
Programmed differently? Testing for gender differences in
Python programming style and quality on GitHub
Siân Brooke 1,�

1Department of Methodology, London School of Economics, Houghton Street, London, WC2A 2AE, United Kingdom
�Corresponding author: Siân Brooke. Email: s.j.brooke@lse.ac.uk

Abstract
The underrepresentation of women in open-source software is frequently attributed to women’s lack of innate aptitude compared to men: natu-
ral gender differences in technical ability (Trinkenreich et al., 2021). Approaching code as a form of communication, I conduct a novel empirical
study of gender differences in Python programming on GitHub. Based on 1,728 open-source projects, I ask if there is a gender difference in the
quality and style of Python code measured in adherence to PEP-8 guidelines. I found significant gender differences in structure and how Python
files are organized. While there is gendered variation in programming style, there is no evidence of gender difference in code quality. Using a
Random Forest model, I show that the gender of a programmer can be predicted from the style of their Python code. The study concludes that
gender differences in Python code are a matter of style, not quality.

Lay Summary
This study examines whether there is a difference in Python programming styles between gender groups. I examine available code on GitHub,
a cloud-based hosting platform for collaboration known as version control, often used in open-source software development. First, I infer the
gender of users from their usernames and the information provided on their profiles, labeling users as feminine, masculine, ambiguous, and
anonymous. Anonymous users had no gender-based markers on their profiles, while ambiguous users had feminine and masculine characteris-
tics. I then collect the publicly available projects of these users written in Python. Next, I analyze and generate statistics on Python files’ adher-
ence to style guidelines using a linter, an automated checking of source code for programmatic and stylistic errors. My findings reveal a gen-
dered difference in the structure and components of Python files. However, I also discovered no gender difference regarding violations of
Python style guidelines and code quality. This study shows gender difference in Python programming styles but not in the standard or quality of
the code.
Keywords: gender, open-source software, computational methods, intersectional and feminist approaches, HCI.

Despite its title, Open-Source Software (OSS) has remained
essentially closed to women, who comprise less than 10% of
its contributors. Even in communities with few or no barriers
to entry, such as GitHub, women are severely underrepre-
sented across programming languages. Women represent
4.8% of core developers for projects based on Python, 4.5%
for Cþþ, and 4.2% for Java (Trinkenreich et al., 2021). Yet,
the positive effects of gender diversity have drawn attention
from researchers and practitioners. Greater representation of
women benefits productivity, leading to improved outcomes,
increased problem-solving capacity, greater creativity, and a
healthier work environment (Vedres & V�as�arhelyi, 2022).
The evidence for the benefits of greater gender inclusion in
OSS is overwhelmingly positive. So why are women still so
underrepresented?

The absence of women in OSS is frequently attributed to a
lack of innate aptitude compared to men: a natural “gender
difference” in technical ability. This sexist belief perpetuates
women’s exclusion as it frames their absence in computing as
inevitable (Frieze & Quesenberry, 2019). In education, the
gender difference approach presumes that the computer sci-
ence curriculum should be changed (“made pink”) to suit
women’s computing deficiencies (Frieze & Quesenberry,
2019). Moreover, stereotypes of gender and technical exper-
tise can extend beyond metrics of knowledge, where it is

assumed that even the code itself is inscribed with gendered
norms. Carter and Jenkins (2002) conducted preliminary re-
search into coding differences, finding that many teachers be-
lieved they could guess a student’s gender from their code.
I draw on and expand this study to empirically test if a gender
difference is present in Python code in OSS development
on GitHub.

Writing readable code is fundamental to OSS. Python is a
popular programming language that allows complex applica-
tions while prioritizing concise and readable syntax. Such
high-level programming languages use natural-language ele-
ments designed to be easily understood by human readers
and computers. For example, in Python, the command print()
is used to output data. While programming is built on mathe-
matical logic, its writing, reading, and interpretation involve
linguistic frameworks vulnerable to gendered evaluation, as
high-level languages resemble familiar text structures.
Programming in such languages requires syntax, definitions,
statements, and arguments, which include scope for stylistic
variation. Like natural-language, elements of high-level pro-
gramming languages can be susceptible to interpretation
and judgment.

In natural-language, preconceptions about gender affect
the interpretation of specific linguistic features and intentions
(Lindvall- €Ostling et al., 2020). In written communication, for

Associate Editors: Sandra Gonz�alez-Bail�on and Em}oke-�Agnes Horv�at
Received: 3 April 2023. Revised: 13 November 2023. Accepted: 20 November 2023
The Author(s) 2024. Published by Oxford University Press on behalf of International Communication Association.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Computer-Mediated Communication, 2024, zmad049
https://doi.org/10.1093/jcmc/zmad049
Full-length Research Article
Special Issue: Gender Gaps in Digital Spaces

D
ow

nloaded from
 https://academ

ic.oup.com
/jcm

c/article/29/1/zm
ad049/7596747 by guest on 14 February 2024

https://orcid.org/0000-0001-7558-7924

instance, a firm statement of disagreement may be seen as
strong if the author is a man. In contrast, the same statement
could be interpreted as cold and cutting from a woman.
Scholars have speculated that the same is true for code.
Marino (2020) considers how the gender of a programmer
influences the assumption of “strength” and code quality.
I hypothesize that code is a form of computer-mediated com-
munication (CMC) and is as gendered as written and spoken
language. Informed by computational sociolinguistics, this
project investigates whether gendered differences exist in the
material code. I ask: Is there a gendered difference in Python
programming style?

The structure of this article is as follows. I first outline the
related literature, beginning with how automated recognition
can reinforce stereotypes. Building from the literature, I pre-
sent the specific research questions and associated hypothe-
ses. Next, I summarize the novel methodology of this study,
detailing how I analyzed Python code by identifying subtle
programming errors and unconventional coding practices
through linting and assessing adherence to style guidelines.
The analysis also measures gender differences in modular
programming by focusing on the building blocks of code in
the content of lines in Python files. The study’s findings em-
pirically challenge the justification for women’s exclusion
from OSS based on gendered differences in programming
quality. I conclude that assumptions on women’s lack of abil-
ity in programming are not empirically grounded.

Related literature
Extensive research has been conducted into gender differen-
ces in the linguistic style of CMC (Liu et al., 2023). Flanagin
(2020) suggests that CMC researchers should focus beyond
new features of specific technologies, instead emphasizing the
underlying, exceptional, mechanisms of mediation. Open-
source development is one such mechanism, a form of online
collaboration that requires reading and reviewing computer
code produced by others (Brock, 2019; Holohan & Garg,
2005). In illustrating how code is communication, Marino
(2020) considers a scenario where a man and a woman are
presented with a popular programming challenge: to write a
program that computes an anagram of a string (a sequence of
characters) as part of a job interview. Given two technically
different answers, one simple and one complex, the
“stronger” solution is based on interpretation by the reader.
The complex answer may be understood as sophisticated or
needlessly idiosyncratic, the simple as more concise or reflect-
ing limited knowledge. The gender of the assumed author
would meaningfully impact such interpretation and assess-
ment of quality (Marino, 2020). As a communication system,
cultural norms extend beyond a programming task’s specif-
ics, and cultural norms mediate code interpretation.

Gender and text
Like human readers, machines also assume authors’ gender
based on text interpretation. In practicing computational in-
ference of social categories, it is crucial to understand the pol-
itics of identity. Keyes (2018) surmises that automatic gender
recognition treats gender as binary, immutable, and physio-
logical, which has long been considered inaccurate. They
show how, in everyday interactions offline, individuals infer
gender based on posture, dress, and vocal cues and “then jus-
tify it with physiological cues after the fact” (2018, p. 3). In

such interactions, gender is not recognized or identified but
inferred (Keyes, 2018). If programmers are not vigilant to
gender biases, programmed tools can inherit and recreate
gender stereotypes. In her examination of gender data bias,
Criado-Perez (2019) shows how the search term “computer
programmer” can direct views to a male programmer’s web-
site simply because a search algorithm has inferred that mas-
culine pronouns are more closely associated with the term
“computer programmer,’ thus websites with masculine pro-
nouns are more relevant to the search query. The same associ-
ation was not true for feminine pronouns (pp. 166–167).
Therefore, much work on computational language models is
focused on undoing such learning or debiasing algorithms,
meaning removing potentially discriminatory practices or
power structures embedded in prejudiced language that auto-
mated systems learn from. In their seminal paper on debias-
ing word embeddings in natural-language processing,
Bolukbasi et al. (2016) show that models trained on various
sources exhibit strong gender stereotypes, which the increas-
ing use of automated tools can amplify. Therefore, research-
ers on the inference of gender need to be aware of its
limitations and be careful not to claim to discover truths or
to reinforce gender stereotypes.

