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ABSTRACT
The distribution function is essential in statistical inference and connected with samples to form a directed
closed loop by the correspondence theorem in measure theory and the Glivenko-Cantelli and Donsker
properties. This connection creates a paradigm for statistical inference. However, existing distribution
functions are defined in Euclidean spaces and are no longer convenient to use in rapidly evolving data
objects of complex nature. It is imperative to develop the concept of the distribution function in a more
general space to meet emerging needs. Note that the linearity allows us to use hypercubes to define the
distribution function in a Euclidean space. Still, without the linearity in a metric space, we must work with
the metric to investigate the probability measure. We introduce a class of metric distribution functions
through the metric only. We overcome this challenging step by proving the correspondence theorem and
the Glivenko-Cantelli theorem for metric distribution functions in metric spaces, laying the foundation for
conducting rational statistical inference for metric space-valued data. Then, we develop a homogeneity test
and a mutual independence test for non-Euclidean random objects and present comprehensive empirical
evidence to support the performance of our proposed methods. Supplementary materials for this article are
available online.

ARTICLE HISTORY
Received July 2021
Accepted October 2023

KEYWORDS
Correspondence theorem;
Donsker property;
Glivenko-Cantelli property;
Metric distribution function;
Metric topology

1. Introduction

Nowadays, many statistical applications study non-Euclidean
data. Typical data examples include symmetric positive definite
(SPD) matrices (Smith et al. 2013), the Grassmann manifold
(Hong et al. 2016), the shape representation of corpus callosum
(Cornea et al. 2017), samples of probability density functions in
Wasserstein spaces (Petersen, Liu, and Divani 2021), paleomag-
netic directional data in hyperspheres (Scealy and Wood 2019).

Analysis of non-Euclidean objects is challenging (Cornea
et al. 2017; Scealy and Wood 2019; Petersen, Liu, and Divani
2021). A common strategy is to embed non-Euclidean data
objects into a Hilbert or more general metric space before the
analysis. When the non-Euclidean data objects can be embedded
in a metric space but not a Euclidean space, metric (distance)—
based methods can be applied. Many methods exist or are
being developed in statistics and machine learning, for example,
Székely and Rizzo (2004), Székely, Rizzo, and Bakirov (2007),
Böttcher, Keller-Ressel, and Schilling (2019), Pan et al. (2018),
Dubey and Muller (2019), and Dai and Lopez-Pintado (2022).
Assessing the uncertainty following the use of the existing
methods to analyze non-Euclidean data is important but difficult
due to the absence of a fundamental concept in metric spaces
analogous to the distribution function (DF) in Euclidean spaces.

DF relates theory to the real world in statistical inference,
allowing us to conclude the data (Efron 1979). The DF is
defined to uniquely determine the Borel probability measure of
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a random vector (or a scalar) according to the correspondence
theorem (Halmos 1956). Given observed data, the DF can be
well estimated by the empirical distribution function (EDF). As
illustrated in Figure 1, the DF and observed sampled data are
linked to form a directed closed loop by the correspondence
theorem in measure theory and the Glivenko-Cantelli theorem
in statistical inference. This connection creates a paradigm for
statistical inference.

The properties and applications of EDF have been systemat-
ically investigated as a prominent field in mathematical statis-
tics for a century, and many statistical methods are, in fact,
functional of EDF. Examples include the Cramér-von Mises
test (Darling 1957) for the equality of two unknown DFs and
Hoeffding’s independence test (Hoeffding 1948) for two random
data samples. Thus, it is reasonable to anticipate the importance
of generalizing the concepts of DF and EDF to metric spaces to
have a basic foundation for the methods we may use to analyze
non-Euclidean data objects.

In this article, we introduce a quasi-DF to serve as the cor-
nerstone of nonparametric statistical inference for metric space-
valued data objects. We consider several important problems
in statistical inference to show the utility of the quasi-DF. Note
that the DF in Euclidean space has the correspondence theorem
because its definition is closely relative to the Euclidean metric
topology. Indeed, the DF is the Borel probability measure of the
Cartesian products of left closed rays, which is a base of the
Euclidean metric topology. While a metric space is equipped
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Figure 1. Conceptual diagram of statistical inference paradigm. The solid arrows indicate a conceptual deduction, and the dashed ones are a statistical approximation.

with a naturally metric topology that contains all open balls as
a base, balls are generally not ordered, but concentric balls are.
This ordering is essential for us to define the DFs in the same way
as the ordered topology of one-dimensional Euclidean spaces,
provided that we fix the center first. Using this center as the
second variable, we can define the metric distribution function
(MDF) in metric spaces as the counterpart of DF in Euclidean
spaces. (Figure 1).

The rest of this article is organized as follows. We introduce
the concepts of the MDF and the empirical MDF (EMDF) in
Section 2, and present their theoretical properties in Section 3. In
Section 4, based on the MDF and the EMDF, we develop several
nonparametric statistical inference procedures. To demonstrate
the MDF’s effectiveness in practice, we employ the MDF-based
methods on the synthetic and real-world datasets in Sections 5
and 6, respectively. Finally, we summarize our work for the MDF
in Section 7. Technical proofs and some properties of EMDF are
deferred to the “supplementary material”.

2. MDF and EMDF

2.1. Notations

An order pair (M, d) is called metric space ifM is a set and d is a
metric or distance on M. Many spaces we have encountered are
metric spaces. Examples include Euclidean space, Banach space,
and connected Riemannian manifold. A metric space (M, d)

is called separable if it has a countable dense subset for the
metric topology. A metric space (M, d) is said to be complete if
every Cauchy sequence converges in M. A completely separable
metric space is sometimes called a Polish space. Given a metric
space (M, d), let B̄(u, r) = {v : d(u, v) ≤ r} be the closed ball
with the center u and the radius r ≥ 0, B(u, r) = {v : d(u, v) <

r} be the open ball and ∂B(u, r) = B̄(u, r)\B(u, r) be the sphere.
If (Mk, dk), k = 1, . . . , K, are metric spaces, let M be the

Cartesian product of Mk, denoted by
K∏

k=1
Mk. Here, Cartesian

products of metric spaces are considered because they are useful
for defining the independence measure in Section 4. For any u =

(u1, . . . , uK) and v = (v1, . . . , vK) in M, we can define a metric
vector e(u, v) on the product space M:

e(u, v) =
(

d1(u1, v1), . . . , dK(uK , vK)
)

.

We also define B̄(u, r) := ∏K
k=1 B̄(uk, rk) be the joint ball on the

product space for a center vector u ∈ M and a nonnegative
radius vector r = (r1, . . . , rK) � 0. For this product space,
we can also assign a metric such that it is a metric space. For
example, if we define

d(u, v) = ‖e(u, v)‖p, (1)

where p ≥ 1 and ‖ · ‖p means the �p norm in RK . We can verify
that d(·, ·) is a metric onM. Given a point u ∈ M, πk(·) : M →
Mk is called the projection on Mk if πk(u) = uk. For a set A ⊂
M, we also define πk(A) = ⋃

u∈A
{πk(u)}.

