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Abstract 
The underrepresentation of women in open-source software is frequently attributed to women’s lack of innate aptitude compared to men: natu-
ral gender differences in technical ability (Trinkenreich et al., 2021). Approaching code as a form of communication, I conduct a novel empirical 
study of gender differences in Python programming on GitHub. Based on 1,728 open-source projects, I ask if there is a gender difference in the 
quality and style of Python code measured in adherence to PEP-8 guidelines. I found significant gender differences in structure and how Python 
files are organized. While there is gendered variation in programming style, there is no evidence of gender difference in code quality. Using a 
Random Forest model, I show that the gender of a programmer can be predicted from the style of their Python code. The study concludes that 
gender differences in Python code are a matter of style, not quality.

Lay Summary 
This study examines whether there is a difference in Python programming styles between gender groups. I examine available code on GitHub, 
a cloud-based hosting platform for collaboration known as version control, often used in open-source software development. First, I infer the 
gender of users from their usernames and the information provided on their profiles, labeling users as feminine, masculine, ambiguous, and 
anonymous. Anonymous users had no gender-based markers on their profiles, while ambiguous users had feminine and masculine characteris-
tics. I then collect the publicly available projects of these users written in Python. Next, I analyze and generate statistics on Python files’ adher-
ence to style guidelines using a linter, an automated checking of source code for programmatic and stylistic errors. My findings reveal a gen-
dered difference in the structure and components of Python files. However, I also discovered no gender difference regarding violations of 
Python style guidelines and code quality. This study shows gender difference in Python programming styles but not in the standard or quality of 
the code.
Keywords: gender, open-source software, computational methods, intersectional and feminist approaches, HCI. 

Despite its title, Open-Source Software (OSS) has remained 
essentially closed to women, who comprise less than 10% of 
its contributors. Even in communities with few or no barriers 
to entry, such as GitHub, women are severely underrepre-
sented across programming languages. Women represent 
4.8% of core developers for projects based on Python, 4.5% 
for Cþþ, and 4.2% for Java (Trinkenreich et al., 2021). Yet, 
the positive effects of gender diversity have drawn attention 
from researchers and practitioners. Greater representation of 
women benefits productivity, leading to improved outcomes, 
increased problem-solving capacity, greater creativity, and a 
healthier work environment (Vedres & V�as�arhelyi, 2022). 
The evidence for the benefits of greater gender inclusion in 
OSS is overwhelmingly positive. So why are women still so 
underrepresented?

The absence of women in OSS is frequently attributed to a 
lack of innate aptitude compared to men: a natural “gender 
difference” in technical ability. This sexist belief perpetuates 
women’s exclusion as it frames their absence in computing as 
inevitable (Frieze & Quesenberry, 2019). In education, the 
gender difference approach presumes that the computer sci-
ence curriculum should be changed (“made pink”) to suit 
women’s computing deficiencies (Frieze & Quesenberry, 
2019). Moreover, stereotypes of gender and technical exper-
tise can extend beyond metrics of knowledge, where it is 

assumed that even the code itself is inscribed with gendered 
norms. Carter and Jenkins (2002) conducted preliminary re-
search into coding differences, finding that many teachers be-
lieved they could guess a student’s gender from their code. 
I draw on and expand this study to empirically test if a gender 
difference is present in Python code in OSS development 
on GitHub.

Writing readable code is fundamental to OSS. Python is a 
popular programming language that allows complex applica-
tions while prioritizing concise and readable syntax. Such 
high-level programming languages use natural-language ele-
ments designed to be easily understood by human readers 
and computers. For example, in Python, the command print() 
is used to output data. While programming is built on mathe-
matical logic, its writing, reading, and interpretation involve 
linguistic frameworks vulnerable to gendered evaluation, as 
high-level languages resemble familiar text structures. 
Programming in such languages requires syntax, definitions, 
statements, and arguments, which include scope for stylistic 
variation. Like natural-language, elements of high-level pro-
gramming languages can be susceptible to interpretation 
and judgment.

In natural-language, preconceptions about gender affect 
the interpretation of specific linguistic features and intentions 
(Lindvall- €Ostling et al., 2020). In written communication, for 
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instance, a firm statement of disagreement may be seen as 
strong if the author is a man. In contrast, the same statement 
could be interpreted as cold and cutting from a woman. 
Scholars have speculated that the same is true for code. 
Marino (2020) considers how the gender of a programmer 
influences the assumption of “strength” and code quality. 
I hypothesize that code is a form of computer-mediated com-
munication (CMC) and is as gendered as written and spoken 
language. Informed by computational sociolinguistics, this 
project investigates whether gendered differences exist in the 
material code. I ask: Is there a gendered difference in Python 
programming style?

The structure of this article is as follows. I first outline the 
related literature, beginning with how automated recognition 
can reinforce stereotypes. Building from the literature, I pre-
sent the specific research questions and associated hypothe-
ses. Next, I summarize the novel methodology of this study, 
detailing how I analyzed Python code by identifying subtle 
programming errors and unconventional coding practices 
through linting and assessing adherence to style guidelines. 
The analysis also measures gender differences in modular 
programming by focusing on the building blocks of code in 
the content of lines in Python files. The study’s findings em-
pirically challenge the justification for women’s exclusion 
from OSS based on gendered differences in programming 
quality. I conclude that assumptions on women’s lack of abil-
ity in programming are not empirically grounded.

Related literature
Extensive research has been conducted into gender differen-
ces in the linguistic style of CMC (Liu et al., 2023). Flanagin 
(2020) suggests that CMC researchers should focus beyond 
new features of specific technologies, instead emphasizing the 
underlying, exceptional, mechanisms of mediation. Open- 
source development is one such mechanism, a form of online 
collaboration that requires reading and reviewing computer 
code produced by others (Brock, 2019; Holohan & Garg, 
2005). In illustrating how code is communication, Marino 
(2020) considers a scenario where a man and a woman are 
presented with a popular programming challenge: to write a 
program that computes an anagram of a string (a sequence of 
characters) as part of a job interview. Given two technically 
different answers, one simple and one complex, the 
“stronger” solution is based on interpretation by the reader. 
The complex answer may be understood as sophisticated or 
needlessly idiosyncratic, the simple as more concise or reflect-
ing limited knowledge. The gender of the assumed author 
would meaningfully impact such interpretation and assess-
ment of quality (Marino, 2020). As a communication system, 
cultural norms extend beyond a programming task’s specif-
ics, and cultural norms mediate code interpretation.