Gender diversity in programming teams is essential to chal-
lenging biases coded into automated tools (Brooke, 2021).
Despite plentiful and valuable research on the absence of
women in programming, empirical evidence for gender differ-
ences in code is mainly anecdotal. Yet examining gender dif-
ferences in natural-language is a robust field, as a prominent
aim of sociolinguistics is to understand the relationship be-
tween social variables and the use of language (Nguyen et al.,
2016). Stylistic variations in writing are a key focus of gender
inference of authors or users of online platforms (Nguyen
et al., 2016). Language is a resource for individuals to author
their own flexible gendered identity (Bucholtz & Hall, 2005).
An individual’s gender identity is constructed using linguistic
features associated with masculine or feminine speech and
writing. Scholars have identified elements associated with
feminine speech that reflect a submissive social position, such
as uncertainty verbs, hedging, minimizers, and the use of spe-
cific punctuation (e.g., “!”) (Doughman et al., 2021). These
features reflect the subordinate position of feminine identities
in broader social structures, mediated by role adoption in
particular settings such as the workplace (Bucholtz & Hall,
2005). It is plausible that similar linguistic patterns are appar-
ent in code, where granular details reveal a gendered differ-
ence in writing.

Until now, the focus of gender inference has been on writ-
ten or spoken language. Natural-language is often defined in
opposition to computer code. Nonetheless, Mackenzie
(2005) argues for a communicative analysis of code itself,
extending a speech-based notion of code as instruction to in-
clude the mediated practices of programming, configuring,
and running a computational project. Here, code is an
“objectification of a linguistic praxis” (p. 76), where code is
understood not just in terms of explicit meaning but also as
self-reflexive and mediated by the individuals, interactions,
and culture that created it. From this perspective, code is
written communication with meaning and interpretation,
where one may make assumptions about the identity of the
author based on the form of code itself.

Gender stereotypes associated with natural-language may
be applicable to code. Carter and Jenkins (2002, p. 7) saw

2 Gender differences in programming
D

ow
nloaded from

 https://academ
ic.oup.com

/jcm
c/article/29/1/zm

ad049/7596747 by guest on 14 February 2024

that despite the prevalence of sexism in computing, code writ-
ten by “female” students was labeled by educators as
“neater” and well-organized with consistent formatting. Such
descriptions imply a gendered ideology, where feminine ster-
eotypes are gentle, sympathetic, and neat compared to domi-
nant, loud masculinity (Koenig, 2018). While programming
is built on logic, its writing and interpretation involve linguis-
tic frameworks, words, and syntax. As a high-level language,
Python can resemble familiar text structures. Programming in
such languages requires syntax, definitions, statements,
including scope for stylistic variation. As a language,
programming thus has structural markers comparable to
natural-language that may make it susceptible to stereotypes
if evidence is found of gendered variation.

Coding, linting, interacting
OSS emphasizes that computers and humans should easily
read and understand code. The basis of OSS is that code is
made freely available and is open to modification and redis-
tribution (Trinkenreich et al., 2021). If code is not readable,
it discourages use, erecting barriers to participation in OSS
(Viafore, 2021). Linters are a shortcut to facilitate readabil-
ity, analogous to advanced spelling and grammar checkers in
natural writing and word processing. The term linting refers
to the use of static analysis tools (“linters”) to detect bugs
and other issues (“lint”) in software programs (Viafore,
2021). The term initially referred to a Unix utility, where the
command lint would examine C source programs, focusing
on broad compatibilities (Johnson, 1978). While modern C
and Cþþ compilers have lint-like functions, lint-like tools
are useful for languages like JavaScript and Python, which
are dynamically typed (without needing a compiler). A com-
piler translates a programming language into machine code
or another low-level programming language a computer can
understand. Because compilers typically do not enforce strict
rules prior to execution, linters can be used as simple debug-
gers for finding common errors (e.g., syntactic discrepancies)
as well as hard-to-find errors such as heisenbugs, drawing at-
tention to suspicious code as possible errors (Viafore, 2021).
Linters can be as pedantic as spell checkers, highlighting
issues with style and potential mistakes and facilitating the
reading and sharing of code in OSS.

Beyond eliminating errors, defining readability in OSS can
be difficult, given that it depends on the individual capacity
to read a given text or section of code. To enhance under-
standing, linters rely on standards, representing endless col-
laboration to develop agreed style conventions for a
particular language (Viafore, 2021). They are collaboratively
authored by the community involved in developing a lan-
guage. In Python, the most consensual writing style is defined
by the PEP-8 standard, which the popular linting tool Pylint
enforces (Rother, 2017). PEP-8 evolves over time as addi-
tional conventions are identified, and past approaches are
rendered obsolete by changes in the language itself. Also cru-
cial within the convention is the notion that many projects
have their own coding style guidelines, and in the case of con-
flict, such project-specific guides take precedence for that
project (Rother, 2017). Since being written in 2001, PEP-8 is
intended to improve the readability of code and make it con-
sistent across the broad spectrum of Python applications (van
Rossum, 2023). As the Python principles state: “readability
counts” (Peters, 2004). Therefore, conformity to style

guidelines is not a matter of finesse but is necessary for code
to be read, reused, and remixed.

Several recent social studies have explicitly included linting
in their research design. There is a particular trend in the lit-
erature to examine the possible benefits of linting as a peda-
gogical tool. Oberm€uller et al. (2021) study how the criticism
produced by linting can be complemented by positive feed-
back. They introduce the concept of code perfumes as the
counterpart to code smells (or warnings). Perfumes indicate
the correct application of programming practices considered
exemplary rather than exclusively highlighting issues and po-
tential bugs. Similarly, Farah et al. (2022) examine chatbots
(Lint Bot) as a teaching instrument in lessons on enforcing
coding standards in JavaScript. Bart et al. (2021) also devel-
oped a tool in Python that can semi-automate student feed-
back on coding assignments. In these studies, the linter is
implicitly positioned as an agent in the interactive process of
producing and evaluating code. Social interactions are funda-
mental to success when students are learning to program.
However, with the feedback provided by linting, the pro-
grammer/user interacts and is in conversation with the linter,
giving feedback. The work of Oberm€uller et al. (2021) high-
lights this, as they implicitly position the feedback from the
linter as a social agent. The feedback provided by the linter to
the programmer during writing has been included as a re-
search instrument in pedological studies.

Gender, programming, and GitHub
Like linting, version control is an essential tool for pro-
grammers in OSS. Also known as source control, version con-
trol is the practice of tracking and managing changes to
software code. Git is a distributed version control system; it
can be complex and intimidating, so GitHub is frequently
used for uploading and managing copies of a Git Repository
(or “repo”). Purchased by Microsoft in 2018, GitHub is a re-
mote collaboration platform that allows users to work to-
gether or independently on technical projects, expanding the
possibilities of programming by creating libraries and techno-
logical tools. It can track changes made to files, launch soft-
ware, and host websites. There are over 100 million
developers on GitHub, 20.5 million of which joined in 2022
alone (Dohmke, 2023). GitHub has remained at the forefront
of OSS and technological development, hosting Interactive
Developer Environments, including the most popular source
code editor, Microsoft’s VS Code. Despite the growth and
popularity of GitHub, only 24.5% of programmers on the
site are women.

Valuable studies have documented the nuances of gender
discrimination in GitHub as a collaborative coding platform.
Terrell et al.’s (2017) study of gender effects in proposed
changes to a software project’s code, documentation, or other
resources on GitHub found that women’s contributions are
accepted more often than men’s if their identity is obscured.
However, when gender is made visible, women’s contributions
are 15% less likely to be accepted (Terrell et al., 2017).
Similarly, Vedres and V�as�arhelyi (2019, p. 1) found that
“disadvantage is a function of gendered behaviour” on the
open-source development platform GitHub. “Femaleness”
was qualified by variables such as professional ties, level of
activity (push/pull requests), and areas of specialization
(Vedres & V�as�arhelyi, 2019). The study argues that measures
of reputation (“success”—as starred repositories) and sur-
vival (“time account active”) on the platform were adversely

Journal of Computer-Mediated Communication (2024) 3

D
ow

nloaded from
 https://academ

ic.oup.com
/jcm

c/article/29/1/zm
ad049/7596747 by guest on 14 February 2024

affected by femaleness rather than by categorical discrimina-
tion. They saw that not only was this true for women, but
men and users with unidentifiable gender are also likely to
suffer for exhibiting behavior that demonstrates
“femaleness.” Vedres and V�as�arhelyi (2019) conclude that
implicit sexism punishes feminine behavior that adversely
affects one’s status and collaboration prospects, as opposed
to explicit sexism penalizing femininity in GitHub usernames.
This study’s gendered analysis of the code hosted on GitHub
will contribute to the existing work on gender differences in
platform interactions, as highlighted by Terrell et al. (2017)
and Vedres and V�as�arhelyi (2019).

