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ON THE CONSTRUCTION OF CONDITIONAL PROBABILITY

DENSITIES IN THE BROWNIAN AND COMPOUND POISSON

FILTRATIONS

Pavel V. Gapeev1,* and Monique Jeanblanc2

Abstract. In this paper, we construct supermartingales valued in [0, 1] as solutions of an appropriate
stochastic differential equation on a given reference filtration generated by either a Brownian motion
or a compound Poisson process. Then, by means of the results contained in [M. Jeanblanc and S. Song,
Stochastic Processes Appl. 121 (2011) 1389–1410], it is possible to construct an associated random time
on some extended probability space admitting such a given supermartingale as conditional survival
process and we shall check that this construction (with a particular choice of supermartingale) implies
that Jacod’s equivalence hypothesis, that is, the existence of a family of strictly positive conditional
probability densities for the random times with respect to the reference filtration, is satisfied. We use
the components of the multiplicative decomposition of the constructed supermartingales to provide
explicit expressions for the conditional probability densities of the random times on the Brownian and
compound Poisson filtrations.
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1. Introduction

In the models of quickest change-point (disorder) detection, one usually starts with the probability space
enhanced with a random time and another source of randomness such as a Brownian motion or a compound
Poisson process. The quickest detection problems seek to determine stopping times at which the alarms should
be sounded to indicate changes in the probabilistic characteristics of continuously observable stochastic pro-
cesses. These detection times of alarms are sought to be as close as possible to the unknown and unobservable
random times of change in either the drift rate of the observable Brownian motion or the intensity and the
jump distribution of the observable compound Poisson process. In order to solve the problems, the appropriate
stochastic differential equations are derived for the (supermartingale) survival conditional probability processes
of the random times or the equivalent (submartingale) posterior probability process on the given Brownian or
compound Poisson reference filtrations. These processes play the role of sufficient statistics in the appropriate
quickest detection problems with rewards containing a linear combination of the false alarm probabilities and
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the expected linear delay penalties. More precisely, the optimal detection times in these problems represent
the first hitting times by either the survival conditional probability or the posterior probability processes of
certain boundaries which are found as solutions of the associated free-boundary problems for ordinary or partial
(integro-)differential (see, e.g. Shiryaev [1] and the references therein).

In this paper, we proceed in a more natural opposite direction and present a construction of supermartingales
valued in the interval [0, 1] as solutions of certain stochastic differential equations on the given Brownian or
compound Poisson reference filtrations. Then, we apply the results of Jeanblanc and Song [2] to construct
the associated random times on the appropriate extended probability spaces. These properties lead to the
satisfaction of Jacod’s equivalence hypothesis, that is, to the existence of strictly positive conditional densities
for the random times with respect to the reference filtrations. Such assumptions are usually satisfied in the
classical models of credit risk theory in which the random default times have given strictly positive conditional
densities with respect to the reference filtrations reflecting the information observable from the associated
models of financial markets (see, e.g. Aksamit and Jeanblanc [3] for further discussions on Jacod’s hypothesis
and credit risk models). We provide a multiplicative decomposition for the constructed supermartingale and
use the resulting components to derive the families of the conditional probability densities of the random times
on the Brownian and compound Poisson filtrations.

The paper is organised as follows. We present a general framework for the model in Section 2. Then, we
construct the appropriate supermartingales in the case of a reference filtration generated by a Brownian motion
in Section 3, and in the case of a reference filtration generated by a compound Poisson process in Section 4.

2. The framework

We give a model for constructions of supermartingales valued in [0, 1] with respect to a reference filtration.
For this purpose, we work on a filtered probability space (Ω,G,F,P), where F is a given (reference) filtra-

tion. We call an F-conditional density any family of strictly positive F-martingales (p(u) = (pt(u))t≥0;∀u ≥ 0),
parameterised by u ∈ [0,∞), such that p is O(F)⊗ B([0,∞))-measurable and

∫ ∞

0

pt(u) du = 1, ∀t ≥ 0. (2.1)

