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A B S T R A C T   

Randomization inference provides exact finite sample tests of sharp null hypotheses which fully 
specify the distribution of outcomes under counterfactual realizations of treatment, but the sharp 
null is often considered restrictive as it rules out unspecified heterogeneity in treatment response. 
However, a growing literature shows that tests based upon permutations of regressors using 
pivotal statistics can remain asymptotically valid when the assumption regarding the permutation 
invariance of the data generating process used to motivate them is actually false. For experiments 
where potential outcomes involve the permutation of regressors, these results show that 
permutation-based randomization inference, while providing exact tests of sharp nulls, can also 
have the same asymptotic validity as conventional tests of average treatment effects with un
specified heterogeneity and other forms of specification error in treatment response. This paper 
extends this work to the consideration of interactions between treatment variables and covariates, 
a common feature of published regressions, as well as issues in the construction of confidence 
intervals and testing of subsets of treatment effects.   

1. Introduction 

Randomized experiments have achieved prominence as a key method in the credible identification of causal mechanisms in 
economics (Duflo et al., 2007), and randomization inference has been advocated as a means of accurately testing null hypotheses 
regarding experimental outcomes (Athey and Imbens 2017; Young 2019). Randomization inference provides exact finite sample tests 
of sharp null hypotheses which fully specify the distribution of outcomes under counterfactual realizations of treatment, but its ac
curacy in testing average treatment effects with unspecified heterogeneity and other forms of specification error is less clear. In many 
cases, however, experimental potential outcomes involve the permutation of treatment regressors. Here a growing literature has 
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shown that when based on asymptotically pivotal test statistics1 permutation-based tests can share the asymptotic validity of con
ventional tests despite violations of the assumption regarding the permutation invariance of the data generating process used to 
motivate the test.2 Janssen (1997) showed that studentized permutation tests of the equality of means across two samples are 
asymptotically exact even when the assumption of identical distributions motivating the permutation test is false, and Chung and 
Romano (2016) obtained similar results in a multi-parameter extension. Outside of studentization, prepivoting (Chung and Romano 
2016) and martingale transforms (Chung and Olivares 2021) have also been found to give asymptotic accuracy of permutation tests in 
two sample problems. From the perspective of ordinary least squares (OLS) regression, these results concern binary treatment vs 
control comparisons, but in a major generalization DiCiccio and Romano (2017) show that studentized permutation tests are 
asymptotically equivalent to conventional heteroskedasticity robust Wald tests for testing treatment effects using iid treatment 
measures and ancillary covariates defined on the real numbers. This establishes the asymptotic accuracy of permutation-based OLS 
randomization inference based upon a sharp null in the presence of heterogeneous treatment effects in iid environments with real 
experimental treatment measures as regressors. 

This paper extends the DiCiccio and Romano result in several areas, with an eye to the regression environments encountered in 
published randomized experiments. First, it explicitly addresses interactions between treatment measures and covariates, both broadly 
defined on the reals, in published work a frequent characteristic3 of often central importance,4 but not considered in DiCiccio and 
Romano. In such cases a simple minded application of DiCiccio and Romano’s methods, permuting the regressor made up of treatment 
interacted with a covariate, may allow for asymptotically accurate inference. Finite sample exactness, however, requires that the 
permuted regressor be independent of unpermuted ancillary variables (DiCiccio and Romano 2017, p. 1216), a condition unlikely to be 
satisfied when the permuted regressor involves interaction with a non-treatment covariate. By focusing on potential experimental 
outcomes rather than permutation of regressors per se, i.e. by permuting treatment alone and creating new regressor values based upon 
its interaction with covariates that need not equal the permuted values of the original variable, this paper provides asymptotically 
robust permutation-based randomization inference methods for treatment-covariate interactions that remain finite sample exact in 
tests of sharp nulls.5 

Second, the asymptotic accuracy of permutation-based inference is proven more generally for independently but not-necessarily 
identically distributed (inid) data while relaxing assumptions on the error term. Experimental data are often drawn from disparate 
regions6 and are unlikely to be iid, as assumed by DiCiccio and Romano. When conducted in a single locale, experiments often apply 
treatment randomly to participants arriving at field or laboratory locations or participants contacted in home visits7 and the char
acteristics of people who arrive at a location or are found at home are unlikely to be the same at different times of day or days of the 
week, producing inid data.8 Furthermore, while DiCiccio and Romano assume that the mean of the error term is zero conditional on the 

1 That is, those whose asymptotic distribution does not depend upon an unknown parameter.  
2 The precise meaning of the terms "randomization test" and "permutation test" is an object of disagreement with, for example, Edgington & 

Onghena (2007, p. 1) stating the former are a subclass of the latter, Lehman and Romano (2022, p. 831) stating the converse, and Hemerik & 
Goeman (2021) arguing neither is a subset of the other. This paper uses randomization inference and tests to refer to procedures motivated by a 
consideration of potential experimental outcomes, focusing on cases where these outcomes are the permutation of treatment regressors. An exact 
test based upon permutation of variables can be motivated without reference to an experimental procedure, e.g. via population sampling of 
exchangeable random variables, as is done in the papers cited above.  

3 Of the 53 published papers based upon randomized experiments surveyed in Young (2019), 34 interact treatment with non-treatment covariates 
in on average .46 of their estimating equations. Of the 39 of these with OLS regressions analyzed further below, 21 interact treatment with 
covariates in on average .40 of their OLS regressions.  

4 As examples: (i) Oster and Thornton (2011) examine the impact on school attendance of the provision of menstrual products to girls in Nepal in 
specifications that include the interaction of treatment with the pupil being on their period; (ii) Aker et al (2012) examine the impact on pupil 
outcomes of adult mobile phone education in Niger in diff-in-diff specifications with treatment interacted with dummies for post-experimental time 
periods.  

5 The permutation procedures used here equally motivate exact tests of sharp nulls for observational data whose distribution is exchangeable and 
independent of non-permuted covariates. Other frameworks, such as normal homoskedastic errors, also motivate exact tests. Lei & Bickel (2021) 
provide a quick survey of these as well as introducing a novel cyclic permutation test for exact inference given exchangeable errors. Tests based upon 
the permutation of OLS residuals or dependent variables, rather than regressors as in this paper, have been proposed (Anderson & Robinson 2001 
provide a survey), but these are not finite sample exact and with heteroskedastic errors may not even be asymptotically valid (DiCiccio & Romano 
2017).  

6 For example, Thornton (2008) investigated the demand for and effects of learning HIV status across north, central and south Malawi, which 
differ systematically in their ethnicity and religion.  

7 As an example of the former, Cai et al (2009) investigated saliency by randomly assigning restaurant arrivals in China to tables with different 
menu setups, while, as an example of the latter, Ashraf et al (2010) investigated the impact of prices on health product demand using door-to-door 
marketing in Zambia. Inid data are likely to arise even when prospective participants are assigned time slots, as often occurs in campus and field 
experiments, as the time slot a participant is actually able to attend will be a function of their characteristics.  

8 Although chronological information is rarely reported in experimental data, Cai et al (2009) give the time of day the restaurant bill was paid. 
With time denoting the 24 hour clock rescaled to 0 to 1, regressing the ln total restaurant bill on sine(π*time) I get a statistically significant negative 
value (t-stat − 4.3 to − 4.9 and − 6.0 to − 9.1, depending upon clustering, for the two public use data sets), as meals paid in the mid-night have the 
highest bills. 
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regressors,9 the analysis below merely assumes that the error term is uncorrelated with the regressors. This validates the use of the test 
in broader circumstances with specification error, such as the existence of non-linear effects that are orthogonal to the linear effects 
estimated in the regression, where the zero conditional mean is violated but OLS remains consistent. These extensions broaden the 
applicability of the permutation procedures given here and (equivalently, when there are no treatment-covariate interactions) in 
DiCiccio and Romano.10 

Third, this paper provides a novel approach to testing subsets of treatment measures. In randomized experiments multiple treat
ment measures are very rarely randomized and administered independently of each other.11 Consequently, the counterfactual dis
tribution of outcomes under a sharp null depends upon the null for all treatment measures. Thus, while permutation tests of individual 
coefficients are asymptotically identical to conventional tests, depending only upon the null for that treatment measure, in the finite 
sample they depend upon the null for all treatment measures in the regression. D’Haultfoeuille and Tuvaandorj (2022) address this 
issue by proposing that individual treatment measures be permuted within strata created by fixed values of other treatment, producing 
a valid subset of potential outcomes, an approach used in Young (2019) to provide alternative randomization p-values. In the finite 
sample this approach is not helpful in regressions with covariate interactions, as there are no possible permutations of treatment within 
values of treatment interacted with covariates or vice versa, and asymptotically has more limited validity than OLS or other forms of 
randomization inference, as it requires the covariance of errors and regressors to be zero in every stratum created by other treatment 
variables, which may be violated in the presence of heterogeneous treatment effects and correlated treatment measures. As an 
alternative, I propose calculating the maximum randomization inference p-value across all possible nulls for untested measures, 
producing a test that in both finite samples and asymptotically depends only upon the null for the desired subset. This approach can be 
applied in all environments, ensures control of the rejection probability below nominal level in tests of sharp nulls, retains the broad 
asymptotic validity of OLS, and in practice appears to provide 80 to 90 % of the power of conventional inference and only slightly less 
than that found using other-treatment-stratification (where the latter can be applied). 

Finally, this paper derives a number of practical results and techniques. The conditions needed for asymptotic accuracy in the very 
diverse settings found in empirical practice, where practitioners typically (see Young 2019) stratify and group treatment and use 
homoskedastic, heteroskedastic and clustered (at, below, above and across treatment groupings) covariance estimates are all covered 
(in the on-line appendix). While earlier work has focused on tests of zero average treatment effects alone, this paper shows how 
randomization based confidence intervals can be constructed analytically avoiding costly and potentially fruitless or inaccurate line 
searches (as these confidence intervals may be non-convex and of infinite width). Similarly, analytical techniques are developed to 
calculate maximum p-values across possible nulls for untested treatment measures along opposite rays of infinite length, thereby 
simplifying the search for maximum p-values in subset tests. Finally, different randomization inference techniques are applied and 
compared in a practical sample of 3000+ treatment measures appearing in 39 published papers, with results that confirm charac
teristics and patterns seen in Monte Carlos. 

The proofs below merge results concerning the asymptotic distribution of permutation statistics of Wald and Wolfowitz (1944), 
Noether (1949) and Hoeffding (1951) with White’s (1980) proof of the asymptotic accuracy of conventional inference using heter
oskedasticity robust standard errors. Given White’s assumptions on the moments of errors and regressors, conventional Wald statistics 
using heteroskedasticity robust variance estimates are asymptotically distributed chi-squared, and hence allow for accurate inference 
when evaluated using that distribution. With minimal additional assumptions, the permutation-based counterfactual distribution of 
these same Wald statistics is similarly asymptotically distributed chi-squared, even when the restrictions of the sharp null that underlie 
the calculation of the counterfactual distribution are false. Consequently, using the percentiles of the full permutation distribution to 
evaluate the conventional Wald statistic is asymptotically analogous to looking up chi-squared tables, and asymptotically yields 
identical p-values. Random sampling from the permutation distribution allows the calculation of randomization p-values and confi
dence intervals which are randomly weighted averages of those found using conventional tests at different levels. Consequently, in 
tests of true nulls, where the conventional coverage probability is asymptotically equal to a 45◦ linear function of the nominal level, 
randomization confidence intervals based upon sampling from the permutation distribution have similarly accurate coverage prob
ability. In tests of false nulls, where the conventional coverage probability of the false null is a convex function of nominal level, by 
Jensen’s Inequality randomization confidence intervals have higher coverage probabilities and hence lower power, with the difference 
vanishing as the number of draws from the permutation distribution goes to infinity. 

9 In the case where there are non-permuted non-treatment covariates, as examined in this paper. When all regressors are permuted, they are able 
to make the stronger zero correlation assumption made here.  
10 It has been brought to my attention that Zhao & Ding (2021), after the initial circulation of this paper in 2020, provide asymptotic results for 

specifications which include treatment-covariate interactions. Their paper (i) is limited to binary treatment, while this paper concerns treatment 
defined broadly on the reals; (ii) includes treatment-covariate interactions, following the suggestion of Lin (2013), but only as a means of improving 
power for inference on a single binary treatment and provides no results for inference on the treatment-covariate interactions themselves, while this 
paper provides procedures & results for testing both treatment regressors and their interactions with covariates; (iii) always tests the sharp null of no 
treatment effects using the coefficient on binary treatment alone without alerting readers to the fact (discussed below) that in finite samples this is 
actually a joint test of sharp nulls on both treatment and its interactions but asymptotically only a test of the coefficient on binary treatment, with 
consequent issues regarding finite sample null rejection probabilities and asymptotic power against alternatives, whereas this paper addresses the 
applied econometrician’s desire in a multivariate regression model to maintain control of size and maximize power in separate tests of different 
elements of treatment.  
11 As noted below, of 2500+ treatment measures appearing in multi-treatment regressions in published papers, I find that only 94 measures were 

randomized independently of other treatment in the regression. 

A. Young                                                                                                                                                                                                                 



European Economic Review 163 (2024) 104644

4

Within White’s (1980) framework of independently but not necessarily identically distributed observations, the additional as
sumptions are: (1) treatment variables vary and are not collinear; (2) variables interacted with treatment appear separately as re
gressors in their own right; and (3) treatment, errors and interaction variables in combination have sufficiently high moments. These 
requirements are typically satisfied in experimental settings. Administered treatment measures vary, are not collinear with each other, 
and are drawn from distributions with moments of all order, satisfying (1) and (3). Variables interacted with treatment are usually 
entered separately in regressions to estimate their separate effects, satisfying (2). White’s framework is extended in the on-line ap
pendix to allow for treatment applied to groupings of observations, correlations across observations of errors and regressors and the use 
of clustered standard errors (if the size of correlated observational groupings is bounded), as well as stratified treatment (if the first and 
second moments of treatment are asymptotically balanced across strata).12 

Two key elements underlying the results are worth emphasizing. The use of Wald or studentized test statistics is crucial, because 
permutation of treatment variables breaks the correlation between the variance of the residual and the regressor introduced by 
treatment effect heterogeneity and specification error. Consequently, the asymptotic variance across permutations of coefficients is 
typically different than that of the conventional coefficient across the realizations of the data, so use of the distribution of permuted 
coefficients to evaluate the significance of the conventional coefficient estimate is usually inaccurate. Dividing permuted coefficient 
estimates by their standard error estimates corrects for the way in which permutation breaks the connection between regressors and 
the variance of residuals, producing a test statistic that is asymptotically distributed chi-squared. If the conventional test statistic is 
similarly distributed, i.e. the conventional OLS variance estimate is asymptotically correct, randomization inference asymptotically 
produces identical p-values. The key here is the use of a covariance matrix that asymptotically accurately estimates the differing 
correlation between regressors and residuals in the original data and the permutation distribution. 

The inclusion of variables interacted with treatment separately in the regression plays a crucial role in ensuring asymptotic power 
identical to that of the conventional test. When the null underlying the counterfactual calculation of outcomes is false, the counter
factual data generating process has a mean bias which, absent assumption (2) above, results in permuted Wald statistics having an 
asymptotic non-central chi-squared distribution. When used to evaluate the experiment’s test statistic, the higher tail probabilities of 
this distribution result in very low rejection rates. Including variables interacted with treatment as regressors in their own right partials 
out the bias, ensuring that Wald statistics on treatment effects are asymptotically distributed chi-squared, producing p-values and 
power identical to those of the conventional test. 

The paper proceeds as follows: Section 2 lays out a general parametric linear regression model that encompasses the treatment- 
covariate interactions often found in published work in a specification that allows for linear treatment effect heterogeneity and 
non-linear specification error, stating the central theoretical results of the paper while further clarifying how they broaden DiCiccio 
and Romano’s results and depend upon the given assumptions. Section 3 then uses Monte Carlos to illustrate the importance of White’s 
moment conditions in conventional and randomization inference alike and the role assumption (2) plays in ensuring adequate 
randomization power, both in tests of heterogeneous and sharp treatment effects. Section 4 addresses practical issues, such as algo
rithms for the construction of confidence intervals and differing methods for testing subsets of treatment effects in finite samples, 
highlighting where different approaches do or don’t provide finite sample exact tests of sharp nulls or asymptotically valid tests of 
heterogeneous treatment effects. Monte Carlos show how other-treatment-stratification in subset testing provides finite sample 
exactness at the expense of narrower asymptotic validity in tests of heterogeneous treatment effects when treatment measures are 
correlated, while calculating maximum p-values over all possible nulls provides conservative control of the null rejection probability 
for sharp nulls while retaining the broader asymptotic validity of OLS. Section 5 compares randomization and conventional confidence 
intervals and p-values in a large practical sample of published papers, finding patterns which closely parallel those found in the Monte 
Carlos and, based on these, providing a practical summary and comparison of subset testing methods. The appendix below provides 
proofs of base results, while the on-line appendix lays out the extensions to grouped treatment, clustering and stratification. The 
program randcmdci, available on the authors’ website or in Stata through ssc install, calculates the parametric OLS randomization 
confidence intervals & p-values discussed in this paper for Stata users. 