Expectations of gender difference in code impact the pro-
grammer’s skill assessment. As outlined by Marino (2020),
the reviewing of code quality is mediated by context-specific
factors. The assumed gender of programmers in an anony-
mous setting can affect how a technical solution is evaluated:
basic or concise, excessive or complex (Marino, 2020). As
highlighted earlier, Carter and Jenkins (2002) show that com-
puting educators often believe they can guess a student’s gen-
der from their code. However, this too is open to the same
conflicting gendered interpretation that Marino (2020) out-
lines. For instance, they show that for one code snippet half
the educators assumed it had been written by a woman, with
its neatness and lack of confidence in “thinking aloud” com-
ments being widely cited as reasons (Carter & Jenkins,
2002). The same justification was used by other educators,
emphasizing the content and extent of the comments as the
reason they believed the author was a man (Carter &
Jenkins, 2002). Given those rationalizations for gender differ-
ences in code are contradictory and grounded in cultural sex-
ism that discriminates against women, there is little
theoretical reasoning in the literature as to why specific code
features would be tied to gender expression. Expanding
Carter and Jenkins’s (2002) research to include contempo-
rary OSS tools, I expect to find no significant gender differ-
ence in adherence to PEP-8 guidelines.

Building from the literature, I test if variation in Python
code can be attributed to gender. This project complements
studies on gender bias in activity and interactions in OSS by
showing that exclusion does not result from gender difference
in code quality. Therefore, I chose to research questions that
are relevant to the style and structure of Python files rather
than differences in activity and recognition. For technical ac-
curacy, I use the language of Python modules, referring to
files with the “.py” extension containing Python code that
performs a specific task. I ask: (RQ1) Is there a gender differ-
ence in module structure? (RQ2) Is there a gender difference
in the style of Python modules? (RQ3) Can the gender of a
module’s author be predicted from Python programming
structure and style? This study empirically tests if there is gen-
der difference in Python code, a rhetoric that is often used to
rationalize women’s exclusion from OSS development.

Methods
This project leverages large-scale data through public coding
repositories in Python on GitHub. Python is the second most
popular programming language on GitHub, growing 22.5%
in popularity in the year 2022 (Dohmke, 2023). Figure 1
shows the data collection, processing, and analysis strategy.
It also includes the relevant files for each stage of the analysis,
as contained in this article’s GitHub repository. I collected all

GitHub repositories that meet the criteria below, suggesting
an initial sample size of 1.1 million users.

• The owner is the only contributor. To avoid complexity
in unpicking specific contributions in collaborative work,
I only collected repositories where the owner was the sole
contributor.

• Written in Python3. Restricting to one version of a pro-
gramming language permits greater validity.

• The repository was created on or after January 1, 2019.
Python2 was deprecated on January 1, 2020. Python3
was already in circulation, so the collection was back-
dated a year.

• Not marked as private or archived and publicly visible.
I did not consider it ethical to include repositories that the
owner had listed as private.

• Not a fork. Repositories are not forks or initialized as
copies of other repositories.

• The repository is between 0.01 and 1 gigabyte in size. As
of 2022, GitHub documentation recommends that reposi-
tories remain less than 1GB.

• Owned by a User. Repositories with the owner as a sole
user rather than an “Organisation” as a shared account.

Interaction is a crucial feature of open source and as such,
software is defined by the potential to share. Therefore,
I narrowed the selection of repositories to include those with
10–250 forks (a new repository that shares code with the
original) and 10–150 stars (like bookmarking or favoriting).
While I focus on repositories with only one author, a mini-
mum of 10 forks and stars represents a reasonable engage-
ment with OSS communities. For example, if a repository has
10 forks on GitHub, it has been copied and shared 10 times
by other users. These selection criteria thus reflect that the
Python code sampled was shared and engaged with, including
an upper limit that excluded outliers in popularity that may
skew the results. This range demonstrates repositories that fit
our criteria for inclusion (specified above) and are sufficiently
interacted with to be included in an analysis of gender differ-
ences in programming in open source. Nonetheless, GitHub
does not make statistics on the overall distribution of forks
and stars publicly available, which means that the specific
generalizability of the sample is difficult to obtain. In total,
I collected 1,728 repositories consisting of 30,198 modules
or “.py” files.

Gender inference procedure
As GitHub users do not list gender on their profile, I inferred
each person’s gender using their location and name markers.
I followed Vedres and V�as�arhelyi’s (2019) selection of data
points, using full names (provided names), nicknames (user-
names), and email addresses (prefixes) offered by users on
their profiles. I also incorporated Brooke’s (2021) expansion
of Vasilescu et al.’s (2015) genderComputer, growing the
library of names it uses to infer gender. I also expanded
genderComputer’s pre-processing of usernames to include
“leet speak” or substituting a word’s letters with numbers or
special characters. I used the Python library GeoPy to clean
users’ location data to assist with gender inference, as noted
by Vasilescu et al. (2015). Working with the GitHub API,
I aimed for an approximately even distribution of masculine
and feminine Python modules to assist simplicity in statistical
tests for gender differences.

4 Gender differences in programming
D

ow
nloaded from

 https://academ
ic.oup.com

/jcm
c/article/29/1/zm

ad049/7596747 by guest on 14 February 2024

The results of the gender inference procedure are displayed
in Table 1. I initially considered including biographical
(“about me”) data provided on user profiles. However,
there were little to no explicit markers of gender here. Users
generally included their job title (“Developer,” “Student,”
“Researcher”) and specific technical interests (“Machine
Learning,” “AI,” “Engineering”). Following Vedres and
V�as�arhelyi (2019), I assess the accuracy of the inferences
compared to a manually coded baseline using the same fea-
tures (username, real name, email). I took a random sample
of 850 users from the dataset. There were 105 cases where

I disagreed with the gender inference, meaning an 87%
agreement. I utilized Krippendorff’s alpha, a quantification
of intercoder reliability, using statistics of agreement.1

Considering four gender categories—feminine, masculine,
ambiguous, and anonymous—the alpha was 0.72.
Considering feminine and masculine users only, the alpha
was 0.87. These statistics demonstrate good reliability.

I labeled users as masculine, feminine, ambiguous, and
anonymous. The “ambiguous” label was given to users with
significant gender markers, but it was unable to statistically
infer the masculine or feminine categories with sufficient

Figure 1. Research design and analysis strategy.

Journal of Computer-Mediated Communication (2024) 5

D
ow

nloaded from
 https://academ

ic.oup.com
/jcm

c/article/29/1/zm
ad049/7596747 by guest on 14 February 2024

confidence (0.4-0.8).2 Considering the insights of Keyes
(2018), I intend to understand gender in a nuanced way, with
an analysis that includes the inference of gender beyond a bi-
nary. I differentiate between “ambiguous” users, where gen-
der markers were present, and “anonymous” users, where
they were not.3 Further, I use the language of “masculine”
and “feminine” to represent how gender is enacted and main-
tained through performance in language. Butler (1999)
emphasizes the importance of gender in interaction, meaning
how gender is recognized in the specific context in which it is
performed. Gender is ultimately an issue of a broader culture,
not specifically an issue for women (Frieze & Quesenberry,
2019). By incorporating multiple sources of profile data, I am
not expanding my gender inference sources beyond what in-
formation is readily available to other GitHub users. For an
interactive site illustrating how these measures of program-
ming style work on Python modules, see the link in the Data
Availability section.

Style and code linting
The operationalization of communication in empirical work
is a challenge to researchers. A focus on the structure of lan-
guage in specific features provided by linters can appear sim-
plistic or superficial. However, the features outputted from
linters represent conforming to normative syntax and seman-
tics, which ultimately helps others work with the code and
see errors more easily. Work on popular programming
forums shows that women face more severe social sanctions
than men for minor technical infractions, such as adherence
to style guidelines (Brooke, 2021). Furthermore, linting is
fundamental in the mechanism of open-source communica-
tion and collaboration (Oberm€uller et al., 2021). Pylint is of-
ten employed in developing OSS, as code that follows
convention is easier to understand and therefore, other pro-
grammers can repair, maintain, or build on the work. By fo-
cusing on gender differences in adherence to PEP-8, this
study focuses on the initial assumptions and tests of quality
in OSS.