Gender and text
Like human readers, machines also assume authors’ gender 
based on text interpretation. In practicing computational in-
ference of social categories, it is crucial to understand the pol-
itics of identity. Keyes (2018) surmises that automatic gender 
recognition treats gender as binary, immutable, and physio-
logical, which has long been considered inaccurate. They 
show how, in everyday interactions offline, individuals infer 
gender based on posture, dress, and vocal cues and “then jus-
tify it with physiological cues after the fact” (2018, p. 3). In 

such interactions, gender is not recognized or identified but 
inferred (Keyes, 2018). If programmers are not vigilant to 
gender biases, programmed tools can inherit and recreate 
gender stereotypes. In her examination of gender data bias, 
Criado-Perez (2019) shows how the search term “computer 
programmer” can direct views to a male programmer’s web-
site simply because a search algorithm has inferred that mas-
culine pronouns are more closely associated with the term 
“computer programmer,’ thus websites with masculine pro-
nouns are more relevant to the search query. The same associ-
ation was not true for feminine pronouns (pp. 166–167). 
Therefore, much work on computational language models is 
focused on undoing such learning or debiasing algorithms, 
meaning removing potentially discriminatory practices or 
power structures embedded in prejudiced language that auto-
mated systems learn from. In their seminal paper on debias-
ing word embeddings in natural-language processing, 
Bolukbasi et al. (2016) show that models trained on various 
sources exhibit strong gender stereotypes, which the increas-
ing use of automated tools can amplify. Therefore, research-
ers on the inference of gender need to be aware of its 
limitations and be careful not to claim to discover truths or 
to reinforce gender stereotypes.

Gender diversity in programming teams is essential to chal-
lenging biases coded into automated tools (Brooke, 2021). 
Despite plentiful and valuable research on the absence of 
women in programming, empirical evidence for gender differ-
ences in code is mainly anecdotal. Yet examining gender dif-
ferences in natural-language is a robust field, as a prominent 
aim of sociolinguistics is to understand the relationship be-
tween social variables and the use of language (Nguyen et al., 
2016). Stylistic variations in writing are a key focus of gender 
inference of authors or users of online platforms (Nguyen 
et al., 2016). Language is a resource for individuals to author 
their own flexible gendered identity (Bucholtz & Hall, 2005). 
An individual’s gender identity is constructed using linguistic 
features associated with masculine or feminine speech and 
writing. Scholars have identified elements associated with 
feminine speech that reflect a submissive social position, such 
as uncertainty verbs, hedging, minimizers, and the use of spe-
cific punctuation (e.g., “!”) (Doughman et al., 2021). These 
features reflect the subordinate position of feminine identities 
in broader social structures, mediated by role adoption in 
particular settings such as the workplace (Bucholtz & Hall, 
2005). It is plausible that similar linguistic patterns are appar-
ent in code, where granular details reveal a gendered differ-
ence in writing.

Until now, the focus of gender inference has been on writ-
ten or spoken language. Natural-language is often defined in 
opposition to computer code. Nonetheless, Mackenzie 
(2005) argues for a communicative analysis of code itself, 
extending a speech-based notion of code as instruction to in-
clude the mediated practices of programming, configuring, 
and running a computational project. Here, code is an 
“objectification of a linguistic praxis” (p. 76), where code is 
understood not just in terms of explicit meaning but also as 
self-reflexive and mediated by the individuals, interactions, 
and culture that created it. From this perspective, code is 
written communication with meaning and interpretation, 
where one may make assumptions about the identity of the 
author based on the form of code itself.

Gender stereotypes associated with natural-language may 
be applicable to code. Carter and Jenkins (2002, p. 7) saw 
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that despite the prevalence of sexism in computing, code writ-
ten by “female” students was labeled by educators as 
“neater” and well-organized with consistent formatting. Such 
descriptions imply a gendered ideology, where feminine ster-
eotypes are gentle, sympathetic, and neat compared to domi-
nant, loud masculinity (Koenig, 2018). While programming 
is built on logic, its writing and interpretation involve linguis-
tic frameworks, words, and syntax. As a high-level language, 
Python can resemble familiar text structures. Programming in 
such languages requires syntax, definitions, statements, 
including scope for stylistic variation. As a language, 
programming thus has structural markers comparable to 
natural-language that may make it susceptible to stereotypes 
if evidence is found of gendered variation.

Coding, linting, interacting
OSS emphasizes that computers and humans should easily 
read and understand code. The basis of OSS is that code is 
made freely available and is open to modification and redis-
tribution (Trinkenreich et al., 2021). If code is not readable, 
it discourages use, erecting barriers to participation in OSS 
(Viafore, 2021). Linters are a shortcut to facilitate readabil-
ity, analogous to advanced spelling and grammar checkers in 
natural writing and word processing. The term linting refers 
to the use of static analysis tools (“linters”) to detect bugs 
and other issues (“lint”) in software programs (Viafore, 
2021). The term initially referred to a Unix utility, where the 
command lint would examine C source programs, focusing 
on broad compatibilities (Johnson, 1978). While modern C 
and Cþþ compilers have lint-like functions, lint-like tools 
are useful for languages like JavaScript and Python, which 
are dynamically typed (without needing a compiler). A com-
piler translates a programming language into machine code 
or another low-level programming language a computer can 
understand. Because compilers typically do not enforce strict 
rules prior to execution, linters can be used as simple debug-
gers for finding common errors (e.g., syntactic discrepancies) 
as well as hard-to-find errors such as heisenbugs, drawing at-
tention to suspicious code as possible errors (Viafore, 2021). 
Linters can be as pedantic as spell checkers, highlighting 
issues with style and potential mistakes and facilitating the 
reading and sharing of code in OSS.

Beyond eliminating errors, defining readability in OSS can 
be difficult, given that it depends on the individual capacity 
to read a given text or section of code. To enhance under-
standing, linters rely on standards, representing endless col-
laboration to develop agreed style conventions for a 
particular language (Viafore, 2021). They are collaboratively 
authored by the community involved in developing a lan-
guage. In Python, the most consensual writing style is defined 
by the PEP-8 standard, which the popular linting tool Pylint 
enforces (Rother, 2017). PEP-8 evolves over time as addi-
tional conventions are identified, and past approaches are 
rendered obsolete by changes in the language itself. Also cru-
cial within the convention is the notion that many projects 
have their own coding style guidelines, and in the case of con-
flict, such project-specific guides take precedence for that 
project (Rother, 2017). Since being written in 2001, PEP-8 is 
intended to improve the readability of code and make it con-
sistent across the broad spectrum of Python applications (van 
Rossum, 2023). As the Python principles state: “readability 
counts” (Peters, 2004). Therefore, conformity to style 

guidelines is not a matter of finesse but is necessary for code 
to be read, reused, and remixed.

Several recent social studies have explicitly included linting 
in their research design. There is a particular trend in the lit-
erature to examine the possible benefits of linting as a peda-
gogical tool. Oberm€uller et al. (2021) study how the criticism 
produced by linting can be complemented by positive feed-
back. They introduce the concept of code perfumes as the 
counterpart to code smells (or warnings). Perfumes indicate 
the correct application of programming practices considered 
exemplary rather than exclusively highlighting issues and po-
tential bugs. Similarly, Farah et al. (2022) examine chatbots 
(Lint Bot) as a teaching instrument in lessons on enforcing 
coding standards in JavaScript. Bart et al. (2021) also devel-
oped a tool in Python that can semi-automate student feed-
back on coding assignments. In these studies, the linter is 
implicitly positioned as an agent in the interactive process of 
producing and evaluating code. Social interactions are funda-
mental to success when students are learning to program. 
However, with the feedback provided by linting, the pro-
grammer/user interacts and is in conversation with the linter, 
giving feedback. The work of Oberm€uller et al. (2021) high-
lights this, as they implicitly position the feedback from the 
linter as a social agent. The feedback provided by the linter to 
the programmer during writing has been included as a re-
search instrument in pedological studies.

