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Abstract 
Tall buildings are central to facilitating sustainable urbanization and growth in cities worldwide. We 
estimate average elasticities of city population and built area to aggregate city building heights of 0.12 
and -0.17, respectively, indicating that the largest global cities in developing economies would be at 
least one-third smaller on average without their tall buildings. Land saved from urban development by 
post-1975 tall building construction is over 80% covered in vegetation. To isolate the effects of 
technology-induced reductions in the cost of height from correlated demand shocks, we use interactions 
between static demand factors and the geography of bedrock as instruments for observed 1975-2015 
tall building construction in 12,877 cities worldwide, a triple difference identification strategy. 
Quantification using a canonical urban model suggests that the technology to build tall generates a 
potential global welfare gain of 4.8%, of which only about one-quarter has been realized. Estimated 
welfare gains from relaxing existing height constraints are 5.9%in the developed world and 3.1% in 
developing economies. 
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1 Introduction

Chicago’s ten-storey 42-meter tall Home Insurance Building, built in 1884-85 and often called

the world’s first “skyscraper” (Schleier, 1986), was among the first uses of technologies that

would prove to transform cities around the world. Since then, technological improvements that

have lowered the marginal cost of building high have facilitated the construction of the more

than 16,000 km of buildings over 55 meters tall in cities worldwide. Most of this construction

has occurred since 1975 for residential use in developing economies. With the equivalent of

almost 43,000 Empire State Buildings, the stock of tall buildings worldwide holds an aggregate

asset value of more than 15 trillion dollars.1 Indeed, a look at many global cities today leaves

no doubt that the Skyscraper Revolution has been transformative (Glaeser, 2012). On average,

cities of over 5 million inhabitants now host over 100 km of heights in tall buildings. In cities

of over 1 million people, tall buildings account for about 10% of the stock and 18% of aggregate

construction costs for existing structures.2 Like currently developed countries during the 19th

and 20th centuries, many developing economies are now in a process of rapid urbanization,

growth, and structural transformation. With these great pressures, the technology of building

tall has allowed cities to accommodate greatly increased populations while saving land for non-

urban uses. Hsieh and Moretti (2019) and Duranton and Puga (2019) quantify the extent to

which associated expansion in housing supply drives broader economic growth.

In this paper, we empirically and theoretically investigate the extent to which the skyscraper

revolution has facilitated sustainable urbanization and urban growth, with a particular focus on

cities in developing economies. Our empirical analysis recovers causal effects of the component

of 1975-2015 tall building construction driven by technical progress and declines in the marginal

cost of height on urban population growth, urban form, and land use. Using data from 12,877

urban agglomerations worldwide, we estimate average elasticities of city population and built-up

land area to total city building heights of 0.12 and -0.17, respectively. These estimates are driven

by cities in the developing world. For 1975-2015, we find no effects of heights in the developed

world outside of North America. Instead, we find population elasticities with respect to heights

of 0.14-0.21 in Europe for 1850-1975 and 1900-1975 and in the US for 1920-1975, during these

regions’ periods of economic development. Tall buildings have facilitated substantial growth in

the developing world’s largest 100 cities since 1975. Had the current stock of tall building in

these cities not been constructed, these cities would be up to 50 percent smaller in population

and be up to one-third larger in land area. The skyscraper revolution has been critical to the

growth and success of the world’s largest cities and the preservation of surrounding rural land,

over 80% of which is covered in tree canopy or short vegetation.

1This calculation assumes that the construction cost net of depreciation to 2020 is a lower bound on the asset
value for most tall buildings. We assume 2% annual depreciation and an average construction cost per meter of
height matching the 572 million 2020 dollars for the Empire State Building.

2Using data on building volumes, we calculate that the fraction of the building stock in buildings over 55
meters tall are 80% in Hong Kong, 58% Seoul, 39% in Singapore, 35% in Mumbai, 32% in Taipei, 30% in Moscow,
29% in Dubai, 27% in Kuala Lumpur, 26% in Sao Paulo, 23% in Tel Aviv, 22% in Hanoi, 17% in Manila, 16% in
Bogota, and 12% in New York. Construction cost per floor area for tall buildings is about twice that for shorter
buildings in our data.
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For identification, we use an instrumental variables strategy that leverages both cross-

sectional and time series variation in the marginal cost of building high. In the cross-section, we

use variation in city mean bedrock depth as a key source of identifying variation. Descriptive

analysis and building cost function estimates indicate marginal cost of height per building floor

area that is U-shaped in bedrock depth, consistent with engineering standards for foundation

depth and the narrative in Barr et al. (2011). Bedrock that is too close to the surface must

be blasted away at high cost to make room for building foundations. Foundations built above

bedrock that is beyond the optimal depth must either be reached with the costly installation of

deep wide piles, placed on a more costly raft, or engineered to be underpinned by many very

long deeply bored piles. Favorable bedrock depth thus acts as a cost shifter, promoting more

construction of tall buildings for a given level of demand. As a result, the elasticity of tall

building construction with respect to historical city population, a proxy for the level of demand,

is greater at more favorable bedrock depths. Finally, differencing over the 1975-2015 period

leverages secular reductions in the marginal cost of height for identification. Particularly in the

developing world, costs were sufficiently prohibitive in 1975 to preclude the existence of many

tall buildings. Put together, our identification strategy leverages triple difference comparisons

of historically large versus small cities on more versus less favorable bedrock depths over time.

To implement the empirical strategy, we compile a unique data set of all 12,877 cities with

populations over 50,000 worldwide (in 182 countries), covering about 90% of the world’s total

urban population. For these cities, we organize census-based population and satellite-based area

estimates going back to 1975, allowing us to measure population and land use in and around

these cities over time. To capture the vertical size of cities, we use a data set of 270 thousand

tall buildings from Emporis. This data set has comprehensive information on the location, use,

and construction year of all buildings over 55 meters tall worldwide.

To conceptually ground the empirical work and evaluate the welfare consequences of

policies that influence building heights, we incorporate building height into a neoclassical urban

general equilibrium “representative city” model with frictional rural-urban migration. Potential

floorspace rents for the commercial and residential sectors capitalize differences in production

and residential amenities, respectively, across space within the city. Developers respond to

greater floorspace demand by building taller, facing construction costs that are convex in height

(Ahlfeldt and McMillen, 2018), consistent with our empirical evidence. In a competitive market,

the land rent is the residual in the profit function that determines whether land is developed

for commercial or residential use (Duranton and Puga, 2015). This setup draws from Ahlfeldt

and Barr (2022), though it adds migration frictions through heterogeneity in tastes for urban

life (McFadden, 1974), incorporating ideas from Harris and Todaro (1970), Bryan and Morten

(2018) and Desmet et al. (2018) to accommodate domestic migration. Imperfect mobility of

workers means that population and the utility of residents are endogenous objects.3

In the model, as in the data, reductions in the cost of height cause cities to grow vertically and

become more productive and compact, with the vertical expansion partially offset by horizontal

3Our setup nests the closed-city and open-city models as special cases under extreme and negligible taste
heterogeneity. See Brueckner (1987) for a discussion of these cases in the standard urban model.
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contraction. Due to the positive net effect on housing supply, the average floorspace rent falls.

Lower rents, in conjunction with higher wages that arise from agglomeration economies, result

in greater urban utility. Rural-urban migration is a central element in the model, as it is the

way that cities grow in population in response to reductions in the cost of height. Matching

estimated population and land area elasticities with respect to height for a sub-sample of cities

inferred to have the least burdensome land-use regulations to their model simulated counterparts

yields an associated estimated long-run elasticity of migration with respect to the urban real

wage of 1.6, which is in line with other evidence in the literature.

Using the model, we undertake counterfactual exercises which indicate that tall buildings

have the potential to facilitate 4.2% and 4.8% greater average worker welfare in developing and

developed economies, respectively. However, only about one-quarter of these potential welfare

gains from heights have been realized because of existing land use and height regulations.

Moreover, relaxing existing height constraints would reduce aggregate urban land values by

an estimated 4.7% and 9.5% in developing and developed economies, respectively. To come

to these conclusions, we compare the simulated height unconstrained model equilibrium for

each city in our data to two alternative equilibria. First is the constrained equilibrium given

observed city-specific “height gaps”, which quantify the fraction of unconstrained equilibrium

city heights justified by fundamental cost and demand factors that have not been realized.

Second is the alternative constrained equilibrium allocation under a height limit that prohibits

all tall buildings, which is typically a more binding constraint for larger cities. Impacts of

height constraints are increasing in city size and declining in the cost of height, which is

governed by bedrock depth. Aggregate land rents decline most in the largest cities due to

the horizontal contraction facilitated by the greater allowed heights. Hence, reducing height

regulation redistributes welfare from land to labor. Landlords lose with the lower rents associated

with the supply expansion that comes with new heights but workers gain more due to slightly

higher wages, enhanced access to preferred locations, and lower rents.

Looking across regions in the developing world, the relaxation of existing height restrictions

has the potential to increase the average resident’s welfare by 4.8% in Africa, 3.9% in Latin

America, and 2.6% in Asia, with associated declines in aggregate land rents that are at least one-

third larger in percentage point terms. In developed economies, the greatest potential welfare

gains from relaxing height constraints are 7.3% in Asia, 6.6% in Oceania and 6.3% in North

America. Variation across regions in welfare and land capitalization effects of relaxing height

regulations are determined by differences in the fraction of the population in large cities, the

costs of heights (due to variation in bedrock depths), and the amount of existing tall building

construction (bite of existing regulations).

A large literature assesses the extent to which various types of capital accumulation, and

in particular infrastructure construction, drive urban change. However, this is the first paper

to comprehensively study how declines in the costs of building tall have contributed to urban

development in cities around the world. Our analysis has many parallels with the large empirical

literature exploring the impacts of various types of infrastructure on cities. Like highways

(Duranton and Turner, 2012; Faber, 2014), railroads/subways (Gonzalez-Navarro and Turner,
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2018a; Heblich et al., 2020), ports (Brooks et al., 2021; Ducruet et al., 2020), airports (Campante

and Yanagizawa-Drott, 2018), and sewers (Alsan and Goldin, 2019; Coury et al., 2022), tall

buildings form a central component of capital stocks in the world’s largest cities, with myriad

evidence in the literature of their causal impacts on urban growth and change. Similar to

the research on infrastructure, we face the identification challenge of isolating variation in

infrastructure supply across cities and over time that is unrelated to local demand conditions.

Indeed, our identification challenge is perhaps more demanding than that in many transport

studies, as there are few systematic institutional reasons for building heights to vary across

cities. Somewhat analogous to Faber (2014)’s use of least cost paths driven by topography as

instruments for highway routes in China, we use natural bedrock depth as a source of exogenous

variation in changes in the cost of building taller. Our estimates are of similar or greater

magnitudes to those in the literature for impacts of other components of urban capital stocks.

Duranton and Turner (2012) estimate an elasticity of urban population growth with respect

to the level of urban highway infrastructure of 0.15 for the US, which is quite similar to our

estimate of 0.12 for the world. Our estimated population density elasticity for tall buildings

of 0.29 is about 3 times as large as those found for urban radial highways in the US and

China (Baum-Snow, 2007; Baum-Snow et al., 2017) and much larger than for other types of

infrastructure. These investigations of how infrastructure drives urban growth are grounded in

the classic empirical literature going back to Glaeser et al. (1992), Henderson et al. (1995), and

Ades and Glaeser (1995) that study the determinants of urban TFP growth and variation across

locations in equilibrium city sizes.4

Understanding how the skyscraper revolution fits into the process of urban development is

all the more important as cities that do not develop vertically tend to sprawl (Burchfield et

al., 2006) and/or become inefficiently spatially configured. Odd urban spatial structures impede

growth (Harari, 2020), and associated sprawl typically occupies land that is particularly valuable

in non-urban uses. According to World Bank (2022a), urban areas occupied 3.6 million sq km in

2011, whereas 48.0 million sq km of land was in agriculture. As cities are more likely to be sited

on agriculturally productive land (Henderson et al., 2018), land savings through increased urban

compactness frees up more space for agriculture and tree canopy. Taller cities make us “greener”

(Glaeser, 2012) by accommodating more people on less land. In that, the skyscraper revolution

has parallels with the Green Revolution, whose goal was to use rural land more intensively in

order to use less land globally (Gollin et al., 2021).

Conceptually, our study perhaps most closely relates to the large literature studying land use,

housing supply, and regulation. Our modeling framework incorporates insights from the land use

and housing production literatures to accommodate height restrictions and general equilibrium

linkages across labor and housing markets within and between residential and commercial sectors.

Following in the tradition of Muth (1969), we incorporate residential and commercial real estate

4Additional papers studying impacts of highways and railroads on cities include Storeygard (2016); Gonzalez-
Navarro and Turner (2018b); Gibbons et al. (2019); Baum-Snow (2020); Baum-Snow et al. (2020), and Jedwab
and Storeygard (2021). Redding and Turner (2015) provides a comprehensive overview of much of this extensive
literature.
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production into the neoclassical monocentric land use theory of Alonso (1964) and Mills (1967),

with some elements of the more recent quantitative spatial models summarized in Redding

and Rossi-Hansberg (2017). Qualitative conclusions thus mirror those from the more targeted

modeling frameworks in Bertaud and Brueckner (2005) and Henderson et al. (2021), though

we put more emphasis on accommodating variation across cities in the marginal cost of height.

The use of the simple monocentric city structure allows our model to reasonably characterize

cities of many different sizes and shapes, in part as captured by differences in fundamental

productivities and amenities. Our model parameterization uses as important inputs results

from the more focused empirical studies of the cost of height (Ahlfeldt and McMillen, 2018) and

returns to height (Koster et al., 2013; Danton and Himbert, 2018; Liu et al., 2018). These central

parameters shape the verticality of cities in our model (Barr, 2010, 2012), with the dominant idea

that tall buildings are a reflection of economic activity at the time they were built (Ahlfeldt and

Barr, 2020). Curci (2020) provides evidence that skyscrapers catalyze nearby densification and

productivity gains, with complementary evidence of within structure productivity advantages

for tall buildings in Liu et al. (2020).

Much research on the existence and implications of housing market regulation has been

carried out for developed economies, including Glaeser et al. (2005), Hilber and Vermeulen

(2016), Baum-Snow and Han (2019), and Brueckner and Singh (2020), as summarized in

Gyourko and Molloy (2015) and Duranton and Puga (2020). The more limited work for cities

in the developing world has mostly come to the same conclusion, that height regulations are

broadly binding and have negative welfare consequences. There is evidence in Brueckner and

Sridhar (2012) for Indian cities, Brueckner et al. (2017) and Tan et al. (2020) for Chinese

cities, Henderson et al. (2021) for Nairobi, along with Jedwab et al. (2020)’s meta-analysis for

cities around the world. We provide a comprehensive quantitative evaluation of the extent to

which reductions in the cost of building high have influenced affordability, rural-urban migration,

productivity, and welfare for all cities worldwide. Moreover, we quantify the prospects for further

gains through relaxation of existing height regulations.

The use of geological conditions as instruments has been common in the literature concerned

with the economic (productivity and amenity) effects of urban density, as summarized by

Ahlfeldt and Pietrostefani (2019). Similar to our empirical approach, a few studies in this

literature use soil and subsoil geological conditions to instrument for density in the identification

of agglomeration spillovers (Rosenthal and Strange, 2008; Combes et al., 2011). Like us, these

papers argue that solid bedrock, or favorable geological conditions more generally, reduce the cost

of building tall structures, leading to greater employment and population densities for reasons

unrelated to features that may have a direct impact on productivity or amenities such as access

to coastlines and navigable rivers. This paper builds on these ideas and the more direct evidence

in Barr et al. (2011) and Barr (2016) to directly document the causal connections from bedrock

depths to building heights, a required intermediate step to density that has heretofore not been

comprehensively explored. The large applied agglomeration and urban growth literature, as

summarized in Combes and Gobillon (2015), does not closely consider the requirements of the

built environment for generating density. This lack of inquiry is likely due to the challenges
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associated with putting together data appropriate for the analysis. Our estimates indicate that

the lower costs of tall building construction have facilitated cities’ vertical expansions as a central

vehicle to densification and associated enhanced productivities and amenities. In recent decades,

bedrock depth has become an important location fundamental predicting urban size, much like

historic city locations and historically relevant topographical features predict the persistence of

city locations to today (Davis and Weinstein, 2002; Bleakley and Lin, 2012).

2 Data and Descriptive Evidence

2.1 The Growth in Tall Buildings

Until the 1960s, the vast majority of the world’s tall buildings (over 55 meters) were office

buildings found in the largest cities of the highest income countries. Starting in the 1970s, the

construction of tall buildings spread through many middle income countries and into medium

sized and smaller cities worldwide. Moreover, most such construction was for residential rather

than commercial use. Figure 1 depicts these patterns. As seen in the left panel, the world’s

total stock of tall building heights increased slowly from the 1890s, when the first tall buildings

were built, until the 1970s. During our primary study period of 1975-2015, the total stock of

heights in buildings for which we observe construction years increased from 868 km to 12,387 km.

This growth corresponds to more than 90% of the total stock today and is about three times

the distance between New York and Los Angeles. The total heights of residential buildings

constructed 1975-2015 is seven times that of office buildings (right panel of Figure 1). While

most buildings over 100 meters host offices, most buildings between 55 and 100 meters are

residential.

Figure 1: Global Evolution of Aggregate Tall Building Heights, 1890-2021

(a) All Tall Buildings (b) Residential vs. Office Towers

Notes: The left panel shows the evolution of the total stock of tall building heights (km) for the world and the United States
1890-2021. The right panel shows the evolution of the total stock of tall building heights (km) separately for residential
buildings and office buildings 1975-2021. Only buildings above 55 meters are included.
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Figure 2 shows how widespread tall buildings have become around the world. For an

exhaustive data set of 12,877 cities worldwide, it shows the aggregate heights of tall building in

1975 and 2015. While the highest stock cities included New York, Chicago, Hong Kong, Moscow,

London, Sao Paulo and Philadelphia in 1975, in 2015 the list is dominated by Seoul, Hong Kong,

Moscow, Sao Paolo, Singapore, New York, Guangzhou and Tokyo. In terms of absolute changes

per capita 1975-2015, some of the most dynamic cities include Seoul, Hong Kong, Panama City,

Singapore, Moscow, Kuala Lumpur, Dubai, and Tel Aviv, reflecting the spread of tall building

construction to lower income economies.

The remarkable 1975-2015 tall building construction boom can be explained by both supply

and demand factors. On the demand side, the 1975-2015 period saw both rapid urbanization and

income growth in many countries. This has manifested as particularly strong demand growth

in larger cities. On the supply side, there was technical progress in tall building construction,

bringing costs down. Until the 1960s, most tall buildings were steel construction. In the 1970s,

there was a shift toward concrete construction. Concrete buildings use lower cost materials

but cannot be easily built as tall as steel construction buildings. In the 1975-2015 period,

concrete accounts for 80 percent of height in new construction buildings over 55 meters, with

the remainder about evenly split between steel and composite. As concrete is heavier than steel,

more recently built tall buildings have required more robust foundations to accommodate the

extra weight.

Figure 3 provides evidence on reductions in the cost of height over time. For this figure, we

use building level data from Emporis on construction cost and floor area for the United States,

described in more detail in the following sub-section. This figure is created in two steps. First,

a construction cost index is created by residualizing city and decade of construction fixed effects

from log cost per building floor area (excluding land acquisition costs). This residualization

partials out local input cost differences across cities and over time. Second, this index is smoothed

over construction year and building height using a bivariate Gaussian kernel (see Appendix A.1

for details). Because time effects are removed, construction cost per floor area is (approximately)

mean 0 in each year. Therefore, this figure speaks only to the changes in construction costs in

taller relative to shorter buildings.5

Evident in Figure 3 are steep declines in the cost of height over the past century that

continued throughout our study period of 1975-2015. In 1975, buildings of 200 meters were on

average 3.7% higher cost to build per square meter than 125 meter tall buildings. By 2015,

that gap had fallen to just 1.3% greater. Appendix A.3 documents further evidence of secular

declines in construction costs that were more rapid for tall buildings than shorter buildings,

including in developing economies. Our supply model in Section 2.4 below specifies how a

combination of such secular cost declines and variation in levels of demand for real estate across

cities of different sizes can have precipitated the post-1975 boom in tall building construction

documented in Figure 1 that has been particularly oriented toward the world’s largest cities.

5We focus on buildings in the United States, as the increasing prevalence of tall buildings in lower income
countries over time may introduce composition biases. Figure A1 shows similar patterns of secular decline in the
cost of height for buildings in developing economies.
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Figure 2: Sum of Tall Building Heights, World Cities, 1975-2015

(a) 1975

(b) 2015

Notes: This figure shows the total stock of tall building heights (km) for 12,877 world cities of at least 50,000 residents in
2015. Only buildings above 55 meters are included.
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Figure 3: Trends in Construction Costs by Height: US
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Notes: The sample includes 591 tall buildings in 93 US cities. Appendix Table A1 Panel A has summary statistics. “Cost”
is the log cost per floor area, residualized for city fixed effects and decade of construction fixed effects. We use locally
weighted regressions with a bivariate Gaussian kernel to estimate local means of the residualized cost measure within the
height-bedrock plane with a bandwidth parameter for both covariates of κ = 50. Appendix Section A.1 provides details
and results from locally weighted regressions with univariate kernels that deliver confidence bands for height categories that
roughly correspond to the dotted blue line (125 meter building) and the solid red line (200 meter building).

2.2 Data Sources

The empirical analysis uses historical information about urban agglomerations and building

heights for 12,877 cities worldwide, 11,273 of which are in developing economies. Also

incorporated into the data set are information on city bedrock depth and lights at night. Below

we briefly describe each data source.

City Boundaries and Population: Using the Global Human Settlements-Urban Centre

Database (GHS-UCDB) (Florczyk et al., 2019, version 1.2 from 18/04/2020), we obtain the

GIS boundaries of all 12,877 current agglomerations of at least 50,000 inhabitants worldwide,

which they call “urban centres” (UCs). These UCs correspond to commuting zones, as in US

metropolitan statistical areas.6 The GHS-UCDB reports the (satellite-based) total land area

and built-up area of each city circa 1975, 1990, 2000 and 2015. Using the built-up area and

population census data, the GHS-UCDB also reports population estimates for each city in these

same years. As built-up area is more consistently measured over time, this is our main measure

of urbanized land. The 12,877 cities account for about 90% of the world’s total urban population

in 2015 (United Nations, 2018).

Building Heights and Construction Costs: Emporis (2022) (last accessed 02-07-2022) was

a global provider of international skyscraper and high-rise building data.7 Emporis collected

information about the full life-cycle of each building, from conception to demolition, covering

6We refer to “UCs”, “agglomerations” and “cities” interchangeably. For example, the New York UC includes
“New York; Islip; Newark; Jersey City; Yonkers; Huntington; Paterson; Stamford; Elizabeth; New Brunswick.”

7Since September, 2022, information in the Emporis data has been integrated into CoStar Group data
products.
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thousands of cities worldwide. The database contains data for 693,855 “existing [completed]”

buildings.8 For almost all buildings, we know the exact geographic coordinates, or at least the

city in which it is located. This allows us to assign each building to a city in the GHS-UCDB

data set. Since we know the year of construction (and demolition if demolished), we obtain

the total sum of heights for each city-year from the 1890s, when the first tall buildings were

constructed, to date. For a select set of 1,053 buildings, the Emporis data set also reports the

building’s construction cost, though 20 of these do not have floorspace information.

Inspection of the kernel density of 2015 building heights in the Emporis data set (Figure

A2) reveals a mode and large spike at 55 meters. Since cities are likely to have more buildings

below than above 55 meters, and since the distribution of buildings is relatively smooth after 55

meters, we infer that the data set likely only captures the universe of buildings above 55 meters.

As such, our sum of heights measure for each city and year only includes buildings of at least

55 meters.

To account for the fact that many cities have no buildings above 55 meters in some years, we

primarily use ln (Heights + 1) to measure the sum of heights in each city. However, all results

are robust to using scaling factors other than 1, the inverse hyperbolic sine transformation, or an

indicator for whether the city had any tall buildings as alternative measures of city heights. Our

empirical approach thus essentially treats heights in the base year in many cities as 0, especially

for the sub-sample analysis that uses cities in developing economies only.

Bedrock Depth: Shangguan et al. (2017) reports bedrock depth in meters at a 30 second (≈
1 km) resolution for the entire world. (For example, there are 8,118 such pixels in the New

York UC). We use calculate mean bedrock depth in meters (MBD) for each city within its 2015

boundary. Shangguan et al. (2017) indicates “this data set is based on observations extracted

from a global compilation of soil profile data (about 1,300,000 locations) and borehole data

(about 1.6 million locations).” Looking across all pixels within our city boundaries, 80% of the

variance in bedrock depth is between rather than within cities in our data. For pixels within cities

of at least 300,000 people in 2015, a Theil decomposition indicates that about three-quarters

is from between city variation. Our results are not sensitive to the use of mean bedrock depth

across all pixels in each city or the bedrock depth at each city’s central business district inferred

from the brightest cluster of lights at night pixels.