Actually, there are very few explicit examples of such densities in the literature (see, e.g. [3], Chap. 4, [4] and
[5]). In this paper, we will show how to construct such families (p(u);∀u ≥ 0) in two cases: when F is a Brownian
filtration, and when F is a compound Poisson filtration. In both cases, we start with a nonnegative bounded
F-adapted process λ = (λt)t≥0 satisfying

∫ t

0

λs ds < ∞, ∀t ≥ 0,

∫ ∞

0

λs ds = ∞, (P-a.s.), (2.2)

and we construct a supermartingale G = (Gt)t≥0 valued in (0, 1] such that G0 = 1 and the process

(Gt exp(
∫ t

0
λsds))t≥0 is a (strictly) positive F-local martingale (see, e.g. [6]). In this case, using the work of

[2], on the extended measurable space (Ω× [0,∞),G ⊗B([0,∞))), one can construct a positive random variable
τ (in fact, τ(ω′, ω′′) = ω′′) and a probability measure Q such that

Q(τ > t | Ft) = Gt, and Q
∣∣
Ft

= P
∣∣
Ft
, ∀t ≥ 0.

In particular, if W is an (F,P)-standard Brownian motion, it is also an (F,Q)-standard Brownian motion. We
recall that Jacod’s equivalence hypothesis holds, if there exists a family of F-conditional densities (p(u); ∀u ≥ 0)
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such that

Q(τ > u | Ft) =

∫ ∞

u

pt(v) dv, ∀t ≥ 0, ∀u ≥ 0.

The family of processes (p(u);∀u ≥ 0) is then called the conditional density.

Remark 2.1. We refer the reader to the seminal papers of Jacod [7], Grorud and Pontier [8], and Amendinger
[9], and to the book [3] for more details on Jacod’s hypothesis. Note that the knowledge of the conditional
density allows to give the decomposition of any martingale in the reference filtration as a semimartingale in the
initial (and progressive) enlargement with τ (see, e.g. [3], [10], [11], [12] and [13]-[14]).

3. The case of a Brownian filtration

In this section, we consider the case in which F is the filtration generated by a standard Brownian motion
W . We use the notation of the framework described in Section 2.

3.1. Supermartingales valued in [0, 1]

Proposition 3.1. Let us consider the stochastic differential equation

dGt = −λt Gt dt−Gt(1−Gt) ρt dWt, G0 ∈ (0, 1], (3.1)

where λ is a nonnegative F-adapted process such that the condition of (2.2) holds and ρ an F-adapted process
satisfying ∫ t

0

ρ2s ds < ∞, (P-a.s.), ∀t ≥ 0. (3.2)

Then, the equation in (3.1) admits a (pathwise) unique (continuous) solution G = (Gt)t≥0 which is valued in
[0, 1].

Proof. Let us set T1 = inf{t > 0 |Gt = 1} and T0 = inf{t > 0 |Gt = 0}. Obviously, the equality Gt = 0 holds,
∀t ≥ T0, and we also have Gt < 1 on {0 < t < T1}. Then, applying Itô’s formula (see, e.g. [15], Chap. VI,
Thm. 1.2) to the change of variables Φt = (1 − Gt)/Gt, ∀t ≥ 0, we obtain that the stochastic differential
equation of (3.1) is equivalent to the one

dΦt =

(
λt (1 + Φt) +

Φ2
t

1 + Φt
ρ2t

)
dt+Φt ρt dWt, Φ0 ∈ [0,∞). (3.3)

Assuming that the solution Φ to the equation in (3.3) exists, it is non-negative. Moreover, since the coefficients
of the stochastic differential equation in (3.3) are Lipschitz continuous on [0,∞) and of a linear growth, it follows
from the result of [16], Chapter IV, Theorem 4.8 that the equation in (3.3) admits a pathwise unique (strong)
solution process Φ = (Φt)t≥0, which does not explode at any t ≥ 0. In this case, because the process G starts at
some G0 ∈ (0, 1], we may conclude from the structure of the coefficients of the equation in (3.3) for the process
Φ = (1−G)/G that T0 = ∞ (P-a.s.).