Let μ be a (Borel) probability measure associated with an
ordered K-tuple of random objects X = (X1, . . . , XK) taking

values in M(=
K∏

k=1
Mk), and define μ ⊗ μ as the product

measure on the measurable space.

2.2. MDF and EMDF

Denote the indicator function by I(·) and the radius vector r =
e(u, v) for u, v ∈ M. We first define the metric distribution func-
tion (MDF) of μ on M that is the foundation of our proposed
framework. For ∀u, v ∈ M, let

δ(u, v, x) =
K∏

k=1
I{xk ∈ B̄(uk, rk)} =

K∏
k=1

I{xk ∈ B̄(uk, dk(uk, vk))}.

Definition 1. Given a probability measure μ, we define the
metric distribution function FM

μ (u, v) of μ on M: ∀u, v ∈ M,

FM
μ (u, v) = μ

[ K∏
k=1

B̄(uk, rk)

]
= E [δ(u, v, X)] .
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Figure 2. (a) Visualization of the direction in metric space by a 2-d Euclidean space example. (b) Visualization of the directionally (ε, η, L)-limited condition in the 2-d
Euclidean space. For a given η > 0, consider a circle N with the radius r such that for any two points ci and cj in N we have d(ci , cj)/r ≥ η. The directionally (ε, η, L)-
limited condition means that there exists an L such that the cardinality of {c1, . . . , c8, . . .} is always less than L.

Suppose that {X1, . . . , Xn} are iid samples generated from a

probability measure μ on a product metric space M =
K∏

k=1
Mk.

We define the empirical metric distribution function (EMDF)
associated with μ by the following formula naturally:

FM
μ,n(u, v) = 1

n

n∑
l=1

δ(u, v, Xl).

3. Theoretical Analysis of MDF and EMDF

In this section, we first discuss some sufficient conditions for
reconstructing probability measures from the MDFs and exhibit
the properties of the convergence of the EMDFs. Additional
properties of the EMDF are presented in the third part of the
“supplementary material.”

3.1. Fundamental Reconstruction Theorems of MDF

Here we investigate whether a Borel probability measures μ on
a separable metric space (M, d) can be uniquely determined
by the MDF FM

μ (u, v). We shall see that the answer depends on
the probability measure and metric space. For separable metric
spaces, Federer (2014) introduced the following geometrical
condition on the metric, named directionally (ε, η, L)-limited, to
characterize the correspondence property of the MDF.

Definition 2. (Federer 2014) A metric d is called directionally
(ε, η, L)-limited at the subset A of M, if ε > 0, 0 < η ≤ 1/3, L
is a positive integer, and the following condition holds: if for each
a ∈ A, D ⊆ A ∩ B̄(a, ε) such that d(x, c) ≥ ηd(a, c) whenever
b, c ∈ D (b �= c), x ∈ M with

d(a, x) = d(a, c), d(x, b) = d(a, b) − d(a, x),

then the cardinality of D is no larger than L.

Definition 2 ensures that the covering theorem holds; namely,
given a “thorough” covering of a set by closed balls, there is a
subcollection of pairwise disjoint balls that almost covers the set.
The counterpart of this result in Euclidean spaces is the so-called

Vitali covering theorem, which is important to the proof of the
correspondence theorem in Euclidean spaces. Likewise, we need
a similar condition for the correspondence theorem in metric
spaces. Figure 2 intuitively illustrates this directionally limited
assumption. Panel (a) visualizes the definition of direction in
metric space. The ratio of chord length and radius can measure
the direction between two lines in a metric space. Panel (b)
illustrates the directionally limited assumption, which requires
that the directions of every local point a are finite. This concept
of “directionally (ε, η, L)-limited” is essential to our reconstruc-
tion theory. We examine a few examples to understand the
implications of this condition.

First, if (M, ‖ · ‖) with the norm ‖ · ‖ is a Banach space, then
the above definition implies

x = a + ‖a − c‖
‖a − b‖ (b − a),

thus d(x, c) ≥ ηd(a, c) is equivalent to

d(x, c)
d(a, c)

=
∥∥∥∥ b − a
‖b − a‖ − c − a

‖c − a‖
∥∥∥∥ ≥ η.

If M is a finite-dimensional Banach space, owing to the com-
pactness of the unit sphere inM, there exists a suitable L for each
η > 0 such that the condition of directionally limited metric
space holds.

Another case is when M is a finite-dimensional Riemannian
manifold with bounded sectional curvature and A is any com-
pact subset of M. Let B(a, ε) be a normal ball of a ∈ A, and
Expa(·) be the Riemannian exponential map and Loga(·) be the
Riemannian log map. By the bounded sectional curvature condi-
tion and Topogonov’s theorem (Do Carmo and Flaherty Francis
1992), we can find a universal constant λ > 0 such that the for
any b = Expa(β) and c = Expa(γ ) satisfying

d(a, b) = ‖β‖a, d(a, c) = ‖γ ‖a,

x = Expa

[‖γ ‖a
‖β‖a

β

]
, and d(x, c)/d(a, c) ≥ η,

the inequality ‖ β
‖β‖a

− γ
‖γ ‖a

‖a ≥ λη > 0 holds. Thus, if we
associate each b ∈ D with the direction Loga(b), then by the
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compactness of unit sphere in the tangent space of a, there exists
a suitable L ∈ N for each η > 0.

The last but important case is when (M, d) is the metric space
of a binary phylogenetic tree with τ leaves, where τ ∈ N+ is
fixed. The space M is a Polish space and cubical complex (Lin
and Müller 2021). Let N (ηε; B̄(x, ε), d) be the ηε-packing of
B̄(x, ε) ⊆ M such that, for any x, x′ ∈ N (ηε; B̄(x, ε), d), the
geodesic distance d(x, x′) ≥ ηε. Denote ω(τ) = (2τ − 3) ×
(2τ − 5) × · · · × 3, for ∀η ≤ 1

3 and ∀ε ≤ 1, the space satisfies

sup
x∈M

card(N (ηε; B̄(x, ε), d)) ≤ Cω(τ)

(
2
η

)ψ(τ)

,

for some constant C < +∞, ψ(τ) < +∞. This implies that the
whole space is directionally-limited with ( 1

3 , 1, Cω(τ)6ψ(τ)).
Next, we provide an example of metric space that is not direc-

tionally limited. An infinite orthonormal base B = {e1, e2, . . .} in
a separable Hilbert space H is not directionally (ε, η, L)-limited.
Let a ∈ H, and b = a + ei, c = a + ej ∈ a + B, then by the above
discussion for Banach space, we have

x = a + ‖ej‖
‖ei‖ei and

d(x, c)
d(a, c)

= ‖ej − ei‖ = √
2 ≥ η

for all 0 < η ≤ 1
3 and the cardinality of a + B is infinite.