Lights at Night: While our main analysis considers city population and built area 1975-2015,

we also study the effects of tall building construction on lights at night, for which only more

recent data are available. Night lights data corresponding to the DMSP satellites are provided

by NGDC (2015). We use the radiance calibrated version of this data, which is available for

select years 1996-2011, to avoid issues related to top-coding.9 The data are available at a fine

spatial resolution and we use GIS to calculate total sum of lights at night across pixels for each

city.

8We only consider buildings of the following types: “building with towers”, “high-rise building”, “low-rise
building”, “multi-story building”, and “skyscraper”.

9This data set records levels of luminosity beyond the normal digital number upper bound of 63.
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2.3 Patterns of Vertical Growth in the Data

In 1975, 5% of cities in our full sample had any tall buildings, including only 1% of cities in the

developing world. The cities that did have tall buildings were mostly large and in the developed

world. Of the 515 cities over 500,000 people in 1975 in our full sample, 41% had at least one

tall building. But among the 347 large cities in the developing world, only 23% had any tall

buildings. Between 1975 and 2015, cities of all sizes built some tall buildings, but this growth was

disproportionately oriented toward larger cities. Only 2% of cities under 100,000 built their first

tall buildings in the 1975-2015 period. This number rises to 13% for cities of 100,000-500,000

and 32% for cities over 500,000, despite both of these groups having larger 1975 fractions with

tall buildings.

These patterns also hold conditional on bedrock depth and for heights measured in meters,

growth rates, or at the extensive margin. For example, among cities of fewer than 100 thousand

people in 1975, the average city with medium depth bedrock built 63 meters of heights in

buildings over 55 meters, whereas in the largest cities (over 500 thousand people in 1975) the

average city built 26.5 km of heights between 1975 and 2015. In the following sub-section, we

formally interpret this pattern, which is monotonic in 1975 city population, as reflecting the fact

that technical progress, which reduced the marginal cost of height, allowed the greater levels of

real estate demand in larger cities to be accommodated by building taller.

Conditional on 1975 city population, we see more tall building construction in cities on

intermediate bedrock depths. Between 1975 and 2015, the average large city on mean bedrock

depths below 10 meters built 5.2 km of tall buildings, relative to the 26.5 km built in cities on

intermediate bedrock depths cited above. Among small cities on shallow bedrock depths, only

9 meters of heights were built, relative to the 63 meters on intermediate bedrock depths cited

above. We note that the costs of installing foundations to support tall buildings depend more

on soil conditions in areas where bedrock is very deep. As a result, there is more dispersion in

height growth among cities on deep bedrock, meaning that they provide less identifying power

than do cities on bedrock depths below 30 meters. Nonetheless, mean 1975-2015 height growth

is lower in these deep bedrock cities than those on intermediate bedrock conditional on 1975

population.

Rapid 1975-2015 urbanization rates around the world manifested as population growth of

46% and built area growth of 55% in the average city. Our empirical results will indicate that this

decline in average population density would have been even greater absent the contemporaneous

boom in tall building construction, especially in the largest cities. On average across our sample,

the typical city added 895 meters of heights on a base of 67 meters in 1975, with almost all of

this growth among cities in the top tercile of the city size distribution. Table A2 presents means

of our key outcome variables and three measures of city aggregate height of buildings over 55

meters tall by categories of 1975 city population and city mean bedrock depth (MBD).10

10The final column in Table A2 shows that height growth was greater in cities of over 500 thousand residents
in 1975 than in those cities with between 100 and 500 thousand residents at all three indicated bedrock depths.
Differencing relative height growth between intermediate and shallow bedrock depths, we see that larger cities
on intermediate depth bedrock experienced more rapid 1975-2015 height growth than did those cities on shallow
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2.4 The Data Generating Process for Heights

Here we demonstrate conceptually how greater levels of real estate demand, more favorable

bedrock depths, and secular declines in the marginal cost of height have interacted to generate

more tall building construction in certain cities. In 1975, only a few very high demand cities had

tall buildings. With technical progress and declines in the marginal costs of height, it became

viable for more cities to host tall buildings. This increased viability was particularly true for high

population cities, where demand was high, with favorable intermediate bedrock depths, where

costs of height were lower. As a result, we see more robust height growth in large relative to

small cities with intermediate relative to low or high bedrock depths. This triple difference idea,

which compares cities of different 1975 populations and bedrock depths over time, leads into

our instrumental variables strategy of using 1975 log city population interacted with a flexible

function of bedrock depth as a source of exogenous variation in the 1975-2015 growth in building

heights across cities.

Having established above that the marginal cost of height secularly declined after 1975,

the next step is to provide evidence on how the cost of height is related to bedrock depth

in cross-sectional comparisons. Structural engineers have a simple rule of thumb known as

Rankine’s Theory which indicates the depth of a building’s foundation required for stability.

Rankine’s Theory lays out a proportional relationship between building weight (which is roughly

proportional to height) and foundation depth, with the constant of proportionality differing as a

function of soil conditions around the foundation. According to Rankine’s Theory, the optimal

foundation depth is around 10% of the building’s height. In order for a building to be stable,

the bottom of the foundation must either be anchored to bedrock, have a sufficiently wide base

(“raft”), or incorporate many very deeply bored piles. As rafts and numerous deeply bored piles

are more costly to construct and install, builders prefer to anchor to bedrock if it is not too deep.

However, if bedrock is within only a few meters of the surface, expensive blasting is required to

install the foundation. Figure A3 provides a visualization.

Central to our empirical approach is the observation that construction cost per square foot

varies with both building height and bedrock depth. Figure 4 provides descriptive evidence on

how construction cost varies with bedrock depth. It is constructed using the same methods as

Figure 3, with the bivariate smoothing of residualized log construction cost per building floor

area performed over bedrock depth and building height. It uses all buildings worldwide for which

we have construction cost data.

Figure 4 depicts both the non-monotonicity of construction costs in bedrock depth conditional

on height and the rate at which construction costs increase in height. The descriptive evidence

is that the cost-minimizing bedrock depth for 125 meter tall buildings is 18 meters (blue lines),

while that for 200 meter tall buildings is 25 meters (red lines). Constructing a 125 meter tall

building at the optimal bedrock depth saves more than 5% in cost per square meter relative to

building on surface level or very deep bedrock. The associated cost savings are much larger for

bedrock. We note that secondary Chinese cities are heavily over-represented in the deep bedrock category for
large cities at the bottom of Column (3). In many of these locations, the post-1990 construction boom did not
respond to market forces.
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200 meter tall buildings. Moreover, Figure 4 shows that unit costs increase in building height

much more rapidly where bedrock is deep. (Appendix A.2 has further discussion).

Figure 4: Construction Cost as a Function of Height and Bedrock Depth
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Notes: The sample includes 1,033 tall buildings in 206 world cities and 55 countries. Table A1 Panel B has summary
statistics. “Cost” is the log cost per floor area residualized for city fixed effects and country-by-decade of construction fixed
effects. Locally weighted regressions with a bivariate Gaussian kernel are used to estimate local means of the residualized
cost measure within the height-bedrock plane. We set the bandwidth parameter for bedrock, b, to κb = 6 and for building
height, h, to κh = 40, which corresponds to about one third of the standard deviation of each respective covariate. We
topcode height at the upper limit on the graph, so 250 m includes all buildings of at least 250 m. Appendix Section A.1
provides details and results from locally weighted regressions with univariate kernels, delivering confidence bands for height
categories that roughly correspond to the blue dotted line (for a 125 meter tall building) and the red solid line (200 meters).

The engineering evidence thus suggests that a reasonable approximation of the cost function

for developing a building of height S on bedrock depth Bac in city a of country c at time t is

Cact(S) = cactS
1+θ(Bac,ψt). (1)

To be consistent with patterns seen in Figure 3, we allow the elasticity of unit cost with respect to

height, θ(Bac, ψt), to change over time, as governed by the ψt parameters. To be consistent with

patterns seen in Figure 4, we allow both the elasticity of unit cost with respect to height and the

cost shifter cact to depend on bedrock depth. It is evident from Figure 4 that, commensurate with

the engineering discussion, the marginal cost of height per square meter is greater at low and high

bedrock depths, meaning that θ is U-shaped in Bac and θBB > 0. As c is non-parameterically

indexed by city and time, it incorporates differences in bedrock depth in addition to labor and

materials costs that may change over time. To maintain tractability and simplicity, we maintain

separability of time effects from bedrock depth effects in the elasticity of unit cost with respect

to height.

To corroborate the descriptive evidence in Figure 4 that θ is U-shaped in B, we recover rough

non-parametric estimates of the θ(B,ψ) function with our limited construction cost data. We

regress log construction cost per floor area on building height for each bedrock depth using an

instrumental variables locally weighted regression (IV-LWR) approach. Distance to the central
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business district (CBD) instruments for building height with controls for city and country-decade

fixed effects. As in Ahlfeldt and McMillen (2018) and Ahlfeldt and Barr (2022), identifying

variation comes from comparing construction costs of different buildings in the same city exposed

to approximately the same bedrock depth but at different CBD distances. The result, depicted

in Figure A5, supports the engineering-based hypothesis that bedrock at intermediate depths is

associated with lower marginal costs of height. Estimates of θ range from 0.1 at intermediate

bedrock depths to 0.9 at very low and moderate depths, and more than 1.0 at high depths.

These results support the idea that cities with bedrock in an intermediate range will have a

greater ease of accommodating high real estate demand, resulting in lower barriers to growth.

Details of this estimation procedure and results are in Appendix A.2.

As construction cost differs by bedrock depth, the profit maximizing level of height also

differs by bedrock depth conditional on demand conditions. Competitive building developers

have the following profit function associated with building to height S(x) at location x in city

ac at time t.

πact(S, x) =

∫ S

0
pact(x, s)ds− Cact(S)− ract(x). (2)

pact(x, s) is the sales price per unit of real estate at location x and height s and ract(x) denotes

the fixed cost component of development, which includes both the land price and any regulatory

development costs at location x. In Section 4, we lay out a demand structure that justifies the

separable form pact(x, s) = pact(x)s
ω, where ω is positive and close to 0. (In particular, for

the model to be well-behaved we need that θ > ω.) A positive ω reflects the amenity value

associated with improved views and reduced noise.11 Profit maximization yields the log of the

optimal height S∗ that depends on the price per unit of real estate services and cost factors.

lnS∗(pact(x), cact, Bac, ψt) =
1

θ(Bac, ψt)− ω

(
ln
pact(x)

cact
− ln [1 + θ(Bac, ψt)]

)
(3)

This expression highlights the fact that the developer’s choice of log height depends on the

interaction between bedrock depth, as included in θ(Bac, ψt), and the level of demand, as included

in pact(x).

To understand how optimal heights differ across space within cities, it is convenient to impose

some restrictions on the pact(x) function. Following the model developed further in Section 4,

we impose that the price per floor area of real estate declines in CBD distance x.

pact(x) = p0actf(x; ρac) (4)

Each city a in country c at time t faces its own real estate demand conditions, leading us to index

CBD rents by this triplet. Each city also has its own transport network driving accessibility to the

center, leading us to index the advantages of being near the center by city, where f ′(x; ρac) < 0

and ρac governs the city-specific accessibility advantages to the center.

11Evidence for both commercial and residential buildings indicate that real estate prices and rents are typically
greater on higher floors of tall buildings, reflecting the amenity value of height (Liu et al., 2018; Ben-Shahar et
al., 2022; Nase and Barr, 2023).
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Equation (3) lays out the logic behind our triple difference empirical strategy as implemented

with IV. First, compare locations in two cities in 2015 at a given CBD distance x that are

identical in all ways, including the same favorable bedrock depth of 20 meters, except for their

CBD rents p0act. The difference in ln p0act between these two cities captures their difference in

real estate or height demand. That is the first difference. Second, consider an analogous pair

of cities with the same gap in ln p0act but with a less favorable bedrock depth of 0 meters. The

form of the θ function documented above indicates that these second two cities have a smaller

gap in heights, as the elasticity of height with respect to price has an inverse-U shape in bedrock

depth. This is the second difference, which can be derived by calculating ∂2 lnS∗

(∂ ln p0)(∂B)
. Finally,

the secular decline in the cost of height over time manifests as a reduction in ψt. This reduction

has facilitated taller construction in high demand locations, and particularly so in cities with

favorable bedrock. This is the third difference. Differentiating (3) with respect to ln p0act then

Bac then ψt derives this result, given that dψt < 0. In 1975, building tall was very costly

everywhere. As the marginal cost of height declined for all cities, it is the locations with strong

demand conditions and favorable bedrock depths that are predicted to increase their heights the

most.

We are now in a position to characterize aggregate city building heights as observed in the

Emporis data. As real estate prices decline in CBD distance, each city has a unique endogenous

distance cutoff within which buildings of over 55 meters exist in each year. (In some cities, this

cutoff is 0.) Call this distance cutoff x55act. Then the total stock of heights in city a at time t is

H55
act =

(
p0act

cact(1 + θ(Bac, ψt))

) 1
θ(Bac,ψt)−ω

∫ x55act

0
f(x; ρac)

1
θ(Bac,ψt)−ωLac(x)dx (5)

In this expression, Lac(x) is a city-specific function that captures the amount of land that can

be developed at each distance. For example, it is 2πx for a circular city. The integral covers the

land in use for tall buildings. This equation shows that the aggregate height in a city depends

on the same factors as the profit-maximizing level of height at each specific location.

Following the comparative statics on lnS∗ in Equation (3) for each location within x55act

delivers an aggregate of the location-specific gaps, which must follow the same pattern. Cities

with greater heights at all locations x must also have a greater aggregate stock of heights when

adding up over the same range of x. In addition, any city with a greater height at any location

x must also have a greater CBD distance cutoff x55act beyond which heights are below 55 meters,

representing an additional force increasing the gap in aggregate heights.

2.5 Predicting City Level Height Growth

Evidence in the prior sub-section indicates that more height should be constructed in larger

cities, and even more so in those with favorable bedrock depth. Moreover, this phenomenon

should have strengthened over time. We demonstrate these patterns empirically by graphing
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estimated coefficients γb in the descriptive regression

Constac =
∑
b

γb [lnPopac751(b ≤MBDac < b+ 5)] + δ lnPopac75 + κc + ϕb(ac) + ϵac,

where b = {0,5,10,. . . }. The dependent variable is 1975-2015 construction in city a of country c

with mean bedrock depth MBDac binned into 5 meter ranges. Construction is measured either

as whether the city had any tall buildings in 2015 but not 1975 or as the change in the log sum

of heights in the city. A separate construction elasticity is estimated for each bedrock bin b,

and we include bin and country fixed effects. As the regression controls for ln city population,

all γb coefficients are of the bin-specific impact of 1975 ln population on 1975-2015 construction

relative to the population impact in the 0-4 meter bedrock depth bin.

Coefficient estimates γb are graphed in Figure 5. Bubble sizes are proportional to the number

of observations. Statistical significance (relative to 0) is indicated with stars. Quadratic and

more flexible fractional polynomial lines of fit are also indicated.

Figure 5: Relationships Between Tall Buildings and ln 1975 Population by Bedrock Depth

(a) Any Tall Building Construction (b) ∆ln(Heights+1)

Notes: Panel A graphs coefficients on ln 1975 city population for each 5 meter bin of city-level mean bedrock depth in which
the dependent variable is an indicator for whether the city had any height growth 1975-2015. Panel B graphs analogous
coefficients in which the dependent variable is the 1975-2015 change in the log sum of heights plus one. The size of the
bubbles indicates the relative number of city observations in each bedrock depth bin. The stars indicate how significantly
different from 0 each bin-specific coefficient is. The quadratic fit and the fractional polynomial fit (degree = 2) are weighted
using the number of city observations in each bin. Similar graphs with dependent variables measured as levels in 1975 are
much flatter in bedrock depth than counterparts using 2015 levels (Figure A6).

Figure 5 shows the inverse U shaped impact of city mean bedrock depth on construction in

strong relative to weak demand cities. In particular, the probability of having new tall building

construction in response to a doubling of population is about 0.1 higher at a bedrock depth of

30-34 than at 0-4. Similarly, the elasticity of height growth with respect to 1975 population is

about 0.65 greater for cities in the intermediate range of bedrock than the low or high ranges.

As the quadratic fit (solid line) is similar to the more flexible fractional polynomial fit (dashed

line), most of the empirical work uses a quadratic parameterization. We note that as 90% of
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cities are in the range of bedrock between 0 and 30, the upward-sloping portion of the population

elasticities in bedrock depth seen in Figure 5 provides most of the identifying variation. The

supply model predicts that the pattern seen in Figure 5 should be strongest in 2015 and muted

in 1975. This is exactly what we see, as shown in Figure A6.

Put together, the first stage estimation equation takes the following form.

Constac = k1MBDac + k2MBD2
ac + δ lnPopac75

+γ1MBDac × lnPopac75 + γ2MBD2
ac × lnPopac75+

+Xac75ξ + κc + ϵac

(6)

The key components of this equation are the interactions with coefficients γ1 and γ2. These

indicate how the elasticity of construction with respect to population differs by bedrock depth.

In (6), the dependent variable can be measured in levels or as 1975-2015 growth.

Table 1 presents the first stage coefficients on city mean bedrock depth interacted with

log 1975 city population. Panel A is for cities in all countries and Panel B is for cities in

developing economies only. The first two columns show results for an indicator of whether any

tall buildings were constructed by the indicated year. The third column shows the difference.

The next two columns are analogous except the log of tall building heights plus one in each year

is the dependent variable. The final column shows results for the 1975-2015 change. Table A3

reports remaining first stage coefficients.

Table 1: First-Stage Estimates: Main Coefficients

Tall Building Indicator ln (Heights + 1)

1975 2015 ∆ 1975-2015 1975 2015 ∆ 1975-2015

(1) (2) (3) (4) (5) (6)

Panel A: All Countries (Observations = 12,849)

Bedrock Depth (m) 0.0018*** 0.0046*** 0.0028*** 0.0126*** 0.0402*** 0.0276***

× ln Pop 1975 [0.0005] [0.0007] [0.0007] [0.0032] [0.0062] [0.0054]

(Bedrock Depth)2 -0.0000*** -0.0000*** -0.0000** -0.0002*** -0.0003*** -0.0002**

× ln Pop 1975 [0.0000] [0.0000] [0.0000] [0.0000] [0.0001] [0.0001]

Adj. R-Squared 0.12 0.23 0.07 0.17 0.33 0.17

Panel B: Developing Economies (Observations = 11,257)

Bedrock Depth (m) 0.0004 0.0036*** 0.0032*** 0.0030 0.0292*** 0.0262***

× ln Pop 1975 [0.0005] [0.0007] [0.0007] [0.0028] [0.0060] [0.0056]

(Bedrock Depth)2 -0.0000 -0.0000*** -0.0000** -0.0000* -0.0002** -0.0002**

× ln Pop 1975 [0.0000] [0.0000] [0.0000] [0.0000] [0.0001] [0.0001]

Adj. R-Squared 0.13 0.24 0.13 0.14 0.29 0.22

Notes: Each column is a separate regression of the variable indicated at top on the variables indicated on the
left, a quadratic in mean city bedrock depth, log 1975 city population, and 179 country fixed effects. Developing
economies are economies that were not “high-income economies” according to the World Bank’s classification of
countries as of 2015. The remaining coefficients are reported in Table A3. Robust standard errors in brackets.

Evident in Table 1 is that coefficients on the interaction between mean bedrock depth and

population (γ1 and γ2) grow in magnitude over time for both outcomes. Analogous results for
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1990 and 2000 reveal that this growth is monotonic in year (not reported). Also of note is that

γ1 and γ2 are estimated to be approximately 0 in 1975 in developing economies. These locations

had very little height in 1975 regardless of bedrock conditions or population. Therefore, for

developing country cities, to a first approximation one can view our analysis as using the 2015

level of tall building height as the key measure of the 1975-2015 change in heights.

Before discussing the main results, we consider the implications of these first stage results for

identification of causal impacts of heights on urban structure. The main idea for identification is

that bedrock depth is a supply factor that is uncorrelated with factors driving demand for height

at the city level. However, in order to operationalize this idea, it turns out to be important to

interact bedrock depth with a measure of static demand strength, for which we use ln 1975 city

population. Bedrock depth by itself is not a strong enough source of identifying variation to

generate first stage predictions of height or height growth that are sufficiently powered to be

useful in determining causal effects of heights.

Given the need to use interactions as the source of identifying variation, the key identification

assumption is more subtle than simply that bedrock is exogenous to city demand shocks. Instead,

the identifying assumption is that historically larger cities on more favorable bedrock did not

change in different ways from historically larger cities on less favorable bedrock relative to

historically smaller cities on favorable relative to unfavorable bedrock. This double difference

over time (making a triple difference) is the key argument needed for identification.

As such, any threats to identification would come from correlations between bedrock and

latent city demand growth that was different for large and small cities. This would occur if

bedrock depths more favorable for tall building construction also somehow allowed large cities

to have greater post-1975 growth potential. Our empirical analysis in the following section

examines the potential for such omitted variable bias to exist.

3 Empirical analysis

For 12,877 agglomerations a in 182 countries c, long difference regressions of the form in (7)

make up the heart of our empirical analysis. Our primary dependent variables of interest yac

are the 1975-2015 growth rates of population or built-up area in agglomeration a of country c.12

Controls for a quadratic in mean city bedrock depth, log 1975 city population, and country fixed

effects are included.

yac = β∆ ln (Heightsac + 1) + α1MBDac + α2MBD2
ac + α3 lnPopac75 + κc + εac (7)

We primarily examine IV versions of this estimation equation, in which log population in

1975 interacted with a quadratic in city mean bedrock depth enters as instruments for

∆ ln (Heightsac + 1).

12An alternative option is to specify (7) as a regression of an outcome measured in 2015 on 2015 heights and
indicated controls plus the dependent variable in 1975. Because the sum of heights in 1975 is near 0 in the vast
majority of cities in our sample, this alternative specification yields very similar results.
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As is formalized in the model in the following section, one can view (7) as capturing

differences in the quantities of real estate demanded for cities with different amounts of heights

that are exogenously assigned due to differing supply (construction cost) conditions. One

central parameter that influences these responses is the elasticity of population with respect

to urban utility (ζ̃). In a closed city, in which ζ̃ is 0, the real estate supply shock from

the lower cost of height manifests as lower floorspace rents and shorter commutes, a clear

welfare gain for city residents. Empirically, this scenario maps to a large negative built area

elasticity and a zero population elasticity, both with respect to city heights. As ζ grows, in-

migration responds more, thereby bidding up rents and lengthening commute times. The result

is smaller welfare gains for city residents but more opportunities for outsiders to benefit from

the city’s improved infrastructure. Empirically, this means larger positive population responses

and smaller magnitude negative built area responses.

The inclusion of the mean bedrock depth controls in (7) is not necessary for identification

but does make identification stronger. Without these controls, we would be relying on their

exclusion from the demand equation for heights for identification. While we think it is reasonable

that bedrock depth is not a demand factor, bedrock depth on its own does not provide much

identifying variation in heights. Instead, we need to interact bedrock depth with a level demand

factor, for which we use 1975 ln city population, in order to predict supply shocks to heights

with sufficient power. For this reason, we leave in the bedrock depth controls in (7). However,

excluding them does not affect any of our results.

We note that OLS estimates of β in (7) are muted relative to IV estimates at 0.05 for the

population outcome and -0.09 for the built area outcome. As standard threats to identification

would typically bias both OLS coefficients in the same direction, we conclude that these smaller

magnitudes primarily reflect measurement error in heights. If demand factors were a central

driver of city growth in heights, conditional on controls, the OLS population and built area

elasticities would both be biased upwards. IV estimates that correct this endogeneity problem

would thus be smaller (or more negative) than corresponding OLS estimates for both outcomes.

Instead, measurement error, which seems sensible, would lead to attenuation bias. By only

using buildings over 55 meters tall to measure heights, we do not measure all buildings that are

relevant to real estate supply. There are also many idiosyncracies across cities in tall building

construction that are disconnected from fundamental supply and demand forces. On the taller

side, this includes prestige skyscrapers that are not by themselves economically viable. On the

shorter side, local zoning regulations may lead to considerable construction up to a cap that is

high but below 55 meters in some cities. By isolating common supply factors for identification,

we smooth out these idiosyncracies, thereby increasing the magnitudes of estimated coefficients.

3.1 Main IV Results

Table 2 presents our headline empirical results. Panel A shows results for all cities and Panel

B shows results for cities in developing economies only. Column 1 shows that a 100 log point

increase in heights leads to about a 12 percent increase in city population. This magnitude of
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height increase is the average for cities in the top tercile of 1975 population, while the average

city had 1975-2015 height growth of 46 log points. The second column of Table 2 shows that

a 100 log point increase in heights caused the built-up land area of a city to decline by about

17 percent. This is very similar to the 15 percent response for total city area (Column 3).