Gender, programming, and GitHub
Like linting, version control is an essential tool for pro-
grammers in OSS. Also known as source control, version con-
trol is the practice of tracking and managing changes to 
software code. Git is a distributed version control system; it 
can be complex and intimidating, so GitHub is frequently 
used for uploading and managing copies of a Git Repository 
(or “repo”). Purchased by Microsoft in 2018, GitHub is a re-
mote collaboration platform that allows users to work to-
gether or independently on technical projects, expanding the 
possibilities of programming by creating libraries and techno-
logical tools. It can track changes made to files, launch soft-
ware, and host websites. There are over 100 million 
developers on GitHub, 20.5 million of which joined in 2022 
alone (Dohmke, 2023). GitHub has remained at the forefront 
of OSS and technological development, hosting Interactive 
Developer Environments, including the most popular source 
code editor, Microsoft’s VS Code. Despite the growth and 
popularity of GitHub, only 24.5% of programmers on the 
site are women.

Valuable studies have documented the nuances of gender 
discrimination in GitHub as a collaborative coding platform. 
Terrell et al.’s (2017) study of gender effects in proposed 
changes to a software project’s code, documentation, or other 
resources on GitHub found that women’s contributions are 
accepted more often than men’s if their identity is obscured. 
However, when gender is made visible, women’s contributions 
are 15% less likely to be accepted (Terrell et al., 2017). 
Similarly, Vedres and V�as�arhelyi (2019, p. 1) found that 
“disadvantage is a function of gendered behaviour” on the 
open-source development platform GitHub. “Femaleness” 
was qualified by variables such as professional ties, level of 
activity (push/pull requests), and areas of specialization 
(Vedres & V�as�arhelyi, 2019). The study argues that measures 
of reputation (“success”—as starred repositories) and sur-
vival (“time account active”) on the platform were adversely 
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affected by femaleness rather than by categorical discrimina-
tion. They saw that not only was this true for women, but 
men and users with unidentifiable gender are also likely to 
suffer for exhibiting behavior that demonstrates 
“femaleness.” Vedres and V�as�arhelyi (2019) conclude that 
implicit sexism punishes feminine behavior that adversely 
affects one’s status and collaboration prospects, as opposed 
to explicit sexism penalizing femininity in GitHub usernames. 
This study’s gendered analysis of the code hosted on GitHub 
will contribute to the existing work on gender differences in 
platform interactions, as highlighted by Terrell et al. (2017)
and Vedres and V�as�arhelyi (2019).

Expectations of gender difference in code impact the pro-
grammer’s skill assessment. As outlined by Marino (2020), 
the reviewing of code quality is mediated by context-specific 
factors. The assumed gender of programmers in an anony-
mous setting can affect how a technical solution is evaluated: 
basic or concise, excessive or complex (Marino, 2020). As 
highlighted earlier, Carter and Jenkins (2002) show that com-
puting educators often believe they can guess a student’s gen-
der from their code. However, this too is open to the same 
conflicting gendered interpretation that Marino (2020) out-
lines. For instance, they show that for one code snippet half 
the educators assumed it had been written by a woman, with 
its neatness and lack of confidence in “thinking aloud” com-
ments being widely cited as reasons (Carter & Jenkins, 
2002). The same justification was used by other educators, 
emphasizing the content and extent of the comments as the 
reason they believed the author was a man (Carter & 
Jenkins, 2002). Given those rationalizations for gender differ-
ences in code are contradictory and grounded in cultural sex-
ism that discriminates against women, there is little 
theoretical reasoning in the literature as to why specific code 
features would be tied to gender expression. Expanding 
Carter and Jenkins’s (2002) research to include contempo-
rary OSS tools, I expect to find no significant gender differ-
ence in adherence to PEP-8 guidelines.

Building from the literature, I test if variation in Python 
code can be attributed to gender. This project complements 
studies on gender bias in activity and interactions in OSS by 
showing that exclusion does not result from gender difference 
in code quality. Therefore, I chose to research questions that 
are relevant to the style and structure of Python files rather 
than differences in activity and recognition. For technical ac-
curacy, I use the language of Python modules, referring to 
files with the “.py” extension containing Python code that 
performs a specific task. I ask: (RQ1) Is there a gender differ-
ence in module structure? (RQ2) Is there a gender difference 
in the style of Python modules? (RQ3) Can the gender of a 
module’s author be predicted from Python programming 
structure and style? This study empirically tests if there is gen-
der difference in Python code, a rhetoric that is often used to 
rationalize women’s exclusion from OSS development.

Methods
This project leverages large-scale data through public coding 
repositories in Python on GitHub. Python is the second most 
popular programming language on GitHub, growing 22.5% 
in popularity in the year 2022 (Dohmke, 2023). Figure 1 
shows the data collection, processing, and analysis strategy. 
It also includes the relevant files for each stage of the analysis, 
as contained in this article’s GitHub repository. I collected all 

GitHub repositories that meet the criteria below, suggesting 
an initial sample size of 1.1 million users.

• The owner is the only contributor. To avoid complexity 
in unpicking specific contributions in collaborative work, 
I only collected repositories where the owner was the sole 
contributor. 

• Written in Python3. Restricting to one version of a pro-
gramming language permits greater validity. 

• The repository was created on or after January 1, 2019. 
Python2 was deprecated on January 1, 2020. Python3 
was already in circulation, so the collection was back-
dated a year. 

• Not marked as private or archived and publicly visible. 
I did not consider it ethical to include repositories that the 
owner had listed as private. 

• Not a fork. Repositories are not forks or initialized as 
copies of other repositories. 

• The repository is between 0.01 and 1 gigabyte in size. As 
of 2022, GitHub documentation recommends that reposi-
tories remain less than 1GB. 

• Owned by a User. Repositories with the owner as a sole 
user rather than an “Organisation” as a shared account. 

Interaction is a crucial feature of open source and as such, 
software is defined by the potential to share. Therefore, 
I narrowed the selection of repositories to include those with 
10–250 forks (a new repository that shares code with the 
original) and 10–150 stars (like bookmarking or favoriting). 
While I focus on repositories with only one author, a mini-
mum of 10 forks and stars represents a reasonable engage-
ment with OSS communities. For example, if a repository has 
10 forks on GitHub, it has been copied and shared 10 times 
by other users. These selection criteria thus reflect that the 
Python code sampled was shared and engaged with, including 
an upper limit that excluded outliers in popularity that may 
skew the results. This range demonstrates repositories that fit 
our criteria for inclusion (specified above) and are sufficiently 
interacted with to be included in an analysis of gender differ-
ences in programming in open source. Nonetheless, GitHub 
does not make statistics on the overall distribution of forks 
and stars publicly available, which means that the specific 
generalizability of the sample is difficult to obtain. In total, 
I collected 1,728 repositories consisting of 30,198 modules 
or “.py” files.

