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Abstract

I assess the air quality and environmental equity impacts of the 2008 carbon tax in

British Columbia. Using high-resolution data and a synthetic difference-in-differences

strategy, I find that the carbon tax has reduced PM2.5 emissions by 5.2-10.9%. This

result is heterogeneously distributed, with larger reductions in areas with lower

baseline pollution, lower population density, lower material deprivation, and higher

income. While all areas experience substantial positive co-benefits in terms of reduced

air pollution hazard rates, quantified at $198 per capita, my results imply a widening

of the pre-existing environmental justice gaps. This dynamic represents an additional

dimension of carbon tax regressiveness.
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1. Introduction

The major sources of CO2 emissions are the fossil fuel combustion processes which

also give rise to emissions of air pollutants. Climate change and air pollution can then

be categorised as complementary global and local externalities from fossil fuel use.

Therefore, efforts to control CO2 emissions by internalising the social cost of carbon

are bound to give rise to significant “co-benefits” in terms of air quality improvements.

Given the relative scarcity of long-tenured carbon pricing schemes, it is unsurprising

that empirical evidence of their causal impact on local air pollution co-benefits is

sporadic, and mostly limited to cap-and-trade schemes (Wagner and Preux, 2016;

Liu et al., 2021; Zhu et al., 2022; Hernandez-Cortes and Meng, 2023) with fewer

studies focussing on fuel taxes (e.g. Basaglia et al., 2023). On the contrary, there

is a large and growing literature which, using theoretical insights (Parry et al.,

2015) and simulation models (Knittel and Sandler, 2011; Zhang et al., 2021), has

attempted to calculate the monetary value of air pollution improvements due to

carbon taxation and compare them with the cost of mitigation policies. In particular,

net health co-benefits arising from carbon taxation are theorised to reach a high

enough magnitude to partially or fully offset the mitigation costs for households at a

national (Li et al., 2018; Shindell et al., 2016) and global (West et al., 2013; Vandyck

et al., 2018) level, and may provide strong additional incentives for a swift transition

to a low-carbon economy. Moreover, reductions in morbidity and mortality due to

improvements in air quality are likely not to capture the full extent of the local

pollution externality: a large body of research has linked air pollution to non-health

outcomes (see Aguilar-Gomez et al., 2022, for a review)1, suggesting that any attempt

at quantifying the monetary impact of co-benefits based on health outcomes alone

would, at best, provide a lower bound of the beneficial consequences of air quality

improvements.

In light of the considerable size of air pollution co-benefits, it is fundamental to

examine how carbon pricing policies impact the spatial distribution of pollutants over

affected populations. Higher reductions in co-pollutants induced by carbon taxation

are indeed expected to arise from polluters with lower marginal abatement costs,

but this efficiency criterion is blind to equity considerations (Hernandez-Cortes and

1Studies have linked air pollution to negative educational outcomes (Ebenstein et al., 2016; Wen
and Burke, 2022), increase in crime rates (Bondy et al., 2020) and suicides (Persico and Marcotte,
2022), reductions in labour productivity (Graff Zivin and Neidell, 2012), and in housing prices
(Sager and Singer, 2022; Freeman et al., 2019).
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Meng, 2023). A substantial body of research has indeed documented geographic and

socio-economic disparities2 in pollution levels within cities (e.g. Jbaily et al., 2022;

Currie et al., 2020). It is thus paramount to inspect whether carbon taxation presents

efficiency-equity trade-offs in the distribution of realised co-benefits, evidence of

which is mixed in the environmental economics literature (Sheriff, 2023; Shapiro and

Walker, 2021; Boyce and Pastor, 2013; Fowlie et al., 2012; Grainger and Ruangmas,

2018).

In this paper, I assess the air quality co-benefits and environmental justice impli-

cations of the 2008 British Columbia carbon tax. The tax, covering approximately

75% of the Canadian province’s CO2 emissions, was initially introduced at a rate

of $10/tCO2, and sequentially ramped up by $5 per year until 2012, when it was

frozen at $30/tCO2 until 2018. Importantly, no other Canadian Province introduced

carbon pricing schemes between 2008 and 2018, when the tax was rolled out on a

federal basis, which allows me to rely on a control pool drawn from other Canadian

provinces. I leverage high-resolution data on PM2.5, based on a combination of

satellite observations, geo-chemical models and ground-based monitoring stations,

from Meng et al. (2019) and van Donkelaar et al. (2019), and combine them with

highly disaggregated socio-economic data at the Dissemination Area level3, retrieved

from the Canadian Census at 5-year intervals between 2001 and 2016. I exploit this

granular dataset to assess the effect of the carbon tax on air pollution co-benefits

and the dynamics of the environmental justice gap.

The central result of the paper is that the 2008 British Columbian carbon tax has

resulted in statistically significant reductions in PM2.5 concentrations, with a lower

bound average estimate of -0.36 µg/m3 and an upper bound average estimate of -0.89

µg/m3, corresponding to a 5.2-10.9% reduction in particulate matter concentrations

with respect to pre-treatment average levels. Importantly, as in e.g. Andersson (2019),

Sager and Singer (2022), and Basaglia et al. (2023), this result is obtained by moving

away from traditional two-way fixed effects difference-in-differences (TWFE-DID)

estimation, in light of a violation of the foundational parallel trends assumption:

particulate matter trends between British Columbian and control Dissemination

Areas diverge prior to the implementation of the carbon tax, thereby biasing DID

estimates. I rely on a family of estimators related to the synthetic control method

(SCM) for comparative case studies (Abadie and Gardeazabal, 2003; Abadie, 2021),

2Also referred to as the “environmental justice gap” (Hernandez-Cortes and Meng, 2023).
3Corresponding roughly to US Census tracts.
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employing in particular the synthetic difference-in-differences (SDID) estimator by

Arkhangelsky et al. (2021) as my preferred methodology.

I subsequently inspect the efficiency-equity trade off, examining whether air pollution

reductions arise heterogeneously within British Columbian metropolitan areas. I split

the pool of treated units in quintiles of pre-existing pollution, population density,

median income levels and material deprivation index and estimate the impact of

the tax on PM2.5 reductions for each quintile of these baseline characteristics. The

carbon tax appears to be regressive in the spatial dimension: reductions are 1.6-2.2

times higher in the bottom quintile of pre-treatment air pollution, population density

and material deprivation compared to the top quintile, and 1.7 times higher in the

top median income quintile compared to the bottom quintile.

Finally, I convert my estimates of particle pollution reductions into mortality re-

ductions4 and associated monetary gains, relying on the concept of the Value of a

Statistical Life5. The median monetary health gains appear to be large, in the order

of $88-402/year per capita. The central estimate of $198 is almost double the $115.50
per capita Low-Income Climate Action Tax Credit, the carbon tax governmental

rebate accruing to low-income individuals to mitigate the cost of carbon pricing.

The total annual health gains are comparable to annual carbon tax revenues at its

inception (Ministry of Finance, 2009) and amount to 40-81% of annual tax revenues

at maturity (Ministry of Finance, 2013). Health gains stemming from PM2.5 are also

heterogeneous over space, with greater benefits manifesting in peri-urban areas rather

than in city centres, and exhibit a positive correlation with income within metropoli-

tan areas, corroborating the evidence on the increase in the environmental justice gap.

This paper contributes to the literature on three main fronts. First, I extend the

recent evidence on the impact of carbon pricing on air pollution co-benefits, with

an explicit focus on carbon taxation instead of the frequently examined cap-and-

trade schemes (Hernandez-Cortes and Meng, 2023) and fuel tax increases (Basaglia

et al., 2023). Differently from Saberian (2017), I find positive co-benefits from the

2008 carbon tax, and expand the geographic and temporal scope of the analysis. I

overcome known endogeneity problems connected with the use of sparse air quality

monitors (Carozzi and Roth, 2022) by relying on two sets of remotely sensed PM2.5

data (Meng et al., 2019; van Donkelaar et al., 2019) which provide full coverage of

4Exploiting hazard rates adapted from the environmental health and epidemiology literature
(Lepeule et al., 2012; Krewski et al., 2009).
5Following Fowlie et al. (2019) and Carozzi and Roth (2022).
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the spatial and temporal extent of my dataset. Further, I dispel the notion that the

carbon tax has resulted in gasoline to diesel fuel substitution, instead highlighting

expected reductions in both fuels’ total demand after the tax. Moreover, by exploit-

ing highly disaggregated census information on commute mode, I provide evidence

on additional mechanisms underlying the air quality improvements: BC residents

substitute high emissions trips with public transport and active commute modes

following the implementation of the tax. My results are thus also consistent with the

findings of Pretis (2022), who found that the 2008 carbon tax reduced CO2 emissions

in the transportation sector alone.

The second contribution regards the growing literature on the relationship between

environmental policies and equity. I present the first ex post analysis of the effects

of a carbon tax on the “environmental justice (EJ) gap” (Hernandez-Cortes and

Meng, 2023). I find that pricing carbon, while giving rise to widespread air qual-

ity co-benefits, may do so disproportionately with respect to pre-existing levels of

air pollution, income, density (Carozzi and Roth, 2022) and material deprivation.

My estimates thus add a data point to the nascent literature on ex post empiri-

cal evaluation of EJ effects from climate policy, which has so far reported mixed

evidence (Fowlie et al., 2012; Boyce and Pastor, 2013; Grainger and Ruangmas,

2018; Shapiro and Walker, 2021; Sheriff, 2023; Hernandez-Cortes and Meng, 2023).

These results call for spatially heterogeneous climate interventions (Nehiba, 2022)

or for additional layered instruments aimed at internalising the congestion exter-

nality in urban centres and reducing local pollution (e.g. Pestel and Wozny, 2021;

Sarmiento et al., 2022; Gehrsitz, 2017), with a specific focus on policy impacts on

disadvantaged communities. Other examples of incremental policies to aid carbon

pricing in providing co-benefits are incentives for alternative transport modes, as low-

income and disadvantaged households are relatively more cash and credit constrained.

Lastly, I contribute to the environmental policy evaluation literature in a similar

vein as Sager and Singer (2022). I indeed show how the traditional TWFE-DID

estimator is susceptible of producing biased estimates, due to substantially diverging

pre-treatment trends across treatment and control units. I solve this concern by

exploiting SCM and the newly introduced SDID estimator (Arkhangelsky et al., 2021)

and exploiting, unlike recent studies in environmental policy evaluation (e.g. Anders-

son, 2019; Leroutier, 2022; Basaglia et al., 2023) a subnational level treatment and a

highly granular framework. In my setting, with multiple treated units and a large

number of control units to draw synthetic counterfactuals from, both the SCM and

SDID perform well in addressing concerns about diverging pre-treatment trends and

5



identify unbiased and robust estimates of the impact of the carbon tax on PM2.5 lev-

els, improving substantially upon traditional estimators and aggregate policy settings.