Putting the results in Columns 1 and 3 together, it is clear that exogenous height growth has

substantially increased population density. When population density is explicitly put on the

left-hand side of the regression, the estimated heights coefficient is 0.27 (Column 4), matching

the population coefficient in Column 1 minus the area coefficient in Column 3. Results for

developing economies, representing 87% of the cities in our data, are very similar to those for

the full sample. The final column of Table 2 shows results for the growth rate in the total sum

of lights at night 1996-2011, a measure of total city economic growth due to heights. This is not

significantly different from the population growth result in the first column. Lights per capita is

also estimated to positively respond to heights, with an elasticity of 0.04 (or 0.06 for developing

economies), but is not statistically significant (unreported).13

Table 2: Main IV Results

∆ ln Population ∆ ln Built Area ∆ ln Urban Area ∆ ln Pop Dens. ∆ ln Lights

Period s-t: 1975-2015 1975-2015 1975-2015 1975-2015 1996-2011

Panel A: All Countries (Observations = 12,849)

∆ ln(Heights+1) 0.12*** -0.17*** -0.15** 0.27*** 0.15***

[0.03] [0.04] [0.06] [0.07] [0.06]

First Stage F 28.42 28.42 28.42 28.42 16.83

Panel B: Developing Economies (Observations = 11,257)

∆ ln(Heights+1) 0.13*** -0.16*** -0.18** 0.31*** 0.17***

[0.03] [0.04] [0.08] [0.08] [0.06]

First Stage F 22.84 22.84 22.84 22.84 16.32

Notes: Each entry is from a separate regression of the indicated variable at top using the full sample in Panel A and
cities in developing economies only in Panel B. Equation (7) shows the regression specification used. The final column
uses ∆ ln (Heights + 1) for 1990-2015. Table A4 reports coefficients on control variables for Panel A. Population density
is defined using total urban area. Robust standard errors in brackets.

Next, we demonstrate that these baseline results are robust to inclusion of additional demand

side controls, functional forms, and the measure of bedrock depth used. We then justify our

interpretation of these results as treatment effects that apply broadly across cities of different

types and provide evidence that they primarily reflect urban growth rather than redistribution.

Robustness to Additional Controls: One potential concern is that trends in the amenity

value of cities, or other demand factors, may be differentially correlated with bedrock depth in

large versus small cities. However, inclusion of additional controls for infrastructure and regional

connectedness, which we similarly interact with log city population size in 1975, does not affect

results. These infrastructure controls are the presence of subways and measures of market access

13Correcting standard errors for arbitrary spatial autocorrelation using a triangular kernel out to 200 km or
400 km, or clustering at the administrative level, up to doubles standard errors and does not affect inference. The
built area equation coefficients are more sensitive to these standard error adjustments (Table A5).
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in 1975. Alternatively, we can drop subway cities in 2015. Controls for location and geography,

including coastal proximity, lakes, agricultural suitability, and temperature, also do not affect

results. Estimates also hold when controlling for distance to mines and/or oil and gas fields, or

excluding cities within 50 km of either.14 More generally, locations with shallow bedrock may

find it more costly to develop their agricultural sector or expand their infrastructure. However,

results hold excluding cities on bedrock up to 6 meters deep, the 25th percentile of the bedrock

depth distribution.15 Finally, using 100 meters rather than 55 meters as the height cutoff to

define tall buildings also has no effect on results. Table A6 presents all of these results for the

full sample and cities in developing economies only. Results are similarly robust to dropping

cities within 50 km of the coast or a lake, at high altitudes (750 meters, 1000 meters, or 1400

meters), or above the 75th or 90th percentiles of ruggedness.

Functional Forms: Our baseline specification uses mean bedrock depth and its square

interacted with log city population in 1975 as instruments. Bedrock depth and its square are

then added as controls, though results also hold if we add them as instruments instead (Table A7

Columns 1 and 5). That is, our IV strategy imposes a quadratic form for the height impact of

bedrock depth in larger cities. The standard monotonicity requirements for instrument validity

are thus somewhat opaque. Moreover, it is not clear whether key identification comparisons are

between shallow or deep bedrock cities against intermediate depth bedrock cities, or whether

both types of comparisons are needed simultaneously to identify parameters of interest.

Results in Tables A8 and A9 demonstrate that our instrumental variables strategy respects

monotonicity conditions and that either or both types of bedrock depth comparisons can be

used for identification. To show this, we replace the bedrock depth polynomial with a piece-wise

linear spline function, in which one kink captures the “optimal” bedrock depth and a second

kink captures the point beyond which bedrock depth no longer affects the cost of height. We find

that the first-stage F-statistic is maximized with the first kink at a bedrock depth of 22 meters

and the second kink at the maximum depth observed in the data of 158 meters, though results

are insensitive to second kink locations of 80-158 meters. Moreover, this specification allows us

to demonstrate that variation in bedrock depth on each side of the optimal depth independently

contributes to identification, with second-stage results close to the baseline. When including the

spline as two separate instruments, first stage coefficients on distance to the kink are a significant

0.04 on the deep bedrock side of 22 meters (25% of cities) and 0.03 on the shallow bedrock side

of 22 meters (75% of cities), yielding second stage population and built area elasticities of 0.13

and -0.22, respectively (Table A8). Breaking out these two instruments one by one, it becomes

apparent that stronger identification comes from the deep bedrock side of the kink, with a first

stage F-statistic of 61.1. The first stage F-statistic using only the shallow side for identification

is 23.0 (Table A9). Using identifying variation within shallow bedrock depths and controlling for

1975 ln city population interacted with bedrock depth below 22 meters, estimated population

14While access to natural resources may also influence construction costs, we undertake these checks with the
idea that cities with natural resource-oriented economies may have different trends in demand than other cities.

15The roots of almost all crops (including vine crops and tree crops) never go as deep as 6 m. That is also the
case for utility lines.
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and built area elasticities are 0.13 and -0.23, respectively. Conversely, using identifying variation

within deep bedrock depths and controlling for 1975 ln city population interacted with bedrock

depths of less than 22 meters, estimated population and built area elasticities are 0.20 and -

0.36, respectively. However, neither of these pairs of estimates are significantly different from

each other. Appendix B.1 provides additional details on this spline estimation procedure and

results.16

In our main city population growth regression, log city population in 1975 appears in the

dependent variable, as a component of the instrument, and as a control variable. Table A7

shows results indicating that while we must control for base year urban demand conditions in

some way, results are robust to various strategies for doing so. In particular, results hold if we:

(i) also include log built area in 1975 as a control, which is especially relevant for the built area

regressions; (ii) carry out the analysis for 1990-2015 while continuing to use log city population

in 1975 to construct the instruments and as a control; and (iii) use log population 2015 as the

outcome and log heights 2015 as the instrumented variable (without changing anything else in

the specification).17

Measurement of Bedrock Depth: We use mean bedrock depth (MBD) across all 30 seconds

(≈ 1 km) square pixels in each 2015-definition urbanized area as our main measure of bedrock

depth. However, bedrock depth varies within cities, thereby raising potential concerns about

sensitivity to its measurement. For example, it could be reasonable to only use bedrock depth

at each city’s most central pixel or to aggregate over fewer central pixels.

We demonstrate that bedrock depth does not systematically vary by location within cities

by distance to the central business district (CBD) and verify that choices of pixels to include

in its measurement do not affect results. We identify the CBD of each city as the brightest

mega-cell of 9 night lights cells at 30 seconds (≈ 1 km) resolution. Across cities, the coefficient

of correlation between MBD within 2.5 km (5 km) of the CBD and is 0.98 (0.99). Likewise,

within cities, bedrock depth does not depend on CBD distance (unreported). Finally, the IV

results hold if we use MBD calculated only using pixels within 2.5 km or 5 km of CBDs (Table

A10). As most tall buildings are built near city centers, the instruments are stronger using

central MBDs than with overall or peripheral MBDs.

LATEs: About one-third of the gaps between OLS and IV estimates can be explained by the fact

that they capture different local average treatment effects (LATEs). Variation across cities within

countries with more variation in city size interacted with bedrock depth identifies IV coefficients.

In contrast, within-country variation in heights for all countries identifies corresponding OLS

coefficients. Yet, Table A11 shows gaps between the OLS and IV estimates that are about one-

third smaller when restricting the sample to larger countries with greater variations in bedrock

depth. In particular, we select the 7,473 cities in countries with at least 5 cities and a Gini index

16As the first stage spline coefficient is larger for deep bedrock depths and this region only covers 25% of the
data, our parametric quadratic specification fits less well for cities with bedrock depths of greater than 22 meters.
As a result, shallow depths provide most of the identifying variation in our baseline quadratic specification.

17Estimated population and built area elasticities are 0.09 and -0.23 respectively using 1990 as the base year.
Those using 2015 levels rather than 1975-2015 changes are 0.09 and -0.11, respectively. However, none of these
differences are statistically different from the headline results in Table 2.
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of the distribution of mean bedrock depth across cities above the 75th percentile value in the

Gini index across all countries. Measurement error in heights likely accounts for the remaining

differences.

Heights versus Volumes: An increase in city heights influences outcomes of interest, and

ultimately welfare, because it increases the amount of real estate services provided. As tall

buildings typically have less usable floor space on higher stories, differences in the sum of heights

across cities may not accurately reflect differences in real estate services provided. We can better

measure real estate services using data on building volumes, which we observe worldwide at the

80x80 meter pixel level in 2015 (Esch et al., 2023). While we do not observe building volumes in

1975, we can estimate how volumes respond to heights in 2015 to recover a sense of these causal

impacts. To measure tall building volumes in 2015, V H
2015, we aggregate pixels with an average

building height of least 40 meters, with this height cut-off set sufficiently low so as to capture

55m+ buildings that share pixels with smaller neighboring buildings and unbuilt land (streets,

courtyards, etc.).

To derive the causal effects of tall building volumes on outcomes of interest y, we use the

identity
d ln y

d lnV H
2015

=
d ln y

d ln(H2015 + 1)

d ln(H2015 + 1)

d lnV H
2015

.

With the same IV strategy as for our main outcomes of interest y, we estimate the causal

effect of ln(H2015 + 1) on ln(V H
2015) to be 0.93*** (first stage F-stat = 19.91). Therefore

d lnPop
d lnV H2015

≈ d lnPop
d ln(H2015+1) , for which we found 0.13 in Table 2. Use of tall building heights versus

volumes thus matters little.18

Interpretation: Finally, we believe that our estimated elasticities primarily capture migration

of people from rural areas to cities rather than displacement between cities. Borusyak et al.

(2022) demonstrates the econometric challenges associated with endogenous migration flows

between regions in the empirical setting in which local outcomes are regressed on exogenous

region-specific shocks for the universe of regions in a country. As our data does not include

rural units, our analysis is not subject to these biases provided that city growth in response

to exogenously assigned heights draws only from the rural hinterland rather than from other

cities. As we focus on developing economies that were little urbanized and had very few tall

buildings in 1975, our empirical context is one of primarily rural-to-urban migration. This

setting matches that of developed economies in history and our finding, discussed below, of

similar population elasticities in the developed world for periods starting in 1850, 1900 or 1920

as those for developing economies in the 1975-2015 period.

We carry out three types of exercises to evaluate the prevalence of displacement in our

data. First, we explore robustness to different levels of regional and sub-national fixed effects.

As migration occurs at higher rates more locally, we expect there to be greater displacement

between cities for fixed effects covering smaller regions. If coefficient estimates do not grow with

the use of more local fixed effects, that is evidence that our estimated elasticities reflect rural-

18IV estimates of d∆ lnPop

d lnVH
2015

are also 0.13***.
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urban migration. Second, we explore robustness to a sub-sample that only includes countries

with urbanization rates below 20% in 1975, in which case the vast majority of migrants to cities

must have come from rural areas. Finally, in the spirit of Borusyak et al. (2022), we control for

height changes in alternative cities that are likely to be viewed by migrants as substitutes.19

Table A12 shows the results of the first two exercises. IV estimates for population grow

by at most 0.03 when including finer fixed effects and decline by 0.02-0.03 when using sub-

region rather than country fixed effects. None of these differences are statistically different from

our headline population elasticity estimate of 0.13 for developing economies. Table A12 also

shows results for the sample restricted to countries that were less than 20% urban in 1975. The

population elasticity remains stable at 0.13. Built area elasticities are somewhat more sensitive

to the inclusion of various levels of fixed effects and sample. These estimates grow in magnitude

to as much as -0.25 with alternative fixed effects. However, the elasticity shrinks to -0.08 for

rural countries, with a large standard error of 0.05. Once again, none of these estimates are

statistically different from our primary built area elasticity of -0.16 for developing economies.

For the third exercise, we calculate market potential (MP) terms that summarize accessibility

of each city ac to other population centers and their heights. We calculate the MP for heights

for city a in country c and year t as

MPHact =
∑

a′∈C(a),̸=a

Heightsa′ctPopa′c75
Popac75dis(a, a′)α

. (8)

That is, we sum over heights in all other cities in the country of city a, scaling by relative city

size and discounting by the distance between city a and a′ raised to the power α, which we vary

between 1
3 and 3. From these measures in 1975 and 2015, we build ∆ lnMPHact to include as a

control variable in the main regressions. With this specification, heights in MPHact are scaled to

be of comparable magnitudes to heights in city ac itself. A given percentage increase in heights

on a small base will have the potential to redirect fewer migrants as a share of city ac’s 1975

population than on a large base.

As heights in other cities may be endogenous to trends in demand factors in city ac, we

build an instrument for ∆ lnMPHact that follows the same logic as our instruments used in

the main analysis. In particular, we build instruments by replacing Heightsa′c75 in (8) with

Popa′c75MBDa′c and Popa′c75MBD2
a′c. Then, analogous to our main estimation equation (7),

we also control for three additional terms capturing the discounted sums of 1975 city populations

and bedrock depths by replacing Heightsac75 in (8) with Popa′c75, MBDac, or MBD2
ac and

taking logs. Lastly, sinceMPH in (8) also directly includes
Popa′c75
Popac75

, we create an additional MP

term based on these relative 1975 city populations only.

Table A13 shows the results with these market potential controls. The big message is that

we find no evidence that displacement effects between cities in our sample are driving elasticity

estimates. We show OLS results for α = 0.33, α = 0.5 and α = 1, and both OLS and IV results

19Fully carrying out the proposed fix in Borusyak et al. (2022) requires observing migration flows in a base
period; unfortunately, this is information we do not have for most countries in our global data.
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for α = 2 and α = 3. As bedrock depth tends to be spatially correlated, we need strong spatial

decay in order for instruments to be able to separate out height growth in other cities from that

in city ac. But whether instrumenting for ∆ lnMPH or not, estimated population and built area

elasticities remain very stable. We come to the same conclusion when separately considering

the largest 10 cities and the other cities in the country in MP terms (and assuming a lower

distance decay parameter for larger cities) or when controlling separately for height growth in

each of these cities (unreported). The coefficient on the height market potential control is 0 or

positive when instrumented, which may reflect a growth effect of improved access to markets.

The lack of movement in our main elasticity estimates of interest indicates that MP terms are

conditionally uncorrelated with our instruments for height growth in city ac.

3.2 Heterogeneity in Estimates

In this sub-section, we examine how height elasticity estimates differ by world region, historical

period, building use, and city population.

Regional Estimates: Table 3 Panels A and B show heterogeneity of our main IV estimates

by region of the world. The first column presents population and built area growth coefficients

for all developing economy cities in Asia except the Middle East of 0.17 and -0.20, respectively.

Remaining cities in the developing world generate similar estimates of 0.15 and -0.26, though

these are slightly underpowered with a first-stage F-statistic of 7.9. Because most of our data

is for the developing world, and the population and land use pressures are greatest in these

countries, we focus most of our policy analysis on this sample. No developing economy region

other than Asia has enough observations to generate strong first-stage identification. Column 3

presents results for cities in developing economies that we infer to have relatively lax building

restrictions. We defer the discussion of these results to Section 3.5.

Estimates in the right block of Table 3 Panels A and B are for cities in developed economies.

These are subject to more complicated interpretation, as the majority of large cities in developed

economies had significant heights in 1975. Moreover, these countries had largely completed their

transitions from rural to urban by 1975. While we find no overall average impact of heights on

city structure in developed economies for the 1975-2015 period, estimated coefficients are quite

large in magnitude, though under-powered, for cities in the USA and Canada. This pattern fits

with the idea that building height restrictions are relatively lax in North America and severe in

Europe, which contributes most of the observations to the “Others” developed economies sample.

However, the estimates for North America are more likely to in part reflect displacement between

cities rather than rural-urban migration. Cities in Eastern Europe are a major driver of the 0

results for developed economies, which is consistent with their mostly centrally planned histories.

Historical Regressions: To further understand why estimates differ for developing and

developed economies, we look back in time to the 1850-1975 period for a large sample of developed

economy cities and 1920-1975 for cities in the US. These are periods of development that better

match the sorts of changes experienced in developing economies during the 1975-2015 period,

including structural change out of agriculture and rapid urbanization. Moreover, no tall buildings
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Table 3: IV Results by World Region and Time Period

Developing Economies (1975-2015) Developed Economies (1975-2015)

Asia (no ME) Others Unconstrained Total USA+Can Others

Panel A: ∆ ln Population

∆ ln(Heights+1) 0.17*** 0.15** 0.21*** 0.00 0.30** 0.01

[0.03] [0.07] [0.04] [0.03] [0.12] [0.02]

Panel B: ∆ ln Built Area

∆ ln(Heights+1) -0.20*** -0.26*** -0.39*** -0.04 -0.67* -0.03

[0.04] [0.09] [0.09] [0.03] [0.35] [0.02]

First Stage F 20.92 7.88 11.36 14.28 5.77 13.68

Observations 6,990 4,267 5,315 1,592 372 1,220

Panel C: ∆ ln Population (Historical Regressions)

Countries: 55 Developed 39 Euro USA USA USA

Period: 1850-1975 1900-1975 1850-1975 1920-1975 1920-1975 1920-1975

∆ ln(Heights+1) 0.14** 0.22*** 0.20** 0.21 0.21 0.21†

[0.06] [0.07] [0.10] [0.17] [0.15] [0.13]

First Stage F 10.94 8.44 5.51 4.05 4.82 7.66

Observations 918 918 1,095 324 324 323

ln(Heights+1)1920 Ctrl N N N N Y Y

Drop Las Vegas N N N N N Y

Notes: Each entry is from a separate IV regression using data from cities in world regions indicated in column headers
over the indicated time period. “Asia (no ME)” refers to countries in Asia except the Middle East. “Unconstrained”
refers to countries with no history of communism and with below median regulatory environments. Section 3.5 explains
in more detail how this sample is selected. “55 Developed” refers to 918 cities in 55 developed countries (as of 2015)
during the period 1850-1975 or 1900-1975 (Buringh and Hub, 2013). “39 Euro” refers to 1,095 cities in 39 European
countries from Portugal to Russia (Bairoch, 1988a)). “NHGIS” refers to 324 U.S. metro areas for which we were able to
reconstruct historical population data using county-level data from the IPUMS national historical geographic information
system (NHGIS) (Manson, 2020)). Robust SEs in brackets. *** p<0.01, ** p<0.05, * p<0.10, † p<0.15.
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existed in Europe in 1850 and few existed in the US in 1920. As we do not have city footprints

in 1850, 1900 or 1920, we focus on population elasticities. The specifications are the same as

above except for the different base years. Results are reported in Table 3 Panel C.20

We find population elasticities of 0.14-0.20 for the world, 0.20 for Europe, and 0.21 for the

US. However, most of these estimates are underpowered, with first-stage F-statistics below 10.

For the US, we can increase the first stage F-statistic to 7.7 by controlling for 1920 city heights

and excluding Las Vegas, with no effect on the elasticity estimate. The coefficient is, however,

only significant at the 15% level. Overall, the main takeaway is that the 0 estimate for developed

economies only applies to the modern era; we find population elasticities that are in line with

those for the developing world in the period of European and American development.

Commercial vs. Residential Heights: Next, we examine the distinction between impacts of

commercial versus residential heights. While we can observe building use in the Emporis data,

we do not have separate instruments for these two types of buildings. Instead, we make use of

the fact that country-specific industrial structure and land use planning regimes influence the

extent to which tall buildings host residential or commercial tenants. Service-oriented economies

tend to have a higher share of tall buildings in commercial use, as do higher-income economies

with fewer restrictions on urban sprawl. In the developing world, Egypt and Pakistan have

about 50% of their tall buildings dedicated to commercial uses. In contrast, countries with land

constraints and fewer office workers tend to have a higher share of tall buildings in residential

use. Example countries include Brazil, India, and South Korea. Because the residential share

of tall buildings is in part driven by such country-specific factors (and we have country fixed

effects), we can learn about impacts of the construction of residential versus commercial heights

by restricting the sample to only include cities in countries with at least some baseline share

of tall buildings in residential use. We do this recognizing that various sources of unobserved

heterogeneity between countries are interacting with height growth to generate these effects.

Figure 6 shows estimates by country residential share of tall buildings. The top portion

shows the positive estimated population height elasticities and the bottom portion shows the

negative built area height elasticities. Red lines are for subsets of cities in the developing world

and blue lines are for subsets of cities worldwide. Moving from left to right, the sample becomes

more constrained to only include cities in countries with at least the residential share of tall

buildings indicated on the horizontal axis.

The results in Figure 6 are striking. Cities in countries that built more residential heights

accommodated more population and saved more land, especially in the developing world.

Population elasticities rise from 0.13 to 0.21 when moving from the sample of developing world

countries with at least 50% of tall buildings residential to those with at least 90% residential.

20Appendix Figure A7 shows the evolution of heights separately for the US and other developed nations. For
918 cities in 55 developed economies for 1850-1975 or 1900-1975, we use data from Buringh and Hub (2013) (Panel
C Columns 1-2). While this sample is global, its coverage is less extensive for Europe than Bairoch (1988b), which
reports population data for 1,095 cities in 39 countries (Column 3). For the US (Columns 4-6), we reconstruct
historical population data (N = 324) using county-level data from the IPUMS-NHGIS (Manson, 2020). We start
in 1920, predating the roaring 1920’s construction boom, so that variation in initial city size is large enough to
generate some first stage identifying power.
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Figure 6: Effects of Heights by Country Tall Building Residential Share

Notes: This figure shows four sets of estimated coefficients on the change in log heights in IV regressions of the form in
(7). The top portion of the graph indicates coefficients for which the 1975-2015 change in log population is the outcome.
The outcome in the bottom half of the graph is 1975-2015 change in log city built area. Moving from left to right, the
sample becomes increasingly constrained to include only countries with at least the fraction of tall buildings nationwide
in 2015 residential use indicated on the horizontal axis. Red lines are coefficients for cities in the developing world only
(“Developing”). Blue lines (“All’) include all cities in the world with at least the indicated 2015 residential share.

The residential impact is even greater for built area. Built area elasticities monotonically decline

from -0.13 to -0.50, with more than half of this decline driven by the progressive exclusion of

countries with 70-75% tall buildings in residential. The broad implication of evidence in Figure 6

is that the type of tall buildings matters. As residential real estate is much more space intensive

than offices per-capita, it is not surprising that residential buildings have bigger effects than

commercial buildings. The model developed in the following section is parameterized to respect

this observation.

Estimates by City Size: Finally, we look at coefficient heterogeneity by 1975 city

population. For separate samples of Asian cities outside the Middle East and other cities in

the developing world (including the Middle East), we estimate instrumental variables locally

weighted regressions (IV-LWR) by city population. This process is the same as standard

IV estimation of (7), but with a separate coefficient on the change in heights estimated for

each observation in the data set. These estimates are calculated using a separate weighted IV

regression for each observation, with greater weights assigned to observations that are closer in

1975 city log population. See Appendix B.2 for further details.

Figure 7 shows the results for city population growth. Evident in this figure is the non-

monotonicity in height effects by city population, with the largest causal effects of heights for

the smallest and largest cities. For Asian cities, the population elasticity of height is about 0.3

for cities of about 50,000 residents in 1975 (ln pop ≈ 11), falling to 0.11 at a population of

1 million (ln pop ≈ 14), and then rising to 0.16 for the very large cities. For other cities in
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the developing world, estimates follow the same pattern and are slightly larger but are also less

precisely estimated. We calculate analogous estimates for the built area outcome (Fig. A8). For

both regions, these hover around -0.20, do not vary much by 1975 city population, and are less

precisely estimated than the population responses. First stage F-statistics are shown as dashed

lines and are strong for all city sizes in the Asian sample but only for small cities in other areas.21

Figure 7: IV-Locally Weight Regression Population Estimates: Developing World
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(a) Asian Cities (Excl. the Middle-East)
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(b) Other Developing Cities

Notes: Figures show non-parametric estimates of height elasticities estimated with an LWR-IV approach. In each LWR,
we estimate the height elasticity from a regression of the 1975-2015 long-difference in log city population against the long-
difference in log building height using a second-order polynomial of bedrock depth interacted with initial 1975 log population
as instrumental variables. Controls are a second-order polynomial of bedrock depth, initial log population, and country fixed
effects. We use a Gaussian kernel with a locally varying bandwidth that is inversely related to the density of observations.

3.3 Implied Aggregate Impacts of Height

Using estimates presented above, we provide an accounting of the extent to which post-1975

expansions in building heights have accommodated city population and land savings. With

rapid urbanization in many developing economies, cities are facing historic population pressures

(Jedwab and Vollrath, 2019). Moreover, due to high trade costs historically, the land surrounding

the largest cities in most countries is among the most agriculturally productive (Henderson et

al., 2018). We show that lower costs of tall building construction can play a central role in

alleviating some of the pressures of urbanization.