Gender inference procedure
As GitHub users do not list gender on their profile, I inferred 
each person’s gender using their location and name markers. 
I followed Vedres and V�as�arhelyi’s (2019) selection of data 
points, using full names (provided names), nicknames (user-
names), and email addresses (prefixes) offered by users on 
their profiles. I also incorporated Brooke’s (2021) expansion 
of Vasilescu et al.’s (2015) genderComputer, growing the 
library of names it uses to infer gender. I also expanded 
genderComputer’s pre-processing of usernames to include 
“leet speak” or substituting a word’s letters with numbers or 
special characters. I used the Python library GeoPy to clean 
users’ location data to assist with gender inference, as noted 
by Vasilescu et al. (2015). Working with the GitHub API, 
I aimed for an approximately even distribution of masculine 
and feminine Python modules to assist simplicity in statistical 
tests for gender differences.
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The results of the gender inference procedure are displayed 
in Table 1. I initially considered including biographical 
(“about me”) data provided on user profiles. However, 
there were little to no explicit markers of gender here. Users 
generally included their job title (“Developer,” “Student,” 
“Researcher”) and specific technical interests (“Machine 
Learning,” “AI,” “Engineering”). Following Vedres and 
V�as�arhelyi (2019), I assess the accuracy of the inferences 
compared to a manually coded baseline using the same fea-
tures (username, real name, email). I took a random sample 
of 850 users from the dataset. There were 105 cases where 

I disagreed with the gender inference, meaning an 87% 
agreement. I utilized Krippendorff’s alpha, a quantification 
of intercoder reliability, using statistics of agreement.1 

Considering four gender categories—feminine, masculine, 
ambiguous, and anonymous—the alpha was 0.72. 
Considering feminine and masculine users only, the alpha 
was 0.87. These statistics demonstrate good reliability.

I labeled users as masculine, feminine, ambiguous, and 
anonymous. The “ambiguous” label was given to users with 
significant gender markers, but it was unable to statistically 
infer the masculine or feminine categories with sufficient 

Figure 1. Research design and analysis strategy.
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confidence (0.4-0.8).2 Considering the insights of Keyes 
(2018), I intend to understand gender in a nuanced way, with 
an analysis that includes the inference of gender beyond a bi-
nary. I differentiate between “ambiguous” users, where gen-
der markers were present, and “anonymous” users, where 
they were not.3 Further, I use the language of “masculine” 
and “feminine” to represent how gender is enacted and main-
tained through performance in language. Butler (1999)
emphasizes the importance of gender in interaction, meaning 
how gender is recognized in the specific context in which it is 
performed. Gender is ultimately an issue of a broader culture, 
not specifically an issue for women (Frieze & Quesenberry, 
2019). By incorporating multiple sources of profile data, I am 
not expanding my gender inference sources beyond what in-
formation is readily available to other GitHub users. For an 
interactive site illustrating how these measures of program-
ming style work on Python modules, see the link in the Data 
Availability section.

Style and code linting
The operationalization of communication in empirical work 
is a challenge to researchers. A focus on the structure of lan-
guage in specific features provided by linters can appear sim-
plistic or superficial. However, the features outputted from 
linters represent conforming to normative syntax and seman-
tics, which ultimately helps others work with the code and 
see errors more easily. Work on popular programming 
forums shows that women face more severe social sanctions 
than men for minor technical infractions, such as adherence 
to style guidelines (Brooke, 2021). Furthermore, linting is 
fundamental in the mechanism of open-source communica-
tion and collaboration (Oberm€uller et al., 2021). Pylint is of-
ten employed in developing OSS, as code that follows 
convention is easier to understand and therefore, other pro-
grammers can repair, maintain, or build on the work. By fo-
cusing on gender differences in adherence to PEP-8, this 
study focuses on the initial assumptions and tests of quality 
in OSS.

As Pylint analyses code without running it, it is particularly 
suited to the large-scale task of this study. Note that refactor 
and convention will not cause the code files or modules to 
stop running. As stated, modules are files with the “.py” ex-
tension containing Python code that can be imported (or 
used) inside another Python program. Table 2 shows exam-
ples of the Pylint checkers, module components, and associ-
ated examples (Pylint, 2023). This is not an exhaustive list, as 
Pylint version 3.0.0a6 can currently produce 452 different 
“messages,” which are collated into style checker compo-
nents for this study.4

Global Pylint Score
Pylint enforces the standard, producing the metric Global 
Pylint Score. The maximum score for adhering to PEP-8 is a 
Pylint score of 10, but there is no lower bound, and the score 
can be negative if there is a heavy infringement of the Python 
style standards (Pylint, 2023). The size of the given Python 
code weights the errors through the number of statements in 
each Python file. Statements are the smallest standalone ele-
ment of code that produces an outcome. The formula for the 
score is: 

Global Pylint Score

¼ 10−
5 � errorþwarningþ refactorþ convention

statement
� 10

� �

where:

• error: The total number of errors in a module. An error is 
an issue in a program that prevents the program from com-
pleting its task. For example, E0401 or “import-error” is 
used when Pylint has been unable to import a module. 

• warning: The total number of warning style checks gener-
ated. Warnings indicate potential future errors; they are 
non-critical and do not terminate the program. 

• refactor: The total number of refactoring errors. 
Refactoring is restructuring code intended to improve the 
software’s design while preserving its functionality. For 
example, if several lines of code are repeated in a file, they 
can be refactored into a user-defined function where a 
custom-made function can be called instead of copying 
and pasting code. Pylint would produce style check 
R0801 (duplicate-code). 

• convention: The total number of format-checking style 
checkers where the code is in violation of PEP-8. For in-
stance, in its current implementation, PEP-8 suggests lines 
should be limited to 79 characters to allow you to easily 
open multiple files next to each other. In Pylint, this will 
produce the C0301 (line-too-long) style check. 

• statement: The total number of lines of Python code in 
the module. These are unwrapped (not made to fit a view-
able window), without docstrings (used to document the 
purpose of code without detailing the implementation; 
not runnable, beginning with:”““), comments (used to 
enhance readability; not runnable, beginning with #), or 
blank lines. 

The formulation of Pylint scores to include the number of 
lines of code permits comparison across different-sized mod-
ules as they are relative to each file weighted by size. 
According to Python style guidelines, project-specific guide-
lines take precedence over PEP-8, represented as convention 
(van Rossum, 2023). If the specific style check convention 
was present across more than half of the .py files in the 
GitHub repository, it was not included as a violation in the 
computing of the global Pylint score. I identified outliers with 
a Pylint score below −100, which were not included in 
the data.