2. Permutation-based randomization inference in a parametric regression model 

This paper focuses on permutation-based randomization inference in a parametric regression model that encompasses the range of 
specifications typically encountered in applied work, namely: 

y = XWβ + Zγ + ε, (2.1)  

where XW = X•W and • denotes the row by row Kronecker or "face-splitting" product of two matrices, while y and ε are N x 1 vectors of 
outcomes and residuals, Z and γ the N x K matrix of covariates and K x 1 vector of associated parameters, X an N x P matrix of treatment 
variables, W an N x Q matrix of interaction covariates, and β the PQ x 1 vector of parameters of interest. This formulation allows for 
treatment entered simply into the regression (W = 1N, an N x 1 vector of 1 s) or interacted with other non-treatment variables (the 

12 The extension to stratification assumes that the clustered/robust (White 1980) standard error estimates are valid as treatment effects do not vary 
systematically by strata. Bugni, Canay & Shaikh (2018) show the need for a different standard error estimate when average treatment effects vary by 
strata and treatment balance is greater than that achieved by random sampling from a treatment distribution, proving that with test statistics based 
on this estimate randomization inference for binary treatment is again asymptotically robust to treatment heterogeneity. 
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columns of W), as is often the case. Treatment may be discrete or continuous and there are no restrictions on the elements of X, W & Z 
other than that they are real numbers and satisfy moment conditions given further below. There may be heterogeneity or non-linear 
components to the impact of treatment regressors or covariates on the outcome and β and γ are interpreted as average linear effects,13 

with heterogeneous linear or non-linear aspects, if any such exist, implicitly included in the residuals. For example, with x′Wi & z′i 
denoting the ith rows of XW and Z and fi(x′Wi, z′i) some non-linear function, the data generating process for observation i might be 

yi = fi(x′Wi, z′i) + ηi = x′Wiβ + z′iγ + εi
where εi = x′Wiβi + z′iγi + [fi(x′Wi, z′i) − x′Wi(β + βi) − z′i(γ + γi)] + ηi,

(2.2)  

and where βi & γi represent the observation specific heterogeneity in average linear effects, fi(x′Wi,z′i)-x′Wi(β+βi) − z′i(γ+γi) the non- 
linear components, and we assume that E(εi(x′Wi, z′i)) = 0′PQ+K (a PQ+K row vector of 0 s). This assumption allows for mis
specification, with the understanding that we are trying to estimate population average linear effects while recognizing that there 
might be unspecified but orthogonal heterogeneity and non-linearity. Treatment is randomly applied at the observation level14 and 
any of the N! permutations of the rows of X is equally likely to have occurred, with the N x P matrix T used to represent one such 
outcome and TW = T•W its interaction with covariates. 

The dominant approach to inference in contemporary randomized experiments in the model described above uses conventional t- 
and Wald tests whose accuracy is validated by asymptotic results based upon characteristics of the data generating process, often 
motivated as representing random sampling from an infinite population. Within this framework, heterogeneity of variables and effects 
in the sample are viewed as an underlying characteristic of the population from which the experimental sample is drawn. Asymp
totically heteroskedasticity or clustered robust covariance estimates are generally used although these have rejection probabilities that 
may deviate substantially from nominal levels in small samples, as seen for example in the Monte Carlos below. 

An alternative approach to experimental inference, rooted in the history of the experimental literature, treats the allocation of 
experimental treatment X as the only source of stochastic variation, with the covariates W and Z and characteristics of ε unrelated to X 
taken as given. In particular, randomization tests of "sharp nulls", first advocated by Fisher (1935), use a precise specification of what 
outcomes would have been under counterfactual realizations of treatment to calculate the distribution of a test statistic. The test we 
examine in this paper is the standard one that assumes no treatment related heterogeneity or misspecification, so that Zγ+ε | X ¼ Zγ+ε 
| T for all alternative treatment allocations T.15 For the null hypothesis β ¼ β0, this allows the calculation of the counterfactual 
outcome under an alternative treatment allocation T as 

y(T, β0) = y + (TW − XW)β0. (2.3)  

As the distribution of potential outcomes is uniform across the permutations T of X, comparison of a test statistic for the experimental 
outcome τ(X,β0) with the percentiles of the distribution of τ(T,β0) across permutations T provides a finite sample exact test of the joint 
null that β = β0 and Zγ+ε | X ¼ Zγ+ε | T, regardless of the characteristics of Z, W and ε. Calculation of the entire distribution is not 
needed, as tests based on random sampling from that distribution are (under the joint null) equally exact. 

As a concrete example, consider the Wald statistic for the conventional test that β = β0, the test statistic used in this paper. The 
initial OLS coefficient and variance estimates β̂ & V̂(β̂) from the regression of y on (XW,Z) are first used to calculate the Wald statistic 
τ(X,β0) = (β̂ − β0)′V̂(β̂)− 1

(β̂ − β0). The treatment variables X are then permuted to T, interacted with covariates to form TW = T•W, 
and the regression of counterfactual outcome y(T,β0) on (TW,Z) is used to produce the coefficient and covariance estimates β̂ (T,β0)

& V̂(β̂ (T,β0)) and Wald statistic τ(T,β0) = (β̂(T,β0) − β0)′V̂(β̂(T,β0))
− 1
(β̂(T,β0) − β0). 

D random draws with replacement are made from the distribution of the permutations T of X. With G and E denoting the number of 
times that τ(T,β0) is either greater than or equal to τ(X,β0), and u a random draw from the [0,1] uniform distribution, the randomi
zation p-value given by 

pR =
G + u(E + 1)

D + 1
, (2.4)  

is uniformly distributed under the sharp null.16 D need not be "large", i.e. approximate the full distribution, although power increases 
with D, as shown below. However, while finite sample exactness is desirable, the sharp null and its assumption that Zγ+ε | X ¼ Zγ+ε | 
T is often seen as demanding. 

This paper examines permutation-based randomization tests from the population sampling point of view, treating heterogeneity of 
regressors and parameters as part of the data generating process, which can be conceptualized as taking a random sample from an 

13 Linear, that is, in the regressors, which themselves may be non-linear functions of an aspect of treatment. Thornton (2008), for example, 
randomly assigned monetary incentives to individuals in Malawi to learn their HIV results and used the incentive, its square, and an indicator if it is 
greater than 0 in many regression specifications.  
14 The on-line appendix examines the case of treatment applied to groupings of observations or stratified.  
15 In terms of (2.2), this implies that βi = 0PQ and fi is a function of zi alone. In principle, a sharp null could specify a precise set of heterogeneous 

effects (e.g. βi), but there is usually nothing to guide or discipline this choice. For completeness, one might also specify that W | X = W | T, but this is 
implicit in the statement that covariate values are taken as given.  
16 For proofs see, for example, Hoeffding (1952) or the on-line appendix of Young (2019). 
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infinite population and then randomly allocating treatment across subjects. Given certain moment conditions, the use of the distri
bution of τ(T,β0) based on counterfactual outcomes y(T,β0) under the sharp null to evaluate the conventional Wald statistic τ(X,β0) is 
shown to be asymptotically identical to conventional inference when the latter is asymptotically accurate, even when the assumption 
Zγ+ε | X ¼ Zγ+ε | T underlying the calculation of y(T,β0) in (2.3) is in fact false. Thus, this permutation-based test has the same 
asymptotic validity of conventional tests of average linear treatment effects, while simultaneously providing, from the experimentalist 
perspective, exact finite sample tests of sharp nulls conditional on the given values of W, Z and ε.17 

The main results of this paper (proven in the appendix below) are as follows: 

(R1) Given White’s (1980) assumptions W1 - W4 and the additional assumptions A1 - A3, all detailed below, for any β0 in a finite 
̅̅̅̅
N

√
neighbourhood of β, i.e. such that N(β − β0)′(β − β0)< Δ (a constant) < ∞, the Wald statistic τ(T,β0) calculated using the 

heteroskedasticity robust covariance estimate is asymptotically distributed chi-squared with PQ degrees of freedom and in prob
ability converges to the value for the true null β0 = β 

τ(T,β0) ̅̅̅̅̅̅̅̅→
d(T)|a.s.(XW,Z, ε)

χ2
PQ & τ(T,β0) − τ(T, β) ̅̅̅̅̅̅̅̅→

p(T)|a.s.(XW,Z, ε)
0, (2.5)  

where ̅̅̅̅̅̅̅̅→
d(T)|a.s.(XW ,Z,ε)

and ̅̅̅̅̅̅̅̅→
p(T)|a.s.(XW ,Z,ε)

denote convergence as N → ∞ in distribution and probability across the permutations T of X 
almost surely given the realization of the data (XW,Z,ε). 

(R2) Since locally τ(T,β0) ceases to be a function of β0, asymptotically in probability the 1 - α randomization confidence interval 
(RCI) based upon the set of nulls that are not rejected at the α level using the p-value in (2.4) and D draws from the permutation 
distribution is given by 

RCI(1 − α,D) =
{

β0 : (β̂ − β0)
′V(β̂)− 1

(β̂ − β0) ≤ I1τi* + (1 − I1)τi*− 1
}
, (2.6)  

where i* is the smallest integer greater than or equal to (D + 1)(1-α), I1 is the indicator function for the event u ≥ i* − (D+1)(1 − α)
with u uniformly distributed over [0,1], τ1 < … < τD are the ordered values of τ(T,β0) and where if needed we define τ0 as 0 and τD+1 
as ∞. 

(R3) As White’s assumptions ensure that for the conventional Wald statistic calculated using the heteroskedasticity robust 
covariance estimate 

τ(X,β0 = β) ̅̅̅̅̅̅̅→
d(XW,Z, ε)

χ2
PQ,

(2.7)  

where d(XW,Z,ε) denotes convergence in distribution across the realizations of (XW,Z,ε), randomization confidence intervals based 
upon (2.6) asymptotically cover the true parameters with probability 1-α, i.e. with Pr{a} denoting the probability of event a, 

lim
N→∞

Pr{β ∈ RCI(1 − α,D)} = 1 − α. (2.8)  

(R4) Asymptotically the frequency with which the randomization confidence interval does not cover (rejects) false nulls β0 ∕= β in a 
finite 

̅̅̅̅
N

√
neighbourhood of β, i.e. such that N(β − β0)′(β − β0)< Δ < ∞, is strictly lower than that for the conventional confidence 

interval (CCI), but converges to the conventional level as D & N → ∞,18 i.e. 

lim
N→∞

[Pr{β0( ∕= β) ∈ RCI(1 − α,D)} − Pr{β0( ∕= β) ∈ CCI(1 − α)}] > 0
lim

D,N→∞
[Pr{β0( ∕= β) ∈ RCI(1 − α,D)} − Pr{β0( ∕= β) ∈ CCI(1 − α)}] = 0. (2.9)  

(R5) As D & N → ∞ the randomization p-value using the Wald statistic to test any null β0 in a finite 
̅̅̅̅
N

√
neighbourhood of β using D 

draws given the data, pR(β0,D|XW,Z,ε), almost surely converges to the conventional p-value for the same null based upon the Wald 
statistic for the data, pC(β0|XW,Z,ε), that is 

lim
D,N→∞

[pR(β0,D|XW,Z, ε) − pC(β0|XW,Z, ε)] =
a.s.(XW ,Z,ε)

0. (2.10)  

(R2) - (R5) apply equally to tests of subsets of coefficients, as shown in the appendix. The extension to errors that are homoskedastic 
or cluster correlated, treatment applied to groupings of observations and stratified treatment is given in the on-line appendix. The 
requirement that the null β0 remain root-N local to β implies drifting sequences such as β0 = β + δ0/N½. With additional conditions, 

17 Thus, following the terminology of Abadie et al (2020) who usefully review these concepts, exact inference under design-based uncertainty 
provides asymptotically accurate inference under sampling based uncertainty.  
18 We use limD,N→∞ to denote the double-limit, i.e. for every Δ > 0 there exists an M such that for all D & N > M the absolute value of the expression 

is less than Δ. 
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(R1) can be changed to stating that the Wald statistic τ(T,β0) is asymptotically distributed chi-squared for any fixed β0, as shown in 
the on-line appendix. This paper focuses on drifting sequences as stated in (R1) above because (i) such sequences are necessary to 
ensure that p-values and coverage probabilities for incorrect nulls do not trivially converge to 0; (ii) the proof for fixed β0 in the 
extension to grouped treatment requires clustering of standard errors at levels of aggregation greater than or equal to treatment 
groupings, which is not always done in practice and is not necessary for (R1)’s extension to grouped treatment and clustering;19 and 
(iii) (R1)’s local convergence in probability of τ(T,β0) to τ(T,β), which is not true of fixed β0, allows the construction of subset tests 
that asymptotically are identical to a test based upon knowledge of the true parameter values for untested treatment effects, as 
described further in Section 4, which covers practical issues in calculating confidence intervals and implementing subset tests in 
finite samples. 

Turning to the assumptions, combining the treatment and non-treatment regressors into more compact notation, our regression 
model can be described as 

y = Z+γ+ + ε or (at the observation level) yi = z′+iγ+ + εi, (2.11)  

where Z+ = (XW,Z) and γ′+ = (β′, γ′) denote the full matrix of regressors and parameters and z′+i the 1 x K+ row vector representing 
the ith row of Z+. In this notation, White (1980) proved that almost surely coefficient estimates converge on true parameter values and 
N times the heteroskedasticity robust covariance estimate to the covariance matrix of normally distributed 

̅̅̅̅
N

√
(γ̂+ − γ+), thereby 

ensuring that Wald statistics are asymptotically distributed as chi-squared variables, using the following assumptions: 

(W1) (z′+i, εi) is a sequence of independent but not necessarily identically distributed random vectors such that E(z+iεi) = 0K+. 
(W2) There exist finite positive constants δ, Δ and γ such that (a) for all i, E(|ε2

i |)
1+δ) < Δ and E(|z+ijz+ik|1+δ) < Δ for all j, k = 1…K+; 

(b) MN =
∑N

i=1E(z+iz′+i)/N is non-singular for all N sufficiently large, with determinant MN > γ > 0. 
(W3) There exist finite positive constants δ, Δ and γ such that (a) for all i, E(|ε2

i z+ijz+ik|1+δ) < Δ for all j, k = 1…K+; (b) VN =
∑N

i=1E(ε2
i z+iz′+i)/N is non-singular for all N sufficiently large, with determinant VN > γ > 0. 

(W4) There exist finite positive constants δ and Δ such that for all i, E(|z2
+ijz+ikz+il|1+δ) < Δ for all j, k, l = 1…K+ or, equivalently (by 

Hӧlder’s Inequality), E(|z4
+ij|

1+δ) < Δ for all j = 1…K+. 

In addition to White’s W1 - W4, we make use of three additional assumptions 

(A1) There exists a finite positive constant γ such that GN =
∑N

i=1E(xix′i)/N-
∑N

i=1E(xi)/N
∑N

i=1E(x′i)/N is non-singular for all N 
sufficiently large with determinant GN > γ > 0. 
(A2) Either the matrix W is part of Z, i.e. the interactions with treatment in XW are entered separately as covariates in the 
regression, or 

∑N
i=1E(xi)/N→0P. 

(A3) There exist finite positive constants θ, θ* and Δ, with θ(1 + 2θ*) > 1, such that for all i, q = 1…Q and p = 1…P, E(|w2
iqε2

i |1+θ) <

Δ and E(|x4
ip|1+θ* ) < Δ. 

Nothing in W1 - W4 and A1 - A3 requires that the data generating process behind X is such that all permutations T of X are actually 
equally likely. These assumptions guarantee that the distribution of the Wald statistic across row permutations T of X is asymptotically 
chi-squared, as is the conventional Wald statistic of the original regression. Using random draws from the distribution of τ(T,β0) to 
evaluate τ(X,β0) asymptotically allows for accurate inference for the parameters associated with any set of regressors XW that meet 
these conditions. It is also unnecessary, as one can more easily evaluate τ(X,β0) using tables of the chi-squared distribution. However, 
for data generating processes where all permutations T of X are actually equally probable, permutation-based randomization tests of 
sharp nulls are exact in finite samples. Results (R1) - (R5) then confirm that these tests have an asymptotic validity equal to those of 
conventional tests in tests of population average (heterogeneous) treatment effects when the restrictions of the sharp null are not 
satisfied. Since it is in this context that use of permutation based tests makes sense, the discussion in this paper focuses on randomized 
experiments where all permutations T of X are in fact equally likely. 

