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Abstract 
Innovation policy faces a tradeoff between growth and climate objectives when the knowledge spillover 
externality from clean innovation is low compared to other sectors. To make such a comparison, we use 
patent data to estimate field-specific spillover returns generated by R&D support. Supporting Clean 
presents itself as a win-win opportunity, yielding global returns one-eighth higher than those of an 
untargeted policy. Nevertheless, only a modest portion of the returns stays within country borders, 
raising the question of whether national interests distort efficient allocation. Our policy simulations 
underscore the benefits of supranational coordination in clean innovation policy, potentially boosting 
returns by approximately 25% for the EU and over 60% globally. Moreover, the EU benefits strongly 
from US Clean innovation spillovers, impacting the debate on the Inflation Reduction Act. Overall, we 
identify no explicit innovation policy tradeoff in tackling the twin challenges of economic growth and 
climate change but emphasize the necessity for international cooperation. 
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I. Introduction

Developed economies grapple with a dual challenge: reversing the trend of stagnating growth due

to a productivity slowdown and cutting carbon emissions to tackle climate change. In addressing

both problems, innovation will be vital as it drives productivity and fosters the development

of decarbonization technologies (Stern and Valero, 2021). Nevertheless, private incentives to

innovate fall short due to a double externality problem (Jaffe et al., 2005). Both clean and other

innovations produce a knowledge spillover externality by providing valuable input for others’

R&D efforts (Arrow, 1962). Clean innovations yield an additional, environmental externality

because the the climate benefits they induce are not fully internalized. These externalities justify

policy interventions to support innovation.

A first-best innovation policy allocates funds to R&D projects whose cost to the public is

lower than the social value generated. However, such an ideal scenario is hard to attain due to

public budget constraints, which are all the more stringent in the wake of the COVID-19 crisis.

A next best strategy is a targeted innovation policy that favors sectors with high anticipated

social returns. If the knowledge spillover externality of clean innovations happens to be subpar,

supporting them comes with the opportunity cost of foregoing growth from other sectors (Popp

and Newell, 2012). This opportunity cost needs to be traded off against the environmental

externality, which is likely large but hard to pin down with precision, thus complicating the

political debate (Tol, 2009; Stern, 2016).

To examine the significance of this tradeoff, we compare clean to other technology fields

in terms of the knowledge spillover externality a targeted subsidy would create. Building on

Guillard et al. (2023), we estimate the return rate of a hypothetical marginal subsidy within

a specific technology field. The approach posits that directing subsidies to a field reduces the

private cost of R&D, thereby stimulating additional innovations that would not have emerged

based solely on their expected private returns. A positive social rate of return occurs when a

subsidy’s cost is lower than the value of knowledge spillovers from the innovations it creates.

Return rates depend on three factors: (1) the cost to induce an additional innovation, (2) the

number of innovations below the cost threshold defined by the minimum private value needed

to pursue an idea, and (3) the spillover value created by such infra-marginal innovations. We

estimate these determinants from patent data and we allow them to vary across technology

fields and time. Applying this method to innovations patented between 2009 to 2018 delivers

field-specific subsidy return rates for 42 countries, including OECD, EU, and China.
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Our initial analysis juxtaposes global return rates for clean technology subsidies against

those in other fields. The global rate of return encompasses the value of knowledge spillovers

generated worldwide from a one-dollar subsidy in a given field. With a return rate of 135%,

Clean ranks second among six broad fields, falling behind only to Electrical Engineering. The

weighted average return rate across countries is 120%, indicating that a subsidy scheme focused on

Clean generates roughly one-eighth higher returns than a uniform scheme that allocates subsidies

proportionally to field sizes. Within the Clean category, fields such as Smart Systems and Offshore

Wind outperform others, exhibiting return rates exceeding those in Artificial Intelligence and

Biotechnology. The Clean subsidy return rates surpass the weighted average in most countries

analyzed. For China, the EU, Japan, and the US, the clean advantage ranges between 13% and

18% above the weighted average, while in Korea, it is comparatively smaller at 4%.

The return rates accrued worldwide inform policies by a global planner, yet funding decisions

are often influenced by national interests. Our spillover value measure employs the citation

network between patent families, attributing a portion of the private value created by an invention

to the spillovers from directly or indirectly cited inventions. This enables an analysis of spillover

value flows by origin and destination countries. In subsequent analysis, we exploit this property

to compute the returns to subsidy captured within a given region’s borders, denoting them as the

local returns. On average, approximately 23 percent of the clean spillover value is retained within

the country of origin, with significant heterogeneity across countries. Based on national returns,

the clean subsidy advantage is lower than that based on global returns, with a return rate close

to the average national return rate across all fields. Consequently, targeting subsidies according

to national return rates offers less incentive for supporting Clean. There are regional differences,

however. In Europe, the clean subsidy advantage is larger when considering local returns; for

East Asian countries, it remains roughly the same, while in the US, it vanishes entirely.

The fact that a large portion of spillovers cross country borders raises an additional question:

are there important benefits from supranational coordination when designing clean innovation

policy? In the next part of the paper, we take the stance of policymakers designing a clean

innovation policy. We simulate optimal targeting of clean technology sub-fields – defined using

a new classification scheme – to calculate the potential benefits of supranational coordination.

Coordinating across countries can create value when national interests diverge from supranational

ones. Consider a scenario where subsidizing Wind Power in Germany generates 30 cents to the

dollar within the German economy and 40 cents globally, while another field, Smart Grid Systems,

creates just 20 cents within Germany but 80 cents globally. The global planner would prefer

Germany to support the latter, while a local planner would favor the former. The significance of
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such incentive misalignment depends on the differences in ranking of clean technology sub-fields

based on national versus supranational returns. To estimate the benefits of coordination, we rely

on our return rate measures to estimate the increase in supranational returns when moving from

policies targeted based on national, to those targeted based on supranational interests.

Our results suggest supranational coordination yields substantial benefits, which grow with

the number of countries participating. An EU-coordinated optimal policy results in returns to the

EU that are one-fourth higher than those from a combination of nationally optimal policies. For

the OECD, benefits are about 40% higher, and intriguingly, coordination by just the countries in

the G7 can produce similar benefits. Globally coordinated policies are the most effective, yielding

an increase in returns of over 60%. This additional benefit is primarily driven by Chinese clean

innovation, which receives over 80% of all subsidies under such globally coordinated policy.

In the final section, we seek to contribute to the ongoing discussion on the Inflation Reduction

Act (IRA). There are concerns, especially in Europe, that this $400 billion stimulus package

targeting the adoption of clean technology may unfairly advantage US companies over their foreign

counterparts due to its protectionist elements. However, any such distortions may be mitigated,

at least in part, by the beneficial effects of knowledge spillovers from the US to international

clean technology firms. Being a climate-focused demand-pull policy of unprecedented scale, the

IRA is likely to foster advancements in US clean technology.1 Such developments could then

generate valuable knowledge spillovers overseas. Policymakers should consider these potential

benefits before deciding on a potentially hawkish response.

Our method enables us to determine how supporting clean innovation in one country realizes

spillover gains abroad. We compare such cross-border returns for several major innovation

regions. Our findings indicate that, between 2009 and 2018, a 1 million US clean subsidy would

have resulted in 1.26 million worth of spillovers in Europe, indicating that Europe benefits

strongly from clean innovation support in the US. Comparing these figures to the returns from

an untargeted subsidy scheme, we see ‘return flows’ of $1.18 to the EU per dollar of US subsidy

spent.2 In other words, Europe’s spillover benefit grows by approximately $0.08 per dollar

spent when the US specifically supports the clean sector over a general policy. In summary, a
1There is convincing evidence supporting the hypothesis of induced (environmental) innovation (Popp, 2002;

Newell et al., 1999; Peters et al., 2012; Dechezleprêtre and Glachant, 2014; Aghion et al., 2016; Barbieri et al.,
2023). For a comprehensive review, see Popp (2019).

2A clean subsidy in Europe would yield only a 1.13 million worth of spillover benefits in the US. An untargeted
subsidy of 1 dollar in Europe would create $1.15 of spillover benefits in the US. This implies that Europe derives
more spillover benefit from innovation support in the US, and this imbalance is starker for clean subsidy.
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dedicated push for Clean in the US benefits Europe through knowledge spillovers, compared

to both the scenarios of no subsidy and non-clean subsidies. Whether such knowledge spillover

effects outweigh the potential costs of lost business remains an open question, but they should

arguably be considered an important factor in the debate.

The paper is organized as follows: The remainder of this section presents a comparison of our

work with three areas of related research. In Section II, we outline the theoretical framework for

estimating field-specific subsidy return rates, along with the data and metrics employed. Section

III contrasts the return rates of clean R&D support with those in five other sectors. Section IV

introduces the policy simulations used to determine the benefit of supranational coordination in

creating clean innovation policy. Section V shifts the focus to an examination of cross-country

knowledge spillover flows and their implications for the debate on the IRA. Section VI concludes.

A. Related literature

This paper adds to the body of research that empirically investigates spillovers from clean

innovation. It closely aligns with a collection of papers that compare clean technology to a broad

spectrum of other technologies. Popp and Newell (2012) highlight the possible opportunity costs

of climate policies that stimulate innovation when they potentially crowd out innovation in other

sectors. They find evidence of crowding out within individual companies but not across the

wider sectors in the economy. The resulting opportunity cost is mitigated by the fact that clean

innovations lead to more spillovers – they have a 6.5% higher chance of being cited than other

patents from the same group of firms in their study, which covered the period 1971-2002. Barbieri

et al. (2020) examine the entire patent landscape from 1980 to 2012 and discover that clean

patents receive 0.27 more citations (the average in their sample is 0.9 citations). They also find

that clean technology is more novel and draws from a wider body of preceding work.3 In contrast,

Bjørner and Mackenhauer (2013), who analyze knowledge spillovers within a narrower sample of

Danish firms from 2000 to 2007, found no evidence of greater spillovers by clean technology. Their

work adapts the conventional production function method for estimating spillovers (see Hall et al.

(2010)) to compare the effects of clean and non-clean knowledge stocks on firm value-added. As

opposed to these studies, we estimate the returns from a marginal subsidy in different sectors

rather than analyzing differences in average spillovers. To measure spillovers, we merge the
3Other research confirms that clean innovations combine knowledge from a wider scope of the knowledge

space, as demonstrated by the patent classes they cite, are assigned to, and by their more frequent use of (broad)
collaboration (De Marchi, 2012; Orsatti et al., 2020; Fusillo, 2023).
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citation network with measures of the private value of innovation. This enables us to account

for indirect spillovers – i.e. spillovers from inventions that are more than one degree away in

the citation network – and accommodate for the variation in the value of citing inventions when

assessing knowledge spillovers.