Moreover, by means of the comparison results for pathwise solutions of stochastic differential equations in
[17], Theorem 3.2 and [18], Theorem 1, we see that the inequality

Φ0 exp

(∫ t

0

ρs dWs −
1

2

∫ t

0

ρ2s ds

)
≤ Φt, ∀t ≥ 0, (3.4)
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holds. Hence, due to the assumption in (3.2), we see from (3.4) that the process Φ does not touch 0 after the
time 0, when being started at Φ0 ≥ 0. This fact implies that the process G = 1/(1 + Φ) does not touch 1 after
the time 0, so that T1 = ∞ (P-a.s.).

Remark 3.2. Note that the equation in (3.1) has the same structure as the appropriate stochastic differential
equations for the posterior probability processes Π = (Πt)t≥0 of the occurrence of the random change-point
(disorder) time defined by Πt = 1 − Gt, ∀t ≥ 0, in the quickest change-point detection problems for Wiener
and more general diffusion processes studied in [19], Chapter IV, Section 4 (see also [20], Chap. IV, Sect. 4,
and [21], Chap. VI, Sect. 22, as well as [22]–[23]). It is shown in the sources mentioned above that the optimal
stopping times of alarms in the quickest detection problems are given by the first times at which the processes
Π hit boundaries which are determined as solutions to the associated free-boundary problems for ordinary or
partial differential operators. In the case of observable Wiener processes, the optimal hitting boundaries for
the processes Π are constant on the allowed infinite observation intervals, but they are time-dependent when
the allowed observation time intervals are finite. In the case of observable more general diffusion processes, the
optimal hitting boundaries for the processes Π depend on the running values of the observation processes.

Remark 3.3. This study is easily extended to the case in which F is still a Brownian filtration, but the process
G = (Gt)t≥0 satisfies the more general that in (3.1) stochastic differential equation

dGt = −Gt dΛt −Gt(1−Gt) ρt dWt, G0 ∈ (0, 1], (3.5)

where Λ = (Λt)t≥0 is a positive continuous increasing process started at Λ0 = 0. This is particularly the
case when τ is honest, since, in that case, the dynamics of the process G involves a local time (see, e.g.
[3], Prop. 5.19). However, an honest time satisfies Jacod’s hypothesis if and only if it takes countably many
values [24], Lemma 4.11. Therefore, if all supermartingales of the form (3.1) lead to Jacod’s hypothesis, this is
not the case for supermartingales being the solutions of the stochastic differential equation in (3.5).

We also give another construction of the supermartingaleG. Namely, if Y is a positive continuous supermartin-
gale with the Doob-Meyer decomposition Y = MY − AY , where MY is a continuous (uniformly integrable)
martingale, so that the process G := Y ∧1 is a supermartingale valued in (0, 1]. Then, an application of Tanaka’s
formula for semi-martingales [25], formula (4.1.15), by virtue of x ∧ y = x− (x− y)+, leads to

dGt = 11{Yt≤1} dYt −
1

2
dL1

t (Y ), G0 ∈ (0, 1].

Note that any positive supermartingale admits a multiplicative decomposition Yt = Nte
−Λt , ∀t ≥ 0. Hence,

there exists an F-adapted process ϑ = (ϑt)t≥0 satisfying the integrability condition

∫ t

0

ϑ2
s ds < ∞, (P-a.s.), ∀t ≥ 0,

and such that

dYt = −Yt dΛt − Yt ϑt dWt, Y0 ∈ (0,∞).

Therefore, we see that

dGt = −Gt

(
11{Yt≤1} dΛt +

1

2
dℓt

)
− 11{Yt≤1} Gt(1−Gt) ρt dWt, G0 ∈ (0, 1],
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where we have

dℓt =
1

Gt
dL1

t (Y ) and ρt =
ϑt

1−Gt
, ∀t ≥ 0.

continuous and ρ is square integrable.