As Pylint analyses code without running it, it is particularly
suited to the large-scale task of this study. Note that refactor
and convention will not cause the code files or modules to
stop running. As stated, modules are files with the “.py” ex-
tension containing Python code that can be imported (or
used) inside another Python program. Table 2 shows exam-
ples of the Pylint checkers, module components, and associ-
ated examples (Pylint, 2023). This is not an exhaustive list, as
Pylint version 3.0.0a6 can currently produce 452 different
“messages,” which are collated into style checker compo-
nents for this study.4

Global Pylint Score
Pylint enforces the standard, producing the metric Global
Pylint Score. The maximum score for adhering to PEP-8 is a
Pylint score of 10, but there is no lower bound, and the score
can be negative if there is a heavy infringement of the Python
style standards (Pylint, 2023). The size of the given Python
code weights the errors through the number of statements in
each Python file. Statements are the smallest standalone ele-
ment of code that produces an outcome. The formula for the
score is:

Global Pylint Score

¼ 10−
5 � errorþwarningþ refactorþ convention

statement
� 10

� �

where:

• error: The total number of errors in a module. An error is
an issue in a program that prevents the program from com-
pleting its task. For example, E0401 or “import-error” is
used when Pylint has been unable to import a module.

• warning: The total number of warning style checks gener-
ated. Warnings indicate potential future errors; they are
non-critical and do not terminate the program.

• refactor: The total number of refactoring errors.
Refactoring is restructuring code intended to improve the
software’s design while preserving its functionality. For
example, if several lines of code are repeated in a file, they
can be refactored into a user-defined function where a
custom-made function can be called instead of copying
and pasting code. Pylint would produce style check
R0801 (duplicate-code).

• convention: The total number of format-checking style
checkers where the code is in violation of PEP-8. For in-
stance, in its current implementation, PEP-8 suggests lines
should be limited to 79 characters to allow you to easily
open multiple files next to each other. In Pylint, this will
produce the C0301 (line-too-long) style check.

• statement: The total number of lines of Python code in
the module. These are unwrapped (not made to fit a view-
able window), without docstrings (used to document the
purpose of code without detailing the implementation;
not runnable, beginning with:”““), comments (used to
enhance readability; not runnable, beginning with #), or
blank lines.

The formulation of Pylint scores to include the number of
lines of code permits comparison across different-sized mod-
ules as they are relative to each file weighted by size.
According to Python style guidelines, project-specific guide-
lines take precedence over PEP-8, represented as convention
(van Rossum, 2023). If the specific style check convention
was present across more than half of the .py files in the
GitHub repository, it was not included as a violation in the
computing of the global Pylint score. I identified outliers with
a Pylint score below −100, which were not included in
the data.

Testing for gender differences
I define gender difference as statistically significant variation
between gender groupings. Table 3 outlines the operationali-
zation of metrics used to test for gendered difference. Overall,

Table 1. Count of repositories and files

Gender Repositories/users .py Files/modules

Feminine 774 10,122
Masculine 483 9,991
Ambiguous 248 5,050
Anonymous 223 5,035

Total 1,728 30,198

6 Gender differences in programming
D

ow
nloaded from

 https://academ
ic.oup.com

/jcm
c/article/29/1/zm

ad049/7596747 by guest on 14 February 2024

I opted for simplicity in testing. Given specific technical termi-
nology and the potentially broad implications of findings,
I prioritized the interpretability of the results. I tested using
Welsch’s ANOVA and Chi-squared tests. If the test is signifi-
cant, the test statistic tells us about the ratio of between-group
variation to within-group variation. A considerable
value means the between-group variation is larger than the
within-group variation. In my study, this means there is more
discrepancy between gender groups than within each gender
group, providing evidence for a gendered difference.

Using statistical inference methods, I am testing against a
hypothesis of no effect or relationship based on gender.
Testing for gender differences in module structure (RQ1), the
null hypotheses are H01: There are no gender differences in
module organization and H02: There are no gender differen-
ces in module constituents, referring to the building blocks of
Python such as functions. Next, I examine if there is a gender
difference in the style of Python modules (RQ2), with the as-
sociated null hypotheses, H03: There is no gender difference
in global Pylint scores, and H04: There is no relationship
between gender and style checker components. To conduct
significant testing with the large sample size, I used boot-
strapping, a statistical procedure that resamples a single data-
set to create many simulated samples. Following the advice of
Davidson and MacKinnon (2000), I set the confidence level
at 0.01 and drew samples of 3,000 with replacement.

Addressing RQ3, I examine if the gender of the author can
be predicted from Python coding style. Significance testing is
not suitable for this task. Instead, I used a Random Forest
model with cross-validation (k¼10) to predict gender identity
using the module structure and Pylint style checker compo-
nents. I also considered the inclusion of additional features,
such as the longevity of an account and user-level activity met-
rics. Statistical analysis based on information retrieved from
websites and platforms via APIs can often include such met-
rics by default due to their ease of access. However, I opted to
retain the focus on code as communication.

Care is taken to ensure that the findings are not obscured
by specific technical terms related to Python as a program-
ming language, so relevant definitions are provided. These

definitions may be superfluous for the more technically in-
clined. Nonetheless, definitions are included to assist in the
interpretation of the results as presented. Additionally, it is
crucial that attempts to infer user gender from code are not
misappropriated for purposes of discrimination and that in-
ference of femininity does not incur negative judgment. To
the best of my knowledge, the methodology of this study is
unique in applying computational text analysis to the mate-
rial code itself. As with any new approach to inferring iden-
tity from online and technical data not intended for the
purpose, ethical implications must be considered. This study
is fundamentally a work of feminist activism that challenges
assumptions of gendered differences used to maintain a sexist
structure in OSS.

Results
Module structure
RQ1 asks if there is a gender difference in module structure, fo-
cusing on the organization (lines of code, code, documentation)
and constituents (methods, functions, classes) of Python
modules. I tested for significant gendered differences using
ANOVA, which enabled the comparison of more than two
groups simultaneously to determine whether a relationship
exists between them. I tested for departures from

Table 2. Example of Pylint style checker components

Pylint checker Style checker component Example style checker message1

Basic checker Error E0104 (return-outside-function): Used when a return statement is found outside a
function or method

Convention C0103 (invalid-name): Used when the name does not conform to naming rules as-
sociated with its type (constant, variable, class, etc.)

Warning W0101 (unreachable): Used when some code is behind a return or raise statement,
which will never be accessed

Design checker Refactor R1260 (too-complex): Used when a method or function is too complex based on
McCabe Complexity Cyclomatic

Format checker Convention C0303 (trailing-whitespace): Used when there is a whitespace between the end of
a line and the new line

Warning W0311 (bad-indentation): Used when an unexpected number of indentations,
tabulations, or spaces has been found

Refactoring checker Refactor R1702 (too-many-nested-blocks): Used when a function or a method has too
many nested blocks. This makes the code less understandable and maintainable.
The maximum number of nested blocks for the function/method body is five
by default

Convention C0201 (consider-iterating-dictionary): Emitted when a dictionary’s keys are iter-
ated through the .keys() method. It is enough to just iterate through the dictio-
nary, as in for key in the dictionary

[…]

1 Rationale from https://pylint.readthedocs.io/en/stable/index.html

Table 3. Metrics to test for gender difference

Theme Concept Operationalization

Module
structure

Organization Lines of code, docstrings, com-
ments, and empty lines in
a module

Constituents Frequency of classes, functions,
and methods in a module

Module style Pylint Score The global Pylint score is a mea-
sure of PEP-8 adherence

Style Checker
Components

Style checker messages are collated
into the components of informa-
tion, error, refactor, warning,
and information

Journal of Computer-Mediated Communication (2024) 7

D
ow

nloaded from
 https://academ

ic.oup.com
/jcm

c/article/29/1/zm
ad049/7596747 by guest on 14 February 2024

https://pylint.readthedocs.io/en/stable/index.html

assumptions of normality using Bartlett’s test. As the test was
significant, I rejected the null hypothesis and concluded that
not all gender groups have the same variance, and therefore, I
used Welch’s ANOVA. Table 4 shows the mean (l) and stan-
dard deviation of each gender grouping and the f-value and
significance. Note that these values are rounded, as a fraction
of a line of code is not meaningful.