A second set of papers looks for evidence of knowledge spillovers within clean technology

alone or compares these to spillovers generated by ‘dirty’ technologies. It is motivated by a

substantial body of theoretical work investigating under what circumstances environmental

challenges can be addressed while maintaining economic growth (Nordhaus, 1994; Bovenberg and

Smulders, 1995; Porter and Linde, 1995; Popp, 2004; Hart, 2004; Stern, 2009; Acemoglu et al.,

2012). The presence and extent of knowledge spillovers from clean technology are crucial factors

in these models, thereby influencing the need for governmental intervention, the comparative

benefits of demand-pull versus technology-push interventions (or a combination of both), and

the optimal duration of intervention. On the level of individual inventions, Dechezleprêtre et al.

(2022) find that clean innovations generate about 60% higher knowledge spillovers than dirty

innovations.4 Additionally, they use market value assessments of patents in Tobin’s Q regressions

to demonstrate that the value of innovations built on clean technology is, on average, higher. At

the firm level, Aghion et al. (2016) employ innovation production function estimates to reveal

significant path-dependence in generating both clean and dirty innovations. Their results imply

that companies find it more profitable to innovate in the sector (Clean or Dirty) where they

and nearby firms possess more prior knowledge. More evidence of clean path dependence has

been discovered at the country level in studies using patent data and trade patterns (Perruchas

et al., 2020; Santoalha and Boschma, 2021; Moreno and Ocampo-Corrales, 2022; Mealy and

Teytelboym, 2022). Generally, empirical evidence aligns with the notion that directed technical

change can lead to a long-term equilibrium where private incentives for clean innovation dominate,

provided there is a sufficiently large stock of clean knowledge (Acemoglu et al., 2012). Temporary

interventions supporting clean innovation are required to guide technology development toward

a clean equilibrium. While our findings support path dependence, our primary focus is on

the potential opportunity cost of policies that use scarce public resources to implement clean

innovation policy. Our results further reinforce the argument for an innovation policy that steers

efforts towards clean technology development, as these initiatives do not appear to divert public

funds away from vastly more profitable alternatives.
4Their measure of spillovers accounts for indirect spillovers, as gauged through the patent citation network,

but it differs from ours in that it does not weigh citations by their private value.
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A final group of related papers investigates the geographical aspect of clean knowledge

spillovers. Their findings confirm the idea that spillovers are, to some degree, geographically

localized (Jaffe et al., 1993; Thompson and Fox-Kean, 2005), but they also offer additional insights

specific to clean technology. Verdolini and Galeotti (2011) examine 38 countries and discover

that an increase in foreign knowledge stock leads to more innovation compared to a similar

increase in domestic knowledge stock. This effect is particularly pronounced for countries with

the least energy-related innovation activity. Conti et al. (2018), using methods from Caballero

and Jaffe (1993), compare the localization of spillovers in 15 EU countries with those in the

US. They find higher localization in Europe, but such fragmentation of knowledge declined

significantly after 2000 – and this pattern is unique to clean technology, not other high-growth

fields such as 3D, IT, Biotech, and Robotics. Ocampo-Corrales et al. (2021) examine citation

patterns in European regions and find that clean technology relies more on knowledge flows

from distant places compared to other technology categories (both traditional and cutting-edge).

Our results generally affirm the importance of international knowledge spillover flows, with

internalization rates never exceeding half and averaging 23%. We also observe that internalization

rates for European countries are larger for clean technology than for other technologies (but the

opposite holds for the US). Our analyses build upon these findings by explicitly focusing on the

implications of knowledge flows across national borders for national and supranational innovation

policy.

II. Estimating field-specific spillover returns to subsidy

A. Theoretical framework

Our objective is to estimate the impact of a subsidy on the total value generated by innovations

in a given technological field a. We define the total value as the sum of private revenues created

by an invention and the value of spillovers it produces for other inventions. At the center of

our approach is the idea that a subsidy targeting a technological field may not stimulate the

average innovation. Rather, we assume that the subsidy reduces the cost of innovation, enticing

innovations not viable based on their expected private returns alone. Accounting for potential

differences in spillover rates and costs for inframarginal innovations across fields, we employ a

simple model of innovator behavior devised by Guillard et al. (2023) (henceforth, GMMTV).

The model portrays an innovator drawing ideas with varying quality from a Pareto distribution.

Idea quality serves as an indicator of the potential private value an innovator can obtain once

the idea is transformed into an innovation. The realized private value is uniformly distributed

between 0 and the idea quality. To convert ideas into innovations, a fixed cost must be incurred,
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resulting in an idea quality threshold of twice the innovation cost above which ideas will be

pursued. Figure 1 illustrates this situation, where the light-blue-shaded area represents ideas

pursued in equilibrium. A subsidy lowers the innovation cost, and thus the idea quality threshold,

inducing innovations in the dark-blue-shaded area.

Figure 1: Costs and the idea quality threshold
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Notes: Visual representation of innovation production. Innovators draw ideas from a Pareto idea quality
distribution (the blue line). The idea quality provides a signal about the value of the innovation that might
result from the idea. To pursue an idea, the innovator incurs a cost (red vertical line). Only ideas for which
the quality is high enough are pursued (solid black line). Prior to the subsidy, all ideas in the light-blue-shaded
area are pursued. The subsidy pushes down the cost, and therefore the idea quality threshold (now the dotted
black line), resulting in additional ideas being pursued into innovations (ideas in the the dark-blue-shaded area).
The returns to the subsidy are determined by the total cost of the subsidy (which scales with the cost threshold
of the field), the mass of ideas present below the quality threshold (which depends on the shape parameter of
the Pareto distribution), and the expected spillover value those ideas generate (which is approximated by the
spillovers created by observed innovations of relatively small private value).

In this setup, GMMTV calculate the return rate for a subsidy directed at field a. The return

rate is derived as a function of the private and spillover value distribution in the field, along

with the cost parameter c and idea quality distribution shape parameter α. To obtain this, they

differentiate the total value of ideas pursued in a field with respect to a decrease in the innovation

cost. We refer to their paper for details, but their derivation results in the following expression.

ReturnRatea =
1

ca

1

#A

∑
i∈A

SVi × (αa − αa × I{PVi > 2ca}+ I{PVi < 2ca}) (1)

where i indexes elements in the set A of all innovations pursued in field a. SVi and PVi represent

the spillover value and private value generated by innovation i; c and α are time-field specific

parameters corresponding to the innovation cost and the shape of the idea quality distribution.

I{PVi > 2ca} evaluates to one if PVi > 2ca and I{PVi < 2ca} evaluates to one if PVi < 2ca.

This implies that only the spillover value of innovations below the idea quality cost thresholds
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are used to compute spillover returns (the term inside the summation sign evaluates to 0 when

PVi > 2ca). This feature emphasizes the importance of spillover values induced by the subsidy

rather than the average spillover value. As expected, returns decrease as the cost of innovating

drops, reflecting the higher expense of inducing additional innovations in fields with increased

costs. A higher α value yields more ideas just below the quality threshold, subsequently boosting

the returns.

B. Data and measurement

The goal of our approach, guided by Equation 1, is to measure the return rate of a hypothetical

additional subsidy in a given field, a. To do this, we need observations of the spillover and private

value distributions, as well as estimates for the cost and shape parameters of the idea quality

distribution. To obtain this information, GMMTV combine patent-level measures of private and

spillover values with structural estimates of c and α.

Data. Our analysis uses global patent information from the PATSTAT Global Autumn

2021 database. PATSTAT identifies innovations through patent families, which is necessary

since organizations must file patent applications in each jurisdiction where they seek protection.

Consequently, one invention often corresponds to multiple patent applications. A patent family

encompasses all patent applications associated with a single innovation. The database provides

various relevant details extracted from patent documents published during the examination

process, including technological classes, patent citations, patent claims (specifying the exact

scope of protection sought by the patent), filing time, the number of patent applications linked to

the invention, the applicant name (the individual or organization that will hold the patent right),

and the inventors’ address on the patent. We use the Orbis database to acquire a harmonized

identifier for applicants across distinct patent families. This allows us to purge self-citations

between patents of the same firm, which is desirable as those citations represent cumulative

innovation within a firm and therefore are not part of the knowledge externality we aim to

measure.

To identify clean technologies, we use the Y02 tag in the CPC classification that is assigned

to ‘Climate Change Mitigation Technologies’ by the receiving patent office. We further identify

more detailed clean sub-fields using a classification scheme devised by the UK Bureau for Energy

and Industrial Strategy (BEIS). After identifying 11 key clean innovation sectors, it uses the

Espacenet CPC search tool to assign patent classes to each sector. The methodology relies on

expert input and the academic literature to validate the classification scheme. Appendix B

provides a detailed overview of this classification exercise. To assign innovations to countries, we
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use inventor address information – bypassing the issue that multinational firms may assign the

patent to a subsidiary of their choice, which may or may not reflect the actual location of the

inventive activity. To collect country information, we combine data available in PATSTAT (which

parses country codes from inventor addresses on the patent) with data from de Rassenfosse et al.

(2019), who complement address information from PATSTAT with that from national patent

offices and geo-code addresses.5

Private value. We employ a two-step procedure to calculate a private value PVi for each

invention. In the first step, we use data from an event study approach developed by Kogan

et al. (2017), which allows deducing the value of individual innovations from the change in the

innovating firm’s share price – relative to the market – around the time when a patent for the

underlying invention was granted. In the second step, we use these value estimates to predict

invention monetary values based on several patent indicators that correlate with private value

and are observable for all innovations. This approach addresses the issue that only a small

fraction of all innovations belong to stock-listed firms. The predictors employed include the

timing of the application, technological classification, the number of patent filings in the family,

and the number of claims. For example, suppose a patent belongs to class A61K31 (’Medicinal

preparations containing organic active ingredients’), was filed in 2009, and has 5 claims and 7

filings in its family. The private value of this invention is the average of the stock-market-based

values of all inventions with exactly these characteristics. GMMTV demonstrate that the private

values based on this predictive model correlate well with the stock-market-based estimates in the

sample where both measures are available. The correlation between the two measures of private

value is 0.51 for the actual values and 0.60 when taking the logarithm and standardizing the

values.