The procedures, results and assumptions laid out above differ from those of DiCiccio and Romano (2017). DiCiccio & Romano show 
(2017, Theorem 3.3) that, given assumptions on moments and errors, heteroskedasticity robust Wald statistics arrived at by permuting 
regressors X in an OLS regression model with other covariates Z are asymptotically distributed chi-squared. The XW in the model above 
could be taken as their X and permuted accordingly (i.e. permuting not merely the treatment, but the product of treatment with 
covariates). However, as DiCiccio & Romano note, when the X and Z in their model are not independent, as is most likely the case when 
their X represents the interaction of randomized treatment with participant covariates (our XW), the resulting test is not guaranteed to 
be finite sample exact, as the permutation distribution does not equal the sampling distribution of the original data. For the case of 
treatment interacted with covariates, which was not directly considered by DiCiccio & Romano, our procedure instead permutes 

19 Provided the properties of εi are such that with the homoskedastic or clustered below or across treatment groupings covariance estimate the 
conventional Wald statistic is distributed chi-squared (see the on-line appendix). 
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treatment X to T, holding constant the matrix W, and calculates and uses TW = T•W in the regression model. This allows the calculation 
under the sharp null of the counterfactual distribution of randomization outcomes, producing finite sample exact tests. Results (R1) - 
(R5) show that tests based upon this permutation distribution, which when covariate interactions are present is different than that 
considered by DiCiccio & Romano, are also asymptotically equivalent to the conventional test when the restrictions imposed by the 
sharp null are invalid. Practical interest in these results, however, stems from the fact that they are based upon a test that is otherwise 
finite sample exact for sharp nulls. 

For the case where there are no interactions with covariates other than the constant term, XW = X, the results above are identical to 
DiCiccio and Romano (2017), but the regression framework is more general. DiCiccio & Romano’s proof requires that the regression 
include a constant term (the equivalent of A2), bounded fourth moments of iid regressors and errors, and that the conditional 
expectation of the error equal 0, i.e. E(εi|z+i) = 0. At the expense of requiring greater than fourth moments of regressors, W1-W4 and 
A1-A3 allow for independently but not identically distributed data and the weaker condition E(εiz+i) = 0K+. As noted in the intro
duction, experimental data are often drawn from disparate regions and time periods across which participant characteristics are 
unlikely to be iid. As noted in example (2.2) above, the weaker condition E(εiz+i) = 0K+ allows for specification error that is uncor
related with the linear regressors and does not compromise the consistency of the OLS estimates of average linear treatment effects. 
Finally, W1-W4 and A1-A3 provide some flexibility on moments, since when treatment measures are drawn from distributions with 
moments of all orders, in the DiCiccio and Romano model where W is simply 1N A3 can be satisfied without further restrictions beyond 
that given in W2a, i.e. the residuals need have only slightly greater than second moments. 

In the context of the typical randomized experiment, the most challenging of the assumptions above is White’s assumption W1, that 
the regressors are independent. In many experiments treatment is independently drawn from a fixed distribution, producing an iid 
regressor, but in some cases a preselected cumulative distribution function of treatment Fx is allocated to the sample, inducing cor
relation between the regressors.20 In this case, we appeal to de Finetti’s results regarding the asymptotic distribution of exchangeable 
random variables, including the reals (Hewitt and Savage 1955). In particular, de Finetti’s Theorem implies that if the asymptotic 
cumulative distribution function of exchangeable random variables converges to a unique Fx, then they are asymptotically iid with 
joint distribution equal to Fx raised to the Nth power (O’Neill 2009). The expectation of treatment measures in A1 - A3 allows for 
heterogeneity across observations, but this is only to indicate the generality of the permutation result. In situations where use of the 
permutation distribution has desirable finite sample characteristics, i.e. all permutations T of X are equally probable, the treatment 
variables are generally (at least asymptotically) iid. Many experiments apply common treatment to observational groupings, e.g. all 
individuals in a laboratory session, ensuring that observations are neither exchangeable nor asymptotically iid. Extension of the as
sumptions and results to allow treatment exchangeability only across observational groupings, as well as other cross observation 
correlations of regressors and residuals, is straightforward as long as one can define independent groupings of observations of bounded 
size and consider the asymptotics in terms of the number of such groupings going to infinity, as shown in the on-line appendix. The 
on-line appendix also shows that stratification of treatment is easily accommodated provided the first and second moments of 
treatment are asymptotically identical across strata. 

The additional assumptions A1 - A3 are easily met by most experiments. A1 merely states that treatment measures vary across 
observations and are not perfectly collinear. Regarding A2, it would be unusual to seek the effect of the interaction of a covariate with 
treatment without wanting to know the direct effect of the covariate itself and in practice covariates that are interacted with treatment 
are almost always entered separately in the regression. The alternative assumption that the expectation of treatment is zero is unlikely 
to hold and is not used below. In the case where W is simply 1N, an N vector of ones, A2 amounts to requiring that the regression 
include a constant term. If treatment measures are drawn from a distribution with bounded support and moments of all orders, as is 
usually the case, A3 (given A2 & W3) will be satisfied with θ(1+2θ*) > 1. 

The role A2 and A3 play in generating the results can be illustrated by considering the simplest example, that with a single 
treatment variable where the data generating process is y = xβ + ε. Under the null β = β0, following each permutation t of treatment x, 
the counterfactual y is taken to be y(t,β0) = y - xβ0 + tβ0 = x(β-β0) + tβ0 + ε, producing coefficient estimates: 

β̂(t, β0) = (t′t)− 1t′y(t, β0) ⇒
̅̅̅̅
N

√
(β̂(t, β0) − β0) =

(t′t
N

)− 1t′x
N

̅̅̅̅
N

√
(β − β0) +

(t′t
N

)− 1
(

t′1N

N
1′Nε
̅̅̅̅
N

√ +
t′Oε
̅̅̅̅
N

√

)

, (2.12)  

where O = IN − 1N1′N/N is the centering matrix. The Wald and Wolfowitz (1944) theorem given in the appendix shows that the 
distribution across permutations of 

̅̅̅̅
N

√
times the correlation of a permuted variable and another sequence, a term such as t′Oε /

̅̅̅̅
N

√
in 

(2.12), converges to the normal if sufficiently high moments of the two sequences exist. This is similar to the restrictions on tail 
outcomes in central limit theorems which motivate White’s (1980) bounds on higher moments, except more demanding, leading to the 
addition of A3 to White’s assumptions. The mean of the product of a permuted sequence with a fixed sequence is easily shown (in the 
appendix) to converge in probability to the product of their means given much less stringent conditions, so that terms like t′x /N 
converge to (t′1N /N)(x′1N /N). 

Examining (2.12), one sees that if the asymptotic mean of treatment is zero, as would be the case if the alternative assumption in A2 

20 As an example of the former, Robinson (2012) randomized weekly income shocks to married couples in Kenya by drawing (with replacement) 
one of 56 paper slips out of a bag. As an example of the latter, Galliani et al (2011) examined the impact of military service on crime using 
Argentina’s annual national service lottery, which sequentially drew lottery balls numbered 1 through 1000 without replacement and assigned them 
to young males based upon the sequence of the last three digits of their national ID. 
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Table 1 
Conventional and randomization inference in favorable and unfavorable conditions (Monte Carlos: 10,000 iterations per data generating process (dgp), following notation of (3.1)).    

probability of rejecting true null for β at .05 level joint distribution of p-values and confidence intervals for β   
conventional robust inference randomization inference correlation between p-values {CCI}∩{RCI}/{CCI}U{RCI} 

(a) regression model yi = βxiwi + γwi + εi; dgp of (3.1) with c = 0, d = 1, a = ½, by v 

obs v 42.1 4.21 .421 .421* .421# 42.1 4.21 .421 .421* .421# 42.1 4.21 .421 .421* .421# 42.1 4.21 .421 .421* .421# 

20  .236 .264 .778 .427 .780 .072 .088 .576 .054 .536 .960 .962 .952 .847 .941 .579 .562 .261 .258 .255 
200  .118 .154 .793 .557 .797 .060 .081 .795 .051 .672 .989 .990 .960 .789 .958 .831 .803 .622 .181 .310 
2000  .069 .088 .787 .597 .789 .055 .067 .858 .050 .689 .995 .995 .919 .763 .968 .942 .926 .560 .119 .375 
20000  .053 .059 .792 .598 .786 .052 .058 .884 .050 .719 .996 .997 .885 .756 .974 .971 .969 .478 .088 .443 

(b) regression model yi = βxiwi + γwi + εi; dgp of (3.1) with c = 0, d = 1, v = 42.1, by a 

obs a 5 50 500 5000  5 50 500 5000  5 50 500 5000  5 50 500 5000  

20  .335 .353 .355 .355  .140 .157 .157 .157  .945 .944 .944 .944  .584 .588 .588 .588  
200  .161 .163 .164 .164  .096 .099 .100 .100  .980 .979 .979 .979  .843 .844 .844 .844  
2000  .079 .077 .077 .077  .065 .063 .063 .063  .990 .990 .990 .990  .942 .942 .942 .942  
20000  .056 .055 .056 .056  .057 .056 .055 .055  .994 .994 .994 .994  .971 .971 .971 .971  

(c) regression model yi = βxiwi + εi; dgp of (3.1) with v = 42.1, d = 1, a = ½, by c 

obs c 0 10 100 100* 100# 0 10 100 100* 100# 0 10 100 100* 100# 0 10 100 100* 100# 

20  .255 .218 .238 .158 .237 .072 .054 .049 .051 .050 .954 .193 .030 .017 .029 .515 .058 .006 .007 .006 
200  .115 .099 .102 .075 .105 .058 .053 .050 .050 .048 .988 .191 .010 .023 .001 .825 .055 .005 .008 .006 
2000  .068 .055 .057 .055 .059 .054 .045 .046 .050 .048 .995 .178 .019 .015 .011 .944 .035 .004 .007 .004 
20000  .052 .048 .047 .051 .051 .052 .044 .048 .056 .053 .997 .203 .033 .011 .021 .972 .018 .002 .006 .003 

(d) randomization inference using percentiles of coefficients (probability of rejecting true null for β at .05 level)  

model of panel (a) by v model of panel (b) by a model of panel (c) by c        

obs 42.1 4.21 .421 .421* .421# 5 50 500 5000 0 10 100 100* 100#        

20 .072 .080 .459 .050 .387 .138 .165 .166 .165 .076 .054 .052 .052 .051        
200 .097 .147 .951 .053 .929 .231 .246 .247 .247 .102 .063 .053 .050 .047        
2000 .116 .226 .998 .052 .995 .250 .257 .257 .257 .116 .060 .049 .052 .050        
20000 .136 .291 1.00 .051 1.00 .257 .260 .261 .261 .137 .065 .049 .055 .054        

Notes: {CCI}∩{RCI}/{CCI}U{RCI} = overlap divided by union of combined confidence intervals; randomization inference uses 999 draws of Wald statistics (panels a-c) or squared coefficients (panel d). 
* = sharp null is true, βi

–––0 & d = 0. 
# = βi

–––0, but sharp null is not true (d = 1). 
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were true, then 
̅̅̅̅
N

√
(β̂(t, β0) − β0) converges to a normal variable and when suitably normalized by a variance estimate takes on a chi- 

squared distribution, i.e. the asymptotic distribution of the Wald statistic for the original treatment allocation x. When this condition 
does not hold, however, the coefficient estimates obtained by regressing counterfactual output y(t,β0) on t have a bias induced by the 
̅̅̅̅
N

√
deviation of the null from the true parameter value, 

̅̅̅̅
N

√
(β − β0), and the 

̅̅̅̅
N

√
deviation from zero of the finite sample mean of the 

error term, ε′1N/
̅̅̅̅
N

√
. The associated Wald statistics are now distributed non-central chi-squared, do not match the asymptotic sam

pling distribution of the Wald statistics for treatment allocation x, and hence cannot provide a suitable basis for population inference. 
The solution to this problem is to include the covariate interaction with treatment, which in this case is the regressor 1N, in the 
regression, estimating the model y = xβ+ 1Nα+ ε, even though the value of α is known to be zero. The coefficient estimate for 
permutation t is then given by 

β̂(t, β0) = (t′Ot)− 1t′Oy(t, β0) ⇒
̅̅̅̅
N

√
(β̂(t, β0) − β0) =

(
t′Ot
N

)− 1t′Ox
N

̅̅̅̅
N

√
(β − β0) +

(
t′Ot
N

)− 1(t′Oε
̅̅̅̅
N

√

)

, (2.13)  

and since t′Ox/N = t′OOx/N converges in probability to (t′O1N /N)(x′O1N /N) = 0*0, provided 
̅̅̅̅
N

√
(β − β0) is finite the distribution of 

the associated Wald statistic will converge to the central chi-squared and for every realization of t will in probability be identical to that 
found setting β0 = β. More generally, including all variables W interacted with the matrix of treatment T in the list of covariate re
gressors Z, as stated in A2, solves these issues of bias and ensures an asymptotic chi-squared distribution & individual values identical 
to those found setting β0 = β, as shown in the appendix below. 

In (R1) and this paper in general, the emphasis is always on using the distribution of Wald statistics associated with permutations T 
and counterfactual outcomes y(T,β0) to evaluate the original Wald statistic based on X and y, rather than using the coefficient dis
tribution to evaluate the original coefficient estimates. Permuting the original treatment X to T breaks any connection between the 
variance of the error term and the treatment regressors such as might exist because of heterogeneous treatment effects or specification 

Table 2 
Power of randomization inference by power of conventional test for tests of β & number of draws from the permutation distribution (Monte Carlos 
with 10,000 iterations per dgp).   

conventional power = .25 conventional power = .50 conventional power = .75 

draws obs 19 99 199 999 19 99 199 999 19 99 199 999 

(a) regression model of Table 1a: yi = βxiwi + γwi + εi, xi = t(42.1), βi = β + U(-½,½), d = 1 

20 .077 .080 .081 .082 .212 .239 .245 .246 .408 .463 .470 .475 
200 .143 .158 .159 .161 .328 .370 .375 .380 .563 .630 .638 .643 
2000 .197 .216 .220 .223 .406 .453 .459 .462 .651 .706 .716 .722 
20000 .213 .237 .242 .246 .436 .484 .489 .495 .680 .732 .740 .744 

(b) regression model of Table 1a: yi = βxiwi + γwi + εi, xi = t(4.21), βi = β + U(-½,½), d = 1 

20 na na na na .215 .244 .248 .249 .412 .465 .472 .477 
200 .138 .152 .155 .156 .320 .359 .365 .370 .553 .618 .627 .632 
2000 .187 .204 .209 .211 .395 .440 .445 .450 .640 .701 .706 .711 
20000 .207 .233 .237 .240 .434 .481 .486 .491 .679 .730 .738 .742 

(c) regression model of Table 1b: yi = βxiwi + γwi + εi, xi = t(42.1), βi = β + U(-50,50), d = 1 

20 na na na na .251 .277 .280 .282 .467 .517 .523 .530 
200 .155 .169 .170 .171 .366 .401 .405 .408 .613 .661 .667 .671 
2000 .200 .220 .221 .224 .417 .456 .460 .466 .669 .717 .723 .726 
20000 .217 .243 .246 .248 .444 .486 .492 .500 .691 .739 .745 .750 

(d) regression model of Table 1b: yi = βxiwi + γwi + εi, xi = t(42.1), βi = β + U(-5000,5000), d = 1 

20 na na na na .251 .277 .279 .283 .468 .519 .524 .531 
200 .156 .169 .170 .171 .368 .401 .406 .409 .613 .661 .666 .671 
2000 .201 .220 .221 .225 .418 .456 .460 .466 .668 .716 .722 .725 
20000 .216 .242 .246 .248 .445 .486 .491 .500 .691 .739 .745 .749 

(e) regression model of Table 1c: yi = βxiwi + εi, xi = 100 + t(42.1), βi = β + U(-½,½), d = 1 

20 .050 .050 .051 .051 .052 .054 .054 .054 .052 .054 .054 .055 
200 .050 .050 .049 .050 .052 .050 .049 .050 .051 .050 .049 .050 
2000 .048 .047 .047 .048 .048 .049 .048 .049 .048 .048 .048 .048 
20000 .047 .049 .050 .050 .046 .048 .049 .049 .047 .047 .047 .049 

(f) regression model of Table 1c: yi = βxiwi + εi, xi = 100 + t(42.1), βi 
––– β & d = 0 

20 .052 .052 .053 .053 .052 .053 .054 .053 .053 .054 .054 .054 
200 .052 .051 .050 .050 .053 .052 .051 .051 .053 .052 .052 .052 
2000 .051 .051 .051 .051 .051 .052 .051 .052 .053 .053 .052 .054 
20000 .052 .053 .054 .054 .053 .054 .053 .055 .054 .056 .055 .055 

Note: β adjusted until the conventional rejection rate at the .05 level equals .25, .50 or .75; na - not applicable, conventional size distortions are so 
large that no null has a .05 rejection rate of .25; notation otherwise as in (3.1). 
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error as described in (2.2) earlier. Consequently, the variance of the coefficient estimates across permutations of treatment brought 
about by the finite sample correlation between the permuted treatment vector and the errors, as in the last term of (2.13), is unlikely to 
be the same as the sampling variance with the original treatment vector x.21 Normalizing by the permuted variance estimate, i.e. 
studentizing the test-statistic, corrects for how this variance differs between permuted treatment and the original population sample. 
When the sharp null is true, either the permuted coefficients or permuted Wald statistics provide a basis for accurate tests, but only the 
Wald test has asymptotic validity when Zγ+ε | X ∕= Zγ+ε | T. This is illustrated in simulations below. 