Remark 1. Metric entropy and directionally (ε, η, L)-limited are
related concepts, and in certain classical metric spaces such as
finite-dimensional Banach spaces and Riemannian manifolds
with bounded sectional curvature, finite metric entropy implies
directionally (ε, η, L)-limited. Specifically, for a given δ-covering
number N, setting ξ = ∞, η = 2δ, and ζ = N guarantees that
the directional limitability condition holds for any point c and
subset B ⊆ A \ a, as shown by the following inequality:

d(x, c)
d(a, c)

=
∥∥∥∥ b − a
‖b − a‖ − c − a

‖c − a‖
∥∥∥∥ ≥ η = 2δ,

where d denotes the metric, and a, b, c, x are points in the metric
space. Following the definition of metric entropy, the cardinality
of D is no larger than N. This result also holds for the Rie-
mannian manifold with bounded sectional curvature. Let ξ =
∞, η = 2δλ, and ζ = N, then the cardinality of D is no larger
than N following inequality:

d(x, c)/d(a, c) ≤ λ|β/|β| − γ /|γ ||.
Thus, the finite-dimensional Banach space and Riemannian
manifold with its usual metric are directionally (ε, η, L)-limited
if the metric entropy is finite for ∀ δ.

In a Euclidean space, two Borel probability measures μ = ν

if and only if their associated random objects X and Y share the
common DF by the correspondence theorem (Halmos 1956).
This correspondence lays the theoretical foundation for statis-
tical inference. However, DF depends on the linear structure
and the order of real numbers. We do not have this structure
in general metric space, and DF can no longer be defined. The
following theorems delineate how MDF overcomes this major
challenge. Theorem 1 shows that d(u, X) and d(u, Y) share the
same DF for each location u ∈ supp{μ} if and only if μ = ν.

Theorem 1 (The fundamental correspondence theorem of MDF).
Denote S = {(u, v) ∈ M × M : FM

μ (u, v) = FM
ν (u, v)} for two

given Borel probability measures, μ and ν, with their respective
supports, supp{μ} and supp{ν}, on (M, d). Suppose that (M, d)

is a Polish space and the metric d is directionally (ε, η, L)-limited
at supp{μ} and supp{ν}, then μ ⊗ μ(S) = 1 (or ν ⊗ ν(S) = 1) if
and only if μ = ν.

Theorem 1 ensures that the MDF has a one-to-one cor-
respondence with a probability measure when the metric is
directionally (ε, η, L)-limited at the support of the probability
measure. The conditions of Theorem 1 may not be satisfied if
M is a separable Hilbert space of infinite dimension. Corollary 1
presents a reasonable condition so that the probability measure
μ can still be determined by MDF in infinite dimension space.

Corollary 1. For ∀ ε > 0, suppose that there exists Ml ⊆ M
such that μ(Ml) ≥ 1 − ε (or ν(Ml) ≥ 1 − ε) and the metric
d is directionally (ε(Ml), η(Ml), L(Ml))-limited at Ml, then
μ ⊗ μ(S) = 1 (or ν ⊗ ν(S) = 1) if and only if μ = ν.

Corollary 1 includes separable Hilbert spaces as a special
case. For example, a random function, or a random curve f (t)
in a separable Banach space with unconditional Schauder base
functions {φj}∞j=1, can be expanded as f (t) = ∑∞

j=1 βjφj(t),
where the probability measure of the coefficients {β}∞j=1, denoted
as μ, satisfies a sparse condition limS→∞ μ(∃ j > S , βj �= 0) =
0. This setting is similar to the sparse priors used in Castillo,
Schmidt-Hieber, and Van der Vaart (2015) and O’Hara and Sil-
lanpää (2009), but it is important to note that we allow the under-
lying function space to be infinite-dimensional. In this example,
the “measure condition” of Corollary 1 is satisfied. The metric
condition of Corollary 1 implies that if μ and ν are two Borel
probability measures on �2 = {(a1, a2, . . . , ai, . . .) :

∑
i a2

i <

∞}, and they share the common metric distribution function
on any finite subspace of �2, then we have μ = ν. According
to the previous statement, many metric spaces, including the
space of smooth functions, Riemannian manifold space, shape
space, τ -leaves binary phylogenetic spaces, satisfy the conditions
of Corollary 1.

In general, if the metric space is not linear, the geometric
condition of “directionally (ε, η, L)-limited” cannot be induced
from the compactness. Davies (1971) gives a counter-example
that there exists a compact metric space (M, d) and two distinct
Borel probability measures μ and ν on M, such that μ and ν

agree on all closed balls.
Next, we extend the 1–1 correspondence theorem to prod-

uct metric spaces. This extension is challenging because the
topological structure of a product metric space may not be as
simple as that of Euclidean space. For example, the product of
two circles S1 × S1 is topologically not a sphere S2 anymore. Let

μ and ν be two Borel probability measures on M =
K∏

k=1
Mk,

and
M1 = {μ :μ is a discrete Borel probability measure on M},
M2 = {μ :μ is a Borel probability measure on M such that

∀u ∈ M and v ∼ μ, e(u, v) has continuous
density function}.
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We have the following fundamental correspondence theorem of
the joint metric distribution function in a product metric space.

Theorem 2 (The fundamental correspondence theorem of joint
MDF). Given two Borel probability measures, μ and ν, on a
product Polish space M = ∏K

k=1 Mk, let S = {(u, v) ∈ M ×
M : FM

μ (u, v) = FM
ν (u, v)}. Suppose that dk is directionally-

(ξk, ηk, Lk) limited at Mk and μ = αη + (1 − α)γ for some
α ∈ [0, 1], η ∈ M1 and γ ∈ M2, then μ ⊗ μ(S) = 1 (or
ν ⊗ ν(S) = 1) if and only if μ = ν.

Similar to Corollary 1, we have the following corollary for the
product space.

Corollary 2. For ∀ ε > 0, suppose that there exists Ml ⊆ M
such that μ(Ml) ≥ 1 − ε (or ν(Ml) ≥ 1 − ε) and the metric dk
is directionally

(
ε(πk(Ml)), η(πk(Ml)), L(πk(Ml))

)
-limited at

πk(Ml). If the combination μ = αη+ (1−α)γ for η ∈ M1 and
η ∈ M2, then μ ⊗ μ(S) = 1 (or ν ⊗ ν(S) = 1) if and only if
μ = ν.

3.2. Main Properties of EMDF

Here, we provide EMDF’s Glivenko-Cantelli property and
Donsker property. First, we define the collection of the indicator
functions of closed balls on M:

F = {δ(u, v, ·) : u ∈ M and v ∈ M}.