Spillover value. Relying on patent citations found on the front page, we can trace the

connections between various innovations, establishing a ‘paper trail’ of knowledge linkages. This

information allows us to determine which innovations benefit from the knowledge of the cited

innovation, thereby enabling us to construct a network of knowledge spillovers. GMMTV develop

Patent Rank (P-Rank) to measure the economic value of knowledge spillovers as captured by

patent citations. Drawing inspiration from PageRank – Google’s original algorithm for ranking
5These two data sources are complementary. Using PATSTAT only, 19,112,005 innovations of the total of

52,997,635 innovations applied for between 1980 and 2018 can be assigned to at least one country. Using just
the geo-coded information results in 9,943,422 innovations assigned, such that a total of 29,055,427 (or 54.8%)
innovations is assigned.
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web pages – Patent Rank employs citations between patent documents instead of hyperlinks

between web pages to assign an index of importance to every invention throughout the entire

citation network. Specifically, we assume that any innovation i has a value of Vi comprised of

the sum of its private value PVi and external (i.e., spillover) value SVi.

P -rank = Vi = PVi + SVi = PVi + σ
∑
j∈Fi

1

Nj
Vj (2)

The underlying intuition of this measure is that a portion of an innovation’s total value

originates from its capacity to access the available body of knowledge. The size of this portion is

encapsulated by the value of σ and is allocated as a spillover value to the innovations it references.

As such, σ represents the marginal contribution of spillovers to an invention’s value. Instead

of explicitly estimating σ, we rely on a proxy from the literature. In a sample of clean car

technologies, Aghion et al. (2016) find that the elasticities of own and external knowledge stock

contributions to the generation of new innovations are roughly similar. Consequently, we set

σ to 0.5, corresponding to an equal contribution from a firm’s own R&D efforts and the stock

of available knowledge. GMMTV show that changing the value of σ significantly affects the

magnitude of returns (i.e., a higher value implies higher returns as indirect linkages are valued

more highly), but the ranking of different innovations or fields in terms of their spillovers remains

stable.

The set of innovations citing innovation i is denoted by Fi, and each innovation in this set

is indexed by j. The number of innovations cited by j is represented by Nj , which means that

the spillover portion of innovation j (σVj) is equally distributed among the inventions it cites.

Since Vj depends on both the private value of innovation j and its spillover value to innovations

that cite j, Equation 2 corresponds to a system of equations for each innovation in the citation

network. To solve this system, GMMTV employ an iterative algorithm that converges to the

solution, bypassing the computational burden associated with inverting a large matrix.

Cost and shape parameter. The cost and idea quality distribution are not directly

observed in the data. GMMTV use the model’s structural assumptions of innovator behavior to

estimate these parameters from the observed private value distribution. It is crucial to recognize

that the private value represents the market’s expected returns from an innovation, considering

its R&D cost as sunk (as the R&D has been completed by the time of grant). Consequently,

the observed private values should be greater in a field with higher R&D project costs because

only projects with expected returns sufficient to cover these higher costs are pursued. However,

note that it is still possible to observe innovations with low value as even ideas that initially

seemed good could turn out to be of low value after further research. Furthermore, the skew of
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the idea quality distribution influences the shape of the observed private value distribution (a

highly skewed quality results in highly skewed private returns). In essence, the model parameters

can be employed to derive an ex-post distribution of private value. We can then deduce the two

parameters by fitting the modeled private value distribution to the one observed in the data.

Specifically, GMMTV use the model to derive various quantile values of the distribution as a

function of the two parameters of interest. An evolutionary algorithm is employed to find the

α and c that minimize the difference between actual and modeled distribution quantile values.

This algorithm is run for each year in the data and for 41 broad technology fields. Figure 2

demonstrates this approach for two common fields, Semiconductors and Organic Fine Chemistry,

for the year 2010.

Figure 2: Actual vs modeled private value distributions

(a) Semiconductors
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(b) Organic fine chemistry
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Notes: Comparison of actual and modeled private value distributions for the two fields with the lowest (a) and
highest (b) estimated cost. The histogram plots the actual private value distribution in the field, and the blue line
shows the modeled density. Cost (c) and alpha (α) are estimated for each field (41) and year (10) combination.
Plotted examples are based on the year 2010.

The estimated parameter values of α and c for each area generate the blue lines in the graphs.

The histograms display the private values estimated from the data. The modeled distribution is

flat until twice the estimated cost, and the modeled private value does not fit well up to this

‘kink’ in the modeled distribution. However, the distribution of private values in these low-value

regions is not relevant for estimating returns on marginal subsidies (see Equation 1). More

important is that the observed kink in the actual distribution corresponds to the kink in the

modeled distribution, as it is based on this kink costs are estimated. The kink in the modeled

distribution for Semiconductors occurs at a private value of around $9 million, suggesting that

only ideas with an expected value of at least $9 million will be developed in this field. The

density of the modeled and observed private value distribution decreases quite rapidly for private
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values above this threshold, corresponding to a relatively small estimate of α at 2.22. In contrast,

panel (b) of Figure 2 shows the estimated model for Organic fine chemistry, which is found to

have a much higher idea development cost, of around $25 million, and much flatter modeled and

observed distributions above this value, corresponding to a larger value of α at 3.13.

C. Descriptive statistics

Table 1 presents the summary statistics of the principal input variables used in the computation

of subsidy return rates. Our sample covers more than 7 million patent families. These patent

families represent those for which a minimum of one inventor can be attributed to a country in

the OECD, the EU, or China. As seen in the commonly recognized pattern of a sizeable skew in

patent value distribution, the mean exceeds the median by approximately 36%, and the highest

value is more than 200 times larger than the median (values are reported in million 2015 US

dollars). The pattern for SV (the spillover value) is even more remarkable, with the mean almost

tenfold the median. It should be noted that the minimum private value is invariably strictly

positive (with $250 being the minimum in our sample), while the minimum spillover value is zero

in instances where the patent does not receive any forward citations.

The table further details the means of PV and SV across both fields and combinations of

fields and years. We see considerable variation in both value types, even when considered at

the aggregated field level. The mean private value of an innovation oscillates from $9.9 million

(Clean Cars) to $40.4 million (Organic Fine Chemistry), while the average spillover value spans

from $2.4 million (Mechanical Elements) to $10.2 million (Organic Fine Chemistry). At the

level of field-year combinations, this variance is larger (compared to the field level, the standard

deviation at this more detailed level rises by 36% for PV and 118% for SV ), suggesting that our

measures capture significant heterogeneity across different fields and temporal spans.

Our methodology for calculating return rates – which focuses on comparing fields based on

spillover value – is at least partially driven by the field-level variations in private value. The

innovator considers both the anticipated private returns of an R&D project and the cost of

innovation, which means that variation in private value reflects the cost of innovating within a

specific technology. From a policy perspective, these costs determine the resources needed to

induce an innovation (and resulting spillover value), hence playing a crucial role in the formulation

of effective subsidy schemes. As previously outlined, these considerations are encapsulated by

parameters α and c, which are estimated at the field-year level.
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The bottom section of Table 1 probes into the variability of these input parameters at the field-

year level, while the center section averages them out to the field level. In line with expectations,

we find considerable fluctuations in these parameter estimates across both fields and time. For

the average field, the cost of innovation is pegged at approximately $13.6 million, fluctuating

between $8.9 million (in Semiconductors) and $20.2 million (in Organic Fine Chemistry). The

idea quality distribution shape parameter, α, dictates the quantity of ideas that will turn out

to be privately viable should the cost of R&D fall. The highest level (in Thermal Processes) is

over twice the lowest level (in Basic Materials Chemistry). To interpret the magnitude of this

difference, consider two Pareto distributions with the same mean but with shape parameters

of 2.1 and 4.5, the minimum and maximum values we observe. A cost reduction from $13.6 to

$12.6 million induces 1.88 times more innovations in the high compared to the low α case. At

the field-year level, the standard deviation for α and c is approximately one-third of the average.

Both parameters show a moderate correlation of 0.40, whereas c shows a stronger correlation to

the average PV (0.65), and α exhibits a slightly negative correlation to PV (-0.15). Intriguingly,

SV demonstrates a negative correlation to PV at this level (-0.18), and by extension to both α

(-0.24) and c (-0.46). Combined, these patterns suggest considerable variation in the key input

variables for the subsidy return rates across fields (and time).

Table 1: Summary statistics

Obs. Mean S.D. Min. 25th pct. 50th pct. 75th pct. Max.

Innovations
PV 7,017,805 17.44 20.24 0.0 2.62 12.83 23.57 590.05
SV 7,017,805 5.09 13.94 0.0 0.0 0.64 4.9 3236.8

Fields
PV 39 19.6 6.76 9.86 14.7 18.59 22.2 40.41
SV 39 5.62 2.11 2.39 3.74 5.48 7.26 10.24
α 39 2.9 0.53 2.11 2.52 2.79 3.23 4.52
c 39 13.61 2.36 8.85 11.84 13.32 14.71 20.17

Field-years
PV 390 20.34 8.84 6.15 14.16 18.6 24.21 56.55
SV 390 5.34 4.6 0.04 1.61 4.32 8.08 25.6
α 390 2.93 0.96 1.48 2.4 2.71 3.17 8.5
c 390 14.05 4.52 5.54 10.7 13.14 17.0 29.33

Notes: Descriptive statistics of key parameters that determine subsidy return rates. The upper panel is at the
level of the innovation, the middle panel at the level of the technology fields used for the estimation of c and α, the
lower panel at the level of field-year combinations. PV , SV , and c are expressed in millions of 2015 US dollars.

14



Figure 3 parses out the count of innovations by the countries in our data set and general

technological fields.6 Each country, selected from the OECD, the EU, and China, has stacked

bars corresponding to the top x-axis, denoting the count of innovations by field. The green line

corresponds to the bottom x-axis and shows the share of Clean in all innovations. One notable

observation is that the majority of innovation, both in general and in Clean, is concentrated in

a small number of countries. Japan, the US, China, Korea, and Germany combined account

for approximately 83.3% of all innovations and about 83.8% of all Clean innovations. Among

these innovation powerhouses, Germany and Korea surpass the 15% mark for the share of clean

innovations, while the US and China hold shares of 11.4% and 12.2%, respectively. The proportion

of innovations in Clean varies considerably among countries, with Turkey (5.8%), Slovenia (7.4%),

and Ireland (8.1%) trailing, and Denmark (23.9%), Chile (16.1%), and Greece (15.7%) leading

the way. On average, a country holds a 12.7% share.

Figure 3: Innovations by country
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Notes: Innovation counts by country across six technology sectors (ordered by the number of
Clean innovations). Stacked bars, matching the upper x-axis, display counts in millions, using
’full counting’ for multi-sector or multi-country innovations. Green circles, aligning with the lower
x-axis, represent each country’s share of clean innovations.