The remainder of the paper begins with a description of the carbon tax and the

data sources in Section 2. In Section 3, I present the identification strategy, followed

by the main results in Section 4 and mechanisms underlying them in Section 5.

Section 6 shows the consistency of the main analyses to alternative specifications.

Lastly, I examine environmental justice concerns in Section 7, and estimate mortality

reductions and associated monetary health gains in Section 8. Section 9 concludes,

and additional information is reported in the Appendix.

2. Policy Context, Data and Descriptive Statistics

2.1. The 2008 British Columbian Carbon Tax

The introduction of the British Columbia (BC) carbon tax was formally announced

in the provincial budget plan in February 2008, catching the public off guard due

to the unexpected nature of this move by the Liberal government (Harrison, 2012;

Ahmadi et al., 2022). The policy aimed to reduce emissions by a minimum of 33%

below 2007 levels by 2020 (Azevedo et al., 2023). Implemented on July 1, 2008,

the initial tax rate was set at $10/tonne CO2eq and increased by $5/tonne CO2eq

annually until it reached $30 in 2012, establishing one of the highest carbon prices

globally at the time (Murray and Rivers, 2015; Azevedo et al., 2023). The carbon tax

rate remained at $30 until 2018, when it increased to $35, with a subsequent annual

increment of $5 anticipated until it reaches $50/tonne in 2022. The tax, applicable to

all fossil fuel purchases in BC, accounts for approximately 77% of the province’s total

greenhouse gas (GHG) emissions, underscoring the comprehensive scope of the policy

(Murray and Rivers, 2015; Rivers and Schaufele, 2015; Ahmadi et al., 2022; Azevedo

et al., 2023). Notably, the most affected sector is transportation, which contributed

to 43.9% of the province’s total CO2 levels in 2007; exemptions cover exported fuels,

non-combustion GHGs (e.g. landfill methane), and emissions generated outside BC6.

A key aspect of implementing the BC carbon tax is its commitment to revenue

neutrality, serving as a crucial mechanism to secure public support and mitigate

6This excludes a significant portion of air transportation and non-metallic mineral manufacturing
emissions. Additionally, non-fossil fuel sources like fugitive emissions and chemical processes are
exempted, broadening the range of exclusions (Azevedo et al., 2023).
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resistance to additional taxation, a notable challenge in the execution of carbon

pricing schemes (Carattini et al., 2017; Carattini et al., 2019)7.

The revenue-neutral design of the tax involved returning funds to consumers and

businesses through various means, including direct transfers to low-income indi-

viduals, income tax reductions, and corporate tax cuts (Murray and Rivers, 2015;

Ahmadi et al., 2022). In particular, the achievement of revenue neutrality in BC

involves two primary mechanisms. Firstly, by initiating a 5% reduction in the bottom

two income tax brackets, BC secured the lowest income tax rate in Canada for

individuals earning up to $122,000. This reduction was complemented by additional

measures such as the “low income climate action” tax credit and the Northern

and Rural Homeowner benefit (Azevedo et al., 2023)8. Secondly, a series of re-

ductions were applied to the general corporate tax rate, starting at 12% in 2008

and gradually decreasing to 11%, 10.5%, and 10% in 2010 and 2011, before re-

turning to 11% in 2014. Simultaneously, the small business corporate income tax

rate decreased from 4.5% to 2.5% in 2008 (Azevedo et al., 2023)9. According to

the Budget and Fiscal Plan, the carbon tax generated approximately $1.2 billion

in annual revenue since 2012 when the rate stabilized at $30/tonne CO2eq, with

around $1.4 billion returned to consumers (Ahmadi et al., 2022; Azevedo et al., 2023).

Given the popularity of the carbon tax, it is unsurprising that economists have

conducted several analyses of its effectiveness across a range of measures. Focussing

on the transport fuel market, Rivers and Schaufele (2015) and Lawley and Thivierge

(2018) find 5-8% reductions in gasoline demand due to the tax implementation.

Azevedo et al. (2023) investigate the employment response to the tax: the absence

of aggregate effects masks heterogeneous impacts, with large emission-intensive firms

7Subsequent to the initial “Axe the tax” campaigns leading up to the 2009 provincial elections,
polling data indicated a sustained increase in public approval of the tax until 2015 (Murray and
Rivers, 2015). However, after 2012, there was a shift towards earmarking some revenues for specific
sectors, creating a mixed system of redistribution (Murray and Rivers, 2015). Public opinion on
the carbon tax was initially volatile, with campaigns against it leading up to the 2009 provincial
elections, but sustained approval was observed until 2015 (Murray and Rivers, 2015). Recent
studies, though, suggest that attitudes towards carbon pricing may be more influenced by partisan
identities than updated information about potential rebates (Mildenberger et al., 2022)

8The low income climate action tax credit was initially set as $100 per adult plus $30 per child, and
subsequently raised to $115.50 per adult and $34.50 per child (Ministry of Finance, 2009; Ministry
of Finance, 2013). The Northern and Rural Homeowner Benefit amounts to $200 but only applies
to howeowners in areas outside the Capital (Victoria CMA), Greater Vancouver (Vancouver CMA)
and Fraser Valley (Abbotsford CMA) regional districts. The appropriate rebate to compare to
health gains is thus the low income climate action tax credit.

9Since 2008, various tax credits, ranging from the BC Seniors Home Renovation Tax Credit to the
Film Incentive BC tax credit, have been implemented, contributing to the revenue redistribution.
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negatively affected and small businesses benefitting from the policy. In terms of

global pollutants, Ahmadi et al. (2022) detect emissions reductions in the manufac-

turing sector, while the multisectoral analysis of Pretis (2022) identifies significant

reductions in transportation emissions with negligible effects on the remaining sectors

of the economy.

2.2. Data and Descriptive Statistics

In order to analyse the effect of British Columbia’s 2008 carbon tax on air quality,

I assemble and process information on local pollutants’ concentrations, geographic

characteristics, and socio-economic dynamics from multiple sources. The observa-

tional units which I employ in the analysis are Dissemination Areas (DAs), the

smallest standard geographic areas for which Canadian census data are disseminated.

Since the paper is concerned with analysing the effect of carbon pricing on air

quality in cities, I restrict the geographic scope of the dataset to 26 Canadian Census

Metropolitan Areas (CMAs), thereby excluding rural areas and smaller towns10.

Canadian census data is obtained from von Bergmann et al. (2022), while DA census

boundaries are converted to common geographies based on von Bergmann (2021),

and using DA administrative boundaries from the 2016 Canadian census as the target

geography. My final dataset is thus comprised of 25,479 DAs observed over 19 years,

from 2000 to 2018, across 26 CMAs.

The dependent variable employed in the main part of the paper is yearly average PM2.5

concentration from Meng et al. (2019), which combine information from satellite-

retrieved Aerosol Optical Depth with simulations and ground-based observations

obtained from monitoring stations readings. I extract the mean value of yearly PM2.5,

weighted by grid-cell level population counts obtained from Rose et al. (2020), onto

the 25,479 DAs which constitute my dataset for every year between 2000 and 201811.

Hence, for each DA, the dependent variable takes the form:

10The CMAs in the dataset are: St. John’s, Halifax, Saint John, Quebec, Trois Rivieres, Sherbrooke,
Montreal, Ottawa, Saguenay, Kingston, Toronto, Hamilton, St. Catharine’s, Kitchener, London,
Windsor, Sudbury, Thunder Bay, Winnipeg, Regina, Saskatoon, Calgary, Edmonton, Abbotsford,
Vancouver, and Victoria. While the number of Canadian CMAs is 35 in the latest available
census wave (2016), we only keep in the dataset those CMAs which were designated as such in
the 2001 Census, in order to ensure compatibility across all waves.

11The resolution of the PM2.5 raster data is 0.01°x 0.01°, while population data is available for grid
cells of dimension 0.0083° x 0.0083°, implying that the population raster had to be resampled at
the resolution of the PM2.5 raster in order to be viable for use in the weighted mean calculation.

8



PM2.5it =
1

Nj

N∑
j=1

Popjt ∗ PM2.5jt (1)

Where j = 1, ..., N is the number of raster grid cells in a DA i, Popjt is the population

count in grid cell j at time t, and PM2.5jt is the value of the particulate matter raster

in grid cell j at time t.

The main advantage of this source compared to data obtained from monitoring

stations only (Saberian, 2017), is their much wider spatial and temporal coverage,

which also allows me to overcome the selection problem mentioned in Carozzi and

Roth (2022) relative to the endogenous location of monitoring stations within urban

areas12. The entity of data loss when using ground-based data is considerable: PM2.5

data from the National Atmospheric Surveillance Program (NAPS) is only available

for 61 DAs in 2000, growing to 230 in 2018 as new monitoring stations get added

every year (see Figure A.1). Nonetheless, the satellite-retrieved measurements from

Meng et al. (2019), when restricted to the DAs with at least one PM2.5 ground

monitoring station, correlate well with the NAPS readings, as shown in Figure A.2.

I rely on the Meng et al. (2019) PM2.5 estimates in order to produce my main

results. However, I also run the main analysis using PM2.5 concentration data from

van Donkelaar et al. (2019), as done e.g. in Sager and Singer (2022). While the

two estimates are highly related, with a Pearson correlation coefficient of 0.795

(see Figure A.3), the concentrations from Meng et al. (2019) are generally lower

throughout the sample. Moreover, a closer inspection of the van Donkelaar et al.

(2019) rasters reveals that, beginning with the year 2004, much of the variability

of PM2.5 pixel values over Canadian CMAs is swept out, resulting in unrealistic

estimates of pollution concentrations, especially with respect to their distribution

over densely populated DAs13.

Aware of a burgeoning literature relating population density and air pollution (Carozzi

and Roth, 2022; Borck and Schrauth, 2021), I obtain population counts at the DA

level from Rose et al. (2020), which are available for all years between 2000-201814.

12Monitoring stations are likely to be located where air pollution is higher, thereby introducing
measurement error in an eventual empirical analysis.

13Moreover, the choice of employing data from Meng et al. (2019) is conservative, as results using
the van Donkelaar et al. (2019) dataset are generally higher in magnitude.

14The dataset also contains population counts for all DAs extrapolated from Canadian censuses;
however, this data is only available in 5-years intervals between 2001 and 2016.
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Further, I employ the Canadian censuses to retrieve information on median income

at the DA level, and extract the 2006 Material Deprivation Index from Pampalon

et al. (2012) for all DAs in my sample, in order to inspect whether the tax has

produced heterogeneous impacts along these dimensions. If the carbon tax was

successful in producing a behavioural adjustment in BC residents, an expected result

would be higher take up of alternative means of transport within metropolitan

areas. Therefore, I leverage the detailed information contained in the four waves

of Canadian census data between 2001-2016 to retrieve DA-level data on commute

modes. I divide commute modes in two different categories: high emissions (cars,

taxis, and motorcycles), and low emissions (public transport, bicycles, and walking)15.