3.2. The multiplicative decomposition for the process G

As we recalled in Section 2 above, the process G = (Gt)t≥0 defined in (3.1) when started at G0 = 1 admits a
multiplicative decomposition Gt = e−ΛtNt, ∀t ≥ 0, where N = (Nt)t≥0 started at N0 = 1 is a continuous local
martingale and

Λt =

∫ t

0

λs ds, ∀t ≥ 0. (3.6)

In this case, the equality Nt = Gte
Λt holds, ∀t ≥ 0, and, according to Itô’s formula, the process N follows the

stochastic differential equation

dNt = −eΛt Gt(1−Gt) ρt dWt = −Nt (1−Gt) ρt dWt, N0 = 1, (3.7)

and the explicit expression

Nt = exp

(
−
∫ t

0

(1−Gs) ρs dWs −
1

2

∫ t

0

(1−Gs)
2 ρ2s ds

)
, ∀t ≥ 0. (3.8)

For further use, we define the processes L = (Lt)t≥0 and K = (Kt)t≥0 by the explicit expressions

Lt = exp

(
−
∫ t

0

ρs dWs −
1

2

∫ t

0

ρ2s ds+

∫ t

0

Gs ρ
2
s ds

)
, ∀t ≥ 0, (3.9)

and

Kt = exp

(∫ t

0

Gs ρs dWs −
1

2

∫ t

0

G2
s ρ

2
s ds

)
, ∀t ≥ 0, (3.10)

which admit the stochastic differential equations

dLt = −Lt ρt (dWt −Gt ρt dt), L0 = 1, (3.11)

and

dKt = Kt Gt ρt dWt, K0 = 1. (3.12)

By virtue of the integration-by-parts formula, it is straightforward to see from (3.8) and (3.9)-(3.10) that the
equality KtLt = Nt holds, ∀t ≥ 0.
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3.3. Strictly positive martingales Mu decreasing w.r.t. u

From [2], we deduce that any solution Ψu = (Ψu
t )t≥u of the problem{

dΨu
t = −Ψu

t (e
−Λt/(1−Gt))dNt, ∀u ≤ t < ∞,

Ψu
u = x,

(3.13)

for any x ∈ [0, 1] and u ≥ 0 fixed, is a martingale, increasing with respect to u ∈ [0,∞) and is valued in [0, 1].
Here, the components in the equation of (3.13) are given by (3.6) and (3.7). For x = 1 − Gu fixed, one can
construct on an extended probability space (see above), a random time τ and a probability measure Q such that
Q and P coincide on the filtration F = (Ft)t≥0 and Q(τ > u | Ft) = Ψu

t , ∀t ≥ 0, ∀u ≥ 0 fixed (see [2], Sect. 3
and [26]). Note that

dΨu
t = Ψu

t Gt ρt dWt, ∀t ≥ u, (3.14)

so that, for any u ≥ 0 fixed, we have

Ψu
t = Ψu

u exp

(∫ t

u

Gs ρs dWs −
1

2

∫ t

u

G2
s ρ

2
s dWs

)
, ∀t ≥ u, (3.15)

or

Ψu
t = Ψu

u

Kt

Ku
= Kt

1−Gu

Ku
, ∀t ≥ u. (3.16)

Then, by integration-by-parts formula, after some easy computations, we get

d

(
1−Gu

Ku

)
=

λu

Ku
Gu du, (3.17)

and

Ψu
t = Kt

∫ u

0

λs

Ks
Gs ds, ∀t ≥ u. (3.18)

It follows that Ψu is differentiable w.r.t. u and, for any t ≥ 0 fixed, we have

d

du
Ψu

t = Kt
λu

Ku
Gu = Kt

λu

Ku
e−Λu Ku Lu = Kt λu e

−Λu Lu, ∀t ≥ u. (3.19)

Setting Mu
t = 1−Ψu

t , ∀t ≥ u, ∀u ≥ 0 fixed, we find{
dMu

t = (1−Mu
t )(e

−Λt/(1−Gt))dNt, ∀u ≤ t < ∞,
Mu

u = Gu,
(3.20)

where the process G = (Gt)t≥0 is given by (3.5) and the process N = (Nt)t≥0 admits the stochastic differential
of (3.7). Then, we can show that the following assertion holds.