6Note that an innovation might be categorized into several fields (if it is assigned multiple technology classes
spanning different high-level technology domains) and multiple countries (in case of cross-country inventor teams).
Since we are not making assertions about the total volumes of innovation, we find no compelling reason to
complicate the analysis and its interpretation with fractional counting.
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III. The relative returns to clean R&D support

Our analysis focuses on comparing projected returns from an R&D subsidy for clean technology

with those in other fields. We use variations of equation 1 tailored to specific technology sectors

or countries. Section III A examines global spillover return rates, incorporating all innovations

citing the focal one, regardless of origin. This scenario assumes a policymaker has no preferences

with respect to where spillovers are realized. Conversely, Section III B investigates local returns

by employing an adapted version of SVi that considers only citing innovations from the same

country as i.7

A. Global returns

Figure 4a compares the average return rate of Clean to five broad sectors of innovative activity.

The width of each bar depicts the size of the field in terms of the number of innovations.

The dotted vertical line shows the weighted average return rate across all innovations in our

sample, which consists of 42 countries.8 This average return rate represents an innovation

policy that allocates subsidies proportionally based on the level of innovation activity in each

sector, akin to a tax credit on R&D costs. Under this ‘flat policy’, the return rate stands at

120%, indicating that spillovers yield more than twice the public investments in knowledge

creation. Focusing on clean technology, a targeted policy yields a significantly higher return rate

of around 136%, which represents an additional gain of roughly one-eighth compared to the flat

policy. Among the sectors, Electrical Engineering, including, among others, Telecommunications,

Computer technology, and Audio-visual technology, would generate even higher returns, reaching

approximately 168%. Conversely, targeting Mechanical Engineering fields, such as Textile and

Paper Machines, Handling, and Mechanical Elements, would yield lower effectiveness, with return

rates hovering around 80%.

Figure 4b compares Clean technology to several other fields that have been proposed to

benefit from targeted industrial policy, including Artificial Intelligence, Biotechnology, Aerospace,

Robotics, and 3D printing. Notably, sub-fields within the Clean domain, such as Smart Systems

and Building Fabric9, exhibit impressive return rates of 168% and 145%, surpassing prominent

fields like AI (136%), Aerospace (93%), and Biotech (81%). Moreover, considerable variation
7Both direct and indirect knowledge flows are accounted for in local and global spillovers. For instance, indirect

knowledge transfers occur when a US innovation is cited by a Japanese one, which is then cited by another US
innovation. Each of these is factored in when calculating the local spillover value for US innovations.

8The five broad sectors are based on the most aggregate classification level described in Schmoch (2008).
9Please refer to Appendix B for a detailed description of the derivation of these sub-fields.
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exists among these smaller Clean sub-fields, with the least-performing ones yielding no more

than half the returns of the highest-performing ones. This observation is unsurprising, given that

Clean contains a diverse set of technologies grouped under a common application domain rather

than representing a technologically homogeneous entity.

Figure 4: Global returns – weighted average across countries
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Notes: Expected return rates to R&D subsidies by technology field (y-axis) along with 95%
confidence bands. The (vertical) width of a bar indicates the field size, measured by its number
of innovations. The x-axis displays the return rate (in %) to an additional $1 of R&D subsidy
in the field, with returns based on the spillover value that subsidy-induced innovation creates
globally between 2009 and 2018 (i.e., ReturnRatea in equation 1). The left-hand figure includes
the entire sample of innovations, divided into Clean and 5 other broad sectors. The right-hand
figure compares sub-fields within Clean (see Appendix B for a detailed description) to several
trending technology fields. The dotted line represents the weighted average across technology fields
for the sample under consideration.

Proceeding with a detailed examination of individual nations’ data allows us to verify if the

established pattern, as discerned on a weighted average basis, persists at the individual country

level. Figure 5 presents our calculated ‘Clean Subsidy Advantage’ (CSA), an indicator derived by

dividing the returns associated with Clean by the weighted mean return rate and subsequently

deducting one. The figure incorporates only the 21 nations that account for a minimum of 2000

patented inventions during our period of study spanning from 2009 through 2018. The returns

generated by Clean exceed the average in a majority of these nations but with considerable

heterogeneity. When examining the primary innovators in clean technology – Japan, China, the

EU, the US, and Germany – the relative returns appear fairly consistent, with clean initiatives
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generating returns between 13% and 18% superior to the weighted average returns (i.e., the flat

policy). Korea emerges as an outlier among these leading innovators, with a relatively modest

CSA, pegged approximately at 4%. Conversely, in Finland, clean initiatives yield returns that

are below average, whereas, in Switzerland and Spain, the relative returns nearly reach 40%.

Figure 5: Clean Subsidy Advantage by country – Global returns

0 10 20 30 40
Clean Subsidy Advantage (%)

Finland (21)
France (20)

Sweden (19)

South Korea (18)

Austria (17)
Belgium (16)
Poland (15)

Italy (14)
United Kingdom (13)

China (12)

Germany (11)

Netherlands (10)
Canada (9)

European Union (8)

Japan (7)

Australia (6)

United States (5)

Denmark (4)
Israel (3)
Spain (2)

Switzerland (1)

EU
Other

North America East Asia UK

Notes: Clean Subsidy Advantage by country (y-axis). The (vertical) width of a bar scales with
the number of clean innovations in the country. All countries in our sample with at least 2000
clean innovations are included. The Clean Subsidy Advantage for a country (on the x-axis) is
calculated by dividing the global return rate from an extra subsidy in Clean by the weighted
average global return rate across all country innovations. We then subtract one and multiply by
100% (it corresponds, for each country, to the height of the green bar, divided by the dotted line in
Figure 4).
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B. Local returns

The return rates displayed so far rely on a version of equation 1 that incorporates the global

generation of spillover value. In other words, SVi arises from the private value of innovations

cited, reaped by innovators irrespective of their geographic location. However, innovation policy

is predominantly orchestrated by national governments whose primary interest lies in the value

yielded within their respective national boundaries. To discern whether the substantial return

rates associated with Clean are maintained when viewed through this lens of national interest,

we probe an alternate formulation of the return rate. Herein, SVi is computed as the spillover

value resulting from innovations emanating from within national borders.

The P-Rank algorithm offers a relatively simple way to accomplish this. Consider a spillover

flow network of a US invention as drawn in Figure 6. This invention serves as a foundation for

another US invention and one from Japan. Subsequently, the Japanese invention becomes a basis

for a German and another US invention. Figure 6a illustrates the calculation of the global SV1.

Solving the system of equations as per expression 2 for this simplistic network yields an SV1

value of 7.

In order to compute the local SVi – defined as the spillover value induced through innovations

generating private value within the US – we may effectively assign zero to the private values of

inventions outside the US and then recalculate P-Rank. The modified network is represented in

Figure 6b. The reason to set PVj of non-US inventions to zero, rather than eliminating them

from the network entirely, is to retain the indirect spillover links to innovations within the US;

i.e. we allow for the possibility that one US inventor can benefit from another US inventor via

an inventor outside the US (in Japan, say). The local spillover value SV1 stands at $4.5 and

depends on both PV3 (through a direct spillover link) and PV5 (via an indirect spillover link).
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Figure 6: Calculating local spillovers
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Notes: Illustration of the calculation of knowledge spillovers. Circles represent patented innovations,
with country codes indicating the patent’s inventors. Lines represent citations between patent
families. The global spillover value of a particular innovation (upper figure) is calculated by
summing its private value and the value of the spillovers it creates (see also equation 2). Let us
calculate SV1 = PV1 +SV1. We need to consider the innovations that cite 1, which are innovations
2 (from Japan) and 3 (from the US). As per equation 2, SV1 = σ(V2 + V3), because N2 = N3 = 1
(each citing innovation only cites innovation 1). As innovation 3 is not cited, we have V3 = PV3 = $4.
Innovation 2 is cited by innovations 4 and 5, so V2 = σ(V4+V5), recognizing again that N4 = N5 = 1.
As both innovations 4 and 5 are not cited, we have that V4 = PV4 = $8 and V5 = PV5 = $10. Now
we see that SV1 = σ(PV3 +PV2)+σ2(PV4 +PV5) = 0.5($4+$1)+ 0.52(8+ 10) = $7. To calculate
local SV1, we simply set all private values of innovations from foreign countries (non-US in this
case) to zero, and repeat this calculation to see that SV1 = σ(PV3 + PV2) + σ2(PV4 + PV5) =
0.5($4 + $0) + 0.52($0 + $10) = $4.5.

Figure 12 in Appendix A illustrates the degree to which the spillovers of clean knowledge

remain confined within national borders. Solid bars represent the average local SV , while

translucent bars denote the average global SV . The width of each bar corresponds to the volume

of clean innovations. An initial observation is that the spillover value retained within national

boundaries is relatively limited. Based on a weighted average calculation, merely 23.3% of an

invention’s total spillover value is retained within the country of origin. The localization of clean

knowledge spillovers marginally trails behind the overall spillover localization, which stands at

24.2%.10 Moreover, it is evident that smaller nations retain a significantly smaller proportion

of their spillovers. The fraction of spillover value contained within the borders of Germany,
10For brevity, we have not included the corresponding figure for the entire set of innovations in our sample,

which bears a close resemblance.
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France, and the UK amounts to 21.2%, 11.4%, and 4.8%, respectively. Conversely, Korea and

the US demonstrate relatively high proportions of contained spillovers, with 46.6% and 31.7%,

respectively. The EU as an aggregate retains 29.0%, while China’s figure, 13.9%, is somewhat

smaller than might be anticipated based on its size. Intriguingly, the rate of localization for

Clean innovations, as opposed to all innovations, is higher in the EU (29.0% versus 23.1%), but

notably lower for the US (31.7% versus 41.0%). This trend indicates that national interests in

supporting Clean innovation may be relatively large in the EU – a pattern we delve further into

below.

Figure 7 reiterates our examination of subsidy returns at the technology level using local SV ,

that is, the return rate derived from Equation 1 but using spillovers realized within the innovating

country. Solid bars depict local return rates, while translucent bars re-present the global return

rates previously discussed. Upon examining broad innovation sectors in Figure 7a, it can be

observed that the ranking of broad fields remains consistent with the exception of Chemistry,

which descends from fourth to fifth place. This implies that local returns contribute a relatively

smaller proportion of its global returns. Local returns to Clean subsidy amount to 29.9 cents

per dollar invested, only slightly surpassing the weighted average of 28.3 cents per dollar. When

juxtaposed with global return rates, this demonstrates that while Clean still maintains the second

rank, it loses a significant portion of its advantage. A comparison of Clean sub-fields to their

corresponding benchmark categories in Figure 7b reveals that Artificial Intelligence innovation

now takes the lead while Building Fabric and, notably, Smart Systems, lose ground. Collectively,

these observations suggest robust incentives for national governments to subsidize Clean, despite

the advantage of Clean being more pronounced when taking a more global perspective of value

creation.
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Figure 7: Local returns – weighted average across countries
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Notes: Expected local return rates to R&D subsidies by technology field (y-axis) along with 95%
confidence bands. The (vertical) width of a bar indicates the field size, measured by its number of
innovations. The x-axis displays the return rate (in %) to an additional $1 of R&D subsidy in the
field, with returns based on the spillover value that subsidy-induced innovation creates within the
country of origin between 2009 and 2018 (i.e., ReturnRatea in equation 1 where SVi is the local
spillover value from Figure 10b). The left-hand figure includes the entire sample of innovations,
divided into Clean and 5 other broad sectors. The right-hand figure compares sub-fields within
Clean (see Appendix B for a detailed description) to several trending technology fields. The dotted
line represents the weighted average across technology fields for the sample under consideration.
For comparison, the light-shaded bars and dotted lines repeat the results for global returns of
Figure 4.