The uniform convergence property of EMDF is given as follows.

Theorem 3 (The Glivenko-Cantelli type property of EMDF). Let

M =
K∏

k=1
Mk be a product space and μ be a probability measure

on it. Suppose that {X1, . . . , Xn} is a sample of iid observations
from μ. Define F(Xn

1) := {(f (X1), . . . , f (Xn))|f ∈ F}. If μ

satisfies that
1
n

EX
[
log(card(F(Xn

1)))
] → 0,

where card(·) is the cardinality of a set, we have the Glivenko-
Cantelli property of our empirical metric distribution function:

lim
n→∞ sup

u∈M,v∈M
|FM

μ,n(u, v) − FM
μ (u, v)| = 0, a.s.

The conditions of Theorem 3 are often satisfied in practice.
The first example is M = Rq with the �p-norm (where p
is a positive integer or ∞), and μ is an arbitrary probability
measure because the set of �p ball has a finite VC-dimension.
We also allow the dimension of M to increase as the sample size
increases if M is a Euclidean space. Since the VC-dimension of
closed balls in Euclidean space Rq is q + 2 (see Example 4.14 in
Wainwright 2019), if q = o( n

log n ) the Glivenko-Cantelli prop-
erty still holds (Lemma 4.14 in Wainwright (2019)). The second
example is that M is a smooth regular curve in Euclidean space
or a sphere inRq with the geodesic distance, and μ is an arbitrary
probability measure. In this case, we can reparameterizeM to be
a unit speed curve such that every geodesic ball in M is mapped
to an interval in R and the set of intervals in R has a finite VC-
dimension. The third example is that M is a set of polygonal

curves inRd with the Hausdorff distance for the Fréchet distance
(Driemel et al. 2021) and μ is an arbitrary probability measure.
Another example is that M is a separable Hilbert space with
a probability measure μ with support on a finite-dimensional
subspace because the set of balls on the support of μ has a finite
VC-dimension.

Based on the two reconstruction theorems, whether the two
probability measures are identical depends on whether their
MDFs are the same over their support sets but not the whole
space. This leads us to consider the Glivenko-Cantelli type prop-
erty for the MDF over the sample set because the sample set
contains the information that supports the underlying unknown
probability measure.

Corollary 3 (A concentration inequality of EMDF). Let M =
K∏

k=1
Mk be a product space and μ be a probability measure on it.

For each t > 0, there exists a universal constant N(t) ∈ N such
that for all n ≥ N(t), we have

P( max
1≤i,j≤n

|FM
μ,n(Xi, Xj) − FM

μ (Xi, Xj)| > t) ≤ 2n exp(−nt2

32
),

which leads to

max
1≤i,j≤n

|FM
μ,n(Xi, Xj) − FM

μ (Xi, Xj)| a.s.−→ 0, as n → ∞.

Without restriction on metric spaces and probability mea-
sures, Theorem 3 shows that the EMDF has the concentration
phenomenon at an exponential convergence rate for a suffi-
ciently large sample. This uniform convergence result over the
sample set is essential when we apply the EMDF to analyze data
objects in metric spaces as it is the data analysis in a Euclidean
space. The other important convergence property of the EMDF
is the convergence in distribution, called the Donsker property,
which is similar to the central limits theorem.

Theorem 4 (The Convergence of Metric Distribution Process). Let

M =
K∏

k=1
Mk be a product space and μ be a probability measure

on it. Define

Gn(u, v) = √
n(FM

μ,n(u, v) − FM
μ (u, v)), u, v ∈ M.

If F is a VC class with VC-dimension V(F) < ∞, then we
have the Donsker property of the metric distribution process:
{Gn(u, v) : u, v ∈ M} converges in distribution to a Gaussian
process {Gμ(u, v), u ∈ M and v ∈ M}, with zero mean and
the covariance function:

EGμ(u1, v1)Gμ(u2, v2)

=μ
(
B̄(u1, e(u1, v1)) ∩ B̄(u1, e(u2, v2))

)
− FM

μ (u1, v1)FM
μ (u2, v2).

The conditions in Theorem 4 also imply the Glivenko-
Cantelli property of the EMDF. It is noteworthy that EMDF has
the Glivenko-Cantelli and Donkser properties in the infinite-
dimensional cases if we impose some entropy and continuity
conditions on the probability measures:

Corollary 4. Assume the following conditions hold:
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1.
∫ ∞

0

√
log N(ε,M,t)

t dt < ∞, where N(ε,M, t) is the covering
number.

2. The CDF of d(u, X), has probability density function f (u, r)
for all u ∈ M, and satisfies supu,r f (u, r) ≤ Cf < ∞ for some
constant Cf .

Then, both Glivenko-Cantelli and Donsker properties hold.

Remark 2. The preceding result can be extended without signif-
icant additional effort to replace Mk in the first condition with
the projection of the support of μ onto Mk. The first condition
on Mk is mild and can be satisfied by any space satisfying
log N(t,M, d) = O(t−c) for some constant c < 1, including

1. Bounded subsets of the α-times continuously differentiable
function space Cα

1 (X ) defined onX equipped with the ‖·‖∞-
norm or Lr(Q)- norm for a certain probability measure Q on
X . Here, X is a bounded convex subset of Rp and α > d, as
proved by Theorem 2.7.1 in Wellner and Vaart (2013).

2. Bounded subsets of Riemannian manifold with bounded
sectional curvature by the Bishop-Gromov packing lemma
(Petersen 2006), such as a bounded subset of SPD matrices
manifold equipped with the affine-invariant metric and p-
dimensional sphere.

3. Bounded subsets or balls of Rp equipped with ‖ ·‖q-norm for
1 ≤ q ≤ ∞ (Wainwright 2019).

4. Bounded subsets of the binary phylogenetic tree with τ leaves,
where τ ∈ N+ is fixed.

4. MDF Based Statistical Methods

In this section, we discuss using the MDF to conduct statistical
inference in a few important and common problems.

4.1. Homogeneity Test

A common and basic hypothesis testing problem in statistical
inference is whether samples are generated from the same dis-
tribution. Suppose we have data objects from unknown Borel
probability measures, μ1, μ2, . . . , μK , on a metric space (M, d)

and need to check whether they are homogeneous, that is, testing
H0 : μ1 = μ2 = · · · = μK .