Aggregate Population and Land Area Effects: Using the IV-LWR estimates of population,

built area, and urban area elasticities with respect to city heights reported in Figures 7, A8, and

A10, we obtain the predicted absolute change in population, built area, and total urban area

in each city ∆̂yac caused by the actual change in height observed in the data, ∆Hac75−15. We

begin with values of each outcome in the initial period yac75 and apply estimated causal height

elasticity parameters β̂ac for each city ac. The following expression shows how we calculate the

resulting city-specific change in the outcome predicted by our city-specific regression estimates

and 1975-2015 growth in heights.

∆̂yac = yac75 ×
(
exp

(
β̂ac ×∆ ln (Heightsac + 1)

)
− 1
)

(9)

21Corresponding results for the entire sample and developing world cities only are in Figure A9. Figure A10
presents analogous results for total urban area.
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This procedure takes the observed height growth as exogenous. Therefore, it reflects the 1975-

2015 population growth or area savings that occurred had all of the heights constructed during

this time period been assigned in a way that is uncorrelated with covariates or the error term in

(7). To the extent that demand growth drove some actual tall building construction conditional

on 1975 construction costs, this calculation likely overstates the associated growth in urban

populations and declines in urbanized areas that can be causally attributed to reductions in the

cost of height. As we focus on cities in the developing world, this analysis reasonably assumes

limited inter-city reallocation.

Table 4: Aggregate Effects of 1975-2015 Tall Building Construction

City Pop. Number 1975-2015 Share of % of Pop % Area Saved % Tree % Other % Non

000s (2015) of Cities ∆Height km Height ∆ Accomm. Built Urban Cover Veg. Veg.

Panel A: Asian Cities, except Middle East

0-500 6,514 59 0.02 2 2 1 11 77 12

500-1,000 268 76 0.03 10 9 8 9 75 16

1,000-2,000 114 192 0.07 21 18 15 10 72 18

2,000-5,000 61 527 0.18 47 33 29 9 74 17

5,000+ 38 2,001 0.70 58 37 31 10 76 14

All 6,995 2,855 23 17 12 10 75 15

Panel B: Cities in Other Developing Regions

0-500 3,969 68 0.05 4 5 3 16 76 8

500-1,000 164 123 0.09 20 21 18 17 74 10

1,000-2,000 75 205 0.16 28 28 20 17 70 14

2,000-5,000 54 410 0.31 32 32 24 15 71 13

5,000+ 16 501 0.38 38 38 29 16 59 26

All 4,278 1,307 18 21 13 16 68 16

Notes: Estimates in each panel are based on separate sets of locally weighted regressions of ∆ ln population, built area or
urban area on the change in log heights. Estimated elasticities for each city are applied to the 1975-2015 height growth
in each city to determine the associated predicted % of city-specific population accommodated and built and total urban
areas saved. % Tree Cover, % Veg., and % Non-Veg. indicate percentages of the city-specific estimated buffer of land saved
in 1975-2015 that corresponded to tree canopy, non-tree vegetation, and bare vegetation / non-vegetated land, respectively,
circa 1982.

Table 4 presents the results of this exercise for five 2015 population categories. In Asia, there

are 213 cities in the top three size categories of cities over 1 million people, out of 6,995 cities

total. These cities constructed 95% of the heights over the 1975-2015 period. Elsewhere in the

developing world, cities over 1 million people in 2015 built 85% of the heights during this period.

Given that the largest cities built the lion’s share of new tall buildings, it is natural that the

largest impacts are concentrated in these cities.

For Asian cities above 5 million, an estimated 58 percent of population is accommodated by

new tall buildings constructed 1975-2015, saving 37 percent of the built area and 31 percent of

the land area. For the smallest Asian cities, only 2 percent of 2015 population is accommodated,

saving 2 percent of the built area and 1 percent of the land area. These substantial differences

mainly come from the fact that the largest cities built so many tall buildings. Outside of

Asia, the patterns of effects are similar though the population responses are somewhat muted,

30



as the largest non-Asian developing country cities built fewer tall buildings. Overall, our

estimates indicate that 23% of Asian urban population and 18% of the urban population in other

parts of the developing world is accommodated because of 1975-2015 tall building construction.

Moreover, tall buildings have saved about 12% of 2015 urban land area in the developing world

from urban uses. A big message from Table 4 is that the technological change that facilitated

the construction of tall buildings has fundamentally altered the largest cities in the world. It has

allowed them to accommodate a large fraction of their populations while reducing their built-up

footprints.

The final three columns of Table 4 provide an accounting of the types of land saved through

tall building construction. For each city with 1975-2015 height growth, we calculate the city’s

land savings. We then generate a buffer around each city boundary to match the area of land

saved and aggregate the various land uses circa 1975 within these buffers.22 This exercise shows

that about 10% of land saved around Asian cities is tree canopy and 75% is non-tree vegetation.

In other regions, even more tree canopy is saved, at 16%. Both in Asia and elsewhere in the

developing world, tall buildings have saved land that is about 85% covered in some sort of

vegetation.

Land Use Inside Urbanized Regions: While tall buildings saved peripheral land around

cities from urbanization, they also caused urbanized regions to become less green. The

construction of tall buildings has crowded out tree canopy and green space within 2015 urbanized

regions. To quantify these responses, we run regressions similar to those in Table 2 but with

changes in various land use measures within urbanized areas as dependent variables. Panel A

of Table 5 shows results for all cities and Panel B shows results for developing country cities.

Column (1) shows that heights promoted infill urbanization. An approximate doubling of

heights increased urbanization of 2015 UC land by 16% on a base average of 20 percent urbanized

(all cities) and 21% on a base average of 21 percent urbanized (developing country cities) between

1982 and 2015. For a 100 log point increase in heights, the average for cities in the top tercile

of the 1975 population distribution, an average of 3.2% of 2015 UC land urbanized (full sample)

and 4.4% did so in cities in developing economies. Results in columns (2) and (3) show that

the urbanization of land was roughly evenly split between reduction in tree cover and short

vegetation (yards, parks, and cropland). An approximate doubling of heights reduced tree cover

by 22 percent and short vegetation by 2 percent within urbanized areas. When multiplied by the

initial fractions of 2015 definition agglomerations that were covered by tree canopy or vegetation,

we see that about 1.8% of 2015 UCs were converted from tree cover and 1.4% were converted

from short vegetation given an approximate doubling of heights in 1975-2015. Using data from

2000-2015, for which cropland can be broken out from short vegetation, we find that cropland

accounts for a small and statistically insignificant fraction of the short vegetation response.

One big message is that tall buildings both save peripheral land and reduce sprawl by

promoting infill urbanization. These results are consistent with those in Burchfield et al. (2006),

22For this analysis and the other analyses below, we rely on the 1982-2015 Global Land Change Data of Hansen
and Song (2018). For each ≈5X5 km pixel worldwide, this satellite-based data set records whether there was tree
canopy, short vegetation or urbanized/bare vegetation land cover in 1982 (used for 1975) and 2015.
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Table 5: Land-Use Changes Inside 2015 Urbanized Boundaries

Dependent Variable: ∆ Log ... Area 1982-2015

Bare Vegetation Tree Cover Short Vegetation

Panel A: All Economies (N = 12,849)

Coeff. on ∆ ln Height 0.16*** -0.22** -0.02**

[0.03] [0.03] [0.01]

Avg Frac of Area, Base Year 0.20 0.08 0.72

First Stage F-Statistic 28.41 28.41 28.41

Panel B: Developing Economies (N = 11,257)

Coeff. on ∆ ln Height 0.21*** -0.24*** -0.03**

[0.03] [0.04] [0.01]

Avg Frac of Area, Base Year 0.21 0.07 0.72

First Stage F-Statistic 22.83 22.83 22.83

Notes: Each column in each panel is associated with a separate IV regression of the growth rate in
land with the use indicated at top on the change in log heights using the same specification as in
Table 2. Total urban area is decomposed into bare vegetation area (which includes urbanized area),
tree cover area, and short vegetation area. Height growth is measured between 1975 and 2015. See
the text for data sources. Robust standard errors in brackets.

which finds that US cities with more centralized sector employment and less hilly terrain (among

other factors) had less sprawling new development over the 1976-1992 period. Centralized sector

employment is made up primarily of office workers, which can be accommodated in tall buildings.

Rugged terrain, which is correlated with low bedrock depth, increases the costs of building tall,

thereby also leading to more sprawl.

Aggregate Land Savings: To calculate how tall buildings influence land use inside and outside

of 2015 definition urban areas in aggregate, we add the “outside UC” results reported in the

final 3 columns of Table 4 to “inside UC” results constructed as follows. As in Figures 7, A8,

and A10, we estimate separate IV locally weighted regression impacts of 1975-2015 heights on

1982-2015 changes in tree cover and non-tree vegetation land use within 2015 urban boundaries

as functions of 1975 city population by region of the developing world. The average treatment

effects across all cities in our data match those reported in Table 5. Given 1975-2015 heights

constructed in each city and adding up over all cities in our data, results indicate that the

total amounts of short vegetation and forested land at the edges of cities saved by tall building

construction reported in Table 4 is about twice the total amount of vegetated land lost inside

urbanized regions (unreported).

While we find that tall buildings have generated net gains of vegetated land, these overall

gains are small relative to the total amount of urban land, agricultural land or forested land in the

world. According to World Bank (2022b), the cities in developing economies with populations

over 50,000 in our sample account for 90% of the developing world’s total urban population

but only one-third of total urban land area. Moreover, the ratios of agricultural and forested
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land to all urban land worldwide are 25 and 17, respectively. Given that tall buildings have

saved about 5% of vegetated land in cities over 50K worldwide (half of 85%*12% from Table 4),

this amounts to less than 0.1% of agricultural or forested land worldwide. However, the land

at the edge of cities is among the most agriculturally productive in the world (Henderson et

al., 2018). Urbanized land is twice as suitable for agriculture as remaining land, as calculated

using suitability data from Schneider et al. (2022). Across the 12,873 cities in our data, land

suitability also increases convexly with city population size within countries (unreported).23

3.4 City Height Gaps

One object of the model in the following section is to quantify the implications of allowing

unrestricted heights in cities worldwide. This calculation requires measures of the extent to

which each city constrains tall building construction. To this end, we develop a “height gap”

measure, which is the fraction of potential heights in each city justified by fundamental supply

and demand conditions that has not been realized.

We build on the analysis in Barr and Jedwab (2023) to determine each city’s potential

heights under no height constraints. We adapt their regression model to predict city heights

using fundamental demand and supply factors that have some commonalities across cities and

do not include land use regulation. Predictors in this regression are measures of regional

lights at night, city population category interacted with quadratics in national per-capita GDP,

city population category interacted with quadratics in mean bedrock depth, earthquake risk,

elevation, ruggedness, and year fixed effects. The model is fit using semi-decadal data on

12,755 GHS cities for the 1995-2020 period, resulting in an R-squared of 0.64. Resulting height

predictions for 2015 are measures of the heights justified by each city’s fundamental demand

and cost factors, absent local regulation.

After ordering cities by their predicted log heights, we calculate the 95th percentile (3rd

ranked city) of actual log height for the moving window of 51 cities centered on each city in

the data (except the top and bottom ranked 24 cities). This accommodates the possibility that

one or two cities in each group of 51 has built particularly tall for idiosyncratic reasons that

do not carry over to other cities. Finally, we smooth this 95th percentile function using local

polynomial regression. The resulting function of predicted log heights h95(·) (depicted in Figure

A11) describes our inferred unconstrained heights. Appendix B.3 provides additional details on

this procedure.

The height gap measure for city ac follows as

Gapac = max

(
1− Heightsac2015

H95( ̂LHEIGHTSac2015)
, 0

)
, (10)

where H95(·) = exp [h95(·)] and ̂LHEIGHTSac2015 is predicted log heights for city ac in 2015.

23We verify that these land savings estimates are not biased by disproportionate tall building construction in
cities with low agricultural suitability. Weighting regressions in Table 2 column (2) by the fraction of city land
that is suitable for agriculture (mean=0.57) does not affect estimates.
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By construction, Gapac is between 0% and 100%. We emphasize that while this gap measure

is reasonable on average conditional on observables and is plausible for most cities, it will not

accurately measure building constraints in every city worldwide.24 At the regional level, the

population weighted height gaps are largest in developed economies in Oceania (90%), Europe

(85%), and North America (77%) and smallest in developing economies in Asia (41%), Africa

(48%), and Europe (48%) (see Table 7 below). These magnitudes reflect the greater real estate

demand in developed economies along with the observation that the largest Asian cities have

expanded their stock of heights the most in the developing world (Table 4), despite relatively

unfavorable bedrock conditions.

3.5 Model-Relevant Estimates

The main objective of the empirical work has been to recover averages of population and built

area elasticities with respect to building heights across all cities in the world and for various sub-

samples. It is these averages that are most relevant for developing a retrospective understanding

of how tall buildings have influenced the sizes and shapes of cities. However, these averages

surely mask many dimensions of underlying heterogeneity, including height limits and land use

regulation.

Under its baseline parameterization, the model developed in the following section describes

an environment in which fundamental supply and demand forces determine a city’s equilibrium

heights, population, and area. While height limits can be accommodated by the model, strong

assumptions would be needed to use estimated elasticities for constrained cities to fit the model.

As such, we will estimate the model under a baseline parameterization without height limits.

Credible model quantification thus requires elasticity estimates for a sub-sample of cities that

are unregulated. In order to maintain the same specification and identification assumptions as

for the empirical analysis on the broader sample, we select this unconstrained city sample to

include all cities in the most unregulated countries.

As a basis, we use the same 2015 city-level regression residuals used in the first step of

constructing city height gaps explained in Section 3.4. We aggregate these residuals to the

country level with city population weights. We select all cities in developing economy countries

without a history of communism with this aggregated residual above 0. This yields a sample of

5,315 cities located in 38 developing economies.25

As expected, the elasticity estimates for this sample, reported in the third column of Table

3, are larger than our broader average estimates reported in Table 2. In particular, we find an

unconstrained population elasticity of 0.21 and an unconstrained built area elasticity of -0.39,

both of which are statistically significant.

24As examples, gaps are 0% for Chicago, Seoul, Sao Paulo and Shanghai, 11% for Guangzhou, 26% for NYC,
70% for Boston, 80% for Buenos Aires and 93% for Cairo.

25Unconstrained countries include: Brazil, Colombia, Costa Rica, and Panama in Latin America; Malaysia,
the Philippines, Thailand, and Turkey in Asia; and Kenya, Ivory Coast, Libya, and South Africa in Africa.
We drop the 20 countries in Europe and 18 in other regions with a history of communism, as these countries
disproportionately built residential public housing towers in sometimes economically undesirable locations, and
generally did not build in response to market forces.
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4 Theoretical Analysis

This section develops a theory that facilitates conceptual and quantitative analysis of the role of

tall buildings in shaping urban economic development. This version of the urban monocentric

city model follows in the tradition of Muth (1969), while incorporating and expanding on the

real estate development technology in Section 2.4, explicitly including a commercial sector with

endogenous land use, and allowing for endogenous migration to the city. This “representative

city” model is intended to be flexible enough to capture the key forces that link tall building

construction to urban growth and change that are common to cities of many different shapes,

sizes, and stages of development. The model is stylized but can also be applied quite generally

to cities in our data. In Section 4.2, we quantify the model. This includes matching observed

population and area elasticities. In Section 4.3, we use the quantified model to calculate

the welfare benefits of the tall buildings technology and the consequences of relaxing height

restrictions for all cities in our data.

4.1 Model Setup

We expand on the standard urban model with endogenous heights (Duranton and Puga, 2015;

Ahlfeldt and Barr, 2022) by allowing rural residents to have the discrete choice of entering the

city, following Ahlfeldt et al. (2022)’s approach to modelling labor market entry. Thus, we obtain

an imperfectly open city which nests the conventional closed-city and open-city versions of the

monocentric model as special cases. The model generates a positive (finite) height elasticity

of population and a negative height elasticity of area, as observed in the data, through a floor

space supply channel. These responses strike a balance between the 0 population and large

negative area elasticities in a closed-city model (Alonso, 1964) and the infinite population and

small positive area elasticities in an open-city model (Ahlfeldt and Barr, 2022).

Environment: We consider a circular city of endogenous radius. The city is embedded in

a country of N̄ workers, which also has a rural hinterland. L(x) = 2ℓπx units of land are

available for development at each distance x from an exogenously located historic city center,

where ℓ = [0, 1] is the fraction of land that is developable. The area beyond the endogenous city

margin at x = x1 is the rural hinterland.

Workers: All workers are ex-ante identical and choose to live inside or outside the city. The

utility of worker ν is described by:

U(ν) = max
o

[Uo exp(ao(ν))], (11)

where o ∈ {inside, outside} and ao(ν) is an idiosyncratic taste shock for living in location

o. Workers living in the agricultural hinterland receive an exogenous subsistence utility

Uo=outside = Ũ1/ζ . All workers choosing to live in the city enjoy the same endogenous utility

Uo=inside = Ū . The idiosyncratic shocks ao(ν) are drawn from the same Gumbel distribution
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with distribution function

G(ao(ν)) = exp[− exp(−ζao(ν)− Γ)]. (12)

ζ > 0 is the taste dispersion parameter and Γ is the Euler-Mascheroni constant, included so that

the Gumbel shocks are mean 0.

Utility maximization delivers the urban population N as the share µ of the country

population N̄ .26

N = µN =
U
ζ

U
ζ
+ Ũ

N (13)

The resulting elasticity of urban population with respect to urban utility (the migration

elasticity) is ζ(1 − µ), with 1 − µ reflecting the stock of available rural residents at risk of

moving to the city.

City utility depends on a local amenity, tradeable goods consumption g, and residential floor

space fR. Each worker’s choice of residential location, on floor s in a building located at distance

from the city center x, must deliver the same utility level U(x, s) = Ū in equilibrium. Utility

is Cobb-Douglas with a floor space expenditure share of 0 < (1 − αR) < 1. The amenity value

of each location AR(x, s) depends on horizontal (x) and vertical (s) locations. Put together, we

have

U(x, s) = AR(x, s)
( g

αR

)αR(fR(x, s)
1− αR

)1−αR
. (14)

The amenity decays with distance from the center and rises with height, taking the form

AR(x, s) = āRe−(τRmax (0,x−xR))sω̃
R
.

ω̃R > 0 is the height elasticity of the residential amenity, capturing benefits such as better views

or less exposure to noise and pollution. τR > 0 determines the rate at which utility declines

in distance from the edge of a central district located at x = xR, with āR the amenity within

this district. τR > 0 generates the centripetal force of rising residential demand nearer to the

city center and can be interpreted as the utility cost of commuting an additional unit distance.

Workers face the budget constraint

y = pR(x, s)fR(x, s) + g,

in which the endogenous wage y can be spent on housing, with endogenous unit price pR(x, s),

and the tradeable good.

Utility maximization and imposing U(x, s) = Ū yields the residential floor space bid rent for

location (x, s) of

pR(x, s) = AR(x, s)
1

1−αR y
1

1−αR Ū
− 1

1−αR . (15)

Averaging across all floors of a building of height SR(x) at every location delivers the horizontal

26See Ahlfeldt et al. (2022) for a formal derivation. This is almost isomorphic to using Frechet random utility
draws with dispersion parameter ζ, with the advantage that this formulation justifies cases in which 0 < ζ < 1.

36



residential bid rent

p̄R(x) =
1

1 + ωR

[
āRy

Ū
e−(τRmax (0,x−xR))

] 1

1−αR

SR(x)ω
R
, (16)

where ωR = ω̃R

1−αR is the height elasticity of residential rent. This follows the form asserted in

Section 2.4. p̄R(x) is declining in x both because of declining amenities, as captured by τR > 0,

and declining equilibrium building heights SR(x).

The mass of residents at each location in the residential zone, in which residential use outbids

commercial and agricultural use, is

n(x) =
L(x)SR(x)

yR
p̄R(x)

1− αR
. (17)

In this expression, higher housing costs are associated with higher population densities because

of lower individual floor space consumption.

Firms: Atomistic perfectly competitive firms produce the tradeable good using labor l and

commercial floor space fC with the Cobb-Douglas production function

g(x, s) = AC(x, s)
( l

αC

)αC(fC(x, s)
1− αC

)1−αC
. (18)

Productivity at each location is shifted by

AC(x, s) = āCNβe−(τC max (0,x−xC))sω̃
C
.

ω̃C > 0 is the height elasticity of productivity, capturing benefits such as signaling and workplace

amenity effects (Liu et al., 2018). The agglomeration elasticity of productivity β > 0 describes

how productivity increases in city employment N (Combes and Gobillon, 2015). τC > 0

determines the rate at which productivity declines in distance from the edge of a central urban

core at xC , with āC the exogenous productivity within this core. One way to rationalize this

setting is to assume that all workers have to meet within this center to exchange knowledge.27

Profit maximization and zero profits delivers the commercial bid rent

pC(x, s) = AC(x, s)
1

1−αC y
αC

αC−1 . (19)

Averaging across all floors of a building with height SC(x) at each location x delivers the

horizontal commercial bid rent

p̄C(x) =
1

1 + ωC

[
āCNβe−(τC max (0,x−xC))

] 1

1−αC y
αC

αC−1SC(x)ω
C
, (20)

27By flattening amenities and productivity at the city center, we avoid the peaking of bid-rents and profit-
maximizing heights at unrealistically high levels.
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where ωC = ω̃C

1−αC is the height elasticity of commercial rent. This form resembles (16).

Then, labor demand at each location in the commercial zone is

L(x) =
αC

1− αC
p̄C(x)

yC
L(x)SC(x). (21)

This expression reflects the unitary elasticity of substitution between labor and floor space

embodied in the Cobb-Douglas production technology.

Developers: We extend the representative developer’s problem laid out in Section 2.4 to index

by type of use, commercial (C) or residential (R). Using (16) for residents and (20) for firms,

the use-specific profit-maximizing building height matches (3), indexing all parameters by use.

We require θU > ωU and pU (x) > cU (1 + θU ) for the solution to be well-behaved.

The developer may be subject to a height limit S̄U imposed by the planning system.

Conditional on building type U , the developer’s resulting choice of height is thus

S̃U (x) = min(S∗U (x), S̄U ). (22)

Inserting into (2) and imposing zero profits, we obtain the use-specific bid rent for land28

rU (x) = aU (x)
[
S̃U (x)

]1+ωU
− cU

[
S̃U (x)

]1+θU
. (23)

If planning restrictions do not bind, this function is declining in distance from the center x,

reflecting greater willingness to pay for better access to the center.

Spatial Equilibrium: For given values of the city-wide endogenous objects {y,N, Ū}, all

location-specific endogenous variables are uniquely determined. We obtain floor space rents

from (16) and (20), heights from (22), and use-specific land rents from (23). Land use then goes

to the highest bidder at each location x given agricultural bid-rent rA. Under the restriction that

the commercial rent gradient is steeper than the residential rent gradient, which is consistent with

plausible parameter values and empirical evidence, there is a distance x0 at which commercial

and residential land rents equate: rC(x0) = rR(x0). At shorter distances, commercial developers

outbid residential developers when competing for land; thus x0 defines the boundary of the

central business district (CBD).29 Similarly, there is a distance x1 at which residential and

agricultural land rents intersect, rR(x1) = rA, and the city ends.

28aC(x) ≡ 1
1+ωC [āCNβe−(τC×max (0,x−xC))]

1
1−αC y

αC

αC−1 and aR(x) ≡ 1
1+ωR [ ā

Ry
Ū

e−(τR max (0,x−xR))]
1

1−αR .
29In our quantification, two parameter restrictions together ensure a commercial center surrounded by a

residential area. The housing share in production is smaller than the housing share in consumption and τC > τR.

38



General equilibrium: Aggregating labor supply (17) and labor demand (21) across the city,

the labor market must clear at the city population N .

N =

∫ x1

x0

n(x)dx =

∫ x0

0
L(x)dx (24)

This implies an equilibrium wage of

y =
αC

1− αC

∫ x1
0 p̄C(x)L(x)SC(x)dx

N
. (25)

Aggregate housing market clearing is then

(1− αR)yN =

∫ x1

x0

p̄R(x)L(x)SR(x)dx. (26)

Inserting (16) into (26) delivers equilibrium urban utility

Ū =

 1
1+ωR

y
1

1−αR
∫ x1
x0
Ã(x)

1

1−αR (SR(x))(1+ω
R)L(x)d(x)

(1− αR)yN

1−αR

. (27)

Equations (13), (25), and (27) constitute the exactly identified system of equations that solves

for the general-equilibrium constants {y, Ū ,N}.

Welfare: Given Gumbel-distributed preference shocks, expected utility across all workers

living inside and outside of the city is30

V =
(
Ũ + U

ζ
) 1
ζ
. (28)

The aggregate land rent is

R =

∫ x0

x1

rR(x)L(x)dx+

∫ 0

x0

rC(x)L(x)dx+

∫ x̄

x1

rAL(x)dx. (29)

We do not combine these two components of welfare, as any aggregation scheme would be

arbitrary given our lack of information about land ownership.

4.2 Quantification

Given parameters {αU , β, ωU , θU , τU , xU , āU , cU , S̄U , rA, ζ, ℓ, Ũ} and endowments {N̄ , x̄}, we

solve for the city-wide endogenous objects {y,N, Ū} and the functions

{L(x), n(x), p̄U (x), rU (x), S̃U (x)} using the numerical procedure described in Appendix C.1.