Finally, turning to the intuition for (R2) - (R5), from (R1) the limiting distribution across permutations of treatment of the Wald 
statistic is that of a chi-squared variable. As the number of draws from the randomization distribution goes to infinity, using the 
percentiles of this distribution to evaluate the conventional Wald statistic is asymptotically identical to using the chi-squared distri
bution to evaluate the conventional Wald statistic, i.e. produces the same p-values. This is the basis of (R5). Insofar as conventional 
tests of true nulls using the variance estimate are asymptotically exact, so will analogous tests using randomization inference, while the 
power of randomization inference in tests of locally false nulls will be identical, even if the sharp null that motivates the randomization 
test is false. 

When using a finite number of randomization draws to evaluate the test statistic, the ith order statistic of D draws from a chi-squared 
distribution is a random variable with expected value equal to the i/(D+1) percentile of the chi-squared distribution. If (1-α)(D+1) is 
not an integer, we can create a random variable whose expected value equals the 1-α percentile by probabilistically selecting the order 
statistic to be either the integer ceiling or floor of (1-α)(D+1), forming the basis for (R2). When the null is true, the asymptotic coverage 
probability of the conventional confidence interval, based upon the set of nulls such that the Wald statistic is less than the 1-α 
percentile of the chi-squared distribution, equals 1-α, i.e., the conventional coverage probability is asymptotically a 45◦ linear function 
of the nominal level. Hence, using a random variable whose mean is the chi-squared 1-α percentile to determine the level of the 
confidence interval will have an expected coverage probability of 1-α, forming the basis for (R3). When testing false nulls, the 
probability the conventional confidence interval covers the false null is a convex function of the chi-squared 1-α percentile. Hence, 
using a random variable whose mean is the chi-squared 1-α will by Jensen’s Inequality yield a coverage probability greater than 1-α 
and lower power, unless the variance of the random variable goes to 0, as happens as D → ∞. This forms the basis for (R4). The 
appendix below provides formal proofs. 

3. Monte Carlos illustrating the importance of the assumptions 

This section uses Monte Carlos to highlight the role White’s assumptions on moments, the additional randomization specific as
sumptions A2 and A3, and the sharp null hypothesis play in the finite sample and asymptotic performance of conventional and 
randomization inference. In Tables 1 and 2 the Monte Carlo data generating process (dgp) is given by 

yi = βxiwi + εi, with εi = βixiwi + d|xiwi|
1/2

+ |wi|
1/2

+ ηi, (3.1)  

iid βi = U( − a, a) & xi = c + t(v), and inid ηi = sin(i)*t(2.1) & wi = sin(i)*t(4.2), (3.2)  

where U(-a,a) denotes the uniform distribution across (-a,a), t(v) the t distribution with v degrees of freedom which has all absolute 
moments up to v, and c and d constants with base values of 0 and 1 respectively. xi is the iid treatment variable, wi the inid sample 
characteristic interacted with treatment and βi the heterogeneity in the linear treatment effect. The positive square root of xiwi and wi 
are included in the error term to illustrate how the DiCiccio and Romano (2017) assumption that E(εi|z+i) = 0 can be relaxed in favor of 
E(εiz+i) = 0K+, thereby allowing the error term to incorporate non-linear specification error that is uncorrelated with the regressors.22 

Similarly, to illustrate the extension of their asymptotic results to inid data, the distributions of ηi and wi follow a cyclical pattern 
dictated by the sine function. As noted above, experiments often apply treatment randomly to participants arriving at field or labo
ratory locations or participants contacted in home visits and these can create cyclically varying distributions.23 

With both xiwi and wi included in the regressors z′+i and the error term εi, E(
⃒
⃒ε2

i
⃒
⃒1+δ

), E(|z4
+ij|

1+δ
) and E(

⃒
⃒z+ijz+ikε2

i
⃒
⃒1+δ

) are uniformly 
bounded for some δ > 0 provided v in t(v) is greater than 4, thereby satisfying White’s assumptions W1 - W4 earlier for asymptotically 
accurate heteroskedasticity robust conventional inference. In the tables below the degrees of freedom v for the treatment variable xi 
varies between (a) 42.1, so that assumption A3 is met with θ(1 + 2θ*) > 1 ;24 (b) 4.21, so that θ(1 + 2θ*) is only greater than 0 but 
assumptions W1 - W4 are still met; and (c) 0.421, so that θ* is not even positive and neither assumption A3 nor W2 - W4 are met. 
Assumption A2 is satisfied when the regression includes the interaction variable wi or the dgp mean of xi (c in Eq. (3.1)) is 0. As noted 
above, the sharp null is that Zγ+ε | X ¼ Zγ+ε | T for all alternative treatment allocations. In the context of (3.1), this requires that βi 

––– 

21 In (2.13), this variance can be shown to be the homoskedastic covariance estimate. This is not generally true, however, because when treatment 
is interacted with non-constant covariates W, as in TW = T•W, the coefficient estimates for permuted treatment continue to be affected by het
eroskedasticity related to W.  
22 E(εiz+i) = 0 follows because the density of wi is symmetric around 0 and would be true for any power of |xiwi| and |wi| appearing in εi. I use the 

square root rather than greater powers to add non-linearity while not requiring the existence of additional moments beyond those already needed 
(as reviewed in the next paragraph).  
23 See the footnote on Cai et al (2009) in the introduction above.  
24 In terms of A3, for the dgp described above θ is just below min(.05,v/2-1), while θ* is just below v/4-1. 
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0 and d = 0, the latter illustrating how any misspecification of the sharp null for linear treatment effects is unallowable if finite sample 
exact inference is to be guaranteed. 

Table 1 presents tests of true nulls of an average linear treatment effect β equal to zero, with sample sizes ranging from 20 to 20,000 
observations, 999 draws of T used in the calculation of randomization p-values and confidence intervals, and 10k iterations per dgp. In 
panel (a), which varies v, we see that conventional heteroskedasticity robust rejection probabilities show size distortions in small 
samples, but converge to nominal value when assumptions W1 - W4 are met. When v = 0.421, however, rejection probabilities show no 
tendency to converge to nominal value as the sample size increases. When v is sufficiently small the influence of individual obser
vations on coefficient and standard error estimates does not decline with sample size and asymptotic theory simply does not apply.25 

Turning to randomization inference, the topic of this paper, in panel (a) we see that with v = 42.1 or even 4.21, where θ(1 + 2θ*) is 
barely above 0, randomization p-values rapidly converge to the heteroskedasticity robust values, while the area covered by the 
intersection of the confidence intervals divided by the area of their union converges toward 1. While θ(1 + 2θ*) > 1 is necessary to 
ensure that all moments of the randomization distribution converge to the normal, with v = 4.21 and θ(1 + 2θ*) merely > 0 the first 
four moments are still guaranteed to converge to those of the normal and this is enough, at least with this dgp, to produce rejection rates 
close to nominal value. In contrast, when v = 0.421 p-values and confidence intervals diverge with increases in sample size, and 
randomization inference shares the large size distortions of conventional inference. However, when the sharp null is true (βi 

––– 0 and 
d = 0), indicated by the column with a *, randomization inference is exact even with v = 0.421 and delivers rejection probabilities that 
are within expected simulation variation from nominal value in all sample sizes. No matter how poorly behaved the data, in finite 
samples randomization inference provides exact tests of sharp nulls, while for well-behaved variables with bounded moments of 
sufficiently high order it shares the same asymptotic validity as conventional robust inference in the presence of heterogeneous 
treatment effects. The sharp null, however, is more than a statement about a lack of heterogeneity in the tested linear treatment effect, 
as emphasized by the column marked with a #, where although βi 

––– 0, d = 1 and the error term contains the specification error on the 
treatment effect. Randomization inference in this case is neither finite sample exact nor asymptotically accurate with misbehaving 
regressors. 

Panel (b) of Table 1 varies the heterogeneity of treatment effects, increasing a in U(-a,a) by orders of magnitude all the way up 
5000, while keeping v at 42.1, so that assumptions W1-W4 and A1-A3 all hold. Relative to panel (a), greater heterogeneity and hence 
heteroskedasticity increase the size distortions of both conventional and randomization methods in the very smallest of samples, but 
these disappear as conventional rejection rates converge to nominal value and randomization p-values and confidence intervals 
converge to those of the conventional test. The results in panels (a) and (b) follow (R1) - (R3) and (R5) above. Panel (c) removes the 
interacted variable wi from the regression, violating assumption A2 if the mean of xi is not 0. The results for conventional inference and 
randomization inference when the mean c of xi is 0 are much the same as before. However, when c ∕= 0 and no version of A2 is satisfied, 
randomization p-values and confidence intervals do not converge to conventional values as the sample size increases. These results 
stem from the random bias and non-central chi-squared distribution highlighted earlier above. 

Any test statistic allows for exact randomization inference when the sharp null is true, but with heterogeneous treatment effects the 
distribution of coefficient estimates generated by treatment permutation is only guaranteed to converge to that of the original data if 
studentized by the appropriate variance estimate. Panel (d) of Table 1 illustrates this by moving away from Wald statistics and 
evaluating the significance of the estimated coefficient using the percentiles of the distribution of squared deviation of coefficient 
estimates from the null (in this case 0) generated by permuting treatment, i.e. comparing ̂β(t, β0 = 0)2 to ̂β2. When the sharp null is true 
randomization inference is finite sample exact, but otherwise there is no guarantee of asymptotic accuracy, even when the regressor 
has higher moments, as rejection rates based upon the distribution of coefficients generally worsen as the sample size increases. 

Table 2 evaluates relative power by adjusting the parameter β so that the power of conventional inference, when testing the false 
null β = 0, equals 0.25, 0.50 or 0.75, and then reporting randomization inference rejection probabilities for the same dgp.26 The table 
focuses on results for v = 42.1 or 4.21, where conventional rejection probabilities of true nulls converge to nominal value (Table 1). As 
shown in panel (a), randomization power is well below that of the conventional test in very small samples, where the larger size 
distortions of the conventional test (see Table 1) produce greater power. However, in all sample sizes randomization power is 
increasing in the number of draws used to calculate the randomization p-value and converges to the conventional level in large samples 
with a large number of draws. This continues to be true in panel (b), when v = 4.21, A3 is not met, and only the first four moments of 
the randomization distribution are guaranteed to converge to the normal. Increasing the heterogeneity of effects by orders of 
magnitude (panels c and d) has no systematic effects. These results follow (R4) above. As shown in panel (e), when assumption A2 is 
violated, the regression is run without the interaction variable wi, and the dgp for xi has a non-zero mean, randomization inference 
performs extraordinarily poorly with power that hardly differs from the nominal level for true nulls. This is true even when the dgp 
conforms to that of the sharp null (panel f). As noted above, in this case the coefficient estimates of permuted treatment are 
asymptotically distributed thick tailed non-central chi-squared, producing wide confidence intervals. Assumption A2, that covariates 

25 The leverage of an individual observation in the regression of y on X is usually defined as the diagonal element of the hat matrix X(X′X)
− 1X′. For 

individual coefficient estimates, one can define a similar measure using the hat matrix for the partitioned regression, i.e. using the residuals of one 
regressor projected on the others. For the residuals of xiwi regressed on wi, in the regressions of panel (a) in Table I as the number of observations 
increases from 20 to 20k the average across 10k samples of the maximum leverage of an individual observation falls from .39 to .027 when v = 42.1, 
but actually rises from .78 to .85 when v = .421.  
26 Since both positive and negative values of β can achieve the same conventional power, I compute randomization rejection rates for the two and 

report the average in the table. 

A. Young                                                                                                                                                                                                                 



European Economic Review 163 (2024) 104644

13

W interacted with treatment X are included in the regressors Z, crucially guarantees randomization inference asymptotically identical 
power to conventional Wald tests of locally false heterogeneous or sharp nulls, as in results (R4) - (R5) above. 

4. Practical issues: finite sample algorithms and testing subsets of coefficients 

This section addresses algorithms for calculating randomization confidence intervals (RCI) and issues in testing subsets of co
efficients. Asymptotically if assumptions W1-W4 & A1-A3 hold the Wald statistic for permuted treatment τ(T,β0) in probability does 
not depend upon the null β0 in a finite 

̅̅̅̅
N

√
neighbourhood of β, so calculating the RCI merely involves sorting the values of τ(T) across 

D draws and using the order statistics to calculate a bound for τ(X,β0), as indicated by (2.6) in (R2) earlier. This defines the usual 
ellipsoid around β̂. In finite samples, τ(T,β0) generally does depend upon β0, but the calculation of the RCI remains straightforward, as 
whether using the heteroskedasticity robust or clustered robust covariance estimates, the equation τ(X,β0) = τ(T,β0) defines a 
multivariate quartic equation in β0.27 

In a test for estimating equations with a single treatment effect, βj, the roots of τ(t,β0j) = τ(x,β0j) define regions on the real line where 
τ(t,β0j) is >, < or = to τ(x,β0j). To calculate the finite sample RCI, one simply takes D draws of t, calculates the roots specific to each, 
orders them on the real line, and moving left to right keeps track of the number of τ(t,β0j) that are greater than, less than, or equal to 
τ(x,β0j). For a given draw from the uniform distribution u, one can calculate the (constant) p-value between any two adjacent roots and 
to the left and right of their extreme values, and in so doing find the RCI associated with any level 1-α. The finite sample RCI may have 
infinite width when there are few distinct potential realizations of t or draws D from the permutation distribution. It is also typically 
asymmetric and may be non-convex. For these reasons the analytic procedure just described (and further in the on-line appendix) is 
better than costly and potentially fruitless or inaccurate line searches. 

Table 3 reports the number of non-convex RCI and the mean ratio of the shorter side to the longer side of the convex cover of the RCI 
for the simulations of Table 1. As shown, when assumptions A2 and A3 are satisfied, with the interaction variable wi in the regression 
and v = 42.1, non-convexities and asymmetries are rapidly eliminated as the sample size increases. When wi is not included in the 
regression and the mean of xi is not 0, i.e. both forms of assumption A2 are violated, asymmetries and non-convexities show no 
tendency to diminish with larger samples, even when the sharp null is true and there is no heterogeneity of treatment effects. Con
ditions W1-W4 and A1-A3 not only ensure an asymptotic equivalence with conventional inference in tests of heterogeneous treatment 
effects but also tend to produce conventional properties in finite sample exact randomization tests of sharp nulls. 

In a joint test of multiple treatment effects, the boundaries in the space of β0 of τ(T,β0) = τ(X,β0) can be calculated for each T, and 
the intersections of these used to calculate a confidence interval for the joint test. This is obviously difficult and it is generally more 
straightforward to simply report the p-value for a given β0 by calculating the relative value of τ(T,β0) and τ(X,β0) for the D draws of T. 
The same procedure of reporting the p-value for a specific multi-dimensional null, rather than calculating the whole confidence in
terval, is used in conventional tests, so this is not much of an issue. 

More problematic is the fact that the Wald statistic of a permutation-based randomization test of a null for a subset of treatment 
coefficients depends upon the null for all treatment measures, as the counterfactual outcome y(T,β0)=(TW − XW)β0 generally depends 
upon all elements of β0. Let P denote a k x PQ matrix of zeros of full rank with a single one in each row, so that β⊂

0 = Pβ0, β̂
⊂ 
= Pβ̂, and 

β̂
⊂
(T, β0) = Pβ̂(T,β0) denote k x 1 sub-vectors of the parameters and estimated coefficients, and V̂(β̂

⊂
) = PV̂(β̂)P′ and V̂(β̂

⊂
(T,β0)) =

PV̂(β̂(T,β0))P′ the k x k covariance estimates. The Wald statistic for the conventional test τ⊂(X,β⊂
0 ) =(β̂

⊂
− β⊂

0 )′V̂(β̂
⊂
)(β̂

⊂
− β⊂

0 )

Table 3 
Non-convexities and asymmetries in randomization confidence intervals for β (Monte Carlos: 10,000 iterations per data generating process based 
upon (3.1)).   