We introduce a homogeneity measure based on MDF, called
metric Cramér-von Mises (MCVM). Let FM

μk
(u, v) be the MDFs

for μk, μ is the mixture distribution of μ1, . . . , μK with propor-
tions p1, . . . , pK , and FM

μ (u, v) be the MDF of μ, we use some
Cramér-von Mises-type criteria to evaluate the distinction of
FM

μk
(u, v) and FM

μ (u, v) for at u, v from μ1, . . . , μK :

MCVM(μk‖μ) =
∫

(u,v)∈M×M
p2

kw(u, v)(
FM

μk
(u, v) − FM

μ (u, v)
)2

dμk(u)dμk(v),

where w(u, v) = exp{− (d(u,v))2

2σ 2 }. We aggregate MCVM(μk‖μ)

by defining

MCVM(μ1, . . . , μK) =
K∑

k=1
p2

kMCVM(μk‖μ).

For each k = 1, . . . , K, let Xk be the kth sample set of
X(k)

1 , . . . , X(k)
nk

iid∼ μk. Then MCVM(μk‖μ) can be estimated on
the basis of EMDF:

M̂CVM(μk‖μ) = 1
n2

k

∑
X(k)

i ,X(k)
j ∈Xk

(p̂k)
2w(X(k)

i , X(k)
j )

(
FM

μk,nk
(X(k)

i , X(k)
j ) − FM

μ,n(X(k)
i , X(k)

j )
)2

,

where p̂k = nk/
∑K

k=1 nk. Thus, M̂CVM(μ1, . . . , μK) =∑K
k=1(p̂k)

2M̂CVM(μk‖μ). We use the median heuristic for
choosing the σ 2 as the median of {d(X, X′) : X, X′ ∈ ∪K

k=1Xk}.
Following the above Theorems, we can obtain the theoretical

properties of MCVM.

Proposition 1. (a) Suppose that the conditions of Theorem 1
or Corollary 1 hold and pk > 0, k = 1, . . . , K, then
MCVM(μ1, . . . , μK) = 0 if and only if μ1 = μ2 = · · · =
μK .

(b) Suppose that the conditions of Theorem 3 hold and pk >

0, k = 1, . . . , K, then

M̂CVM(μ1, . . . , μK)
a.s.−−−−−−−→

n1,...,nK→∞ MCVM(μ1, . . . , μK).

(c) Suppose pk > 0 (k = 1, . . . , K), under the conditions of
Theorem 3, when the null hypothesis holds,

nM̂CVM(μ1, . . . , μK)
d−−−−−−−→

n1,...,nK→∞

∞∑
l=1

λlZ2
l ,

where Zl are iid standard normal random variables and λl
are the constants depending on μ1, . . . , μK , l = 1, . . . , ∞.
nM̂CVM(μ1, . . . , μK) can serve as a test statistic for homo-
geneity, which is consistent against the alternatives.

To test H0, we can use permutation to approximate the p-
value directly. On the other hand, the asymptotic distribution
of MCVM in Proposition 1(c) motivates us to test homogeneity
by estimating {λi}i∈N when n is sufficiently large. We name this
test procedure as a spectrum-based test and study its numerical
performance in Section 5.1. We defer its implementation details
and theoretical property in Section 4 of supplementary materi-
als.

4.2. Mutual Independence Test

Another fundamental problem in statistical inference is testing
the mutual independence among several elements of a random
object. Suppose X = (X1, . . . , XK) is a random object of K-tuple
random objects (K ≥ 2) on a metric space (M, d), in which X is
associated with probability measure μ, and Xk is associated with
probability measure μk on Mk for k = 1, . . . , K. The study of
mutual independence is formulated as testing H0 : μ = μ1 ⊗
· · · ⊗ μK .

It is very convenient to use the MDF to measure mutual
dependence because of the definition of the MDF in prod-
uct metric spaces. Following Hoeffding’s dependence paradigm
(Hoeffding 1948), we integrate the difference between the joint
MDF associated with X and the product of marginal MDFs
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associated with Xk’s. We then obtain our metric association
(MA) measure:

MA(μ, ⊗K
k=1μk)

=
∫ (

FM
μ (u, v) −

K∏
k=1

FM
μk

(uk, vk))

)2

dμ(u)dμ(v).

When K = 2, MA(μ, ⊗2
k=1μk) is the square of ball covari-

ance in Pan et al. (2020). When the entries of X are depen-
dent, then Theorem 2 implies that MA(μ, ⊗K

k=1μk) > 0. Sup-
pose that X1, . . . , Xn are iid observations of X associated with
the Borel probability measures μ. The consistent estimator for
MA(μ, ⊗K

k=1μk) is given by

M̂A(μ, ⊗K
k=1μk) = 1

n2

n∑
i,j=1

(
FM

μ,n(Xi, Xj) −
K∏

k=1
FM

μk,n(Xik, Xjk)
)2

.

The following proposition demonstrates the practical use of
Theorems 1–3.

Proposition 2. (a) Under the conditions in Theorem 2 or Corol-
lary 2, MA(μ, ⊗K

k=1μk) = 0 if and only if μ = ⊗K
k=1μk.

(b) Under the conditions in Theorem 3, we have M̂A(μ,
⊗K

k=1μk)
a.s.−−−→

n→∞ MA(μ, ⊗K
k=1μk).

(c) Suppose the conditions in Theorem 3 hold, then under the
null hypothesis

nM̂A(μ, ⊗K
k=1μk)

d−−−→
n→∞

∞∑
l=1

λlZ2
l ,

where {Zl}l∈N is a countable sequence of iid standard normal
random variables and {λl}l∈N is a descending ordered. Thus,
M̂A(μ, ⊗K

k=1μk) is a consistent test for any fixed alternative
hypothesis.

Motivated by Proposition 2(c), we can derive an estimator
for the {λl}l∈N and give a spectrum-based test by following the
similar procedure for MCVM (See Section 4 in supplementary
materials). Also, we can approximate p-values by permutation
when the sample size is relatively small. The numerical com-
parison between the permutation-based and spectrum-based
mutual independence test is conducted in Section 5.1.

5. Monte Carlo Studies

5.1. Consistency of Tests: Large-Sample Regime

We investigate the consistency of the permutation-based and
spectrum-based tests proposed above. We simulate datasets
drawn from the multivariate Gaussian distribution N(μ, I2×2),
the von-Miser Fisher distribution V(w) with concentration
parameter ‖w‖, and the Wishart distribution W(�) with degree
of freedom 8. They are common distributions in Euclidean,
spherical, and SPD matrices space. Here, we vary sample size n
from 200 to 600. The significance level is fixed at 0.05.

For the assessment of the homogeneity test, we design the
following models:

• Euclidean: X ∼ N(0, I2×2), Y ∼ N(μy, I2×2), Z ∼
N(μz, I2×2).

• Sphere: Let X ∼ V((1, 0)�), Y ∼ V(wy) and Z ∼ V(wz).
• SPD: X ∼ W(I2×2), Y ∼ W(�y), Z ∼ W(�z), where

�y, �z are 2 × 2 matrices.