Table 6 lists central parameter values; brief rationales are provided in the narrative below.

Appendix C.2 provides further details.

30See Ahlfeldt et al. (2022) for a formal derivation.
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Table 6: Baseline Parameterization

Parameter Value Further Reading

1− αC Share of floor space in production 0.15 Lucas and Rossi-Hansberg (2002)
1− αR Share of floor space in consumption 0.33 Combes et al. (2019)
β Agglomeration elasticity in production 0.03 Combes and Gobillon (2015)
θC Commercial height elasticity of construction cost 0.5 Ahlfeldt and McMillen (2018)
θR Residential height elasticity of construction cost 0.55 Ahlfeldt and McMillen (2018)
ωC Commercial height elasticity of rent 0.03 Liu et al. (2018)
ωR Residential height elasticity of rent 0.07 Danton and Himbert (2018)
τC Production amenity decay 0.014 Appendix Section C.2
τR Residential amenity decay 0.016 Appendix Section C.2
ζ Preference heterogeneity 2.3 Appendix Section C.2

Notes: Parameter values for {αU , β, θU , ωU} are also used in Ahlfeldt and Barr (2022). The last column provides
references for further reading. We set the scale parameters to āC = āR = 2, cC = cR = 150, rA = 50, N̄ = 10M, ℓ =0.5,
x̄ = 100km and invert Ũ so that µ = 0.3. In the baseline parameterization, height limits are not binding (S̄C = S̄R = ∞).

While values for {αU , β, θU , ωU} can be taken from the literature, remaining parameters

apply more specifically to our inquiry. These involve the spatial organization of the city and

the interaction between the city and the rural hinterland. We set the radius of the urban core

xC = xR to 1 km, resulting in a central core of the tallest buildings with an area of slightly

more than one square mile. We set the share of built-up land ℓ to the observed mean ratio of

built-up area over total land area across all cities in our data. Targeting a city of 3 million as

a baseline, we set the national population to N̄ = 10 million and the extent of the hinterland

from the city center x̄ = 100 km. Together, this generates a country population density of about

300 workers per km2 and the urban fraction µ of 0.3, similar to those for regions surrounding

the largest cities in Latin America and Asia, given appropriate choices for the scale parameters

{āU , cU , rA, Ũ}.
The structural amenity decay parameters τU must rationalize urban height, population,

and rent gradients. We set these parameters to reflect commercial and residential log building

height CBD distance gradients of -0.20 and -0.10, respectively, estimated using 2022 property

assessment data in CoreLogic for Chicago (Table A14). Chicago has an estimated height gap

of 0% and is of monocentric structure. Chicago’s is in the middle of estimated gradients using

remote-sensed building volumes data for the set of large unconstrained world cities.31

This leaves us with the preference heterogeneity parameter, ζ. This is a central parameter,

as it governs the migration response to any shock that affects the attractiveness of the city. The

larger is ζ, the more city population grows and the less city land area shrinks in response to a

positive shock to the supply of tall buildings. With ζ sufficiently large, the city expands both

vertically and horizontally. That is, city population and area elasticities are monotonic in ζ.

These relationships are depicted in Figure 8. At the left of the graph is a closed city, in which ζ

is 0. In this environment, new tall buildings associated with a reduction in the cost of height θ

do not draw in any population but instead make the city more compact. The associated supply

shock to city real estate lowers rents. The greater spatial concentration of production raises the

31This building volumes data set does not include building use and is too spatially coarse to allow for accurate
measurement of height gradients by use. Appendix Section C.2.1 has further details.
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wage through an agglomeration force. Moving to the right in Figure 8, it becomes easier for

people to move into the city. This results in higher population, area, and rent elasticities. At

ζ = 2.3, the real estate supply shock effect of lowering the cost of height gets balanced by the

general equilibrium migration response such that rents do not respond to heights. For greater

values of ζ, where population elasticities are very large, rent elasticities are slightly positive.

Figure 8: Height elasticities in model by preference heterogeneity (ζ)
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Note: Dotted horizontal lines are our estimates of the height elasticity of population and the height elasticity of area from
cities that are unconstrained by height regulation (the empirical moments). Solid horizontal lines are matched moments in
the model. To generate these moments in the model, we set one value of ζ and then solve the model under varying values
of θU . This way, we generate variation in heights and the four outcomes that originates from the building supply side,
exclusively.

To identify ζ, we use a simulated method of moments (SMM) approach, treating the height

elasticities of population and area as moments to match between the model and the data. We

solve the model under varying values of θU for each value of ζ, delivering variation in population

and area that mimics the bedrock-induced variation in the cost of height in our empirical analysis.

In each run, we also compute a measure of tall building height. Log-linear regressions of model-

generated population and area against model-generated heights produce our simulated moments.

Differences in land use and building patterns between the data and the model require

attention when matching moments. As our building heights data is bottom-coded at 55 meters,

model generated heights must also be bottom-coded. However, unlike in the model, the data

also exhibit variation in building heights at each CBD distance and buildings that tend to taper

towards the top. Moreover, about half of land in the data is not built up near CBDs. For all of

these reasons, the threshold above which to measure building heights in the model should be well

below 55 meters (≈ 14 stories). As it is unclear which height threshold T to use in the model,

we treat T as an additional parameter to be estimated through SMM, thereby rendering model

parameters just identified. In the counterfactual exercises below, T also serves as our minimum

tall building height. Under T = 3 and ζ = 2.3, we exactly match the estimated population

and area elasticities. As long as T ≥ 3, we obtain a ζ value around 2.3 (see Figures A12 and
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A13).32 We see T = 3 as a reasonable magnitude. Using CoreLogic data from Chicago, the

CBD distance ring of 750 to 1000 meters has total residential and office building floorspace that

is 3.7 times the land area and average building heights of 12.8 stories.

The implied labor supply (migration) elasticity to the city ζ(1 − µ) of about 1.6 should be

viewed as a broad-based long-run average that integrates over many different environments. As

our estimate applies to a 40 year time horizon, it is sensible that it exceeds the estimates in the

literature that are based on similar modeling frameworks but are applied to annual frequencies.

Moreover, our look at changes in stocks rather than migration flows, as has been typical in

the migration literature, will tend to increase elasticity estimates to additionally account for

fertility and death rate responses to real estate supply shocks. Using flow data and a similar

conceptualization of location choice to ours, Caliendo et al. (2019) and Caliendo et al. (2021)

find annual elasticities of 0.5 for the US and Europe, respectively, and Porcher (2020) estimates

heterogeneous annual elasticities of less than 0.4 for Brazil. Tombe and Zhu (2019) finds 1.5-

2.5 between provinces in China over worker life-cycles and Bryan and Morten (2018) finds 2.7

for Indonesia. Using more reduced form methods, Beaudry et al. (2014) finds a decadal labor

supply elasticity to US metro areas of about 2.0 and Morten and Oliveira (2018) finds 4.5 using

Brazilian data, focusing on variation from the linking up of the new capital Brasilia into the

highway network. Our ability to reproduce the empirical moments within our model under a

canonical parameterization adds to our confidence in the identification strategy employed in

Section 3.

4.3 Counterfactuals

In this sub-section, we use the quantified model to explore the implications of changes in the

cost of height and of imposing height limits in different types of cities.

4.3.1 Illustrative examples

The starting point is the equilibrium under the baseline parameterization from Table 6, which

we illustrate in the first row of Figure 9. Slopes of use-specific floor space bid-rent functions

are co-determined with height gradients and bid-rent functions for land. The resulting land use

pattern has a commercial district in the center surrounded by a residential district and then rural

land. The small discontinuities in floor space rents and heights at the commercial-residential

land use boundary x1 arise endogenously as a result of a net-cost of height θU − ωU that is

smaller for commercial than residential developments. The flat rent and height functions at the

center are artifacts of the imposition of the constant productive amenity value a for locations

x < xC .

The second row of Figure 9 uses the same parameterization except that the costs of height

are increased by 20% to emulate an environment with less favorable bedrock depth. Relative

to the first row, this is a negative height supply shock. Changes in aggregate outcomes from

the baseline to this counterfactual equilibrium are reported in Table A15. Building heights

32Good model fit requires T to be below the height of the tallest model-generated residential buildings.
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fall and the city area expands by 16%. The relocation of firms and residents to more peripheral

locations increases commuting costs (or, equivalently, reduces residential amenities) by 2.6% and

lowers productivity (commercial amenities) by 0.9%. Due to the reduction in floor space supply,

average commercial rents increase by 8%. Lower productivity and higher commuting costs make

the city less attractive, thereby reducing housing demand and leading to slightly lower average

residential rents, despite the reduction in residential floor space. Lower productivity and higher

commercial rents reduce labor demand; reduced accessibility to the center reduces labor supply.

The result is a reduction of 2.5% in the equilibrium wage. Due to the lower wage and greater

commuting costs, city utility Ū falls by 5.3%. Since living in the city has become less attractive,

the population falls by 8.2%. Expected utility across all workers inside and outside the city, V,
falls by 1.6%. Aggregate land values fall by 0.2%. Owners of land in the city center are worse

off, as this is where the intensity of land use falls. Owners of land near the city periphery are

better off, as this land is more urbanized.

Figure 9: Urban spatial structure, cost of height, and regulation
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a. Baseline parametrization
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b. 20% higher cost of height
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Note: Figure illustrates the solution to the model under the parameter values from Table 6 (upper panels), a counterfactual
where we increase the cost of height to θC = 0.6, θR = 0.65 (middle panels), and a counterfactual in which we introduce
a height limit of S̄C = S̄R = T = 3. See Table A15 in the Appendix for the impact of the greater cost of height and a
binding height limit on aggregate outcomes.

In the third row, we revert to the same parameters as in the first row but impose the

height cap S̄C = S̄R = T = 3 such that there are no (model-defined) tall buildings. Relative

to an unconstrained city, this height cap results in a substantial horizontal expansion of the
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CBD. Although we have imposed a tighter constraint on vertical growth, the horizontal area

of the city increases only slightly more (at 18%) than in the cost counterfactual. The more

pronounced horizontal expansion of the CBD results in an 8% increased average commuting

cost and 5% reduction in average productivity. With a 7% decline, the wage falls more than

in the cost counterfactual. The result is a reduction in housing demand that is so large that,

despite the negative shock to residential floor space supply, residential rents fall substantially

by 14%. The increase in commuting costs and the lower wage, however, dominate the effect of

rents on indirect utility in the city, which decreases by 10%, leading to a decline in expected

utility V of 3.0%. Population falls by 17%, about 50% more than in the cost counterfactual.

Driven by the conversion of rural into residential and residential into commercial land use,

aggregate land values notably increase by 13%. The height limit redistributes income from the

mobile labor factor to the immobile land factor. A major welfare cost of height limits arises

from the induced spatial misallocation of firms away from locations at which they are most

productive. This example includes details that underlie our analysis of welfare consequences of

height restrictions calculated for all cities in our data, carried out below. We emphasize that as

height caps bind more tightly for larger cities, associated welfare consequences are greater for

these cities. Moreover, welfare consequences for urban residents are more than triple those for

the average person, as the city hosts about one-third of the imperfectly mobile population.

4.3.2 Heterogeneity in welfare effects

When evaluated relative to an unconstrained market equilibrium, the welfare impact of height

regulations depend on the cost of height. Welfare impacts of the same height regulation are

larger in cities with lower costs of height. Indeed, introducing the same height limit as in the

third row of Figure 9 under a 20% greater cost of height, the impact on population and expected

utility falls by about one third and the effect on area about halves (Table A15).

Figure 10 illustrates how the welfare effect associated with a height limits depends on

population and the cost of height. To generate this figure, we solve the model varying the

height cost (θU ), height limit (S̄U ), and rural utility Ũ values. We exploit that there is a

unique mapping from urban and rural utility to population in (13) to find {S̄U , Ũ} values that

rationalize any given combination of population and height gap using the procedure described

in Algorithm 4. We use this procedure to compute welfare effects for all combinations of cost of

height {0.2, 0.3, ..., 1} and height gaps {0%, 10%, ..., 100%}, as defined in (10). We show results

for cities of half a million and three million residents. For a given cost of height and height gap,

we engineer the model to generate larger population cities by reducing rural utility Ũ , thereby

also generating greater demand for height in the city.

Figure 10 confirms that losing height results in greater expected utility losses if the cost of

height in a city is low (e.g. due to favorable bedrock). Lowering the cost of height from 0.6

to 0.3 approximately triples the relative utility loss at any given height gap in a city with a

population of three million (top right panel). Demand conditions also matter. Holding the cost

of height constant, we observe greater effects in larger cities. Height limits tend to be more
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Figure 10: Heterogeneity in welfare effects
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Note: To generate each panel, we solve the model under different values of {θC}, setting θR = θC +0.05. We find values of
{S̄, Ũ} to rationalize a given combination of population and height gap, conditional on given θU values. We hold all other
parameter values constant at the value described in Table 6. The height gap is the fraction of free-market total tall-building
height that is not developed due to a height limit.

costly in cities with fundamentals that increase the demand for and/or the supply of height. As

vertical compression leads to horizontal expansion, binding height limits increase average land

values. This uplift is generally large enough to more than compensate for the decline in land

rent in the more constrained central part of the city, as seen in the bottom two panels of Figure

10. Impacts on aggregate land rent are much greater in cities with lower costs of height, where

the loss of heights are particularly large. This primarily reflects redistribution of production

and residences to more peripheral locations, with only small responses in aggregate demand for

living in the city.

4.4 The Contribution of Tall Buildings to Welfare

We use the model to evaluate the welfare effects of tall buildings for the 12,877 cities used in the

empirical analysis. As in Figure 10, we invert the model to rationalize observed populations and

height gaps conditional on the observed cost of height for each city in our data (see Algorithm

4 for details). We obtain city-specific estimates of the cost of height using mean bedrock depths

and the non-parametric estimated relationship between bedrock depth and the cost of height

illustrated in Figure A5.
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Table 7: Wefare effects of tall buildings by world region

City characteristics Expected utility (V) Agg. land rent (R)

World region
Urban
pop.
(BN)

In
cities

>1 mill.

Cost of
height

θ

Est.
height
gap

No
tall

building

Actual
height
limit

No
tall

building

Actual
height
limit

Africa, G 0.55 34.7% 0.44 48.1% –5.0% –4.8% 6.6% 6.6%
Asia, G 1.95 44.5% 0.59 40.8% –3.8% –2.6% 4.8% 4.0%
Europe, G 0.04 29.2% 0.49 48.5% –1.0% –0.6% 1.6% 1.2%
LAC, G 0.33 52.9% 0.41 62.7% –5.5% –3.9% 6.9% 6.4%

Mean, Developing (G) 2.87 43.3% 0.54 44.8% –4.2% –3.1% 5.3% 4.7%

Asia, D 0.19 77.2% 0.39 64.0% –10.3% –7.3% 12.6% 11.2%
Europe, D 0.25 41.4% 0.32 84.6% –5.8% –4.9% 7.4% 8.3%
LAC, D 0.02 48.6% 0.99 59.4% –0.9% –0.6% 1.2% 0.9%
North America, D 0.17 67.3% 0.43 76.6% –8.3% –6.3% 10.0% 10.4%
Oceania, D 0.01 64.2% 0.34 90.0% –6.9% –6.6% 8.1% 8.3%

Mean, Developed (D) 0.64 59.6% 0.39 75.9% –7.7% –5.9% 9.5% 9.5%

Mean, All (G & D) 3.51 46.3% 0.51 50.5% –4.8% –3.6% 6.1% 5.6%

Notes: Entries are population-weighted averages across cities in each indicated region. City-specific welfare effects are from
model-based counterfactuals using parameterizations that match population and the cost of height for each city. Results in
“No tall building” and “Actual height limit” columns report average changes in expected utilities and aggregate land rents
relative to city unconstrained equilibria. City height gaps are estimated as described in Section 3.4. “No tall building”
imposes a height limit of 3 floors. “Actual height limit” imposes estimated city height gaps.

Table 7 reports the city population weighted mean welfare effect by world region. While we

weight by city population, we also include rural potential migrants in our welfare calculations.

We report the incidence on the mobile (labor) and immobile (land) factors for two scenarios.

First, we calculate the welfare loss associated with banning all equilibrium tall buildings, or going

from the S̄U = ∞ equilibrium to the S̄U = T equilibrium for each city. Second, we calculate

the welfare consequences of going from no height restrictions (S̄U = ∞) to actual height gaps

(Gapac from (10)), which delivers the welfare cost associated with each city’s inferred current

height regulations.

Globally, imposing a height restriction of no tall buildings is predicted to reduce worker

welfare by 4.8% relative to unconstrained equilibria (bottom row). As imposing current height

constraints on unconstrained equilibria reduces worker welfare by 3.6%, only about one-quarter

of this height potential has been realized under current regulations. Commensurate with our

discussion above of the final row of Figure 9 and the bottom two panels of Figure 10, aggregate

land rents rise when height constraints are imposed. Magnitudes are reported in the final two

columns of Table 7. Current height restrictions are estimated to cause city aggregate land rents

to be 5.6% greater than in the unrestricted regime.33

City population, the cost of height, and the height gap all influence the magnitude of welfare

benefits associated with relaxing height limits. With height limits more binding in the developed

world, in part because of a greater share of its urban population in large cities and a lower cost

33Imposing height restrictions leads to lower wages, lower average property rents and higher commuting costs
(or equivalently, lower amenities), with the rent response not sufficient to make up for the other two negative
influences on welfare. About 75% of the welfare losses are due to the higher commuting cost (lower amenity)
component. Exact magnitudes for different world regions are reported in Table A16.
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of height due to better bedrock depths, its welfare cost of height limits are greater than that

for the developing world, at 5.9% and 3.1%, respectively. As cities in developed areas of Asia

are large, this region’s opportunities for welfare gains from eliminating height constraints are

greatest across all world regions at 7.3%.

In the developing world, Africa has the most to gain from relaxing height limits, at 4.8%,

as its cities’ average costs of height are a low 0.44. The Latin America/Caribbean and Asian

regions have realized more of their potential gains from heights, such that relaxing inferred

height restrictions in these regions would lead to welfare gains of 3.9% and 2.6% respectively.

The larger cities, lower costs of height, and larger height gaps in the Latin America/Caribbean

region justifies its greater potential welfare gains.

While already large, the welfare costs of height limits are likely to grow over time. The

history of tall buildings is one of technological innovations that have lowered the cost of height.

Extant estimates suggest that the cost-of-height parameter, θ, has declined by about 2% per

year over the past 50 years (see Ahlfeldt and Barr (2022) and Appendix Section A.3). Even if

this rate halves, the cost of height will fall by 20% within a generation. Our simulations suggest

that even if cities adjust to keep the relative bite of height regulation constant, the welfare

cost will increase by about one-third on average, from 3.6% to 4.6% overall (Table A17), with

considerable variation across regions.

5 Conclusion

Our comprehensive examination of 12,877 cities worldwide from 1975 to 2015 reveals that the

construction of tall buildings driven by reductions in the costs of height has allowed cities

to accommodate greater populations on less land. We estimate average elasticities of city

population and built land area with respect to aggregate city building heights to be 0.13 and

-0.16, respectively, in developing economies. Corresponding treatment effects that are allowed to

flexibly differ by 1975 city population imply that one-third of the aggregate population in cities

of over 2 million people in the developing world, and 20% for all cities, is now accommodated

because of the tall buildings constructed in these cities since 1975. Moreover, the largest cities

would cover almost 30% more land without these buildings, and almost 20% across all cities,

keeping this peripheral land in use mostly for agriculture instead.

In the context of a quantitative urban model, the enhanced urban compactness facilitated by

tall buildings manifests as gains in both productivity and affordability. As a result, we calculate

that imposing a height limit that eliminates all tall buildings in cities around the world would

reduce worker welfare by about 1.2%, while at the same time increasing aggregate land values

by about 0.5% relative to the current equilibrium. Given the gap between actual and potential

building heights we calculate for each city in our data, only about one-quarter of the potential

welfare gains and land value losses from heights have been realized, with per-capita welfare

gains of 5.9% and 3.1% available by eliminating height regulations in developed and developing

economies, respectively. As the cost of building tall structures decreases with technical progress,

such potential for welfare gains will only increase into the future. The implicit costs of height
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restrictions will only grow over time.

With the losses in land values that would come with deregulation, it is perhaps not surprising

that so many cities restrict tall building construction. Given our estimated migration elasticity

of about 1.6, the population (city demand) response to any tall building supply shock associated

with deregulation would not be sufficiently large to overcome a decline in land values. As a

result, in most cities it is in landowners’ interest to maintain regulatory regimes that limit tall

building construction, despite the benefits that would come to workers, especially if they are

renters. The political economy of such deregulation is fraught, as benefits may be greatest for

those who would move into the city with the new construction to take advantage of the higher

real wages and lower commuting costs. Even though aggregate gains associated with allowing

more tall building are to be found, in many cities these gains are distributed to only a minority

of the local electorate.

Beyond the political economy frictions, there are additional reasons for which tall building

construction may be disruptive in many cities. There may be negative amenity and productivity

responses from the congestion associated with increased urban density. Moreover, there is likely

to be heterogeneous demand for height; we tend to see only middle and high income residents

and high productivity firms locating in new tall buildings. And construction is locally disruptive.

For all of these reasons, tall building construction may be regressive and costly in the short run,

even if it expands real estate supply to the benefit of all renters in the long run. A priority for

future research should be to develop a better understanding of the extent to which each of these

potential reasons for the opposition to densification hold up empirically, and to devise potential

policy remedies.
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WEB APPENDIX NOT FOR PUBLICATION

A Data and stylized facts

A.1 Data on Tall Buildings

The full Emporis data set includes 693,855 buildings worldwide. These include buildings of

various types, heights and sizes. While Emporis attempted to collect extensive information about

the world’s buildings, it could not do so comprehensively. As a result, we are concerned about

the selection of buildings recorded in the data set. Our empirical strategy requires measuring the

universe of buildings above some height cutoff. To determine this height cutoff, we inspect the

nonparameteric density of building heights in the full Emporis data set in Figure A2. Evident in

Figure A2 is a spike in the distribution of building heights at just above 55 meters. It is for this

reason that we use the 55 meter height threshold above which to measure the sum of heights for

each city.

For a subset of our tall buildings data set, we observe not only the height of a tall building,

but also the cost of construction (excluding cost of land acquisition) and the floor area. In

this section, we describe how we process the data to generate the heat maps in Figure 3 and 4

and provide complementary LWR estimates using bivariate kernels that provide non-parametric

point estimates of the cost-bedrock relationship by height groups aongside confidence bands.

Table A1, provides summary statistics about the Emporis construction cost data. Panel A

summarizes the sample of US cities used for Figures 3, A14, and A4 and Table A18. We use this

sample for most of our longitudinal analysis, to ensure that variation in the cost of height over a

long time period is identified within one country that roughly follows a common trend. Panel B

summarizes the multinational sample that we use in Figures 4, A5, and A15 for cross-sectional

analyses.

A.1.1 Residualized log unit cost

Our analysis of building construction costs begins with a construction cost index. We build this

index to net out various factors that contribute to construction costs but are unrelated to height

and bedrock depth. These factors include the price of labor and construction materials and

exchange rate differences. In particular, we residualize observed construction cost Ci,m(i),c(i),t

per unit of floor area Fi,m(i),c(i),t of each building i, constructed in city m in country c during

decade t using the following regression:

lnCi,m(i),c(i),t − lnFi,m(i),c(i),t = µm(i) + ηc(i),t + εCi,m(i),c(i),t,

where µm(i) is a time-invariant fixed effect controlling for arbitrary demand and supply shifters

at the city level and ηc(i),t is a country by decade effect that controls for time-varying effects such

as increasing demand due to economic growth or varying costs of construction materials. From

this regression, we recover the residual, εCi,m(i),c(i),t, as a relative cost measure that describes log
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deviations from country-trend-adjusted city averages.

A.1.2 LWR using a bivariate kernel

As discussed in Section 2, innovations in construction technology may have affected the

construction cost for buildings of different height differently. For example, improvements in

mainframe computing and software that allow for refined structural engineering to withstand

collateral wind loads may have reduced the cost of building taller. Likewise, the engineering

literature suggests that in determining construction cost, building height and bedrock depth

interact in a complex fashion. For tall buildings, there is generally a cost-minimizing bedrock

depth, but this depth is likely to vary by height—taller buildings require deeper foundations—

and so does the importance of bedrock—bedrock is generally more important to anchor taller

buildings. To evaluate such complex relationship non-parametrically, we employ a locally

weighted regressions approach (Cleveland and Devlin, 1988; McMillen, 1996) using a bivariate

kernel.

Assume we have a set of variables s ∈ {s1, s2} that determine our construction cost index.

For each combination of grid values along those dimensions s̃1 ∈ S̃1, s̃2 ∈ S̃2 we run the locally

weighted regression

εCi = ε̄s̃
1,s̃2 + ε̃s̃

1,s̃2

i

using the Gaussian kernel weight

W s̃1,s̃2

i =
ws̃

1,s̃2

i∑J
j=iw

s̃1,s̃2

j

,where

ws̃
1,s̃2

i =
∏

s=∈{s1,s2}

1

κs
√
π
exp

[
−1

2

(
si − s̃

κs

)2
]
.

(30)

where κs are bandwidth parameters.