Testing for gender differences
I define gender difference as statistically significant variation 
between gender groupings. Table 3 outlines the operationali-
zation of metrics used to test for gendered difference. Overall, 

Table 1. Count of repositories and files

Gender Repositories/users .py Files/modules

Feminine 774 10,122
Masculine 483 9,991
Ambiguous 248 5,050
Anonymous 223 5,035

Total 1,728 30,198
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I opted for simplicity in testing. Given specific technical termi-
nology and the potentially broad implications of findings, 
I prioritized the interpretability of the results. I tested using 
Welsch’s ANOVA and Chi-squared tests. If the test is signifi-
cant, the test statistic tells us about the ratio of between-group 
variation to within-group variation. A considerable 
value means the between-group variation is larger than the 
within-group variation. In my study, this means there is more 
discrepancy between gender groups than within each gender 
group, providing evidence for a gendered difference.

Using statistical inference methods, I am testing against a 
hypothesis of no effect or relationship based on gender. 
Testing for gender differences in module structure (RQ1), the 
null hypotheses are H01: There are no gender differences in 
module organization and H02: There are no gender differen-
ces in module constituents, referring to the building blocks of 
Python such as functions. Next, I examine if there is a gender 
difference in the style of Python modules (RQ2), with the as-
sociated null hypotheses, H03: There is no gender difference 
in global Pylint scores, and H04: There is no relationship 
between gender and style checker components. To conduct 
significant testing with the large sample size, I used boot-
strapping, a statistical procedure that resamples a single data-
set to create many simulated samples. Following the advice of 
Davidson and MacKinnon (2000), I set the confidence level 
at 0.01 and drew samples of 3,000 with replacement.

Addressing RQ3, I examine if the gender of the author can 
be predicted from Python coding style. Significance testing is 
not suitable for this task. Instead, I used a Random Forest 
model with cross-validation (k¼10) to predict gender identity 
using the module structure and Pylint style checker compo-
nents. I also considered the inclusion of additional features, 
such as the longevity of an account and user-level activity met-
rics. Statistical analysis based on information retrieved from 
websites and platforms via APIs can often include such met-
rics by default due to their ease of access. However, I opted to 
retain the focus on code as communication.

Care is taken to ensure that the findings are not obscured 
by specific technical terms related to Python as a program-
ming language, so relevant definitions are provided. These 

definitions may be superfluous for the more technically in-
clined. Nonetheless, definitions are included to assist in the 
interpretation of the results as presented. Additionally, it is 
crucial that attempts to infer user gender from code are not 
misappropriated for purposes of discrimination and that in-
ference of femininity does not incur negative judgment. To 
the best of my knowledge, the methodology of this study is 
unique in applying computational text analysis to the mate-
rial code itself. As with any new approach to inferring iden-
tity from online and technical data not intended for the 
purpose, ethical implications must be considered. This study 
is fundamentally a work of feminist activism that challenges 
assumptions of gendered differences used to maintain a sexist 
structure in OSS.

Results
Module structure
RQ1 asks if there is a gender difference in module structure, fo-
cusing on the organization (lines of code, code, documentation) 
and constituents (methods, functions, classes) of Python 
modules. I tested for significant gendered differences using 
ANOVA, which enabled the comparison of more than two 
groups simultaneously to determine whether a relationship 
exists between them. I tested for departures from 

Table 2. Example of Pylint style checker components

Pylint checker Style checker component Example style checker message1

Basic checker Error E0104 (return-outside-function): Used when a return statement is found outside a 
function or method

Convention C0103 (invalid-name): Used when the name does not conform to naming rules as-
sociated with its type (constant, variable, class, etc.)

Warning W0101 (unreachable): Used when some code is behind a return or raise statement, 
which will never be accessed

Design checker Refactor R1260 (too-complex): Used when a method or function is too complex based on 
McCabe Complexity Cyclomatic

Format checker Convention C0303 (trailing-whitespace): Used when there is a whitespace between the end of 
a line and the new line

Warning W0311 (bad-indentation): Used when an unexpected number of indentations, 
tabulations, or spaces has been found

Refactoring checker Refactor R1702 (too-many-nested-blocks): Used when a function or a method has too 
many nested blocks. This makes the code less understandable and maintainable. 
The maximum number of nested blocks for the function/method body is five 
by default

Convention C0201 (consider-iterating-dictionary): Emitted when a dictionary’s keys are iter-
ated through the .keys() method. It is enough to just iterate through the dictio-
nary, as in for key in the dictionary

[ … ]

1 Rationale from https://pylint.readthedocs.io/en/stable/index.html

Table 3. Metrics to test for gender difference

Theme Concept Operationalization

Module  
structure

Organization Lines of code, docstrings, com-
ments, and empty lines in 
a module

Constituents Frequency of classes, functions, 
and methods in a module

Module style Pylint Score The global Pylint score is a mea-
sure of PEP-8 adherence

Style Checker  
Components

Style checker messages are collated 
into the components of informa-
tion, error, refactor, warning, 
and information
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assumptions of normality using Bartlett’s test. As the test was 
significant, I rejected the null hypothesis and concluded that 
not all gender groups have the same variance, and therefore, I 
used Welch’s ANOVA. Table 4 shows the mean (l) and stan-
dard deviation of each gender grouping and the f-value and 
significance. Note that these values are rounded, as a fraction 
of a line of code is not meaningful.

First, I look at differences in organization by the average 
number of lines in each module by gender grouping. Total 
lines here refer to the complete length of the module, includ-
ing empty lines. Table 4 shows that masculine users have the 
largest average module size by a reasonable margin of 43 
lines. I found a significant gender difference in the total num-
ber of lines between gender groups. Next, I look at the aver-
age count of lines of Python code within each module. The 
metric is typically used to indicate a given file’s size and pre-
dict the effort required to modify it to prevent future prob-
lems, otherwise called maintainability. I find that masculine 
GitHub users have more lines of code on average than other 
gender groups, followed by feminine users. This finding is 
logical, as masculine users also have the greatest total lines. 
Therefore, I reject the null hypothesis and find a significant 
gender difference in the average number of lines of code by 
gender grouping.

I also look at organizational differences in the number of 
lines that refer to the documentation of code in comments 
and docstrings (Table 4). Commenting involves placing 
human-readable descriptions inside modules that detail what 
the code is doing. In Python, this is achieved with the “#” 
symbol. Proper commenting can simplify code maintenance 
and help find errors and issues faster. I then look at doc-
strings, a short form for “documentation string,” a type of 
multi-line comments frequently used in Python. They are ac-
cessible when the block of code they relate to is used else-
where, an essential part of PEP-8. The tests show a significant 
gender difference in the count of comments and docstrings 
lines between gender groupings, with masculine users having 
more lines of docstring on average. Masculine users have the 
same frequency of comment lines as anonymous and feminine 
users despite having significantly longer files by total line 
count. This suggests that masculine users are more likely to 
document their code with docstrings rather than comments.

