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Minimal subharmonic functions and related integral
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Abstract

A Choquet-type integral representation result for non-negative subharmonic functions
of a one-dimensional regular diffusion is established. The representation allows in
particular an integral equation for strictly positive subharmonic functions that is driven
by the Revuz measure of the associated continuous additive functional. Moreover, via
the aforementioned integral equation, one can construct an Itô-Watanabe pair (g,A)

that consist of a subharmonic function g and a continuous additive functional A is
with Revuz measure µA such that g(X) exp(−A) is a local martingale. Changes of
measures associated with Itô-Watanabe pairs are studied and shown to modify the
long term behaviour of the original diffusion process to exhibit transience.
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1 Introduction

One of the fundamental results in the potential theory of Markov processes is the
Riesz representation of an excessive (non-negative superharmonic) function as the sum
of a harmonic function and the potential of a measure (see, e.g., Section VI.2 in [4], [13]
and [8] for proofs under various assumptions). In the particular setting of a regular
transient one-dimensional diffusion this amounts to a finite excessive function f having
the following representation:

f(x) =

∫
u(x, y)µ(dy) + h(x),

where h is a harmonic function, u is the potential density describing the minimal exces-
sive functions, and µ is a Borel measure.

On the other hand, analogous representation results for non-negative subharmonic
functions of a given Markov processes do not seem to exist in general form. Note that
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Representation of defective functions

non-negativity is essential here: If g is a subharmonic function, although −g(X) is a
supermartingale, −g is not excessive as it is negative. Thus, the representation results
for excessive functions are not applicable. One exception to this general rule occurs
when the Markov process is transient and the subharmonic function g is bounded by K.
Then one can obtain a representation using the available theory for the excessive function
K − g. However, this approach will fail when g is unbounded or the Markov process
is recurrent, which renders all excessive functions constant (see also Remark 3.10 for
explicit and non-trivial examples illustrating this difficulty).

Non-negative subharmonic functions are also known as ‘defective’ functions (see
p.31 of Dellacherie and Meyer [12]) and play an important role in Rost’s solution to
the Skorokhod embedding problem [27]. Despite their abundance relative to excessive
functions and their use in the potential theory, “It is quite depressing to admit that one
knows almost nothing about defective functions” as Dellacherie and Meyer point out
in [12].

The main purpose of this study is to fill a gap in this direction by establishing
an integral representation for non-negative subharmonic functions of a regular one-
dimensional diffusion X on a given interval (`, r). This is followed by an in-depth analysis
of integral equations associated with strictly positive subharmonic functions. The main
contributions of the paper will be summarised in the following paragraphs:

1.1 Extremal subharmonic functions and last passage times

Theorem 3.3 identifies the extremal subharmonic functions, which ultimately allows
a Choquet-type integral representation via Theorem 3.5. Evidently, the submartingales
defined by the extremal subharmonic functions belong to Class Σ, (see [21] and [22]).
This leads to an alternative representation of minimal subharmonic functions in terms
of last passage times. Given the close connections with submartingales of Class Σ and
Azéma supermartingales, one obtains in particular that monotone subharmonic func-
tions can be written as a mixture of Azéma submartingales as long as the set of Azéma
submartingales is not empty (see Remark 3.8). Moreover, the representation in terms of
last passage times indicates that this connection could still be useful in a multidimen-
sional framework. The arguments can be also used to prove the analogous result that
one-dimensional excessive functions are in fact a mixture of Azéma supermartingales,
which seems to have been unnoticed in the literature.

1.2 Integral equations for strictly positive subharmonic functions

To every strictly positive subharmonic function one can associate a positive contin-
uous additive functional (PCAF) A such that g(X) exp(−A) is a local martingale. For
historical reasons mentioned in Section 3 such pairs (g,A) are called Itô-Watanabe
pairs throughout the text. This observation helps one to characterise all subharmonic
functions appearing in Itô-Watanabe pairs as solutions of integral equations by means
of the Choquet representation from Theorem 3.5. Section 4 establishes that any such
subharmonic function can be written as a linear combination of monotone subharmonic
functions that are solutions of particular integral equations.

A family of integral equations for which solutions exist and can be used to generate
all strictly positive subharmonic functions are studied in Section 5. The novelty of this
section as opposed to the ‘classical’ approach of characterising the so-called fundamental
solutions (e.g. as in [11] or [3]) as particular Laplace transforms in the spirit of Itô and
McKean [18] is that the fundamental solutions herein are characterised as fixed points
of monotone integral operators and therefore can be obtained after a straightforward
and fast numerical algorithm.
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Representation of defective functions

1.3 Transient transformations of diffusions

Section 6 studies changes of measures (or path transformations) for diffusions via
Itô-Watanabe pairs. It is in particular shown that after these path transformations
the diffusion process ends up transient, thereby providing a complete counterpart to
recurrent transformations introduced in [7] via h(X) exp(B), where h is excessive and B
is a PCAF.

1.4 Connections to the optimal stopping problem with random discounting

An important motivation to consider the path transformations developed in this paper
is the optimal stopping problem with random discounting studied earlier by [3] and [11].
The problem of interest is to maximise Ex[e−Aτ f(Xτ )] over all stopping times, where
Ex is expectation with respect to P x that corresponds to the law of X with X0 = x, f
is a reward function, and A is a PCAF. Using the arguments of [7] the above problem
becomes equivalent to the solution of

sup
τ
Qx
[
f(Xτ )

g(Xτ )

]
,

where Qx is locally absolutely continuous with respect to P x and g is a positive subhar-
monic function. Thus, the value function, after an explicit change of variable, becomes
the least concave majorant of f/g. This idea is similar at heart to the approach first
proposed by Beibel and Lerche [3] and later developed in further generality by Dayanık
in [11] for one-dimensional diffusions (see also [10] for another application of ‘removing
the discounting’ in the context of Lévy processes). The main idea in all these works is to
simplify the problem by ‘removing’ the discounting factor via a measure change. That is,
find a subharmonic function g so that g(X) exp(−A) is a local martingale. This allows
for the reduction of the above optimal stopping problem to one without discounting, in
which the value function can be identified as the concave envelope of a given function.
However, [3] and [11] only give an abstract definition in terms of the expectation of
a multiplicative functional. On the other hand, the representation of strictly positive
subharmonic functions established in Sections 4 and 5 allow one to compute g explicitly
by solving an integral equation, whose numerical solution is easy as observed above.

The outline of the paper is as follows: Section 2 introduces the set up and basic
terminology that will be used in the paper. Section 3 studies the Choquet representation
of non-negative subharmonic functions and its first consequences. Section 4 gives a
complete characterisation and uniqueness of solutions of the integral equations that
are solved by semi-bounded subharmonic functions appearing in Itô-Watanabe pairs.
Section 5 establishes the existence of solutions for the integral equations of Section 4
and discusses its numerical solutions. The path transformations via Itô-Watanabe pairs
are studied in Section 6, and Section 7 concludes.

2 Preliminaries

Let X = (Ω,F ,Ft, Xt, θt, P
x) be a regular diffusion on E := (`, r), where −∞ ≤ ` <

r ≤ ∞, and Eu stands for the σ-algebra of universally measurable subsets of E. The
boundaries are assumed to be absorbing, i.e. if any of the boundaries are reached in
finite time, the process stays there forever. We do not allow killing inside E, which is
in fact without loss of generality for the purposes of the present paper as explained in
Remark 2.3. As usual, P x is the law of the process initiated at point x at t = 0 and ζ is its
lifetime, i.e. ζ := inf{t > 0 : Xt ∈ {`, r}}. The transition semigroup of X will be given by
the kernels (Pt)t≥0 on (E, Eu) and (θt)t≥0 is the shift operator. The filtration (F∗t )t≥0 will
denote the universal completion of the natural filtration of X and Fu is the σ-algebra
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generated by the maps f(Xt) with t ≥ 0 and f universally measurable1. We shall set
Ft := F∗t+ for each t ≥ 0 so that (Ft)t≥0 is right continuous. The infinitesimal generator
of X will be denoted by A.

For y ∈ (`, r) the stopping time Ty := inf{t > 0 : Xt = y}, where the infimum of an
empty set equals ζ by convention, is the first hitting time of y. Likewise Tab will denote
the exit time from the interval (a, b). Clearly, one can extend the notion of ‘hitting time’
to each of the boundary points, i.e. by allowing y ∈ {`, r} in Ty, as the boundaries are
absorbing.

Such a one-dimensional diffusion is completely characterised by its strictly increasing
and continuous scale function s and speed measure m. The reader is referred to
Chapter II of [6] for a concise treatment of these characteristics (see also [14] for
a rigorous discussion of h-transformation of such diffusions, which is related to, yet
different than, the type of conditioning that will be discussed in Section 6). In particular,
since the killing measure is null, the infinitesimal generator A of the diffusion is given
by A = d

dm
d
ds .

Remark 2.1. It is worth emphasizing here that no assumption of absolute continuity with
respect to the Lebesgue measure is made for the scale function or the speed measure.
That is, X is not necessarily the solution of a stochastic differential equation. A notable
example is the skew Brownian motion (see [16]).

The concept of a positive continuous additive functional will be playing a key role
throughout the paper.

Definition 2.2. A family A = (At)t≥0 of functions from Ω to [0,∞] is called a positive
continuous additive functional (PCAF) of X if

i) Almost surely the mapping t 7→ At is nondecreasing, (finite) continuous on [0, ζ),
and At = Aζ− for t ≥ ζ.

ii) At is Ft-measurable for each t ≥ 0.

iii) For each t and s At+s = At +As ◦ θt, a.s.

To each PCAF A one can associate a Revuz measure µA defined on the Borel subsets
of (`, r) by ∫

(`,r)

f(y)µA(dy) = lim
t→0

t−1Em
[∫ t

0

f(Xs)dAs

]
, (2.1)

where f is a non-negative Borel function and Em[U ] :=
∫

(`,r)
Ex[U ]m(dx) for any non-

negative random variable U . It must be noted that the Revuz measure depends on the
choice of the speed measure.

Moreover, in this one-dimensional setting µA will be a Radon measure2.

Remark 2.3. One possible use of continuous additive functionals is the construction of
a diffusion with non-zero killing measure from a diffusion with the same scale and speed
but no killing a described in Paragraph 22 of Chapter II in [6]. For this reason and given
the nature of questions addressed in this paper, one indeed does not lose any generality
by assuming a null killing measure.

As the killing measure is null, the potential density with respect to m of a transient
diffusion is given by

u(x, y) = lim
a→`

lim
b→r

(s(x ∧ y)− s(a))(s(b)− s(x ∨ y))

s(b)− s(a)
, x, y in (`, r).

1The reader is referred to Chapter 1 of [28] for the details.
2This follows from Theorem 4.4 in [5]. Note that the fine topology induced by X coincides with the standard

metric topology on (`, r) (see, e.g., Exercise 10.22 in [28]). Moreover, one-dimensional diffusions are self-dual
with respect to their speed measure. Thus, compact subsets of (`, r) are (co-)special.
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In this case (see, e.g., Theorem VI.3.1 in [4]) for any non-negative Borel function f

Ex

[∫ ζ

0

f(Xt)dAt

]
=

∫ r

`

u(x, y)f(y)µA(dy). (2.2)

Moreover, the finiteness of Aζ , or equivalently A∞, is completely determined in terms of
s and µA. The following is a direct consequence of Lemma A1.7 in [1] (see [20] for an
analogous result and a different technique of proof in case of dAt = f(Xt)dt for some
non-negative measurable f ).

Theorem 2.4. Let A be a PCAF of X with Revuz measure µA.

1. If X is recurrent and µA(E) > 0, then Aζ =∞, a.s.

2. If s(`) > −∞, then on [Xζ− = `], Aζ =∞ a.s. or Aζ <∞ a.s. whether∫ c

`

(s(x)− s(`))µA(dx)

is infinite or not for some c ∈ (`, r).

3. If s(r) <∞, then on [Xζ− = r] Aζ =∞ a.s. or Aζ <∞ a.s. whether∫ r

c

(s(r)− s(x))µA(dx)

is infinite or not for some c ∈ (`, r).

If A is a PCAF, it can be used to apply a time-change, the most prominent example of
which appears when constructing a diffusion with given characteristics from a Brownian
motion (see Chapter 5 in [18] for a detailed account). In particular, if one uses A as
‘the clock,’ behaviour of a given diffusion at the boundary may change. The following
characterisation of the boundary behaviour will be useful in subsequent sections.

Definition 2.5. Let A be a PCAF with Revuz measure µA such that µA((`, r)) > 0. Pick
b ∈ (`, r) and consider the integrals∫ b

`

µA((z, b))s(dz)

(
resp.

∫ r

b

µA((b, z))s(dz)

)
(2.3)∫ b

`

(s(b)− s(z))µA(dz)

(
resp.

∫ r

b

((s(z)− s(b))µA(dz)

)
. (2.4)

A-regular: ` (resp. r) is (an) A-regular (boundary) if both (2.3) and (2.4) are finite.