First, I look at differences in organization by the average
number of lines in each module by gender grouping. Total
lines here refer to the complete length of the module, includ-
ing empty lines. Table 4 shows that masculine users have the
largest average module size by a reasonable margin of 43
lines. I found a significant gender difference in the total num-
ber of lines between gender groups. Next, I look at the aver-
age count of lines of Python code within each module. The
metric is typically used to indicate a given file’s size and pre-
dict the effort required to modify it to prevent future prob-
lems, otherwise called maintainability. I find that masculine
GitHub users have more lines of code on average than other
gender groups, followed by feminine users. This finding is
logical, as masculine users also have the greatest total lines.
Therefore, I reject the null hypothesis and find a significant
gender difference in the average number of lines of code by
gender grouping.

I also look at organizational differences in the number of
lines that refer to the documentation of code in comments
and docstrings (Table 4). Commenting involves placing
human-readable descriptions inside modules that detail what
the code is doing. In Python, this is achieved with the “#”
symbol. Proper commenting can simplify code maintenance
and help find errors and issues faster. I then look at doc-
strings, a short form for “documentation string,” a type of
multi-line comments frequently used in Python. They are ac-
cessible when the block of code they relate to is used else-
where, an essential part of PEP-8. The tests show a significant
gender difference in the count of comments and docstrings
lines between gender groupings, with masculine users having
more lines of docstring on average. Masculine users have the
same frequency of comment lines as anonymous and feminine
users despite having significantly longer files by total line
count. This suggests that masculine users are more likely to
document their code with docstrings rather than comments.

Like docstrings, blank or empty lines are essential to PEP-8.
Like blank lines to indicate paragraphs in written text, in
Python, blank lines indicate logical sections and improve read-
ability. I also find a gendered difference in the count of empty
lines between gender groupings. I see significant gender differ-
ences in total lines, lines of code, documentation, and blank
lines. I reject the null hypothesis H01: There are no gender dif-
ferences in module organization. Compared to other gender
groups, masculine users have longer files and prefer docstrings
to comments. The f-stat shows the greatest variation in mod-
ule organization between all genders is docstrings, which,
given the importance of documenting to PEP-8, suggests that
there may be a gender difference in Python code styles.

I also tested for gender differences in module constituents
(H02), the portable Python code blocks that make up the
module. In Python, a function is a labeled block of code that
performs a specific task. A method is like a function but for a
particular type of information. For example, .lower() makes
text (known as a string) lowercase but does not work on nu-
meric data. Classes are more complex but can be understood
as a blueprint for organizing information and its

manipulation. Table 5 indicates the mean and standard devi-
ation in the count of functions, modules, and classes between
gender groupings and Welch ANOVA for significance.
Table 5 shows a similar average number of functions per
module between gender groupings. Welch ANOVA found
that the between-gender variation was larger than the within-
gender variation, meaning there is a significant gender differ-
ence in function count. I also found a significant difference in
gender groupings between the average number of methods
and classes in Python modules. Consequently, I reject the null
hypothesis H02: There is no gender difference in the module
constituents.

The largest gender difference is in the use of methods, with
masculine users utilizing methods the most frequently and
feminine the least. There is less variation by gender for func-
tions and classes, but anonymous and ambiguous users em-
ploy classes more regularly than gender-identified (masculine,
feminine) users. The most minor variation between gender
groups is with functions, with masculine and feminine users
having a relatively higher average count. These findings could
suggest that users whose gender is known take a more func-
tional approach to programming in comparison to anony-
mous and ambiguous users who use more classes. These
findings merely indicate such a difference as the analysis did
not directly assess functional approaches to programming.
Therefore, there is a significant difference in total lines,
module organization (docstring, comment, and empty lines),
and module constituents (functions, methods, classes).
Addressing RQ1, I find a significant gendered difference in
the structure of Python modules in terms of organization and
constituents.

Global Pylint score and style checker components
The second research question asks if there is a gender differ-
ence in Pylint scores and style checker components. While the

Table 4. Gender differences in module organization by lines

Gender Total lines Code Docstring Comment Empty

l Std l Std l Std l Std l Std

Feminine 281 334 194 218 19 49 24 40 45 41
Masculine 324 296 212 215 32 53 24 36 56 80
Ambiguous 253 421 169 290 24 68 20 40 41 72
Anonymous 279 333 190 237 25 66 24 51 41 47

Welch
ANOVA
F-stat

49.72�� 45.09�� 62.23�� 34.63�� 64.05��

� p< .01. ��p< .001.

Table 5. Gender differences in module constituents

Gender Function Method Class

l Std l Std l Std

Feminine 3.82 5.71 5.41 9.26 1.39 2.46
Masculine 3.92 8.08 8.34 12.94 1.26 1.96
Ambiguous 3.64 3.64 6.47 15.81 1.51 3.28
Anonymous 3.62 6.39 6.46 11.13 1.43 2.78

Welch ANOVA
F-stat

2.89� 64.82�� 14.68��

� p< 0.01. ��p< 0.001.

8 Gender differences in programming
D

ow
nloaded from

 https://academ
ic.oup.com

/jcm
c/article/29/1/zm

ad049/7596747 by guest on 14 February 2024

previous section analyzed the module or .py file level, the
Pylint score is analyzed at the repository level to control for
project-specific style conventions. Table 6 shows the descrip-
tive statistics of the global Pylint scores by each gender, sum-
marizing the central tendency and dispersion.

The mean shows that masculine-identified users have the
lowest average Pylint scores (0.46), while feminine (1.20),
ambiguous (1.28), and anonymous (1.27) users have similar
scores. This suggests that, on average, masculine users violate
the PEP-8 guidelines more frequently than other users.
The maximum Pylint score of 10 out of 10 was achieved
across all gender groupings. The standard deviation indicates
a reasonable spread of Pylint scores for each gender group.
I conducted a Welch’s ANOVA and found no significant
difference in global Pylint scores by gender groupings
(f-stat¼ 0.51, p¼ .69). I thus accept the hypothesis that H03:
There is no gender difference in Pylint scores, and gender
does not explain variation in adherence to PEP-8.

I ran Welch’s t-test on the Pylint scores for differences be-
tween (1) masculine and feminine users, (2) gender-labeled,
and (3) non-identified users. First, I found no significant gen-
dered difference in Pylint scores between masculine and femi-
nine users (t-stat¼−0.48, p¼ .65). Second, I found no
significant difference in Pylint scores (t-stat¼1.17, p¼ .23)
between gender-identified (feminine, masculine) and non-
gender-identified users (ambiguous, anonymous). I surmise
that there is no significant gendered difference in global
Pylint scores. Consequently, although gender differences in
organization and code constituents suggested gender differen-
ces in style, gender does not explain variation that contra-
venes the PEP-8 guidelines.

Next, I examined the granular gendered differences in the
Pylint style, testing H04. First, I focus on the individual mes-
sages grouped into the style checker components. These mes-
sages are the specific issues raised by Pylint when analyzing
the code in the dataset. Of the possible 452 style checkers,
192 were present. Style checker components indicate poten-
tial problems with the code, including errors where the script
would not execute. The five most frequent style checkers
were the same for each gender group, and their rationale is
shown in Table 7. This frequency is at the level of the .py file
and does not include cumulative counts of an error within
a module.

Expanding the analysis to the 10 most frequent style
checker messages, the single discrepancy between gender
groupings was that feminine users had consider-using-from-
import rather than trailing-whitespace as violations of PEP-8.
This suggests that there will not be a significant gender differ-
ence in programming style related to style checker compo-
nents. As outlined in Table 2, the style checker components
(collection of messages) are error, convention, warning,
refactor, and information. Mindful of the potential for gen-
der differences to emerge in subcategories of Pylint, I also
tested for gender-based variations in style checker

components. The information checker is not included in the
global Pylint score and refers to how the code in the module
handles information, such as explicitly suppressing warning
messages. I did not include the information checker in the
chi-squared analysis due to insufficient data points, as shown
with feminine users in the Information style
checker component.

Table 8 shows the frequency, mean, and standard devia-
tion of style checker components by gender category. First,
comparing gender-identified users, I find that masculine users
have more warnings and violations of PEP-8 conventions
than other gender groups. Masculine users also have the sec-
ond most errors on average, after anonymous users. This is
logical as masculine users had the lowest global Pylint score,
though gender difference in Pylint was insignificant. I con-
ducted a chi-squared test for association between the style
checker components and gender grouping. The resulting test
was significant, meaning I rejected H04 and found a signifi-
cant gendered difference in style checker components.