Like docstrings, blank or empty lines are essential to PEP-8. 
Like blank lines to indicate paragraphs in written text, in 
Python, blank lines indicate logical sections and improve read-
ability. I also find a gendered difference in the count of empty 
lines between gender groupings. I see significant gender differ-
ences in total lines, lines of code, documentation, and blank 
lines. I reject the null hypothesis H01: There are no gender dif-
ferences in module organization. Compared to other gender 
groups, masculine users have longer files and prefer docstrings 
to comments. The f-stat shows the greatest variation in mod-
ule organization between all genders is docstrings, which, 
given the importance of documenting to PEP-8, suggests that 
there may be a gender difference in Python code styles.

I also tested for gender differences in module constituents 
(H02), the portable Python code blocks that make up the 
module. In Python, a function is a labeled block of code that 
performs a specific task. A method is like a function but for a 
particular type of information. For example, .lower() makes 
text (known as a string) lowercase but does not work on nu-
meric data. Classes are more complex but can be understood 
as a blueprint for organizing information and its 

manipulation. Table 5 indicates the mean and standard devi-
ation in the count of functions, modules, and classes between 
gender groupings and Welch ANOVA for significance.  
Table 5 shows a similar average number of functions per 
module between gender groupings. Welch ANOVA found 
that the between-gender variation was larger than the within- 
gender variation, meaning there is a significant gender differ-
ence in function count. I also found a significant difference in 
gender groupings between the average number of methods 
and classes in Python modules. Consequently, I reject the null 
hypothesis H02: There is no gender difference in the module 
constituents.

The largest gender difference is in the use of methods, with 
masculine users utilizing methods the most frequently and 
feminine the least. There is less variation by gender for func-
tions and classes, but anonymous and ambiguous users em-
ploy classes more regularly than gender-identified (masculine, 
feminine) users. The most minor variation between gender 
groups is with functions, with masculine and feminine users 
having a relatively higher average count. These findings could 
suggest that users whose gender is known take a more func-
tional approach to programming in comparison to anony-
mous and ambiguous users who use more classes. These 
findings merely indicate such a difference as the analysis did 
not directly assess functional approaches to programming. 
Therefore, there is a significant difference in total lines, 
module organization (docstring, comment, and empty lines), 
and module constituents (functions, methods, classes). 
Addressing RQ1, I find a significant gendered difference in 
the structure of Python modules in terms of organization and 
constituents.

Global Pylint score and style checker components
The second research question asks if there is a gender differ-
ence in Pylint scores and style checker components. While the 

Table 4. Gender differences in module organization by lines

Gender Total lines Code Docstring Comment Empty

l Std l Std l Std l Std l Std

Feminine 281 334 194 218 19 49 24 40 45 41
Masculine 324 296 212 215 32 53 24 36 56 80
Ambiguous 253 421 169 290 24 68 20 40 41 72
Anonymous 279 333 190 237 25 66 24 51 41 47

Welch 
ANOVA 
F-stat

49.72�� 45.09�� 62.23�� 34.63�� 64.05��

� p< .01. ��p< .001.

Table 5. Gender differences in module constituents

Gender Function Method Class

l Std l Std l Std

Feminine 3.82 5.71 5.41 9.26 1.39 2.46
Masculine 3.92 8.08 8.34 12.94 1.26 1.96
Ambiguous 3.64 3.64 6.47 15.81 1.51 3.28
Anonymous 3.62 6.39 6.46 11.13 1.43 2.78

Welch ANOVA 
F-stat

2.89� 64.82�� 14.68��

� p< 0.01. ��p< 0.001.
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previous section analyzed the module or .py file level, the 
Pylint score is analyzed at the repository level to control for 
project-specific style conventions. Table 6 shows the descrip-
tive statistics of the global Pylint scores by each gender, sum-
marizing the central tendency and dispersion.

The mean shows that masculine-identified users have the 
lowest average Pylint scores (0.46), while feminine (1.20), 
ambiguous (1.28), and anonymous (1.27) users have similar 
scores. This suggests that, on average, masculine users violate 
the PEP-8 guidelines more frequently than other users. 
The maximum Pylint score of 10 out of 10 was achieved 
across all gender groupings. The standard deviation indicates 
a reasonable spread of Pylint scores for each gender group. 
I conducted a Welch’s ANOVA and found no significant 
difference in global Pylint scores by gender groupings 
(f-stat¼ 0.51, p¼ .69). I thus accept the hypothesis that H03: 
There is no gender difference in Pylint scores, and gender 
does not explain variation in adherence to PEP-8.

I ran Welch’s t-test on the Pylint scores for differences be-
tween (1) masculine and feminine users, (2) gender-labeled, 
and (3) non-identified users. First, I found no significant gen-
dered difference in Pylint scores between masculine and femi-
nine users (t-stat¼−0.48, p¼ .65). Second, I found no 
significant difference in Pylint scores (t-stat¼1.17, p¼ .23) 
between gender-identified (feminine, masculine) and non- 
gender-identified users (ambiguous, anonymous). I surmise 
that there is no significant gendered difference in global 
Pylint scores. Consequently, although gender differences in 
organization and code constituents suggested gender differen-
ces in style, gender does not explain variation that contra-
venes the PEP-8 guidelines.

Next, I examined the granular gendered differences in the 
Pylint style, testing H04. First, I focus on the individual mes-
sages grouped into the style checker components. These mes-
sages are the specific issues raised by Pylint when analyzing 
the code in the dataset. Of the possible 452 style checkers, 
192 were present. Style checker components indicate poten-
tial problems with the code, including errors where the script 
would not execute. The five most frequent style checkers 
were the same for each gender group, and their rationale is 
shown in Table 7. This frequency is at the level of the .py file 
and does not include cumulative counts of an error within 
a module.

Expanding the analysis to the 10 most frequent style 
checker messages, the single discrepancy between gender 
groupings was that feminine users had consider-using-from- 
import rather than trailing-whitespace as violations of PEP-8. 
This suggests that there will not be a significant gender differ-
ence in programming style related to style checker compo-
nents. As outlined in Table 2, the style checker components 
(collection of messages) are error, convention, warning, 
refactor, and information. Mindful of the potential for gen-
der differences to emerge in subcategories of Pylint, I also 
tested for gender-based variations in style checker 

components. The information checker is not included in the 
global Pylint score and refers to how the code in the module 
handles information, such as explicitly suppressing warning 
messages. I did not include the information checker in the 
chi-squared analysis due to insufficient data points, as shown 
with feminine users in the Information style 
checker component.

Table 8 shows the frequency, mean, and standard devia-
tion of style checker components by gender category. First, 
comparing gender-identified users, I find that masculine users 
have more warnings and violations of PEP-8 conventions 
than other gender groups. Masculine users also have the sec-
ond most errors on average, after anonymous users. This is 
logical as masculine users had the lowest global Pylint score, 
though gender difference in Pylint was insignificant. I con-
ducted a chi-squared test for association between the style 
checker components and gender grouping. The resulting test 
was significant, meaning I rejected H04 and found a signifi-
cant gendered difference in style checker components.

