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THEORIES AND MODELS

Roman Frigg

1. Introduction

There are models, and there are theories. This invites the question of how the two are re‑
lated. Traditionally, it was assumed that this question had a simple answer, and attempts 
have been made to explain the relation between models and theories at a general level. In 
this chapter, I argue that there is no such thing as “the” relation between models and theo‑
ries. How models relate to theories depends on the cases at hand, and models can stand in 
a multiplicity of relations to theories.

The chapter starts with a discussion of the Syntactic View and Semantic View of theories 
and points out that these views have too narrow a vision of what models are and of how 
they relate to theories (Section 2). We then discuss different relations between models and 
theories in descending order of models’ independence from theory. We begin by looking at 
models that are constructed without the aid of a theoretical framework and that therefore 
end up being independent from theory (Section 3). An interesting class of models serves 
the purpose of exploring the properties of a theory by providing simplified renderings of a 
theory’s features (Section 4). In some cases, models live in a symbiotic relation with theo‑
ries, adding specifics about which the theory remains silent (Section 5). In other cases, the 
reliance of theories on models is even stronger because theories require interpretative and 
representative models in order to relate to real‑world targets (Section 6), which motivates 
the view that models are mediators between theories and the world (Section 7). Sometimes 
it is difficult to draw the line between models and theories, and we discuss how, and where, 
such a line could be drawn (Section 8). Section 9 concludes.1

2. Two orthodoxies

Twentieth‑century philosophy of science has produced two broad views of what scientific 
theories are, and both imply a position on how models relate to theories. For better or 
worse, these two views form the backdrop of most discussions of models and theories to‑
day, and so our discussion should begin with them.
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The first view, often referred to as the Syntactic View of Theories (“Syntactic View”, 
for short), is associated with logical empiricism. Early statements of the Syntactic View in‑
clude Carnap (1923) and Schlick (1925); full developments can be found in Carnap (1938, 
sec. 23), Braithwaite (1953, chaps. 1–3; 1954), Nagel (1961, chap. 5), and Hempel (1966, 
chap. 6; 1970).2 The Syntactic View regards a theory T as a linguistic entity that satisfies 
the following three requirements:

(R1) T is formulated in an appropriate system of formal logic.
(R2) T contains axioms, which, when interpreted, are the theory’s laws.
(R3) T’s extralogical terms are divided into observation terms and theoretical terms, 
and theoretical terms are connected to observation terms by correspondence rules.

R1 is often said to mean that the theory is formulated in first‑order predicate logic, but this 
restriction is unnecessary and T can be formulated in any system of logic (Lutz 2012). R2 
requires there to be general propositions in the logical system which are the theory’s laws 
when the extralogical terms are given an empirical interpretation. As a simple example, 
consider the sentence x Fx Gx( )( )∀ → . Taken on its own, this is just a formal sentence (say‑
ing that for every object x, if x has property F, then x also has property G). This sentence 
becomes a statement of a law of nature of a simple theory of electricity if we interpret F as 
“is a piece of copper” and G as “conducts electricity”. Under this interpretation, the sen‑
tence says that every object that is a piece of copper also conducts electricity. R3 harbours 
the view’s empiricist commitments. Extralogical terms are terms that relate to objects and 
properties in the world (in contrast to logical terms like “and” and “or”, which concern 
the structure of sentences). The Syntactic View separates these into observation terms and 
theoretical terms. The former are terms like “round”, “green”, “ball”, “liquid”, “wheel”, 
“hot”, “longer than”, and “contiguous with”, which refer to directly observable objects, 
properties, and relations. The latter are terms like “electron”, “entropy”, “orbital”, “elec‑
tromagnetic field”, “gene”, “quantum jump”, “temperature”, and “rate of inflation”, 
which (purportedly) refer to objects, properties, and relations beyond direct observation. 
The view postulates that theoretical terms are related to observation terms by so‑called 
correspondence rules. By way of illustration, consider “temperature”. The temperature of 
an object is not directly observable. What is observable are thermometer readings. So the 
Syntactic View postulates that the term “temperature” be connected to an observation term 
through a rule like “an object has temperature θ  if, and only, a thermometer shows θ  when 
brought in contact with the object”.3