(a) regression with wi, specification of Table 1a (b) regression with wi, specification of Table 1b (c) regression without wi, specification of Table 1c 
c = 0, d = 1, a = ½, by v c = 0, d = 1, v = 42.1, by a v = 42.1, d = 1, a = ½, by c 

42.1 4.21 .421 .421* 5 50 500 5000 0 10 100 100* 

(i) number of non-convex .95 RCI in 10000 regressions 

20 139 167 603 415 190 245 219 211 325 492 688 1025 
200 9 18 513 59 25 30 24 21 47 539 846 1119 
2000 0 2 201 8 0 1 1 1 2 907 1262 1303 
20000 0 0 152 1 0 0 0 0 0 1247 1548 1579 

(ii) mean ratio of length of shorter side to longer side of convex cover of .95 RCI 

20 .751 .769 .753 .838 .726 .718 .717 .717 .736 .569 .573 .526 
200 .904 .909 .876 .972 .892 .891 .891 .891 .901 .549 .539 .507 
2000 .971 .969 .871 .992 .963 .963 .963 .963 .970 .545 .523 .504 
20000 .986 .984 .830 .998 .983 .983 .983 .983 .986 .565 .513 .523 

Notes: convex cover = smallest convex region covering all segments of RCI. * = sharp null is true, βi 
––– 0 & d = 0; 20 … 20,000 = number of ob

servations; notation otherwise as in Table 1 & (3.1). 

27 The on-line appendix lays out this equation and its use to calculate confidence intervals as described below. 
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depends only on β⊂
0 , but the equivalent Wald statistic for permuted treatment 

τ⊂(T,β0) = (β̂
⊂
(T,β0) − β⊂

0 )′V̂(β̂
⊂
(T,β0))(β̂

⊂
(T,β0) − β⊂

0 ) in the finite sample depends upon all elements of β0.28 Thus, in the finite 
sample a randomization test based upon a test statistic for a subset of coefficients remains a joint test of the null for all treatment 
measures, although this disappears asymptotically as the realizations of the test statistic become insensitive to nulls in a root-N 
neighborhood of β and the comparison of τ⊂(T, β0)→τ⊂(T,β) to τ⊂(X,β⊂

0 ) depends only on β⊂
0 . 

One way to test a subset null without taking a stand on the null for other treatment measures is by permuting X⊂
W = PXW alone, 

calculating the counterfactual outcome y(T⊂
W,β⊂

0 ) = y + (T⊂
W − X⊂

W)β⊂
0 and treating the remaining treatment regressors as part of the 

matrix of covariates Z. However, if the permutation of the treatment sub-vector alone is not consistent with the randomization protocol 
of the experiment, while results (R1) - (R5) still carry through for the test of the subset if conditions W1 - W4 and A1 - A3 hold, the 
randomization test will not carry the additional finite sample validity of randomization tests when the sharp null is true. Permutation 
of a treatment sub-vector is valid, for example, when treatment X⊂

W is independently applied, so that permutations of X⊂
W holding 

constant the remaining columns in XW constitute a valid subset of the universe of potential treatment realizations.29 Unfortunately, in 
practice this is seldom the case, so while this method provides asymptotic validity, it only very rarely is guaranteed to be finite sample 
exact for tests of sharp nulls. 

When multiple treatments are not separately randomized, as is more usual, one can still calculate a valid subset of potential 
outcomes by permuting treatment within strata defined by other treatments, e.g. examining the potential alternative realizations of 
X⊂

Wwithin strata defined by the remaining columns of XW. This is the procedure advocated by D’Haultfoeuille & Tuvaandorj (2022) in 
their extension of DiCiccio and Romano’s (2017) analysis to cases where treatment measures are correlated with other covariates,30 

and was used earlier in Young (2019) to provide alternative randomization p-values in amenable equations. This method is not useful 
in regressions with covariate interactions, as the number of distinct other-treatment-stratified potential outcomes is generally the null 
set since treatment t generally cannot vary at all within strata defined by realizations of t•w,31 and vice versa.32 In these circumstances, 
the distribution is degenerate and while the p-value (based upon universal ties of all test statistics and a random draw from the uniform 
distribution in (2.4) earlier) is trivially exact, power is identical to size. Outside of this case, the conditional mean assumption E(xiεi|zi) 
= 0 used by D’Haultfoeuille & Tuvaandorj to guarantee asymptotic validity may be problematic as zi now contains other treatment 
variables that are correlated with xi. As described earlier in (2.2), OLS parameters can be thought of as population average linear 
treatment effects, with misspecification in the form of orthogonal to average linear effects included in the error term. When xi and zi are 
correlated, average linear treatment effects can vary by strata so that even though E(xiεi) = 0 holds in aggregate, E(xiεi|zi) may not 
equal 0 and this method is not asymptotically valid. Furthermore, if other-treatment-stratification restricts tested treatment variation 
for substantial shares of the sample, there may be a loss of power. In sum, while this method is finite sample exact for tests of sharp nulls 
in randomized experiments, it is often degenerate, and if not may lose power or be asymptotically invalid in the face of otherwise 
innocuous to OLS specification error. 

A test that would remain exact and only depend upon the null for a subset of treatment measures while permuting all treatment 
regressors across the entire sample would be one that impractically always set the null on untested coefficients equal to their true 
values. A practical approximation of this test involves setting the null on untested coefficients equal to the estimated OLS coefficients. 
As stated in (R1) above, asymptotically for β0 in a finite root-N neighborhood of β, τ(T,β0) = τ(T,β). White’s assumptions ensure 
that

̅̅̅̅
N

√
(β̂ − β) is asymptotically normally distributed with a bounded covariance matrix, so that the 

̅̅̅̅
N

√
deviation of estimated values 

from β is bounded in probability and this test is asymptotically identical to setting the null on untested coefficients equal to their true 
values. Insofar as asymptotic properties carryover into the finite sample, this approach approximates the impractical finite sample 
exact test, while providing an asymptotically valid subset test of heterogeneous treatment effects with the general validity conferred by 
the OLS assumption E(xiεi) = 0. However, as sampling variation leads β̂ to vary from β it will not be truly finite sample exact and, as 
shown below, may perform poorly when White’s assumptions do not hold. 

Another approach to subset testing is to conservatively calculate the maximum p-value for the test of a subset β⊂
0 across all possible 

nulls for the remaining treatment effects in β0. While not exact, in a finite sample test of sharp treatment effects this will guarantee 
control of size, as the probability of rejecting a true null β⊂

0 must be less than or equal to the nominal level of the test. Searching for a 
maximum across an unbounded space can be problematic, but as shown in the on-line appendix the maximum p-value along opposite 

28 Similarly, while the confidence interval for an individual treatment effect βj in a multi-treatment equation is easily calculated using the roots of 
τ(T,β0j) = τ(X,β0j) following the method above, these roots and hence the confidence interval depend upon the maintained null for untested 
treatment measures as these determine y(T,β0).  
29 For example, Cole et al (2013) investigated the demand for insurance in Gujarat by separately randomizing discounts. Permutation of these 

holding constant other treatment elements maps out a subset of potential outcomes.  
30 D’Haultfoeuille & Tuvaandorj actually suggest permuting within strata defined by all other regressors, which in our case would include the non- 

treatment covariates Z as well. In practice covariates are often continuous, making that conditional permutation distribution degenerate, i.e. all 
strata contain only one observation. However, when treatment is randomly applied it can be taken as independent of non-treatment covariates and 
the approach simplified to permuting within strata defined by other treatment measures alone, as done in Young (2019) and below.  
31 Except for observations where w is 0.  
32 Holding t constant, t•w can only be varied by permuting w, which is not an alternative experimental outcome and cannot be justified on that 

basis nor, typically, on the grounds that its distribution is exchangeable. In any case, the inclusion of w as a separate regressor, as is usually done, 
renders this permutation distribution degenerate as well, as there is no way to vary t•w holding both t and w constant. 
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rays of infinite length can be calculated analytically. In this fashion, the problem is reduced, through the use of spherical coordinates, 
to one of searching in the bounded space of angles, each lying in [0,π]. When the regression contains two treatment effects and p-values 
for β0j are calculated across all values of β0~j, there are no angles to consider and the maximum can be calculated analytically.33 This 
approach is all-purpose, serving across all regression types considered in this paper. It is however conservative, producing a loss of 
power, and this conservatism need not disappear asymptotically.34 Power can be enhanced if bounds can be placed on the universe of 
true nulls for untested measures. If these bounds are based upon the conventional Wald statistic for nulls on the untested measures, 
given White’s moment conditions in probability the search for a maximum p-value remains within a finite root-N neighborhood and 
asymptotically produces p-values identical to setting the null on untested measures equal to their true values. With liberal bounds, this 
provides protection against the finite sample variation of β̂ from β that bedevils the approach based upon setting untested nulls equal 
to estimated values described above, while ruling out theoretically unreasonable infinitely large values of parameters and assuring 
asymptotic p-values and power equal to that of the impractical test based upon knowledge of the parameter values for untested 
measures. 

The Monte Carlos in Tables 4 and 5 explore the issues described above. Table 4 considers equations with covariate interactions, 
modifying the dgp of (3.1) to include the treatment vector itself as a source of variation: 

yi = β1xi + β2xiwi + εi, with εi = β1ixi + β2ixiwi + d|xi|
1/2

+ d|xiwi|
1/2

+ |wi|
1/2

+ ηi (4.1)  

iid xi = t(v) & βji = βj + U( − a, a) for j = 1 and 2, and inid ηi = sin(i)*t(2.1) & wi = sin(i)*t(4.2). (4.2)  

There are heterogeneous linear treatment effects for both xi and xiwi and to satisfy assumption A2 both 1N and w should be included as 
ancilliary regressors. The sharp null holds when a = 0 and d = 0. The table reports rejection rates of tests of correct nulls of the mean 
treatment effects β1 and β2. In the permute-one approach only the variable associated with the coefficient being tested is permuted, i.e. 
xi is changed to ti or xiwi to tiwi, without changing the other. This is not a valid experimental outcome, and hence these tests need not be 

Table 4 
Subset inference with covariate interactions by method (true null rejection rates at 0.05 level) Monte Carlos: 10,000 iterations per data generating 
process based on (4.1) regression model: yi = β1xi + β2xiwi + γ +δwi + εi.   

conventional robust randomization inference   

permute-one β0∼j = β̂∼j β0∼j = β∼j constrained max over β0∼j max over β0∼j 

tests of: β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 

(a) xi = t(42.1), d = 1, a = 0 

20 .070 .145 .065 .059 .056 .048 .055 .052 .033 .028 .031 .026 
200 .047 .086 .053 .058 .052 .058 .052 .058 .042 .045 .034 .035 
2000 .047 .054 .051 .049 .051 .048 .051 .048 .047 .045 .036 .036 
20000 .046 .053 .050 .053 .050 .053 .050 .053 .047 .052 .038 .040 

(b) xi = t(42.1), d = 1, a = 5000 

20 .156 .302 .137 .147 .128 .129 .128 .136 .102 .098 .099 .096 
200 .069 .164 .063 .102 .063 .102 .064 .102 .056 .089 .053 .082 
2000 .052 .076 .051 .061 .052 .061 .051 .061 .045 .057 .040 .048 
20000 .050 .053 .050 .052 .049 .052 .049 .052 .045 .051 .040 .039 

(c) xi = t(42.1), a = d = 0 (sharp null is true) 

20 .070 .145 .065 .059 .056 .048 .055* .052* .033 .028 .031# .026# 

200 .047 .086 .053 .058 .052 .058 .052* .058* .042 .045 .034# .035# 

2000 .047 .054 .051 .049 .051 .048 .051* .048* .047 .045 .036# .036# 

20000 .046 .053 .050 .053 .050 .053 .050* .053* .047 .052 .038# .040# 

(d) xi = t(.421), a = d = 0 (sharp null is true) 

20 .238 .239 .051 .039 .072 .076 .048* .049* .034 .032 .030# .025# 

200 .368 .361 .053 .033 .094 .094 .050* .049* .051 .050 .046# .044# 

2000 .422 .428 .059 .031 .069 .073 .051* .054* .055 .058 .049# .052# 

20000 .429 .431 .064 .025 .057 .058 .047* .048* .050 .051 .047# .047# 

Notes: β0~j = null for coefficient not being tested, null for coefficient being tested always equals parameter of the dgp. 
* = method is exact. 
# = size guaranteed to be less than or equal to nominal level. 

33 Techniques for finding the maximum for higher dimensional problems are reviewed in the section below. 
34 While, as noted earlier, the distribution of τ(T,β0) is asymptotically unaffected by any fixed value of β0 (not merely those in a root-N neigh

borhood), its individual realizations are, so by searching across β0 the p-value based on a finite number of draws from the distribution can be 
manipulated (as can be seen in the equations describing the calculation of the max p-value in the on-line appendix). Moreover, mathematically, 
convergence for a fixed value does not guarantee convergence of the maximum across all values. 
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Table 5 
Subset inference when treatment stratified permutation is non-degenerate (true null rejection rates of β1 & β2 at 0.05 level, 10k iterations per dgp 
(4.3), by correlation of regressors) regression model: yi = β1xi + β2xi + γ +δwi + εi.   

conventional robust randomization inference 

permute-one β0∼j = β̂∼j β0∼j = β∼j constrained max over β0∼j max over β0∼j x~j stratified 

ind corr ind corr ind corr ind corr ind corr ind corr ind corr 

(a) specification error in the form of quadratic effects, v = 2.1, a = ½, d1 = 1, d2 = 0 

20 .072 .047 .054 .033 .055 .030 .055 .029 .043 .020 .040 .019 .058 .070 
200 .050 .045 .049 .044 .050 .043 .049 .043 .043 .036 .039 .033 .054 .160 
2000 .049 .049 .049 .049 .049 .049 .048 .049 .045 .045 .039 .039 .055 .166 
20k .052 .050 .051 .051 .052 .051 .052 .051 .050 .050 .041 .041 .057 .167 

(b) specification error in the form of treatment interactions, v = 2.1, a = ½, d1 = 0, d2 = 1 

20 .107 .050 .088 .036 .090 .033 .087 .032 .076 .021 .072 .019 .079 .074 
200 .053 .045 .052 .044 .053 .043 .053 .043 .046 .036 .041 .033 .050 .134 
2000 .050 .049 .051 .049 .050 .049 .050 .049 .047 .045 .041 .039 .050 .142 
20k .048 .050 .048 .051 .048 .050 .048 .050 .046 .048 .039 .039 .049 .140 

(c) sharp null is true, v = 2.1, a = d1 = d2 = 0 

20 .045 .054 .049* .056 .044 .036 .048* .052* .024 .021 .021# .019# .051* .051* 
200 .044 .044 .050* .050 .049 .049 .050* .050* .042 .037 .035# .032# .049* .050* 
2000 .045 .046 .049* .051 .049 .051 .049* .051* .046 .046 .036# .037# .050* .053* 
20k .045 .045 .048* .049 .048 .049 .047* .050* .046 .047 .035# .037# .049* .049* 

(d) sharp null is true, v = .21, a = d1 = d2 = 0 

20 .002 .003 .051* .075 .009 .003 .051* .054* .001 .000 .001# .000# .049* .053* 
200 .000 .000 .051* .064 .016 .014 .050* .052* .002 .002 .000# .000# .051* .050* 
2000 .001 .000 .052* .074 .027 .027 .052* .051* .009 .009 .000# .000# .051* .052* 
20k .001 .001 .049* .079 .031 .034 .049* .053* .017 .020 .001# .000# .049* .050* 

Notes: As the data generating process is symmetric, reported figures are averages for separate tests of the two coefficients. ind = x1i and x2i are in
dependent; corr = x1i and x2i are constrained to be of the same sign and hence correlated. Otherwise as in Table 4. 

* = method is exact. 
# = method maintains control of size. 