I conducted multiple 2�2 Chi-square tests using the
Bonferroni-adjusted p-value (a ¼ 0:008). Post-hoc testing
revealed significant gender differences for the style checker
components for all the pairwise comparisons, excluding one.
The exception was the comparison of feminine and anony-
mous users. This being the only insignificant comparison
indicates a comparable coding style between feminine and
anonymous users. The similarity in programming styles sug-
gests that women may purposefully obscure their gender and
choose to be anonymous. This proposition is supported by
the relatively large and significant difference in style between
masculine and anonymous users.

The most considerable variation is between ambiguous
and anonymous users. This implies meaningful gender differ-
entiation between anonymous and ambiguous users, support-
ing the methodological choice to distinguish between the
presence and absence of features in gender identification.

The outlined results offer a nuanced response to RQ2. The
absence of significant variation between global Pylint scores
shows no significant gender difference in the overall quality

Table 6. Description of Pylint scores by gender (repository)

Gender Count l Std Min 25% 50% 75% Max

Feminine 774 1.20 10.77 −70.00 0.31 4.18 6.22 10.00
Masculine 483 0.46 9.27 −70.00 −1.17 3.44 5.83 10.00
Ambiguous 248 1.28 8.18 −78.67 −0.61 3.34 5.75 10.00
Anonymous 223 1.27 8.82 −80.00 −0.57 3.54 5.92 10.00

Table 7. Most frequent topics

Style check Rationale

missing-module-docstring At least one .py file in the repository
does not have text documenting its
purpose at the module's start (first
few lines)

invalid-name Used when a name does not fit the
naming convention associated with
its type (constant, variable, class …)
and/or is inconsistent across
the repository

missing-function-doctstring A function or method has no docstring.
A docstring is a text so programmers
can understand what it does without
reading the implementation details

line-too-long PEP 8 suggests lines should be limited
to 79 characters. This is because it
allows you to open multiple files
next to one another while avoiding
line wrapping

missing-class-docstring A class has no docstring. A docstring is
a text so programmers can under-
stand what it does without reading
the implementation details

Journal of Computer-Mediated Communication (2024) 9

D
ow

nloaded from
 https://academ

ic.oup.com
/jcm

c/article/29/1/zm
ad049/7596747 by guest on 14 February 2024

of Python code. However, there is evidence of a gender differ-
ence in style. The style checker components of the Pylint score
differ significantly by gender. Such a finding is evidence of
Simpson’s paradox, whereby an association between gender
and programming disappears when the style checker compo-
nents are combined into the global Pylint score. I find that
while there is no gender difference in code quality, there is ev-
idence of gendered styles in Python. These results indicate
that it is feasible to predict the gender of users from the style
of their code.

Testing for gendered coding identification
In the final element of the analysis, I addressed RQ3 and
tested if structure and style could be used to classify users’ in-
ferred gender. I used a Random Forest model to predict gen-
der identity, using structural constituents and style checker
components of Python modules. When performing the classi-
fication, each feature vector element was used as a separate
input for the classifier. I did not include the global Pylint
score as it is a composite measure of the included style
checker components. Randomized hyperparameter search se-
lected a maximum depth of 14 (longest path from the root
node to leaf node) and 393 estimators (the number of trees to
build). Visualizing an entire tree with a depth of 14 is imprac-
tical. Therefore, Figure 2 represents a small tree with a depth
of three.

For comparison with existing literature, I restricted the pre-
diction to the labels of masculine and feminine. I then used
this model to predict the gender of the anonymous users in
my dataset. As ambiguous users were defined by the presence
of gender markers, including them in the classification model
was not sensible.

To evaluate my classification model, I first established a
reference level to assess the Random Forest model. I used a
Zero Rate Classifier (ZRC), which always classifies to the
largest class. The ZRC has a baseline of 0.62 based on gender
inference of users. I measured the performance of the classifi-
cation models using the F1 Score, a function of Precision and
Recall. Precision is how accurately the model performs re-
garding predicted positives, meaning the model correctly clas-
sifies modules as feminine and masculine. Recall calculates
how many actual feminine data points that model captures
(True Positives). The F1 score seeks a balance between these
two metrics. The F1-score achieved by my model was 0.98,
successfully outperforming the base model (0.62) in classify-
ing the gender inferred from module authors. Addressing
RQ3, I find that the gender of Python modules can be pre-
dicted based on programming style.

Feature importance
The principal advantage of building the classification model
is that I can compare the relative importance of module orga-
nization, constituents, and style checker components. The
Random Forest model allows us to ascertain how attributes
of a Python module contribute to the model prediction.
Table 9 indicates the total 13 input variables used as features
to infer gender. The overarching categories here are (1) mod-
ule organization, the total count of lines in a .py file and those
that are docstrings, comments, code, and empty; (2) module
constituents, the count of functions, methods, and classes in
each .py file; and (3) style checker, the components of the
Pylint style checkers including error, warning, refactor, con-
vention, and information.

Table 9 shows that module organizational features are the
most important in differentiating between masculine and
feminine authors of Python code. The number of lines of
code and docstrings in a module is particularly important,
representing 17% and 14% of the classification decision.
Empty lines are also noteworthy, accounting for 16%. The
importance of these structural elements (75%) shows that
how a module is organized is a crucial marker of gender dif-
ference in Python programming. Similarly, the use of module
constituents is an essential contributor to gender difference
(24%), but the style checker at (<1%) leads to the conclusion
that gender differences in coding styles are manifested in how
code is organized within a module. Given structure is consid-
erably more critical to the classification decision than the
style checker components, gender difference does not indicate
a violation of PEP-8.

Discussion
This study has argued that code is a form of communication
in OSS. Code in OSS shares features with written text: It has
authors and is read, understood, and shared. Contributing
code is fundamental to open source, yet code interpretation is
mediated by cultural norms and context that extend beyond
the specifics of a particular programming task. Code is em-
bedded in a system of communication, meaning that assess-
ments of quality are intrinsically tied to the perceptions of the
author. Gender and masculinity have been powerfully associ-
ated with quality in programming, suggesting that notions of
gender difference have become widespread without empiri-
cal evidence.

This study asked whether there is a gender difference in
module structure and style in Python code and whether gen-
der can be predicted from programming style. The first ele-
ment of module structure I examined was organization. I

Table 8. Style checker components contingency table

Gender Style checker components

Convention Error Information Refactor Warning

Feminine 38,570 (l ¼ 5, std ¼ 12) 7,310 (l ¼ 4, std ¼ 5) 4 (l ¼ 1, std ¼ 0) 6,498 (l ¼ 2, std ¼ 2) 24,866 (l ¼ 8, std ¼ 17)
Masculine 35,420 (l ¼ 8, std ¼ 27) 5,730 (l ¼ 8, std ¼ 15) 388 (l ¼ 8, std ¼ 28) 4,698 (l ¼ 2, std ¼ 3) 27,633 (l ¼ 15, std ¼ 27)
Ambiguous 50,824 (l ¼ 5, std ¼ 12) 8,387 (l ¼ 4, std ¼ 5) 73 (l ¼ 1, std ¼ 0) 7,519 (l ¼ 1, std ¼ 1) 44,222 (l ¼ 11, std ¼ 65)
Anonymous 52,979 (l ¼ 5, std ¼ 12) 24,877 (l ¼ 10, std ¼ 71) 210 (l ¼ 4, std ¼ 5) 8,088 (l ¼ 2, std. ¼ 2) 31,767 (l ¼ 8, std ¼ 36)

X2 :12,957.53��
Degrees of freedom: 12

� p<0.01. ��p< 0.001.

10 Gender differences in programming
D

ow
nloaded from

 https://academ
ic.oup.com

/jcm
c/article/29/1/zm

ad049/7596747 by guest on 14 February 2024

found a significant gender difference in the length of a file
and empty lines, documentation, and code. The test statistic
revealed that the greatest variation in module organization by
gender was docstrings, a crucial part of PEP-8. The second
part of the module structure was constituents, referring to
methods, functions, and classes. I again found significant gen-
der differences between all groups, with functions used more
by gender-identified users than anonymous and ambiguous
users. Therefore, I see significant gender differences regarding
organization and constituents in module structure.