Let us call the theory’s system of formal logic together with its uninterpreted axioms the 
theory’s formalism. The formalism of a theory is a set of formal sentences. Given such a 
set of sentences, one can always look for a set of objects, along with their properties and 
relations, which make the sentences true if the sentences’ terms are interpreted as refer‑
ring to those objects, properties, and relations. Such a set of objects constitutes a logical 
model. It is then common to say that the model satisfies the formal sentences in the sense 
that the model makes the sentences true if the terms of the sentences are taken to refer to 
the objects, properties, and relations in the model. In the context of a discussion of scien‑
tific theories, the relevant formal sentences are stated in the language of the formalism of 
a theory, and hence logical models are sometimes referred to as “models of a theory” or 
“models for a theory”.
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If, for the sake of illustration, we assume that the formalism of our theory consists only 
of the sentence x Fx Gx( )( )∀ → , then a set of objects is a model for that theory if it is the case 
that to every object to which the predicate F applies, the predicate G also applies. Earlier we 
interpreted F as “is a piece of copper” and G as “conducts electricity”. But interpretations 
are not unique, and formalisms can often be interpreted in several different ways. Rather 
than interpreting F and G in terms of copper and conductivity, we could interpret F as “is a 
piece of granite” and G as “contains quartz”, which also makes the sentence x Fx Gx( )( )∀ →  
true. Hence, a set of objects in which it is the case that every object to which “is a piece of 
granite” applies is such that also “contains quartz” applies to it is a model of the theory.

In the Syntactic View, scientific models are essentially alternative interpretations of a 
theory’s formalism. Braithwaite expresses this clearly when he says that a model is “another 
interpretation of the theory’s calculus” (1962, 225), whereby his “calculus” is synonymous 
with our “formalism”. However, for an alternative interpretation to be useful, it must have 
an additional feature: the objects of the alternative interpretation must be familiar to us. 
In Hesse’s words, “a model is drawn from a familiar and well‑understood process” (1961, 
21). Crucially, this requirement applies to all terms of the formalism. That is, it applies also 
to the terms that were considered theoretical terms under the standard interpretation of 
the theory. In R3, these terms were given an “indirect” interpretation via correspondence 
rules, which made them difficult to grasp intuitively. In the context of a model, these terms 
receive a direct interpretation based on something familiar to us. In sum, then, we can say 
that according to the Syntactic View, a scientific model (often just “model”) is a logical 
model of a theory’s entire formalism that consists of objects, properties, and relations that 
are familiar to us.

As an example, consider the kinetic theory of gases. The theory takes a gas to consist 
of molecules that move freely unless they either collide with each other or the walls of the 
vessel containing the gas. Since “gas molecule” and “trajectory of a molecule” are theoreti‑
cal terms, the theory is not easy to comprehend. To get an intuitive grip on the theory, we 
can reinterpret the theory in terms of billiard balls and their paths. The terms that were 
formerly interpreted as referring to molecules are now interpreted as referring to billiard 
balls; the terms that were interpreted as referring to the trajectories of molecules are now 
interpreted as referring to the paths of billiard balls. A bunch of billiard balls is therefore 
a model of the kinetic theory of gases. Other well‑known examples of models of this kind 
are water waves as a model of the acoustic theory of sound waves and the solar system as 
a model of the Bohr theory of the atom.

The second view of theories in 20th‑century philosophy of science is the so‑called Se‑
mantic View of Theories (“Semantic View”, for short). Historically this view was intended 
to replace the Syntactic View, which has been reported to suffer from a number of serious 
problems. It is a matter of controversy whether these problems are as severe as critics 
have said they were, or whether they are problems at all. However, this is not the place 
to review this debate and the reader is referred to the relevant literature on the subject.4 
Important statements of the Semantic View include Suppes (2002), van Fraassen (1980), 
Balzer, Moulines and Sneed (1987), Giere (1988), and Da Costa and French (1990). Dif‑
ferent authors develop the view in different ways, but there is a common denominator, the 
focus on a theory’s models. As we have seen previously, a logical model is a set of objects 
(along with their properties and relations) that make the theory’s formalism true. We can 
then ask what the class of all logical models of a formalism looks like, and this will give us 
important information about the nature of a theory. Hence, rather than focussing on the 
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formalism itself when characterising a theory, we can focus on its models. The Semantic 
View submits that this is not just another way of doing the same thing; on the contrary, 
characterising a theory in terms of its models is superior to characterising it in terms of its 
formalism. The primary reason for this is that formalisms can change and yet describe the 
same things. We are familiar with this phenomenon from everyday contexts, where we can 
say the same thing in different languages. “Copper conducts electricity” and “Kupfer leitet 
Elektrizität” are different sentences but they have the same truth‑maker, namely the fact 
that copper conducts electricity. In the context of theories, we can choose different formal 
tools to describe the same models, which, however, would not result in a new theory be‑
cause such reformulations merely describe the same thing in different ways. This motivates 
the Semantic View’s core posit: a scientific theory is a family of models. For instance, in the 
Semantic View, Newtonian mechanics is not a set of postulates about motion and force; it 
is the set of models in which these postulates are true.