We set μy = μz = 0, wy = wz = (1, 0)�, and �y = �z = I2×2
to examine Type-I errors for the above settings, respectively.
To check the consistency of the proposed tests, we set μy =
(0.2, 0.2)�, μz = (−0.2, −0.2)�, wy = 1√

5 (2, 1)�, wz =
1√
2 (1, 1)�, �y

ij = 0.1|i−j|, �z
ij = (−0.1)|i−j|.

To detect the mutual dependence among (X, Y , Z), we con-
sider the three models below.

• Euclidean: (X, Y , Z) ∼ N(03, �).
• Spherical: X′, Y ′, Z′ are random variables inR2 and (X′, Y ′, Z′) ∼

N(06, �). And X ∼ V(X′), Y ∼ V(Y ′), Z ∼ V(Z′).
• SPD: Draw (X′, Y ′, Z′) from N(0, �). Let W(a) be a 2 × 2

matrix with diagonal value 10 and non-diagonal value a, we
set X ∼ W(X′), Y ∼ W(Y ′), Z ∼ W(Z′).

We set � as the identity matrix to assess Type-I errors. As for
power analysis, we set �ij = 0.2|i−j| for Euclidean data and
�ij = 0.6|i−j| for spherical and SPD datasets. We now introduce
the distance measure. We employ Euclidean/geodesic distance
for data in Euclidean/spherical space. We use the Cholesky
distance (Dryden, Koloydenko, and Zhou 2009) to measure the
difference between two SPD matrices P1, P2, which is defined
as ‖chol(P1) − chol(P2)‖F , where ‖ · ‖F is Frobenius norm and
chol(·) is the Cholesky decomposition.

Figure 3 displays the rejection rate of the homogeneity and
mutual-independence tests under 500 Monte Carlo runs. When
the null hypotheses hold, both permutation and spectrum tests
control the rejection rate well around the significance level.
When n is not sufficiently large, the spectrum-based test may
have an excessive rejection rate than the permutation test.
Besides, controlling the Type-I error of the mutual indepen-
dence test requires more samples than the homogeneity test.
This is because the form of h2 involves multiple terms depending
on the unknown probability measure {μk}K

k=1, implying more
samples are required to control the approximation error of h2.
When the alternative hypotheses hold, the empirical powers of
the permutation and spectrum tests are close, and they both
increase to 1 as n goes to infinity, reflecting the consistency of
the two tests.

5.2. Power Analysis: Finite-Sample Regime

We first depict the setting for testing the homogeneity of X, Y , Z.
Let �(a) be a p-by-p matrix whose non-diagonal entries are a,
and diagonal entries are 1.

• Euclidean: (i) X ∼ N(0, I2×2), Y ∼ N(κ × 1, I2×2), Z ∼
N(−κ × 1, I2×2); (ii) X, Y , Z are drawn from zero-mean
multivariate t-distributions with degree of freedom 3, 3 − κ ,
and 3 + κ .

• Spherical: (i) X, Y , Z comes from the von Miser-Fisher dis-
tributions with concentration parameter 2.5, with directions
(cos π

4 , sin π
4 )�, (cos (π

4 (1 + tanh κ)), sin (π
4 (1 + tanh κ)))�,

and (cos (π
4 (1 − tanh κ)), sin (π

4 (1 − tanh κ)))�, respec-
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Figure 3. Rejection rate of the proposed homogeneity and mutual independence tests. The line type distinguishes permutation-based and spectrum-based tests; the color
distinguishes the H0 and H1. The black dashed line is the significance level.

tively. (ii) X is the equiv-probability mixture of von-Miser
Fisher distributions with directions (cos π

4 , − sin π
4 )�,

(cos π
4 , sin π

4 )� and concentration parameter 2.5. Y , Z
are the same as X except that directions are replaced
with (cos α, sin α)�, (cos α, − sin α)� and (cos β , sin β)�,
(cos β , − sin β)�, respectively. Here, α = π

4 (1 + tanh κ) and
β = π

4 (1 − tanh κ).
• SPD matrix: (i) X, Y , Z are drawn from the Wishart distri-

butions with the degree of freedom 8. The scale matrices of
X, Y , Z are I3×3, �3(κ), �3(−κ); (ii) X, Y , Z are the Wishart
distributions with the degree of freedom 8 − κ , 8, 8 + κ ,
respectively. The scale matrices of X, Y , Z are 8

8−κ
×�3(0.1),

�3(0.1), and 8
8+κ

× �3(0.1).

For each metric space, case (i) makes distributions only have a
difference on Fréchet mean, while case (ii) only has a difference
on Fréchet variance.

Next, we describe the setting for testing the mutual indepen-
dence among (X, Y , Z).

• Euclidean: (i) (X, Y , Z) ∼ N(0, �3(κ)); (ii) (X, Y , Z)

follows the equiv-probability mixture of N(0, �3(κ)) and
N(0, �3(−κ)).

• Spherical: first sample (X′, Y ′, Z′) from N(0, �3(κ)). (i)
X, Y , Z come from three von-Miser distributions with con-
centration parameters 2.8 and directions: (cos(X′), sin(X′),
0, 0)�, (cos(Y ′), sin(Y ′), 0, 0) and (cos(Z′), sin(Z′), 0, 0),
respectively. (ii) X, Y , Z come from three von-Miser distri-
butions whose directions are (1, 0, 0, 0)� and concentration
parameters |X′|, |Y ′|, |Z′|, respectively.

• SPD matrix: (X′, Y ′, Z′) ∼ N(0, �3(κ)), then we generate
X, Y , Z from three Wishart distributions with parameters: (i)
scale matrix �3(0.1) and degree-of-freedom are 3 + 8|X′|,
3+8|Y ′| and 3+8|Z′|; or (ii) scale matrices 1

3+12|X′|×�3(0.1),
1

3+12|Y ′| ×�3(0.1), 1
3+12|Z′| ×�3(0.1) and degree-of-freedom

are 3 + 12|X′|, 3 + 12|Y ′|, 3 + 12|Z′|.

For each metric space, X, Y , Z have mean dependence in (i) and
variance dependence in (ii).

We study the empirical power of the proposed tests when
the distribution discrepancy/dependence strength κ varies, but
n is fixed. We compare our proposed method with energy dis-
tance (ED, Székely and Rizzo 2004), Fréchet variance analy-
sis (FVA, Dubey and Muller 2019) for homogeneity test with
n1 = n2 = n3 = n. For testing mutual independence,
we compare our proposed test to the total multivariance (TM)
method (Böttcher, Keller-Ressel, and Schilling 2019). The signif-
icance level is fixed at 0.05. We use 399 permutation replications
to compute p-values. 500 Monte Carlo runs are performed to
estimate the power. The results are presented in Figure 4. We
also conduct experiments where the sample size n increases
but κ is fixed, whose results are deferred to supplementary
materials.

