3.1)

Entry to patenting 34,543 28.2
(7,795) (5.0)

Total 122,361 100.0
(11,887) .

(d) Distributed lag, unbalanced firm panel

Table H.3: Predicted Impacts of Carbon Pricing for Broad Definition of Clean

Note: Predicted changes in the number of clean patent families due to a persistent 54% increase in natural gas prices
over the course of 10 years, relative to a base year of 2014. Each panel uses elasticities and other inputs based on
a different lag structure and firm dataset. Both the balanced and unbalanced firm panels range from 2000 to 2014.
Standard errors are constructed using the delta method.
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