Figure 1 plots the baseline spatial distribution of the dependent variable and the

main covariates over the Vancouver CMA, the most populated metropolitan area

in the treated province of British Columbia. Time-varying variables are averaged

over 2005-2007, the three years preceding the implementation of the carbon tax,

while all variables retrieved from the Canadian Census are taken at their 2006 values,

the last observation before the tax was instituted. The spatial distibution of PM2.5

concentrations is as expected: values are indeed higher in central areas rather than in

the periphery, qualitatively adhering to the traditional association with population

density found e.g. in the US (Carozzi and Roth, 2022) or Germany (Borck and

Schrauth, 2021); moreover, population density, material deprivation and the inverse

of median income are all highly spatially correlated with air pollution at the baseline.

Baseline commute mode seems to be inversely related with the spatial distribution of

PM2.5: areas whose inhabitants are less reliant on cars, taxis and motorbikes seem to

be more polluted on average, a result probably due to their centrality with respect

to the road networks and urban form. Summary statistics for the whole sample, split

across treatment and control CMAs, are presented in Table A.1 and Table A.2 for

the pre-treatment and post-treatment periods, respectively.

Lastly, I obtain monthly information on the BC gasoline and diesel fuel markets, at

the province level, for January 1991-December 2016. In particular, I extract the an-

nual sales of transportation fuels (motor gasoline and diesel), from Statistics Canada

(2021b), gasoline and diesel price data from Kalibrate (formerly Kent Group Ltd.) at

the monthly level for the city of Vancouver, which I consider representative of the en-

tire province, monthly after tax income and unemployment rate data from Statistics

15I further decompose the low emissions category into public transport only and zero emissions
commutes (cycling and walking).
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Canada (2021c), and the CAD-USD monthly exchange rate, retrieved from the Pacific

Exchange Rate Service at University of British Columbia’s Sauder School of Business.

PM2.5

3.153 to 5.065
5.065 to 5.817
5.817 to 6.462
6.462 to 7.012
7.012 to 8.470

Population Density
2 to 1,912
1,912 to 3,531
3,531 to 5,574
5,574 to 7,701
7,701 to 11,269

Median Income ($)
9,839 to 19,382
19,382 to 25,270
25,270 to 31,652
31,652 to 39,670
39,670 to 81,038

Material Deprivation Index

1.0 to 18.8
18.8 to 38.2
38.2 to 58.8
58.8 to 78.5
78.5 to 100.0

High Emission Commute %

0.0 to 44.7
44.7 to 62.0
62.0 to 75.3
75.3 to 86.7
86.7 to 100.0

Public Transport commute %

0.00 to 8.37
8.37 to 16.89
16.89 to 26.25
26.25 to 37.79
37.79 to 68.29

Figure 1: Spatial distribution of PM2.5 and relevant covariates within the Vancouver
CMA. Top row: PM2.5 and population density; Middle row: median income and Material
Deprivation Index; Bottom row: high emission commute mode % and public transport %.
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3. Empirical Strategy

3.1. Two-way fixed effects difference-in-differences (TWFE-DID)

The core aim of my empirical strategy is to estimate the treatment effect of the

2008 British Columbian carbon tax on local air pollution, measured in terms of

PM2.5 concentrations at the DA level. A traditional methodology for this estimation

is a two-way fixed effects difference-in-differences (TWFE-DID) regression. The

estimating equation takes the form:

PM2.5it = βTAXit + θt + ηi + ϵit (2)

Where TAXit is the DID binary indicator, taking value 1 for all treated units after

the implementation of the carbon tax in 2008, and 0 for all other observations;

θt and ηi are respectively time and unit specific fixed effects, ϵit is a time-varying

idiosyncratic error term, and β is the coefficient of interest, i.e. the average effect of

being exposed to the carbon tax.

In order for β to be equal to the average treatment effect on the treated cohort

(ATT), the identifying assumption is that parallel outcome trends between the

treated and the control units hold, i.e. if the 2008 carbon tax had not been imple-

mented in British Columbia, PM2.5 levels in British Columbian DAs would have

followed the same trajectory as PM2.5 levels in DAs located in other Canadian

provinces. Figure A.4 and Figure A.5 report the average PM2.5 trends for 2000-2016

and 2000-2018, respectively, for British Columbian and control DAs. In both cases

there is reason to suspect that a TWFE-DID regression would fail to identify the

correct ATT: by giving equal weight to all control observations, TWFE-DID will

indeed include units whose pre and post-treatment outcome paths fundamentally dif-

fer from those of DAs in British Columbia, and with greater potential for abatement16.

It is also worth noting that in both cases, in addition to diverging trends, the level of

PM2.5 pollution is almost always17 lower for British Columbian vis-à-vis control DAs.

Province-specific factors such as city morphology, more progressive environmental

attitudes, different car fleet compositions and heterogeneous availability of alternative

means of transportation could be the reason why trends and levels diverge across

British Columbian CMAs and control Provinces18.

16An event study plot of differences in PM2.5 between BC and control units’ DAs (see Figure A.6)
displays significant and unstable pre-treatment differences.

17Except for the van Donkelaar et al. (2019) dataset in the very first year of the panel, 2000.
18Treatment status in this instance is place-based and dependent on the political choice of an
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3.2. Synthetic control method and synthetic difference-in-differences

A traditional solution to diverging pre-treatment trends in empirical applications

(usually with a unique treated unit, but extensible to the case of multiple treated

units) is the SCM (Abadie and Gardeazabal, 2003; Abadie, 2021). In the BC carbon

tax case, the SCM constructs a set of synthetic DAs as a weighted combination of

control DAs by finding, for each treated unit i, a non-negative vector of weights

ωsc
i summing to one, which ensures that each convex combination of the outcome

variable for control units matches each outcome variable for the treated units for all

periods up to the intervention date. Through this procedure, reliance on the parallel

trends assumption, which is violated in my setting, is fundamentally weakened.

In order to combine the attractive features of both TWFE-DID (the inclusion of

additive unit-specific and time-specific fixed effects), and SCM (reducing the reliance

on the parallel trends assumption by weighting observations in order to ensure closely

matched pre-intervention trends), Arkhangelsky et al. (2021) have introduced a new

method, synthetic difference-in-differences (SDID), which employs time and unit

(two-way) fixed effects in the regression function (as in TWFE-DID), together with

unit-specific weights (as in SCM) and time-specific weights which lessen the role

of time periods that are largely divergent from post-treatment time periods. In a

nutshell, for each treated unit SDID estimates: (1) unit weights ωsdid
i which underpin

a synthetic control whose outcome is approximately parallel to the outcome for the

treated unit; (2) time weights λsdid
t which ensure that the average post-treatment

outcome for control units only differs by a constant from the weighted average of

pre-treatment outcome for the control units – a synthetic pre-treatment period using

controls. Once unit and time weights are calculated, SDID estimates a TWFE

regression on the resulting panel, identifying the SDID ATT τ̂ sdid by solving the

minimisation problem:19.

(τ̂ sdid, µ̂, η̂, θ̂) = argmin
τ,µ,η,θ

{
N∑
i=1

T∑
t=1

(Yit − µ− ηi − θt − τTAXit)
2ω̂sdid

i λ̂sdid
t

}
(3)

individual province, although sufficiently exogenous in timing (Rivers and Schaufele, 2015).
Nonetheless, as in Sager and Singer (2022), bias in the TWFE-DID estimator introduced by the
failure of the parallel trends assumption needs to be acknowledged and a different estimation
strategy can give rise to more precise estimates.

19Section B presents a detailed formal comparison between TWFE-DID, SCM, and SDID, drawing
on the seminal work of Arkhangelsky et al. (2021).
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In the remainder of the paper, I regard SDID as my preferred method in order to

estimate the effect of the 2008 BC carbon tax on air pollution co-benefits, as the

methodology allows me to overcome the apparent violation of the parallel trends

assumption in conventional TWFE-DID; nonetheless, I estimate my main regression

and robustness checks using all three of TWFE-DID, SCM and SDID, in order to

inspect the direction of the bias. I calculate standard errors for all methods using

the bootstrap variance estimation algorithm described in Arkhangelsky et al. (2021,

p. 4109), with 200 replications. The procedure constructs a bootstrap dataset by

sampling a portion of the original dataset with replacement, and computes the SDID

estimator τ (b) on this subset for each iteration b. The variance is then defined as:

V̂ b
τ =

1

B

B∑
b=1

(
τ̂ (b) − 1

B

B∑
b=1

τ̂ (b)

)2

(4)
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4. Results

In Figure 2 and Table 1, I report the results of the TWFE-DID, SCM and SDID

regressions, using the Meng et al. (2019) PM2.5 dataset. In the leftmost panel of

Figure 2, it can be inferred how the baseline TWFE-DID strategy suffers from

a violation of its foundational parallel trends assumption. The graphical repre-

sentation of the regression analysis aids this line of interpretation: the DID ATT

is indeed estimated by assuming that the outcome path of the treated units is

parallel to the outcome path of the controls, thus the coefficient, τ̂ did = 0.393 is

upward biased. In the centre panel of Figure 2, I plot the average outcome path

for the treated units and the traditional synthetic control. The improvement in

pre-treatment fit is dramatic, with a minimal average deviation between British

Columbian DAs and their controls, implying that the SCM performs well in giving

positive weights to control units which best approximate treated DAs’ outcome paths

and zero weight to control units which exhibit different trends. The direction of

bias from the TWFE-DID regression is positive: SCM indeed identifies an effect

of opposite sign to TWFE-DID, τ̂ sc = −0.142. Results for the SDID estimator are

graphically shown in the right-most panel of Figure 2. At the bottom of the panel,

pre-treatment time-weights are represented in pink. The estimator gives positive tem-

poral weights to periods for which the treated and control units exhibit similar trends.

Diff−in−Diff Synthetic Control Synthetic Diff−in−Diff

2000 2005 2010 2015 2000 2005 2010 2015 2000 2005 2010 2015
4

5

6

7

8

9

Year

P
M

2.
5

Control British Columbia

Figure 2: Graphical results from DID, SCM and SDID for PM2.5 concentrations, with
Meng et al. (2019) data. The 2008 carbon tax is denoted by a black vertical line.

