1	Availability and Coverage of New Drugs in 6 High-Income Countries with Health
2	Technology Assessment Bodies
3	
4	
5	Olivier J. Wouters, PhD ¹ ; Huseyin Naci, PhD ¹ ; Irene Papanicolas, PhD ^{1,2*}
6	
7	¹ Department of Health Policy, London School of Economics and Political Science,
8	London, United Kingdom
9	² Department of Health Services, Policy and Practice, Brown School of Public Health,
10	Providence, Rhode Island
11	
12	
14	Oliviar I Woutara DhD
14 15	Assistant Professor of Health Policy
15	O I Wouters@lso.ac.uk
17	<u>O.J.Woulers@ise.ac.uk</u>
18	Husevin Naci PhD
19	Associate Professor of Health Policy
20	H.Naci@lse.ac.uk
21	
22	Irene Papanicolas, PhD
23	Professor of Health Services, Policy and Practice
24	Brown School of Public Health
25	121 South Main Street
26	Providence, Rhode Island 02903, USA
27	Irene Papanicolas@brown.edu
28	*Corresponding author
29	
30	

31 Word Count: 598 words

Most rich countries, with the US a notable exception, rely on health technology assessment (HTA) to ensure the prices paid for new medicines reflect the value they provide.^{1,2} HTA bodies assess the relative clinical or economic impact of new drugs to guide pricing and coverage decisions. These assessments usually occur after marketing authorization by a medicines regulatory body (e.g., European Medicines Agency), and patients may have little or no access to therapies that are not assessed favorably by HTA bodies.

38

As Medicare considers using comparative effectiveness data to negotiate drug prices,
examining HTA decisions abroad can inform US policymakers about how HTA affects the
availability and coverage of new medicines.³ We analyzed HTA outcomes and review times
in 6 countries (Australia, Canada, England, France, Germany, and Switzerland) for all novel
therapeutic agents approved by the US Food and Drug Administration (FDA) from 2014 to
2018.

45

46 **METHODS**

47

We identified all new drugs approved by the FDA from 2014 to 2018 using the Drugs@FDA
database. We classified drugs according to orphan status, therapeutic area (oncology vs
non-oncology), therapeutic value (high vs. low), and inclusion in the FDA accelerated
approval pathway. High-value drugs were those judged to provide moderate or greater
added therapeutic benefit by authorities in Canada, France, or Germany; all other drugs
were categorized as low-value (eTable 1).^{4,5}

54

55	We determined whether and when the FDA-approved products were authorized by each
56	medicines regulatory body. For drugs reviewed by HTA bodies, we recorded the HTA
57	recommendation, date of first submission, and date of decision through August 2022
58	(eTable 2). Recommendations to cover a product in full (i.e., within its licensed indication)
59	or for a subgroup of patients (i.e., restricted coverage) were classified as positive.
60	
61	For each country, we reported the percentage of drugs that received positive HTA decisions
62	and median duration of HTA reviews. Kruskal-Wallis tests were used to examine whether
63	differences in durations across countries were statistically significant.
64	
65	RESULTS
66	
67	The US FDA authorized 213 new drugs from 2014 to 2018 (Table 1). Foreign regulators
68	authorized between 63% (134/213; Australia) and 82% (174/213; England, France, and
69	Germany) of these products. Of the drugs authorized in each country, between 63%
70	(109/174; Germany) and 96% (129/134; Australia) were reviewed by HTA bodies. Most
71	drugs reviewed by HTA bodies were assessed favorably, ranging from 84% (98/116;
72	England) to 95% (104/109; Switzerland) (Figure 1). Over 90% of high-value drugs were
73	assessed favorably in all countries.
74	
75	HTA review times ranged from a median of 5.6 months in Germany to 10.8 months in
76	England (Figure 1 ; no times were available for Australia or Switzerland). For most drug
77	categories, there were statistically significant differences between countries in HTA review

times, with Canada and Germany always having the shortest median times and Englandand France the longest (Figure 1).