I conducted multiple 2�2 Chi-square tests using the 
Bonferroni-adjusted p-value (a ¼ 0:008). Post-hoc testing 
revealed significant gender differences for the style checker 
components for all the pairwise comparisons, excluding one. 
The exception was the comparison of feminine and anony-
mous users. This being the only insignificant comparison 
indicates a comparable coding style between feminine and 
anonymous users. The similarity in programming styles sug-
gests that women may purposefully obscure their gender and 
choose to be anonymous. This proposition is supported by 
the relatively large and significant difference in style between 
masculine and anonymous users.

The most considerable variation is between ambiguous 
and anonymous users. This implies meaningful gender differ-
entiation between anonymous and ambiguous users, support-
ing the methodological choice to distinguish between the 
presence and absence of features in gender identification.

The outlined results offer a nuanced response to RQ2. The 
absence of significant variation between global Pylint scores 
shows no significant gender difference in the overall quality 

Table 6. Description of Pylint scores by gender (repository)

Gender Count l Std Min 25% 50% 75% Max

Feminine 774 1.20 10.77 −70.00 0.31 4.18 6.22 10.00
Masculine 483 0.46 9.27 −70.00 −1.17 3.44 5.83 10.00
Ambiguous 248 1.28 8.18 −78.67 −0.61 3.34 5.75 10.00
Anonymous 223 1.27 8.82 −80.00 −0.57 3.54 5.92 10.00

Table 7. Most frequent topics

Style check Rationale

missing-module-docstring At least one .py file in the repository 
does not have text documenting its 
purpose at the module's start (first 
few lines)

invalid-name Used when a name does not fit the 
naming convention associated with 
its type (constant, variable, class … ) 
and/or is inconsistent across 
the repository

missing-function-doctstring A function or method has no docstring. 
A docstring is a text so programmers 
can understand what it does without 
reading the implementation details

line-too-long PEP 8 suggests lines should be limited 
to 79 characters. This is because it 
allows you to open multiple files 
next to one another while avoiding 
line wrapping

missing-class-docstring A class has no docstring. A docstring is 
a text so programmers can under-
stand what it does without reading 
the implementation details
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of Python code. However, there is evidence of a gender differ-
ence in style. The style checker components of the Pylint score 
differ significantly by gender. Such a finding is evidence of 
Simpson’s paradox, whereby an association between gender 
and programming disappears when the style checker compo-
nents are combined into the global Pylint score. I find that 
while there is no gender difference in code quality, there is ev-
idence of gendered styles in Python. These results indicate 
that it is feasible to predict the gender of users from the style 
of their code.

Testing for gendered coding identification
In the final element of the analysis, I addressed RQ3 and 
tested if structure and style could be used to classify users’ in-
ferred gender. I used a Random Forest model to predict gen-
der identity, using structural constituents and style checker 
components of Python modules. When performing the classi-
fication, each feature vector element was used as a separate 
input for the classifier. I did not include the global Pylint 
score as it is a composite measure of the included style 
checker components. Randomized hyperparameter search se-
lected a maximum depth of 14 (longest path from the root 
node to leaf node) and 393 estimators (the number of trees to 
build). Visualizing an entire tree with a depth of 14 is imprac-
tical. Therefore, Figure 2 represents a small tree with a depth 
of three.

For comparison with existing literature, I restricted the pre-
diction to the labels of masculine and feminine. I then used 
this model to predict the gender of the anonymous users in 
my dataset. As ambiguous users were defined by the presence 
of gender markers, including them in the classification model 
was not sensible.

To evaluate my classification model, I first established a 
reference level to assess the Random Forest model. I used a 
Zero Rate Classifier (ZRC), which always classifies to the 
largest class. The ZRC has a baseline of 0.62 based on gender 
inference of users. I measured the performance of the classifi-
cation models using the F1 Score, a function of Precision and 
Recall. Precision is how accurately the model performs re-
garding predicted positives, meaning the model correctly clas-
sifies modules as feminine and masculine. Recall calculates 
how many actual feminine data points that model captures 
(True Positives). The F1 score seeks a balance between these 
two metrics. The F1-score achieved by my model was 0.98, 
successfully outperforming the base model (0.62) in classify-
ing the gender inferred from module authors. Addressing 
RQ3, I find that the gender of Python modules can be pre-
dicted based on programming style.

Feature importance
The principal advantage of building the classification model 
is that I can compare the relative importance of module orga-
nization, constituents, and style checker components. The 
Random Forest model allows us to ascertain how attributes 
of a Python module contribute to the model prediction.  
Table 9 indicates the total 13 input variables used as features 
to infer gender. The overarching categories here are (1) mod-
ule organization, the total count of lines in a .py file and those 
that are docstrings, comments, code, and empty; (2) module 
constituents, the count of functions, methods, and classes in 
each .py file; and (3) style checker, the components of the 
Pylint style checkers including error, warning, refactor, con-
vention, and information.

Table 9 shows that module organizational features are the 
most important in differentiating between masculine and 
feminine authors of Python code. The number of lines of 
code and docstrings in a module is particularly important, 
representing 17% and 14% of the classification decision. 
Empty lines are also noteworthy, accounting for 16%. The 
importance of these structural elements (75%) shows that 
how a module is organized is a crucial marker of gender dif-
ference in Python programming. Similarly, the use of module 
constituents is an essential contributor to gender difference 
(24%), but the style checker at (<1%) leads to the conclusion 
that gender differences in coding styles are manifested in how 
code is organized within a module. Given structure is consid-
erably more critical to the classification decision than the 
style checker components, gender difference does not indicate 
a violation of PEP-8.

Discussion
This study has argued that code is a form of communication 
in OSS. Code in OSS shares features with written text: It has 
authors and is read, understood, and shared. Contributing 
code is fundamental to open source, yet code interpretation is 
mediated by cultural norms and context that extend beyond 
the specifics of a particular programming task. Code is em-
bedded in a system of communication, meaning that assess-
ments of quality are intrinsically tied to the perceptions of the 
author. Gender and masculinity have been powerfully associ-
ated with quality in programming, suggesting that notions of 
gender difference have become widespread without empiri-
cal evidence.