The SDID estimator does a particularly good job in imposing pre-treatment parallel

trends in the years preceding the tax, even if weights λt are unevenly distributed over
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the pre-intervention period. However, negligible weights in 2007-2008 are reassuring,

given that a standard caveat in event-study methodologies is the excessive reliance

on the single period immediately preceding the intervention (Heckman and Smith,

1999). The SDID procedure is able to select control units which exhibit pre-treatment

trends that are almost perfectly parallel to BC’s outcome path, especially in the

four-year window preceding the intervention. The estimated ATT is τ̂ sdid = −0.363,

higher than the SCM ATT, and corresponding to a 5.2% reduction with respect to

pre-intervention mean pollution levels. I regard SDID as the preferred methodology

due to its greater flexibility and to the selection of a sparser set of control DAs20

While SCM obtains a near-perfect fit pre-treatment, the outcome path of its synthetic

unit heavily depends on the particular set of units receiving positive weights, which

in my highly disaggregated setting is not ideal21.

Table 1: Summary of τ̂ point estimates and standard errors from all
estimation methods, dependent variable from Meng et al. (2019).

(1) (2) (3)
DID SCM SDID

τ̂ 0.3925 -0.1421 -0.3633
(0.0074) (0.0809) (0.0219)

Unit FE ✓ ✓
Year FE ✓ ✓ ✓

ωi ✓ ✓
λt ✓

Nobs 432939 432939 432939

Notes: All point estimates represent the average impact of the 2008 carbon
tax during the 2009-2016 post-treatment period. Standard errors are
calculated using the bootstrap variance estimation algorithm described
in Arkhangelsky et al. (2021) with 200 replications. All regressions use
2000-2016 data.

20SDID selects indeed 6,258 control units among the untreated DAs and then performs DID on the
matched sample with the inclusion of unit and time fixed effects to aid the estimation.

21In Figure D.1, I aggregate all 6,258 DAs which receive positive weights to the CMA level, in order
to obtain the composition of synthetic BC in terms of percentages of other Canadian CMAs, in a
similar vein to the traditional SCM methodology of Abadie (2021).
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5. Mechanisms

5.1. Reductions in Transport Fuel Demand

The first candidate explanation for the observed reductions in particulate matter

concentrations is a change in consumer behaviour regarding transportation fuel.

Some evidence supporting this explanation is found in early analyses of the BC

carbon tax (e.g. Rivers and Schaufele, 2015; Lawley and Thivierge, 2018), which use

a limited post-intervention time period and only focus on gasoline consumption22.

On the contrary, fuel substitution away from gasoline and towards diesel is claimed

to be a potential mechanism behind the PM2.5 increases found in Saberian (2017),

notwithstanding the negative impacts found by the time series analysis of Bernard

and Kichian (2019) and the strong prevalence of gasoline vehicles among BC car

sales (see Figure C.3 and C.4).

I reconcile the evidence on the aggregate level effects of the carbon tax on transporta-

tion fuel demand by introducing a recently developed method for high-frequency time

series analysis: the Causal-ARIMA (C-ARIMA) estimator of Menchetti et al. (2022).

By exploiting features of ARIMA models, the method is especially appropriate to

analyse complex seasonal, nonstationary processes such as gasoline and diesel sales

observed monthly (see Figure C.1, panels A and B). C-ARIMA combines attractive

features from the DID and SCM estimator for the case in which no suitable control

unit is available23 and when the number of pre-intervention time periods is large24.

Under standard assumptions25, C-ARIMA is able to learn the treated unit’s time se-

ries dynamics and forecast it after the shock takes place. By using the forecasted series

as the treated unit’s counterfactual outcome, the method identifies two main sets of

causal effects: the temporal average causal effect and the cumulative treatment effect.

I run C-ARIMA separately for per capita monthly gasoline and diesel sales at the

aggregate BC level between January 1991 and December 2016. The intervention

date is July 2008, i.e. the specific month in which the BC carbon tax came into

effect. In Table 2, I report the results from estimations with and without a matrix

22Which accounts for most of the residential vehicle fleet (see Figure C.3) but does not include
heavy duty vehicles used in commercial and industrial operations (Bernard and Kichian, 2019).

23In my context, a pool of eligible control units is represented by other Canadian provinces. However,
other provinces exhibit diverging pre-intervention trends in gasoline sales (see Figure C.2) when
aggregating the TWFE-DID coefficients into an event study plot.

24As is the case in the monthly analysis of BC fuel consumption between January 1991 and December
2016, with 210 pre-intervention time periods.

25No temporal interference (i.e. absence of anticipation effects), covariates-treatment independence
and conditional stationarity (Menchetti et al., 2022).
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of business cycle controls26. Both the temporal average causal effect τ̂t and the

cumulative causal effect
∑T

t=tint
τ̂t are negative and statistically significant across all

specifications, highlighting a successful impact of the BC carbon tax in decreasing

fuel demand, consistently with Rivers and Schaufele (2015) and Bernard and Kichian

(2019). In Figure C.1, the results from the estimation are reported graphically.

Table 2: C-ARIMA: Monthly Gasoline and Diesel Demand

Gasoline Sales Diesel Sales
(1) (2) (3) (4)

τ̂t -3.883∗∗∗ -4.675∗∗∗ -1.756∗∗∗ -0.912∗∗∗

(0.553) (0.506) (0.412) (0.236)∑T
t=tint

τ̂t -396.052∗∗∗ -818.405∗∗∗ -179.089∗∗∗ -92.983∗∗∗

(56.453) (14.962) (42.066) (24.093)

Controls - ✓ - ✓

Observations 312 312 312 312

Notes: The dependent variable is total monthly gasoline (diesel) sales per
capita (in litres) recorded in British Columbia between January 1991 and

December 2016. τ̂t denotes the Temporal Average Causal Effect.
∑T

t=tint
τ̂t

denotes the Cumulative Causal Effect from the intervention period tint to
the last period under consideration T . Columns (2) and (4) include a matrix
of monthly province-level covariates, namely consumer price index, gasoline
(diesel) crude cost, population, unemployment rate, after tax income and
the US-CAD exchange rate. Significance levels ***: p < 0.01, **: p < 0.05,
*: p < 0.1

5.2. Commute Mode Switching

I analyse commute mode choices at the DA level as an additional mechanism driving

the main results. While commute mode is an imperfect measure of the number

and type of trips made by British Columbians, I can rely on the same administra-

tive level to the one used in the main analysis by retrieving information from the

2001, 2006, 2011, and 2016 Canadian censuses, thereby preserving granularity. In

Table 3 and Table 4, I report TWFE-DID regression results27 employing the share of

26Namely, provincial population, unemployment, after tax income, exchange rate and the cost of
crude gasoline and diesel, respectively.

27Due to the structure of the data, collected at 5-year intervals, I am prevented from using the
SCM and SDID methodology in this exercise; I thus resort to traditional TWFE-DID estimation
of commute mode switching, analysing the data separately for each category of commute mode.
Details on this estimation strategy are reported in Section C.2.

18



commuters using high-emissions and public transport commute modes, respectively 28.

In all tables, column (1) is the baseline specification, a simple TWFE-DID regres-

sion with DA and year fixed effects and no controls, employing the full panel of

DAs across census years. In column (4), I add weather controls for precipitation,

maximum and minimum temperature, and wind speed, plus the natural logarithm

of population and median income. When employing the full pool of control DAs,

the first result of note is that British Columbian DAs experience an average 4.2%

reduction in the use of cars, taxis, and motorcycles, which rises to 4.7% when adding

controls. This reduction is almost specular to the increase in the share of commuters

using public transport, biking and walking to reach their workplace (Table C.1).

Moreover, as evidenced in Table 4 and Table C.2, most of this increase (3.5-3.9%)

is due to a higher reliance on public transport, while a residual share of 0.5-0.7%

is due to a switch to active commuting. All results are confirmed and stronger in

magnitude when considering more restrictive specifications: columns (2) and (5)

restrict the specifications in (1) and (4) to the DAs which receive positive weights

in the main SDID regressions, in order to establish whether the mechanisms are

effectively retrieved when employing the same set of observations on which the main

ATT is estimated. Results are higher in magnitude by about 1%, jumping to a 5.3%

reduction in high-emission commute modes in the case without controls. Here, the

inclusion of control variables slightly dampens the impact to 5.2%; nonetheless, the

specularity with the increase in low-emission commute modes is preserved. Finally, in

columns (3) and (6) I augment the TWFE-DID regressions by retrieving an including

the weights from the main SDID regressions. I weigh all treatment observations

equally and all control observations according to the value of ωi they receive after

the data-driven SDID procedure. The magnitude of the increase in public transport

commute share increases further, to 4.2% in the case without covariates and is again

dampened to 4.1% in the case with covariates. The hypothesis of a behavioural

adjustment by BC citizens in response to the carbon tax is thus confirmed; residents

of BC’s DAs switch away from high-emissions commute modes towards low-emissions

ones, with public transport as the main container for these substitutions.

28As the low-emissions transport mode is the sum of public transport and zero-emissions modes,
I only report the results for public transport in the main text and present the aggregate low
emissions and the sub-split for zero-emissions in Table C.1, and Table C.2.
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Table 3: TWFE-DID results for high emissions commute mode

High Emission Commute Mode

(1) (2) (3) (4) (5) (6)

DID -0.0417∗∗∗ -0.0527∗∗∗ -0.0549∗∗∗ -0.0466∗∗∗ -0.0519∗∗∗ -0.0516∗∗∗

(0.0105) (0.0095) (0.0103) (0.0102) (0.0106) (0.0109)

DA FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓
SDID control pool ✓ ✓ ✓ ✓
SDID weights ✓ ✓

R2 0.87184 0.83989 0.84360 0.87595 0.84508 0.84847

Adjusted R2 0.82896 0.78629 0.79124 0.83400 0.79267 0.79721

Observations 101,358 38,769 38,769 100,244 38,348 38,348

Notes: The dependent variable is the dissemination area level share of high emissions commutes. All regressions include
dissemination area and year fixed effects. Columns (4)-(6) include controls for precipitation, maximum and minimum
temperature, and wind speed, plus the natural logarithm of population and median income. Columns (2), (3), (5) and (6)
restrict the control unit pool to DAs which receive positive weights in the main SDID regression. Columns (3) and (6)
additionally include the estimated SDID unit weights ωi as regression weights. Standard errors are clustered at the CMA
level. ***: p < 0.01, **: p < 0.05, *: p < 0.1

Table 4: TWFE-DID results for public transport

Public Transport Commute Mode
(1) (2) (3) (4) (5) (6)

DID 0.0352∗∗∗ 0.0410∗∗∗ 0.0417∗∗∗ 0.0391∗∗∗ 0.0422∗∗∗ 0.0414∗∗∗

(0.0107) (0.0107) (0.0112) (0.0115) (0.0115) (0.0111)

DA FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓
SDID control pool ✓ ✓ ✓ ✓
SDID weights ✓ ✓

R2 0.83768 0.78668 0.78011 0.84196 0.79197 0.78571
Adjusted R2 0.78336 0.71526 0.70650 0.78851 0.72160 0.71322
Observations 101,358 38,769 38,769 100,244 38,348 38,348

Notes: The dependent variable is the dissemination area level share of public transport commutes. All regressions
include dissemination area and year fixed effects. Columns (4)-(6) include controls for precipitation, maximum and
minimum temperature, and wind speed, plus the natural logarithm of population and median income. Columns (2), (3),
(5) and (6) restrict the control unit pool to DAs which receive positive weights in the main SDID regression. Columns
(3) and (6) additionally include the estimated SDID unit weights ωi as regression weights. Standard errors are clustered
at the CMA level. ***: p < 0.01, **: p < 0.05, *: p < 0.1
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6. Robustness Checks

In this section, I test the consistency of the main results by employing the van

Donkelaar et al. (2019) PM2.5 dataset, and performing additional analyses on sub-

samples of the full dataset. As I show in the following sections, my results are robust

in each specification.