From Figure 4(a), the power of the MCVM and ED increases
to 1 as the gap between distributions enlarges; their power
also approaches the significance level as the gap closes. From
the upper panel of Figure 4(a), when the distributions have a
Fréchet mean difference, ED outperforms the others, followed
by MCVM and FVA that have competitive performance. On the
other hand, MCVM is superior in detecting Fréchet variance
difference. These observations coincide with the finding that the
MDF-based method is good at detecting scale differences (Kim,
Balakrishnan, and Wasserman 2020). Notice that the FVA also
has a remarkable power at detecting Fréchet variance difference
for the SPD data, which coincides with the report of Dubey
and Muller (2019). Unfortunately, this fact relies on the well-
estimation for the Fréchet mean, which may be difficult or even
impossible for heavy-tailed data, as we can see in the left-bottom
panel in Figure 4(a). Moreover, the (approximate) violation of
the uniqueness assumption of the Fréchet mean hinders the
power of the FVA increases. This fact can be witnessed in the
middle-bottom panel of Figure 4(a)—the power of FVA cannot
improve to 1.0 when κ exceeds 1.0, where Y approaches a
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Figure 4. Rejection rate of hypothesis tests when κ increases. (a) the homogeneity test. (b) the mutual independence test. Methods are distinguished by point and line.
The black dashed line is the nominal significance level.

mixture of von-Miser distributions with directions (0, 1) and
(0, −1) whose Fréchet mean does not exist.

Figure 4(b) displays the results of the mutual independence
test. From Figure 4(b), the power functions of the two tests
monotonously increase to 1 as the dependence strength κ

increases. Notably, when random objects are mutually inde-

pendent (κ = 0), the empirical power of the two tests is around
the nominal significance level. Moreover, TM is better than MA
when random objects depend on Fréchet mean, but the MA test
still enjoys a competitive power. On the other hand, MA is more
powerful than TM when random objects have a dependence
on variance, which is even more visibly in spherical and SPD
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data. Lastly, it is noteworthy that the advantages of the MDF-
based tests persist in the complex scenarios presented in the
final section of the Supplementary Materials. This underscores
the promise of our proposed tests for real-world data that may
possess complexity.

6. Real Data Analysis

6.1. Alzheimer’s Disease Neuroimaging Initiative Data

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a
multisite study that aims to improve the prevention and treat-
ment of Alzheimer’s disease (AD). AD is a neurodegenerative
disease, resulting in the decline of some cognitive impairments
that cause behavioral deficits. Data including magnetic reso-
nance images, demographic variables, genetic markers, and AD
assessment scale cognitive score (ADASCS) were collected to
study AD and the human brain. In this study, we focus on a
critical brain region: the hippocampus, which is typically firstly
damaged by AD, leading to the first clinical manifestations in
the form of episodic memory deficits (Weiner et al. 2013). By
applying our method for the data preprocessed by Kong et al.
(2018), we are interested in factors that affect the hippocampus.

The preprocessed data contain the left and right hippocam-
pus of 373 individuals, each of which is characterized by 15,000
radial distances on the left and right hippocampus surfaces,
where the radial distance is defined as the Euclidean distance
between the corresponding vertex on the surface and the medial
core of the hippocampus (see Figure 5(a)). From a functional
curve example exhibited in Figure 5(b), we see that the func-
tional curve has an obvious fluctuation and periodicity. And
thus, to capture the main variation of functional curves, like

Kong et al. (2018), we apply smoothing and functional princi-
pal component analysis (Ramsay and Silverman 1997) on the
functional curves of left and right surfaces, respectively. We
find that the top nine functional principal components for each
hippocampus can explain 99% of the total variance.

We consider gender, age, handedness, marital status, educa-
tion length, retirement, Apolipoprotein E (APOE) 3-allele hap-
lotype (i.e., the ε2, ε3, and ε4 variants), and the ADASCS. The
ADASCS is quantitatively evaluated behavioral deficits caused
by AD, and the higher the ADASCS is, the more severe the
deficits are.

The metric space for left/right hippocampus is (L2, dh), where
L2 is the collection of square integral functions and dh(u, v) =
‖u − v‖2 for u, v ∈ L2. To jointly consider left and right hip-
pocampi, we set their product metric space as (L2×L2, d), where
d(u, v) = ‖(dh(u1, v1), dh(u2, v2))‖2 for u = (u1, u2), v =
(v1, v2) ∈ L2 × L2.

To answer the above question, we use the MA and TM tests
to evaluate whether demographic and genetic factors affect the
hippocampus. The results are displayed in Table 1. As seen from
Table 1, both MA and TM detect associations of the hippocam-
pus with age and ADASCS. The increase in age accumulates the
abnormal deposition of β amyloid fibrils, which starts the neural
damage with hippocampus atrophy. Furthermore, the atrophy of
the hippocampus causes behavior deficits (Jack et al. 2010), and
the ADASCS are expected to be related to the hippocampus.

Notably, the MA test also detects APOEε4, but TM does
not. This difference is important because APOEε4 is a well-
known major genetic risk factor for AD and has repeatedly
been reported to affect the hippocampus (Jack et al. 2010).
Figure 6 displays the difference in the mean functional curves
between the APOEε4 carriers and non-carriers and indicates

Figure 5. (a) Visualization for medial core, radial distance, and the order of 15,000 landmarks on each hippocampus surface. (b) One subject’s functional curve of radial
distance on the left and right hippocampus surfaces. The x-axis corresponds to 15,000 landmarks that whirlingly surround the hippocampus.

Table 1. The p-values (adjusted p-values under Holm’s correction) of independence tests for the ADNI dataset.

Test Gender Handedness MS EL Retirement

TM 0.012 (0.096) 0.760 (1.000) 0.628 (1.000) 0.020 (0.140) 0.318 (1.000)
MA (Permute) 0.038 (0.259) 0.589 (1.000) 0.830 (1.000) 0.079 (0.395) 0.507 (1.000)
MA (Spectrum) 0.046 (0.295) 0.546 (1.000) 0.811 (1.000) 0.077 (0.386) 0.499 (1.000)

Test Age APOEε2 APOEε3 APOEε4 ADASCS
TM 0.001 (0.010) 0.871 (1.000) 0.228 (1.000) 0.023 (0.140) 0.001 (0.010)
MA (Permute) 0.001 (0.010) 0.226 (0.904) 0.037 (0.259) 0.004 (0.032) 0.001 (0.010)
MA (Spectrum) 0.0003 (0.001) 0.229 (0.918) 0.042 (0.295) 0.002 (0.018) 0.0002 (0.002)

NOTE: MS and EL are abbreviations of marital status and educational length. The p-values under 0.05 after Holm’s correction are bolded.