The second research question turns to gender differences in
Pylint scores and style checker components, which align with
code quality captured in PEP-8. Although there is no signifi-
cant gender difference in the global Pylint score, there is a dif-
ference in the style checker components of Python
repositories. This shows that while there is no gendered varia-
tion in overall quality, there is variation in module style.
Post-hoc testing revealed that feminine and anonymous users
have comparable coding styles, implying that feminine users
may choose to be anonymous on technical platforms. This
suggestion is maintained by the relatively large and signifi-
cant difference in quantified style between masculine and
anonymous users. Additionally, the largest variation in style
is between ambiguous and anonymous users, supporting the
design decision to distinguish between the presence and ab-
sence of features in gender identification (Keyes, 2018). In
summary, while there is no gender difference in overall code
quality, there is in checker components and thus Python pro-
gramming style.

Finally, I test if structural and stylistic features of Python
code can be used to predict if a user is masculine or feminine.
I show that variation in coding style is distinct enough to pre-
dict users’ gender. Crucially, the predictive model also allows
comparison between the importance of module structure and
style checker components as elements of gendered program-
ming style. The structure of Python modules, consisting of

the organization of lines and module constituents, is the most
critical predictor of user gender (0.752). The style checker
components of Python code, related to the PEP-8 guidelines,
are relevant (0.235) but pointedly less important than the
structure of files. I find that gender differences in coding style
can predict the gender of an author of a Python module.

The results reveal a somewhat complex picture of gender
differences in Python. I find a gender difference in the style of
Python code, as evidenced by significant gender-based varia-
tion in the organization and constituents of modules.
However, the non-significant difference in Pylint scores indi-
cates no gender-based differences in code quality, as repre-
sented in the global Pylint evaluation. The significant gender
difference in style checker components, but not the global
Pylint score, suggests that different gender groups vary in
their specific violations of PEP-8 but not in the overall quality
of the code. This supposition is supported by the predictive
model, which shows that the structure of Python modules is a
more important predictor of user gender than style violations.
I find empirical evidence of gender differences in Python code
in relation to style but no substantial evidence of a gender dif-
ference concerning code quality. I conclude that assumptions
on women’s lack of ability in programming are not empiri-
cally grounded.

There are three key limitations of this study. First, the sam-
ple criteria of the study do not encompass the fullness of
practice in OSS development. As I restricted the sample to
GitHub repositories with a singular author, I omitted the nor-
mative OSS practice of multiple authorship of modules and
technical projects (Vedres & V�as�arhelyi, 2019). Second, an
equally noteworthy omission is that I do not include the
mechanisms of reviewing code on GitHub, a vital platform
functionality. Third, the methodology also fails to acknowl-
edge the heterogeneity of purpose and function in repositories
that makes Python such a popular programming language.
This study has provided a broad and general analysis of gen-
der differences in Python modules. Future scholarship should
incorporate a refined picture sensitive to implicit gender
biases in the collaboration and functioning of OSS.

My findings complement work on gender biases in activity
and interaction on GitHub by demonstrating no significant
gender difference in code quality (Terrell et al., 2017; Vedres
& V�as�arhelyi, 2019). The results have important consequen-
ces for computing education and policy as well as for inter-
ventions in gender inequality in OSS development. In
conjunction with the literature, my findings show that educa-
tors and employers must actively challenge specific gender
stereotypes in context, including mistaken assumptions about

Table 9. Feature importance for gender classification of Python modules

Variable Importance

Module organization Code lines 0.171
Empty lines 0.160
Total lines 0.159
Docstring lines 0.138
Comment lines 0.124

Module constituents Method 0.094
Class 0.058
Function 0.083

Style checker components Information 0.001

Figure 2. Representation of a decision tree with a maximum depth of 3.

Journal of Computer-Mediated Communication (2024) 11

D
ow

nloaded from
 https://academ

ic.oup.com
/jcm

c/article/29/1/zm
ad049/7596747 by guest on 14 February 2024

ability inferred from differences in style (Brock, 2019; Carter
& Jenkins, 2002). Further, there is potential for measures of
gender difference to impact generative coding models (Bart
et al., 2021; Brooke, 2021). As we take care to de-bias natu-
ral-language processing and large language models like GPT-
3, similar care should be taken to ensure that generative cod-
ing does not suffer from the same or similar issues. As auto-
mated systems become increasingly dominant and have the
potential to write code, we must consider what value systems
and implicit identity features are being learned. Future re-
search should explore the linkages and relationships between
natural-language and programming code in gendered terms.
Computational tools are uniquely positioned to document
such large-scale gendered differences and account for how
they can shape and mold everyday technical tools. For
Marino (2020, p. 33), “the walls of a computer do not re-
move code from the world but encode the world and human
biases.” This study has illustrated the potential of computa-
tional research to challenge gender bias and sexist reasoning
for women’s exclusion from programming.

Data availability
The data used in this study are available upon reasonable request
to the author. The source code is available here: https://github.
com/SianJMBrooke/ProgrammedDifferently. An interactive site
to test the gendered style of your own Python code is available
at https://www.sianbrooke.com/programmed-differently.

Funding
This work was supported by the Leverhulme Trust Early
Career Fellowship, grant number ECF-2021-272.

Conflict of interest: None declared.

Open science framework badges
Open Materials

The components of the research methodology needed to reproduce
the reported procedure and analysis are publicly available for
this article.

Notes
1. https://pypi.org/project/krippendorff/.
2. Vasilescu et al. (2015) refer to this category as “unisex,” but such lan-

guage is not appropriate in discussions of people or users.
3. The label “Non-Binary” was initially considered instead of “Ambiguous.”

However, the Non-Binary gender identity requires more careful consid-
eration in computational research than reflecting mixed or undeter-
mined gender expression.

4. https://Pylint.pycqa.org/en/latest/user_guide/messages/messages_over
view.html

Acknowledgements
I am grateful to the Leverhulme Trust for supporting this re-
search project. I thank Theodora Sutton, Maximilian Steimel,
and Marion Lieutaud for their unwavering support. Finally, I
would like to thank the editors and three anonymous
reviewers for their constructive comments, which have
greatly strengthened this article.

References
Bart, A. C., Gusukuma, L., & Kafura, D. (2021). We are authoring

semi-automated feedback for Python Code with Pedal. SIGCSE ’21:
Proceedings of the 52nd ACM Technical Symposium on Computer
Science Education. 1378. New York, USA, Online Conference. https://
doi.org/10.1145/3408877.3439535

Bolukbasi, T., Chang, K.-W., Zou, J. Y., Saligrama, V., & Kalai, A. T.
(2016). Man is to computer programmer as woman is to home-
maker? Debiasing word embeddings. In D. Lee, M. Sugiyama, U.
Luxburg, I. Guyon, & R. Garnett (Eds.), Advances in neural infor-
mation processing systems 29 (NIPS 2016). Curran Associates, Inc.
https://hdl.handle.net/2144/37516

Brock, K. (2019). Rhetorical code studies: Discovering arguments in
and around code. University of Michigan Press. https://doi.org/10.
3998/mpub.10019291

Brooke, S. J. (2021). Trouble in programmer’s paradise: Gender biases
in sharing and recognising technical knowledge on Stack Overflow.
Information Communication and Society, 24(14), 2091–2112.
https://doi.org/10.1080/1369118X.2021.1962943/FORMAT/EPUB

Bucholtz, M., & Hall, K. (2005). Identity and interaction: A sociocul-
tural linguistic approach. Discourse Studies, 7(5), 585–614. https://
doi.org/10.1177/1461445605054407

Butler, J. (1999). Gender trouble: Feminism and the subversion of iden-
tity. Routledge.

Carter, J., & Jenkins, T. (2002). Spot the difference: Are there gender
differences in coding style? In Proceedings of the 3rd Annual
LTSN-ICS Conference. https://kar.kent.ac.uk/id/eprint/13757

Criado-Perez, C. (2019). Invisible women: Exposing data bias in a
world designed for men. Random House.