6.1. Main results with van Donkelaar et al. (2019) PM2.5 data

I repeat the TWFE-DID, SCM and SDID estimation using the van Donkelaar et al.

(2019) PM2.5 dataset, which is available between 2000 and 2018. Notwithstanding

the high correlation between the two outcome variables, as outlined in Figure A.3,

both the treatment and control pre-intervention trends exhibit some differences with

respect to the Meng et al. (2019) dataset29. The violation of the parallel trends as-

sumption is once again highlighted in the graphical representation of the TWFE-DID

regression in Figure D.3, which, differently from the previous estimation, identifies

a negative effect of the 2008 carbon tax on emissions of τ̂ did = −0.495 (see Table D.1).

The SCM, represented graphically in the middle panel of Figure D.3, again obtains a

good pre-treatment fit, signalling that each British Columbian DA’s outcome path

is best approximated by a convex combination of control DAs rather than equally

weighted control units. Furthermore, as evidenced in Table D.1, the direction of the

TWFE-DID bias is confirmed: the SCM estimates a negative ATT of τ̂ sc = −0.709,

therefore qualitatively reinforcing the SCM result of Table 1. A similar conclusion

can be drawn from the results of the SDID estimation, presented in the right-most

panel of Figure D.3. The SDID procedure is able to select control units30 which

exhibit pre-treatment trends that are almost perfectly parallel to BC’s outcome

path, with the exception of outlying time periods which receive zero-weights in the

estimation. The estimated ATT is τ̂ sdid = −0.890, therefore slightly lower, but

qualitatively similar to the SCM ATT. In terms of magnitude, both the SCM and

SDID regressions identify a substantial drop in PM2.5 concentrations with respect to

2000-2007 levels, corresponding to a reduction of 10.9% from the pre-intervention

PM2.5 mean for British Columbia.

29However, the temporal location of peaks and troughs is generally respected, as is the relationship
between the BC and control units outcome path. Indeed, DAs located in British Columbia always
exhibit lower average annual concentrations of particulate pollution, and their PM2.5 trend prior
to 2008 appears to decline at an even faster pace than for control observations, barring some
peaks in concentrations typical of the control provinces.

30The composition of the donor pool, aggregated to the CMA level, is reported in Figure D.2.
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6.2. Narrower Spatial and Temporal Scope

First, I restrict the treated pool to DAs within the Vancouver metropolitan area,

excluding all DAs in the Abbotsford and Victoria CMAs. The resulting treatment

cohort is comprised of 2874 DAs, vis-à-vis the 3490 DAs constituting the entire

treatment unit pool; the control pool is kept the same, with 21989 control DAs. I

then run TWFE-DID, SCM and SDID on the restricted sample, in order to be able

to compare my results with those obtained by Saberian (2017). Perhaps unsurpris-

ingly, given the relatively small number of DAs pertaining to the Abbotsford and

Victoria CMAs, the results (reported in Figure D.4 and Table D.2) are qualitatively

unchanged from the main regressions using the Meng et al. (2019) dataset.

Secondly, I restrict the dataset to those DAs corresponding to the location of NAPS

monitoring stations (see Figure A.1), by spatially joining monitoring stations’ lo-

cations to DAs31. Here, the size of the dataset is considerably restricted: the

cross-section of DAs kept in the treated pool counts just 25 observations, while

106 DAs are kept in the control pool. This exercise allows me to infer whether my

results also arise when considering just those locations in which pollution monitors

have been established, thereby restricting the analysis to areas in which pollution

is likely to be a greater concern. Once again, the results (presented in Figure D.5

and Table D.3), are qualitatively similar to the main specifications, a first signal

that air pollution experiences greater reductions in places which exhibit greater

levels of pre-intervention concerns about air quality. Notably, the performance of

the SDID estimator is not considerably worsened on this much smaller sample, with

both estimators achieving a reasonable pre-treatment fit, and therefore identifying

credible ATTs. On the contrary, the fit of the SCM seems to be substantially worse,

and the method identifies a much higher ATT than in other specifications.

Lastly, I restrict the estimation window to 2000-2013, for two main reasons: checking

whether the carbon tax ramp-up is the main mechanism behind the continuous

reductions 32, and comparing my results with Saberian (2017). The results, presented

in Figure D.6 and Table D.4 identify a much higher ATT of τ̂ sdid = −0.67, which

corroborates the first hypothesis and is not comparable with the study by Saberian

(2017), which identified an increase in particulate pollution over the same temporal

window, possibly due to selection bias in the establishment of monitoring stations.

31I match DAs with all monitoring stations in the dataset, regardless of the date of establishment
of each monitoring station, in order to maximise observations.

32In 2012, the carbon tax was frozen at $30/tCO2 as reported in Section 1.
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6.3. Using NAPS Monitoring Stations

A further analysis is reported in Table D.5 and D.6. Here, I depart from using

remotely sensed measurements, employing monthly mean concentrations and the

number exceedances of the daily safe threshold of PM2.5
33 retrieved from NAPS

monitoring stations. As in Saberian (2017), all analyses employ the TWFE-DID

estimator with unit and month-year fixed effects. The results obtained by Saberian

(2017) are confirmed for a panel of the top 15 Canadian cities for 1998-2013 (Ta-

ble D.6) for both concentrations and exceedances. However, the detrimental effect

of the carbon tax on air quality is not statistically significant in any specification

exploiting the full panel of NAPS stations, and when extending the panel to 2016

(Table D.5). As shown in Section 4, the TWFE-DID estimator exhibits positive bias

in this setting, which is the likely explanation for this puzzle.

33The daily safe threshold for PM2.5 is 25 µg/m3.
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7. Environmental Justice Gaps

In light of a growing literature in environmental justice (e.g. Sager and Singer,

2022; Hernandez-Cortes and Meng, 2023; Grainger and Ruangmas, 2018), I examine

efficiency-equity trade-offs in the realisation of co-benefits, analysing whether the

estimated air pollution reductions arise heterogeneously over metropolitan areas.

In the main analysis, the parameter identifying the effect of the 2008 BC carbon

tax on PM2.5 emissions has always been assumed as constant across treated units.

Nonetheless, when dealing with disaggregated data within Census Metropolitan

Areas, a homogeneously estimated ATT is likely to mask substantial heterogeneities

across DAs which could be highly informative about the performance of different

locations within metropolitan areas.

A first channel to examine is certainly that of pre-existing pollution levels: standard

economic theory would in fact predict that emission abatement would happen first

where the marginal cost of reducing emissions is lower, i.e. where pre-existing pollu-

tion is higher (that is, lower-hanging fruits would be picked earlier). This avenue

is explored by Sager and Singer (2022) and Auffhammer et al. (2009), who find

substantially higher reductions in PM2.5 and PM10 due to the Clean Air Act in

nonattainment US census tracts that are more polluted in the three years preceding

the implementation of the policy. In light of the results of Carozzi and Roth (2022)

and Borck and Schrauth (2021), it is also worth exploring whether heterogeneity

in air pollution reductions arises at different levels of the population density dis-

tribution: indeed, while densely populated areas have been shown to experience

higher concentrations of PM2.5 particulate, usually population density is higher in

city centres, where greater opportunities for substitution away from cars may arise.

Lastly, an unexplored channel in carbon pricing is that of “spatial regressiveness”.

A large body of research has shown that carbon pricing is regressive along income

and wealth dimensions, but the relationship between the geographic distribution of

income and wealth and the burden of carbon taxation is relatively underinvestigated.

Therefore, I also inspect the heterogeneity of PM2.5 reductions with respect to the

geographic distribution of median income and the material deprivation index.

As the SDID methodology does not allow the inclusion of interactions in the estimation

procedure, I split the treatment sample into quintiles of baseline34 PM2.5, population

34For time-varying covariates I use the average of the three years prior to treatment as the baseline
value; for variables retrieved from the Canadian census, I use their 2006 values, i.e. the last
observation prior to the implementation of the carbon tax.
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density, median income and material deprivation index. I then run SDID separately

for each quintile and, in Figure 3, I summarise the results graphically.

−0.6

−0.5

−0.4

−0.3

−0.2

1 2 3 4 5
Baseline PM2.5 Quintile

P
M

2.
5 

R
ed

uc
tio

n

A

−0.6

−0.5

−0.4

−0.3

1 2 3 4 5
Baseline Population Density Quintile

P
M

2.
5 

R
ed

uc
tio

n

B

−0.65

−0.55

−0.45

−0.35

−0.25

1 2 3 4 5
Baseline Median Income Quintile

P
M

2.
5 

R
ed

uc
tio

n

C

−0.6

−0.5

−0.4

−0.3

1 2 3 4 5
Baseline MDI Quintile

P
M

2.
5 

R
ed

uc
tio

n

D

Figure 3: Graphical SDID results: heterogeneity by quintiles of baseline characteristics
for the treated sample. Panel A) Quintiles of baseline PM2.5; B) Quintiles of baseline
population density; C) Quintiles of baseline median income; D) Quintiles of baseline
material deprivation index. ATT point estimates reported in red, with 95% confidence
intervals shaded in grey.

Quintile-SDID results for baseline PM2.5 concentrations are presented in panel A of

Figure 3. It is immediate to infer that greater reductions arise in DAs with lower

pollution levels between 2005 and 2007. The ATT is in the [-0.2,-0.6] range, with the

lowest quintiles of baseline pollution experiencing 2.2 times larger reductions with

respect to the highest quintiles. Panel (B), which shows the SDID effects for quintiles

of baseline population density, is consistent with the results for baseline pollution

levels. Denser locations within metropolitan areas see lower reductions of particulate

matter with respect to less dense DAs, underpinning a worsening of the pollution-

density gap (Carozzi and Roth, 2022). Taken in conjunction, these insights appear

to confirm that the 2008 carbon tax was not effective in curtailing traffic in more

central areas within British Columbian metropolitan areas, but rather had greater

effect in peri-urban locations. More surprising are the results in panel (C) and (D),

which highlight the fact that relatively better off DAs within metropolitan areas have
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experienced greater reductions, possibly reflecting an inverse relationship between

density and income, but more importantly signalling that the pollution-income gap

has increased as a result of the carbon tax. This result is a clear confirmation of the

“spatial regressiveness” hypothesis, i.e. that a carbon tax is not only regressive on

the vertical income dimension, but also geographically, with greater gains in better

off areas.