A-exit: ` (resp. r) is (an) A-exit (boundary) if (2.3) is finite and (2.4) is infinite.

A-entrance: ` (resp. r) is (an) A-entrance (boundary) if (2.3) is infinite and (2.4) is
finite.

A-natural: ` (resp. r) is (an) A-natural (boundary) if both (2.3) and (2.4) are infinite.

Remark 2.6. Note that (2.3) is infinite if s(`) (resp. s(r)) is so. In case of s(`) being
finite, the finiteness of (2.3) is equivalent to that of Aζ on [Xζ− = `] (resp. [Xζ− = r] via
a straightforward integration by parts.

Remark 2.7. The boundary classification above is significantly different than the ‘usual’
one (see, e.g., Paragraph 6 in Section II.1 in [6]). Consult Remark 3.15 to see this in an
interesting example.
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Proposition 2.8. Let A be a PCAF with Revuz measure µA such that µA((`, r)) > 0.

1. If ` (resp. r) is A-entrance, for any y ∈ (`, r) there exists a t0 > 0 such that

lim
x→`

P x(ATy < t0) > 0.
(

resp. lim
x→r

P x(ATy < t0) > 0.
)

(2.5)

2. If ` (resp. r) is A-natural, for any y ∈ (`, r) and t > 0

lim
x→`

P x(ATy < t) = 0.
(

resp. lim
x→r

P x(ATy < t) = 0.
)

(2.6)

Proof. 1. Note that s(`) is necessarily infinite and, therefore, for any x < y, P x(Ty <

ζ) = 1. Killing X at Ty yields a transient diffusion on (`, y) with potential kernel

v(x, z) := s(y)− s(x ∨ z).

In particular

Ex[ATy ] =

∫ y

`

(s(y)− s(x ∨ z))µA(dz).

Observe by Chebyshev’s inequality that

P x(ATy > t) ≤
Ex[ATy ]

t
.

Also note that ` being A-entrance implies µA((`, y)) < ∞. Thus, by means of the
dominated convergence theorem one obtains

lim
x→`

P x(ATy > t) ≤ 1

t

∫ y

`

lim
x→`

(s(y)−s(x∨z))µA(dz) =
1

t

∫ y

`

(s(y)−s(z))µA(dz) <∞.

Hence, choosing t big enough one shows limx→` P
x(ATy > t) < 1.

2. Again, killing X at Ty yields a transient diffusion with potential kernel v that
coincides with the one from the previous part if s(`) = −∞. Otherwise,

v(x, z) =
(s(x ∧ z)− s(`))(s(y)− s(x ∨ z))

s(y)− s(`)
.

Define h(x) := Ex[exp(−ATy )]. Since h is excessive, it must be a concave function
of s. In particular, it is continuous and limx→` h(x) exists.

It follows from Feynman-Kac’s formula (see (8) on p. 119 of [15]) that h solves

h(x) = 1−
∫ y

`

v(x, z)h(z)µA(dz).

Observe that under the assumption that ` is A-natural and s(`) = −∞, it follows

that
∫ b
`
v(`, z)µA(dz) =∞ for any b ∈ (`, y). Thus, one necessarily obtains

lim
x→`

h(x) = 0.

If s(`) > −∞, then
∫ b
`
v(x, z)µA(dz) = ∞ for any x ∈ (`, b), which leads to

limx→` h(x) = 0. Hence,

lim
x→`

P x(ATy < t) ≤ et lim
x→`

Ex[exp(−ATy )] = 0.
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3 Non-negative subharmonic functions and Choquet representa-
tion

Definition 3.1. A Borel function g : E→ R is subharmonic if for any x ∈ (`, r) g(XTab)

is a uniformly integrable P x-submartingale whenever ` < a < b < r. The class of
non-negative subharmonic functions is denoted by S. S+ will be the set of elements of S
that are are strictly positive on (`, r).

Since g(x) ≤ Ex[g(XTab)] = g(a)P x(Ta < Tb) + g(b)P x(Tb < Ta) = g(a) s(b)−s(x)
s(b)−s(a) +

g(b) s(x)−s(a)
s(b)−s(a) , one immediately deduces that g must be a convex function of s on the

open interval (`, r) to be subharmonic, which in particular entails that g is an absolutely

continuous function of s. In particular, the right and left s-derivatives, d
+g
ds and d−g

ds , exist
(see Section 3 of the Appendix in [26] for a discussion of s-convexity).

Remark 3.2. In the sequel whenever a convex function is considered on some open
interval (a, b) it will be automatically extended to [a, b] by continuity.

The main purpose of this section is to obtain Choquet-type integral representations
for non-negative subharmonic functions.

Theorem 3.3. Define K+
0 := {g ∈ S : g(`+) = 0, g is non-decreasing with d+g

ds ≤ 1} and

K−0 := {g ∈ S : g(r−) = 0, g is non-increasing with d−g
ds ≥ −1}. Then, the following hold:

1. The set of extremal elements of K+
0 is given by

{k(s(x)− s(y))+ : k ∈ (0, 1] and y ∈ (`, r)}, if ` = −∞;

{k(s(x)− s(y))+ : k ∈ (0, 1] and y ∈ [`, r)}, if ` > −∞.

In particular, if g ∈ S is non-constant, non-decreasing and its right s-derivative d+g
ds

is bounded on E,

g(x) = g(`) + κ(s(x)− s(`)) +

∫ r

`

(s(x)− s(y))+µ(dy), (3.1)

where κ = 0 if s(`) = −∞ with the convention that 0 ×∞ = 0, and µ is a finite
measure with µ({`, r}) = 0.

2. The set of extremal elements of K−0 is given by

{k(s(y)− s(x))+ : k ∈ (0, 1] and y ∈ (`, r)} if r =∞;

{k(s(y)− s(x))+ : k ∈ (0, 1] and y ∈ (`, r]} if r <∞.

In particular, if g ∈ S is non-constant, non-increasing and its left s-derivative d−g
ds is

bounded on E,

g(x) = g(r) + κ(s(r)− s(x)) +

∫ r

`

(s(y)− s(x))+µ(dy), (3.2)

where κ = 0 if s(r) = ∞ with the convention that 0 × ∞ = 0, and µ is a finite
measure with µ({`, r}) = 0.

Proof. Only the proof of the first statement will be given as the proof is the same modulo
obvious modifications for the second statement.

Without loss of generality suppose that s(x) = x for all x ∈ E and observe that the
set K+

0 is a compact convex metrisable subset of the space of continuous functions on E

with locally uniform topology by a version of Arzela-Ascoli theorem. Thus, by Choquet’s
theorem (see, e.g., Theorem on p.14 of Phelps [23]) any element of K+

0 is representable
by its extremal elements.

Next, let g ∈ K+
0 be an extremal element3 and denote dg+

dx by g+. Since, for any

3By convention, g cannot be identically 0.

EJP 29 (2024), paper 3.
Page 7/35

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1065
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Representation of defective functions

z ∈ [`, r) and y ∈ (`, r),

g+(z) = g+(z)1z<y + g+(y)1z≥y + 1z≥y(g+(z)− g+(y)),

one obtains the following decomposition from the fact that g(x) =
∫ x
`
g+(z)dz:

g = g1(·; y) + g2(·; y), where

g1(x; y) :=

∫ x

`

{
g+(z)1z<y + g+(y)1z≥y

}
dz, and

g2(x; y) :=

∫ x

`

1z≥y(g+(z)− g+(y))dz.

Observe that, for each y ∈ (`, r), the functions g1(·; y) and g2(·; y) belong to K+
0 since

g+ ≤ 1 and g+(z) is nondecreasing in z by convexity.
Since g is extremal, one necessarily has

g1(·; y) = k1(y)g and g2(·; y) = k2(y)g

such that k1(y) + k2(y) = 1 for every y ∈ E. Moreover, that g2(·; y) = 0 on (`, y] implies
either g = 0 on (`, y] or k2(y) = 0. On the other hand, there exists a y∗ ∈ [`, r) such that
g(y∗) = 0 and g(x) > 0 for x > y∗ since g is not identically 0. Thus, for each y > y∗,
k2(y) = 0, which in turn implies

g(x) = g1(x; y) = g(y) + (x− y)g+(y), x ≥ y > y∗. (3.3)

In particular, g+ is constant on (y∗, r). However, since g+ is right continuous, one in fact
obtains g+(y) = g+(y∗) for all y > y∗. Note that this in particular implies that in case of
` = −∞, y∗ > `. Indeed, since g is non-negative and convex, g+(−∞) = 0 due to the fact
that g is non-decreasing4. Therefore, (3.3) can be rewritten as

g(x) = g(y∗) + k(x− y∗) = k(x− y∗), x ≥ y∗,

for some k ∈ (0, 1] since g+ ≤ 1 by hypothesis. Since 0 ≤ g(x) ≤ g(y∗) = 0 for x < y∗ by
the monotonicity, this proves the desired representation for the extremal elements of
K+

0 as y∗ can be any element of [`, r). Note that (s − s(r))+ ≡ 0 is the trivial extremal
element.

Aforementioned Choquet’s theorem now associates a probability measure µ̂ on the
Borel subsets of the extremal points in K+

0 with right derivatives converging to 1 at r,
denoted with K+

e , to any g ∈ K+
0 with g+(r−) = 1 such that

g =

∫
S+
e

ξµ̂(dξ).

Moreover, y 7→ (·−y)+ is a one-to-one continuous mapping from E (resp. [`, r) if ` > −∞)
onto K+

e . Thus, after a change of variable, we obtain another probability measure µ̃ on
the Borel subsets of E (resp. [`, r) if ` > −∞) such that

g(x) =

∫ r

`

(x− y)+µ̃(dy).

In particular, if ` > −∞, the above can be rewritten as

g(x) = µ̃(`)(x− `) +

∫ r

`+

(x− y)+µ̃(dy),

4g+(−∞) := limy→−∞ g+(y) exists by the monotonicity of the right derivative.
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which in turn yields the representation (3.1) by considering g−g(`)
g+(r−) .

To show that µ is finite, observe (3.1) that

g+(x) = κ+

∫ x

`+

µ(dy) = κ+ µ((`, x]).

Thus, the claim follows from the boundedness of g+.

To extend the above representation to all monotone functions in S, one needs a
uniqueness result.

Proposition 3.4. The constant κ and the measure µ appearing in the representations
(3.1) and (3.2) are uniquely defined by g. In particular, for any ` < a < x < b < r,

Ex[g(XTab)] = g(x) +

∫ b

a

(s(x ∧ y)− s(a))(s(b)− s(x ∨ y))

s(b)− s(a)
µ(dy),

and, therefore, g(X)−B is a P x-local martingale for any x ∈ E, where

B :=

∫ r

`

µ(dy)Ly,

and Ly is the diffusion local time at y.

Proof. See the Appendix.

Theorem 3.5. 1. If g ∈ S is non-constant and non-decreasing,

g(x) = g(`) + κ(s(x)− s(`)) +

∫ r

`

(s(x)− s(y))+µ(dy), (3.4)

where κ = 0 if s(`) = −∞ with the convention that 0 ×∞ = 0, and µ is a Radon
measure with µ({`, r}) = 0.

2. If g ∈ S is non-constant and non-increasing,

g(x) = g(r) + κ(s(r)− s(x)) +

∫ r

`

(s(y)− s(x))+µ(dy),

where κ = 0 if s(r) = ∞ with the convention that 0 ×∞ = 0, and µ is a Radon
measure with µ({`, r}) = 0.

3. Consequently, g ∈ S if and only if there exist Radon measures (µi)
2
i=1 on the Borel

subsets of (`, r) and non-negative constants κ1 and κ2 such that

g(x) = α+ κ1(s(x)− s(`)) + κ2(s(r)− s(x))

+

∫ r

`

(s(x)− s(y))+µ1(dy) +

∫ r

`

(s(y)− s(x))+µ2(dy), (3.5)

where α ≥ 0 and κ1 = 0 (resp. κ2 = 0) if s(`) = −∞ (resp. s(r) =∞).

Moreover, given g ∈ S with decomposition (3.5), g −B is a P x-local martingale for
any x ∈ (`, r), where B is a PCAF with Revuz measure µ1 + µ2.

In particular, if g ∈ S is not monotone and c∗ is such that g(c∗) = infx∈E g(x), the
measures µ1 and µ2 and the constants κ1 and κ2 above can be chosen such that
µ1((`, c∗)) = µ2((c∗, r)) = κ1 = κ2 = 0, in which case α = g(c∗).
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Proof. Only the proof of the first and the last statement will be given. To this end observe
that the right s-derivative of g is bounded on (`, b) for any b < r. Thus, stopping X at
Tb, one obtains a diffusion living on (`, b] (possibly including ` in case it is an absorbing
boundary) for which g is a subharmonic function. Thus, Theorem 3.3 yields coefficients
κb and measures µb indexed by b ∈ (`, r) such that

g(x) = g(`) + κb(s(x)− s(`)) +

∫ r

`

(s(x)− s(y))+µb(dy) on (`, b].