80

81 **DISCUSSION**

82

Foreign regulators authorized fewer drugs than the FDA, but most authorized drugs were 83 84 assessed favorably by national HTA bodies. This suggests that HTA does not have a meaningful negative impact on drug availability, especially for those products that are 85 86 judged to offer added therapeutic benefits over existing alternatives. We found variability in the duration of HTA, ranging from a median of 6 to 11 months, likely reflecting different 87 HTA designs and procedures across countries. 88 89 Our study was limited in that we did not distinguish between HTA recommendations to 90 91 cover a product in full or with restrictions, and some of the FDA-approved drugs may not 92 have been reviewed by foreign authorities by August 2022. Our results support further use

of HTA as a mechanism for determining the value of new drugs, without considerably

94 delaying or limiting access to new drugs.

95	Acknowledgements: We thank Tania Sawaya and Jinru Wei (both Brown University, USA)
96	and Cyprien Denolle, Long Hei Fong, Johannes Kenner, and Kate Seddon (all from the
97	London School of Economics and Political Science, UK) for their research assistance. Ms
98	Sawaya, Mr Wei, Mr Denolle, Mr Fong, Mr Kenner, and Dr Seddon were compensated for
99	their contributions. We also thank Philip Haywood (Organisation for Economic Co-
100	operation and Development, France) and Kerstin Vokinger (University of Zurich,
101	Switzerland) for providing guidance on extracting data from national regulatory bodies. Dr
102	Haywood and Dr Vokinger received no additional compensation, outside of their usual
103	salaries, for their contributions.
104	
105	Funding/Support: This work was funded by the Commonwealth Fund, grant number
106	20223645.
107	
108	Role of the Funder/Sponsor: The funder/sponsor had no role in the design and conduct
109	of the study; collection, management, analysis, and interpretation of the data; preparation,
110	review, or approval of the manuscript; and decision to submit the manuscript for
111	publication.
112	
113	Conflict of Interest Disclosures: Dr Wouters reported grants from the Commonwealth
114	Fund and personal fees from the World Health Organization outside the submitted work.
115	Dr Naci reported grants from the Commonwealth Fund, Health Foundation, National
116	Institute for Health and Care Research, and UK Research and Innovation, as well as
117	personal fees from the World Health Organization, Pharmaceutical Group of the European

- 118 Union, and The BMJ, all outside the submitted work. Dr Papanicolas reported grants from
- 119 the Commonwealth Fund and Health Foundation and personal fees from the World Health
- 120 Organization and the National Academies of Science, Engineering and Medicine outside the
- 121 submitted work.

122 **REFERENCES**

- 123
- 124 1. Jenei, K. *et al.* Health technology assessment for cancer medicines across the G7
- 125 countries and Oceania: an international, cross-sectional study. *Lancet Oncol.* 24, 624–
- 126
 635 (2023).
- 127 2. Emanuel, E. J. *et al.* Drug Reimbursement Regulation in 6 Peer Countries. *JAMA Intern.*
- 128 *Med.* **180**, 1510–1517 (2020).
- 129 3. Hwang, T. J., Kesselheim, A. S. & Rome, B. N. New Reforms to Prescription Drug Pricing in
- the US: Opportunities and Challenges. *JAMA* **328**, 1041–1042 (2022).
- 131 4. Vokinger, K. N., Kesselheim, A. S., Glaus, C. E. G. & Hwang, T. J. Therapeutic Value of Drugs
- 132 Granted Accelerated Approval or Conditional Marketing Authorization in the US and
- 133 Europe From 2007 to 2021. *JAMA Health Forum* **3**, e222685 (2022).
- 134 5. Egilman, A. C., Rome, B. N. & Kesselheim, A. S. Added Therapeutic Benefit of Top-Selling
- 135 Brand-name Drugs in Medicare. *JAMA* **329**, 1283–1289 (2023).

136

TABLES AND FIGURES

Table 1. Characteristics of the 213 novel therapeutics approved by the US Food and Drug Administration from 2014 to 2018.