Figure 8 probes further into the cross-country variability of the Clean Subsidy Advantage

(CSA) indicator from the vantage point of local returns. The horizontal dimension of the bars

shows the local returns of Clean for each country, divided by the weighted average returns. The

width represents the number of clean innovations for a given country. The diamonds represent

the CSA from a global spillover perspective (thus corresponding to the height of the bars in

Figure 5). Interesting patterns emerge when considering the major innovation blocs. Compared

to the global return rates analysis, the CSA premised on local returns diminishes notably for

China (from 13.3% to 10.5%) and Japan (from 17.6% to 10.6%) and entirely dissipates for the

US (from 18.1% to -1.5%). The CSA for Korea remains virtually unaltered. In contrast, the EU’s

CSA almost doubles (from 16.3% to 29.3%). This pattern suggests that the benefits accruing

from clean innovations in the EU are relatively more likely to be retained within EU borders,

compared to those in other fields. Given that innovation policy is implemented both at the
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EU and national levels, it is compelling to look at local return rates at the level of individual

countries. This reveals a mixed picture, with major innovators such as Germany and France

demonstrating substantial incentives to invest in Clean subsidies based on national (growth)

interests. Conversely, Italy and Switzerland exhibit a pronounced Clean subsidy disadvantage.

The two following sections flesh out these patterns in greater detail, contributing to current

policy debates. Section IV aims to contribute to the discourse about the advisability of a

supranational strategy toward clean innovation policy. Section V offers a fresh perspective on

the ongoing discussion surrounding the US government’s Inflation Reduction Act (IRA), which

has triggered worries in the EU regarding possible adverse impacts on its competitiveness.
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Figure 8: Clean Subsidy Advantage by country – Local returns
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Notes: Clean Subsidy Advantage by country (y-axis). The (vertical) width of a bar scales with
the number of clean innovations in the country. All countries in our sample with at least 2000
clean innovations are included. The Clean Subsidy Advantage for a country (on the x-axis) is
calculated by dividing the local return rate from an extra subsidy in Clean by the weighted average
local return rate across all country innovations. We then subtract one and multiply by 100% (it
corresponds, for each country, to the height of the green bar, divided by the dotted line in Figure 7).
For comparison, each country’s Clean Subsidy Advantage based on global returns from Figure 5 is
also displayed (diamonds).
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IV. Supranational clean innovation policy design

A. Motivation

In the majority of countries examined, the clean subsidy would yield spillover returns that surpass

those in the majority of other technology sectors. However, it’s important to remember that

Clean covers a wide range of technologies spread across different areas of knowledge. For instance,

wind energy production mainly relies on the arrangement and combination of mechanical parts,

biomass depends on concepts in agriculture and chemistry, and smart systems need expertise

in electronics and data science. As shown in Figures 4b and 7b, the returns across these Clean

technology areas vary considerably. Additionally, the returns for each of these areas could differ

by country. In this section, we apply our method to help shape clean policy with this more

detailed perspective.

Our focus here is on the potential advantages that could arise from a coordinated, supranational

approach to clean innovation policy. The value of such coordination is fundamentally tied to the

variance in the prioritization of fields across different countries. Imagine a simplified scenario

with only two regions, Country 1 and Country 2, and three distinct Clean subfields: A, B, and C.

Assuming that these fields are ranked A-B-C based on local returns from a subsidy, both countries

could improve upon an undifferentiated clean subsidy strategy by implementing a targeted policy,

allocating more resources to Field A over B, and B over C. Now, suppose that for Country 1, the

ranking based on global returns is also A-B-C, while for Country 2, it is C-B-A. The two regions

would jointly benefit by coordinating a policy where Country 1 focuses its subsidies on Field A,

and Country 2 on Field C. Alternatively, the best course of action could involve directing all

subsidies to Country 1 if even its lowest-ranked field generates greater collective returns than the

top-ranked field in Country 2. This is the primary mechanism we explore in this section.

B. Policy design simulation set-up

We create a straightforward policy design simulation to gauge the extent of potential benefits

that might be obtained from supranational coordination. Within this exercise, we assume

that countries know the ranking of clean subfields, both in terms of local and supranational

returns. These supranational returns refer to returns at the aggregate level of a group of countries

under consideration (for instance, the EU). The simulation investigates the impact of a policy

that increases the total quantity of Clean innovation by 1%. To estimate the advantages of

supranational coordination, we compare the weighted average supranational return rate under

two distinct scenarios: (1) Subsidies are assigned according to the ranking of return rates realized
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within individual country borders. (2) Subsidies are allocated following the ranking of return

rates accrued at the supranational level. In the second scenario, the existence of country borders

is disregarded when evaluating returns, which are maximized as if the collection of countries

formed a unified innovation policy consortium. We additionally impose the restriction that the

innovation output in any particular subfield can increase by no more than 10%. This is done with

the understanding that return rates are computed using the marginal subsidy, without factoring

in the diminishing marginal returns of a subsidy as the subsidy amount grows larger.11

It is important to highlight that the supranational returns in the nationally optimal must be

lower than those in the supranationally optimal one. The focus of our question is not on whether

there is a difference, but rather on the size of the difference. This is largely contingent on the

degree to which local return rate rankings diverge from global return rates, and whether there

are subfields within individual countries that generate particularly strong spillovers benefiting

the broader supranational grouping of countries.

C. Results

Figure 9 summarizes the findings of our policy simulation. The white and black diamonds,

aligned with the upper x-axis, denote the weighted average return rate for the two distinct

policy scenarios. The orange bars, in correspondence with the lower x-axis, represent the relative

increase in return rates, obtained by dividing the return rate represented by the black diamond

by that of the white diamond.

Firstly, let us analyze the absolute return rates, denoted by the black and white diamonds.

The country groups are arranged in order of their size, measured in terms of the number of

innovations. Notably, both under the optimal national and supranational targeted policies, return

rates rise with the size (in terms of innovation) of the country group. This is to be expected, as

the larger the country group, the larger the pool of R&D benefiting from the spillovers induced by

a subsidy. Focusing on the global returns from a nationally optimal targeted policy, we observe

an overall return rate of 161%. Comparing this to the return rate of 135% for an untargeted

subsidy scheme in Clean technology (as shown in Figure 4a), we infer that the capability to

target subfields, even when driven solely by national interests, enhances returns by 26 percentage

points.
11A thorough analysis of this aspect requires assumptions on the abundance of ideas far below the marginal

idea quality thresholds, as well as potential general equilibrium dynamics in the reallocation of capital and labor
when subsidies in a field become substantial. While this topic is undeniably important and interesting, it falls
outside the remit of the current study.
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The benefits from this targeted approach, as shown by the orange bars, are substantial and

generally rise with the size of the innovation base. For both the EU27 and the EU28 (including

the UK), return rates experience an increase of approximately a quarter when innovation policy

is coordinated. The advantage for the G7 and the OECD is around 40%. This implies that a

combined innovation policy, which incorporates the major European economies along with the

US and Japan, exhibits considerable potential benefits. The highest rate of return is delivered by

a globally coordinated policy, yielding 2.6 dollars for each dollar invested, and the coordination

effort produces the largest relative benefit, at 65%.

Upon scrutinizing these supranationally optimized policies more closely, it is clear that a

select few countries tend to absorb the bulk of the allocated Clean subsidy. For instance, under

an OECD-wide policy, US Clean innovation sectors receive 92.6% of the subsidized innovations,

followed by Canada at 3.6% and Israel at 2.3%, with merely eight countries obtaining subsidies

at all. The significantly larger benefits yielded by global coordination as opposed to mere OECD

coordination stem from the inclusion of China in the policy. In fact, the optimal policy allocates

83.9% of its subsidies to China and a mere 12.7% to the US, with Switzerland ranking third at

1.3%. At the EU28 level, Germany receives the majority of the allocation (54.0%), followed by

Denmark (15.4%) and the UK (10.8%). At the EU27 level, Austria overtakes the UK to secure

third place, receiving 11.8% (in this case, Germany and Denmark receive a share of 62.6% and

17.0%, respectively).

Collectively, these results underscore the considerable potential to enhance the creation of

(social) value by coordinating clean innovation policy at broader geographic scales. However, it

must be acknowledged that the optimal policies may prove politically challenging, as they may

necessitate the exclusion of numerous countries from the stimulus program.12

12Subsequent research could employ our methodological framework to construct an optimal policy imposing
constraints informed by political considerations.
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Figure 9: Benefits of supranational coordination
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Notes: Results of policy simulation to determine benefits of supranational coordination. The y-axis
denotes supranational country groups. White diamonds (upper x-axis) depict weighted average
returns per dollar in a scenario where each country prioritizes clean tech subfields according to local
returns. Black diamonds (upper x-axis) show returns when a supranational government allocates
subsidies based on a ranking of country-fields by supranational returns. The orange bars (lower
x-axis) represent the increase in return rates due to supranational coordination, calculated by
dividing the value of the black diamond by the white one.

V. Between-country flows of clean spillovers

A. Motivation

The analyses conducted thus far suggest that a global planner would have a significant preference

for a targeted innovation policy towards Clean, compared to flat incentive schemes that distribute

public resources evenly across the innovation landscape. Yet, only a relatively small fraction of

productivity growth induced by knowledge spillovers is retained within jurisdictional borders.

This implies that a substantial part of any subsidy spills over, benefiting other nations. Conversely,

this indicates that any country benefits from ‘knowledge transfers’ even in the absence of national

innovation policy. These observations raise an important question: who, on net balance, reaps

the benefits and who provides the knowledge spillovers that their subsidies generate?
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We believe that this question bears relevance in shaping policy responses to the US

government’s Inflation Reduction Act (IRA). The IRA has initiated an intense policy debate,

particularly in Europe, driven by concerns regarding its impact on the competitiveness of firms

outside the US. The IRA comprises a $400 billion climate-related stimulus package dispersed

over a decade. While such a large-scale commitment, akin in magnitude to the EU’s clean

stimulus, is lauded in principle, the crux of the controversy resides in its protectionist elements.