Next, the uniqueness of the above representations via Proposition 3.4 yields κb = κb′ and
µb = µb′ on the Borel subsets of (`, b] whenever ` < b < b′ < r. In particular, µb((`, b]) <∞
since µb′ is a finite measure by Proposition 3.4. Thus, there exists a measure µ on the
Borel subsets of (`, r) such that µ agrees with µb on the Borel subsets of (`, b] for any
b ∈ (`, r), which in turn implies µ is a Radon measure. Therefore, there exits a κ (= 0 if
` = −∞) such that (3.4) holds for all x ∈ (`, r), which can be extended to hold for x = r

by continuity in case r <∞.
Finally, first observe that if g is of the form (3.5), it is s-convex and non-negative,

therefore g ∈ S. Conversely, if g ∈ S is monotone, the claimed representation is a
consequence of the first two parts.

Next, suppose that g is not monotone and let g+
1 := max{0, d

+g
ds }, g

+
2 := min{0, d

+g
ds }.

Pick c∗ ∈ (`, r) where g attains its minimum and observe that g+
1 = 0 on (l, c∗) and

g+
2 = 0 on (c∗, r). Now define gi for i = 1, 2 by g1(x) = g(c∗) +

∫ x
c∗
g+

1 (y)s(dy) and
g2(x) =

∫ x
c∗
g+

2 (y)s(dy). Note that g1 is non-decreasing and g2 is non-increasing such that
g = g1 + g2. Moreover, the previous two parts yield the constants κi and the Radon
measures µi such that

g1(x) = g(c∗) + κ1(s(x)− s(`)) +

∫ r

`

(s(x)− s(y))+µ1(dy),

g2(x) = κ2(s(r)− s(x)) +

∫ r

`

(s(y)− s(x))+µ2(dy),

Direct computations show that in above representations d+g1(`+)
ds = κ1 and d−g2(r−)

ds =

κ1. On the other hand, by construction d+g1(`+)
ds = d−g2(r−)

ds = 0. Thus,

g1(x) = g(c∗) +

∫ r

`

(s(x)− s(y))+µ1(dy), ∀x ∈ (`, r).

Note that the above in conjunction with the fact that g1 is constant on (`, c∗) implies that
µ1((`, c∗)) = 0. Similar argument shows that µ2((c∗, r)) = 0, which in turn yields

g(x) = g(c∗) +

∫ r

`

(s(x)− s(y))+µ1(dy) +

∫ r

`

(s(y)− s(x))+µ2(dy),

where µ1((`, c∗)) = µ2((c∗, r)) = 0.
Moreover, since g1 and g2 are monotone, there exists CAFs B1 and B2 with Revuz

measures µ1 and µ2, respectively, such that gi −Bi is a P x-local martingale for i = 1, 2 in
view of Proposition 3.4. Therefore, B = B1 +B2 is a PCAF with Revuz measure µ1 + µ2

and g −B is a P x-local martingale.

3.1 Connection with last passage times

Note that (s(X) − s(y))+ is a local submartingale and by means of Tanaka-Meyer
formula it is easy to see that (s(X)−s(y))+ = M+V , where M is a local martingale and V
is continuous and increasing such that dVt is carried by the set {t : s(Xt)−s(y) = 0}. Thus,
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after a straightforward translation (s(X) − s(y))+ can be viewed as a submartingale
of class Σ using the terminology of Nikeghbali [21]. As observed therein, and also
in a related context earlier by Azéma, Meyer and Yor [2], this paves the way to a
representation in terms of last passage times.

Lemma 3.6. Consider (y, z) ∈ [`, r]2 such that y 6= z and define

Λy,z := sup{0 < t < Tz : Xt = y},

with the convention5 that the supremum of the empty set is 0. Then the following
statements are valid:

1. Let x ∈ (`, r) and suppose z > x ∨ y with s(z) <∞. Then,

(s(x)− s(y))+ = (s(z)− s(y))P x(Tz < T`,Λ
y,z = 0). (3.6)

Alternatively,

(s(Xt)− s(y))+ = Ex
[
(s(XTz )− s(y))+1[Λy,z≤t]

∣∣Ft] on [t < Tz]. (3.7)

2. Let x ∈ (`, r) and suppose z < x ∧ y with s(z) > −∞. Then,

(s(y)− s(x))+ = (s(y)− s(z))P x(Tz < Tr,Λ
y,z = 0). (3.8)

Alternatively,

(s(y)− s(Xt))
+ = Ex

[
(s(y)− s(XTz ))

+1[Λy,z≤t]
∣∣Ft] on [t < Tz]. (3.9)

Proof. Only the first statement will be proven as the other can be proven similarly.
Observe that M = (s(z)− s(Xt∧Tz ))t≥0 is non-negative continuous local martingale.

Thus, applying Theorem 2.5 in [24] to M and K = s(z)− s(y) yields (3.6). In particular,

(s(x)− s(y))+ = Ex
[
(s(XTz )− s(y))+1[Λy,z=0]

]
= Ex

[
(s(z)− s(y))1[Tz<T`,Λy,z=0]

]
= (s(z)− s(y))P x(Tz < T`,Λ

y,z = 0).

A direct but interesting corollary of the above result is that when X is transient and
X∞ takes values in a singleton, certain monotone subharmonic functions can be written
as a mixture of Azéma submartingales.

Theorem 3.7. Suppose X is transient and define for any y ∈ (`, r) the Azéma submartin-
gale

Zyt = P x(Λy ≤ t|Ft).

Then the following statements are valid:

1. Suppose s(`) = −∞. If g ∈ S is non-constant and non-decreasing,

g(Xt) = g(`) +

∫ r

`

Zyt µ(dy), (3.10)

where µ is a Radon measure with µ({`, r}) = 0.

2. Suppose s(r) =∞. If g ∈ S is non-constant and non-increasing,

g(Xt) = g(r) +

∫ r

`

Zyt µ(dy), (3.11)

where µ is a Radon measure with µ({`, r}) = 0.
5For notational simplicity the superscript z will be dropped if z ∈ {`, r}.
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Proof. Only the first statement will be proven as the statements are analogous.

The representation (3.4) yields a Radon measure µ0 that doesn’t charge {`, r} such
that

g(x) = g(`) +

∫ r

`

(s(x)− s(y))+µ0(dy).

Next observe that s(r) <∞ by the assumed transience and consider (3.7) with z = r,
which implies in view of P x(X∞ = r) = 1 that

(s(Xt)− s(y))+ = (s(r)− s(y))P x(Λy ≤ t|Ft).

Defining µ(dy) := (s(r)− s(y))µ0(dy) yields the claim.

Remark 3.8. Note that a transience assumption is necessary to obtain any representa-
tion result involving Azéma submartingales. Indeed, if X is recurrent, Λy =∞, P x-a.s.
for each x ∈ (`, r). However, this implies Zy ≡ 0 for all y ∈ (`, r).

An analogous result can be obtained for excessive functions using the Azéma super-
martingale P x(Λy > t|Ft) = 1− Zyt .

Theorem 3.9. Suppose X is transient and h is excessive. Then the following statements
are valid:

1. If s(`) = −∞,

h(Xt) = κ(s(r)− s(x)) +

∫ r

`

(1− Zyt )µ(dy), (3.12)

where µ is a finite measure with µ({`, r}) = 0 and κ ≥ 0.

2. If s(r) =∞,

h(Xt) = κ(s(x)− s(`)) +

∫ r

`

(1− Zyt )µ(dy), (3.13)

where µ is a finite measure with µ({`, r}) = 0 and κ ≥ 0.

Proof. As before, only the first statement will be proven, in which case s(r) <∞ by the
assumed transience.

It follows from Paragraph 30 in Section II.5 of [6] that there exists a finite measure
µ0 not charging {`, r} and a non-negative constant κ that

h(x) = κ(s(r)− s(x)) +

∫ r

`

u(x, y)µ0(dy).

Fix y ∈ (`, r) and observe that s(x∨ y) = (s(x)− s(y))+ + s(y). Thus, using the arguments
in the proof of Lemma 3.6 with z = r, one obtains

s(Xt ∨ y) = s(y) + (s(r)− s(y))P x(Λy ≤ t|Ft) = s(y) + (s(r)− s(y))Zyt .

Since u(Xt, y) = s(r)− s(Xt ∨ y), the claim follows.

Remark 3.10. The last two theorems illustrate the difficulty with the naive idea of
obtaining the integral representation for subharmonic functions from that of superhar-
monic ones. Note that the representing measure in (3.12) is finite while µ appearing
in (3.10) is only locally finite.
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3.2 Itô-Watanabe pairs

By definition, given any subharmonic function g, g(X) is a local submartingale and,
therefore, there exists a unique PCAF B with B0 = 0 such that g(X) − B is a P x-local
martingale for any x ∈ (`, r) by a Markovian version of the Doob-Meyer decomposition
(see Theorem 51.7 in [28]). If g is further supposed to be in S+, then a simple integration
by parts argument yields a unique A such that g(X) exp(−A) is a local martingale, where
A is an adapted, continuous and increasing process with A0 = 0. Clearly, this A is defined
by its initial condition and g(Xt)dAt = dBt.

The above argument gives a multiplicative decomposition for g ∈ S+ as a product of
a local martingale and an increasing process. The strict positivity is essential and the
following summarises the above discussion.

Theorem 3.11. Let g ∈ S and suppose further that g is not identically 0. There exists a
PCAF A such that g(X) exp(−A) is a P x-local martingale for every x ∈ (`, r) if and only if
g never vanishes on (`, r).

Proof. What remains to be proven is the implication that the existence of an A with
above properties implies strict positivity of g. To this end suppose the closed set
Z := {x ∈ (`, r) : g(x) = 0} is not empty. By the regularity of X P x(TZ < ζ) > 0 for
any x ∈ (`, r). Since g(X) exp(−A) is a supermartingale being a non-negative local
martingale, it will remain zero on [TZ , ζ), which in turn implies X does not leave the
set Z on [TZ , ζ) since exp(−At) > 0 on [t < ζ]. One then deduces via the strong Markov
property of X that P z(Ty < ζ) = 0 for any z ∈ Z and y ∈ Zc. However, this contradicts
the regularity of X.

Consequently, the local submartingale g(X) has a multiplicative decomposition as
a product of a local martingale and an increasing process. Such multiplicative decom-
positions in the context of Markov process goes back to the work of Itô and Watanabe
[17] who studied multiplicative decompositions of supermartingales and their use in the
study of subprocesses. This historical note motivates the following definition.

Definition 3.12. (g,A) is called an Itô-Watanabe pair if A is a PCAF, g ∈ S+,and
g(X) exp(−A) is a P x-local martingale for all x ∈ (`, r).

Definition 3.13. A function g is said to be uniformly integrable near ` (resp. r) if the
family {g(XTb

τ ) : τ is a stopping time} is P x-uniformly integrable for any x < b (resp.
x > b). g is said to be semi-uniformly integrable if it is uniformly integrable near ` or r.

Proposition 3.14. Suppose that (g,A) is an Itô-Watanabe pair and g is bounded near `
(resp. r). Then the following statements are valid:

1. g(`) = 0 (resp. g(r) = 0) if ` (resp. r) is A-natural or A-exit.

2. g(`) > 0 (resp. g(r) > 0) if ` (resp. r) is A-entrance.

Proof. Only the statements pertaining to ` will be proven as the proofs are analogous in
the other case.

1. Suppose that ` is A-natural. Then by the assumed uniform integrability,

g(x) ≤ CEx
[
exp(−ATy )

]
, x ≤ y,

for any y ∈ (`, r) and t > 0, where C = C max{g(`), g(y)}. Moreover, the expectation
on the right hand side of the above converges to 0 as x → ` as observed in the
proof of (2.6).

If ` is A-exit, then necessarily s(`) is finite. Similar to the above

g(x) = g(`)Ex
[
exp(−Aζ)1[Ty=ζ]

]
+ g(y)Ex

[
exp(−ATy )1[Ty<ζ]

]
, x < y ∈ (`, r);
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≤ g(`)Ex
[
exp(−Aζ)1[Ty=ζ]

]
+ g(y)

(s(x)− s(`))
s(y)− s(`)

. (3.14)

Let f(x) := Ex
[
exp(−Aζ)1[Ty=ζ])

]
and consider the h-transform by h(x) = s(y)−s(x)

s(y)−s(`)
that defines the probability measure (Qx)x∈(`,y) via

h(x)Qx(B) := Ex(h(Xt∧Ty )1B), B ∈ Ft.

Then the coordinate process X is a regular diffusion under Qx that lives on (`, y)

and converges to ` at its lifetime. In particular

f(x) = h(x)Qx(exp(−Aζ)), x ∈ (`, y).