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 11

Figure 6. (a) Visualization for mean radial distance difference between APOEε4 and non-APOEε4 carriers on hippocampi surfaces. The color bar depicts the mean radial
distance difference. (b) Hippocampal subfields. CA and Sub are abbreviations for cornu amonis and subiculum, respectively.

Table 2. The p-values (adjusted p-values under Holm’s correction) of (mutual) independence tests for the ADHD-200 dataset.

Test Joint (G, H)-FC (G, FC)-H (H, FC)-G FC-H FC-G H-G

TM 0.206 0.018 (0.054) 0.321 (0.321) 0.037 (0.074) 0.020 (0.060) 0.057 (0.114) 0.755 (0.755)
MA1 0.017 0.006 (0.018) 0.642 (0.642) 0.017 (0.035) 0.005 (0.016) 0.112 (0.224) 0.989 (0.989)
MA2 0.022 0.005 (0.015) 0.701 (0.701) 0.017 (0.034) 0.008 (0.024) 0.139 (0.278) 0.876 (0.876)

NOTE: The p-values under 0.05 after Holm’s correction are bolded. G, H, and FC are abbreviations of gender, handedness, and functional connectome, respectively. MA1:
spectrum-based test; MA2: permutation-based test. Note that the results are rounded to three digits.

that APOEε4 shrinks the hippocampus. Moreover, Figure 6
suggests that the atrophy caused by APOEε4 is more severe in
the right hippocampus, and cornu amonis 2 (CA2) and CA3 are
heavily shrunk by APOEε4 following by CA1 and subiculum.
O’Dwyer et al. (2012) also found this phenomenon by studying
left and right hippocampi volumes.

6.2. ADHD-200 Dataset

The correlated spontaneous fluctuations manifest different pat-
terns in different brain regions during sleep or under anesthesia.
This phenomenon is called functional connectome (FC), where
a node represents a part of the brain, and an edge represents the
direct correlation between two nodes. It is interesting to evaluate
the relationship between FC phenotypes and other variables.
For example, we investigate the mutual dependence among FC,
gender, and handedness with ADHD-200 dataset (Bellec et al.
2017).

The ADHD-200 dataset includes 162 individuals, with 63
males and 99 females. In this dataset, handedness is measured
as a continuous score—a person with large handedness implies
that he/she is dextromanuality. For each subject, the ADHD-200
dataset provides a preprocessed resting-state functional mag-
netic resonance imaging (rfMRI) that repeatedly records the
blood-oxygen levels on 111 disjoint regions in the brain. As sug-
gested by Smith et al. (2013), we can reconstruct the functional
connectome by computing a 111×111 partial correlation matrix
of the disjoint regions. Then, the Cholesky distance is chosen
to measure the difference among SPDs due to its favorable
performance in the simulation studies.

We applied the MA-based and TM tests to this dataset to
answer our question. The test results are displayed in Table 2.
As can be seen from the first column of Table 2, only the MA-
based tests reject the null hypothesis of the mutual independence
among FC, gender, and handedness, while the TM test does
not. In addition, we divide the three factors into two groups

and study the dependence of the two groups. The results are
presented in the third to fifth columns in Table 2. The third
column shows that gender and handedness together may affect
the FC by our MA-based methods. While the null hypothesis
of the independence between (gender, FC) and handedness is
not rejected in the fourth column, the null hypothesis of the
independence between (handedness, FC) and gender is hard to
judge in the fifth column. We further investigate the pairwise
dependence among three factors. From the sixth column in
Table 2, we see that only the MA-based tests reject the hypothesis
of the independence between handedness and FC. A recent
study found that the FCs of left- and right-handed individuals
extend across every brain region (Tejavibulya et al. 2022). They
discovered that connections between and within the cerebellum
have distinct connectivity patterns. Besides, from the seventh
to eighth columns in Table 2, both the MA-based and TM
tests suggest insufficient evidence to assert gender influences
handedness or FC. In conclusion, our MA-based method for
mutual independence is very useful for exploring the high-order
dependence among variables, including non-Euclidean ones.

7. Conclusion and Discussion

To address the need for non-Euclidean data analysis, we char-
acterize Borel probability measures in metric space. This is
analogous to how the DF represents Borel probability measures
in Euclidean space. We propose a metric distribution function.
To a large extent, the MDF retains the DF’s desirable properties,
including the 1–1 correspondence theorem, under certain mild
conditions. Moreover, the EMDF provides a simple and reliable
method for estimating the MDF, which coincides with the weak
mode of calculating the probability measure in Vapnik (2010).
The outer-directed loop in Figure 1 is closed thanks to the
EMDF’s Glivenko-Cantelli property and the Donsker property;
this paves the way for a new paradigm in statistical inference in
metric spaces. As a result, we can perform nonparametric statis-



12 X. WANG ET AL.

tical inference for non-Euclidean data with the MDF, similar to
that for Euclidean data with the DF.

We provide extensive empirical results for using the MDF
in the homogeneity test and the (mutual) independence test
for non-Euclidean data, including SPD matrices, shapes, and
smooth functions, to highlight the great potential of MDF in
practice. Using the Glivenko-Cantelli property and the Donsker
property of the EMDF, we obtain estimators and their consis-
tency for estimations and test procedures that are described in
Section 4. Our simulation experiments demonstrate that the
tests based on the MDF have good finite sample performance,
are robust to various data settings, and are free of tuning param-
eters. Therefore, the applicability of MDF is expected to be broad
and simple. We also reanalyzed the ADNI dataset and found
evidence that the APOEε4 affected the hippocampus.

The MDF and the DF are connected. Denote F(u) = P(X ≤
u) as the DF associated with probability measure μ defined in
R. Given u, v ∈ R such that u < v, we have

FM
μ (u, v) = P(|X − u| ≤ |v − u|)

= P(X ≤ v) − P(X < 2u − v).
Let u → −∞, then we have lim

u→−∞ FM
μ (u, v) = F(u). Despite

their connections, the MDF and the DF are not the same. The
MDF describes the random object by the distribution of dis-
tances at different locations. Thus, the viewpoint of MDF is
flexible and relative since the location variable u can be different.
Such characteristics allow the MDF to grasp the information of
probability measures in metric spaces.

Notably, the MDF is also related to another useful concept in
nonparametric statistics—statistical depth. The statistical depth
methods use a unique center, the so-called deepest point, to
characterize the distribution. These methods can properly char-
acterize distributions in Euclidean spaces, and recent progress
enables the characteristics of the depth in metric space (Dai and
Lopez-Pintado 2022; Liu, Wang, and Zhu 2022). We note that the
method proposed by Liu, Wang, and Zhu (2022) is derived from
the MDF, providing another example that the MDF establishes
a unified framework for analyzing complex data objects.

Supplementary Materials

Supplementary document: contains technical proof, some properties of
EMDF, a discussion about the spectrum-based tests, and additional
simulation results. (.pdf file)
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