A substantial segment of the stimulus package includes clauses mandating sourcing and

production within the US, thereby infringing World Trade Organization rules (Kleimann et al.,

2023).13 In response to these constraints and with the objective of restoring a level playing field,

propositions have surfaced to replicate US policy by enhancing EU-centered support and

relaxing state aid rules. These proposals have been championed by notable figures such as

France’s President Macron and President of the European Commission von der Leyen.14

The appropriateness of such assertive responses, which carry the risk of provoking further

protectionist policies, straining scarce resources, diminishing productivity by disrupting global

markets, and jeopardizing diplomatic relationships, depends on the overall negative consequences

of the IRA. We assert that the value of knowledge spillovers is an overlooked factor in the

discussion. The efforts of each of the major blocs to stimulate demand for clean products will

spur innovation by rendering previously inframarginal innovation ideas viable. Consequently, the

associated knowledge spillovers should be incorporated into the analysis.

B. Measuring between-country spillovers

P-rank, as outlined in expression 2, enables partitioning spillover value by country of origin and

destination. We have already leveraged this capability to compute the retention of knowledge

spillovers within a country’s boundaries (refer to Section III B). Building on the same principle, we

can compute the flow of knowledge spillovers between pairs of countries. Figure 10 demonstrates

how we compute the SV1 – that is, the spillovers generated by a US invention – that stream

to Japan (as depicted in Figure 10a) and to Germany (as shown in Figure 10b). As before, we

run the algorithm after zeroing out all destination countries not pertinent to our analysis. This

process yields a measure for SVi for each i within the network.
13Kleimann et al. (2023) provides an insightful examination of the IRA’s potential repercussions on international

trade, EU competitiveness, and the global climate transition.
14Leigh Thomas,“Explainer: Why the U.S. Inflation Reduction Act has Europe up in arms”, Reuters,

https://www.reuters.com/markets/why-us-inflation-reduction-act-has-europe-up-arms-2022-12-05/ (accessed May
2023)
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Figure 10: Calculating between-country spillovers
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Notes: Illustration of the calculation of between-country knowledge spillovers. The spillover network
is identical to the one in Figure 6. Circles represent patented innovations, with country codes
indicating the patent’s inventors. Lines represent citations between patent families. To calculate
the spillover of innovation 1 to Japan, we simply set all private values of innovations that are
not from Japan to zero (upper panel), and repeat our spillover value calculation. We see that
SV1→JP = σ(PV3 + PV2) + σ2(PV4 + PV5) = 0.5($0 + $1) + 0.52($0 + $0) = $0.5. Similarly,
to calculate the spillover of innovation 1 to Germany, we set all private values of non-German
innovations to zero, and adapt our calculation accordingly: SV1→DE = σ(PV3 + PV2) + σ2(PV4 +
PV5) = 0.5($0+ $0) + 0.52($10+ $0) = $2.5. Once we have calculated the spillover flows to a given
country for all innovations in the sample, we can sum up over the relevant innovations to calculate
total spillover value flows between the countries of interest.

By leveraging this approach, we can rework the return rate from equation 1, incorporating

only spillovers realized within the geographic context pertaining to our analysis. For example, we

may aim to discern the spillover value generated within Japan from subsidizing US innovations.

Let SVi→JP represent the spillover value instigated by any innovation i towards Japan. The

return rate to Japan of subsidizing US innovation in field a can then be formulated as:

ReturnRateUS→JP
a =

1

ca

1

#AUS

∑
i∈AUS

SVi→JP × (αa − αa × I{PVi > 2ca}+ I{PVi < 2ca}) (3)
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Here, AUS denotes the set of innovations stemming from the US. This equation enables us to

replicate our analysis of return rates, with the sole difference that the recipient of the spillovers

is not necessarily the creator. The return rates reported show the benefit to country A (here,

Japan) to subsidize innovation in country B (here, the US), taking into account the spillover

value created by country B innovations to country A innovations. To obtain the absolute benefit

to country A when country B pays for the subsidy, we add one to the return rate obtained in

equation 3.

C. Results

Figure 11 visualizes the subsidy return flows between the five regions that are leading in terms

of innovation. The top figure represents the weighted average across all innovations for each

given country pair, while the bottom figure specifically focuses on Clean technology. The arrows

pointing to the right (left) display the returns harvested in the country on the right (left) from a

subsidy in the country on the left (right). The bar represents the net result by subtracting one

from the other.

When considering innovation as a whole in figure 11a, it is evident that the most substantial

interaction occurs between the US and Europe. Should Europe invest one dollar to support

US innovation, it would reap benefits amounting to 18 cents. On the flip side, the US receives

roughly 15 cents for each euro invested in Europe. Overall, the US exports spillover value to

China, while it receives from Japan 2.8 percentage points more than it contributes. The balance

with Korea is approximately zero. Japan emerges as the most significant benefactor, serving as a

net exporter of knowledge flows to all regions considered, most notably to Korea.

In the context of clean innovation subsidy return rates, the imbalances are considerably

more pronounced, particularly where the US and Japan are concerned. Japan stands as a net

exporter of clean returns to Korea (10.5 percentage points), Europe (6.8 percentage points),

China (3.1 percentage points), and the US (2.5 percentage points). European nations are

significant beneficiaries of the US and Japan, maintaining a near balance with China and Korea.

China primarily receives from the US (although to a much lesser degree than Europe, with -3.7

percentage points), Japan (-3.1), and Korea (-1.8), and provides minimally to Europe (0.9).

Turning to the discourse surrounding the IRA, our analysis indicates that historically, US

subsidies have generated a considerably higher value in Europe compared to the reciprocal effect.

Should the EU and the US have allocated one dollar each to subsidizing Clean R&D, Europe

would have received an additional benefit of 12.3 cents. It should be noted, however, that both

blocs significantly benefit from each other’s knowledge production – to a much greater extent
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than any other pair – with subsidy return flows of 13.3 cents to the dollar (from EU to US) and

25.6 cents (from US to EU). From the perspective of Europe, the innovation incentives induced

by the IRA can be compared to a subsidy it does not pay for. A clean subsidy of 1 dollar paid

for by the US government would create 1.26 dollars of spillover value in Europe. An untargeted

policy, instead, would create 1.18 dollars. In other words, compared to a scenario in which the

US would not increase innovation support at all, the benefits – based on this historical analysis –

to the EU are large, and the benefits from clean support exceed those from an untargeted policy.

Our objective here does not extend to contrasting the magnitude of these spillover effects with

the potential repercussions of protectionist measures or performing a comprehensive equilibrium

analysis to propose optimal strategies. Nonetheless, it is essential to recognize that the figures

suggested here bear significant economic relevance. Interpreting these results directly in the

context of the IRA is not straightforward because not all IRA subsidies will necessarily foster an

increase in R&D activities. However, two reference points might prove useful.

Consider a scenario where this clean initiative brings about the same change in R&D costs

as a direct subsidy that is one-tenth of its size ($40 billion). Over the decade during which the

program is executed, the knowledge spillover channel could yield benefits to the EU amounting

to approximately $10 billion. As a secondary reference, we can examine the aggregate spillover

quantities over our observation period. Figure 13 in Appendix A provides information about

such Clean flows. Throughout the ten years considered, Clean innovations from the US have

produced spillovers in the EU estimated at $150 billion. If the IRA boosts this by 10%, it could

confer a $15 billion benefit to Europe.

Rather than offering confident forecasts, these estimates establish an order of magnitude. A

more exhaustive analysis is essential for guiding the significant policy decisions that all countries

confronted with the IRA need to make. The principal takeaway is that the knowledge spillover

channel merits serious consideration.
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Figure 11: Subsidy return flows

(a) Overall
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Notes: Subsidy return flows between pairs of regions. Gold arrows pointing right represent the
returns garnered by the region on the right from an additional subsidy in the region on the left (it
shows ReturnRateleft→right

a from equation 3). Bordeaux arrows pointing left represent the returns
gained by the region on the left from an extra subsidy in the region on the right. Bars denote the
difference between the arrows: a net flow benefiting the region on the right (resp. left) results in a
positive (resp. negative) number on the x-axis, which shows the return rates (arrows) in percentage
terms and the differences (bars) in percentage point terms. Europe includes all EU27 countries and
the UK. The upper figure perfoms the analysis for all technology sectors, the lower figure includes
only return rates from clean subsidy. 33



VI. Conclusion

This paper provides a detailed examination of clean innovation policy and its implications at both

the local and supranational levels. Our analysis brings several new insights to the innovation

literature, beginning with the finding that the return rate on targeted clean subsidies exceeds

that of most other fields, as well as that of untargeted, broad-based innovation policy. This

highlights the economic value of purposeful, directed support for Clean innovation, and signals a

potential direction for governments to enhance their innovation return rates. Taking this finding

together with the fact that clean innovation produces an environmental externality – which is

hard to estimate but likely large – suggests clean innovation support is a win-win strategy.

Second, we delve into the potential benefits of supranational coordination in Clean innovation

policy. Our findings indicate that while such coordination could deliver significant value, the

political implementation may prove complex due to the uneven distribution of support that

would be entailed in an optimal policy. This presents a clear, albeit difficult, opportunity for

international collaboration in the pursuit of cleaner, more sustainable technologies. Despite the

challenges, the potential rewards underscore the importance of continued exploration of such

coordinated efforts. Altogether, our results underscore the need for nuanced, geographically

aware, and targeted policy approaches to support clean innovation and maximize its societal

benefits effectively.

Last, our study examines the spatial distribution of innovation spillovers, revealing that a

relatively small proportion is localized within the country of origin. When national interests

are myopically followed, Clean loses some of its attractiveness (but remains ranked highly) in

many countries (especially the US, but not the EU). We observe that spillover flows are uneven

across countries, leading to certain nations ‘giving away’ more than they ‘receive’ from their

clean innovation efforts. These insights provide valuable context for ongoing policy debates, such

as those concerning the Inflation Reduction Act (IRA) in the US.
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Appendix

A. Additional results

Figure 12: Localization of spillover value – clean innovations
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Notes: Average spillover value by country (y-axis) along with 95% confidence bands. The (vertical)
width of a bar scales with the number of clean innovations in the country. The x-axis displays the
average local (dark-shaded bars) and global (light-shaded bars) spillover value of clean innovations
in the country. It is the average SVi over all clean innovation in a country (expressed in millions of
2015 US dollars) as calculated in Figure 6b and Figure 6a respectively.
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Figure 13: Spillover value flows

(a) Overall
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Notes: Spillover value flows between pairs of regions. Gold arrows pointing right represent the
total spillover value garnered by the region on the right from innovations of the region on the left
(it shows

∑
i∈Aleft SVi→right from equation 3). Bordeaux arrows pointing left represent the total

spillover value gained by the region on the left from innovations originating in the region on the
right. Bars denote the difference between the arrows: a net flow benefiting the region on the right
(resp. left) results in a positive (resp. negative) number on the x-axis, which shows spillover values
in billions of 2015 US dollars. Europe includes all EU27 countries and the UK. The upper figure
performs the analysis for all technology sectors, the lower figure includes only spillover flows from
clean innovations. 39



B. Clean sub-field definition

The study leverages a novel classification framework for clean technology sub-fields. This system,

designed by the Department for Business, Energy and Industrial Strategy (BEIS), involves an

expert-validated method to gather patent codes relevant to the clean sub-fields scrutinized in the

main body of the paper. In this section, we offer a synopsis of the methodology and provide the

patent codes for each sub-fields, displayed in the tables below.