Using the explicit formulas for the potential kernel and the speed measure after an
h transform (see Paragraph 31 on p. 33 of [6]), one obtains by the Feynman-Kac
formula (see (8) on p. 119 of [15]) that

f(x) = h(x)

(
1−

∫ y

`

(s(x ∧ z)− s(`))(s(y)− s(x ∨ z))
s(y)− s(`)

s(y)− s(z)
s(y)− s(x)

f(z)µA(dz)

)
,

since the Revuz measure of A under Qx is given by h2(z)µA(dz). Since f is P -
excessive, f(`+) exists. Moreover, the fact that ` is A-exit implies f(`+) must be
0 in view of the above representation. Therefore, taking limits as x→ ` in (3.14),
one establishes g(`) = 0.

2. Since s(`) = −∞, for any y ∈ (`, r), g(x) = g(y)Ex
[
exp(−ATy )

]
whenever x ∈ (`, y).

By Proposition 2.8 there exists t0 > 0 such that limx→` P
x(ATy < t0) > 0. Thus,

lim
x→`

g(x) ≥ g(y) lim
x→`

Ex
[
exp(−ATy )1[ATy<t0]

]
≥ g(y)e−t0 lim

x→`
P x(ATy < t0) > 0.

Remark 3.15. The above result might appear wrong at first sight. Indeed, g(x) := ex + 1

is an increasing subharmonic function for Brownian motion on R and, yet, it does
not vanish at the natural boundary −∞. However, the key point here is that −∞
is not A-natural for A being the PCAF that makes g(X) exp(−A) a local martingale.
A quick calculation shows that up to a scaling factor µA(dx) = (1 + e−x)−1dx and thus∫ b
−∞(b− x)µA(dx) <∞. In fact, −∞ is A-entrance, which is consistent with g(−∞) > 0.

Observe that if (g,A) is an Itô-Watanabe pair and g is non-decreasing, Proposition 3.4,
Theorem 3.5, and the uniqueness of the Doob-Meyer decomposition imply that

g(x) = g(`) + κ(s(x)− s(`)) +

∫ r

`

(s(x)− s(y))+g(y)µA(dy),

with the usual disclaimer that κ = 0 when s(`) = −∞. Next, considering an arbitrary
c ∈ E, one obtains after straightforward calculations the following integral equation:

g(x) = g(c) + κ(s(x)− s(c)) +

∫ r

`

(s(x ∨ y)− s(c ∨ y)) g(y)µA(dy). (3.15)

Formally speaking, given a PCAF A with Revuz measure µA, one should expect that
solution of (3.15) yields a g ∈ S+ such that (g,A) is an Itô-Watanabe pair. Analogously, if
g in Theorem 3.5 is non-increasing, then

g(x) = g(c) + κ(s(c)− s(x)) +

∫ r

`

(s(c ∧ y)− s(x ∧ y)) g(y)µA(dy).
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The focus of the next section will be the analysis of integral equations whose solutions
lead to subharmonic functions appearing in Itô-Watanabe pairs given a PCAF of X. Note
that in general there is no uniqueness for such g. For instance, if At = t, then the
increasing and decreasing solutions of Ag = g belong to S+ and g(X) exp(−A) are local
martingales.

Remark 3.16. One can also consider the following killing procedure to construct the
subharmonic function in a given Itô-Watanabe pair (g,A): Let e be a unit exponential
random variable independent of X and define a new diffusion Y by Yt = Xt if e > At
and sending Y to the cemetery state on the event [e ≤ At]. The resulting process is
a regular diffusion and it is characterised uniquely upon identifying its scale function,
speed measure and killing measure. Thus, finding g amounts to identifying the harmonic
functions of Y , which typically follows from the general representation results for Markov
processes via the theory of Marting boundary (see, e.g., Theorem 14.8 in [9]). However,
this requires the identification of the potential kernel of Y and its limit at the Martin
boundary. Since the killing measure of Y is not null, the simple representation of the
potential kernel in terms of the scale function is no longer valid (see Paragraph 11 of [6]),
and there doesn’t seem to be a formula for the minimal harmonic functions for diffusions
with general characteristics.

Thus, one is left with finding the fundamental solutions of an ODE associated to the
infinitesimal generator of Y using the approach described in Paragraph 10 of [6] (for
α = 0). The difficulty with this approach is that it requires specifications of boundary
conditions depending on the boundary behaviour of Y , which is in general different then
that of X for A being a general PCAF. The approach of this paper, on the other hand, is
direct and does not require any verification of boundary conditions.

4 Integral equations for positive subharmonic functions

The following key lemma, whose proof is delegated to the Appendix, will be useful in
proving the representation results for Itô-Watanabe pairs.

Lemma 4.1. Let µA be a Radon measure on (`, r) and c ∈ (`, r). Consider a function g

that is a solution6 of

g(x) = g(c) + κ(s(x)− s(c)) +

∫ r

`

vc(x, y)g(y)µA(dy), (4.1)

where either

vc(x, y) = s(x ∨ y)− s(c ∨ y), ∀(x, y) ∈ (`, r)2

or

vc(x, y) = s(c ∧ y)− s(x ∧ y), ∀(x, y) ∈ (`, r)2.

Define O+ := {x ∈ (`, r) : g(x) > 0} and O− := {x ∈ (`, r) : g(x) < 0}. Then, following
statements are valid:

1. For any ` < a < x < b < r

Ex[g(XTab)] = g(x) +

∫ b

a

(s(x ∧ y)− s(a))(s(b)− s(x ∨ y))

s(b)− s(a)
g(y)µA(dy) (4.2)

2. g is s-convex on O+ and s-concave on O−.

6Any solution is implicitly assumed to be integrable in the sense that
∫ r
` |vc(x, y)g(y)|µA(dy) <∞ for all

x ∈ (`, r).
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3. If vc(x, y) = s(x ∨ y) − s(c ∨ y) (resp. s(c ∧ y)− s(x ∧ y)), then g(`+) (resp. g(r−))
is finite if s(`) (resp. s(r)) is. Moreover, κ = 0 and g(`+) is finite if g is uniformly
integrable near ` (resp. r) and s(`) = −∞ (resp. s(r) =∞).

4. If κ = 0, g does not change sign in (`, r).

5. g is differentiable with respect to s from left and right with following derivatives:

d+g(x)

ds
=

{
κ+

∫ x
`
g(y)µA(dy), if vc(x, y) = s(x ∨ y)− s(c ∨ y);

κ−
∫ r
x+
g(y)µA(dy), if vc(x, y) = s(c ∧ y)− s(x ∧ y).

d−g(x)

ds
=

{
κ+

∫ x−
`

g(y)µA(dy), if vc(x, y) = s(x ∨ y)− s(c ∨ y);

κ−
∫ r
x
g(y)µA(dy), if vc(x, y) = s(c ∧ y)− s(x ∧ y).

(4.3)

Consequently, g is differentiable with respect to s at x if µA({x}) = 0 or g(x) = 0.

Moreover, d+g(`)
ds (resp. d−g(r)

ds ) exists and satisfies the above formula whenever
g(`) <∞ (resp. g(r) <∞).

Remark 4.2. If κ 6= 0, g can change sign. Indeed, suppose (`, r) = (−1, 1), µA(dy) = dy,
and s(x) = x. Then, g(x) = sinh(x) solves

g(x) = cosh(−1) sinh(x) +

∫ r

`

(x ∨ y − y+)g(y)µA(dy).

Clearly, this is linked to a Brownian motion on (−1, 1). sinh(Bt) exp(− t
2 ) is a local

martingale that hits 0 infinitely many times.

Theorem 4.3. Let g be a Borel measurable function on E and A a PCAF with Revuz
measure µA with µA(E) > 0. Consider the sets

G` :=

{
g ∈ S+ : g is u.i. near `,

∣∣d+g(`+)

ds

∣∣ <∞, and g(r−) > inf
x∈(`,r)

g(x).

}
Gr :=

{
g ∈ S+ : g is u.i. near r,

∣∣d−g(r−)

ds

∣∣ <∞, and g(`+) > inf
x∈(`,r)

g(x).

}
.

Then the following are equivalent:

(1) (g,A) is an Itô-Watanabe pair and g ∈ G` (resp. g ∈ Gr)

(2) g is non-negative, not identically 0 and solves the integral equation

g(x) = g(c) + κ1(s(x)− s(c)) +

∫ r

`

(s(x ∨ y)− s(c ∨ y)) g(y)µA(dy), if g ∈ G`;

g(x) = g(c) + κ2(s(x)− s(c)) +

∫ r

`

(s(c ∧ y)− s(x ∧ y)) g(y)µA(dy), if g ∈ Gr,

(4.4)

where κ1 = 0 (resp. κ2 = 0) if s(`) = −∞ (resp. s(r) =∞).

Proof. See the Appendix.

A special case of the above result is obtained when c is replaced by ` or r. Indeed,
one deduces the following corollary by means of monotone convergence, which identifies
the measure appearing in the Choquet representation from (3.5) with g · µA.

Corollary 4.4. Let g be a Borel measurable function on E and A a PCAF with Revuz
measure µA with µA(E) > 0. Let the sets G` and Gr be as in Theorem 4.3. Then the
following are equivalent:

EJP 29 (2024), paper 3.
Page 16/35

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1065
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Representation of defective functions

1. (g,A) is an Itô-Watanabe pair and g ∈ G` (resp. g ∈ Gr)

2. g is non-negative, not identically 0 and solves the integral equation

g(x) = g(`) + κ1(s(x)− s(`)) +

∫ r

`

(s(x)− s(y))
+
g(y)µA(dy), if g ∈ G`;

g(x) = g(r)− κ2(s(r)− s(x)) +

∫ r

`

(s(y)− s(x))
+
g(y)µA(dy), if g ∈ Gr,

(4.5)

where κ1 = 0 (resp. κ2 = 0) if s(`) = −∞ (resp. s(r) =∞).

Remark 4.5. Note that any solution of the first integral equation in (4.5) as well as in
(4.4) always belongs to G`. Analogously, solutions of the second integral equation is in
Gr.

It was observed in Lemma 4.1 that the coefficient κ1 (resp. κ2) in (4.5) must vanish
when s(`) (resp. s(r)) is infinite. Thanks to (4.5) more can be said about these coefficients
as well as g(`) and g(r).

Proposition 4.6. Consider a non-negative g that is not identically 0 and solves (4.1) for
some c ∈ [`, r]. Then the following statements are valid.

1. Suppose vc(x, y) = s(x∨ y)− s(c∨ y) for all (x, y) ∈ (`, r)2 and g is u.i. near `. If ` is
A-exit or A-natural, then g(`) = 0. Similarly, κ = 0 if ` is A-entrance or A-natural.

2. Suppose vc(x, y) = s(c∧ y)− s(x∧ y) for all (x, y) ∈ (`, r)2 and g is u.i. near r. If r is
A-exit or A-natural, then g(r) = 0. Similarly, κ = 0 if r is A-entrance or A-natural.

Proof. Only the proof of the first statement will be given as before.
Observe that if g satisfies (4.1) for some c ∈ (`, r), g(`) <∞ by Lemma 4.1. Thus, it

satisfies (4.5), too. First suppose
∫ b
`

(s(b)− s(y))µA(dy) =∞ for some b ∈ (`, r); that is, `
is A-exit or A-natural. Then by Corollary 4.4 and Proposition 3.14, g(`) = 0.

Note that if s(`) = −∞,
∫ b
`
µA((z, b))s(dz) = ∞. In this case κ = 0 follows from

Lemma 4.1. If s(`) is finite,
∫ b
`
µA((z, b))s(dz) =∞ implies∫ x

`

(s(y)− s(`))µA(dy) =∞

for all x. Suppose that κ is not 0 and note that κ must be positive if g(`) = 0 to ensure

that g is non-negative since g is s-convex by Lemma 4.1 and Corollary 4.4, and d+g
ds (`) = κ

by another application of Lemma 4.1.
Thus, one can find δ > 0 and k > 0 such that g(x) > k(s(x)− s(`)) on (`, `+ δ). This in

turn implies∫ `+δ

`

(s(`+ δ)− s(y)) g(y)µA(dy) ≥ k
∫ `+δ

`

(s(`+ δ)− s(y)) (s(y)− s(`))µA(dy) =∞,

which is a contradiction. Hence, κ = 0.

The integral equation (4.1), in particular (4.5), typically needs two independent
boundary or initial conditions to admit a unique solution. Fixing the value of g(c) in (4.1)

handles one of these conditions. However, (4.3) also shows that d+g(`)
ds = κ when g is

uniformly integrable near `. That is, there is a second initial boundary condition implicit
in the equation and one may expect uniqueness by fixing the value of g(c). This is not
always the case as the following example shows.
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Example 4.7. Consider the integral equation

g(x) =

∫ ∞
0

(x− y)+g(y)
2

y2
dy.