8. Health Gains

In order to understand the magnitude of the economic co-benefits from air pollution

reductions arising due to the 2008 carbon tax, I convert the PM2.5 estimates from Sec-

tion 4 into a monetary quantification of the associated health gains. Notwithstanding

the relatively low concentrations of particle pollution in the the British Columbian

context, where pre-treatment air quality was of substantial better quality than in

other North American locations (e.g. in the USA), it is important to note that the

concept of “safe” thresholds for particle pollution concentrations is more normative

than positive. Indeed, some studies (e.g. Krewski et al., 2009) have highlighted that

the marginal benefits from abatement may be nonlinear in baseline concentrations,

with lower gains from abatement at higher levels of baseline air pollution. Hence, any

improvement in air quality is likely to carry significant benefits in terms of reductions

in mortality rates; moreover, the estimates reported in this section are a lower bound

of the gains from local pollution reductions, as PM2.5 has been shown to have a

multidimensional impact, ranging from health to productivity, to cognition and the

formation of human capital (Aguilar-Gomez et al., 2022).

Drawing from Fowlie et al. (2019) and Carozzi and Roth (2022), my approach consists

of two steps. I first estimate the impact of a reduction in PM2.5 concentrations in

terms of mortality reductions, using concentration-response (“hazard”) functions

derived from the environmental health literature. Second, I retrieve the central

estimate of the willingness to pay (WTP) to avoid a premature death from Health

Canada (2021) and Chestnut and De Civita (2009)35, and multiply the mortality

reductions estimated in the first step by the central estimate of the Value of a

35It must be noted that the reported estimate for the Value of a Statistical Life does not reflect
directly the economic value of an individually identified person’s life, but rather the aggregation
of estimates of the WTP for a small reduction in mortality risk. Using the VSL central estimate
of $6,500,000, for example, the average Canadian would be willing to pay $65 to reduce the risk
of premature death by 1 out of 100,000.
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Statistical Life (VSL), equal to $6.5 million in 2007 Canadian dollars, for each DA

in the census metropolitan areas of Vancouver, Victoria, and Abbotsford.

The traditional form of the Cox proportional hazard model used in the environmental

health literature is the log-linear regression reported in Fowlie et al. (2019):

ln(γ) = ζ + αPM2.5 (5)

Where ln(δ) is the natural logarithm of mortality risk, ζ = ln(Z) , and PM2.5 are the

local pollution concentrations. The term Z is a vector of covariates other than PM2.5

which impact mortality, and can be rewritten as Z = Z0 + exp(β1x1 + ...+ βnxn),

with Z0 being the mortality risk when all covariates are zero. Indicating γ0 as the

baseline mortality risk, and rearranging terms36, the change in mortality rate ∆γ

can be related to the change in pollution levels ∆PM2.5 with the following equation:

∆γ = γ0

(
1− 1

eα∆PM2.5

)
(6)

In order to find the total number of deaths for each DA associated with the above

change in mortality rate ∆γ, this quantity needs to be multiplied by the population

of each DA37:

∆Deathsi = Populationi

[
γ0

(
1− 1

eα∆PM2.5

)]
(7)

And finally, the monetary health gains in terms of mortality reductions at the DA

level, ∆Yi, are obtained by multiplying the above estimates by the VSL figure of

$6.5 million CAD obtained from Health Canada (2021):

∆Yi = V SL ∗∆Deathsi (8)

Hence, in order to estimate the model outlined in Equation 6, and thus obtain

mortality rate changes at the DA level, I first need to estimate the baseline mortality

rate γ0. Consistently with the literature, I obtain data for deaths due to lung

cancers, all circulatory diseases, and all respiratory diseases from the ICD.10 selected

causes of death at the CMA level from Statistics Canada (2021a). I divide total

36The derivation is as follows (Carozzi and Roth, 2022):

∆γ = Z(eαPM0
2.5 − eαPM1

2.5) → ∆γ = ZeαPM0
2.5

[
1− e−α(PM0

2.5−PM1
2.5)
]

37I use the baseline population level, that is, the population of each DA in the year 2008.

27



deaths due to the listed causes by total CMA population, and assign the resulting

(baseline) mortality rates to all DAs in a given CMA. The parameter α is usually

not directly indicated in epidemiology studies, which instead report the relative risk

(RR) increase due to a given increase in PM2.5. For instance, Lepeule et al. (2012)

report an all-cause RR of 1.14 associated with a ∆PM2.5 of 10 µg/m3, while Krewski

et al. (2009)’s estimate of RR is 1.06. However, it is straightforward to retrieve α

by exploiting the relationship between RR and ∆PM2.5, as reported in Carozzi and

Roth (2022): α = ln(RR)/∆PM2.5.

I employ these two estimates, in combination with the estimated PM2.5 reductions

for each quintile of the pre-intervention PM2.5 distribution, in order to calculate the

gains from mortality reductions at the DA level for the three CMAs included in the

treated sample: Vancouver, Victoria and Abbotsford. In Figure 4, I visually report

the results of this exercise for each CMA, using RR = 1.14 as estimated by Lepeule

et al. (2012) (visual results using the RR estimate from Krewski et al. (2009) are

reported in Figure F.1).

The left panel maps the estimated mortality reductions per 1000 people (estimated

according to Equation 7), while the right panel shows the associated per capita

health gains, estimated via Equation 8. The median per capita monetary gains due

to the estimated reductions in PM2.5 are large: $198 when using the Lepeule et al.

(2012) RR and $88 with the RR from Krewski et al. (2009)38.

The monetary value of per capita air quality co-benefits from the BC carbon tax is

1.7 times of the per capita low income climate action tax credit, i.e. the carbon tax

rebate for low-income families39. Moreover, the total monetary value of co-benefits

ranges between $507.2 million and $1.03 billion annually, or 40-81% of annual carbon

tax revenues once the tax reached its $30/tCO2 level in 2012 (Ministry of Finance,

2013). The spatial distribution of these gains shows substantial heterogeneity: in

particular, it is once again striking how air pollution co-benefits seem to be concen-

trated in peri-urban areas and positively correlated with income (see also Figure F.2).

The results confirms that carbon taxation appears to be spatially regressive over

urban areas, with greater co-benefits arising in higher income, low pollution tracts,

underpinning increasing environmental justice gaps, as also evidenced in Section 7.

38The same gains are $402 and $178, respectively, if calculated using the ATT estimated with the
van Donkelaar et al. (2019) PM2.5 dataset instead of Meng et al. (2019).

39For this comparison, I use the last revision of the low income climate action tax credit, amounting
to $115.50 per adult plus $34.50 per child (Ministry of Finance, 2013).
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Mortality reductions (x1000), 

RR from Lepeule et al. (2012)

0 to 28
28 to 83
83 to 259
259 to 675
675 to 1,060

Health gains per capita (2007$), 
RR from Lepeule et al. (2012)

92.3 to 135.1
135.1 to 187.8
187.8 to 199.3
199.3 to 206.1
206.1 to 211.4

Mortality reductions (x1000), 

RR from Lepeule et al. (2012)

0.0 to 35.4
35.4 to 86.6
86.6 to 201.5
201.5 to 381.8
381.8 to 448.3

Health gains per capita (2007$), 
RR from Lepeule et al. (2012)

139.7 to 204.4
204.4 to 284.1
284.1 to 301.4
301.4 to 311.8
311.8 to 319.8

Mortality reductions (x1000), 

RR from Lepeule et al. (2012)

1.8 to 27.8
27.8 to 71.9
71.9 to 145.0
145.0 to 311.5
311.5 to 393.8

Health Gains per capita (2007$), 
RR from Lepeule et al. (2012)

112.4 to 164.5
164.5 to 228.6
228.6 to 242.5
242.5 to 250.8
250.8 to 257.3

Figure 4: Spatial distribution of mortality reductions per 1000 residents (left panel) and
health gains per capita (right panel) using the RR estimates from Lepeule et al. (2012),
for the Vancouver (top row), Victoria (middle row) and Abbotsford (bottom row) CMAs.
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9. Conclusions

This paper connects two areas of extreme concern for what regards environmental

policy. Air pollution co-benefits from carbon taxation are likely to be large in

magnitude and may partially or fully offset the costs of climate mitigation. Incor-

porating the monetary value of realised air quality improvements in cost-benefit

analyses of carbon taxes is essential in order to correctly calibrate them and enhance

their attractiveness. Conversely, environmental justice implications of market-based

instruments are an often overlooked dimension due to the focus on efficiency, rather

than equity. Ignoring potentially regressive consequences in terms of the societal

distribution of co-benefits could hinder public support towards climate policy.

I show that the introduction of carbon pricing can significantly improve local air

quality. After the implementation of the 2008 carbon tax, PM2.5 concentrations

dropped by 5.2-10.9% in British Columbian dissemination areas, compared to a

counterfactual obtained through the synthetic difference-in-differences estimator.

The air quality improvement is driven by reductions in fuel demand and by transport

mode switching, mostly in favour of public transport. In terms of environmental

justice, the estimated reductions are significantly heterogeneous across the geography

of British Columbian census metropolitan areas, with greater effects found in less

polluted, less dense areas and in better off neighbourhoods. These results highlight a

spatial dimension of the regressive nature of carbon pricing: a carbon tax can indeed

exacerbate the pre-existing pollution gap, and the pollution-income gap. Instruments

designed to attenuate inequitable effects may then be designed in advance of the

deployment of carbon pricing in order to smooth potentially regressive consequences.

Finally, I convert the improvements in air quality into reductions in mortality rates

and monetary health gains from co-benefits of carbon taxation. With a median

estimate of $198 per capita, the health gains are large and comparable to the rebates

offered to low-income families in British Columbia to mitigate the impact of the

tax on their disposable income. Health benefits are heterogeneously distributed

across metropolitan areas and accrue primarily to neighbourhoods in higher income

brackets, once again highlighting the need for redistribution in the design of climate

policy.
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A. Descriptive Statistics

Figure A.1: Availability of PM2.5 readings in the National Atmospheric Surveillance
Program database between 2000 and 2018. Lighter colours and larger dot sizes indicate
higher availability of readings (monitoring stations which were added earlier).

37



0

5

10

15

5 10
Satellite PM2.5

M
on

ito
re

d 
P

M
2.