The extraction of codes followed a four-stage process. Initially, an innovation framework was

established, capitalizing on the findings outlined in the Energy Innovation Needs Assessment

(EINA) by Vivid Economics (2019). This scheme facilitated the development of a custom

assortment of search terms extracted from innovation prospects in the UK. The search terms

secured a comprehensive yet precise scope of patents that coincide with BEIS’ innovation

initiatives.

In the second stage, the search terms from the ‘sub-technology’ breakdown were used to collect

candidate classes via the CPC Espacenet Classification search tool. For each Clean sub-field in

the tables below, we report the sub-technology and its components where relevant, along with

the CPC codes identified. These codes were used to extract a sample of patents that were used

as the input for expert assessment.

In the third step, BEIS engineers thoroughly analyzed the retrieved patents. This evaluation

aimed to gauge the level of relevance exhibited by each patent code in relation to the EINA

framework. Based on the patent documents, engineers employed their expertise to provide an

estimate of the extent to which each patent code aligned with the framework.

The fourth and final step of this process involved conducting a benchmarking exercise to

validate the derived patent codes by comparing them with existing academic studies. Specifically,

BEIS searched for published academic articles that presented a comprehensive list of patent codes

for each sector. This benchmarking step ensured that no essential patent codes were overlooked.

The categorization of the Clean technology landscape, even when consulting engineering

experts, involves a degree of personal judgment. As part of this process, experts indicated their

confidence level – Low, Medium, or High – when classifying specific classes into corresponding

sub-fields. We only retained the CPC codes classified with Medium or High confidence. The

respective confidence levels are disclosed in the third column of the ensuing tables.
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Table 2: Biomass & Bioenergy Patent Codes

Sub-technology Patent Codes Confidence
Component
• Scale-up
• Deployment
• Link to CCUS
• Renewable hydrogen

Y02E 50/00: Technologies for the production of fuel of non-
fossil origin Biofuels, e.g. bio-diesel; Fuel from waste, e.g.
synthetic alcohol or diesel

High

Gasifier
• Feedstock
• Gasifier
• Syngas cleanup

C10J2300/0916: Details of gasification process, Biomass High

BioH2 and Bio-SNG
• Water-Gas Shift (WGS) Reaction

C12M21/04: Bioreactors or fermenters for producing gas, e.g.
biogas.

Medium

Fischer-Tropsch Synthesis
• FT Catalyst
• FT reactor
• Upgrading

C10G2300/1022: Aspects relating to hydrocarbon processing
covered by groups: Feedstock Materials → Fischer-Tropsch
products
C01B2203/062: Integrated processes for the production of
hydrogen or synthesis gas (Hydrocarbon production e.g.
Fischer-Tropsch process)

High

Syngas to Methanol
• Overall Process

C01B2203/061: Integrated processes for the production of
hydrogen or synthesis gas (Methanol production)

High

Woody & Grassy Energy Crops -SRC &
Miscanthus
• Breeding & Crop R&D
• Growing and harvesting, improving

agronomics

A01C7/00: Sowing Seeds
A01C 15/00: Fertiliser Distribution
A01C 17/00: Fertisliser or seeders with centrifugal wheels
A01C 19/00: Arrangements for driving working parts of
fertilisers or seeders
A01C 21/00: Methods of fertilising
A01D45/30: Harvesting of standing crops (of grass-seeds or
like seeds).
A01H1/12: Processes for modifying genotypes → Processes
for modifying agronomic input traits, (e.g. crop yield,
drought, cold, pest resistence)
Y02A 40/10

Medium

Novel Oil Crops
• Breeding & Crop R&D
• Growing and harvesting, improving

agronomics

C11B1/00: Production of fats or fatty oils from raw materials
(under head of vegitable oils).

High

Lignocellulosic feedstock pre-treatment &
hydrolysis
• Pre-treatment
• Hydrolysis

C12P2201/00: Pretreatment of cellulosic or lignocellulosic
material for subsequent enzymatic treatment or hydrolysis
C08H8/00: Macromolecular compounds derived from
lignocellulosic materials

High

Lignocellulosic ethanol
• Overall process

C12P7/10: Preparation of Ethanol substrate containing
cellulosic material

High

Syngas fermentation
• Pre-treatment
• Reactor
• Bacteria

C12M21/04: Bioreactors or fermenters specially adapted or
producing gas, e.g. biogas
C10L3/08: Production of synthetic natural gas
C10L3/10: Working-up natural gas or synthetic natural gas

High

Feedstock Pre-treatment
• Pre-treatment

C10G2300/10: Feedstock materials (covers: waste, vegetal
biomass, animal biomass, natural gas, gas hydrates,
hydrocarbon fractions, Fischer-Tropsch etc)
Y02P20/145: Feedstock of biological origin

Medium

Digestion C12M21/04: Bioreactors or fermenters specially adapted or
producing gas, e.g. biogas

Medium

Notes: Academic benchmark used for this sub-field: Johnstone et al. (2010)
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Table 3: Building Fabric Patent Codes

Sub-technology Patent Codes Confidence
Pre-Construction and Design
• New Build and Existing
• New Build

Y02B10/00: Integration of renewable energy sources in
buildings.

High

Materials and Components
• New Build
• (Some retrofits)
• New Build and Existing

F24S: Solar Heat Collectors
E06B3/24: Double Glazing
E06B3/20: Vinyl wind frame
E06B1/325: Thermal Break between Frames
E04B1/74: Insulation materials
E04B1/76: Heat insulation only
E04F15/18: Floor Insulation
E04D13/16: Roof Insulation
F16L59/00: Thermal insulation of pipes
F21Y2115/10: LEDs

High

Build Process
• New Build and Existing

Y02B80/00: Architectural or constructional elements
improving the thermal performance of buildings

High

Building Operation
• New Build and Existing

Y02B90/00: Enabling technologies or technologies with
a potential or indirect contribution to GHG emissions
mitigation (Fuel cells in buildings & Smart Grids for
buildings)

High

All
• New Build and Existing

Y02B: climate change mitigation technologies related to
buildings, e.g. housing, house appliances or related end-
user applications

High

Notes: Academic benchmark used for this sub-field: Noailly (2012)

Table 4: Carbon Capture, Use & Storage Patent Codes

Sub-technology Patent Codes Confidence
Power
• Gas post-combustion capture
• Gas pre-combustion capture
• Gas Oxy-combustion capture
• Solid fuel Post- combustion capture
• Solid fuel Pre-combustion capture
• Solid fuel Oxy-combustion
• CO2 Storage: Infrastructure & injection

wells

Y02C20/00: Capture or disposal of greenhouse gases
B01D53/00: Separation of gases or vapours; Recovering
vapours of volatile solvents from gases; Chemical or biological
purification of waste gases, e.g. engine exhaust gases, smoke,
fumes, flue gases, aerosols
Y02E20/18: Integrated gasification combined cycle [IGCC],
e.g. combined with carbon capture and storage [CCS]
Covered by Y02C20/00
Y02P90/70: Combining sequestration of CO2 and
exploitation of hydrocarbons by injecting CO2 or carbonated
water in oil wells

High

Industry
• Cement
• Chemicals
• Iron & steel
• Refining
• Cross-cutting

Y02P40/18: Production of cement - Carbon capture and
storage
Y02P20/151: Technologies relating to chemical industry -
Reduction of GHG emissions e.g. CO2
Y02P10/122: Technologies relating to metal processing - by
capturing or storing CO2
B01D53/00: Separation of gases or vapours; Recovering
vapours of volatile solvents from gases; Chemical or biological
purification of waste gases, e.g. engine exhaust gases, smoke,
fumes, flue gases, aerosols,
Y02P70/10: Final consumer goods - Greenhouse gas capture.

High

Notes: Academic benchmark used for this sub-field: Sharifzadeh et al. (2019)
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Table 5: Heating & Cooling Patent Codes

Sub-technology Patent Codes Confidence
Heat pumps
• Heat source
• System
• Installation
• Integration
• O&M
• Installation

F25B30/00: Heat Pumps High

Heat networks
• Design
• Installation
• Connection to heat user
• Interface with heat user

Y02B30/00: Energy efficient heating, ventilation or air
conditioning [HVAC]
Y02A30/27: Relating to heating, ventilation or air
conditioning [HVAC] technologies
C09K5/00: Heat-transfer, heat-exchange or heat-storage
materials, e.g. refrigerants; Materials for the production of
heat or cold by chemical reactions other than by combustion

High

Heat storage
• Heat source & sink
• Heat store

F24S: Solar Heat Collectors
Y02E60/14: Thermal energy storage
F24H7/00: Storage heaters, i.e. heaters in which energy is
stored as heat in masses for subsequent release

High

Cooling
• Main Unit
• System
• Design
• Control
• O&M
• Storage

F24F: air-conditioning; air-humidification; ventilation; use of
air currents for screening
F25B: refrigeration machines, plants or systems; combined
heating and refrigeration systems; heat-pump systems

High

Notes: Academic benchmark used for this sub-field: Renaldi et al. (2021)
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Table 6: Hydrogen Patent Codes

Sub-technology Patent Codes Confidence
Natural Gas Reforming
• Integration with CCS
• Reformer
• Water-gas shift reactor
• Reformer

Y02E60/30: Hydrogen Technology, Storage & Distribution
C01B2203/02: Processes for making hydrogen or synthesis
gas (reforming & partial oxidation)
C01B3/00: Hydrogen; Gaseous mixtures containing hydrogen;
Separation of hydrogen from mixtures containing it

High

Coal Gasification
• Integration with CCS
• Gasifier + Gas Purification Unit
• Gasifier
• Air Separation Unit (ASU)

C10J3/00: Production of combustible gases containing carbon
monoxide from solid carbonaceous fuels

High

Electrolysis
• Manufacturing
• Cell
• Cell
• Purification Equipment
• Purification Equipment
• System Integration
• Other Routes
• Other Applications
• Modelling