Clearly, g(x) = kx2 is a non-negative solution of the above for any k ≥ 0. Note that 0

is A-natural, where A is the PCAF for Brownian motion on (0,∞) with Revuz measure
µ(dy) = 2

y2 dy.

Despite the above example a uniqueness result may be obtained for a large class of
integral equations considered.

Theorem 4.8. Consider the following integral equation

g(x) = a+ κ(s(x)− s(c)) +

∫ r

`

vc(x, y)g(y)µA(dy), (4.6)

where µA is the Revuz measure associated with a PCAF A with µA(E) > 0, vc(x, y)

is either s(x ∨ y) − s(c ∨ y) for all (x, y) ∈ (`, r) × (`, r) or s(c ∧ y) − s(x ∧ y) for all
(x, y) ∈ (`, r)× (`, r).

1. Suppose that c ∈ (`, r), a ≥ 0 and κ ∈ R. Then there exists at most one non-
negative solution to (4.6) such that g is uniformly integrable near ` (resp. r) if
vc(x, y) = s(x ∨ y)− s(c ∨ y) (resp. vc(x, y) = s(c ∧ y)− s(x ∧ y)).

2. Suppose that c = ` (resp. c = r) if vc(x, y) = s(x ∨ y) − s(c ∨ y) (resp. vc(x, y) =

s(c ∧ y)− s(x ∧ y)). Assume further that ` (resp. r) is not an A-natural boundary.
Then there exists at most one non-negative solution to (4.6) such that g is uniformly
integrable near ` (resp. r) if vc(x, y) = s(x ∨ y)− s(c ∨ y) (resp. vc(x, y) = s(c ∧ y)−
s(x ∧ y)) for any a ≥ 0 and κ ≥ (resp. κ ≤ 0).

Proof. Proof will be given when vc(x, y) = s(x ∨ y) − s(c ∨ y), the other case being
analogous. First consider the case s(`) = −∞ and c > `. Recall that c < r if s(r) = ∞
and it, otherwise, is allowed to take the value r. Let f and g be two solutions of (4.6)
that are uniformly integrable near `. Then, for any x ∈ (`, c),

f(x)− g(x) = Ex [(f(XTc)− g(XTc)) exp(−ATc)] = 0,

since P x(Tc < T`) = 1 when s(`) = −∞ under the hypothesis on c. This shows that f and
g coincide for any x < c. This completes the proof of this case if c = r

Next suppose c < r and consider a < x < c < y < r. Using the semi-uniform
integrability of f − g, one can then conclude

0 = f(x)− g(x)

= Ex
[
(f(XTay )− g(XTay )) exp(−ATay )

]
= Ex

[
1[Ty<Ta](f(y)− g(y)) exp(−ATay )

]
.

Hence, f and g coincide on (c, r), too.
Now, suppose s(`) > −∞, while still assuming c > `, and f and g are two solutions of

(4.6). Then, (4.3) yields

κ =
d+g(`)

ds
=
d+f(`)

ds
.

Define h = f − g and observe that h satisfies

h(x) =

∫ r

`

vc(x, y)h(y)µA(dy), h(c) = 0.

Then, Lemma 4.1 shows that h does not change its sign on (`, r). Without loss of
generality suppose h ≥ 0 on (`, r). Another application of Lemma 4.1 now yields h is
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s-convex. Moreover, d
+h(`)
ds = d+f(`)

ds − d+g(`)
ds = 0. However, together with the condition

that h(c) = 0, this implies h must be identically 0 on [`, c]. That is, f and g coincide on
[`, c]. The same martingale argument above shows that they coincide on [`, r).

Now consider the remaining case c = ` and define as above h = f − g, where f and g
are two solutions. Then, h solves

h(x) =

∫ x

`

(s(x)− s(y))h(y)µA(dy).

Again, we may assume h ≥ 0 by invoking Lemma 4.1.
Since ` is not A-natural, at least one of the following integrals is finite for all b ∈ (`, r):∫ b

`

(s(b)− s(y))µA(dy)

∫ b

`

(s(y)− s(`))µA(dy).

Suppose the former is finite. One has

0 ≤ h(x) ≤
∫ x

`

h(y)(s(b)− s(y))µA(dy).

A general version of Gronwall’s inequality (see Exercise V.15 in [25]) yields h ≡ 0 on
[`, b), which completes the proof in this case since b was arbitrary.

Similarly, in case the latter is finite, first note that d+h
ds (`) is well-defined and 0, which

in turn yields that h
s−s(`) is bounded on [`, b] for any b ∈ (`, r). Therefore,

0 ≤ h(x)

s(x)− s(`)
≤
∫ x

`

h(y)
s(x)− s(y)

s(x)− s(`)
)µA(dy) ≤

∫ x

`

h(y)

s(y)− s(`)
(s(y)− s(`))µA(dy).

Another application of Gronwall inequality yields the claim.

Due to Theorem 3.11 (g,A) is an Itô-Watanabe pair only if g never vanishes on (`, r).
Thus the only cases of interest where uniqueness may be an issue occur when one
considers the integral equations of (4.5) with g(`) = κ1 = 0 (resp. g(r) = κ2 = 0) and
the boundary is A-natural. The following corollary to the above theorem shows that the
uniqueness is achieved as soon as the value of the function at an intermediary point is
fixed.

Corollary 4.9. Let µA be a Radon measure on (`, r) with µA((`, r)) > 0. Let c ∈ (`, r) and
a > 0. Then there exist at most one solution to the following integral equations

g(x) =

∫ r

`

(s(x)− s(y))
+
g(y)µA(dy), such that g(c) = a;

g(x) =

∫ r

`

(s(y)− s(x))
+
g(y)µA(dy), such that g(c) = a

Proof. Consider the first equation and observe that

g(x) = a+

∫ r

`

(s(x ∨ c)− s(y ∨ c)) g(y)µA(dy).

Thus, the uniqueness follow from Theorem 4.8. The second equation is treated similarly
since in that case

g(x) = g(c) +

∫ r

`

(s(y ∧ c)− s(x ∧ c)) g(y)µA(dy).

The following integration-by-parts type result regarding the solutions of (4.6) will be
instrumental in Section 6. Recall that X is not assumed to be a semimartingale. Thus,
one needs to argue via the representation of the infinitesimal generator in terms of the
scale function and the speed measure.
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Theorem 4.10. Suppose g solves (4.6). Then

dg(Xt)s(Xt) = s(Xt)dg(Xt) + g(Xt)ds(Xt) +
d−g(Xt)

ds
dBt,

where B is a PCAF whose Revuz measure is 2s(dy).

Proof. First note that there exists a PCAF B0 such that s2(X)−B0 is a local martingale
by Theorem 51.2 in [28]. Thus, if ` < a < b < r then

Ex[s2(XTab)] = s2(x) + Ex[B0
Tab

] = s2(x) +

∫ b

a

uab(x, y)µ0(dy),

where µ0 is the Revuz measure of B0 and uab(x, y) = (s(x∧y)−s(a))(s(b)−s(x∨y))
s(b)−s(a) . Then

repeating the same calculations in the proof of Theorem VII.3.12 in [26], after replacing
Af(y)m(dy) therein by µ0(dy), one obtains

ds2(x)

ds
− ds2(y)

ds
=

∫ y

x

µ0(dy).

That is, µ0(dy) = 2s(dy).
Moreover, for any y ∈ (l, r), Itô-Tanaka formula (see, e.g., Theorem 68 in Chap. IV of

[25]) in conjunction with d[s(X), s(X)]t = dB0
t yields

ds(Xt)s(Xt ∨ y) = s(Xt ∨ y)ds(Xt) + s(Xt)ds(Xt ∨ y) + 1[Xt>y]dB
0
t .

Thus, if vc(x, y) = s(x ∨ y)− s(c ∨ y),

dg(Xt)s(Xt) = s(Xt)dg(Xt) + g(Xt)ds(Xt) + κdB0
t +

∫ Xt−

`

g(y)µA(dy)dB0
t .

However,
∫ x−
`

g(y)µA(dy) = d−g(x)
ds by (4.3), which establishes the claim. The case of

vc(x, y) = s(c ∧ y)− s(c ∧ x) is treated similarly.

5 Existence of solutions and further properties

Lemma 4.1 establishes that any semi-uniformly integrable g appearing in an Itô-
Watanabe pair is semi-bounded. Combined with the s-convexity property this entails in
particular that g is also monotone on (`, c) and (c, r) for some c ∈ [`, r]. This section will
construct semi-bounded and monotone solutions of (4.1) for all c ∈ [`, r] whenever they
exist.

Theorem 5.1. Let µA be a Radon measure on (`, r) such that µA((`, r)) > 0 and consider
the integral equations

g(x) = a+ κ(s(x)− s(`)) +

∫ r

`

(s(x)− s(y))
+
g(y)µA(dy), (5.1)

g(x) = a+ κ(s(r)− s(x)) +

∫ r

`

(s(y)− s(x))
+
g(y)µA(dy). (5.2)

1. If for some b ∈ (`, r)∫ b

`

(s(b)− s(y))µA(dy) <∞
(

resp.

∫ r

b

(s(y)− s(b))µA(dy) <∞
)
, (5.3)

there exists a non-negative nondecreasing (resp. nonincreasing) solution to (5.1)
(resp. (5.2)) for a > 0 and κ = 0. Moreover, under this condition a solution with the
same properties exists for a > 0, κ > 0 if one further assumes s(`) (resp. s(r)) is
finite.
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2. If s(`) (resp. s(r)) is finite and for some b ∈ (`, r)∫ b

`

(s(y)− s(`))µA(dy) <∞
(

resp.

∫ r

b

(s(r)− s(y))µA(dy) <∞
)
,

there exists a non-negative nondecreasing (resp. nonincreasing) solution to (5.1)
(resp. (5.2)) for a = 0 and κ > 0.

Proof. 1. Consider (5.1) and given a > 0 and κ ≥ 0 define the operator T acting on
non-negative measurable functions on [`, r] by

Tg(x) := a+ κ(s(x)− s(`)) +

∫ r

`

(s(x)− s(y))
+
g(y)µA(dy).

Observe that Tg is a non-negative continuous function and T is a monotone operator
in the sense that Tg ≥ Tf on (`, r) if g ≥ f is. Set g0 ≡ a and gn = Tgn−1 for n ≥ 1.
Since g1 ≥ a, one deduces by induction that gn is increasing in n. Also note that
(5.3) implies

∫ b
`

(s(b)− s(x))gn(x)µA(dx) <∞ for all b ∈ (`, r) and n ≥ 0 since gns are
continuous with gn(`) = a. Moreover,

gn(x) ≤ gn+1(x) ≤ a+ κ(s(x)− s(`)) +

∫ r

`

(s(x)− s(y))
+
gn(y)µA(dy)

implies that

gn(x) ≤ (a+ κ(s(x)− s(`))) exp

(∫ b

`

(s(b)− s(y))µA(dy)

)
,∀x ≤ b,

for any b ∈ (`, r) by Gronwall’s inequality. This shows that gns are uniformly bounded
on [`, b] for any b ∈ (`, r). Thus, g(x) := limn→∞ gn(x) exists and is finite for any
x ∈ [`, r). Moreover, it satisfies (5.1). That g is monotone follows from Lemma 4.1 and
the previously observed relationship between (5.1) and (4.1) with c ∈ (`, r). Finally
note that κ can be taken to be non-zero when s(`) is finite in above.

Construction of a solution to (5.2) is done similarly.

2. The proof follows similar lines to that of the first part. Set g0 = κ(s(x)− s(`)), define

gn analogously using (5.1) after setting a = 0 and note that
∫ b
`
g1(x)µA(dx) is finite

since
∫ b
`

(s(x)− s(`))µA(dx) is. Then it follows by induction that
∫ b
`
gn(x)µA(dx) <∞.

Moreover,

gn(x)

s(x)− s(`)
≤ gn+1(x)

s(x)− s(`)
≤ κ+

∫ x

`

gn(y)

s(y)− s(`)
(s(y)− s(`))µA(dy).

It again follows from Gronwall’s inequality that gn(x)
s(x)−s(`) is uniformly bounded near `.

Thus, since gns are increasing g = limn→∞ gn exists, is finite on (`, r) that satisfies
(5.1) with the stated properties by Lemma 4.1.

Remark 5.2. Note that the proof of the above theorem gives the iterative algorithm to
construct the solutions. This algorithm converges since the corresponding equation has
a unique solution as established by Theorem 4.8. Moreover, the algorithm is easy to
implement as the underlying operator T is monotone.

Lemma 5.3 (Comparison lemma). Let g1 and g2 be two solutions of (5.1), where the
coefficients (a, κ) are replaced by (a1, κ1) and (a2, κ2), respectively. Suppose a1 ≤ a2 and
κ1 ≤ κ2 such that at least one of the inequalities is strict. Then g1 < g2 on (`, r).

An exact analogue of this comparison also holds for the solutions of (5.2).
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Proof. Let g := g2 − g1 and observe that g satisfies

g(x) = a2 − a1 + (κ2 − κ1)(s(x)− s(`)) +

∫ r

`

(s(x)− s(y))
+
g(y)µA(dy).