Two points deserve note. The first is that different authors have different ontologies of 
models. Suppes and Balzer, Moulines and Sneed take them to be set‑theoretical structures; 
Da Costa and French take them to be partial structures; van Fraassen takes them to be state 
spaces; and Giere takes them to be abstract objects. These differences are important in other 
contexts, but they are immaterial to the discussion in this chapter. The second is the role 
of a formalism. We introduced the Semantic View by appealing to the notion of a logical 
model, and indeed, it is that notion that gives the view its name: the view is called the “Se‑
mantic” View due to the fact that models provide the formalism’s semantics because models 
are what the formalism is taken to be about. Yet, providing a semantics for a formalism 
is like Wittgenstein’s ladder, which is pushed away after it has been climbed. Proponents 
of the Semantic View insist that interpreting a formalism is in no way essential, nor is the 
presence of a formalism to begin with. At bottom, a theory is simply a family of models, no 
matter how (if at all) they are described by a formalism.

As indicated previously, much can be said about the pros and cons of these two views, 
but this is not our subject matter. What interests us here is the analysis of the relation be‑
tween models and theories that the two approaches offer. The core argument of this chapter 
is that both analyses are too narrow. To see why and how, note that in both conceptions, 
models play a subsidiary role to theories. In the Syntactic View, they are merely reinterpre‑
tations of a formalism in terms of something familiar; in the Semantic View, they are the 
building blocks of which theories are made up. Both notions capture some cases of model‑
ling. The Syntactic View successfully explicates analogue models, which often connect to 
their target via a shared formalism.5 The Semantic View offers a cogent analysis of what 
happens in certain areas of fundamental physics, most notably in theories of space and 
time.6 However, there are many cases, and indeed entire areas of science, where the relation 
between models and theories fits neither the mould of the Syntactic View nor that of the 
Semantic View. The plan for the remainder of this chapter is to discuss cases of this kind.

3. Models without theory

There are models that are independent of any theory. An often‑discussed example of such 
a model is the so‑called Lotka–Volterra model.7 Volterra’s version of the model is about the 
fish population in the Adriatic Sea. Volterra conceptualised the problem as a population‑ 
level phenomenon with a population of predators interacting with a population of prey. 
The populations are described solely in terms of their sizes, and no biological facts about 
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the animals that constitute the populations are taken into account (beyond the  obvious tru‑
ism that predators eat prey and not vice versa). Let N1 be the number of prey and N2 the 
number of predators. Volterra then asked how these numbers change over time. The change 
in these numbers is due to intrinsic births and deaths in both populations, as well as to the 
interaction between the two. The general form of the interaction can therefore be expressed 
as follows (Kingsland 1985, 109–100):

N N
N

N N
N

Change in per unit of time Natural increase in per unit of time
minus decrease in per unit of time due to
destruction of prey by predators

Change in per unit of time Increase in per unit of time due to ingestion of
prey by predators minus decrease of
due to deaths of predators per unit of time.

1 1

1

2 2

2

=

=

These “verbal equalities” can be turned into proper mathematical equations by replacing 
the natural numbers N1 and N2 by the continuous quantities V (for the quantity of prey) 
and P (for the quantity of predators) and by choosing specific functions for the population 
growth and the interactions between the populations. The simplest choice is to assume that 
each population grows linearly and that the interaction between the populations (predators 
eating prey and growing as result) is proportional to the product of the two densities. In‑
putting these formal choices into the above equalities leads to the so‑called Lotka–Volterra 
equations (Weisberg and Reisman 2008, 111):





V rV aV P
P b aV P mP

( )
( ) ,

= −
= −

 (2.1)

where r is the birth rate of the prey population; m is the death rate of the predator popula‑
tion; and a and b are linear response parameters. The dots on V and P indicate the first 
derivative with respect to time. Intuitively, V  is the rate of change of V  and ditto for P.

Even though Volterra notes that Darwin had made an observation similar to his own 
(1926, 559), neither Darwinian evolutionary theory nor any other biological theory is at 
work in the model. Indeed, the model has been constructed without a theoretical frame‑
work, and it does not instantiate theoretical principles. As a result, the model is independ‑
ent of theory.