Hence, we run S̃1× S̃2 locally weighted regressions to recover S̃1× S̃2 parameters ε̄s̃
1,s̃2 which

are local means that we plot on the height-bedrock plane in Figures 3 and 4. This amounts to

112 (years) × 195 (height values) = 21,840 regressions in Figure3 and 35 (bedrock depth values)

× 195 (height values) = 6,825 regressions in Figure 4.

A.1.3 LWR using a univariate kernel

The strength of the heatmaps in Figures 3 and 4 is to provide an accessible presentation of

a non-parametric function in two dimensions. In doing so, we focus on point estimates and

abstract from confidence bands. For an illustration of the latter, we subdivide the data set into

groups defined by building height and estimate the the relationships between cost and either

the year of construction or bedrock height groups using LWR and univariate kernels that are

otherwise identical to Eq. (30). Since we include only one dimension in our kernel, we use smaller

bandwidth parameters. The blue and the red lines for 100-150 m and 150-250 m in Figures A14

and A15 roughly correspond to the blue and red lines in Figures 3 and 4, respectively.
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The results presented in Figure A14 confirm that the construction cost of very tall buildings

exceeding 150 m in the US have fallen significantly more that in other height categories. In

particular, costs in this category have fallen throughout our 1975-2015 and 1920-1975 study

periods.

The results presented in Figure A15 confirm that the cost-minimizing bedrock depth for

buildings of about 125 m is about 18 m, whereas it is 25 m for buildings of about 200 m. In

addition, we can reject that the cost is the same at lower or greater depths. Finally, it is notable

that this U-shaped relationship between cost and bedrock depth applies more clearly to taller

buildings.

A.2 Cost of height and bedrock depth

A convenient way of summarizing the cost of height is the elasticity of per-unit construction cost

with respect to height (Ahlfeldt and McMillen, 2018; Ahlfeldt and Barr, 2022). The engineering

literature and stylized evidence discussed in Section 2 suggests that this elasticity should non-

linearly depend on bedrock depth.

To empirically substantiate this notion, we use a LWR-IV approach to estimate how bedrock

depth influences unit cost responses to building heights. For implementation, we require a

demand-side instrumental variable to remove the effect of supply-side factors such as ruggedness

that could be correlated with sub-soil geology. We use distance from the CBD as an instrument

for building heights since it affects building heights via the demand side (Brueckner, 1987;

Ahlfeldt and Barr, 2022) and has empirically been shown to be a strong predictor of height

(Ahlfeldt and McMillen, 2018; Ahlfeldt and Barr, 2022). The city center is defined as follows.

If the city has buildings exceeding 100 meters in heights, it is the median coordinate of these

buildings. Otherwise, it is the location of the tallest building in the city.

Concretely, we estimate the first stage

lnhi.m(i),c(i),t = αb̃ lnDCBDi,m(i) + µ̃b̃m(i) + η̃b̃c(i),t + ε̃b̃i,m(i),c(i),t (31)

and a second stage:

lnCi,m(i),c(i),t − lnFi,m(i),c(i),t = θb̃ l̂nhi.m(i),c(i),t + µb̃m(i) + ηb̃c(i),t + εb̃i,m(i),c(i),t (32)

for each LWR b̃ ∈ B̃ using a weighted 2SLS estimator. hi,m(i),c(i),t is the height of building i,

constructed in city m in country c during decade t, DCBDi,m(i) is building i’s distance from

the center of city m(i), lnCi,m(i),c(i),t − lnFi,m(i),c(i),t is the log of the cost per unit of floor

area, {µb̃m(i), µ
b
m(i)} are city fixed effects, {ηb̃c(i),t, η

b
c(i),t} are country by decade fixed effects, and

{ε̃b̃i,m(i),c(i),t, ε
b̃
i,m(i),c(i),t} are error terms.
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In each LWR b̃ ∈ B̃ we weight observations by the Gaussian kernel weight

W b̃
i =

wb̃i∑J
j=iw

b̃
j

,where

wb̃i =
1

κb̃
√
π
exp

−1

2

(
bi − b̃

κb̃

)2
 . (33)

Notice that Eq. (33) uses a univariate version of the same kernel as in Eq. (30), except that we

employ a LWR-specific bandwidth. This is because we wish to allow for a more flexible fit via a

smaller bandwidth in the in the more populated part of the bedrock distribution where we also

expect more variation in θ, whereas we wish to reduce standard errors in the right tail of the

bedrock distribution that is more sparsely populated and where we expect less variation in θ.

To this end, we use a variant of Scott’s rule of thumb for bandwidth selection and define

κb̃ = M 3.49σ̂b̃(
N b̃
) 1

3

,

where the standard deviation σ̂b̃ and the number of observations N b̃ are computed for rolling

subsamples that satisfy |bi − b̃| ≤ B = 10. We scale the rule-of-thumb bandwidth by a factor of

M = 2 since the non-parametric estimation of derivatives generally requires larger bandwidths

than the estimation of levels (Henderson and Parmeter, 2015, Section 5.9).

The results in Figure A5 support the engineering-based hypothesis that bedrock at

intermediate depths reduces the construction cost of tall buildings. Within the sample of

buildings for which we observe height, construction cost, and floor area, the marginal cost

of increasing height is minimized at a bedrock depth of about 15 meters. At depths below

about 5 meters or greater than 25 meters, the cost of height is significantly larger. This range

is roughly consistent with the descriptive evidence from Figures 4 and A15, given an average

building height of 109 meters in our sample. The results in Figure A5 support the idea that

as demand for height increases over time, cities with bedrock within an intermediate range will

have a greater ease of accommodating that demand, resulting in lower barriers to growth.

A.3 Cost of height over time

As discussed in more detail by Ahlfeldt and Barr (2022), several technological innovations have

contributed to the emergence of tall buildings as an increasingly widespread urban phenomenon.

Around the turn of the 20th century, the elevator and and steel frame made tall commercial and

residential structures economically viable. Starting in the 1960s, mainframe computers allowed

for more sophisticated structural engineering, facilitating lighter and taller buildings that could

withstand stronger collateral wind loads, with continued improvements thereafter. In the near

future, the magnetic elevator is expected to remove yet another barrier to vertical growth.

It is therefore reasonable to expect a secular downward trend in the cost of height. Indirect

A.4



evidence from correlations of land prices and building heights substantiates this hypothesis

(Ahlfeldt and McMillen, 2018; Ahlfeldt and Barr, 2022). We use our construction cost data set

to directly test the hypothesis that the height elasticity of construction cost has decreased over

time. Since different parts of the world have adopted the skyscraper technology at different

points in time, we focus on the US—the only country for which we can estimate the cost of

height throughout the 20th century—to avoid changes in our estimates of the cost of height over

time being driven by the international composition of the sample. In Table A18, we report the

results from instrumental variable regressions of a log cost measure against the log of height and

an interaction with a time trend. We normalize this trend to have a value of zero in 1975, the

beginning of our observation period in the main stages of our analyses. Hence, the coefficient

on the non-interacted log height variable gives the height elasticity of cost in 1975 while the

coefficient on the interaction reveals how this elasticity changes over time. All estimates control

for city fixed effects, decade fixed effects and a time trend. Columns (1) presents OLS estimates.

Column (2) presents IV estimates, where the log distance from the city center (the median

coordinate of buildings exceeding 100 m or the tallest building if shorter) and its interaction

with a time trend serve as instrumental variables. Both models confirm the hypothesis that the

cost of height has decreased over time. The OLS estimates point to a reduction in the height

elasticity of costs by slightly less than one percentage point per year. The 2SLS estimates are

significantly larger, pointing to a reduction of 2.2 percentage points per year.

To allow for greater flexibility in the time trend, we use a LWR-IV specification similar to

the one described by Eqs (31), (32) and, (33). The only difference is that we use the year instead

of bedrock as a covariate in the univariate kernel and employ a constant bandwidth of κ = 30,

since we have no priors regarding when we should expect greater changes in the cost of height.

Figure A4 confirms that the height elasticity of cost has declined since the beginning of the 20th

century. Hence, the evidence supports the notion of a secular downward trend in the cost of

height that should act as supply-side driver of vertical growth.

B Empirical Analysis

B.1 Analysis Using Monotonic Bedrock Depth Instruments

The engineering literature suggests a non-monotonic relationship between bedrock depth and

construction cost for tall buildings. To accommodate this non-monotonic relationship, our

baseline specification employs a second-order polynomial in bedrock depth as a construction

cost shifter. Here, we present results using the alternative more flexible approach in which our

bedrock quality measure is instead specified as a linear spline in bedrock depth. This specification

allows bedrock quality to increase linearly in bedrock depth until a first kink. Beyond the first

kink, there is a negative relationship between bedrock quality and bedrock depth until a second

kink. Beyond the second kink, bedrock depth has no effect on bedrock quality since it is too

deep to matter for the construction of tall buildings. With this approach, we obtain two bedrock

quality measures–one covering depths from zero to the first kink, and one covering depths from
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the first to the second kink–each of which we expect to be monotonically positively related

to heights. Using these quality measures as instruments for height, we can evaluate both the

monotonicity properties of our baseline IV specification and the extent to which our height

elasticity estimates are identified from cities where bedrock is too close to the surface or too

deep.

The quality measure for bedrock near the surface is defined as follows:

BRQsurfa =MBDa × 1
(
MBDa < K1

)
,

where MBDa is mean bedrock depth in city a and K1 is the first kink of the spline function

where deeper bedrock transitions from reducing to increasing construction costs for tall buildings.

BRQsurfa is zero when bedrock is at the surface (MBDa = 0) and increases proportionately in

bedrock depth until a depth of just under K1. From depths of K1 onward, BRQsurfa is set to

zero.

The quality measure for deep bedrock is defined as follows:

BRQdeepa = K1 ×
(
1− 1

K2 −K1

)
×
(
MBDa −K1

)
× 1

(
K1 ≤MBDa ≤ K2

)
,

where K2 defines the second kink of the spline function beyond which bedrock depth does not

influence construction costs. BRQdeepa takes a zero value below depth K1, begins at its maximum

value at K1, and declines linearly until it reaches zero at bedrock depth K2, beyond which it

stays at zero.

With these bedrock quality measures in hand, we estimate the following second-stage

regression:

yac = β∆ ln (Heightsac + 1)+α1BRQ
surf
ac (K1,K2)+α2BRQ

deep
ac (K1,K2)+α3 lnPopac75+κc+εac,

where, compared to Eq. (7), the mean bedrock variables {MBDac,MBD2
ac} are replaced

with the bedrock quality variables. In perfect analogy to Eq. (7), the excluded instruments

in the first stage are the interaction terms between bedrock quality and 1975 log population

(BRQsurfac (K1,K2) × lnPopac75,BRQ
deep
ac (K1,K2) × lnPopac75). To find {K1,K2}, we estimate

the specification for all combinations of K1 = {10, 11, ..., 40} and K2 = {50, 11, ..., 158}, where
the upper bound K2 = 158 is the largest bedrock depth value observed in our data, and choose

the values that maximize the first-stage F-statistic.

With this approach, we obtain the bedrock quality spline function illustrated in Figure A16.

In keeping with the engineering narrative, bedrock quality increases until a bedrock depth of 22

meters as the cost of removing bedrock to free space for building foundations decreases. Beyond

that depth, bedrock quality decreases as the cost of anchoring tall buildings to bedrock increases.

Bedrock quality decreases until the greatest depth observed in our data, suggesting that bedrock

depth still matters at relatively large depths, though the slope of the downward-sloping section

of the spline function is obviously driven by smaller depths as only few cities have depths beyond
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80 meters. Figure A16 also illustrates how our two bedrock quality measures BRQsurf (solid

black line) and BRQdeep (dashed red line) separately capture bedrock quality where deeper

bedrock is a construction amenity (BRQsurf ) or a construction disamenity (BRQdeep).

We illustrate the distribution first-stage F-statistics across runs with different values of

{K1,K2} in Figure A17. The left panel shows that the first-stage F-statistic is generally relatively

high within a range of K1 ∈ (20, 30). This is about the range where heights are particularly

responsive to growing floor space demand as illustrated in Figure 5. The right panel confirms

that irrespective of the value of the first kink (K1) the F-statistic is generally maximized for

the second kink at K2 = 158 meters, the largest depth in our data. It is worth noting that the

F-stat remains high even if we lower the value for the second kink by about 50% to K2 = 80.

The first-stage and second-stage results discussed below hardly change as we alter K2 within

this range.

We report first-stage and second-stage estimates using our bedrock quality instruments in

Table A8. The estimated height elasticity of population, at 0.128, is almost identical to our

baseline estimate from Table 2. The estimated height elasticity of built area is, in absolute

terms, somewhat larger than in the baseline whereas the height elasticity of urban area is

somewhat smaller and estimated imprecisely. The first-stage effects of the bedrock quality-

population interaction terms also show the expected positive signs and are estimated precisely.

The important implication is that bedrock quality matters both where bedrock is near the surface

and where bedrock is deep.

Given these encouraging first-stage results, one naturally wonders whether it is possible to

identify our height elasticities from variation in bedrock depth on either side of the first kink.

To this end, we use one of the two bedrock quality-population interaction term as a second-

stage control in Table A9, so that the other quality-population interaction term is the sole

excluded instrument driving identification. In Columns (1), (3), (5), the identifying variation

stems from cities with bedrock near the surface whereas it stems from cities with deep bedrock

in the remaining columns. Indeed, we find that using variation in bedrock depth from either

side of the first kink, we obtain height elasticity estimates that are within the range of estimates

we obtain when using the quadratic bedrock depth instruments, although the height effects on

urban area are, again, estimated imprecisely.

Overall, the results using the bedrock quality instruments not only substantiate our baseline

height elasticity estimates, they also reveal that our findings are driven by cities where bedrock

is to near the surface as well as a cities where bedrock is too deep.

B.2 Construction of Locally-Weighted Regression Estimates

In Section 3.2, we present height elasticity estimates for various outcomes by 1975 city

population. To obtain these city-specific parameter estimates βã, we implement a locally

weighted regressions (LWR) variant of our baseline instrumental variable regressions. Concretely,

for each city ã, we estimate the following second-stage regression, which matches that in (7)

except that parameters are indexed by city and observations closer in log population to city

A.7



ã are assigned more weight. For notational convenience, we globally index all cities by a and

denote country as c(a).

ya = βã∆ ln (Heightsa + 1) + αã1MBDa + αã2MBD2
a + αã3 lnPopa75 + κãc(a) + εãa

In each LWR-IV regression, a second-order polynomial of city-level mean bedrock depth

interacted with 1975 log city population instruments for ∆ ln (Heightsa + 1). Except for the

superscript ã, denoting city-specific estimates, and the re-indexing of cities and countries, all

variables are defined as in Section 3 in the main paper.

In each LWR we weight observations by the Gaussian kernel weight

wãa =
1

ιã
√
π
exp

[
−1

2

(
lnPopa − lnPopã

ιã

)2
]
.

ιã governs the bandwidth and lnPopa− lnPopã gives the difference between the log populations

of each city a and the target city ã for which a local value of β is being estimated. Intuitively,

a city a will receive a higher weight in a LWR ã ∈ J , the more similar its population is to that

of city ã.

We employ the LWR-specific bandwidth ιã because we wish to allow for a more flexible fit

via a smaller bandwidth in the more populated part of the population distribution, whereas

we wish to reduce standard errors in the right tail of the population distribution that is more

sparsely populated by expanding the bandwidth in this region. To this end, we use a variant of

Scott’s rule of thumb for bandwidth selection and define

ιã = M
3.49σ̂ãlnPop

(N ã)
1
3

,

where the standard deviation σ̂ãlnPop and the number of observations N ã are computed for rolling

sub-samples that satisfy | lnPopa − lnPopã| ≤ B = 5. We scale the rule-of-thumb bandwidth

by a factor of M = 20 since the non-parametric estimation of derivatives generally requires

larger bandwidths than the estimation of levels (Henderson and Parmeter, 2015, Section 5.9).

Importantly, these choices ensure that we can distinguish our point estimates from zero with

nearly 95% confidence throughout the population distribution.

Our LWR estimates of height elasticities for population, built-up area, and urban area are in

Figures A9, A8, and A10. (Figure 7 displays separate estimated population elasticity functions

for two regions in the developing world.) We observe that the height elasticity of population

is U-shaped with respect to initial city size. This pattern is suggestive of a sizable extensive-

margin effect (introducing tall buildings) coupled with an intensive-margin effect (vertical growth

conditional on having tall buildings) that increases in city size. It is noteworthy that the turning

point is reached at a population of about exp(13.8) = 1M , which has been found to be near the

threshold at which cities typically adopt the skyscraper (buildings taller than 150 m) technology

(Ahlfeldt and Barr, 2022).
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The convex intensive-margin effect is plausible as a vertical expansion is likely to have a

greater impact on a city’s capacity to accommodate residential and commercial uses when a city

has exhausted its potential for horizontal expansion. Consistent with this hypothesis, we find

that a large city’s (built-up and urban) areas are relatively insensitive to a technology-induced

increase in height (due to favorable bedrock). The implication is that less vertical growth

cannot easily be compensated by greater horizontal growth. In contrast, land area is much

more responsive to technology-induced vertical growth in small cities. This is intuitive since

small cities can more easily grow horizontally if they cannot grow vertically (due to unfavorable

bedrock conditions).

B.3 Details of Height Gap Calculations

We adopt the regression specification to predict city heights used in Barr and Jedwab (2023,

eq. (6)). The analysis uses 12,755 GHS-UCDB cities, a, in 163 countries, c, in the years t =

{1995, 2000, 2005, 2010, 2015, 2020} (N = 76,530). In each year, these cities are classified into 10

categories, indexed by p, as determined by population at time t: 0-100K, 100-250K, 250-500K,

500-750K, 750-1,000K, 1,000-2,500K, 2,500-5,000K, 5,000-7,500K, 7,500-10,000K, 10,000K+.

Since city population is only available in 1990, 2000, and 2015 in the GHS-UCDB database,

population categories are defined using year 2015 population data for 2010-2020 and 2000

population data for 1995-2005.

The estimation equation is

LHEIGHTSact = ρ1LDMSPact(d) + ρ2LVIIRSact(v)

+Σ10
p=1γp,t1(CATact = p) + Σ10

p=11(CATact = p)Xctβp,t

+Σ10
p=11(CATact = p)Xacδp,t + νact.

(34)

The parameters ρ1, ρ2, and γp,t are scalars. βp,t and δp,t are vectors to reflect that Xct and Xac

are matrices that include the variables described below. LHEIGHTSact is the log of (total sum

of tall building heights + 1) in city a, country c, and year t. The ten population size dummies

(CATact) are included fully interacted with year fixed effects to control for differing levels and

trends in real estate demand and construction costs across cities of different sizes. Remaining

controls for economic development and other demand and supply factors include the country-

level controls (Xct) and time invariant city-level controls (Xac), which are fully interacted with

the 10 population size dummies and year fixed effects, allowing their impacts to vary by city size

over time. The objective is to estimate residuals (νac2015), which proxy for land-use regulations

and height restrictions in city ac in 2015.

The first two variables in the regression denote city total night lights and proxy for city

income in different years. The log of (total sum of DMSP lights + 1) can be calculated for years

t(d) 1995, 2000, 2005 and 2010.34 The log of (total sum of VIIRS lights + 1) can be calculated

34Night lights data corresponding to the DMSP satellites are provided by NGDC (2015). The radiance
calibrated version of this data, which is available for select years between 1996 and 2011, is used to avoid top-
coding complications. The data are available at a 30 arc second (≈ 1km at the equator) spatial resolution. For
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for years t(v) 2010, 2015 and 2020.35 Other demand side factors (Xct) are accounted for with

city population and year interacted with quadratics in national per-capita GDP,36 national

population, and national land area.37 More populated countries tend to have larger large cities.

For example, the largest city of China or India is far larger than the largest city of El Salvador

or Rwanda. Since the largest cities of China and India are larger, they will naturally have more

demand for heights and tall buildings. Likewise, countries with more available land tend to have

less vertical cities. If land is “cheap,” cities can expand more horizontally (Brueckner, 1987).

Time-invariant city-level controls (Xac) (interacted with city size dummies and year fixed

effects) account for various demand and supply factors. On the supply (cost) side are city mean

bedrock depth, earthquake risk,38 and quadratics in the mean and standard deviation of city

elevation.39 Elevation range also controls for some demand side factors, as cities surrounded

by more mountainous land may have less scope for horizontal expansion, thereby increasing the

demand for heights near city centers.

Overall, regression estimates yield an adjusted R-squared of 0.64, suggesting that

fundamental demand and supply factors may account for almost two thirds of the international

variation in city heights. Assuming the other 0.36 can be attributed to land-use regulation, the

estimated residuals νact captures the extent to which a city ac has more or less heights than

other cities that are similar on observable characteristics.

Using estimated parameters in (34), we predict each city’s 2015 stock of heights were it to

have among the most heights for cities with similar observables. We view this prediction as

the amount of heights the city would have were it unconstrained by regulation. Comparisons of

actual heights to this prediction of unconstrained heights will deliver each city’s height gap.

To build up to the determination of each city’s counterfactual unconstrained heights, we

begin by predicting the log sum of heights in 2015 for each city using parameter estimates in

(34). We then select the 25 cities with the most similar predicted heights above and below each

city’s prediction.40 For each city’s group of 51, we obtain the 95th percentile (“p95”), or 3rd

ranked city-level residual. High p95 values indicate that the city’s group includes cities that are

well above the world’s conditional average. On the contrary, low p95 values indicate that the

city’s group mostly includes cities close to the world’s conditional average. We use p95 instead

the years 1995, 2000, 2005, and 2010, DMSP years 1996, 2000, 2005, and 2010 are used.
35Night lights data from VIIRS satellites are provided by Elvidge et al. (2021). The data is not top-coded and

are available at a 15 arc second (≈ 500m at the equator) spatial resolution. For the years 2010, 2015 and 2020
VIIRS years 2010, 2015, and 2019 (due to COVID-19) are used.

36Annual per-capita GDP is obtained for 1950 to 2018 (PPP and constant international 2011 $) from Maddison
(2008) and Bolt and van Zanden (2020) To avoid short-term fluctuations in income, data for each year t reflects
a 7 year moving-average.

37The main sources for land area and total population are United Nations (2018) and World Bank (2022).
38For the whole world, Giardini et al. (1999) reports peak ground acceleration (PGA; m per s2) at the

0.0833*0.0833 degree level (≈ 9 x 9 km). PGA takes into account the probability of strong earthquakes in
each pixel as well as the probability of diffusion over space. Since land-use regulations related to earthquake risk
tend to be adopted based on fuzzily defined local conditions, Barr and Jedwab (2023) consider buffers of 0.05
degree (5.55 km) around each city. They then obtain the mean PGA for each city/buffer.

39The elevation data comes from GMTED (2010) (resolution: 15 arc-seconds, or 500 meters close to the
equator).

40The 24 cities at the bottom and top of the world ranking are still combined with 50 cities, with some necessary
imbalance between the number of over and under predictions in the group.
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of the max or p99 to allow for the possibility that 2 cities in each group may have a lot of

heights due to idiosyncratic city-specific factors rather than laissez-faire planning regulations.

For example, they may have a large government sector or developers with interests in marquee

skyscrapers that are not justified by city fundamentals.

Figure A11 plots the local polynomial relationship (bandwidth = 1) between p95 and

predicted 2015 log heights.41 We denote this function describing inferred unconstrained heights

as h95(·). By construction, cities that are predicted to have little heights (on the left of the

graph) belong to groups where the least constrained cities do not have measurably more heights

than the world’s conditional average. Cities that are predicted to have a lot of heights (on the

right of the graph) belong to relatively homogeneous groups in terms of heights. Cities with

the largest height fundamentals all have similar height stocks, ceteris paribus, meaning that

their height gaps are relatively low. Much larger differences can be observed for cities with

intermediate height predictions. Such cities disproportionately belong to developing economies,

where more varied patterns of vertical development can be observed within a group of otherwise

similar cities. We verify that similar relationships are obtained when excluding Chinese and

Middle Eastern cities (unreported). The high p95 values suggest that regulatory differences

account for the observed within-group differences.

We calculate the height gap (%) for city ac in the year 2015 using both the actual heights

(unlogged) and the counterfactual log heights:

Gapac = max

(
1− Heightsac2015

H95( ̂LHEIGHTSac2015)
, 0

)
,

where Ĥ95(·) = exp [ĥ95(·)] and ̂LHEIGHTSac2015 is predicted log heights for city ac in 2015.

A gap of 20% means that the city has built 80% of what the p95 city in the city’s group has

built despite sharing similar economic conditions. Cities with residual values above the p95

value have their gaps set to 0%. The median height gap is 0%, reflecting the many small cities

in our data whose fundamentals do not justify tall buildings. However, the distribution has a

thick right tail driven by larger cities. Equally weighted, the mean and standard deviation are

24% and 41%, respectively. Weighting by city population, the median is 66%, the mean is 50%,

and the standard deviation is 45%.

Among the 100 largest cities in the world, we obtain gaps of 0% for cities including Chicago,

Kuala Lumpur, Sao Paulo, Seoul, and Shanghai (these are cities at, or above, the 95p value).