If a2−a1 > 0, Lemma 4.1 yields g is strictly positive and convex on a right neighbourhood
of `. Since κ2 − κ1 ≥ 0, this entails g is strictly positive and convex by the same lemma.

If a2 = a1 and κ2 − κ1 > 0, then Lemma 4.1 shows that g is strictly increasing on
a right neighbourhood of `. Consequently, it is convex and increasing on the same
neighbourhood and, hence, on the whole (`, r).

In view of the above comparison result, Theorem 5.1 and Theorem 4.8 the following
corollary is now immediate.

Corollary 5.4. Let µA be a Radon measure on (`, r) such that µA((`, r)) > 0. Then the
following statements are valid:

1. Suppose that ` (resp. r) is A-regular. Then there exists a unique solution to
(5.1) (resp. (5.2)) for any a ≥ 0 and κ ≥ 0. The solution is non-decreasing (resp.
non-increasing) and never vanishes on (`, r) if at least one of a and κ is non-zero.

2. Suppose that ` (resp. r) is A-entrance. Then there exists a unique solution to
(5.1) (resp. (5.2)) for any a ≥ 0 and κ = 0. The solution is non-decreasing (resp.
non-increasing) and never vanishes on (`, r) if at least one of a and κ is non-zero.

3. Suppose that ` (resp. r) is A-exit. Then there exists a unique solution to (5.1) (resp.
(5.2)) for any a = 0 and κ ≥ 0. The solution is non-decreasing (resp. non-increasing)
and never vanishes on (`, r) if at least one of a and κ is non-zero.

Remark 5.5. Note that in each case considered in Corollary 5.4 the unique solution is
given by g ≡ 0 if a = κ = 0. When one of the coefficients is strictly positive, the unique
solution can be found by employing the iterative construction of Theorem 5.1 combined
with a diagonal argument in view of the Comparison Lemma.

If ` is A-natural, it was observed in Proposition 4.6 that a and κ must both vanish
in (5.1), in which case the construction of a solution via the algorithm employed in
Theorem 5.1 is no longer applicable. However, the following familiar probabilistic
construction yields the desired solution.

Theorem 5.6. Suppose that A is a PCAF with Revuz measure µA such that µA(E) > 0.
Then, for any α ∈ (0,∞) and c ∈ (`, r) the following hold:

1. Suppose that ` is A-natural. The increasing function

g(x) :=

{
αEx[1[Tc<T`] exp(−ATc)], x ≤ c,

α
Ec[1[Tx<T`]

exp(−ATx )]
, x > c,

is the unique solution of (5.1) with a = κ = 0 such that g(c) = α.

2. Suppose that r is A-natural. The decreasing function

g(x) :=

{
αEx[1[Tc<Tr] exp(−ATc)], c < x,

α
Ec[1[Tx<Tr ] exp(−ATx )]

, x ≤ c,

is the unique solution of (5.2) with a = κ = 0 such that g(c) = α.

Proof. Without loss of generality assume α = 1.
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1. Let y > x ∨ c. Suppose c < x. Then,

Ec[1[Ty<T`] exp(−ATy )] = Ec[1[Tx<T`] exp(−ATx)]Ex[1[Ty<T`] exp(−ATy )]

by the strong Markov property. Via similar considerations when x ≤ c, one thus
arrives at

g(x) =
Ex[1[Ty<T`] exp(−ATy )]

Ec[1[Ty<T`] exp(−ATy )]
.

In particular, gr(X) exp(−A) is a bounded martingale when stopped at Ty. Since Ty
increases to ζ as y → r, this shows (gr, A) is an Itô-Watanabe pair bounded at `. Thus,
it follows from Proposition 3.14, Theorem 4.3, and Corollary 4.9 that g is the unique
solution of the stated equation.

2. Repeat the above starting with y < x ∧ c and observing

g`(x) =
Ex[1[Ty<Tr] exp(−ATy )]

Ec[1[Ty<Tr] exp(−ATy )]
.

Remark 5.7. Probabilistic representations as in the previous theorem exist for solutions
when the corresponding boundaries are not A-natural (see Sections 4.6 and 5.1 in [18]).
However, the integral operator introduced in Theorem 5.1 and used again in Corollary 5.4
allows for an easy numerical method for the computation of solutions.

Remark 5.8. The similarities in the restrictions on the boundary conditions appearing in
Table 1 and those provided in McKean [19] are not surprising. Indeed, if Y is the regular
diffusion defined by the time change YAt = Xt, it is easy to see that g(X) exp(−A) is a
local martingale if and only if g(Y ) exp(−I) is, where It := t, provided that the Revuz
measure µA of A has a full support in (`, r). In this case, the monotone increasing and
decreasing g that make the former a local martingale coincide with the fundamental
solutions of Lg = g, where L is the infinitesimal generator of Y . If µA does not have
full support, the above equivalence will still hold if X is killed at its first exit from the
support of µA.

Inspired by the above observation one may hope to find the strictly positive subhar-
monic functions by solving the ordinary differential equation (ODE) associated with the
infinitesimal generator of the time changed process Y , whose speed measure is given by
µA. However, by the same reasoning as above, this will work only if µA has full support.
Otherwise, the fundamental solutions of the ODE will only define those subharmonic
functions on the support of µA, which will not be of much value, for instance, if µA is the
Dirac measure associated with local time at a point. On the other hand, the methodology
developed in this paper constructs these function on the whole (`, r).

Theorems 5.1 and 5.6 establish the existence of non-constant and monotone solutions
of (5.1) and (5.2) under appropriate boundary conditions depending on the nature of
the boundary. Denoting the nondecreasing (resp. non-increasing) and nonconstant
solution of (5.1) (resp. (5.2)) by ψA (resp. φA), Table 1 summarises the boundary
behaviour of these functions – fundamental solutions using an ODE terminology – in view
of Propositions 3.14 and 4.6, and the following Remark 5.9.

Remark 5.9. The behaviour of the nonincreasing solution φA near ` follows from (5.2)
and the conditions defining the A-entrance, A-exit, etc.. Indeed, when ` is A-natural or
A-exit, µA((`, b)) = ∞ for any b ∈ (`, r). This implies in conjunction with (4.3) that the
derivative of φA must be infinite at ` since φA(`) > 0. The finiteness of µA((`, b)) when `
is A-entrance, on the other hand, yields a finite derivative.

Similarly, when ` is A-entrance, s(`) = −∞ that in turn implies φA(`) =∞ by looking
at (5.2). If ` is A-exit, s(`) > −∞ and µA(`, b) =∞, which yield φA(`) =∞ in view of (5.2).
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Table 1: Fundamental solutions.

A-regular A-entrance A-exit A-natural

ψA(`) ≥ 0 > 0 = 0 = 0

φA(`) <∞ =∞ <∞ =∞
d+ψA
ds (`) ≥ 0 = 0 > 0 = 0

−d
+φA
ds (`) <∞ <∞ =∞ =∞

Table describes the boundary behaviour of ψ and φ near ` depending on the boundary classification for `. In

order to make sure that the fundamental solutions do not vanish completely the condition ψA(`)+
d+ψA
ds

(`) > 0

must be imposed when ` is A-regular. The behaviour of the fundamental solutions near the boundary r can be

found by exchanging ` with r and φ with ψ in the above table.

In the remaining case of ` being A-natural and s(`) > −∞, that
∫ b
`

(s(y)−s(`))µA(dy) =∞
yields similarly φA(`) =∞.

So far in this paper the focus has been on semi-uniformly integrable subharmonic
functions. The next result – akin to the representation of solutions of ODEs in terms of
linearly independent solutions – shows that this is enough to characterise all.

Theorem 5.10. For any g ∈ S+ there exists a PCAF A with Revuz measure µA such that
g = λ1ψA + λ2φA, where ψA and φA are nondecreasing and nonincreasing fundamental
solutions from Table 1.

Proof. Since g is subharmonic, it is a convex function of s and there exists a PCAF B

such that g(X)−B is a P x-local martingale for every x ∈ (`, r). If B ≡ 0, g must be an
affine transformation of s, in which case g is excessive and the claim holds with µA ≡ 0.
Note that if both s(r) and s(`) are infinite, that is X is recurrent, only excessive functions
are constants (see,.e.g., Exercise 10.39 in [28]).

Thus, suppose B is not identically 0. Since g ∈ S+, At =
∫ t

0
1

g(Xs)
dBs is well-defined

as a PCAF. As observed before, g(X) exp(−A) can be easily checked to be a P x-local
martingale.

Let ψA and φA are nondecreasing and nonincreasing fundamental solutions from
Table 1. Next consider an interval (a0, b0) with ` < a0 < c < b0 < r and let λ1 and λ2 be
such that

λ1ψAr(a
0) + λ2φA(a0) = g(a0) and λ1ψA(b0) + λ2φA(b0) = g(b0)

noting that the above has a unique solution since φA and ψA are linearly independent.
Since exp(−A) {g(X)− λ1ψA(X)− λ2φA(X)} is a P x-local martingale and g as well as
φA and ψA are continuous, one obtains

g(x)− λ1ψA(x)− λ2φA(x) = Ex [exp(−ATab) {g(XTab)− λ1ψA(XTab)− λ2φA(XTab)}] = 0

for any x ∈ (a0, b0). Using the optional stopping theorem at Tzb0 for ` < z < a0 and
x ∈ (a0, b0) shows g(z) = λ1ψA(z) + λ2φA(z). Repeating the same argument at Ta0z for
z > b0 establishes g(z) = λ1ψA(z) + λ2φA(z) on (b0, r), hence the claim.

6 Path transformations via Itô-Watanabe pairs

This section is devoted to measure changes via Itô-Watanabe pairs. Note that the
local martingale associated to a given Itô-Watanabe pair is not in general a uniformly
integrable martingale, as can be seen from the following result in a special case.
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Proposition 6.1. Suppose that X is recurrent, f ≥ 0 and A is a PCAF such that
f(X) exp(−A) is a supermartingale. Assume further that f is continuous on (`, r) and ei-
ther f(`+) or f(r−) exist (with the possibility of being infinite). Then, f(Xt) exp(−At)→
0, P x-a.s. for all x ∈ (`, r).

Proof. Since f(X) exp(−A) is a non-negative supermartingale, it converges a.s. If this
limit is non-zero with non-zero P x-probability, then P x(limt→∞ f(Xt) = ∞) > 0 since
A∞ = ∞, a.s. However, this implies limt→∞Xt exists and equals ` or r with positive
probability, which contradicts recurrence.

Nevertheless, one can still construct a Markov process, whose law is locally abso-
lutely continuous with respect to that of the original process since g(X) exp(−A) is a
supermartingale multiplicative functional (see Section 62 of [28]).

Theorem 6.2. Consider an Itô-Watanabe pair (g,A), where g is semi-uniformly inte-
grable. Then there exists a unique family of measures (Qx)x∈(`,r) on (Ω,Fu) rendering
X Markov with semigroup (Qt)t≥0 and Qx(X0 = x) = 1. Moreover, the following hold:

1. For every stopping time T and F ∈ FT

Qx(F, T < ζ) =
Ex[1F1[T<ζ]g(XT ) exp(−AT )]

g(x)
. (6.1)

2. The semigroup (Qt)t≥0 coincides with that of a one-dimensional regular diffusion
with no killing on (`, r), scale function sg and speed measure mg, where

sg(dx) =
1

g2(x)
ds(x), mg(dx) = g2(x)m(dx).

3. If B is a PCAF of X with Revuz measure µ under (P x)x∈(`,r) and speed measure m,
its Revuz measure under (Qx)x∈(`,r) and speed measure mg is given by µg(dx) =

g2(x)µ(dx).

Proof. See the Appendix.

Remark 6.3. A quick inspection of the proof reveals that Theorem 6.2 remain valid if
g = c1g1 + c2g2, where ci ≥ 0 and (gi, A) are Itô-Watanabe pairs with semi-uniformly
integrable gis. Thus, it is valid for all Itô-Watanabe pairs in view of Theorem 5.10.

Remarkably Itô-Watanabe pairs transform recurrent diffusions to transient ones.

Corollary 6.4. Suppose X is recurrent and A is a PCAF with µA(E) > 0. Then P x(A∞) =

∞) = 1. Consider g = c1ψA + c2φA, where φA and ψA are respectively the nonincreasing
and nondecreasing functions defined in Table 1, ci ≥ 0 and c1 + c2 > 0. Let (Qx)x∈(`,r)

denote the family of measures defined in Theorem 6.2. Then X is transient under
(Qx)x∈(`,r). Moreover,

1. If c1 = 0, Qx(Xζ− = `) = 1.

2. If c2 = 0, Qx(Xζ− = r) = 1.

3. If c1 and c2 are non-zero, Qx(Xζ− = r) > 0 and Qx(Xζ− = `) > 0.

Proof. That P x(A∞) =∞) = 1 follows from Theorem 2.4.
Proof of only the third remaining statement will be given as the other cases are

treated similarly. First observe from Table 1 that ψA(r) =∞ since r-cannot be A-regular
or A-exit. Similarly, φA(`) =∞.
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Suppose ds(x) = dx, without loss of generality, and note that

sg(`+) = −
∫ c

`

1

g2(x)
dx.