Characteristics	No. (%)
Therapeutic area	
Cancer	51 (24)
Non-cancer	162 (76)
Orphan status	
Orphan	98 (46)
Non-orphan	115 (54)
Added therapeutic value	
High	54 (25)
Low	159 (75)
Approval pathway	
Accelerated	30 (14)
Non-accelerated	183 (86)
Year of approval	
2014	41 (19)
2015	45 (21)
2016	22 (10)
2017	46 (22)
2018	59 (28)
Approved by national regulator	
Australia	134 (63)
Canada	152 (71)
England	174 (82)
France	174 (82)
Germany	174 (82)
Switzerland	144 (68)

Figure 1. Outcome and duration of health technology assessments, by country.

	% drugs	% drugs HTA review time ^b		
	for coverage ^a	Median (months)		P Value
All drugs		(< 0.001
Australia	91% (117 / 129)			
Canada	85% (105 / 124)	6.5	-	
France	90% (123 / 136)	7.5	_ •	
Germany	94% (127 / 135)	5.6	•	
Switzerland	95% (104 / 109)			
England	84% (98 / 116)	10.8		
Therapeutic area				
Cancer				< 0.001
Australia	86% (36 / 42)	< -		
Canada	84% (36 / 43)	6.7	-	
France	90% (37 / 41)	7.3	_	
Germany	98% (45 / 46)	5.6	•	
Switzerland	100% (36 / 36)			
England	84% (37 / 44)	10.8	•	
Non-cancer	020((01 (07)			< 0.001
Australia	93% (81 / 87)	65		
Canada	84% (68 / 81)	6.5	•-	
France	91% (86 / 95)	8.0	•	
Germany	92% (82 / 89)	5.6	•	
Switzerland	93% (68 / 73)			
England	85% (61 / 72)	10.9	_	
Orphan status				
Orphan				< 0.001
Australia	84% (49 / 58)			
Canada	84% (51 / 61)	6.9	-•-	
France	91% (59 / 65)	7.5	_ •	
Germany	96% (65 / 68)	5.6	•	
Switzerland	98% (44 / 45)			
England	80% (47 / 59)	11.8	•	
Non-orphan		11.0		<0.001
	069/ (68 / 71)			~0.001
Australia	90% (08771)		_	
Canada	84% (53 / 63)	0.5	• -	
France	90% (64 / 71)	7.5	_ -	
Germany	93% (62 / 67)	5.6	•	
Switzerland	94% (60 / 64)			
England	89% (51 / 57)	9.6	-•	
			5 10 15 Months	

Therapeutic value				
High				< 0.001
Australia	91% (41 / 45)			
Canada	93% (43 / 46)	6.6	+ -	
France	96% (44 / 46)	6.7		
Germany	94% (46 / 49)	5.6	•	
Switzerland	95% (38 / 40)			
England	91% (41 / 45)	11.2	•	
Low				< 0.001
Australia	90% (76 / 84)			
Canada	78% (61 / 78)	6.5	-	
France	88% (79 / 90)	8.0		
Germany	94% (81 / 86)	5.6	•	
Switzerland	96% (66 / 69)			
England	80% (57 / 71)	10.8		
Approval pathway				
Accelerated				< 0.001
Australia	91% (20 / 22)			
Canada	90% (19 / 21)	7.0		
France	83% (20 / 24)	7.5	_	
Germany	96% (23 / 24)	5.6	•	
Switzerland	100% (20 / 20)			
England	92% (22 / 24)	10.8		
Non-accelerated				< 0.001
Australia	91% (97 / 107)			
Canada	83% (85 / 103)	6.5	+ -	
France	92% (103 / 112)	7.5	_	
Germany	94% (104 / 111)	5.6	•	
Switzerland	94% (84 / 89)			
England	83% (76 / 92)	10.8	•	
			5 10 15 Months	

HTA indicates health technology assessment.

^a Denominators do not correspond to the total number of drugs authorized in each country, since not all drugs were reviewed by health technology assessment bodies.

^b Median review times were based on data for drugs assessed favorably by health technology assessment bodies; review times were virtually unchanged when calculated based on data for drugs assessed both favorably and unfavorably (using time until positive decision for drugs assessed favorably, and time until last negative decision for drugs assessed unfavorably). No data on HTA review times were available for Australia or Switzerland.