Proposition 3.4. For any u ≥ 0 fixed, the following expression holds

Mu
t = Nt e

−Λt +Kt

(∫ t

u

Ns

Ks
λs e

−Λs ds

)
, ∀t ≥ u, (3.21)
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where the components are given by the formulas in (3.6) and (3.8)–(3.10).

Proof. For any u ≥ 0 fixed, after some algebraic computations, we get that the expressions

dMu
t = Gt(1−Gt) ρt dWt − (Mu

t −Nt e
−Λt)Gt ρt dWt

= −Gt (−1 +Gt +Mu
t −Gt) ρt dWt

= (1−Mu
t )

e−Λt

1−Gt
dNt, ∀t ≥ u, (3.22)

hold.

For any 0 ≤ t < u, in order to preserve the martingale property of Mu, we define Mu
t = E[Mu

u | Ft] =
E[Gu | Ft] = E[Nue

−Λu | Ft]. Furthermore, if λ is deterministic and N a true martingale, we have

Mu
t = Nt e

−Λu ,∀t < u. (3.23)

3.4. The set of conditional probability density processes p(u)

Let us note that, by virtue of (3.19), the family of the conditional probability density processes (p(u) =
(pt(u))t≥0;∀u ≥ 0) with respect to Lebesgue measure is defined by

pt(u) = Kt λu e
−Λu Lu, ∀t ≥ u. (3.24)

We also deduce that

1−Mu
t = Ψu

t = Kt

∫ u

0

λs e
−Λs Ls ds =

∫ u

0

pt(s) ds, ∀t ≥ u, (3.25)

and, for any u ≥ 0 fixed, using the martingale property of p(u), we get

pt(u) = E[Ku λu e
−Λu Lu | Ft] = E[λu Gu | Ft], ∀t ≤ u. (3.26)

Finally, we check that the property in (2.1) holds. For this, we note that the equalities∫ ∞

0

pt(s) ds =

∫ t

0

Kt λs e
−Λs Ls ds+

∫ ∞

t

E[Ks λs e
−Λs Ls | Ft] ds

= Ψt
t +

∫ ∞

t

E[Ns λs e
−Λs | Ft] ds = Ψt

t + E
[ ∫ ∞

t

λs Gs ds

∣∣∣∣Ft

]
, ∀t ≥ 0, (3.27)

hold and, from the stochastic differential equation satisfied by G in (3.1), we get∫ ∞

t

λs Gs ds = −Gt −
∫ ∞

t

Gs(1−Gs) ρs dWs, ∀t ≥ 0. (3.28)

If λ is a deterministic function, the process p(u) admits the stochastic differential

dtpt(u) = λue
−Λu

(
11{u<t} Gt Kt Lu − 11{u≥t} (1−Gt)Kt Lt

)
ρt dWt

= pt(u)
(
11{u<t} Gt − 11{u≥t} (1−Gt)

)
ρt dWt, p0(u) = 1, (3.29)
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so that the representation

pt(u) = λue
−Λu exp

(∫ t

0

φs(u) dWs −
1

2

∫ t

0

φ2
s(u) ds

)
, ∀t ≥ 0, ∀u ≥ 0, (3.30)

holds with

φt(u) =
(
11{u<t} Gt − 11{u≥t} (1−Gt)

)
ρt =

(
11{u<t} − (1−Gt)

)
ρt, ∀t ≥ 0, ∀u ≥ 0. (3.31)

4. The case of a compound Poisson filtration

In this section, we consider the case in which F is the filtration generated by a compound Poisson process.
We use the notation of the framework described in Sections 2 and 3.

4.1. The conditional probability process

Suppose that there exists a compound Poisson process X = (Xt)t≥0 (or a pure jump Lévy process) with a
finite intensity Lévy measure ν(dx) which is a positive σ-finite measure on B(R) satisfying the conditions

ν({0}) = 0,

∫ (
x2 ∧ 1

)
ν(dx) < ∞ and

∫
|x| ν(dx) < ∞. (4.1)

Assume that the processX generates the reference filtration F = (Ft)t≥0 which is complete under the probability
measure P. Note that, in the compound Poisson case with ν(R) < ∞, the process X admits the representa-

tion Xt =
∑N ′

t
i=1 Ξi, where N ′ = (N ′

t)t≥0 is a Poisson process of intensity κ > 0 and (Ξi)i∈N is a sequence of
independent identically distributed random variables with the distribution ν(dx)/κ, where N ′ and (Ξi)i∈N are
independent under P. We denote by µ the jump measure of the process X defined by

µ
(
(0, t]×A

)
=

∑
0<s≤t

11{∆Xs∈A}, ∀t ≥ 0, (4.2)

for any Borel set A ∈ B(R), where we set ∆Xt = Xt −Xt−, ∀t ≥ 0 (see, e.g. [27], Chap. II, Sect. 4).