Davidson, R., & MacKinnon, J. G. (2000). Bootstrap tests: How many
bootstraps? Econometric Reviews, 19(1), 55–68. https://doi.org/10.
1080/07474930008800459

Dohmke, T. (2023). The GitHub Blog: 100 million developers and
counting. GitHub. https://github.blog/2023-01-25-100-million-
developers-and-counting/

Doughman, J., Khreich, W., El Gharib, M., Wiss, M., & Berjawi, Z.
(2021). Gender bias in text: Origin, taxonomy, and implications.
Proceedings of the 3rd Workshop on Gender Bias in Natural
Language Processing (pp. 34–44). Association for Computational
Linguistics, Online Conference. https://doi.org/10.18653/v1/2021.
gebnlp-1.5

Farah, J. C., Spaenlehauer, B., Sharma, V., Rodriguez-Triana, M. J.,
Ingram, S., & Gillet, D. (2022). Impersonating chatbots in a code re-
view exercise to teach software engineering best practices. 2022 IEEE
Global Engineering Education Conference (EDUCON) (pp. 1634–-
1642). IEEE. https://doi.org/10.1109/EDUCON52537.2022.9766793

Flanagin, A. J. (2020). The conduct and consequence of research on digi-
tal communication. Journal of Computer-Mediated Communication,
25(1), 23–31. https://doi.org/10.1093/jcmc/zmz019

Frieze, C., & Quesenberry, J. L. (2019). How computer science at
CMU is attracting and retaining women. Communications of the
ACM, 62(2), 23–26. https://doi.org/10.1145/3300226

Holohan, A., & Garg, A. (2005). Collaboration online: The example of dis-
tributed computing. Journal of Computer-Mediated Communication,
10(4). https://doi.org/10.1111/j.1083-6101.2005.tb00279.x

Johnson, S. C. (1978). Lint, a C program checker. Wolfram Schneider.
https://wolfram.schneider.org/bsd/7thEdManVol2/lint/lint.pdf

Keyes, O. (2018, November). The misgendering machines: Trans/HCI
implications of automatic gender recognition. In Proceedings ACM
Human-Computer. Interacion. 2, Community Supported Cooperative
Work, Article 88, 22 pages. New York, USA. https://doi.org/10.
1145/3274357

Koenig, A. M. (2018). Comparing prescriptive and descriptive gender ster-
eotypes about children, adults, and the elderly. Frontiers in Psychology,
9(June), 1086. https://doi.org/10.3389/FPSYG.2018.01086

Lindvall- €Ostling, M., Deutschmann, M. & Steinvall, A. (2020). An ex-
ploratory study on linguistic gender stereotypes and their effects on

12 Gender differences in programming
D

ow
nloaded from

 https://academ
ic.oup.com

/jcm
c/article/29/1/zm

ad049/7596747 by guest on 14 February 2024

https://github.com/SianJMBrooke/ProgrammedDifferently
https://github.com/SianJMBrooke/ProgrammedDifferently
https://www.sianbrooke.com/programmed-differently
https://pypi.org/project/krippendorff/
https://Pylint.pycqa.org/en/latest/user_guide/messages/messages_overview.html
https://Pylint.pycqa.org/en/latest/user_guide/messages/messages_overview.html
https://doi.org/10.1145/3408877.3439535
https://doi.org/10.1145/3408877.3439535
https://hdl.handle.net/2144/37516
https://doi.org/10.3998/mpub.10019291
https://doi.org/10.3998/mpub.10019291
https://doi.org/10.1080/1369118X.2021.1962943/FORMAT/EPUB
https://doi.org/10.1177/1461445605054407
https://doi.org/10.1177/1461445605054407
https://kar.kent.ac.uk/id/eprint/13757
https://doi.org/10.1080/07474930008800459
https://doi.org/10.1080/07474930008800459
https://github.blog/2023-01-25-100-million-developers-and-counting/
https://github.blog/2023-01-25-100-million-developers-and-counting/
https://doi.org/10.18653/v1/2021.gebnlp-1.5
https://doi.org/10.18653/v1/2021.gebnlp-1.5
https://doi.org/10.1109/EDUCON52537.2022.9766793
https://doi.org/10.1093/jcmc/zmz019
https://doi.org/10.1145/3300226
https://doi.org/10.1111/j.1083-6101.2005.tb00279.x
https://wolfram.schneider.org/bsd/7thEdManVol2/lint/lint.pdf
https://doi.org/10.1145/3274357
https://doi.org/10.1145/3274357
https://doi.org/10.3389/FPSYG.2018.01086

perception. Open Linguistics, 6(1), 567–583. https://doi.org/10.
1515/opli-2020-0033

Liu, B., Wei, L., Wu, M., & Luo, T. (2023). Speech production under
uncertainty: How do job applicants experience and communicate
with an AI interviewer? Journal of Computer-Mediated
Communication, 28(4), 1–12. https://doi.org/10.1093/
jcmc/zmad028

Mackenzie, A. (2005). The performativity of code. Theory, Culture and
Society, 22(1), 71–92. https://doi.org/10.1177/0263276405048436

Marino, M. C. (2020). Critical code studies. The MIT Press.
Nguyen, D., Do�gru€oz, A. S., Ros�e, C. P., & de Jong, F. (2016).

Computational sociolinguistics: A survey. Computational
Linguistics, 42(3), 537–593. https://doi.org/10.1162/COLI_a_00258

Oberm€uller, F., Bloch, L., Greifenstein, L., Heuer, U., & Fraser, G.
(2021). Code perfumes: Reporting good code to encourage
learners. Proceedings of WiPSCE’21: Workshop on primary and
secondary computing education. Erlangen, Germany, Online
Conference. https://doi.org/10.1145/3481312.3481346

Peters, T. (2004, 19th August). The Zen of Python. PEP 20. https://
peps.python.org/pep-0020/#the-zen-of-python

Pylint. (2023). Pylint 3.0.0a6: Documentation. Logilab. https://pylint.
readthedocs.io/en/latest/

Rother, K. (2017). Pro Python best practices: Debugging, testing and
maintenance. Apress.

Terrell, J., Kofink, A., Middleton, J., Rainear, C., Murphy-Hill, E.,
Parnin, C., & Stallings, J. (2017). Gender differences and bias in
open source: Pull request acceptance of women versus men. PeerJ
Computer Science, 3, e111. https://doi.org/10.7717/peerj-cs.111

Trinkenreich, B., Wiese, I., Sarma, A., Gerosa, M., & Steinmacher, I.
(2021). Women’s participation in open-source software: A survey of
the literature. ACM transactions on software engineering and meth-
odology, 31(4), 1. https://doi.org/10.1145/3510460

van Rossum, G., Warsaw, B., & Coghlan, N. (2023). PEP-8: The style
guide for Python code. PEP-8. https://pep8.org/

Vasilescu, B., Posnett, D., Ray, B., Van Den Brand, M. G. J., Serebrenik,
A., Devanbu, P., & Filkov, V. (2015). Gender and tenure diversity in
GitHub Teams. Proceedings of CHI ’15: Conference on Human
Factors in Computing Systems, (Gender and Technology Track),
Seoul Republic of Korea (pp. 3789–3798). https://doi.org/10.1145/
2702123.2702549

Vedres, B., & V�as�arhelyi, O. (2019). Gendered behaviour as a dis-
advantage in open-source software development. EPJ Data
Science, 8(1), 25. https://doi.org/10.1140/epjds/s13688-019-
0202-z

Vedres, B., & V�as�arhelyi, O. (2022). Inclusion unlocks the creative po-
tential of gender diversity in teams. Scientific Reports, Nature. 13
(1). https://doi.org/10.2139/ssrn.4085990

Viafore, P. (2021). Robust Python. O’Reilly.

Journal of Computer-Mediated Communication (2024) 13

D
ow

nloaded from
 https://academ

ic.oup.com
/jcm

c/article/29/1/zm
ad049/7596747 by guest on 14 February 2024

https://doi.org/10.1515/opli-2020-0033
https://doi.org/10.1515/opli-2020-0033
https://doi.org/10.1093/jcmc/zmad028
https://doi.org/10.1093/jcmc/zmad028
https://doi.org/10.1177/0263276405048436
https://doi.org/10.1162/COLI_a_00258
https://doi.org/10.1145/3481312.3481346
https://peps.python.org/pep-0020/#the-zen-of-python
https://peps.python.org/pep-0020/#the-zen-of-python
https://pylint.readthedocs.io/en/latest/
https://pylint.readthedocs.io/en/latest/
https://doi.org/10.7717/peerj-cs.111
https://doi.org/10.1145/3510460
https://pep8.org/
https://doi.org/10.1145/2702123.2702549
https://doi.org/10.1145/2702123.2702549
https://doi.org/10.1140/epjds/s13688-019-0202-z
https://doi.org/10.1140/epjds/s13688-019-0202-z
https://doi.org/10.2139/ssrn.4085990

	Active Content List
	Related literature
	Methods
	Results
	Discussion
	Data availability
	Funding
	Acknowledgements
	References