5

Figure A.2: Scatterplot of satellite PM2.5 (Meng et al., 2019) (y-axis) and PM2.5 from
NAPS monitoring stations (x-axis). Both measures are in µg/m3. The correlation coefficient
is 0.597.
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Figure A.3: Scatterplot of satellite PM2.5 (Meng et al., 2019) (x-axis) vs Satellite PM2.5

(van Donkelaar et al., 2019) (y-axis). Both measures are in µg/m3. The correlation
coefficient is 0.729.
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Table A.1: Summary Statistics, 2000-2007

Control Provinces British Columbia

Variable N Mean SD N Mean SD

PM2.5 (van Donkelaar et al., 2019) 175870 9.52 1.54 27920 8.06 1.19

PM2.5 (Meng et al., 2019) 175870 8.61 2.07 27920 6.95 1.39

Pop. Density (Rose et al., 2020) 175912 3358.26 3375.33 27920 3169.94 2136.98

Median Income 43978 26341.65 9088.59 6980 25055.65 8090.75

Material Deprivation Index 20606 46.48 28.60 3313 43.57 28.12

High Emission Commute % 43701 74.93 18.33 6926 77.64 16.37

Low Emission Commute % 43701 24.52 18.26 6926 21.62 16.26

Public Transport Commute % 43701 17.02 14.48 6926 13.06 10.68

Zero Emission Commute % 43701 7.50 9.43 6926 8.56 10.79

Precipitation (Abatzoglou et al., 2018) 175768 74.05 21.74 27920 131.20 37.06

Max Temperature (Abatzoglou et al., 2018) 175768 11.93 1.58 27920 14.55 0.66

Min Temperature (Abatzoglou et al., 2018) 175768 1.74 2.50 27920 6.46 0.62

Wind Speed (Abatzoglou et al., 2018) 175768 3.63 0.49 27920 2.98 0.16

Table A.2: Summary Statistics, 2008-2018

Control Provinces British Columbia

Variable N Mean SD N Mean SD

PM2.5 (van Donkelaar et al., 2019) 241865 8.15 1.51 38390 6.09 0.95

PM2.5 (Meng et al., 2019) 197888 7.35 1.73 31410 6.07 1.10

Population Density (Rose et al., 2020) 241879 3614.39 3365.36 38390 3478.58 2305.69

Median Income 43978 33324.06 11718.48 6980 31772.63 9765.79

High Emission Commute % 43806 74.39 20.20 6955 72.94 18.75

Low Emission Commute % 43806 25.06 20.12 6955 26.25 18.61

Public Transport Commute % 43806 18.85 15.89 6955 18.38 13.38

Zero Emission Commute % 43806 6.21 10.15 6955 7.87 11.32

Precipitation (Abatzoglou et al., 2018) 241681 77.57 21.99 38390 134.58 37.33

Max Temperature (Abatzoglou et al., 2018) 241681 12.32 1.76 38390 14.58 0.86

Min Temperature (Abatzoglou et al., 2018) 241681 2.11 2.59 38390 6.56 0.80

Wind Speed (Abatzoglou et al., 2018) 241681 3.64 0.48 38390 3.00 0.19
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Figure A.4: Trends in satellite PM2.5 (Meng et al., 2019), British Columbia and average
of control provinces, between 2000 and 2016. The implementation of the carbon tax in
2008 is highlighted by the dashed vertical line.
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Figure A.5: Trends in satellite PM2.5 (van Donkelaar et al., 2019), British Columbia and
average of control provinces, between 2000 and 2018. The implementation of the carbon
tax in 2008 is highlighted by the dashed vertical line.
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Figure A.6: Event study aggregation of a TWFE-DID regression with PM2.5 (Meng et al.,
2019) as the dependent variable. Event study coefficients reported in black; aggregate pre-
and post-treatment effects reported in red.
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B. Comparison between TWFE-DID, SCM and SDID

In order to formally explain how SDID combines features from TWFE-DID and SCM,

let me consider a balanced panel with N observations and T time periods. In the

British Columbian case, the outcome variable is PM2.5it, and the binary treatment

is TAXit. Let i = 1, ..., Ntr be the treated DAs in BC, and i = Ntr + 1, ..., Nco be

the DAs in control provinces. The baseline TWFE-DID regression problem can be

expressed as:

(τ̂ didµ̂, η̂, θ̂) = argmin
τ,µ,η,θ

{
N∑
i=1

T∑
t=1

(PM2.5it − µ− ηi − θt − τTAXit)
2

}
(9)

Which is solved without the use of unit or time-specific weights, but with the inclusion

of unit and time-specific fixed effects ηi and θt as also illustrated in Equation 2. The

SCM estimator, instead, does not employ unit fixed effects, but includes time fixed

effects and unit-specific weights ωsc
i :

(τ̂ sc, µ̂, η̂, θ̂) = argmin
τ,µ,η,θ

{
N∑
i=1

T∑
t=1

(PM2.5it − µ− θt − τTAXit)ω̂
sc
i

}
(10)

Finally, the SDID estimator combines features from Equation 9 and Equation 10.

Unit weights ω̂sdid
i are chosen such that the pre-treatment outcome path of control

DAs are parallel to those of the treated units40:

ω0 +
Nco∑

i=Ntr+1

ω̂sdid
i PM2.5it ≈

1

Ntr

Ntr∑
i=1

PM2.5it (11)

Moreover, time weights λ̂sdid
t need to ensure that the pre-treatment levels for the

control units differs from the post-treatment levels for the same units only by a

constant. Letting t = 1, ..., T be the total length of the panel, Tpre be the number of

pre-intervention periods, and Tpost be the number of post-intervention periods, the

condition can be expressed as:

40Unit-specific weights are found using a regularisation parameter ζ, as in Doudchenko and Imbens
(2016), which aids the estimation strategy by increasing the dispersion of the weights and ensuring
their uniqueness. When the intercept ω0 and the regularisation parameter are set to 0, the unit
weights ωi correspond to the SCM weights in Abadie et al. (2010). For further details on the
procedure used to estimate ζ, please refer to Arkhangelsky et al. (2021).
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λ0 +

Tpre∑
t=1

λ̂sdid
t PM2.5it ≈

1

Tpost

T∑
t=Tpre+1

PM2.5it (12)

Thus, the regression problem for the SDID estimator can be expressed as a weighted

TWFE-DID problem which incorporates unit and time-specific fixed effects ηi and

θt, plus unit and time-specific weights ωi and λt, as illustrated in Equation 13:

(τ̂ sdid, µ̂, η̂, θ̂) = argmin
τ,µ,η,θ

{
N∑
i=1

T∑
t=1

(Yit − µ− ηi − θt − τTAXit)
2ω̂sdid

i λ̂sdid
t

}
(13)
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C. Additional Details on Mechanisms

C.1. Fuel Demand
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Figure C.1: Graphical results from the C-ARIMA regressions on monthly gasoline and
diesel sales. Panel (A) and (B) show the observed and forecasted gasoline and diesel sales
time series for the full post-intervention horizon. Panels (C) and (D) represent the gap
between observed and forecasted series for gasoline and diesel sales.
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Figure C.2: Event study regression of monthly gasoline sales at the province level.
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C.2. Commute Mode Switching Empirical Analysis

Ideally, when concerned with the estimation of PM2.5 reductions arising from the

implementation of carbon pricing, I would look at DA-level reductions in motor

fuel sales or in the quantity of vehicle kilometres travelled; however, these data

are not available at the desired level of granularity for Canada between 2000 and

2018. The only precedent of a paper studying the relationship between the 2008

BC carbon tax and air quality in Canadian cities is the working paper of Saberian

(2017), who restricts the analysis to Vancouver and uses monitoring stations data

in order to infer her result – pointing to a worsening in air pollution following the

carbon tax. The analysis of mechanisms leading to the result in Saberian (2017)

highlights gasoline-to-diesel fuel switching as the potential causal driver of increased

air pollution. However, the evidence is only anecdotal, as no evidence supporting the

claim is presented in the study. Moreover, while Canadian province-level data on

vehicle sales disaggregated by type of fuel is only available from 2011 onwards, the

post-2011 trends in sales of diesel vehicles are relatively flat (See Figure C.4), and

the landscape seems to be dominated by gasoline cars (See Figure C.3), suggesting

that an eventual gas-to-diesel switch caused by the carbon tax incentive would have

produced all of its results between July 2008 and January 2011 before bottoming

out; the evidence for this conclusion is not very strong as a result. Another potential

mechanism behind an increase in air pollution could derive from an exceptionally

high rate of replacement in BC’s car fleet with respect to other Canadian provinces,

caused by the willingness of BC’s residents to increase their cars’ fuel efficiency

and realise savings at the pump. If the savings per each tank refuel were sufficient

to offset the increase in gasoline prices due to the carbon tax, British Columbian

residents could have potentially travelled more kilometres than prior to the tax,

thereby increasing road congestion and hence pollution due to a rebound effect. As

shown in Figure C.5 there has indeed been a rapid increase in truck and SUV sales

in British Columbia after 2008; however, this increase is paralleled by similar jumps

in truck sales in all large Canadian provinces41, and it thus seems implausible to

attribute it to the marginal effect of the carbon tax in raising fuel prices.

I instead exploit the information contained in the 2001, 2006, 2011 and 2016 waves

of the Canadian census, which contains data on commute-to-work modes at the DA

level for all Canadian CMAs. While the information on commute modes is not an

exhaustive representation of all car trips made in each DA, the granularity of the

data may shed light on whether residents of DAs located in British Columbia have

41Namely, Alberta, Ontario and Quebec.
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adjusted their behaviour following the implementation of the carbon tax, substituting

public transport or active commuting modes such as cycling and walking for car

trips. In particular, I estimate the following equation:

Modeit = τTAXit + θt + ηi + ϵit (14)

Where Modeit is the share of each commute mode (high emission, low emission,

public transport and zero emission), Taxit is the carbon tax DID binary variable, θt

and ηi are time and unit-specific fixed effects, and ϵit is an idiosyncratic error term.