Proposition 4.1. Let us consider the stochastic differential equation

dGt = −λt Gt− dt−
∫
R

Gt−(1−Gt−)(Υ(x)− 1)

1 + (1−Gt−)(Υ(x)− 1)

(
µ(dt,dx)− dt ν(dx)

)
, G0 ∈ (0, 1], (4.3)

where λ is a nonnegative F-adapted process such that the conditions of (2.2) hold, and Υ(x) is a continuous
function such that the inequality Υ(x) > 1 holds, ∀x ∈ R, as well as the conditions∫

R

(√
Υ(x)− 1

)2

ν(dx) < ∞ and

∫
R
|x|Υ(x) ν(dx) < ∞ (4.4)

are satisfied. (The first condition in (4.4) is used for the equivalent change of probability measure (see, e.g. [27],
Chap. III, Thm. 5.34). Then, the equation in (4.3) admits a (pathwise) unique (piecewise-continuous) solution
G = (Gt)t≥0 which is valued in [0, 1].

Proof. Let us define T1 = inf{t > 0 |Gt ≥ 1} and T0 = inf{t > 0 |Gt ≤ 0} with the fact, G being a supermartin-
gale the inequality Gt ≤ 0 holds, ∀t ≥ T0, as well as Gt < 1 on {0 < t < T1}. It is shown by means of Itô’s
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formula (see, e.g. [27], Chap. I, Thm. 4.57) that the process Φ = (Φt)t≥0 defined by Φt = (1−Gt)/Gt, ∀t ≥ 0,
admits the stochastic differential

dΦt = λt (1 + Φt−) dt (4.5)

+ Φt−

∫
R

(
Υ(x)− 1

)(
µ(dt,dx)− 1 + Φt−

1 + Φt−Υ(x)
dt ν(dx)

)
, Φ0 ∈ [0,∞).

Assuming that the solution Φ to the equation in (4.5) exists, due to the condition Υ > 1, it is non-negative.
Moreover, since the coefficients of this stochastic differential equation in (4.5) are Lipschitz continuous on [0,∞)
and of a linear growth, it follows from the result of [27], Chapter III, Theorem 2.32 that the equation in (4.5)
admits a pathwise unique (strong) solution process Φ = (Φt)t≥0 which does not explode at any t ≥ 0. In this
case, because the process G starts at some G0 ∈ (0, 1], we may conclude from the structure of the coefficients
of the equation in (4.5) for the process Φ = (1−G)/G that T0 = ∞ (P-a.s.).

Let us now denote by (Sn)n∈N the sequence of jumps of the Poisson process N ′ and put S0 = 0. Then, we
see that, between any two jumps of N ′, the process Φ follows the equation

dΦt

dt
= λt (1 + Φt−)−

∫
R

Φt−(1 + Φt−)(Υ(x)− 1)

1 + Φt−Υ(x)
ν(dx), ∀t ∈ (Sn−1, Sn], (4.6)

such that t ∈ [0, T0 ∧ T1], while, at any jump times of N ′, we have

ΦSn =
(
Υ(∆XSn)− 1

)
ΦSn− , ∀n ∈ N. (4.7)

Hence, due to the assumptions that Υ(x) > 1 holds, ∀x ∈ R, as well as the conditions in (4.4) are satisfied, we
see from (4.6) and (4.7) that the process Φ does not touch 0 after the time 0, when being started at Φ0 ≥ 0, so
that T1 = ∞ (P-a.s.).