Since g is convex and g(`+) = +∞, there exists x∗ < 0 and k > 0 such that g(x) > −kx
for all x < x∗. Thus, sg(`+) > −∞. Similarly, sg(r−) <∞. This proves the claim.

The result above is a general case of the transient transformation considered in
Proposition 5.1 in [7]. A version exists for transient diffusions as well.

Corollary 6.5. Suppose that X is transient and A is a PCAF with µA(E) > 0. Consider
g = c1ψA+c2φA, where φA and ψA are respectively the nonincreasing and nondecreasing
functions defined in Table 1, ci ≥ 0 and c1 + c2 > 0. Let (Qx)x∈(`,r) denote the family
of measures defined in Theorem 6.2. Then X is transient under (Qx)x∈(`,r). Moreover,
Qx(Xζ− = `) > 0 if c2 > 0 and Qx(Xζ− = r) > 0 if c1 > 0.

Proof. Suppose ds(x) = dx without loss of generality. If ` > −∞, it is clear that sg(`+) is
finite when c2 > 0 since φA(`) > 0. Thus, suppose ` = −∞. Consequently, ` is either A-
entrance or A-natural and φA(−∞) =∞. Since φA is convex, one has limx→−∞

φA(x)
−x > 0,

which in turn yields that
∫ b
−∞

1
φ2
A(x)

dx < ∞ and implies the finiteness of sg(`+) when
c2 > 0.

The implication of c1 > 0 is proved similarly.

The following example illustrates the above transformations in a rather simple setting,
yet exhibiting an intriguing singularity in the limit.

Example 6.6. Consider a one-dimensional diffusion on natural scale with the state space
R. Let δ > 0 and note that µA(dx) = ε1(dx)

δ is the Revuz measure for the PCAF (2δ)−1L1,
where L1 is the semimartingale local time for X at 1. One can solve (4.4) explicitly in
this case to find

ψA(x) = δ + (x− 1)+ and φA(x) = δ + (1− x)+

satisfying ψA(1) = φA(1) = δ. Moreover, (ψA, A) and (φA, A) are Itô-Watanabe pairs due
to Theorem 4.3.

If one uses (ψA, A) to apply a path transformation to X via Theorem 6.2, one obtains
a transient diffusion (see Corollary 6.4) with scale function

sδ(x) =

{
1
δ −

1
δ+x−1 , if x ≥ 1;

x−1
δ2 , if x < 1.

Note that sδ(∞) <∞, implying that the diffusion drifts towards infinity in the long run.
Moreover, the potential density uδ is given by

uδ(x, y) =
1

δ
− sδ(x ∨ y).

In particular if the original X is a Brownian motion, the dynamics of X under (Qx),
where Qx is as defined in Theorem 6.2, is given by

dXt = dWt + 1[Xt>1]
1

δ +Xt − 1
dt,

where W is a standard Brownian motion. X following the above dynamics still has the
whole R as it state space. However, by comparing to a 3-dimensional Bessel process,
it can be guessed that for smaller values of δ it must be getting harder for X to move
from the half space (1,∞) to (−∞, 1) due to the extremely large positive drift in the right
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neighbourhood of 1. By taking formal limits as δ → 0 one can see that X is no longer
regular: it is a Brownian motion on (−∞, 1] while X − 1 becomes a 3-dimensional Bessel
process on [1,∞). The set {1} can be viewed as a soft border between two regimes
allowing transitions from the Brownian regime to the Bessel one but not the other way
around.

This formal description can be made more rigorous by analysing L1
∞ – the cumulative

local time spent at 1 at the lifetime. It is well-known that L1
∞ is exponentially distributed

under Q1 (see Paragraph 13 in Section II.2 in [6]). For a fixed δ > 0 the parameter of

this exponential distribution equals s′δ(1)
2uδ(1,1) = 1

2δ . In particular Q1(L1
∞) = 2δ → 0 as δ

tends to 0. Moreover, for x < 1 < y, Qx(Ty <∞) = 1 whereas

Qy(Tx <∞) =
uδ(y, x)

uδ(x, x)
=

δ2

(δ + 1− x)(δ + y − 1)
→ 0 as δ → 0.

Thus, the transitions from (−∞, 1) to [1,∞) continue as δ gets small. However, once
the border {1} is reached, X is strongly pulled into the interior of [1,∞) and finds it
increasingly difficult to get back to the border.

7 Conclusion

Minimal subharmonic functions for a given one-dimensional diffusion are deter-
mined and used to develop a novel Choquet-type integral representation for positive
subharmonic functions. These minimal functions admit representation in terms of last
passage times. The Choquet representation is used to construct integral equations for
Itô-Watanabe pairs in terms of the Revuz measure of the associated PCAF. Another nov-
elty of the approach taken in this paper is that an easy numerical scheme exists for the
solution of these equations when the Revuz measure of the PCAF satisfy an integrability
condition. These pairs are then used to develop a theory of transient transformations.

A Appendix

Proof of Proposition 3.4. The proof will be given for (3.1) in case s(`) > −∞ since the
other cases can be handled the same way.

Suppose that g(`) = 0 and there are two representations given by (κ1, µ1) and (κ2, µ2).
Define the CAFs Bi by

Bit =

∫ r

`

Lytµi(dy).

where Ly is the diffusion local time. That is, BI is a PCAF with Revuz measure µi.
Next consider ` < a < x < b < r and observe that

Ex[BiTab ] =

∫ r

`

Ex[LyTab ]µi(dy),

where Tab = Ta ∧ Tb. Since Ex[LyTab ] = (s(x∧y)−s(a))(s(b)−s(x∨y))
s(b)−s(a) for y ∈ (a, b) (see Para-

graph 13 on p.21 of [6]), one obtains

Ex[BiTab ] =

∫ b

a

(s(x ∧ y)− s(a))(s(b)− s(x ∨ y))

s(b)− s(a)
µi(dy). (A.1)

On the other hand,

Ex[g(XTab)] = κi(s(x)− s(`)) +

∫ r

`

Ex
[
(s(XTab)− s(y))

+
]
µi(dy)

= κi(s(x)− s(`))
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+

∫ a

`

{
(s(a)− s(y))

s(b)− s(x)

s(b)− s(a)
+ (s(b)− s(y))

s(x)− s(a)

s(b)− s(a)

}
µi(dy)

+

∫ b

a+

(s(b)− s(y))
s(x)− s(a)

s(b)− s(a)
µi(dy)

= g(x)−
∫ b

`

(s(x)− s(y))+µi(dy)

+

∫ a

`

{
(s(a)− s(y))

s(b)− s(x)

s(b)− s(a)
+ (s(b)− s(y))

s(x)− s(a)

s(b)− s(a)

}
µi(dy)

+

∫ b

a+

(s(b)− s(y))
s(x)− s(a)

s(b)− s(a)
µi(dy)

= g(x) +

∫ b

a+

(s(x)− s(a))(s(b)− s(y))− (s(x)− s(y))+(s(b)− s(a))

s(b)− s(a)
µi(dy)

= g(x) +

∫ b

a

(s(x ∧ y)− s(a))(s(b)− s(x ∨ y))

s(b)− s(a)
µi(dy),

where the third equality follows from the representation of g, the fourth is due to the
assumption that x ∈ (a, b), and the last holds since the integrand equals 0 when y = a.

The above in conjunction with (A.1) show that Ex[B1
Tab

] = Ex[B2
Tab

] = Ex[g(XTab)]−
g(x) for all x ∈ (a, b). That is, the PCAF Bis have the same potential when X is stopped
at Tab. Therefore, B1 and B2 are indistinguishable upto Tab by Theorem IV.2.13 in [4].
Hence, B1 = B2 by continuity and the arbitrariness of a and b. Moreover, this implies
they have the same Revuz measure in view of (2.1). Hence, µ1 = µ2, which in turn
implies κ1 = κ2. The remaining assertions have already been proved.

Proof of Lemma 4.1. Proof will consider vc(x, y) = s(x ∨ y)− s(c ∨ y) and the other case
is handled similarly.

1. Note that one can choose c such that a < c < x without loss of generality. Then,

Ex[g(XTab)] = g(c) + κ(s(x)− s(c))
∫ r

`

(Ex[s(XTab ∨ y)]− s(c ∨ y))g(y)µA(dy)

= g(c) + κ(s(x)− s(c)) +

∫ a

`

(Exs(XTab)− s(c))g(y)µA(dy)

+

∫ b

a+

(Exs(XTab ∨ y)− s(c ∨ y))g(y)µA(dy)

= g(c) + κ(s(x)− s(c)) +

∫ a

`

(s(x)− s(c))g(y)µA(dy)

+

∫ b

a+

(Ex[s(XTab ∨ y)]− s(c ∨ y))g(y)µA(dy),

where the first equality is due to the fact that s(z∨y) = s(z) for y < a and s(z∨y) = s(y)

whenever z ∈ (a, b). On the other hand, for y ∈ [a, b],

Ex[s(XTab ∨ y)] = s(y)P x(Ta < Tb) + s(b)P x(Tb < Ta)

= s(y)
s(b)− s(x)

s(b)− s(a)
+ s(b)

s(x)− s(a)

s(b)− s(a)

= s(x) +
(s(y)− s(a))(s(b)− s(x))

s(b)− s(a)
.

Therefore,

Ex[g(XTab)] = g(c) + κ(s(x)− s(c)) +

∫ x

`

(s(x ∨ y)− s(c ∨ y))g(y)µA(dy)
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+

∫ b

x+

(
s(x)− s(y)− (s(y)− s(a))(s(b)− s(x))

s(b)− s(a)

)
g(y)µA(dy)∫ x

a+

(s(y)− s(a))(s(b)− s(x))

s(b)− s(a)
g(y)µA(dy)

= g(x) +

∫ b

x+

(s(x)− s(a))(s(b)− s(y))

s(b)− s(a)
g(y)µA(dy)

+

∫ x

a+

(s(y)− s(a))(s(b)− s(x))

s(b)− s(a)
g(y)µA(dy)

= g(x) +

∫ b

a

(s(x ∧ y)− s(a))(s(b)− s(x ∨ y))

s(b)− s(a)
g(y)µA(dy),

where the second equality is due to (4.4), the third follows from that the mapping
y 7→ (s(y)−s(a))(s(b)−s(x))

s(b)−s(a) vanishes at y = a.

2. It is clear from the definition that g is continuous on (`, r). Thus, both O+ and O− are
open. Let x ∈ O+ and consider a neighborhood around x with left endpoint a and
right endpoint b such that (a, b) ⊂ O+. Then, (4.2) yields

Ex[g(XTab)] ≥ g(x),

as a consequence of the strict positivity of g on O+. This proves that g is s-convex on
O+ since

Ex[g(XTab)] = g(a)
s(b)− s(x)

s(b)− s(a)
+ g(b)

s(x)− s(a)

s(b)− s(a)
.

The same technique can be used to prove g is s-concave on O−.

3. Suppose vc(x, y) = s(x ∨ y)− s(c ∨ y). First observe that the integrability assumption∫ r
l
|s(x ∨ y)− s(c ∨ y)||g(y)|µA(dy) <∞ implies∫ x

l

|g(y)|µA(dy) <∞

for any x ∈ (`, r).

Moreover, for any a < x < b,

(s(x ∧ y)− s(a))(s(b)− s(x ∨ y))

s(b)− s(a)
≤ s(b)− s(x)

for all y ∈ (a, b). Thus, the dominated convergence theorem applied to (4.2) yields

(s(b)− s(x)) lim
a→`

g(a)

s(b)− s(a)
+ g(b) = lim

a→`
Ex[g(XTab)] = g(x) +

∫ b

`

u(b;x, y)g(y)µA(dy),

where u(b; ·, ·) is given by

u(b;x, y) = lim
a→`

(s(x ∧ y)− s(a)) (s(b)− s(x ∨ y)

s(b)− s(a)
. (A.2)

Thus, since the right hand side is finite, one must have

lim
a→`

g(a)

s(b)− s(a)
<∞,

which in turn yields the finiteness of g(`+) if s(`) > −∞.
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Note in particular that if g is u.i. near ` and s(`) = −∞, lima→`E
x[g(XTab)] = g(b) and,

consequently, lima→`
g(a)

s(b)−s(a) = 0.

Thus,

lim
a→`

g(a)

s(b)− s(a)
= lim
x→`

g(x)

s(b)− s(x)
+ lim
x→`

∫ b

`

s(b)− s(x ∨ y)

s(b)− s(x)
g(y)µA(dy),

which in turn yields

lim
x→`

∫ b

`

s(b)− s(x ∨ y)

s(b)− s(x)
g(y)µA(dy) = 0.