The Lotka–Volterra model is not an isolated instance. The Schelling model of social 
segregation (Schelling 1978), the Fibonacci model of population growth (Bacaër 2011, 
chap. 1), the logistic model of population growth (May 1976), the Akerlof model of the 
market for used cars (Akerlof 1970), and complexity models for the behaviour of sand piles 
(Bak 1997) are “theory‑free” in the same way. Models of this kind are sometimes charac‑
terised as bottom‑up models. A model is bottom‑up if the process of model construction 
departs from the basic features of the target and from what we know about the unfolding 
of events in the domain of interest, while not relying on general theories. Bottom‑up models 
contrast with top‑down models. A model is top‑down if the process of model construction 
starts with a theoretical framework, and the model is built by working the way down from 
the theory to the phenomena. The Newtonian model of planetary motion is an example of a 
top‑down model. The process of model construction starts with Newton’s general equation 
of motion and the law of gravity, and then various steps are made to apply these general 
principles to the phenomenon of interest, namely the movement of planets.
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A special case of models that are independent of theories are models that are built with 
the express aim of aiding the construction of theories. Leplin emphasises the importance of 
models in the construction of theories and calls models that are constructed with this pur‑
pose in mind developmental models (1980, 274). A developmental model “opens several 
lines of research toward the development” of a theory (278). The importance of models 
in the development of theories has also been emphasised by other authors. Cushing notes 
that “[a]n important tool in this process of theory construction is the use of models” (1982, 
32), and he illustrates this with a detailed case study from high‑energy physics. Hartmann 
observes that “[a]s a major tool for theory construction, scientists use models” (1995, 49), 
and he illustrates this with how quantum chromodynamics, the fundamental theory of 
strong interactions, has been constructed “by means of a hierarchy of consecutive Develop‑
mental Models” (59). Wimsatt, finally, sees “false models as a means to truer theories” and 
discusses their construction in the context of evolutionary biology (Wimsatt 2007, chap. 6).

4. Models as a means to explore theories

Models can also be used to explore the features of theories. A case in point is the study of 
non‑linear dynamics. For a long time, it was thought that Newtonian mechanics was dy‑
namically stable, meaning that a small variation in the initial condition of the system would 
result in a small variation in the trajectory of the system. This belief was shattered at the be‑
ginning of the 20th century when Poincaré discovered that Newtonian systems can display 
what is now known as sensitive dependence on initial conditions, which is often taken to be 
the defining feature of chaos.8 This raises the question of how the dynamic of such systems 
looks like. Unfortunately, one cannot simply write down the solutions of the equations of 
motion of such systems and study their properties; and even if one could write down the 
solutions, they would be objects in high‑dimensional mathematical spaces that are hard to 
trace and impossible to visualise. Thus, other means to understand the behaviour of such 
systems must be found, and models play a crucial role in this.

Abstract considerations about the qualitative behaviour of solutions in chaotic systems 
show that there is a mechanism that has been dubbed stretching and folding. Nearby initial 
conditions drift away from each other, which amounts to stretching the area where they lie. 
The motion of chaotic systems is such that the system’s movement is confined to a restricted 
part of the state space. This means that the stretching cannot continue forever, and the 
stretched bits must be folded back onto each other. In practice, it is impossible to trace this 
stretching and folding in the full state space of a system. To obtain an idea of the complex‑
ity of the dynamic exhibiting stretching and folding, Smale proposed to study a model of 
the flow. The model is a simple two‑dimensional map, now known as the horseshoe map 
(Tabor 1989, 200–202), which is illustrated in Figure 2.1.

Figure 2.1  The horseshoe map. The dots indicate that the strip is longer than can be shown in the 
figure.
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The map begins by stretching a rectangle horizontally while squeezing it vertically, which 
turns the rectangle into a strip; it then folds the strip back onto the initial square. The map 
is designed to “mimic” the stretching and folding motion of the full Newtonian dynamic, 
but without having any of its mathematical complexities. In this way, the horseshoe map 
provides a model of an important aspect of the full dynamic of Newtonian theory. The 
horseshoe map has a number of interesting and important features (Ott 1993, 108–114). 
An invariant set is a set of states that does not change under the dynamic of a model – it 
is as if the set was not “affected” by the changes that the dynamic brings with it. One can 
show that the so‑called Cantor set is an invariant set of the horseshoe. This is interesting 
because the Cantor set is a fractal, and so we learn from the model that chaotic dynamical 
systems can have invariant sets that are fractals. In this way, the simple model of the horse‑
shoe provides a crucial insight into the properties of the theory. The horseshoe is no isolated 
instance: chaos theory is rife with maps that model certain aspects of the full dynamic and 
thereby shed light on the nature of the theory itself.9

Chaos theory is no exception, and models are used in many contexts to explore the 
properties of theories. In statistical mechanics, the Kac ring model is used to study the equi‑
librium properties of the full theory (Jebeile 2020; Lavis 2008). In quantum field theory, 
the ϕ 4 model is used to explore theoretical properties like symmetry breaking and renor‑
malisability (Hartmann 1995). The Phillips–Newlyn machine, a material model, is used to 
explore the properties of Hicks’ formalisation of Keynes’ theory (Barr 2000; Morgan and 
Boumans 2004). And the dome model is used to understand causality and determinism in 
Newtonian mechanics (Norton 2008).