Remark 4.2. Note that the equation in (4.3) has the same structure as the appropriate stochastic differential
equations for the posterior probability process Π = (Πt)t≥0 of the occurrence of the random change-point
(disorder) time defined by Πt = 1−Gt, ∀t ≥ 0, in the quickest change-point detection problems for a compound
Poisson process studied in [28], [29], and [30]. It is shown in the sources mentioned above that the optimal
stopping times of alarms in the quickest detection problem are given by the first times at which the processes
Π hit boundaries which are determined as solutions to the associated free-boundary problems for integro-
differential operators. In the case of observable compound Poisson processes, the optimal hitting boundaries for
the processes Π are constant on the allowed infinite observation time intervals.

4.2. The multiplicative decomposition for the process G

In this setting, the process G = (Gt)t≥0 defined in (4.3) when started at G0 = 1 also admits a multiplicative
decomposition Gt = e−ΛtNt, ∀t ≥ 0, where N = (Nt)t≥0 started at N0 = 1 is a piecewise-continuous local
martingale and Λ = (Λt)t≥0, given by (3.6) is continuous, hence it is predictable. In this case, the equality
Nt = Gte

Λt holds, ∀t ≥ 0, and, according to Itô’s formula, similar to the formulas in (3.7)–(3.8) above, the
process N admits the stochastic differentials

dNt = −eΛt Gt−(1−Gt−)

∫
R

Υ(x)− 1

1 + (1−Gt−)(Υ(x)− 1)

(
µ(dt,dx)− dt ν(dx)

)
= −Nt− (1−Gt−)

∫
R

Υ(x)− 1

1 + (1−Gt−)(Υ(x)− 1)

(
µ(dt,dx)− dt ν(dx)

)
, N0 = 1, (4.8)
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and the explicit expression

Nt = exp

(
−
∫ t

0

∫
R
ln
(
1 + (1−Gt−)(Υ(x)− 1)

)
µ(ds,dx) (4.9)

+

∫ t

0

∫
R

(1−Gs−)(Υ(x)− 1)

1 + (1−Gs−)(Υ(x)− 1)
ds ν(dx)

)
, ∀t ≥ 0.

Similar to the formulas in (3.9)–(3.12) above, we define the processes L = (Lt)t≥0 and K = (Kt)t≥0 by the
explicit expressions

Lt = exp

(
−
∫ t

0

∫
R
ln
(
Υ(x)

)
µ(ds,dx) (4.10)

+

∫ t

0

∫
R

Υ(x)− 1

1 + (1−Gs−)(Υ(x)− 1)
ds ν(dx)

)
, ∀t ≥ 0,

and

Kt = exp

(∫ t

0

∫
R
ln

(
Υ(x)

1 + (1−Gs−)(Υ(x)− 1)

)
µ(ds,dx) (4.11)

−
∫ t

0

∫
R

Gs−(Υ(x)− 1)

1 + (1−Gs−)(Υ(x)− 1)
ds ν(dx)

)
, ∀t ≥ 0,

which admit the stochastic differentials

dLt = Lt−

∫
R

(
1

Υ(x)
− 1

)(
µ(dt,dx)− Υ(x)

1 + (1−Gt−)(Υ(x)− 1)
dt ν(dx)

)
, L0 = 1, (4.12)

and

dKt = Kt−

∫
R

Gt−(Υ(x)− 1)

1 + (1−Gt−)(Υ(x)− 1)

(
µ(dt, dx)− dt ν(dx)

)
, K0 = 1. (4.13)

By virtue of the integration-by-parts formula, it is straightforward to see from (4.9) and (4.10)–(4.11) that the
equality KtLt = Nt holds, ∀t ≥ 0.