Table 6 
Power when the sharp null is true (randomization inference rejection rates for dgp (4.3) with .50 conventional rejection rates).   

permute-one β0∼j = β̂∼j β0∼j = β∼j constrained max over β0∼j max over β0∼j x~j stratified  

β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 

(a) dgp of Table 4 (c), v = 42.1 
20 .482 .298 .458 .272 .459* .278* .385 .210 .376# .201# na na 
200 .517 .427 .512 .425 .513* .425* .484 .392 .456# .355# na na 
2000 .512 .482 .512 .482 .512* .483* .499 .470 .467# .436# na na 
20000 .511 .503 .511 .503 .511* .503* .503 .498 .464# .463# na na 
(b) dgp of Table 4 (d), v = .421 
20 .272 .251 .307 .291 .301* .283* .246 .219 .200# .166# na na 
200 .200 .174 .265 .263 .248* .248* .214 .212 .204# .203# na na 
2000 .165 .123 .192 .186 .183* .178* .175 .169 .167# .162# na na 
20000 .150 .093 .163 .149 .160* .146* .156 .142 .151# .136# na na  

ind corr ind corr ind corr ind corr ind corr ind corr 

(c) dgp of Table 5 (c), v = 2.1 
20 .505* .508 .494 .438 .503* .458* .417 .366 .398# .356# .433* .302* 
200 .519* .517 .519 .514 .518* .515* .492 .480 .466# .462# .518* .383* 
2000 .512* .513 .512 .513 .512* .513* .499 .498 .466# .469# .513* .391* 
20000 .509* .509 .509 .509 .509* .509* .503 .501 .465# .465# .509* .388* 
(d) dgp of Table 5 (d), v = .21 
20 .570* .579 .532 .508 .566* .553* .491 .483 .486# .481# .565* .543* 
200 .616* .611 .564 .543 .613* .596* .517 .509 .497# .496# .617* .492* 
2000 .638* .634 .589 .563 .634* .619* .545 .526 .497# .498# .637* .442* 
20000 .646* .647 .601 .580 .643* .632* .568 .547 .497# .498# .646* .384* 

Notes: Reported figures in panels (c) and (d), where treatment distributions are symmetric, are the average rejection probability of the two co
efficients. β1 and β2 in (4.1) & (4.3) are adjusted so the conventional heteroskedasticity robust test of the null of 0 has a .50 rejection rate for each test. 
As there are two (+ and -) values for which this is true for each of two parameters, reported figures in each cell in panels a & b (c & d) are the average 
of two (four) rejection rates for two (four) different Monte Carlos with 10k iterations each. "na" = the subset permutation distribution is degenerate (i. 
e. only one outcome is possible) in these simulations. Otherwise as in Tables 4 & 5. 
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exact in tests of sharp nulls, but if W1-W4 and A1-A3 hold have the same asymptotic validity as the conventional test. In "β0∼j = β̂∼j", 
following each permutation of treatment xi to ti both regressors are changed and the null on the coefficient that is not being tested is set 
equal to its estimated value. Again, given W1-W4 and A1-A3 this has the same asymptotic validity as the conventional test, but need 
not be exact for sharp nulls as β0~j does not equal the true value. In "β0~j = β~j" the untested null is set equal to its true value, providing 
a benchmark of an asymptotically valid and finite sample (sharp null) exact test. "max over β0~j" reports rejection rates for the con
servative test which calculates the maximum p-value across all possible untested nulls, providing conservative control over size in the 
finite sample for exact nulls and asymptotically for heterogeneous treatment effects. The "constrained max" restricts the search for a 
maximum p-value to those nulls for which the conventional p-value for the Wald statistic for β0~j is greater than 10− 10. When W1-W4 
and A1-A3 hold, both the "constrained max" and "β0∼j = β̂∼j" are asymptotically identical to "β0~j = β~j". The method of other- 
treatment-stratified permutation is not examined here, as each observation would constitute a separate strata and the distributions 
are degenerate. 

As seen in panels (a) - (c) of the table, when W1-W4 and A1-A3 hold, while small sample deviations from nominal rejection 
probability are much higher when there is a lot of regressor associated heteroskedasticity (a = 5000 in panel b), all approaches other 
than "max over β0~j" asymptotically provide rejection probabilities equal to nominal value, whereas "max over β0~j" remains con
servative even in large samples,. When the sharp null is true, whether regressors satisfy assumptions W1-W4 & A1-A3 (panel c, xi = t 
(42.1)) or not (panel d, t(0.421)), setting "β0~j = β~j" provides an exact test (within the bounds of simulation variation) and "max over 
β0~j" more practically implementable conservative control of size. Permute-one, which is not a valid counterfactual experimental 
outcome, does not provide an exact test when the sharp null is true, with rejection probabilities that actually deviate further from 
nominal value as the sample size grows in panel d. Results for both "β0∼j = β̂∼j" and "constrained max" appear to converge to those of 

"β0~j = β~j", even in panel d where the sufficient moment conditions do not hold.35 "β0∼j = β̂∼j" is not, however, finite sample exact, as 
shown in panel d where with unruly regressors rejection rates are well above nominal value. The "constrained max" with the liberal 
bounds given above, however, controls size in finite samples while converging to the impractical test based upon "β0~j = β~j". 

Table 5 considers a Monte Carlo where other-treatment-stratified permutation is an option. The data generating process is given by 

yi = β1x1i + β2x2i + εi, with εi = β1ix1i + β2ix2i + d1x2
1i + d1x2

2i+|wi|
1/2

+ ηi (4.3)  

iid xji = U{ − 4, − 3, − 2, − 1, 1, 2, 3, 4} & βji = U( − a, a) + d2x∼j, and inid ηi = sin(i)*t(v) & wi = sin(i)*t(4.2), (4.4)  

where U{} denotes uniformly distributed on the given integers. I consider two scenarios: independent, where x1i and x2i are drawn 
independently, and correlated, where the two variables are constrained to have the same sign but are otherwise independently 
distributed across the integers. When d1 = 1 (panel a) there is specification error in the form of quadratic treatment effects, whereas 
when d2 = 1 (panel b) there is specification error in terms of treatment interactions. In both cases, E(xjiεi) = 0 holds, while E(xjiεi|x~ji) =
0 when x1i and x2i are independent, but E(xjiεi|x~ji) ∕= 0 when x1i and x2i are correlated. Other-treatment-stratified permutation is only 
guaranteed to be asymptotically valid when the xji are independent, whereas all other methods (provided v > 2 so that the error 
disturbance has enough moments) are guaranteed to have asymptotically accurate or conservative rejection rates. This is seen in panels 
(a) and (b) of the table, where with v = 2.1 rejection rates using all other methods other than "max over β0~j" (which remains slightly 
conservative) rapidly converge to nominal value, while size distortions using other-treatment-stratified permutation actually increase 
with sample size when the regressors are correlated. This illustrates the more restrictive assumptions needed for asymptotic validity 
with this method. However, when a = d1 = d2 = 0 and the sharp null is true (panels c and d) other-treatment-stratified permutation is 
always finite sample exact, whereas otherwise this is only true of the impractical "β0~j = β~j" and, when the xji are independent, 
permute-one. This is shown in panels (c), with v = 2.1, and (d), where v = 0.21 magnifies the deviations from nominal level of non- 
exact methods. "max over β0~j" & "constrained max" provide control of rejection probabilities when the sharp null is true, albeit very 
conservatively in panel (d). This raises concerns over power, which is explored in Table 6 which reports rejection rates when pa
rameters are such that the conventional test has a 0.50 rejection frequency when the sharp null is true.36 "max over β0~j" has 
persistently lower rejection rates than other methods, although not as low as might be expected from Table 5, while the "constrained 
max" has power that converges to that of "β0~j = β~j". As noted earlier, other-treatment-stratified permutation also has issues of power 
when inter-treatment correlation restricts the range of outcomes observed in stratified permutations, with rejection rates perversely 
declining with sample size in panel (d) of Table 6. 

We postpone a summary evaluation of subset testing methods to the next section, which applies randomization inference to a broad 
practical sample of published papers. Instead, Table 7 examines the convergence of the individual p-values of other methods to those of 
the finite sample exact, broadly asymptotically valid, and totally impractical "β0~j = β~j" subset testing method by reporting the 
average absolute difference of p-values in testing true and false nulls in the realizations of the dgps of Tables 4–6. As can be seen, when 
the moment conditions hold, panels (a) and (c), the p-values of "constrained max" and especially "β0∼j = β̂∼j" converge to those of "β0~j 

35 Table 7 below gives more detailed evidence on convergence of individual p-values, but for the interim convergence to "β0~j = β~j" is discussed in 
terms of average rejection rates.  
36 As the conventional test has sustained distortions away from nominal level when the regressors or errors don’t satisfy the assumptions needed 

for asymptotic conventional accuracy (Tables 4 and 5 earlier), rejection probabilities for randomization inference do not necessarily converge to the 
.50 level in the table. 
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= β~j", while this is sometimes the case (panel b) and sometimes not (panel d) when the sufficient conditions do not hold. In contrast, in 
large samples p-values for "max over β0~j" generally remain substantively bounded away from "β0~j = β~j", confirming the persistent 
conservatism of this approach. Finally, while conventional robust p-values converge to those of "β0~j = β~j" when the moment con
ditions hold, those of other-treatment-stratification remain quite different, especially when treatment measures are correlated, in both 
small and large samples. This complicates the interpretation of results, as large differences between other-treatment-stratification and 
conventional and other forms of randomization inference may be due to failings of the latter, the more limited applicability of the 

Table 7 
Absolute difference of p-values from those of β0~j = β~j in tests of true & false nulls.   

conventional robust β0∼j = β̂∼j constrained max over β0∼j max over β0∼j other-treatment-stratified 

β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 

(a) dgp of Table 4a, 4b, & 4c: moment conditions hold, sharp & heterogeneous treatment effects 
20 .034 .094 .009 .014 .025 .036 .031 .039 na na 
200 .016 .045 .004 .003 .013 .012 .020 .018 na na 
2000 .012 .021 .002 .001 .008 .006 .017 .014 na na 
20000 .010 .014 .001 .001 .005 .003 .016 .015 na na 
(b) dgp of Table 4d: moment conditions don’t hold, sharp treatment effects 
20 .118 .122 .032 .031 .038 .038 .043 .043 na na 
200 .178 .178 .020 .019 .014 .014 .017 .017 na na 
2000 .206 .209 .008 .008 .006 .006 .010 .009 na na 
20000 .217 .222 .004 .004 .003 .003 .008 .007 na na  

ind corr ind corr ind corr ind corr ind corr 

(c) dgp of Table 5a, 5b, & 5c: moment conditions hold, sharp & heterogeneous treatment effects 
20 .019 .025 .006 .008 .018 .021 .021 .022 .073 .138 
200 .011 .012 .003 .003 .011 .012 .016 .016 .030 .095 
2000 .010 .010 .002 .002 .006 .007 .016 .016 .029 .092 
20000 .009 .009 .001 .001 .003 .004 .017 .016 .028 .091 
(d) dgp of Table 5d: moment conditions don’t hold, sharp treatment effects 
20 .112 .092 .045 .051 .046 .050 .047 .051 .096 .119 
200 .173 .154 .065 .058 .058 .053 .062 .056 .032 .078 
2000 .184 .176 .065 .061 .057 .055 .068 .063 .018 .085 
20000 .186 .182 .056 .056 .049 .050 .070 .065 .014 .097 

Notes: Tests of true and false nulls as in Tables 4, 5 and 6 above. Reported figures are the average of average rejection rates for true nulls and false 
nulls. For false nulls, the average is across the two (positive & negative) parameter values yielding a 0.50 conventional rejection rate; for "ind" 
(independent) and "corr" (correlated), averages are calculated across the individual rejection rates for the two symmetric regressors. "na" = the subset 
permutation distribution is degenerate (i.e. only one outcome is possible) in these simulations. 

Fig. 1. Overlap/union of 0.95 conventional and randomization confidence intervals.  
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former, or random chance in environments where both are valid. As shown below, in practice large absolute differences between 
conventional and other-treatment-stratification p-values arise frequently in environments where, based upon sample size and the 
influence of individual observations, conventional inference appears to have much of its asymptotic validity. 

5. Randomization & conventional confidence intervals in a practical sample 

This section compares randomization and conventional confidence intervals in the sample of 53 published experimental papers 
examined in Young (2019), 44 of which contain reported results based on OLS regressions. I focus on treatment specifications that fit 
the framework used in this paper and the extensions in the on-line appendix, namely where (possibly stratified) permutations of 
treatment across observations or groupings of observations are counterfactual potential outcomes. This removes regressions where 
treatment is calculated from group characteristics or applied using multiple cross-cutting criteria in a fashion that does not allow for 
counterfactual permutation,37 leaving 3213 treatment measures in 1066 OLS regressions in 39 papers (listed in the on-line appendix). 
The extension of this paper’s results to stratification in the on-line appendix assumes that the number of strata is finite and the first and 
second moments of treatment are balanced across asymptotically non-negligible strata. Consequently, I also remove regressions where 
procedures ensure that the number of strata grows with the number of treatment groupings38 or that treatment is not, at least in 
principle, asymptotically balanced across non-negligible strata.39 Reduction in this fashion leaves 2944 treatment measures in 1013 
regressions in 35 papers.40 Results including all regressions dropped on the basis of stratification issues, shown in the on-line appendix, 
are all but identical. In the case of a handful of regressions where authors do not include covariates interacted with treatment as 
separate regressors in their own right (assumption A2), I add these to the regression specification. Authors use a variety of standard 

Fig. 2. Conventional vs randomization p-values.  

37 As an example of the former, Duflo et al (2011) randomly assigned students to class sections in Kenyan schools and in some regressions the 
treatment variable is the average baseline test score of peers, permutations of which are not potential outcomes as individual’s own scores 
contribute to the treatment measure for others but cannot contribute to the treatment measure for themselves. As an example of the latter, Dupas 
and Robinson (2013) randomized the provision of health savings technologies to members of credit associations in Kenya with individuals receiving 
multiple treatments depending upon which associations they belonged to. Permutations of these are not a potential outcome, as treatment received 
depends upon the configuration of individuals’ memberships. In both cases, repeating the random treatment allocation procedure and recalculating 
regressors accordingly produces potential outcomes and allows for exact tests of sharp nulls, but these potential outcomes are not permutations of 
the baseline treatment regressors and hence do not fit within the framework of this paper.  
38 For example, Angrist & Lavy (2009) divided schools into treatment/control pairs on the basis of characteristics, so the number of strata equals 

the number of treatment groupings divided by 2.  
39 As examples: In Fong and Luttmer’s (2009) investigation of racial group loyalty and charitable generosity whites and ethnic minorities were 

given different audiovisual treatment combinations. Regressions containing both strata are dropped from the analysis here. In contrast, although 
subjects in Robinson’s (2012) income shocks experiment mentioned earlier did not receive an income shock in week 0, making that and the 
following 13 weeks separate strata with different mean treatments, as week 0 is in principle asymptotically negligible, and in practice accounts for 
only 5% of observations, I retain all those regressions.  
40 Bugni, Canay & Shaikh (2018, 2019) show that White’s heteroskedasticity robust covariance estimate is conservative (i.e. too large) when 

stratified treatment balance is greater than that achieved by random sampling and there is heterogeneity of treatment effects across strata. For 
amenable equations in my sample (370 treatment effects in 168 equations in 7 papers), I have calculated the smallest standard error estimate 
implied by their theory (that mechanisms to balance treatment within strata ensure that root-N times the deviation of strata mean treatment from 
the target value has asymptotically zero variance), and find that on average it is only 3 percent smaller than White’s standard error estimate (with 
strata fixed effects, which appear in some form in most of the equations in my sample; without strata fixed effects the difference rises to 6 percent) 
and no more than 10 percent smaller in 95 percent of cases. Since this standard error estimate mechanically equals White’s when there is no 
heterogeneity of average treatment effects across strata, this result suggests that these concerns are generally not of substantive importance. (I say 
"amenable" because their theory concerns regressions without covariates other than strata fixed effects where treatment is measured by mutually 
exclusive dummies and applied to single observations. Only 2 such regressions appear in my 1000+ practical sample. To broaden the comparison, I 
take all equations where treatment regimes are applied to single observations and can be recoded as mutually exclusive treatment effects and strip 
out all covariates other than strata fixed effects, producing the 168 regressions just mentioned.) 
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error estimates, homoskedastic, heteroskedasticity robust, and clustered at, below, and across treatment groupings, as well as the 
occasional bootstrap or jackknife. The on-line appendix proves the asymptotic equivalence of conventional and randomization 
inference with clustering at levels other than the treatment grouping (when allowed by the cross-correlations in errors), but clustering 
decisions themselves often have substantive effects. To ease comparison, I homogenize methods by always calculating conventional 
and randomization test statistics using standard errors clustered at the treatment grouping level (equivalently, the heteroskedasticity 
robust standard error estimate when treatment is applied to individual observations). 

Fig. I graphs the ratio of the overlap to the union41 of the 0.95 conventional and randomization confidence intervals for individual 
coefficients. In the case of equations with multiple treatment measures, as a baseline I set the randomization null on not-directly-tested 
measures equal to their estimated effects, reviewing results with alternative approaches later on. As the number of estimated treatment 
effects in a given paper ranges from a low of 4 to a median of 52 and an extraordinary high of 794, the figure reports results for in
dividual treatment effects but also paper means, where each paper carries equal weight in the presentation. On the x-axes I place the 
log10 number of treatment groupings or the largest coefficient leverage share of any treatment grouping in the regression. While 
leverage is usually defined in terms of the diagonal elements of the hat matrix (X(X′X)

− 1X′), for the case of a single coefficient one can 
define the same using the diagonal elements of the hat matrix for the partitioned regression, x⌣(x⌣′x⌣)

− 1 x⌣′, where ‿ denotes the residuals 
from the projection on the remaining regressors. While maximum coefficient leverage generally falls with sample size, as noted earlier 
it does not do so when the tails of the distribution of the regressor are excessively thick, so that a finite number of observations retain a 
non-negligible influence on coefficient and standard error estimates, invalidating the assumptions of asymptotic theorems. Regressing 
the confidence interval overlaps or the absolute differences in p-values of randomization and conventional inference in the figure on 
the maximum leverage share of a single treatment grouping/cluster and the log10 number of clusters (in the on-line appendix), I find 
the leverage share produces higher R2s and is more consistently statistically significant, and hence provides a better summary of 
conditions under which the two inference methods converge. 