5. Models complementing theories

Theories can be incompletely specified. Models can then step in and add what is missing. 
The model and the theory thereby enter into a symbiotic relationship in which a model 
complements the theory. The nature of this “completion” depends on the specifics of the 
case. Redhead (1980, 147) mentions the case of axiomatic quantum field theory. The the‑
ory is an attempt to offer a mathematically rigorous formulation of quantised fields. In 
its most common formulation, the theory is based on the so‑called Wightman axioms. 
Roughly, the axioms say things like that fields must be invariant under the transformations 
of Einstein’s theory of special relativity and that fields can be expressed as sums of opera‑
tors acting on the vacuum state.10 This means that the theory’s axioms only impose certain 
general constraints on fields, and the specifics of particular fields and their interactions are 
given by models. In doing so, the model provides missing details and enriches the theory. 
This is not an easy task because it turns out that identifying models that satisfy the axioms 
of the theory is rather difficult.

Another way in which a theory can be incompletely specified is identified by Apostel 
when he notes that there are cases where “a qualitative theory is known for a field and the 
model introduces quantitative precision” (1961, 2). As an example, consider the so‑called 
quantity theory of money in monetary economics.11 The “quantity theory” is purely quali‑
tative and essentially says that the price of goods in an economy is determined by the 
amount of money in circulation. This law leaves open what the price levels are and how 
they vary as a function of money supply. To answer these quantitative questions, Fisher 
constructed a model that is now known as Fisher’s equation of exchange. The model con‑
siders an economy that can be characterised by four quantities: the amount M of money 
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in circulation, the transaction velocity V of money, the level of prices P, and the volume 
of trade Y. All these are variables with precise numerical values that can, in principle, be 
measured empirically. The equation of exchange is MV PY= . If velocity and volume are 
constant, the equation says that P cM= , where c is a constant. So if the amount of money 
increases by M∆ , then prices go up by c M∆ . In this way, Fisher’s model gives quantitative 
specificity to the qualitative law of the theory.

Harré (2004) noted that models can complement theories by providing mechanisms for 
processes left unspecified in the theory but that are nevertheless responsible for bringing 
about the observed phenomena (2004, chap. 1). In some cases, the model mechanism is 
known; in other cases, it is hypothesised. The notion of a mechanism is broad, and Harré 
emphasised that it is not restricted to “anything specifically mechanical”: a “[c]lockwork 
is a mechanism, Faraday’s strained space is a mechanism, electron quantum jumps is a 
mechanism, and so on” (2004, 4).

Models can also step in when theories are too complex to handle. This can happen, for 
instance, when the equations of the theory are mathematically intractable. In such cases, 
one can find a model that approximates the theory. As Redhead noted, this can be done 
in two ways (1980, 150–152): either one finds approximate solutions to exact equations 
or one finds an approximate equation that one can solve exactly. If one finds either an ap‑
proximate solution or an approximate equation, these can be seen as approximate models 
of the theory. However, models can also step in when the relation between the model 
and the theory is not a clearly defined mathematical approximation. Hartmann (1999) 
discusses the case of quark confinement in elementary particle physics. The nucleus of 
atoms is made up of nucleons: protons and neutrons. Nucleons themselves are made up of 
quarks. How do quarks interact to form a stable nucleon? The general theory covering the 
behaviour of quarks is quantum chromodynamics. Unfortunately, the theory is too com‑
plicated to apply to protons. Computer simulations suggest that at low energies so‑called 
quark confinement occurs, and quarks come together to form nucleons. This, however, 
leaves the nature of this confinement unexplained and poorly understood, with a number 
of different kinds of confinement possible and the theory unable to adjudicate between 
them. To fill in this gap, physicists constructed a phenomenological model, now known as 
the MIT bag model, which takes the main known features of the theory into account and 
fills the missing details with postulated configurations. According to the model, nucleons 
consist of three massive quarks that move freely in a rigid sphere of radius R, where the 
sphere guarantees that the quarks remain confined within the nucleon. This assumption 
is motivated by the basic theory, but it does not deductively follow from it. The model 
then allows for the calculation of the radius R and the total energy of the particle. In this 
way, the model yields results where the theory is silent, and it fills a gap that the theory 
leaves open.