C25B1/02: Electrolytic production of inorganic compounds
or non-metals > Hydrogen or oxygen > by electrolysis of
water
Y02E60/36 (Covered by Y02E60/30): Hydrogen production
from non-carbon containing sources, e.g. by water electrolysis
C25B11/00: Electrodes; Manufacture thereof not otherwise
provided for

High

Delivery
• Pressure Levels
• Safety
• Pipelines
• Tube Trailers
• Compression
• Liquefaction Process
• Alternative Carriers
• Odorants
• Sensors

F25J1/00: Processes or apparatus for liquefying or solidifying
gases or gaseous mixtures
Y02E60/34 (covered by Y02E60/30): Hydrogen Distribution
F17C5/02: Methods or apparatus for filling containers with
liquefied, solidified, or compressed gases under pressures >
for filling with liquefied gases e.g. helium or hydrogen

High

Storage
• Alternative Hydrogen Storage
• Alternative Hydrogen Storage
• Cavern Topside Facility
• Underground Storage

Y02E60/32 (Covered by Y02E60/30): Hydrogen Storage High

Refuelling Stations
• Purification
• Unloading Equipment
• Verification
• Design
• Standardisation

C01B3/50: Separation of hydrogen or hydrogen containing
gases from gaseous mixtures, e.g. purification

High

Fuel cells
• Manufacturing
• Manufacturing
• SOFC
• SOFC
• PEMFC
• PEMFC
• Design
• Grid Services

H01M8/00: Fuel cells; Manufacture thereof
Y02E60/50 (Covered by Y02E60/30): Fuel cells

High

Notes: Academic benchmark used for this sub-field: Baumann et al. (2021)
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Table 7: Industrial Clean Innovation Patent Codes

Sub-technology Patent Codes Confidence
Chemicals
• Efficiency improvements
• Low-carbon substitutes
• Heat recovery and reuse
• Recovery and recycling
• Energy systems
• Alternative process technologies
• Clustering

Y02P20/00: Chemical Industry, includes: Process Efficiency,
Feedstocks, Reduction of GHG emissions, Energy Recovery,
Recycling catalysts/materials

High

Food & drink
• Efficiency improvements
• Low-carbon substitutes
• Heat recovery and reuse
• Recovery and recycling
• Energy systems
• Alternative process technologies
• Clustering

Y02P80/00: Climate change mitigation technologies for
sector-wide applications (note: not specific to food & Drink,
but relevant for all sectors hence included)

High

Iron & steel
• Efficiency improvements
• Low-carbon substitutes
• Heat recovery and reuse
• Recovery and recycling
• Energy systems
• Alternative process technologies
• Clustering

Y02P10/00: Technologies related to metal processing:
Reduction in GHGs, using alternative fuels, using renewables,
recycling, process efficiency

High

Cement
• Efficiency improvements
• Low-carbon substitutes
• Heat recovery and reuse
• Recovery and recycling
• Energy systems
• Alternative process technologies
• Clustering

Y02P40/10: Production of Cement: energy efficiency, Fuels
from renewables, CCS, Optimizing production methods

High

Pulp & paper
• Efficiency improvements
• Low-carbon substitutes
• Heat recovery and reuse
• Recovery and recycling
• Energy systems
• Alternative process technologies
• Clustering

D21: paper-making; production of cellulose Medium

Glass
• Efficiency improvements
• Low-carbon substitutes
• Heat recovery and reuse
• Recovery and recycling
• Energy systems
• Alternative process technologies
• Clustering

Y02P40/50: Glass production, e.g. reusing waste heat during
processing or shaping; improving yield and rejection rates

High

Ceramics
• Efficiency improvements
• Low-carbon substitutes
• Heat recovery and reuse
• Recovery and recycling
• Energy systems
• Alternative process technologies
• Clustering

Y02P40/60: Production of ceramic materials or ceramic
elements, e.g. substitution of clay or shale by alternative raw
materials, e.g. ashes

High

Notes: No academic benchmark was found for this sub-field.
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Table 8: Nuclear Fission Patent Codes

Sub-technology Patent Codes Confidence
Mining, Processing, Enriching, Fabricating Y02E30/00: Energy Generation of Nuclear Origin, G21:

NUCLEAR PHYSICS; NUCLEAR ENGINEERING
High

CAPEX – Components and systems Covered by G21: Additive manufacturing technology, B33Y High
CAPEX – Construction and materials Covered by G21 High
CAPEX – Construction installation and
commissioning

Covered by G21 Medium

Operations and Maintenance Covered by G21 Medium
Decommissioning Covered by G21 Medium
Waste Management Covered by G21 High
Regulatory Covered by G21 Medium

Notes: No academic benchmark was found for this sub-field.
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Table 9: Offshore Wind Patent Codes

Sub-technology Patent Codes Confidence
Floating wind
• Moorings
• Floating Foundations
• Dynamic Cables

B63B 21/00: Tying-up; Shifting, towing, or pushing
equipment; Anchoring
B63B 2035/446: Floating structures carrying electric power
plants for converting wind energy into electric energy
H01B7/12: Floating cables
H01B7/045: Flexible cables, conductors, or cords, e.g.
trailing cables attached to marine objects e.g. buoys, diving
equipment, aquatic probes, marine towline

High

Turbines Y02E10/70: Energy generation through renewable Energy
sources (wind)
F03D: Wind motors, control and rotation axis. . . etc
F05B 2240/21: Components for wind turbines

High

Foundations
• Foundation Optimisation
• New Foundation Design

E02D27/00: Foundations as substructures
E02D27/425

High

Advanced Wind Modelling G06F 30/00: Computer Aided Design Medium
Balance of Plant (Transmission)
• Longer Distance Transmission
• Grid Integration
• Grid Layout
• Array Cables
• HVDC Substations
• Substation Co-location

Y04S10/00: System supporting electrical power generation,
transmission or distribution
Y02E60/60: Arrangements for transfer of electric power
between AC networks or generators via a high voltage DC
link (HVDC)
H02J 3/36: Arrangements for transfer of electric power
between ac networks via a high-tension dc link
H02J 2003/365: Equipment being or involving an electric
power substation
H02J 13/00034

Medium

Operations & Maintenance
• Remote Access
• Remote O&M
• O&M Optimisation

F03D 17: Monitoring or testing of wind motors, e.g.
diagnostics
Y02P 80/00: Climate change mitigation technologies for
sector-wide applications
H02J 13/365: Adaptive control systems, systems
automatically adjusting themselves to have a performance
which is optimum according to some preassigned criterion
G05B 13/00

High

Installation (and logistics)
• Advanced Lifting
• Innovative Installation Techniques
• Assembly

F03D 9/00: Vessels or similar floating structures specially
adapted for specific purposes and not otherwise provided
B63B 2035: Wind motors specially adapted for installation
in particular locations
E03D 27

High

Energy storage
• Offshore Wind Energy Storage
• Alternative Energy Storage

Y02E 70/30: Systems combining energy storage with energy
generation of non-fossil origin
F03D 9/10

Medium

Decommissioning & End of Life
• Decommissioning
• Repowering
• Life Extension

F05B 2240: Component Medium

Notes: Academic benchmark used for this sub-field: Johnstone et al. (2010)
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Table 10: Smart Systems Patent Codes

Sub-technology Patent Codes Confidence
Smarter markets
• Market platforms and aggregation

Y04S50/00: Market activities related to the operation of
systems integrating technologies related to power network
operation and communication or information technologies
Y04S: systems integrating technologies related to power
network operation, communication or information
technologies for improving the electrical power generation,
transmission, distribution, management or usage, i.e. smart
grids

High

Demand side response
• DSR – Homes/ buildings
• DSR – EV integration

Covered by Y04S High

Electricity storage
• Bulk storage
• Distributed storage
• Distributed storage
• Fast response storage

Y04S10/14: Energy Storage Units
Y02E70/30: Systems combining energy storage with energy
generation of non-fossil origin
Y02E60/10: Energy Storage Using Batteries
Y02E60/16: Mechanical energy storage, e.g. flywheels or
pressurised fluids
Y02E60/13: Energy storage using capacitors

High

Vector coupling
• Power-to-gas

C25B1/02: Electrolytic production of inorganic compounds
or non-metals > Hydrogen or oxygen > by electrolysis of
water
Y02E60/36: Hydrogen production from non-carbon
containing sources, e.g. by water electrolysis
C01C1/00: Ammonia; Compounds thereof

Medium

Networks
• Networks

H02H9/00: Emergency protective circuit arrangements for
limiting excess current or voltage without disconnection
Y02E40/00: Technologies for an efficient electrical power
generation, transmission or distribution

High

Applications of HPC, AI and ML in data-
rich energy systems

G06F30/27: using machine learning, e.g. artificial
intelligence, neural networks, support vector machines [SVM]
or training a model
G06F21/00: Security arrangements for protecting computers,
components thereof, programs or data against unauthorised
activity

Medium

Notes: No academic benchmark was found for this sub-field.

Table 11: Solar Patent Codes

Sub-technology Patent Codes Confidence
N/A Y02E10/50: Photovoltaic [PV] energy

H01L31/00: Semiconductor devices sensitive to infra-
red radiation, light, electromagnetic radiation of shorter
wavelength or corpuscular radiation and specially adapted
either for the conversion of the energy of such radiation into
electrical energy or for the control of electrical energy by such
radiation; Processes or apparatus specially adapted for the
manufacture or treatment thereof or of parts thereof
H02S: Generation of electric power by conversion of infra-
red radiation, visible light or ultraviolet light, e.g. using
photovoltaic [pv] modules
F24S: Solar Heat Collectors
F03G6/00: Devices for producing mechanical power from
solar energy

High

Notes: Academic benchmark used for this sub-field: Johnstone et al. (2010)
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Table 12: Tidal Stream Patent Codes

Sub-technology Patent Codes Confidence
Structure & Prime Mover Y02E10/20: Hydro energy

Y02E10/30: Energy from the sea, e.g. using wave energy or
salinity gradient
F03B3/00: machines or engines for liquids

High

Power Take Off & Control F03B15/00: Controlling Machines or Engines for Liquids
E02B9/08: Tide or wave power plants

High

Foundations & Moorings B63B2035/4466: Floating Structures carrying electric power
plants (for converting water energy into electrical energy)
E02D27/52: Submerged foundations
B63B21/00: Tying-up; Shifting, towing, or pushing
equipment; Anchoring

High

Connection H01B7/12: Floating cables
Flexible cables, conductors, or cords, e.g. trailing cables
attached to marine objects e.g. buoys
H01B7/045: diving equipment, aquatic probes, marine
towline

Medium

Notes: Academic benchmark used for this sub-field: Johnstone et al. (2010)
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