In additional specifications, I also add a vector of controls Xit which account for

population density, median income, and weather covariates (precipitation, maximum

and minimum temperature, and wind speed), hence the estimating equation becomes:

Modeit = τTAXit + βXit+ θt + ηi + ϵit (15)

I initially run the TWFE-DID regressions for the whole sample, without trimming

the control pool. In further specifications, I restrict the control sample to the units

which receive positive ωi weights in the SDID estimation of the main result, in order

to ensure comparability across treatment and control cohorts and reduce the reliance

on potentially violated parallel trends. Further, I retrieve the ωi weights from the

SDID estimation and weigh my restricted TWFE-DID regressions with the SDID

weights, assigning equal weights 1
Ntr

to the treatment cohort.
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Figure C.3: New vehicle registrations in BC, 2011-2021: gasoline and all other fuel types.
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Figure C.4: New vehicle registrations in BC, 2011-2021: all other fuel types.
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Figure C.5: Passenger cars vs Truck and SUV sales, large Canadian Provinces, 1990-2021.
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Table C.1: TWFE-DID results for low emissions commute mode

Low Emission Commute Mode

(1) (2) (3) (4) (5) (6)

DID 0.0408∗∗∗ 0.0516∗∗∗ 0.0535∗∗∗ 0.0457∗∗∗ 0.0510∗∗∗ 0.0506∗∗∗

(0.0111) (0.0103) (0.0110) (0.0109) (0.0113) (0.0114)

DA FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓
SDID control pool ✓ ✓ ✓ ✓
SDID weights ✓ ✓

R2 0.87321 0.84174 0.84532 0.87715 0.84674 0.84996

Adjusted R2 0.83078 0.78876 0.79354 0.83560 0.79490 0.79920

Observations 101,358 38,769 38,769 100,244 38,348 38,348

Notes: The dependent variable is the dissemination area level share of low emissions commutes. All regressions include
dissemination area and year fixed effects. Columns (4)-(6) include controls for precipitation, maximum and minimum
temperature, and wind speed, plus the natural logarithm of population and median income. Columns (2), (3), (5) and
(6) restrict the control unit pool to DAs which receive positive weights in the main SDID regression. Columns (3) and
(6) additionally include the estimated SDID unit weights ωi as regression weights. Standard errors are clustered at the
CMA level. ***: p < 0.01, **: p < 0.05, *: p < 0.1

Table C.2: TWFE-DID results for zero emissions commute mode

Zero Emission Commute Mode
(1) (2) (3) (4) (5) (6)

DID 0.0057∗∗ 0.0106∗∗∗ 0.0117∗∗∗ 0.0066∗∗∗ 0.0088∗∗∗ 0.0092∗∗∗

(0.0025) (0.0017) (0.0021) (0.0022) (0.0016) (0.0016)

DA FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓
SDID control pool ✓ ✓ ✓ ✓
SDID weights ✓ ✓

R2 0.80811 0.80808 0.81877 0.81200 0.81355 0.82463
Adjusted R2 0.74390 0.74383 0.75810 0.74841 0.75047 0.76531
Observations 101,358 38,769 38,769 100,244 38,348 38,348

Notes: The dependent variable is the dissemination area level share of zero emissions commutes. All regressions
include dissemination area and year fixed effects. Columns (4)-(6) include controls for precipitation, maximum and
minimum temperature, and wind speed, plus the natural logarithm of population and median income. Columns (2),
(3), (5) and (6) restrict the control unit pool to DAs which receive positive weights in the main SDID regression.
Columns (3) and (6) additionally include the estimated SDID unit weights ωi as regression weights. Standard errors
are clustered at the CMA level. ***: p < 0.01, **: p < 0.05, *: p < 0.1
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D. Robustness Checks

D.1. Composition of SDID Control Pools

Ottawa

Thunder Bay

Quebec

Windsor

Hamilton

Saint John

Sherbrooke

Trois Rivieres

Saguenay

Kingston

Halifax

St. Catharine's

St. John's

London

Kitchener

Winnipeg

Toronto

Calgary

Saskatoon

Regina

Montreal

Edmonton

0.00 0.05 0.10 0.15 0.20
SDID weight

Figure D.1: Composition of the synthetic DID unit of Figure 2. Individual DA weights
are aggregated up to the CMA level.
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Figure D.2: Composition of the synthetic DID unit of Figure D.3. Individual DA weights
are aggregated up to the CMA level.
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D.2. Main results with van Donkelaar et al. (2019) PM2.5 data
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Figure D.3: Graphical results from DID, SCM and SDID for PM2.5 concentrations, with
van Donkelaar et al. (2019) data. Time weights λt are represented in light red at the
bottom of the pre-intervention panel. The curved arrows graphically represent the ATT
over the post-intervention period.

Table D.1: Summary of τ̂ point estimates and standard errors from
all estimation methods, dependent variable from van Donkelaar et al.
(2019).

(1) (2) (3)
DID SCM SDID

τ̂ -0.4954 -0.7087 -0.8896
(0.0085) (0.1540) (0.0300)

Unit FE ✓ ✓
Year FE ✓ ✓ ✓

ωi ✓ ✓
λt ✓

Nobs 483873 483873 483873

Notes: All point estimates represent the average impact of the 2008 carbon
tax during the 2009-2016 post-treatment period. Standard errors are
calculated using the bootstrap variance estimation algorithm described
in Arkhangelsky et al. (2021) with 200 replications. All regressions use
2000-2016 data.
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D.3. DAs in the Vancouver CMA
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Figure D.4: Graphical results from DID, SCM and SDID for PM2.5 concentrations, with
Meng et al. (2019) data, dataset restricted to DAs in the Vancouver CMA.

Table D.2: Summary of τ̂ point estimates and standard errors from all
estimation methods, dependent variable from Meng et al. (2019), dataset
restricted to DAs in the Vancouver CMA.

(1) (2) (3)
DID SCM SDID

τ̂ 0.4061 -0.1062 -0.3014
(0.0071) (0.0702) (0.0225)

Unit FE ✓ ✓
Year FE ✓ ✓ ✓

ωi ✓ ✓
λt ✓

Nobs 422467 422467 422467

Notes: All point estimates represent the average impact of the 2008 carbon
tax during the 2009-2016 post-treatment period. Standard errors are
calculated using the bootstrap variance estimation algorithm described
in Arkhangelsky et al. (2021) with 200 replications. All regressions use
2000-2016 data.
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D.4. DAs matching NAPS Monitoring Stations
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Figure D.5: Graphical results from DID, SCM and SDID for PM2.5 concentrations, with
Meng et al. (2019) data, dataset restricted to DAs matching NAPS monitoring stations’
locations.

Table D.3: Summary of τ̂ point estimates and standard errors from all
estimation methods, dependent variable from Meng et al. (2019), dataset
restricted to DAs matching NAPS monitoring stations’ locations.

(1) (2) (3)
DID SCM SDID

τ̂ 0.132 -0.865 -0.288
(0.117) (0.128) (0.097)

Unit FE ✓ ✓
Year FE ✓ ✓ ✓

ωi ✓ ✓
λt ✓

Nobs 2227 2227 2227

Notes: All point estimates represent the average impact of the 2008 carbon
tax during the 2009-2016 post-treatment period. Standard errors are
calculated using the bootstrap variance estimation algorithm described
in Arkhangelsky et al. (2021) with 200 replications. All regressions use
2000-2016 data.
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D.5. Post-treatment period limited to 2013
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Figure D.6: Graphical results from DID, SCM and SDID for PM2.5 concentrations, with
Meng et al. (2019) data, dataset restricted to 2013.

Table D.4: Summary of τ̂ point estimates and standard errors from all
estimation methods, dependent variable from Meng et al. (2019), dataset
restricted to 2013.

(1) (2) (3)
DID SCM SDID

τ̂ 0.0547 -0.2723 -0.6703
(0.0081) (0.0803) (0.0341)

Unit FE ✓ ✓
Year FE ✓ ✓ ✓

ωi ✓ ✓
λt ✓

Nobs 432939 432939 432939

Notes: All point estimates represent the average impact of the 2008 carbon
tax during the 2009-2013 post-treatment period. Standard errors are
calculated using the bootstrap variance estimation algorithm described
in Arkhangelsky et al. (2021) with 200 replications. All regressions use
2000-2013 data.
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D.6. TWFE-DID using NAPS Monitoring Stations Data

Table D.5: DID with NAPS monitors, 1998-2016

η PM2.5 µ PM2.5 η PM2.5 µ PM2.5

(1) (2) (3) (4)

Carbon Tax 0.0396 0.0364 0.0248 0.0001
(0.0314) (0.0219) (0.0180) (0.0122)

City FE ✓ ✓ ✓ ✓
Month*Year FE ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓ ✓
Sample Top 15 Top 15 Full Full

Observations 3,372 3,329 16,116 15,249
Adjusted R2 0.44870 0.57613 0.32740 0.51854
Dependent variable mean 4.0168 7.1371 3.9793 7.1407

Notes: η is the number of PM2.5 monthly safe threshold exceedances. µ is the average monthly
PM2.5 concentration. Controls include the retail price of gasoline and diesel, unemployment
rate, after tax income, maximum and minimum temperature, precipitation and wind speed.
Top 15 cities are Vancouver, Calgary, Edmonton, Halifax, Hamilton, Ottawa, Saskatoon, St.
Johns, Toronto, Windsor, Winnipeg, Kitchener, London, St. Catharines, Oshawa and Regina.
Full panel includes all NAPS air quality monitoring stations. Standard errors clustered at
the City level. ***p < 0.01, **p < 0.05, *p < 0.1

Table D.6: DID with NAPS monitors, 1998-2013

η PM2.5 µ PM2.5 η PM2.5 µ PM2.5

(1) (2) (3) (4)

Carbon Tax 0.0646∗∗ 0.0422∗∗ 0.0196 0.0030
(0.0299) (0.0185) (0.0240) (0.0160)

City FE ✓ ✓ ✓ ✓
Month*Year FE ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓ ✓
Sample Top 15 Top 15 Full Full

Observations 2,796 2,764 12,744 12,006
Adjusted R2 0.49176 0.61504 0.33748 0.54680
Dependent variable mean 4.0303 7.0618 4.1321 7.1454

Notes: η is the number of PM2.5 monthly safe threshold exceedances. µ is the average monthly
PM2.5 concentration. Controls include the retail price of gasoline and diesel, unemployment
rate, after tax income, maximum and minimum temperature, precipitation and wind speed.
Top 15 cities are Vancouver, Calgary, Edmonton, Halifax, Hamilton, Ottawa, Saskatoon, St.
Johns, Toronto, Windsor, Winnipeg, Kitchener, London, St. Catharines, Oshawa and Regina.
Full panel includes all NAPS air quality monitoring stations. Standard errors clustered at
the City level. ***p < 0.01, **p < 0.05, *p < 0.1
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E. Pollution, Health and Distributional Implications

E.1. Estimates using RR from Krewski et al. (2009)
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Figure F.1: Spatial distribution of mortality reductions per 1000 residents (left panel)
and health gains per capita (right panel) using the RR estimates from Krewski et al. (2009),
for the Vancouver (top row), Victoria (middle row) and Abbotsford (bottom row) CMAs.
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E.2. Health-income relationships

Higher Health Gains →H
ig

he
r 

M
ed

ia
n 

In
co

m
e

→

Figure F.2: Bivariate distribution of health gains using the RR from Lepeule et al. (2012)
and median income for the Vancouver (top panel), Victoria (middle panel) and Abbotsford
(bottom panel) CMAs.
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