We obtain small gaps of 11% for Guangzhou, 26% for New York, 37% for Ho Chi Minh City, and

45% for Miami. We obtain larger gaps of 66% for Bangkok, Paris, London, and Mexico City.

We obtain larger gaps of 73% for Beijing, 80% for Buenos Aires, 91% for Karachi, and 93% for

Cairo. Sensible differences are obtained within the US. Lower-gap large cities include Chicago

(0%), New York (26%) and Miami (45%). Higher-gap large cities include Boston (70%), Los

Angeles (82%), Washington DC (86%) and San Francisco (94%). Lastly, to compute global or

regional gaps, we use 2015 city populations as weights. We find a global gap of 50%. Thus, the

41We drop cities in groups with no heights above 55 meters. By construction, these cities have no height gaps.
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world could accommodate twice as many tall buildings per-capita.

C Model

This appendix goes with Section 4 in the main paper.

C.1 Equilibrium solver

Values of endogenous objects {y, Ū}, parameters {αU , β, ωU , θU , τU , xU , āU , c̃U , S̄U , ra, ζ, ℓ, Ũ},
and the endowment N̄ deliver a unique mapping to all other endogenous objects. Hence, the

equilibrium can be referenced by {y, Ū}. To solve for these equilibrium values, we implement

an algorithm described by the pseudo-code in Algorithm 1.

Algorithm 1: Equilibrium solver

Data: Given values for primitives {αU , β, ωU , θU , τU , xU , āU , c̃U , S̄U , ra, ζ, ℓ, N̄ , Ũ}
Guesses of equilibrium values of {Ū , y}

1 while Ū ̸= ̂̄U or y ̸= ŷ do

2 Compute N using Eq. (13)

3 Compute p̄U (x) using Eqs. (16) & (20)

4 Compute S̃U (x) using Eq. (22)

5 Compute rU (x) using Eq. (23)

6 Allocate land to use with the highest land rent

7 Compute market-clearing wage ŷ using Eqs. (21) and (24)

8 Compute endogenous city-utility ̂̄U using Eq. (27)

9 Update guesses to weighted combination of old guesses and {U, ŷ}

10 Equilibrium values of {Ū , y}

C.2 Quantification

This section provides further details on how we determine parameter values, adding to Section

4.2 in the main paper.

C.2.1 Amenity decay (τU)

In the absence of binding height limits, we can use equations (3) and (15) or (19) to obtain the

structural equation for building height by use at each location x > xU :

lnSU (x) =
1

(1− αU )(θU − ωU )
kU − 1

θU − ωU
ln [cU (1 + θU )]− τU

(1− αU )(θU − ωU )
x,

where kR = ln
¯αRy
Ū

and kC = ln ᾱCNβ

yαC
. This equation motivates the following reduced form

building type-specific log-linear regression specification that has been used to estimate various
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price and density gradients (Ahlfeldt and Barr, 2022):

lnSUib = GU0 + GU1 DISTib + EUib

DISTib is the distance from building i in distance ring b to the city center and EUib is a residual

term that captures deviations in observed height from a smooth gradient. It is straightforward

to recover the amenity decay from an estimate of the reduced-form parameters GU :

τU = −GU (1− αU )(θU − ωU )

To estimate GU , we use the number of stories for all commercial or residential buildings

within 10km of the Chicago city center, excluding industrial and government buildings. We

define the city center as the average location of the tallest 5 commercial buildings in the city.

We use the CoreLogic property assessment data set from 2021/2022. The main advantage of

CoreLogic over the Emporis data, which has previously been used to estimate height gradients,

is that it contains the near universe of buildings, including those with heights of less than 55

meters. We weight by the inverse of the number of observations in each 250 meter wide distance

ring bin b, giving each bin equal weight in the regressions. We choose Chicago as our case in

point because it is arguably the stereotype of an unconstrained, monocentric city that conforms

to our land-use model. Estimated height gradients are reported in Table A14. From those

estimates, we infer the values of our structural parameters τC = 0.014 and τR = 0.016.

We are, of course, interested in the degree to which the height gradients estimated for Chicago

generalize to other cities. Therefore, we also examine urban structure in a broader set of height

unconstrained global cities. As comprehensive building-level data akin to CoreLogic does not

exist globally, we make use of a global 80X80 meter raster data set of remote-sensed building

volumes (Esch et al., 2023). We include cities with height gaps below 50% (see Section 3.4 for

calculation of height gaps), some height in the Emporis data, and with populations of at least

1 million in 2015. This gives us 39 cities in developing economies and 11 cities in developed

economies, including Chicago.

One limitation of the volume data is that it does not distinguish between commercial and

residential uses. As such, we exploit our model’s prediction of a change in the slope of the height

gradient at the border between the commercial and the residential zones. Therefore, for each of

the 50 cities with building volume data mentioned above, we estimate the following piece-wise

linear spline specification with one endogenous knot:

lnFARb = B0 + B1DISTb + (B2 − B1)(DISTb −K1)1(DISTb ≥ K1) + Eb

FARb is the total building volume divided by land area across all 80X80 meter pixels in city

center distance ring b out to 10 km. Each distance DISTb is 250 meters wide. Therefore, the

outcome measure is close to a floor area ratio (FAR) measure of building density, though the

denominator includes area of land in all uses (including roads and parks), not just land parcels

on which building construction can take place. For each of the 50 cities, we identify the city

A.13



center location using information on lights at night and the tallest buildings in each city. K1

gives the distance from the endogenous knot to the city center, B1 is the height gradient for

DISTb < K1 and B2 is the gradient when DISTb ≥ K1. We use non-linear least squares to

estimate {B0,B1,B2,K1} for each city. Figure A18 summarizes the results, with estimates for

Chicago indicated with vertical dashed lines. Chicago’s internal structure is not an outlier.

Within the building volume data, Chicago’s overall gradient, knot location and location-specific

gradients are close to the mean and the mode across these 50 cities.

C.2.2 Rural utility

We treat rural utility, Ũ , as a fundamental that we can invert for given values of other primitives

and an observed or user-specified urban population share, µ, using a procedure described in

Algorithm 2.

Algorithm 2: Ũ inverter

Data: Given values of primitives {αU , β, ωU , θU , τU , xU , āU , c̃U , S̄U , ra, ζ, ℓ, N̄}
Guess of Ũ

User-chosen µ

1 while Ũ ̸= ̂̃U do

2 Compute Ū using Algorithm 1

3 Compute rural utility, ̂̃U , using Eq. (13)

4 Update guess of Ũ to weighted combination of old guess and ̂̃U
Result: Ũ that rationalizes given µ

C.2.3 Preference heterogeneity

We seek to find the value of ζ under which the model generates our key empirical moments.

These are our estimates of the height elasticity of population, β̂N , and the height elasticity of

area, β̂L. In our empirical identification strategy, we exploit subsoil geography to ensure that we

identify these parameters from variation in the cost of height, holding housing demand factors

constant. Since we have full control over the data-generating process, it is straightforward to

mimic this source of variation in the model.

To this end, we solve the model multiple times for values of θ ∈ Θ, where θC = θ and

θR = θ + 0.05 to maintain the same difference between the commercial and residential height

elasticity as in the baseline specification in Table 6. Holding all other parameters constant, we

obtain differences in equilibrium outcomes that are solely driven by variations in the cost of

height. To operationalize our SMM approach, we nest this loop over θ ∈ Θ within a search over

a parameter space defined by ζ ∈ Z and T ∈ R. We invert Ũ each time we adjust ζ, setting

µ = µ̄ and all parameters to the values in Table 6 to keep the city population constant. For each
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combination of {θ, ζ, T }, we solve the model and compute (the endogenous outcomes) city area

Lζ,Tθ =

∫ (x1)
θ,ζ,T

0
L(x)dx,

city population

N ζ,T
θ =

∫ (x1)
θ,ζ,T

(x0)
θ,ζ,T

(n(x))θ,ζdx,

and city tall building height

Hζ,T
θ =

∫ (x1)
θ,ζ,T

0
L(x)

(
(SC(x))θ,ζ − T

)
dx+

∫ (x1)
θ,ζ,T

(x0)
θ,ζ,T

L(x)
(
(SR(x))θ,ζ − T

)
dx. (35)

For each combination of {ζ, T }, we run the following regressions on the model-based outcomes

to recover our moments in the model {β̃N , β̃L}:

lnLζ,Tθ = cL,ζ,T + β̃Lζ,T lnHζ,T
θ + ϵ̃L,ζ,Tθ

lnN ζ,T
θ = cN,ζ,T + β̃Nζ,T lnHζ,T

θ + ϵ̃N,ζ,Tθ

We find our preferred combination of {ζ, T } by minimizing the value of the residual sum of

squares of the moments in model and data:

ζ, T = arg min
ζ∈Z,T ∈R

∑
o∈N,L

(
β̂o − β̃o

)2
(36)

We provide a compact summary of the procedure using pseudo code Algorithm 3.

Algorithm 3: Calibrating {ζ, T }
Data: Given values of primitives {αU , β, ωU , θU , τU , xU , āU , c̃U , S̄U , ra, ζ, ℓ, N̄}

Moments in data {β̂N , β̂L}
User-chosen µ

1 foreach ζ ∈ Z do

2 Use Algorithm 2 to invert Ũ so to match µ = 0.3(⇒)N = µN̄ = 3M) under baseline

values of {θC = 0.5, θR = 0.55}
3 foreach T ∈ R do

4 foreach θ ∈ Θ do

5 Use Algorithm 1 to solve for equilibrium outcomes of {Lζ,Tθ , N ζ,T
θ , Hζ,T

θ }

6 foreach o ∈ N,L do

7 Regress ln oζ,Tθ against lnHζ,T
θ to obtain model moment β̃o

8 Use moments in data {β̂N , β̂L} and model {β̃N , β̃T } in Eq. (36) to find {ζ, T }
Result: {ζ,L} values that match moments in model and data
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Guided by Figure A5, we define a grid of height costs Θ = {0.2, 0.3, ..., 1} and set µ̄ = 0.3.

For the moments in the data, we use β̂N = 0.21 and β̂L = −0.38 estimated from a subset of cities

that are relatively unconstrained by height regulation (third column in Table reftab:IVbyregion).

Under ζ = 2.3 and T = 3, we almost exactly match the moments. Figure A12 plots the value

of the objective function against the two dimensions of the parameter space. There is a clearly

defined minimum in the objective function at our identified value of ζ. In contrast, the choice of

T is less consequential. As long as T ≥ 3, the model generates height elasticities that are close

to those estimated from data. Figure A13 shows that as long as T ≥ 3, we also find values for

ζ that hover around 2.3.

It is plausible that we obtain the best fit under a value of T = 3 (corresponds to about 15

m) that is smaller than the bottom-coding in the data (55 m). To see this, consider that the

model generates an average height of 14 floors, which corresponds to 55 m. Setting T = 15, we

would generate a tall building height measure in the model of H = 0. In reality, we would most

likely observe a positive value for H because the mean height of 55 m would be generated by a

mix of taller and shorter buildings.

Figure 8 provides some intuition into how matching moments in model and data pins down

ζ. At ζ = 0, workers are immobile. Therefore, the population does not respond to bedrock

depth-induced changes in floor space supply. Consequently, a vertical expansion leads to a

relatively large contraction of the city area. Given a fixed population, the added supply of floor

space results in lower rents. This implies lower costs to firms, leading to an expansion of floor

space input, production, labor demand, and, eventually, higher wages. At higher values of ζ,

we observe a larger population response to the supply-driven reduction in rent. The larger the

population response, the smaller the response in the other outcomes. Since the relationships

between height elasticities and ζ are monotonic, we obtain the well-behaved objective function

displayed in the top panel of Figure A12.

C.3 Counterfactuals

This section complements Section 4.3 in the main paper.

C.3.1 Illustrative examples

Figure 9 in the main paper illustrates gradients in selected model outcomes under the baseline

parameterization (first row) and two counterfactuals in which we increase the cost of height by

20% (second row) and add a binding height limit (third row). The first two columns in Table

A15 report relative changes in various model outcomes from the baseline parameterization to

these counterfactuals.

In keeping with intuition, both counterfactuals, which correspond to different negative floor

space supply shocks, deliver a lower urban indirect utility, and consequentially, a lower urban

population and expected utility, overall. As the city contracts vertically, it expands horizontally,

resulting in a larger total urban area. As seen in Figure 9, the CBD expands horizontally,

pushing the residential zone outwards. As a result, commuting costs eτ
Rx increase. This is one
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of the main mechanisms through which the height constraints indirectly affects residents, even if

a height limit primarily affects commercial developments. The other channel is the wage. For one

thing, limits to vertical development displace firms to less productive locations. For another, the

cost of commercial floor space increases. Both act as negative shocks to labor demand, lowering

the equilibrium wage. Since greater commuting costs and lower wages imply lower housing

demand, residential rents do not necessarily increase by much, even if residential floor space

supply falls. Indeed, residential rents even decrease by about 15% in the counterfactual where

we impose a height ban. Given the expenditure share on housing of one-third, the ceteris paribus

effect on indirect utility amounts to about 5%. This effect compensates for commuting cost and

wage effects, each of which amounts to about 7-8%, resulting in a negative net effect on indirect

urban utility (Ū) of about 10%. Since, in this example, we have an urban population share, µ,

of slightly below one-third, the negative effect on expected utility in the total population is to

about 3%.

C.3.2 Heterogeneity in welfare effects

Algorithm 4 uses pseudo code to describe the numerical procedure we use to compute welfare

effects for cities of a given cost of height, population, and height gap, which we use in Sections

4.3.2 and 4.4.
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Algorithm 4: Welfare effects

Data: Given values of primitives {αU , β, ωU , τU , xU , āU , c̃U , S̄U , ra, ζ, ℓ, N̄ , T }
City population, Popa, observed in data

Height gap, HGa, observed in data

Bedrock depth, MBDa, observed in data

1 Use MBAa and non-linear mapping in Figure A5 to obtain cost of height, θCa

2 Set θRA = θCa + 0.05

3 Set height limit in model to S̄U = T
4 while Height gap in model, H̃G < HGa do

5 Use Algorithm 2 to invert rural utility, Ũ , that satisfies µN̄ = Popa

6 Use Eq. (35) to compute constrained tall building height H

7 Use Algorithm 1 to solve for counterfactual under no height limit, S̄ = ∞
8 Use Eq. (35) to compute unconstrained tall building height H∗

9 Compute H̃G = H
H∗ − 1

10 Marginally increase height limit in model, S̄

11 Use Algorithm 1 to solve for Wactual, where W ∈ {V,R}, under calibrated height limit S̄

12 Use Algorithm 1 to solve for welfare Wban under counterfactual height limit S̄ = T
13 Use Algorithm 1 to solve for welfare Wmarket under counterfactual height limit S̄ = ∞
14 Compute welfare effect of existing tall buildings Ŵactual = Wactual

Wban − 1

15 Compute welfare potential of tall buildings Ŵpotential = Vmarket
Wban − 1

16 Compute welfare effect of existing height regulation Ŵregulation = Vactual
Wmarket − 1

Result: Effects of existing tall buildings, all potential tall buildings, and height limits

on expected utility {V̂actuala , V̂potentiala , V̂regulationa } and land rent

{R̂actual
a , R̂potential

a , R̂regulation
a } for city a

C.3.3 The contribution of tall buildings to welfare

Table A16 complements Table 7 in the main paper by summarizing the effects of height

constraints on the equilibrium wage, the average residential rent, and commuting cost. Since

these endogenous variables feed into expected utility, the reported effects offer insights into

the mechanisms through which the welfare effect operates. Notice that the effects on wages,

rents, and commuting costs jointly determine the effect on the indirect urban utility, Ū , not

the expected utility, V, reported in Table 7. In keeping with he discussion of mechanisms in

Section C.3.1, Table A16 reveals that the worker welfare cost of height constraints originates

from greater commuting costs and lower wages due to lower productivity.

Table A17 replicates Table 7 with the only difference being that we lower the cost of height,

θ, by 20%. As a result, all welfare effects increase by about 50%.
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Figure A1: Trends in Construction Costs by Height: Developing Economies
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Notes: Cost is the log cost per floor area, residualized for city and country-by-decade of construction fixed effects. The
sample consists of 136 buildings in 24 developing countries. We use locally weighted regressions with a bivariate Gaussian
kernel to estimate local means of the residualized cost measure within the height-bedrock plane with a bandwidth parameter
for both covariates of κ = 50. Appendix Section A.1 has details and provides results from locally weighted regressions with
univariate kernels that deliver confidence bands for height categories that roughly correspond to the dotted blue and solid
red lines.

Figure A2: Distribution of Building Heights (m) in Emporis circa 2022

Notes: This figure shows the kernel density of heights (meters) for all 693,855 “existing [completed]” buildings in Emporis
(accessed 02-07-2022). We only include “building with towers”, “high-rise building”, “low-rise building”, “multi-story
building”, and “skyscraper” property types.
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Figure A3: Schematic Diagram of Bedrock Depth and Tall Building Foundations
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Notes: This figure shows why building foundation costs are minimized at intermediate bedrock depths.

Figure A4: Construction cost as function of height and bedrock depths
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Notes: We show non-parametric estimates of the cost of height from an LWR-IV approach. In each LWR, we estimate the
height elasticity from a regression of the log of construction cost per floor area against building height, controlling for city
fixed effects and decade of construction effects. We use distance from the city center as an instrumental variable for height.
The city center is defined as the median coordinate of buildings exceeding 100 m height and or the tallest building where
building exceeds 100 m. We use locally weighted regressions with a univariate Gaussian kernel and a bandwidth of four to
estimate local means of the cost measure for varying bedrock depths. Confidence bands are at the 95% level. The sample
consists of 591 constructions in US cities (see Panel A in Table A1).
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Figure A5: Cost of height as function of bedrock depths
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Notes: The plot shows non-parametric estimates of the cost of height using the LWR-IV approach explained in Section A.2.
In each LWR, we estimate the height elasticity from a regression of the log of construction cost per floor area on building
height, controlling for city fixed effects and country by decade of construction effects. The sample consists of 785 buildings
in 118 cities and 6 countries. We drop countries with fewer than 25 observations to obtain more precise estimates. We use
distance from the city center as an instrumental variable for height to remove the effects of unobserved factors that affect
construction cost (such as ruggedness) that could be correlated with bedrock depth. The city center is defined as the median
coordinate of buildings exceeding 100 meters, or the location of the tallest building if no building exceeds 100 meters. The
median first-stage F-statistic is 10.4. We use a Gaussian kernel with a locally varying bandwidth that is inversely related
to the density of observations. Confidence bands are at the 95% level.
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Figure A6: Relationships Between Tall Buildings and ln 1975 Population by Bedrock Depth in
1975 and 2015

(a) Tall Building Indicator, 1975 (b) Tall Building Indicator, 2015

(c) ln Sum of Heights, 1975 (d) ln Sum of Heights, 2015

Notes: The top panels graph coefficients on ln 1975 city population for each 5 meter bin of bedrock depth in which
the dependent variable is an indicator for whether the city had any height growth. The bottom panels graph analogous
coefficients in which the dependent variable is the ln sum of heights constructed. 1975 is on the left and 2015 is on the
right.
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Figure A7: The Skyscraper Revolution in Developed Economies, 1880-1975

Notes: This figure shows the evolution of the total stock of tall (55m+) building heights (km) separately for the United
States and other developed economies.
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Figure A8: LWR estimates of height elasticity of built-up area

Note: We show non-parametric estimates of the height elasticity from an LWR-IV approach. In each LWR, we estimate
the height elasticity from a regression of the 1975-2015 long-difference in the log outcome against the long-difference in log
building height using a second-order polynomial of bedrock depth interacted with initial 1975 log population as instrumental
variables. Controls are a second-order polynomial of bedrock depth, initial log population, and country fixed effects. We
use a Gaussian kernel with a locally varying bandwidth that is inversely related to the density of observations. Confidence
bands are at the 95% level.
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Figure A9: LWR estimates of height elasticity of population

Note: We show non-parametric estimates of the height elasticity from an LWR-IV approach. In each LWR, we estimate
the height elasticity from a regression of the 1975-2015 long-difference in the log outcome against the long-difference in log
building height using a second-order polynomial of bedrock depth interacted with initial 1975 log population as instrumental
variables. Controls are a second-order polynomial of bedrock depth, initial log population, and country fixed effects. We
use a Gaussian kernel with a locally varying bandwidth that is inversely related to the density of observations. Confidence
bands are at the 95% level.
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Figure A10: LWR estimates of height elasticity of urban area

Note: We show non-parametric estimates of the height elasticity from an LWR-IV approach. In each LWR, we estimate
the height elasticity from a regression of the 1975-2015 long-difference in the log outcome against the long-difference in log
building height using a second-order polynomial of bedrock depth interacted with initial 1975 log population as instrumental
variables. Controls are a second-order polynomial of bedrock depth, initial log population, and country fixed effects. We
use a Gaussian kernel with a locally varying bandwidth that is inversely related to the density of observations. Confidence
bands are at the 95% level.
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Figure A11: 95th Percentile Residuals and Predicted Log Heights, 2015.

Notes: This figure shows for the 12,755 cities the local polynomial relationship (bandwidth = 1) between the 95th
percentile value in the residuals of their respective group of 51 cities and their predicted 2015 log heights.
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Figure A12: Value of objective function by ζ, T
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Note: Value of objective function is the residual sum of squares of moments in model and data (height elasticity of built
area and height elasticity of population).

Figure A13: Preference heterogeneity (ζ) for given height thresholds

0

1

2

3

4

5

6

Pr
ef

er
en

ce
 h

et
er

og
en

ei
ty

 (ζ
)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Height threshold (T)
kernel = gaussian, degree = 0, bandwidth = .89, pwidth = 1.34

Local polynomial smooth

Note: Figure shows the value of ζ that minimizes the objective function conditional on a given T . We use a local polynomial
fit of degree zero with a Gaussian kernel.

A.29



Figure A14: Construction cost as function of height and construction year
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Notea: The sample consists of 591 constructions in US cities (see Panel A in Table A1). Ln cost per floor area is residualized
to control for city fixed effects and country-by-decade of construction effects. We use locally weighted regressions with a
univariate Gaussian kernel and a bandwidth of κ = 25 to estimate local means of the cost measure for varying bedrock
depths. Confidence bands are at the 95% level.

Figure A15: Construction cost as function of height and bedrock depths
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Note: The sample consists of 1,033 constructions in 206 cities in 55 countries (see Panel A in Table A1). Ln cost per floor
area is residualized to control for city fixed effects and country-by-decade of construction effects. We use locally weighted
regressions with a univariate Gaussian kernel and a bandwidth of κ = 4 to estimate local means of the cost measure for
varying bedrock depths. Confidence bands are at the 95% level.
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Figure A16: Bedrock quality
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Note: To identify Kink 1 (K1) and Kink 2 (K2), we estimate our specification for all combinations of K1 = {10, 11, ..., 40}
and K2 = {50, 11, ..., 158}, where the upper bound K2 = 158 is the largest bedrock depth value observed in our data, and
choose the variable that maximize the first-stage F-statistic.

Figure A17: Bedrock quality
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Note: To identify Kink 1 (K1) and Kink 2 (K2), we estimate our specification for all combinations of K1 = {10, 11, ..., 40}
and K2 = {50, 11, ..., 158}, where the upper bound K2 = 158 is the largest bedrock depth value observed in our data, and
choose the variable that maximize the first-stage F-statistic.
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Figure A18: Urban spatial structure recovered from building volumes
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Note: the upper left panel shows esimates of log-linear building volume gradients (with repsect to distance from the center)
for 24 cities in the developing world and 11 cities in the developed world. The other panels illustrate estimates of piecewise
linear spline functions with one endogenous knot that approximate the relationship between log volume and distance from
the devd world. Dotted vertical lines represent Chicago.
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Table A1: Summary Statistics of Emporis Construction Cost Data

Mean SD Min Max

Panel A: 591 (55m+) Buildings in 93 U.S. Cities

Construction year 1988.23 23.95 1902.00 2021.00
Height (m) 102.15 55.72 55.03 541.33
Bedrock depth (m) 19.66 14.72 2.50 113.01
Ln construction cost 7.05 1.20 3.18 10.98
Ln cost (residulized) -0.00 0.53 -1.61 2.65

Panel B: 1,033 (55m+) Buildings in 206 Cities in 55 Countries

Construction year 1994.98 21.00 1902.00 2021.00
Height (m) 113.42 71.52 55.00 828.00
Bedrock depth (m) 20.08 13.05 0.00 117.53
Gross floor area (m2) 53972.87 61268.07 934.00 9.8e+05
Ln construction cost 7.12 1.58 -5.25 10.98
Ln cost (residulized) -0.00 0.85 -7.60 5.14

Table A2: Summary Statistics: Full Sample

City Population in 1975
< 100k 100k-500k > 500k
(1) (2) (3) (3) - (2)

Avg Sum of Heights >55 m in 1975 3 36 1,441 1,404
Frac of Cities with Tall Bldgs in 1975 0.01 0.09 0.41 0.32

MBD Mean 1975-2015 ∆ ...