4.3. Strictly positive martingales Mu decreasing w.r.t. u

In this setting, from [2], we also deduce that any solution Ψu = (Ψu
t )t≥u of the problem{

dΨu
t = −Ψu

t−(e
−Λt/(1−Gt−))dNt, ∀u ≤ t < ∞,

Ψu
u = x,

(4.14)

for any x ∈ [0, 1] and u ≥ 0 fixed, is a martingale, increasing with respect to u ∈ [0,∞) and is valued in [0, 1].
Here, the components in the equation of (3.13) are given by (3.6) and (4.8). For x = 1 − Gu fixed, one can
construct on an extended probability space (see above), a random time τ and a probability measure Q such that
Q and P coincide on the filtration F = (Ft)t≥0 and Q(τ > u | Ft) = Ψu

t , ∀t ≥ 0, ∀u ≥ 0 fixed (see [2], Sect. 3
and [26]). Note that

dΨu
t = Ψu

t−

∫
R

Gt−(Υ(x)− 1)

1 + (1−Gt−)(Υ(x)− 1)

(
µ(dt,dx)− dt ν(dx)

)
, ∀t ≥ u, (4.15)
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so that, for any u ≥ 0 fixed, we have

Ψu
t = Ψu

u exp

(∫ t

u

∫
R
ln

(
Υ(x)

1 + (1−Gs−)(Υ(x)− 1)

)
µ(ds,dx) (4.16)

−
∫ t

u

∫
R

Gs−(Υ(x)− 1)

1 + (1−Gs−)(Υ(x)− 1)
ds ν(dx)

)
, ∀t ≥ u,

and thus, the expressions in (3.16)–(3.19) hold with K = (Kt)t≥0 and L = (Lt)t≥0 given by (4.10) and (4.11).
Similarly, setting Mu

t = 1−Ψu
t , ∀t ≥ u, ∀u ≥ 0 fixed, we find

{
dMu

t = (1−Mu
t−)(e

−Λt/(1−Gt−))dNt, ∀u ≤ t < ∞
Mu

u = Gu
, (4.17)

where the process G = (Gt)t≥0 is given by (4.3) and the process N = (Nt)t≥0 admits the stochastic differential
of (4.8). Then, we can show that the following assertion holds, which is proved by means of arguments similar
to the ones used in Proposition 3.4 above.

Proposition 4.3. For any u ≥ 0 fixed, the same expression as in (3.21) holds, where the components are given
by the formulas in (3.6) and (4.9)–(4.11).

4.4. The set of conditional probability density processes p(u)

Let us finally recall the family of the conditional probability density processes (p(u) = (pt(u))t≥0;∀u ≥
0) which are also defined as in (3.24). It is shown by means of standard arguments that the expressions of
(3.25)–(3.27) hold in this setting, while the expression in (3.28) takes the form

∫ ∞

t

λs Gs− ds = −Gt −
∫ ∞

t

∫
R

Gs−(1−Gs−)(Υ(x)− 1)

1 + (1−Gs−)(Υ(x)− 1)

(
µ(ds,dx)− ds ν(dx)

)
, ∀t ≥ 0. (4.18)

We also note that if λ is a deterministic function, the process p(u) admits the stochastic differentials

dpt(u) = λue
−Λu

(
11{u<t} Gt− Kt−Lu − 11{u≥t} (1−Gt−)Kt−Lt−

)
×
∫
R

Υ(x)− 1

1 + (1−Gt−)(Υ(x)− 1)

(
µ(dt,dx)− dt ν(dx)

)
= pt−(u)

(
11{u<t} Gt− − 11{u≥t} (1−Gt−)

)
(4.19)

×
∫
R

Υ(x)− 1

1 + (1−Gt−)(Υ(x)− 1)

(
µ(dt,dx)− dt ν(dx)

)
, p0(u) = 1,

so that the representation

pt(u) = λue
−Λu (4.20)

× exp

(∫ t

0

∫
R
ln
(
1 + ξs−(u, x)

)
µ(ds,dx)−

∫ t

0

∫
R
ξs−(u, x) ds ν(dx)

)
, ∀t ≥ 0, ∀u ≥ 0,
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holds with

ξt−(u, x) =
(
11{u<t} Gt− − 11{u≥t} (1−Gt−)

) Υ(x)− 1

1 + (1−Gt−)(Υ(x)− 1)

=
(
11{u<t} − (1−Gt−)

) Υ(x)− 1

1 + (1−Gt−)(Υ(x)− 1)
, ∀t ≥ 0, ∀u ≥ 0. (4.21)
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