As seen in Fig. I, in practical application randomization confidence intervals converge to their conventional counterparts as either 
the number of observations increases or, more clearly, the maximum leverage share of a cluster/treatment grouping goes to zero. Fig. 2 
graphs the conventional and randomization p-values for individual treatment effects against each other, as well as the paper average of 
the absolute difference between the two against the paper average maximum cluster/treatment grouping leverage share. As can be 
seen, randomization p-values are often substantially larger than conventional estimates when the conventional p-value is low and 

Fig. 3. Randomization inference using other-treatment-stratification compared with other methods.  

41 In 33 (of 2992) cases the .95 randomization confidence interval is unbounded (due to there only being 4 or 5 treatment groups and hence a very 
small number of potential realizations) & the overlap ratio is zero. In an additional 3 cases the confidence interval is not convex and the convex 
cover is used to calculate the overlap. 
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where regression design is highly unbalanced, with one cluster exerting an unusually large influence, a factor that is known to produce 
size distortions in conventional tests.42 Of the 756 treatment effects which are conventionally 0.05 significant, 70 are 0.05 random
ization inference insignificant with an average maximum leverage share of 0.202, while of 707 treatment effects which are 0.05 
randomization inference significant, 21 are conventionally 0.05 insignificant with an average maximum leverage share of 0.042. In 
contrast, for the 2853 treatment effects where the two methods agree on 0.05 significance or insignificance the average leverage share 
is merely 0.026. 

Of the 2944 coefficients tested in Figs. 1 and 2, 2462 appear in equations with more than one treatment effect, and for these I set the 
randomization-inference null on untested treatment effects equal to estimated values (β0∼j = β̂∼j). As noted earlier, an alternative 
approach to subset testing is to permute each treatment measure within the strata created by values of other treatment measures. Fig. 3 
implements this approach for the 1540 coefficients in 435 multi-treatment regressions in 24 papers where the resulting permutation 
distribution is not degenerate.43 In the Monte Carlos above, it was seen that this approach gives rise to substantially different results 
than conventional and other forms of randomization inference when treatment measures are correlated. To this end, in panel (a), 
which compares the p-values found using this method to those found setting β0∼j = β̂∼j, the results are divided according to whether 
the R2 of the regression of the permuted treatment measure on other-treatment-stratification dummies is > 0.5, < 0.5 or < 0.01.44 As 
seen, differences in the p-values delivered by the two methods are often very large when the R2 is greater than 0.5, but virtually 
disappear when the R2 is less than 0.01. These differences translate into similarly large differences with conventional p-values and 
confidence intervals and appear even when regressor leverage is minimal (panel b) and, given well-behaved errors, conventional 
inference is likely to have more of its asymptotic accuracy.45 The correlation of treatment regressors is also strongly associated with the 
width of confidence intervals and the frequency with which treatment effects are found to be significant. For the 628 treatment 
measures where the R2 of the regression on other-treatment dummies is greater than 0.5, the average ln ratio of the width of the other- 
treatment-stratified 0.95 confidence interval to that found using β0∼j = β̂∼j is 0.52746 while 116 treatment measures are found to be 

0.05 significant using β0∼j = β̂∼j but only 96 using other-treatment-stratification. In contrast, for the 906 treatment measures where 
the R2 is less than 0.5, the average ln ratio of confidence intervals is only 0.017, while 247 and 238 treatment measures are found to be 
0.05 significant using β0∼j = β̂∼j and other-treatment-stratification, respectively. 

When individual treatment measures are independently randomized, permuting those measures alone without stratification by 
other treatment provides finite sample exact randomization tests of sharp nulls that are also asymptotically valid within the general 
framework of W1-W4, as noted earlier. In my sample, I find only 94 treatment measures in 51 multi-treatment equations in 4 papers 
that are independently randomized.47 Fig. 4 graphs the permute-one randomization p-values of this method against those found using 
β0∼j = β̂∼j or other-treatment-stratification. As can be seen, the β0∼j = β̂∼j p-values are virtually identical to permute-one, with an 
average absolute difference of 0.002. Other-treatment-stratification p-values vary somewhat more from permute-one, with an average 
absolute difference of 0.008, but are still quite close as the R2 of the regression on other-treatment-stratification dummies is less than 
0.01 in 88 of the 94 cases. 

The third approach to subset testing that provides control of size under sharp nulls discussed earlier above is that of calculating the 

42 In such circumstances, the robust standard error estimate is more volatile than indicated by standard degrees of freedom corrections (see 
Chesher 1989, Young 2016).  
43 As also noted earlier, D’Haultfoeuille & Tuvaandorj (2022) implement this method by stratifying on all covariates, but I take advantage of the 

fact that treatment is independent of non-treatment covariates and only stratify by other treatment measures (including treatment x covariate 
interactions) crossed with overall experimental strata, if such exist, so as to produce a valid subset of the potential outcomes of the experimental 
procedure. Because covariates often take on many values, implementing D’Haultfoeuille & Tuvaandorj’s actual procedure produces non-degenerate 
distributions for only 667 coefficients (276 of which reside in regressions without non-treatment covariates). The results, in the on-line appendix, 
show more extreme versions of the same patterns, as the "strata" now account for even more of the variation in treatment.  
44 Where the original experiment is stratified, the non-permuted treatment variables are crossed with the original stratification variable to create 

new strata so as to generate a subset of potential outcomes consistent with the experimental procedure. In such cases, the R2 reported in the figure is 
the partial R2 taking the regression on the original stratification dummies as the reduced model.  
45 I should note that the impact of the original experimental stratification on randomization p-values is minimal. The average R2 of the regression 

of treatment measures on experimental strata dummies (for 2295 treatment measures in 21 papers which stratify) is .036 (including cases noted 
above removed on the grounds of unbalanced treatment across strata) and the correlation between the p-values found using randomization inference 
with and without the original stratification in such papers (in both cases setting untested nulls equal to estimated values) is .999, while the average 
overlap/union of confidence intervals is .980. In contrast, in Fig. 3 the average partial R2 of the regression of treatment measures on other-treatment 
strata is .433 and the correlation of the p-values using the two methods shown in panel (a) is .887 (.736 when the partial R2 is > .5 and .508 when it 
is > .75).  
46 Excluding here and in the next sentence 6 cases where the other-treatment-stratified .95 confidence interval is unbounded.  
47 I determine these based upon methods described in the paper and the fact that the distribution of the treatment measure is largely invariant 

across strata defined by other treatment measures. Aside from the percentage discounts in Cole et al (2013) discussed above (which provide 4 
measures in 4 regressions), I also find: (a) Beaman and MacGruder’s (2012) investigation of social networks separately randomized the puzzle type 
given to participants (4 measures in 4 regressions); (b) Wisdom et al’s (2010) investigation of information and healthy food choices appears to have 
separately randomized the calorie content and calorie recommendation information (34 measures in 17 regressions); (c) In Robinson’s (2012) study 
of income shocks the marginal distribution of each partner’s shock is largely unaffected by the realization of the other partner’s shock (52 measures 
in 26 regressions). 
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maximum p-value across all possible nulls for untested measures. As was noted, for equations with two treatment measures, the 
maximum p-value across the one untested null can be calculated analytically. For equations with n > 2 treatment measures, with n - 1 
untested nulls, the maximum p-value on unbounded opposite-rays can be calculated analytically. Thus, as shown in the on-line ap
pendix, after transformation to spherical coordinates, the search for the maximum p-value in the unbounded ℝn-1 space of nulls for 
untested measures can be reduced to one of searching in the bounded n-2 dimensional square of spherical angles on [0,π]n-2. This is still 

Fig. 4. Randomization p-values for independently randomized treatment effects by method (94 individual treatment effects).  

Fig. 5. Maximum p-value across all nulls for untested measures compared with setting untested nulls equal to estimated effects (2462 individual 
treatment effects in 531 multi-treatment estimating equations). 
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challenging, as the objective function is discrete and non-differentiable, involving the comparison of values of the test statistic under 
untested nulls for each permutation T of X. For n = 3 (n-2 = 1) I implement a simple grid search, dividing [0,π] evenly into 100, 1000 
and 10,000 points, finding virtually no change between 1000 and 10,000 points in the 330 such cases in my sample. For n > 3 
(reaching as high as 18 in one paper) I implement a variety of search methods so as to evaluate their relative effectiveness:  

(a) Grid search. Divide each angle evenly into m points such that the total number of points mn-2 is 10 to 15 thousand and calculate 
the maximum p-value on the opposite rays defined by each set of spherical angles. By n = 8 the grid is very sparse and results are 
clearly dominated by other techniques, so grid search is not used for n > 8.  

(b) Random search. Draw a random vector from the uniform distribution on [0,π]n-2 and calculate the maximum p-value on the 
opposite rays defined by those spherical angles. Call this max and set the counter CR equal to 1. Draw another random vector. If 
max is exceeded, reset the value of max and CR, else increase CR by 1. Continue drawing from the uniform distribution on [0,π]n- 

2 until the counter CR hits 10,000, i.e. no improvement on the current max is found in 10,000 random draws.  
(c) Nelder–Mead (1965) simplex method. Draw n-1 random vectors from the uniform distribution on [0,π]n-2 and calculate the 

maximum on the opposite rays defined by each set of spherical angles. Implement the Nelder-Mead search algorithm across this 
simplex, recalculating the maximum across opposite rays for each point in [0,π]n-2 considered, until the method converges. Call 
this max and set CNM to 1. Draw a fresh set of n-1 vectors from [0,π]n-2 and implement the Nelder-Mead search again. If max is 
exceeded, reset max and CNM, else increase CNM by 1. Continue creating simplexes and implementing Nelder-Mead until the 
counter CNM hits 100 or 1000. I found little change in the maximum between CNM = 100 and 1000. Of 253 coefficients in 
equations with n > 4 found to be 0.05 significant with CNM = 100, only one is rendered 0.05 insignificant with CNM = 1000.  

(d) Greedy sequential grid search. Draw a random vector from the uniform distribution on [0,π]n-2. Implement a sequential 100 
point grid search on each of the n-2 dimensions (selected in random order), greedily setting the value for each dimension equal 
to that which maximizes the objective function in its 100 point unidimensional search (choosing randomly across values in case 
of ties). Continue until a full round of n-2 sequential grid searches fails to improve the value. Call this max and set CGR equal to 1. 
Draw a new random vector and implement the sequential greedy grid search again. If the previous maximum is exceeded, reset 
max and CGR, else increase CGR by 1. Continue until CGR equals 10. This method was found to be computationally more costly 
and less effective than Nelder–Mead with CNM = 100, and hence higher values of CGR were not implemented. 

Of the above methods, I find Nelder–Mead search with CNM = 1000 to be the most effective,48 as it equals the maximum p-value across 
all methods 90 percent of the time, and differs from that maximum by an average of only 0.003 (0.591 versus 0.594) in the remaining 
10 percent of cases, where in no instance is a 0.05 significant Nelder–Mead result found to be 0.05 insignificant using other search 
techniques. Nelder–Mead with CNM = 100 alone on average outperforms all other methods.49 

Fig. 5 below graphs the maximum randomization p-value across untested nulls found across all search methods described above 
against that found using the baseline approach setting β0∼j = β̂∼j. As shown in panel (a), the maximum p-value is in some cases very 
much higher, although these typically involve nulls on untested measures that are very far removed from estimated treatment effects. 
Panel (b) illustrates this by constraining the untested nulls to the region where the p-value of the conventional Wald statistic, 
(β̂∼j − β0∼j)′V(β̂∼j)

− 1
(β̂∼j − β0∼j), is greater than 10− 10. Most of the extreme maximum p-values disappear. Regression analysis in the 

on-line appendix finds that differences between the "max across β0~j" (whether constrained or not) and β0∼j = β̂∼j p-values are strongly 
related to the maximum leverage of an individual treatment grouping.50 Notwithstanding that, large differences do arise in cases with 
low maximum leverage, although these are largely eliminated by imposing bounds on the nulls, as illustrated in panels (c) and (d) of 
the figure. 

In equations with more than one treatment regressor, β0∼j = β̂∼j finds 531 treatment measures to be statistically significant at the 
0.05 level, but only 423 of the same are found to be so using the maximum p-value across all β0∼j nulls, suggesting relative power of 0.8 
if failures to reject are taken to be Type II errors. Imposing the lax bound used in panel (b) raises the number of 0.05 significant effects 
to 469, or close to 0.9 of the level found setting nulls equal to estimated effects. Comparing results across the reduced set of coefficients 
that can be tested using other-treatment-stratification as well, the unconstrained maximum across β0∼j nulls finds 0.83 of β0∼j = β̂∼j 

0.05 significant results to be 0.05 significant, while other-treatment-stratification finds 0.87 of these to be 0.05 significant.51 Changes 
in p-values from those setting β0∼j = β̂∼j are much larger with other-treatment-stratification, averaging 0.069 across the panels of 

48 The actual number of Nelder-Mead searches used to find the maximum which is then not improved in 1000 subsequent tries is less than 1000 in 
.83 of cases and less than 2000 in .98 of cases.  
49 Average maximum p-values for individual coefficients in equations with n > 4 are .448 with random search until 10000 failures to improve, .455 

with the computationally costly greedy sequential 100 point grid search until 10 failures to improve and .456 with comparatively rapid Nelder-Mead 
simplex search until 100 failures to improve. Nelder-Mead simplex search until 1000 failures to improve raises this average to .460 with, as noted 
above, almost no change for results found to be .05 significant with CNM = 100.  
50 Also significant, albeit less robustly so across specifications, are the number of untested treatment measures and the p-value and p-value squared 

found setting the null equal to estimated values (with p-values near one found to be, rather obviously, more difficult to raise, as also are p-values 
near zero).  
51 Overall, other-treatment-stratification achieves .92 of the 05 rejection rate found setting untested nulls equal to estimated values as it finds a 

number of otherwise insignificant results to be significant. 
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Fig. 3(a), while in the same sample the difference between the maximum across β0∼j nulls and β0∼j = β̂∼j is only 0.038. When other- 

treatment-stratification finds an otherwise β0∼j = β̂∼j 0.05 significant result to be 0.05 insignificant, only 0.33 of the other-treatment- 

stratification p-values lie below 0.1. In contrast, when the maximum across β0∼j nulls finds an otherwise β0∼j = β̂∼j 0.05 significant 
result to be 0.05 insignificant, fully 0.89 of the maximum p-values still lie below 0.1. 

To summarize the results and discussion of this and the preceding section: Whenever treatment is independently applied, inference 
for a subset of treatment measures based upon permuting those treatment measures alone (permute-one) provides exact tests of sharp 
nulls while retaining broad asymptotic validity, making this procedure a natural choice. When treatment measures are correlated, 
other-treatment-stratification provides exact tests of sharp nulls for subsets of treatment measures, but may exhibit size distortions in 
both small and large samples when there is heterogeneity in average linear treatment effects across the strata defined by other 
treatment measures, i.e. it provides a biased test in environments where E(xjiεi|x~ji) ∕= 0 but E(xjiεi) = 0 and OLS remains consistent and 
conventional inference asymptotically accurate. When treatment measures are strongly correlated, as is often the case, it frequently 
produces very different p-values than conventional inference, even when regressor leverage is low and the latter is more likely to have 
some of its asymptotic validity, complicating the evaluation of results. Confidence intervals are also wider, producing lower power. 
Finally, in many circumstances, such as when treatment is interacted with covariates, this approach simply cannot be implemented, as 
the other-treatment stratified permutation distribution is degenerate. 

Setting the null on untested measures equal to estimated values (β0∼j = β̂∼j), while not finite sample exact, remains asymptotically 
valid in the broad environment where OLS is consistent and conventional inference asymptotically accurate and in practice produces 
results that converge to conventional values as the influence of individual observations goes to zero. When the data generating process 
allows for asymptotically valid tests of heterogeneous treatment effects, randomization inference is asymptotically locally insensitive 
to the nulls on untested treatment effects while β̂∼j converges to the true parameter values. Not surprisingly, in these circumstances 
β0∼j = β̂∼j produces small sample results that are very close to exact methods such as permute-one (when that is valid) or setting the 
null on untested coefficients (impractically) equal to true values. This approach, however, is not exact, and may fail badly when the 
data generating process does not allow for asymptotically valid inference. 