<10m ln Pop 0.55 0.45 0.55 0.10
ln Built Area 0.46 0.76 0.75 -0.01
ln (Heights + 1) 0.05 0.37 2.05 1.68
Heights (m) 9 72 5,206 5,134
Any Tall Bldgs 0.01 0.06 0.21 0.15
Observations 3,876 788 113

10m - 30m ln Pop 0.46 0.29 0.42 0.13
ln Built Area 0.50 0.60 0.55 -0.05
ln (Heights + 1) 0.21 1.20 3.40 2.20
Heights (m) 63 694 26,540 25,846
Any Tall Bldgs 0.03 0.18 0.32 0.14
Observations 4,561 1,547 313

> 30m ln Pop 0.47 0.27 0.44 0.17
ln Built Area 0.73 0.94 0.78 -0.16
ln (Heights + 1) 0.10 0.69 4.09 3.40
Heights (m) 26 220 11,780 11,560
Any Tall Bldgs 0.02 0.11 0.46 0.35
Observations 1,151 436 89

Notes: The sample includes 12,874 cities. Each city in the main estimation sample is one observation.
Entries in columns (1), (2) and (3) are conditional means as a function of 1975 city population and city
mean bedrock depth in meters (MBD). All differences in the final column are statistically significant at
the 5 percent level except growth in population for cities with bedrock depths between 0 and 10 meters
and built area for cities with bedrock depths between 0 and 10 meters or 10 and 30 meters.
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Table A3: First-Stage Estimates: Remaining Coefficients

Tall Building Indicator ln (Heights + 1)

1975 2015 ∆ 1975-2015 1975 2015 ∆ 1975-2015

Panel A: All Countries (N = 12,849)

ln Pop 1975 0.0773*** 0.1286*** 0.0512*** 0.5272*** 1.0025*** 0.4753***

[0.0076] [0.0093] [0.0093] [0.0498] [0.0769] [0.0653]

Bedrock Depth -0.0208*** -0.0538*** -0.0330*** -0.1473*** -0.4721*** -0.3248***

[0.0054] [0.0079] [0.0079] [0.0362] [0.0698] [0.0612]

(Bedrock Depth)2 0.0002*** 0.0005*** 0.0002** 0.0018*** 0.0039*** 0.0021**

[0.0001] [0.0001] [0.0001] [0.0004] [0.0011] [0.0009]

Panel B: Developing Economies (N = 11,257)

ln Pop 1975 0.0517*** 0.1140*** 0.0623*** 0.2998*** 0.8206*** 0.5208***

[0.0079] [0.0098] [0.0098] [0.0477] [0.0804] [0.0674]

Bedrock Depth -0.0048 -0.0420*** -0.0372*** -0.0353 -0.3417*** -0.3064***

[0.0055] [0.0078] [0.0084] [0.0323] [0.0687] [0.0638]

(Bedrock Depth)2 0.0001 0.0003*** 0.0003** 0.0005* 0.0025** 0.0020**

[0.0000] [0.0001] [0.0001] [0.0003] [0.0010] [0.0009]

Notes: This table reports additional coefficient estimates from regressions in Table 1.

Table A4: Main IV Results: Remaining Coefficients

∆ ln Pop ∆ ln Built Area ∆ ln Urban. Area ∆ ln Pop Dens. ∆ ln Lights

Period s-t: 1975-2015 1975-2015 1975-2015 1975-2015 1990-2015

ln Initial Pop s -0.12*** 0.24*** -0.68*** 0.56*** -0.15***

[0.03] [0.03] [0.06] [0.04] [0.04]

Bedrock Depth 0.00*** 0.00*** 0.02*** -0.02*** 0.00**

[0.00] [0.00] [0.00] [0.00] [0.00]

(Bedrock Depth)2 -0.00 -0.00** -0.00*** 0.00*** -0.00

[0.00] [0.00] [0.00] [0.00] [0.00]

Notes: This table shows coefficients on control variables for our main IV regressions in Table 2 Panel A.

Table A5: Alternative Standard Error Calculations

(1)-(4): ∆ ln Population (5)-(8) ∆ ln Built Area

Standard Errors: 200 km 400 km Admin 1 200 km 400 km Admin 1

Panel A: Developed Economies (Observations = 12,873)

∆ ln(Heights+1) 0.12*** 0.12*** 0.12*** 0.12*** -0.17*** -0.17*** -0.17** -0.17**

[0.03] [0.04] [0.04] [0.04] [0.04] [0.06] [0.07] [0.08]

F-statistic 28.42 20.06 15.35 21.38 28.42 20.06 15.35 21.38

Panel B: Developing Economies (Observations = 11,257)

∆ ln(Heights+1) 0.13*** 0.13*** 0.13*** 0.13*** -0.16*** -0.16** -0.16* -0.16*

[0.03] [0.04] [0.05] [0.05] [0.04] [0.06] [0.08] [0.09]

F-statistic 22.84 15.34 11.46 17.00 22.84 15.34 11.46 17.00

Notes: (1) Baseline results. (2)-(3): Standard errors corrected for spatial autocorrelation out to 200 km or 400 km using
a Bartlett (triangular) kernel. (4) SEs are clustered at the first administrative level (e.g., “provinces” for China and
“states” for India and the United States).
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Table A6: Robustness of Results in Table 2 with Various Controls

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Dependent Variable = ∆ ln Population; All Countries

∆ ln Height 0.12*** 0.12*** 0.09*** 0.10** 0.13*** 0.11*** 0.12*** 0.13***

[0.03] [0.03] [0.03] [0.04] [0.04] [0.03] [0.03] [0.03]

Panel B: Dependent Variable = ∆ ln Built Area; All Countries

∆ ln Height -0.17*** -0.17*** -0.19*** -0.14*** -0.08** -0.12*** -0.15*** -0.18***

[0.04] [0.03] [0.04] [0.05] [0.04] [0.03] [0.04] [0.04]

Observations 12,849 12,849 12,647 6,097 9,698 12,628 12,628 12,849

F-statistic 28.42 29.38 25.08 10.47 15.25 20.35 16.79 23.66

Panel C: Dependent Variable = ∆ ln Population; Developing Countries

∆ ln Height 0.13*** 0.14*** 0.10*** 0.10** 0.17*** 0.09** 0.11** 0.13***

[0.03] [0.03] [0.04] [0.04] [0.06] [0.04] [0.04] [0.03]

Panel D: Dependent Variable = ∆ ln Built Area; Developing Countries

∆ ln Height -0.16*** -0.18*** -0.18*** -0.11** -0.10* -0.13** -0.15*** -0.16***

[0.04] [0.04] [0.05] [0.05] [0.05] [0.05] [0.05] [0.04]

Observations 11,257 11,257 11,169 5,272 8,141 11,050 11,050 11,257

F-statistic 22.84 23.56 16.22 7.480 9.167 8.665 9.903 20.76

Country FE Yes Yes Yes Yes Yes Yes Yes Yes

Infrastructure Controls No Yes No No No No Yes No

Drop Subway Cities No No Yes No No No No No

Drop Mining & Oil Cities No No No Yes No No No No

Drop Bedrock 0-6 m No No No No Yes No No No

Geographic Controls No No No No No Yes Yes No

∆ ln 100m+ Height No No No No No No No Yes

Notes: Each column presents separate estimates from a variant of the baseline model in Table 2 for the full sample
of cities (Panels A-B) and the sample of developing country cities (Panels C-D). (2) Infrastructure controls are
second-order polynomials of log number of subway stations in 1975 and log market access in 1975. Market access
for city i is the total sum of the 1975 population of other cities j in the same country weighted by the inverse of
Euclidean distance between cities i and j. (3) Subway cities are cities with a subway as of 2015. (4) Mining &
oil cities are cities located within 50 km from a mine c. 2010 or an offshore or onshore oil or gas field c. 2000. (6)
Geographic controls are second-order polynomials in log Euclidean distance from the coast, log Euclidean distance
from a major lake, log mean altitude, the log of the standard deviation in altitude, log agricultural suitability,
mean annual temperature (1961-1990), log Euclidean distance from a mine c. 2010, and log Euclidean distance
from an offshore or onshore oil or gas field c. 2000, which we interact with log population in 1975.
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Table A7: Robustness Checks on Functional Form

∆ ln Population (Pop) ln Pop ∆ ln Built Area (BA) ln BA

Period: 1975-
2015

1975-
2015

1990-
2015

2015 1975-
2015

1975-
2015

1990-
2015

2015

Test: Bedrock
Vars in IV

Built Area
Ctrl 1975

Pop 1975
in IV

Cross
Section

Bedrock
Vars in IV

Built Area
Ctrl 1975

Pop 1975
in IV

Cross
Section

Panel A: Developed Economies (Observations = 12,849)
∆ ln(Heights+1) 0.12*** 0.07*** 0.09*** -0.18*** -0.12*** -0.23***

[0.03] [0.02] [0.03] [0.04] [0.03] [0.05]
ln(Heights+1) 2015 0.09*** -0.11***

[0.02] [0.01]

F-statistic 23.96 23.92 15.14 41.97 23.96 23.92 15.14 35.5

Panel B: Developing Economies (Observations = 11,257)
∆ ln(Heights+1) 0.13*** 0.07*** 0.09*** -0.16*** -0.11*** -0.23***

[0.03] [0.03] [0.03] [0.04] [0.04] [0.05]
ln(Heights+1) 2015 0.13*** -0.12***

[0.03] [0.04]

F-statistic 18.53 18.92 14.57 19.91 18.53 18.92 14.57 16.31

Notes: Specifications match those in Table 2 except as indicated. (1) and (5) “Bedrock Vars in IV”: Mean bedrock depths and
its square enter as instruments instead of as controls. (2) and (6) “Built Area Ctrl 1975”: Additional control for log city built
area in 1975. (3) and (7) “Pop 1975 in IV”: 1990 is the base year though instruments are constructed using log city population
in 1975. (4) and (8) “Cross Section ”: Dependent variables and heights are for 2015 only. Instruments are constructed using
log city population size in 1975. Column (8) includes an additional control for log city built area in 1975. Robust standard
errors in brackets.

Table A8: Bedrock Quality Instruments: Kinked Functional Form

First Stage: Dependent Variable: ∆ log height 1975-2015

BRQdeep × ln pop 1975 0.039*** (0.005)

BRQsurf × ln pop 1975 0.030*** (0.006)

F-stat 30.6

Second stage: Dependent Variable: ∆ log pop 1975-2015 ∆ log built area 1975-2015

Log change height 1975-2015 0.128*** (0.026) -0.222*** (0.039)

Country FE, Controls Yes Yes

Notes: Specifications are analogous to those in Table 2, except that the quadratic in mean bedrock
depth is replaced by a linear spline in mean bedrock depth. See Section B.1 for details. There are
12,849 observations. Robust standard errors in parenthesis.

Table A9: Bedrock Quality Instruments: Local Identification

∆ log pop 1975-2015 ∆ log built area 1975-2015

Log change height 1975-2015 0.200*** 0.132*** -0.362*** -0.229***
(0.047) (0.027) (0.084) (0.040)

BRQdeep × ln pop 1975 -0.003** 0.005**
(0.001) (0.002)

BRQsurf × ln pop 1975 0.002*** -0.004***
(0.001) (0.001)

F-stat 23.0 61.1 23.0 61.1
Country FE, Controls Yes Yes Yes Yes

Notes: Specifications are analogous to those in Table A8, except that instruments enter one at a
time, with the other as a control. Regressions in Columns 1 and 3 use variation within shallow
bedrock (up to 22 meters) and those in Columns 2 and 4 use variation within deep bedrock (beyond
22 meters) only for identification. See Section B.1 for details. There are 12,849 observations. Robust
standard errors in parenthesis.
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Table A10: Robustness Checks on Bedrock Depth Measures

(1)-(4): ∆ ln Population (5)-(8) ∆ ln Built Area

Bedrock Depth In Out In Out In Out In Out

in the IVs: 2.5 km 2.5 km 5 km 5 km 2.5 km 2.5 km 5 km 5 km

Panel A: Developed Economies

∆ ln(Heights+1) 0.11*** 0.08** 0.12*** 0.05 -0.16*** -0.12*** -0.16*** -0.10**

[0.03] [0.03] [0.03] [0.04] [0.03] [0.04] [0.03] [0.05]

Observations 12,844 11,070 12,845 6,341 12,844 11,070 12,845 6,341

F-statistic 33.03 22.35 32.34 11.82 33.03 22.35 32.34 11.82

Panel B: Developing Economies

∆ ln(Heights+1) 0.12*** 0.09** 0.12*** 0.06 -0.16*** -0.11*** -0.15*** -0.11*

[0.03] [0.04] [0.03] [0.05] [0.03] [0.04] [0.03] [0.06]

Observations 11,252 9,482 11,253 4,995 11,252 9,482 11,253 4,995

F-statistic 28.86 17.34 28.31 7.939 28.86 17.34 28.31 7.939

Notes: In 2.5 km (5km): The main bedrock variable is calculated as mean bedrock depth (MBD) within 2.5 km (5 km)
from the central business district (CBD) of each city. Out 2.5 km (5km): We use MBD beyond 2.5 km (5 km) from the
CBD of each city. These samples exclude cities for which the maximum distance from the CBD is below that cut-off.
Robust standard errors in brackets. *** Significant at 1%, ** 5%, * 10%, † 15%.

Table A11: Estimates as a Function of Within Country Inequality in Bedrock

Countries: All (Baseline) > 5 Cities All (Baseline) > 5 Cities

Bedrock Depth: Gini > 0.75p Gini > 0.75p

All Economies Developing Economies

Estimator (1) OLS (2) IV (3) OLS (4) IV (5) OLS (6) IV (7) OLS (8) IV

Panel A: ∆ ln Pop

∆ ln(Heights+1) 0.06*** 0.12*** 0.09*** 0.13*** 0.08*** 0.13*** 0.09*** 0.12***

[0.00] [0.03] [0.01] [0.02] [0.00] [0.03] [0.01] [0.02]

Panel B: ∆ ln Built Area

∆ ln(Heights+1) -0.01*** -0.17*** -0.03*** -0.13*** -0.02*** -0.16*** -0.03*** -0.12***

[0.00] [0.04] [0.01] [0.04] [0.01] [0.04] [0.01] [0.04]

Observations 12,849 12,849 7,473 7,473 11,257 11,257 7,402 7,402

F-statistic 28.42 23.54 22.84 22.38

Notes: IV regressions use the same specification as those in Table 2. OLS regressions do not instrument for change
in heights. Differences across columns are in the indicated sample restrictions and estimator used. Gini > 0.75p
indicates that the Gini coefficient of the distribution of bedrock depth across cities within a country exceeds the
75th percentile value in the same Gini coefficient across all countries in our sample (here, 32%). Robust standard
errors in brackets.
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Table A12: Displacement Effects: Robustness to Different Fixed Effects and Samples

(1)-(4) All Economies (5)-(9) Developing Economies

Panel A: ∆ ln Population

∆ ln Height 0.12*** 0.10*** 0.15*** 0.14*** 0.13*** 0.10*** 0.16*** 0.14*** 0.13***

[0.03] [0.03] [0.02] [0.02] [0.03] [0.03] [0.03] [0.02] [0.04]

Panel B: ∆ ln Built Area

∆ ln Height -0.17*** -0.22*** -0.23*** -0.21*** -0.16*** -0.21*** -0.25*** -0.22*** -0.08

[0.04] [0.04] [0.04] [0.03] [0.04] [0.05] [0.04] [0.03] [0.05]

Level of FE Baseline Subregion Admin 1 Admin 2 Baseline Subregion Admin 1 Admin 2 Baseline

Sample Full Full Full Full Full Full Full Full <20% Urb

Observations 12,849 12,873 11,967 7,848 11,257 11,269 10,606 7,439 4,594

IV F-stat 28.42 26.74 35.51 35.52 22.84 20.02 28.96 35.23 9.77

Notes: Columns (1)-(8) present variants of the baseline empirical specification in Table 2 with the following alternative fixed
effects (FE). Subregion: 2018 United Nations Geoscheme, grouping countries into 20 world regions (e.g., South America,
Central America, and North America). We do not include country FE. Admin 1: First-level administrative divisions that
subdivide countries into large sub-national units (e.g., provinces for China) (2,081 divisions in Panel A, 1,584 divisions in
Panel B). Admin 2: Second-level administrative divisions that subdivide countries into smaller sub-national units (6,408
divisions in Panel A, 5,176 divisions in Panel B). The final column (9) only uses cities in the sample of developing economies
that were less than 20% urbanized in 1975 (source: World Urbanization Prospects database of the United Nations).

Table A13: Displacement Effects: Controls for Heights-Based Changes in Market Potential

(1)-(5) ∆ ln Population (6)-(10) ∆ ln Built Area

Panel A: Full Sample (N = 12,849) - IV for ∆ ln(Hgt+1), OLS for ∆ ln(MPH)

∆ ln(Hgt+1) 0.12*** 0.12*** 0.12*** 0.12*** 0.13*** -0.17*** -0.17*** -0.17*** -0.16*** -0.16***

[0.03] [0.03] [0.03] [0.03] [0.03] [0.04] [0.04] [0.04] [0.04] [0.04]

∆ ln(MPH) -0.01* -0.01* -0.01** 0.00 0.04*** -0.01** -0.01* 0.00 0.03*** 0.07***

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.01] [0.01]

1st Stage F 27.34 27.42 27.59 27.93 28.73 27.34 27.42 27.59 27.93 28.73

Panel B: Full Sample (N = 12,849) - IV for ∆ ln(Hgt+1), IV for ∆ ln(MPH)

∆ ln(Hgt+1) 0.09*** 0.08*** 0.18*** -0.12** -0.12*** -0.14***

[0.03] [0.03] [0.04] [0.05] [0.04] [0.04]

∆ ln(MPH) 0.22*** 0.05** 0.11* 0.39*** 0.17*** 0.21**

[0.05] [0.02] [0.06] [0.08] [0.03] [0.08]

1st Stage F 15.34 13.76 10.55 15.34 13.76 10.55

Panel C: Developing Economies (N = 11,257) - IV for ∆ ln(Hgt+1), OLS for ∆ ln(MPH)

∆ ln(Hgt+1) 0.13*** 0.13*** 0.13*** 0.13*** 0.14*** -0.16*** -0.16*** -0.16*** -0.15*** -0.16***

[0.03] [0.03] [0.03] [0.03] [0.03] [0.04] [0.04] [0.04] [0.04] [0.04]

∆ ln(MPH) -0.01* -0.01* -0.01** -0.00 0.04*** -0.01 -0.00 0.00 0.04*** 0.08***

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.01]

1st Stage F 21.88 21.96 22.18 22.59 23.12 21.88 21.96 22.18 22.59 23.12

Panel D: Developing Economies (N = 11,257) - IV for ∆ ln(Hgt+1),IV for ∆ ln(MPH)

∆ ln(Hgt+1) 0.10*** 0.09** 0.18*** -0.13** -0.09** -0.14***

[0.03] [0.04] [0.04] [0.05] [0.04] [0.04]

∆ ln(MPH) 0.14*** 0.02 0.08 0.35*** 0.17*** 0.19***

[0.04] [0.02] [0.06] [0.07] [0.03] [0.07]

1st Stage F 16.83 11.12 13.60 16.83 11.12 13.60

Decay Param 0.33 0.5 1 2 3 0.33 0.5 1 2 3

Country FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Notes: Regressions have the same specification as in Table 2, except that we also include the log change in heights-based
market potential 1975-2015 (∆ ln(MPH)). We instrument ∆ ln(MPH) using similarly constructed instruments as for
∆ ln(Hgt+1). See the text for details of MP calculation and included controls. Robust standard errors in brackets.
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Table A14: Height Gradients

(1) (2)

Ln floors, Ln floors,

Commercial Residential

Distance (km) –0.203*** –0.100***

(0.004) (0.001)

Observations 4,709 129,496

Notes: Each 0.25 km distance bin to the Chicago city center,
as defined by the average location of the tallest 5 commercial
buildings in the city, receives equal weight. Each building
(observation) in each regression is weighted by the inverse of
the number of buildings in its city center distance bin.

Table A15: Counterfactuals: Illustrative Examples

20% higher cost of height Binding height limit
Binding height limit under
20% higher cost of height

Total population –8.2% –16.5% –11.5%

Total area 16.1% 18.5% 9.3%

Average commuting cost 2.6% 8.2% 5.3%

Average residential rent –0.2% –14.2% –10.6%

Average commercial rent 7.8% 2.5% –1.8%

Average productivity –0.9% –5.1% –4.1%

Wage –2.5% –6.8% –4.8%

Total land value –0.2% 12.6% 8.8%

Urban utility (U}) –5.3% –10.5% –6.9%

Expected utility ({V}) –1.6% –3.0% –1.8%

Notes: The first two scenarios directly correspond to the counterfactuals in the second and third rows of Figure 9. Averages
are weighted by the number of workers.

Table A16: Wefare effects of tall buildings by world regions: Mechanisms

Wage (y) Rent (pR) Commuting cost (eτ
R×x)

World region
Urban
pop.
(BN)

No
tall

building

Actual
height
limit

No
tall

building

Actual
height
limit

No
tall

building

Actual
height
limit

Africa, G 0.55 –6.5% –5.5% –8.3% –6.9% 8.4% 7.4%

Asia, G 1.95 –5.8% –3.4% –8.6% –5.3% 7.3% 4.3%

Europe, G 0.04 –3.7% –2.1% –6.9% –4.0% 4.3% 2.4%

LAC, G 0.33 –8.3% –5.7% –11.8% –9.3% 10.6% 7.0%

Mean, G 2.87 –6.2% –4.0% –8.9% –6.1% 7.8% 5.2%

Asia, D 0.19 –12.2% –7.9% –15.5% –11.1% 16.3% 10.5%

Europe, D 0.25 –8.9% –7.7% –11.7% –11.4% 11.3% 9.5%

LAC, D 0.02 –2.6% –1.9% –6.4% –5.1% 3.0% 2.3%

North America, D 0.17 –10.5% –8.0% –13.8% –12.1% 13.9% 10.2%

Oceania, D 0.01 –10.2% –9.6% –14.9% –14.5% 13.3% 12.5%

Mean, D 0.64 –10.2% –7.7% –13.3% –11.4% 13.3% 9.9%

Mean, all 3.51 –6.9% –4.7% –9.7% –7.0% 8.8% 6.0%

Notes: We report population-weighted average percentage changes in outcomes across cities within a region.
City-specific effects are from counterfactual analyses within the model, in each case using a parameterization
that matches a real-world city in terms of population, cost of height and height gap, an empirical estimate of
how much of the potential height has not been realized taken from Barr & Jedwab, 2023. Height ban means no
tall building exceeding four floors.
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Table A17: Wefare effects of tall buildings by world regions: 20% lower cost of height

City characteristics Expected utility (V) Agg. land rent (R)

World region
Urban
pop.
(BN)

Share
large
cities

Cost of
height

θ

Est.
height
gap

No
tall

building

Actual
height
limit

No
tall

building

Actual
height
limit

Africa, G 0.53 35.2% 0.35 69.4% –6.0% –5.5% 8.3% 8.6%
Asia, G 1.94 44.5% 0.47 63.6% –4.8% –3.5% 6.3% 5.7%
Europe, G 0.04 29.6% 0.39 63.6% –1.4% –0.9% 2.2% 1.8%
LAC, G 0.33 52.9% 0.32 69.9% –6.6% –4.3% 8.5% 7.6%

Mean, G 2.85 43.5% 0.43 65.4% –5.2% –3.9% 6.8% 6.4%

Asia, D 0.19 77.2% 0.32 62.4% –12.4% –9.1% 15.8% 14.0%
Europe, D 0.25 41.5% 0.25 79.6% –7.1% –6.1% 9.5% 10.6%
LAC, D 0.02 49.6% 0.81 61.6% –0.9% –0.6% 1.4% 1.1%
North America, D 0.17 67.4% 0.34 76.4% –10.3% –8.1% 12.8% 13.8%
Oceania, D 0.01 64.9% 0.27 87.6% –8.8% –8.6% 10.5% 10.7%

Mean, D 0.64 59.7% 0.31 73.4% –9.4% –7.4% 12.1% 12.2%

Mean, all 3.49 46.5% 0.41 66.9% –5.9% –4.6% 7.8% 7.5%

Notes: We report population-weighted average percentage changes in welfare across cities within a region. City-specific
welfare effects are from counterfactual analysis within the model, in each case using a parameterization that matches a
real-world city in terms of population, cost of height and height gap, an empirical estimate of how much of the potential
height has not been realized taken from Barr & Jedwab, 2023. Height ban means no tall building exceeding four floors.
Large city population share is the share of urban population in cities with a population of at least 1M. Compared to the
actual cost of height used in Table 7, we have reduced the cost of height, θ, by 20%.

Table A18: Cost of Height Over Time

Ln cost per space Ln cost per space

Ln height 0.255*** (0.08) 0.578** (0.26)
Year - 1975 0.086*** (0.01) 0.146*** (0.04)
Ln height × Year - 1975 -0.008*** (0.00) -0.022** (0.01)

IV, KPF - Yes, 3.13
City FE, Decade FE Yes Yes
Observations, R2 554, 0.82 554, -

Notes: Each unit of observation is a U.S. building. All buildings with height ≤ 55m are excluded. In
column (2), IV variables are the log Euclidean distance from the city center and its interaction with a
yearly time trend. The city center is defined as the median coordinate of buildings exceeding 100 m of
height or the tallest building where building exceeds 100 m. Robust SE’s clustered at the city level.
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