6. Applying theories through models

Cartwright argues that models not only aid the application of theories that are somehow 
incomplete; she submits that models are always involved when a theory with an overarch‑
ing mathematical structure is applied to a target system. The main theories in physics fall 
into this category: classical mechanics, quantum mechanics, electrodynamics, and so on. 
In fact, applying such theories involves two kinds of models: interpretative models and 
representative models.
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Let us begin with interpretative models. Overarching mathematical theories like classical 
mechanics appear to provide general descriptions of a wide range of objects that fall within 
their scope. However, on closer inspection, it turns out that these theories do not apply to 
the world directly. The reason for this is that they employ abstract terms, i.e. terms that 
apply to a target system only if a description couched in more concrete terms also applies 
to the target. Cartwright offers the following two conditions for a concept to be abstract 
relative to another concept:

First, a concept that is abstract relative to another more concrete set of descriptions 
never applies unless one of the more concrete descriptions also applies. These are the 
descriptions that can be used to “fit out” the abstract description on any given occa‑
sion. Second, satisfying the associated concrete description that applies on a particu‑
lar occasion is what satisfying the abstract description consists in on that occasion.

(1999b, 39)

She offers the example of work. Having responded to an email, having revised a section of 
a paper, and having attended a meeting is what my having done work this morning consists 
in. If I tell a friend over lunch what I have done and he responds, “well, you’ve responded 
to an email, revised a section, and attended a meeting, but when did you work?”, he either 
does not understand the concept of work or, more likely, is joking with me.

Cartwright submits that important concepts that appear in mathematised theories are 
abstract in the same way as work. The concept of force, for instance, is abstract in that it 
applies only if a more concrete concept also applies. There is no such thing as “nothing but 
a force” acting on a body. There being a force between two bodies on a particular occa‑
sion consists in them gravitationally attracting each other, or electrostatically repelling each 
other, or … These more concrete claims fit out the abstract claim of there being a force. 
Force, therefore, is an abstract property and “Newton’s law tells that whatever has this 
property has another, namely having a mass and an acceleration which, when multiplied 
together, give the […] numerical value, F” (1999b, 43). Force, therefore, has no independ‑
ent existence; it exists only in its more specific forms like gravity, electrostatics, and so on. 
Specifying what concrete claims fit out abstract claims amounts to specifying an interpreta‑
tive model. An interpretative model then consists of the “actors” that fit out the abstract 
claims of the theory.

Let us now turn to representative models. Cartwright regards representative models as 
ones that are built to “represent real arrangements and affairs that take place in the world” 
(1999b, 180). These models have two crucial features. The first is that they are highly ide‑
alised. Constructing a representative model involves twisting and distorting the properties 
of the target in many ways and the result of this process is in no way a mirror image of the 
target. Indeed, Cartwright notes that “it is not essential that the models accurately describe 
everything that actually happens; and in general it will not be possible for them to do so” 
(1983, 140). Second, all these distortions notwithstanding, the model still is a representa‑
tion of the target, albeit one that is inaccurate in certain respects. The principles of the 
theory therefore apply to “highly fictionalized objects” (1983, 136) in the representational 
model. So, one has to distort reality to force it into the corset of the theory: “our prepared 
descriptions lie” because “in general we will have to distort the true picture of what hap‑
pens if we want to fit it into the highly constrained structures of our mathematical theories” 
(139). Without these distortions, the theory would be inapplicable.
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We are now in a position to see how the two notions of an interpretative model and a 
representational model work together in the application of a theory to a real‑world target. 
To apply a theory, scientists must construct a model. This model must be such that it is, at 
once, an interpretative model of the general theory at hand (which means that it is couched 
in terms of concepts that fit out the abstract concepts of the theory) and a representative 
model of the target system (which means that it stands in a certain representational relation 
to the target).

7. Models as mediators

The relation between models and theories can be even looser than in the cases we have 
discussed so far. The contributors to a programmatic collection of essays edited by Mor‑
gan and Morrison (1999b) rally around the idea of “models as mediators”, and so it is 
apt to call the vision of modelling that emerges from this project the Models as Mediators 
View. This view sees models as instruments that mediate between theories and the world 
while remaining independent from both. Models are, therefore, as Morgan and Morrison 
put it, “autonomous agents” (1999a, 10). The autonomy of models has four dimensions: 
construction, functioning, representing, and learning (10–12). Let us look at each of these 
in turn.

The first and most important dimension is independence in construction. Morgan and 
Morrison observe that “model construction is carried out in a way which is to a large extent 
independent of theory” (1999a, 13), and Morrison locates models as being “between phys‑
ics and the physical world” (1998, 65). This is because “theory does not provide us with 
an algorithm from which the model is constructed and by which all modelling decisions 
are determined” (Morgan and Morrison 1999a, 16). In her contribution to the collection, 
Cartwright portrays the Semantic View of theories as a “vending machine” view of model 
construction:

The theory is a vending machine: you feed it input in certain prescribed forms for the 
desired output; it gurgitates for a while; then it drops out the sought‑for representa‑
tion, plonk, on the tray, fully formed, as Athena from the brain of Zeus. This image 
of the relation of theory to the models we use to represent the world is hard to fit with 
what we know of how science works. Producing a model of a new phenomenon such 
as superconductivity is an incredibly difficult and creative activity.