This study asked whether there is a gender difference in 
module structure and style in Python code and whether gen-
der can be predicted from programming style. The first ele-
ment of module structure I examined was organization. I 

Table 8. Style checker components contingency table

Gender Style checker components

Convention Error Information Refactor Warning

Feminine 38,570 (l ¼ 5, std ¼ 12) 7,310 (l ¼ 4, std ¼ 5) 4 (l ¼ 1, std ¼ 0) 6,498 (l ¼ 2, std ¼ 2) 24,866 (l ¼ 8, std ¼ 17)
Masculine 35,420 (l ¼ 8, std ¼ 27) 5,730 (l ¼ 8, std ¼ 15) 388 (l ¼ 8, std ¼ 28) 4,698 (l ¼ 2, std ¼ 3) 27,633 (l ¼ 15, std ¼ 27)
Ambiguous 50,824 (l ¼ 5, std ¼ 12) 8,387 (l ¼ 4, std ¼ 5) 73 (l ¼ 1, std ¼ 0) 7,519 (l ¼ 1, std ¼ 1) 44,222 (l ¼ 11, std ¼ 65)
Anonymous 52,979 (l ¼ 5, std ¼ 12) 24,877 (l ¼ 10, std ¼ 71) 210 (l ¼ 4, std ¼ 5) 8,088 (l ¼ 2, std. ¼ 2) 31,767 (l ¼ 8, std ¼ 36)

X2 :12,957.53��
Degrees of freedom: 12

� p<0.01. ��p< 0.001.
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found a significant gender difference in the length of a file 
and empty lines, documentation, and code. The test statistic 
revealed that the greatest variation in module organization by 
gender was docstrings, a crucial part of PEP-8. The second 
part of the module structure was constituents, referring to 
methods, functions, and classes. I again found significant gen-
der differences between all groups, with functions used more 
by gender-identified users than anonymous and ambiguous 
users. Therefore, I see significant gender differences regarding 
organization and constituents in module structure.

The second research question turns to gender differences in 
Pylint scores and style checker components, which align with 
code quality captured in PEP-8. Although there is no signifi-
cant gender difference in the global Pylint score, there is a dif-
ference in the style checker components of Python 
repositories. This shows that while there is no gendered varia-
tion in overall quality, there is variation in module style. 
Post-hoc testing revealed that feminine and anonymous users 
have comparable coding styles, implying that feminine users 
may choose to be anonymous on technical platforms. This 
suggestion is maintained by the relatively large and signifi-
cant difference in quantified style between masculine and 
anonymous users. Additionally, the largest variation in style 
is between ambiguous and anonymous users, supporting the 
design decision to distinguish between the presence and ab-
sence of features in gender identification (Keyes, 2018). In 
summary, while there is no gender difference in overall code 
quality, there is in checker components and thus Python pro-
gramming style.

Finally, I test if structural and stylistic features of Python 
code can be used to predict if a user is masculine or feminine. 
I show that variation in coding style is distinct enough to pre-
dict users’ gender. Crucially, the predictive model also allows 
comparison between the importance of module structure and 
style checker components as elements of gendered program-
ming style. The structure of Python modules, consisting of 

the organization of lines and module constituents, is the most 
critical predictor of user gender (0.752). The style checker 
components of Python code, related to the PEP-8 guidelines, 
are relevant (0.235) but pointedly less important than the 
structure of files. I find that gender differences in coding style 
can predict the gender of an author of a Python module.

The results reveal a somewhat complex picture of gender 
differences in Python. I find a gender difference in the style of 
Python code, as evidenced by significant gender-based varia-
tion in the organization and constituents of modules. 
However, the non-significant difference in Pylint scores indi-
cates no gender-based differences in code quality, as repre-
sented in the global Pylint evaluation. The significant gender 
difference in style checker components, but not the global 
Pylint score, suggests that different gender groups vary in 
their specific violations of PEP-8 but not in the overall quality 
of the code. This supposition is supported by the predictive 
model, which shows that the structure of Python modules is a 
more important predictor of user gender than style violations. 
I find empirical evidence of gender differences in Python code 
in relation to style but no substantial evidence of a gender dif-
ference concerning code quality. I conclude that assumptions 
on women’s lack of ability in programming are not empiri-
cally grounded.

There are three key limitations of this study. First, the sam-
ple criteria of the study do not encompass the fullness of 
practice in OSS development. As I restricted the sample to 
GitHub repositories with a singular author, I omitted the nor-
mative OSS practice of multiple authorship of modules and 
technical projects (Vedres & V�as�arhelyi, 2019). Second, an 
equally noteworthy omission is that I do not include the 
mechanisms of reviewing code on GitHub, a vital platform 
functionality. Third, the methodology also fails to acknowl-
edge the heterogeneity of purpose and function in repositories 
that makes Python such a popular programming language. 
This study has provided a broad and general analysis of gen-
der differences in Python modules. Future scholarship should 
incorporate a refined picture sensitive to implicit gender 
biases in the collaboration and functioning of OSS.

My findings complement work on gender biases in activity 
and interaction on GitHub by demonstrating no significant 
gender difference in code quality (Terrell et al., 2017; Vedres 
& V�as�arhelyi, 2019). The results have important consequen-
ces for computing education and policy as well as for inter-
ventions in gender inequality in OSS development. In 
conjunction with the literature, my findings show that educa-
tors and employers must actively challenge specific gender 
stereotypes in context, including mistaken assumptions about 

Table 9. Feature importance for gender classification of Python modules

Variable Importance

Module organization Code lines 0.171
Empty lines 0.160
Total lines 0.159
Docstring lines 0.138
Comment lines 0.124

Module constituents Method 0.094
Class 0.058
Function 0.083

Style checker components Information 0.001

Figure 2. Representation of a decision tree with a maximum depth of 3.
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ability inferred from differences in style (Brock, 2019; Carter 
& Jenkins, 2002). Further, there is potential for measures of 
gender difference to impact generative coding models (Bart 
et al., 2021; Brooke, 2021). As we take care to de-bias natu-
ral-language processing and large language models like GPT- 
3, similar care should be taken to ensure that generative cod-
ing does not suffer from the same or similar issues. As auto-
mated systems become increasingly dominant and have the 
potential to write code, we must consider what value systems 
and implicit identity features are being learned. Future re-
search should explore the linkages and relationships between 
natural-language and programming code in gendered terms. 
Computational tools are uniquely positioned to document 
such large-scale gendered differences and account for how 
they can shape and mold everyday technical tools. For 
Marino (2020, p. 33), “the walls of a computer do not re-
move code from the world but encode the world and human 
biases.” This study has illustrated the potential of computa-
tional research to challenge gender bias and sexist reasoning 
for women’s exclusion from programming.

Data availability
The data used in this study are available upon reasonable request 
to the author. The source code is available here: https://github. 
com/SianJMBrooke/ProgrammedDifferently. An interactive site 
to test the gendered style of your own Python code is available 
at https://www.sianbrooke.com/programmed-differently.

Funding
This work was supported by the Leverhulme Trust Early 
Career Fellowship, grant number ECF-2021-272.

Conflict of interest: None declared.

Open science framework badges  
Open Materials 

The components of the research methodology needed to reproduce 
the reported procedure and analysis are publicly available for 
this article. 

Notes
1. https://pypi.org/project/krippendorff/.
2. Vasilescu et al. (2015) refer to this category as “unisex,” but such lan-

guage is not appropriate in discussions of people or users.
3. The label “Non-Binary” was initially considered instead of “Ambiguous.” 

However, the Non-Binary gender identity requires more careful consid-
eration in computational research than reflecting mixed or undeter-
mined gender expression.

4. https://Pylint.pycqa.org/en/latest/user_guide/messages/messages_over 
view.html
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