On the other hand, (4.1) implies

0 = lim
x→`

g(x)

s(b)− s(x)
+ κ+ lim

x→`

∫ b

`

s(b)− s(x ∨ y)

s(b)− s(x)
g(y)µA(dy), (A.3)

which establishes κ = − limx→`
g(x)

s(b)−s(x) = 0. Consequently, g(`+) is finite.

4. If g changes its sign, there exists a c∗ ∈ (`, r) such that either g is decreasing, s-convex
on (`, c∗) and s-concave on (c∗, r) or increasing, s-concave on (`, c∗) and s-convex
on (c∗, r). Since −g also solves (4.1), assume without loss of generality that the
former case holds. Fix c ∈ (`, c∗) and let x ∈ (c, c∗) be arbitrary. Then, assuming
vc(x, y) = s(x ∨ y)− s(c ∨ y)

g(x) = g(c) +

∫ x

`

(s(x)− s(c ∨ y))g(y)µA(dy) ≥ g(c)

since g is non-negative on (`, c∗). This shows g is increasing on (l, c∗) yielding a
contradiction.

Similarly, if vc(x, y) = s(c ∧ y)− s(x ∧ y), let c∗ < c < x and note that g is nonpositive
on (c∗, r). Then,

g(x) = g(c) +

∫ r

x+

(s(c)− s(x ∧ y))g(y)µA(dy) ≥ g(c)

contradicts that g is decreasing.

5. Note that, for sufficiently small h > 0 and x ∈ [`, r) such that g(x) <∞,

g(x+ h)− g(x) = κ(s(x+ h)− s(x)) + (s((x+ h))− s(x))

∫ x

`

g(y)µA(dy)

+

∫ x+h

x+

(s(x+ h)− s(y))g(y)µA(dy),

which in turn yields
d+g(x)

ds
= κ+

∫ x

`

g(y)µA(dy)

since g is continuous, µA is finite on any small neighbourhood around x and does not
charge {`}.
Similarly,

g(x)− g(x− h) = κ(s(x)− s(x− h)) + (s(x)− s(x− h))

∫ x−h

`

g(y)µA(dy)
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+

∫ x

(x−h)+

(s(x)− s(y))g(y)µA(dy),

and therefore
d−g(x)

ds
= κ+

∫ x−

`

g(y)µA(dy).

The other case for vc is handled in the same manner.

Proof of Theorem 4.3. (1) =⇒ (2): Since proofs are analogous, assume g ∈ G`. Since
g ∈ S, it admits a representation given by (3.5). Let c∗ be a point where g(c∗) =

infx∈E g(x) and note that c∗ could equal `.
First consider the case c∗ ∈ (`, r). It follows from Theorem 3.5 the existence of two

Borel measures µ1 and µ2 on the Borel subsets of (`, r) such that

g(x) = g(c∗) +

∫ r

`

(s(x)− s(y))+µ1(dy) +

∫ r

`

(s(y)− s(x))+µ2(dy) (A.4)

such that µ1((`, c∗)) = µ2((c∗, r)) = 0. Moreover, since g(X) −
∫ ·

0
g(Xt−)dAt is a local

martingale, µ1 + µ2 = g · µA.

Observe that the above implies
∫ c∗
`
µ2(dy) <∞. Indeed, straightforward calculations

yield
dg+

ds
(x) = −

∫ r

x+

µ2(dy) +

∫ x

`

µ1(dy).

In particular,∞ > dg+

ds (`) = −µ2((`, c∗]).
Next, rewriting (A.4) one arrives at

g(x) = g(c∗)− (s(x)− s(c∗))
∫ c∗

`

µ2(dy) +

∫ r

`

(s(x)− s(y))+µ1(dy)

+

∫ r

`

{
(s(y)− s(x))+ + s(x)− s(c)

}
µ2(dy)

= g(c∗)− (s(x)− s(c∗))µ2((`, c∗]) +

∫ r

`

(s(x ∨ c∗)− s(y ∨ c∗))µ1(dy)

+

∫ r

`

{1y≥x(s(y)− s(c∗)) + 1y<x(s(x)− s(c∗))}µ2(dy)

= g(c∗)− (s(x)− s(c∗))µ2((`, c∗]) +

∫ r

`

(s(x ∨ c∗)− s(y ∨ c∗))µ1(dy)

+

∫ r

`

(s(x ∨ c∗)− s(y ∨ c∗))µ2(dy)

= g(c∗)− (s(x)− s(c∗))µ2((`, c∗]) +

∫ r

`

(s(x ∨ c∗)− s(y ∨ c∗))g(y)µA(dy).

Thus, (4.4) holds with κ1 = −µ2((`, c∗]) and c = c∗. Now a quick inspection of (4.4)
reveals that if g solves (4.4) for one c, it solves it for all.

On the other hand, if c = `, g is non-decreasing with decomposition

g(x) = g(`+) +

∫ r

`

(s(x)− s(y))+g(y)µA(dy),

utilising the fact that κ in (3.4) coincides with d+g(`+)
ds and the Revuz measure of the

PCAF B that makes g(X) − B a local martingale is given by g · µA as before. Thus,
repeating the calculations leading to (3.15) yields that (4.4) holds for any c ∈ (`, r).
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(2) =⇒ (1) The proof will be given for the first equation as the other case can be
done similarly.

It follows from Lemma 4.1 that g is s-convex on (`, r) and its right s-derivative at `
is finite. In particular, g is subharmonic and there exists a PCAF B by Theorem 51.7
in [28] that g(X) − B is a P x-local martingale for any x ∈ (`, r). In particular, for any
` < a < x < b < r,

Ex[g(XTab)] = g(x) + Ex[BTab ] = g(x) +

∫ b

a

(s(x ∧ y)− s(a))(s(b)− s(x ∨ y))

s(b)− s(a)
µB(dy)

due to (2.2), where µB is the Revuz measure associated with B. On the other hand, (4.2)
yields

Ex[g(XTab)] = g(x) +

∫ b

a

(s(x ∧ y)− s(a))(s(b)− s(x ∨ y))

s(b)− s(a)
g(y)µA(dy).

Since ∫ b

a

(s(x ∧ y)− s(a))(s(b)− s(x ∨ y))

s(b)− s(a)
g(y)µA(dy) = Ex

∫ Tab

0

g(Xt)dAt,

one deduces easily that Ex[BTab ] = Ex
∫ Tab

0
g(Xt)dAt for all a < x < b. That is, the

potentials of g · A and B coincide when X is killed at Tab, which in turn leads to the
fact that B and g · A are indistinguishable by Theorem IV.2.13 in [4] since a and b are
arbitrary. Thus, g(X)−

∫ ·
0
g(Xt)dAt is a local martingale. A simple integration by parts

and the fact that g is bounded on the compact intervals of (`, r) show that g(X) exp(−A)

is a local martingale. Since g is not identically 0, (g,A) is an Itô-Watanabe pair in view of
Theorem 3.11.

Uniform integrability near ` is obvious since g is bounded on (`, b) for any b < r in
view of Lemma 4.1 and the fact that g ≥ 0.

Proof of Theorem 6.2. The first statement follows directly from Theorem 62.19 in [28].
To prove the second statement observe that the killing measure on (`, r) under Qx

is null since there is no killing under P x and g(X) exp(−A) is a P x-martingale when
stopped at Tab for any ` < a < b < r.

Moreover, mg is a symmetry measure for (Qt). Indeed, if f and h are bounded and
measurable functions vanishing at ∆, then∫ r

`

Qx[f(Xt)]h(x)g2(x)m(dx) =

∫ r

`

Ex[f(Xt)g(Xt) exp(−At)]h(x)g(x)m(dx)

=

∫ r

`

Ex[h(Xt)g(Xt) exp(−At)]f(x)g(x)m(dx)

=

∫ r

`

Qx[h(Xt)]f(x)g2(x)m(dx),

where the second equality follows from the fact that m is the symmetry measure for (Pt)

and exp(−A) is a multiplicative functional in view of Theorem 13.25 in [9]. Thus, mg is a
speed measure associated to (Qt)t≥0.

Next let us observe that sg(X) is a Qx-local martingale, where sg(x) =
∫ x
c
sg(dx)

for an arbitrary c ∈ (`, r). However, this is equivalent to sg(X)g(X) exp(−A) is a P x-
local martingale. That is, (sgg,A) has to be an Itô-Watanabe pair. By killing X at Ta if
necessary, this will follow from Corollary 4.4 if sgg solves (4.5) on (a, r) for any a > `

once ` is replaced by a.
Indeed, redefining sg so that sg(a) = 0 one has via

d+sgg

ds
=

1

g
+ sg

d+g

ds
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and integration by parts that

d+sgg

ds
(x) =

1

g(x)
+ sg(x)

(
d+g(a)

ds
+

∫ x

a

g(y)µA(dy)

)
=

1

g(x)
+

∫ x

a

sg(y)g(y)µA(dy) +

∫ x

a

d+g(y)

ds
g−2(y)µA(dy)

=
1

g(a)
+

∫ x

a

sg(y)g(y)µA(dy),

where the first equality follows from (4.3). Therefore,

sg(x)g(x) =
1

g(a)
(s(x)− s(a)) +

∫ x

a

∫ z

a

sg(y)g(y)µA(dy)ds(z)

=
1

g(a)
(s(x)− s(a)) +

∫ x

a

(s(x)− s(y))sg(y)g(y)µA(dy),

which establishes that (sgg,A) is an Itô-Watanabe pair in view of Corollary 4.4.
Therefore, once the speed measure mg is fixed, the associated scale function, s∗,

will satisfy s∗(dx) = ksg(dx) for some k > 0. Thus, the proof will be complete once it is
shown that k = 1. To this end, note that the potential density of X killed at Tab under the
dynamics defined by (Qt) is given by ku∗ab, where

u∗ab(x, y) =
(sg(x ∧ y)− sg(a))(sg(b)− sg(x ∨ y))

sg(b)− sg(a)
.

To determine k, the quantity Qx(s(XTab))− s(x) will be computed in two ways. First,

Qx(s(XTab))− s(x) = s(a)
sg(b)− sg(x)

sg(b)− sg(a)
+ s(b)

sg(x)− sg(a)

sg(b)− sg(a)
− s(x). (A.5)

On the other hand,

g(x)Qx(s(XTab)) = Ex [s(XTab)g(XTab) exp(−ATab)]

= g(x)s(x) + Ex

[∫ Tab

0

exp(−At)g′(Xt)dBt

]

= g(x)s(x) + g(x)Qx

[∫ Tab

0

g′(Xt)

g(Xt)
dBt

]
,

where B is as in Theorem 4.10 and g′ stands for the left derivative of g with respect to s.
Since the Revuz measure of B under Qx becomes 2g2(x)s(dx) as will be shown below,
one obtains

Qx(s(XTab))− s(x) = 2k

∫ b

a

u∗ab(x, y)g′(y)g(y)s(dy). (A.6)

Now, combining (A.5) and (A.6) and repeating the similar calculations used in the proof
of Theorem VII.3.12 in [26] yield

ds

dsg
(x)− ds

dsg
(y) = 2k

∫ y

x

g′(y)g(y)s(dy).

However, the left hand side of the above is g2(x)− g2(y) while the right hand side equals
k(g2(x)− g2(y)). Thus, k must equal 1.

Thus, it remains to prove the last statement. First, suppose Bt :=
∫ t

0
f(Xs)ds for a

non-negative measurable f . Then,

Qx(BTab) =

∫ b

a

u∗ab(x, y)f(y)mg(dy) =

∫ b

a

u∗ab(x, y)f(y)g2(y)m(dy),
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for any ` < a < b < r, which implies the Revuz measure under (Qx) given the speed
measure mg equals f(y)g2(y)m(dy). Since the corresponding measure under (P x) is
given by f(y)m(dy), the claim follows for all such B.

Moreover, by the occupation times formula BTab =
∫ r
`
LyTabf(y)m(dy), where Ly is

the local time of X at level y under (P x) with respect to m. Thus, for any non-negative
measurable f ∫ b

a

u∗ab(x, y)f(y)g2(y)m(dy) =

∫ r

`

Qx(LyTab)f(y)m(dy).

On the other hand, Ly is a PCAF for X under (Qx) and its support is contained in {y}
since Qx � P x on F∗t for every t when restricted to [t < ζ]. Then, by Proposition 68.1
in [28] Ly is proportional to the local time at y with respect to mg under Qx. Therefore,
Qx(LyTab) = αu∗ab(x, y) for some α > 0, which can be easily seen equal to g2(y) in view of
the above. This in turn implies the Revuz measure for Ly is given by g2(y)εy(dx), where
εy is the Dirac measure at y. The proof is now complete since if B is a PCAF with Revuz
measure µ under (P x) for the speed measure m, B =

∫ r
`
µ(dy)Ly.
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