(1999b, 247)

According to Cartwright, the “vending machine view” of theories is wrong on at least two 
counts. First, it erroneously assumes that all ingredients that are needed for the construction 
of a model are already contained in the theory. As we have seen in the previous section, 
she sees representative models as an essential ingredient for the application of a theory. 
The construction of such a model requires resources that go beyond what theories can of‑
fer. Discussing quantum models of superconductivity, Cartwright notes that theories leave 
out much of what is needed to produce a model capable of generating an empirical predic‑
tion. While theories contain general principles, they contain no information either about 
the real materials from which a superconductor is built or about the various approxima‑
tion schemes and the mathematical techniques needed to handle them. Second, the view is 
wrong in assuming that models embody only one theory. The internal setup of a model is 
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often a complicated conglomerate of elements from different theories. Cartwright illustrates 
this point with the Ginzburg–Landau model of superconductivity (1999a, 244–245), but 
the point also holds about other models like the classical London model of superconductiv‑
ity (Suárez 1999) and models of business cycles (Boumans 1999). The same is also true of 
contemporary climate models which incorporate elements from different theories, includ‑
ing mechanics, fluid dynamics, electrodynamics, quantum theory, chemistry, and biology 
(Frigg, Thompson, and Werndl 2015). Models of this kind do not belong to a family of 
models that form a theory in anything like the way that the Semantic View posits; in fact, 
they do not belong to any particular theoretical framework at all.

The second dimension of autonomy is functioning: models can perform many functions 
without relying on theories. One of these functions is to aid theory construction (Morgan 
and Morrison 1999a, 18). As we have seen previously, models can play a role in theory 
construction (Section 3) and in exploring theories (Section 4), which they can do only if 
they are autonomous from theories. Models also serve as a means for policy intervention 
(Morgan and Morrison 1999a, 24). Central banks use economic models to inform mon‑
etary policy decisions, for instance, whether to change the base rate, and models can do this 
independently from theory.

Representation is the third dimension of autonomy. Morgan and Morrison point out 
that the “critical difference between a simple tool and a tool of investigation is that the lat‑
ter involves some form of representation: models typically represent either some aspect of 
the world, or some aspect of our theories about the world, or both at once” (1999a, 11). 
They emphasise that representing does not presuppose that there is “a kind of mirroring of 
a phenomenon, system or theory by a model” because representing is in no way tantamount 
to producing a copy, or effigy, of the target.12

The final dimension of autonomy is learning. Morgan and Morrison point out that we 
learn from models and argue that this happens in two places: in building the model and in 
manipulating it (1999a, 11–12). As we have seen earlier in this section, there are no general 
rules or algorithms for model building and hence insights gained into what fits together and 
how during the process of construction are invaluable sources for learning about the model 
(30–31). The second place to learn about the model is when we manipulate it. Morgan 
(1999) notes that Fisher did not find out about the properties of his monetary models by 
contemplating them, but by manipulating them to show how the various parts of the model 
work together to produce certain results.

8. Separating models from theories

So far, we worked under the assumption that models and theories are clearly distinct, and 
we focussed on the relation between them. In practice, this is not always a realistic assump‑
tion. In fact, in some cases it is not clear where the line between them should be drawn, and 
whether something is a model or a theory. An example is Bohr’s account of the atom, which 
is sometimes referred to as the “Bohr model” and sometimes as the “Bohr theory” of the 
atom. This problem not only besets philosophical analysis; it also arises in scientific practice. 
Bailer‑Jones interviewed a group of nine physicists about their understanding of models and 
their relation to theories. She reports that the following views were expressed (2002, 293):

1 There is no real difference between model and theory.
2 Models turn into theories once they are better and better confirmed.



Theories and models

37

3 Models contain necessary simplifications and deliberate omissions, while theories are the 
best we can do in terms of accuracy.

4 Theories are more general than models. Modelling becomes a case of applying general 
theories to specific cases.

The first suggestion is too radical to do justice to many aspects of practice, where a dis‑
tinction between models and theories is clearly made. The second view is encapsulated in 
phrases like “it’s just a model”, which indicate either that scientists take a cautious attitude 
towards a certain proposition that they regard as speculative or provisional, or that some‑
thing is known to be false and entertained only for heuristic purposes. But, models and 
theories are not distinguished by their degree of confirmation. There can be well‑confirmed 
models and unconfirmed theories. The third proposal is up to something, but it ultimately 
does not hold water. It is true that models involve idealisations and omissions of all kinds, 
but so do theories. Newtonian mechanics, for instance, deals with point masses that move 
in a Euclidean space, and it omits most properties of the objects in its target domain (it 
omits, for instance, colour, temperature, and chemical constitution of its targets) but that 
does not seem to strip Newtonian mechanics of its status as a theory.

The fourth suggestion is closely aligned with a view that has emerged in the literature on 
models. In the wake of the debates we have reviewed in this chapter, models have become 
the focal point of attention and the emphasis has shifted so far away from theories that 
Morrison detects the need for a “redress of the imbalance” (2007, 195). She asks “where 
have all the theories gone” and then sets out to articulate how theories are different from 
models. Morrison points out that models contain a great deal of “excess” structure like 
approximation methods, mathematical techniques, and highly stylised descriptions of cer‑
tain parts of the target, and she notes that one would not want to count these as part of a 
theory (197). This can be avoided if “theory” is reserved for a “theoretical core”, which 
contains the constitutive assumptions of the theory. In the case of Newtonian mechanics, 
the core consists of the three laws of motion and the law of universal gravitation (197), 
in the case of classical electrodynamics of Maxwell’s equations, in the case of relativistic 
quantum mechanics of the Dirac equation (205), and in the case of quantum mechanics of 
the Schrödinger equation (214). The core of a theory constrains the behaviour of objects 
that fall within the scope of the theory, and it plays a crucial role in the construction of 
models. Models concretise the abstract laws of the theory and put them to use by adding 
elements that are specific to the situation. In this way, theories assist the construction of 
models without determining the way in which they are built. Models are specific in that 
they are adapted to a particular situation and a particular problem, while the theories on 
which they are based contain the general principles of wide scope.

The problem with the “theoretical core” view of theories as presented by Morrison is 
that the notion of a theoretical core is introduced through examples – Newton’s laws of mo‑
tion, Maxwell’s equations, and so on – and is then not further analysed. Morrison seems to 
regard this as an advantage when she observes that “nothing about this way of identifying 
theories requires that they be formalized or axiomatized” (2007, 205). However, this prag‑
matism must seem unsatisfactory to those who have contributed to the development of the 
two grand views of theories and who will feel that we have now come full circle. Neither the 
Syntactic View nor the Semantic View would disagree that what makes a theory a theory is 
a theoretical core. The question they are concerned with is how this notion can be analysed 
and what kind of objects theoretical principles are. This question is left open.
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9. Conclusion

We have discussed a number of different relationships between models and theories that 
can be found in the practice of science. These range from complete independence to total 
dependence, and many things in between. Many of these cases do not seem to sit well either 
with the Syntactic View or with the Semantic View, and they show that there is nothing like 
“the” relation between models and theories.

Notes

 1 Sections 3–8 of this chapter are based on Chapter 13 of my (2023).
 2 I note that the label “Syntactic View” is a misnomer because it gives the mistaken impression that 

the view only deals with the syntax of theories. Some readers may object to calling the Syntactic 
View an orthodoxy because it has been superseded by the Semantic View long ago. This narrative 
has become untenable in the last decade, when the Syntactic View had a veritable revival. For a 
discussion, see, for instance, Halvorson (2016).

 3 The exact form of correspondence rules has been the subject matter of extensive debates. For a 
survey, see, for instance, Percival (2000).

 4 For a detailed discussion of the problems faced by both the Syntactic View and the Semantic View, 
see Chapters 1–8 of my (2023) and references therein.

 5 The locus classicus for a discussion of analogies is Hesse (1963). For further discussions of analo‑
gies and analogical models, see Chapter 10 of my (2023) and references therein.

 6 For a discussion, see, for instance, Friedman (1983).
 7 The model was formulated by Lotka (1925) and Volterra (1926). Kingsland (1985, chap. 5) gives 

a historical account of the development of the model. For philosophical discussions, see, for in‑
stance, Knuuttila and Loettgers (2017) and Weisberg and Reisman (2008).

 8 For basic introductions to chaos and discussions of its philosophical ramifications, see Kellert 
(1993) and Smith (1998). Argyris, Faust and Haase (1994) and Tabor (1989) offer advanced discus‑
sions. Parker (1998) discusses the question of whether it was really Poincaré who discovered chaos.

 9 For instance, the dynamics of KAM type systems near a hyperbolic fixed point can be modelled by 
the baker’s transformation. For a discussion, see Berkovitz, Frigg, and Kronz (2006, 680–687).

 10 For a discussion of quantum field theory, see, for instance, Ruetsche (2011).
 11 Apostel does not provide an example. I am grateful to Julian Reiss for suggesting the quantity 

theory of money to me. For a discussion of the theory, see Humphrey (1974).
 12 For a discussion of how models represent their targets, see Frigg and Nguyen (2020) and Nguyen 

and Frigg (2022).
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