Calculating the maximum p-value across all β0∼j nulls for untested treatment measures provides control of rejection probabilities 

for tests of sharp nulls and hence insurance against some of the worst-cases scenarios that may be encountered when setting β0∼j = β̂∼j. 
The loss of power in both small and large samples brought on by this conservative approach can be ameliorated if the range of plausible 
nulls for untested measures can be restricted. If this restriction keeps the universe of acceptable nulls root-N local to true parameter 
values, as it does when based upon the conventional Wald statistic if the latter is asymptotically valid, then both power and p-values 
asymptotically converge to those of conventional inference. Selection of very lax bounds allows for this while still providing, as seen in 
Monte Carlos, control of null rejection probabilities below nominal level with extreme data generating processes. The two approaches, 
β0∼j = β̂∼j and max over β0∼j, can be implemented in all of the environments considered in this paper, including the common 
interaction of treatment with covariates. 

When providing confidence intervals and p-values for individual coefficients in multi-treatment equations the Stata package 
randcmdci reports results using β0∼j = β̂∼j as a baseline. It also allows the user to call for the calculation of the maximum randomization 
p-value across β0∼j nulls, with or without bounds, so as to determine the sensitivity of individual coefficient results to nulls on untested 
measures.52 

6. Conclusion 

Randomization inference provides researchers with a rare tool: tests of certain null hypotheses which are exact, regardless of 
sample size or the characteristics of regressors or errors. While the sharp null may seem restrictive, in some circumstances it is quite 
natural. A sharp null of 0, for example, is a test of complete and total irrelevance, a benchmark that most experimentalists would like to 
reject. This test remains exact in circumstances where, because of heavy tailed regressor or error distributions, conventional tests may 
have extraordinarily large size distortions, as seen in the tables above. However, consideration of confidence intervals, i.e. the range of 
non-zero population average linear treatment effects statistically consistent with experimental results, naturally suggests the possi
bility of heterogeneity in the response to experimental treatment. This paper builds on a literature that shows that permutation-based 
tests, despite mistakenly assuming the absence of interdependence between permuted treatment variables and errors such as would be 
induced by heterogeneous treatment effects and specification error, have an asymptotic validity for quite general treatment regressors 
equal to that of conventional tests. 

This paper and its accompanying on-line appendix aim to provide results and techniques for the types of regression specifications 
found in applied experimental work. The above focuses on treatment applied at the observation level and interacted with non- 
treatment covariates, with population inference for not-identically-distributed data using heteroskedasticity robust covariance esti
mates. The on-line appendix generalizes the results to the remaining frameworks found in the published papers surveyed in Young 
(2019). If treatment is applied to groups of observations and the errors and other regressors are correlated across observations, the 

52 Users of randcmdci interested in applying other-treatment-stratification can do so by simply creating and specifying a stratum indicator based 
upon the values of other treatment measures. 
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moment conditions in W1 - W4 and A1 - A3 can be defined in terms of groupings of observations. In this case, provided error cor
relations are such that conventional standard error estimates with clustering at, below, above or even across treatment groupings are 
asymptotically valid, Wald based randomization tests using the same covariance estimates are equally accurate if one adds the 
additional randomization assumption: (A4) the maximum size of an interdependent observational grouping is bounded. If treatment is 
stratified and hence only exchangeable and permuted within strata, within White’s framework it suffices to add that: (A5) across strata 
treatment measures share the same asymptotic average first and second moments. These requirements are usually satisfied in 
experimental settings as potential correlations between observations are typically the result of locational groupings of bounded size, 
while experiments are stratified precisely in order to achieve treatment balance across strata. Without severely restrictive additional 
assumptions, randomization inference has an asymptotic validity equal to that of conventional population inference methods for the 
range of empirical specifications found in published experimental research, while providing finite sample exact tests of sharp nulls 
such as that of complete treatment irrelevance. 

Data availability 

I provide code, but much of the data comes from the public use data files of the AEA and users will have to download it from there 
(as I cannot distribute it). 

Supplementary materials 

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.euroecorev.2023.104644.  

Table A1 
Notation used in appendices A, B & C.  

(a) Sample means: m(xi) = N− 1∑N
i=1xi. 

(b) 1N & 0N denote Nx1 vectors of 1 s & 0 s, 0QxQ a QxQ matrix of 0 s & IQ the QxQ identity matrix. 
(c) Sample demeaned variables: H̃ = OH, where O = IN − 1N1′N/N. 
(d) Symmetric "square root" of a symmetric positive definite matrix: A− ½ such that A− ½A− ½ = A− 1. 
(e) Kronecker product ⊗ & face-splitting (or row by row Kronecker) product •, with TW = T • W. 
(f) As N → ∞ converges almost surely across the distribution of the data D = (X,Z,ε): ̅→a.s. . 

(g) As N → ∞ converges in probability or distribution across the permutations T of X: →
p 

& →d . 
(h) Expectation across row permutations t of x: Et, as in Et(ti) = m(xi) . 
(i) Counterfactual outcome, coefficient estimates and estimated residuals associated with permutation 

T of X under null β0: y(T,β0), β̂(T,β0) & ε̂(T,β0).

(j) Residual maker with respect to Z: M = IN − Z(Z′Z)− 1Z′. 
(k) Rows, columns and elements of matrices: x′Wi, xWj and xWij are the ith row, jth column and ijth 

element of XW (rows distinguished by use of subscript i, with columns referenced with j, k, l…). 
(l) Elements of matrices associated with particular columns of a • product: tip(j)wiq(j), where p(j) and q(j) 

denote the columns of T and W associated with the jth column of TW. 
(m) Probability of the event a ≥ b: Pr{a ≥ b}. 
(n) nPQ = the multivariate iid standard normal, indicated by nPQ ~ N(0PQ,IPQ).   

Table A2 
Notation used in appendix D.  

(a) Coefficient & heteroskedasticity robust covariance estimates for the regression using X, β̂ & V̂(β̂), 
and using permutation T of X under the null β0, β̂(T,β0) & V̂(β̂(T,β0)). 

(b) Subsets of parameters and the null: β⊆ = Pβ & β⊆
0 = Pβ0, where P is a k x PQ matrix of zeros of full 

rank with a single one in each row. 
(c) Wald statistics for subset tests: τ⊆, as in τ⊆(X,β⊆

0 ) = (β̂ − β0)′P′[PV̂(β̂)P′]− 1P(β̂ − β0) & τ⊆(T,β0) =

(β̂(T, β0) − β0)′P′[PV̂(β̂(T,β0))P′]− 1P(β̂(T,β0) − β0). 
(d) Ceilings and floors: i* denotes the smallest integer greater than or equal to (D + 1)(1-α) & v the 

greatest integer less than or equal to v. 
(e) FTj the probability τ⊆(T, β0) is less than or equal to τ⊆(Tj ,β0), Tj a draw from the universe of 

permutations T of X, and pTj the probability τ⊆(T,β0) equals τ⊆(Tj,β0). 
(f) Auxiliary test statistic g(Tj,β0) = FTj - uTjpTj, where uTj is a draw for each Tj from the uniform 

distribution on [0,1]. 
(g) PrT|D{a < b} = probability of the event a < b across the permutation distribution T of X given the 

data D = (Z,XW,ε), and PrD{a < b} = the probability of the event a < b across the data D. 
(h) P(I1) = Pr{u > i* - (D + 1)(1-α)}, where u is uniformly distributed on [0,1]. 
(i) Cumulative distribution functions of central & non-central chi-squared with k degrees of freedom 

and non-centrality parameter λ: Fχ2
k(x) & Fχ2

k,λ(x). 
(j) Non-central coverage rates with central critical values:Gk,λ(a) = Fχ2

k,λ(x(a)), x such that Fχ2
k(x) = a. 

(k) Expectation across permutations T of X: ET.  
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Appendices 

A. Foundational Theorems 

The main result of this paper rests on a theorem first proven by Wald and Wolfowitz (1944) and later refined by Noether (1949) and 
Hoeffding (1951), regarding the asymptotic distribution of 

̅̅̅̅
N

√
times the correlation of a permuted sequence with another sequence: 

Theorem I. Let x′ = (x1, …, xN) and d′ = (d1, …, dN) denote sequences of real numbers, not all equal, and t′ = (t1, …, tN) any of the N! equally 
likely permutations of x. Then as N → ∞, the distribution across the realizations of t of the random variable 

n(ti, di) =
∑N

i=1

[ti − m(ti)][di − m(di)]
(
∑N

i=1
[xi − m(xi)]

2

N

∑N
i=1

[di − m(di)]
2

N

)1/2

N1/2

[

where for h = d, t or x, m(hi) =
∑N

i=1

hi

N

]

,
(Ia)  

converges to that of the standard normal if for all integer τ > 2 

lim
N→∞

Nτ
2− 1∑

N

i=1
[xi − m(xi)]

τ ∑N

i=1
[di − m(di)]

τ

(
∑N

i=1
[xi − m(xi)]

2
)τ/2(

∑N

i=1
[di − m(di)]

2
)τ/2 = 0. (Ib)  

The proof is based upon showing that the moments of n(ti,di) converge to those of the standard normal. A straightforward multivariate 
extension, proven in the on-line appendix, is that if X′ = (x1, ..., xN) and D′ = (d1, ...,dN) are sequences of vectors, T any of the row 
permutations of X, A½ the "square root" of symmetric positive definite matrix A,53 O = IN − 1N1′N/N the centering matrix, H̃ = OH, 
and ⊗ denotes the Kronecker product and • as above the row-by-row Kronecker product, then all the moments of 

n(ti,di) =

(
X̃′X̃
N

⊗
D̃′D̃
N

)− 1/2
(T̃ • D̃)′1N

̅̅̅̅
N

√ (Ic)  

converge to those of the multivariate iid standard normal if (Ib) holds for all pairwise combinations of the elements of the columns of X 
and D and the matrices X̃′X̃/N and D̃′D̃ /N are bounded with determinant > γ > 0 for all N sufficiently large. 

Theorem I is easily extended to a probabilistic environment by noting the following result due to Ghosh (1950) that allows us to 
translate the almost sure characteristics of an infinite number of moment conditions into an almost sure statement regarding a 
distribution: 

Theorem II. If all the moments of the cumulative distribution function FN(x) converge almost surely (in probability) to those of F(x) which 
possesses a density function and for which, with μk+1 denoting the absolute moment of order k + 1, 

lim
k→∞

αk+2μk+1

k + 2!
= 0 for any given value of α, (IIa)  

then FN(x) converges almost surely (in probability) to F(x).  

Condition (IIa) is, of course, true for the normal distribution. Hoeffding (1952) provides an alternate proof of convergence in prob
ability without use of condition (IIa) to any F(x) that is uniquely determined by its moments. By virtue of the Cramér-Wold device, 
Ghosh’s Theorem covers the multivariate case given in (Ic) above, as for all λ such that λ′λ = 1, all moments of λ′n(ti,di)converge to 
those of the standard normal. Below, Theorems I and II and almost sure moment characteristics of the sequences X, Z and ε guaranteed 
by White’s assumptions W1 - W4 and the additional randomization assumptions A1 - A3 above are used to characterize the almost sure 
asymptotic distribution across row permutations T of X of products such as T′Oε/

̅̅̅̅
N

√
. 

A less demanding form of Theorem I provides weaker conditions under which the mean of products converges in probability across 
permutations to the product of means: 

Theorem III. Let x′ = (x1, …, xN) and d′ = (d1, …, dN) denote sequences of real numbers, possibly all equal, and t′ = (t1, …, tN) any of the N! 
equally likely permutations of x. Then as N → ∞, across the permutations t of x the random variable 

m(tidi) − m(xi)m(di) =
∑N

i=1

tidi

N
−
∑N

i=1

xi

N
∑N

i=1

di

N
→
p

0, (IIIa)  

provided 

53 With E the matrix of eigenvectors & Λ½ the diagonal matrix of square roots of the eigenvalues, A½ = EΛ½E’. 
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lim
N→∞

∑N

i=1

[xi − m(xi)]
2

N

∑N

i=1

[di − m(di)]
2

N

N
= 0. (IIIb) 

If cN is a sequence that converges to zero and the stronger condition 

∑N

i=1

[xi − m(xi)]
2

N
∑N

i=1

[di − m(di)]
2

N
is asymptotically bounded (IIIc)  

holds, then across the permutations t of x 
̅̅̅̅
N

√
[m(tidi) − m(xi)m(di)]cN →

p
0. (IIId) 

The proof is short and can be given here. If either the xi or di are all identical (xi = x or di = d), then IIIa and IIId follow immediately 
as 

∑N

i=1

tidi

N
= x

∑N

i=1

di

N
= m(xi)m(di) or

∑N

i=1

tidi

N
= d

∑N

i=1

ti

N
= m (xi)m (di). (A.1)  

Assuming this is not the case, we first use the symmetry and equal likelihood of permutations to calculate the expectation of ti and 
products of ti across the row permutations t of x: 

Et(ti) =
∑N

i=1

xi

N
= m (xi), Et

(
t2
i

)
=
∑N

i=1

x2
i

N
= m

(
x2

i

)

& Et
(
titj∕=i

)
=
∑N

i=1

∑N

j=1

xixj

N(N − 1)
−
∑N

i=1

x2
i

N(N − 1)
=

m (xi)
2N

N − 1
−

m
(
x2

i

)

N − 1
.

(A.2)  

Next, we calculate the mean and variance of m(tidi) - m(xi)m(di) across the realizations of t: 

Et[m(tidi) − m(xi)m (di)] =
∑N

i=1

Et(ti)di

N
− m(xi)m (di) = 0,

Et
[
(m(tidi) − m(xi)m (di))

2]
= Et

[
m(tidi)

2]
− m(xi)

2m (di)
2
=
∑N

i,j=1

Et
(
titj
)
didj

N2 +
∑N

i=1

Et
(
t2
i

)
d2

i

N2 − m(xi)
2m (di)

2

=

(
m (xi)

2N
N − 1

−
m
(
x2

i

)

N − 1

)(

m (di)
2
−

m
(
d2

i

)

N

)

+ m
(
x2

i

)m
(
d2

i

)

N
− m(xi)

2m (di)
2

=

[
m
(
x2

i

)
− m (xi)

2][m
(
d2

i

)
− m (di)

2]

N − 1
,

(A.3)  

where subscripted i,j denotes the summation across the two indices excluding ties between them. If the last line of (A.3) converges to 
0 (condition IIIb), then across the permutations t of x m(tidi) - m(xi)m(di) converges in mean square and hence in probability to 0, as 
stated in IIIa. If [m (x2

i ) − m (xi)
2
]* [m (d2

i ) − m (di)
2
] is bounded (condition IIIc), 

̅̅̅̅
N

√
[m(tidi) − m(xi)m(di)] is a mean zero random var

iable with bounded variance, so if cN→0 then 
̅̅̅̅
N

√
[m(tidi) − m(xi)m(di)]cN converges in probability to zero, as stated in the IIId. 

Theorem III is used in proofs to make statements regarding the convergence in probability of means of products, such as T′Z /N. If 
the sequences X and D are such that conditions (IIIb) and (IIIc) hold almost surely and cN ̅→

a.s. 0, we can speak of (IIIa) and (IIId) almost 
surely (across the sequences of the data) converging in probability (across the distribution generated by permutations T of X given the 
data). All references to almost sure convergence below refer to the sequences of the data, while all references to convergence in 
probability and distribution are with respect to the permutations T of X. 

B. Proof of (R1) 

Following each permutation of treatment, the dependent variable is adjusted in accordance with the null and the realization T of 
treatment 

y(T, β0) = y + (T • W − X • W)β0 = XW(β − β0) + Zγ + ε + TWβ0. (B.1)  

With M = I − Z(Z′Z)− 1Z′ denoting the residual maker with respect to Z, using the fact that MZ = 0NxK the estimated coefficients and 
residuals associated with T and β0 are seen to be 
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β̂(T,β0) = (T′WMTW)
− 1T′WMy(T,β0)

⇒ β̂(T,β0) − β0 = (T′WMTW)
− 1T′WMXW(β − β0) + (T′WMTW)

− 1T′WMε,
(B.2)  

ε̂(T,β0) = My(T,β0) − MTW β̂(T,β0) = MXW(β − β0) + Mε − MTW(β̂(T,β0) − β0). (B.3)  

We begin by calculating the asymptotic distribution of the coefficients associated with permuted treatment and then establish the 
probability limits of the covariance estimates. 

The following Lemma, proven in Appendix C below, will be useful: 

Lemma 1. White’s assumptions W1 - W4 and the additional A1 - A3 ensure that  

(a) (Z′Z/N, W′W/N, X̃
′
X̃/N & W̃

′
εW̃ε/N [where Wε = W • ε] are all almost surely strictly positive definite with determinant > γ 

> 0 for all N sufficiently large.  

(b) Z′ε/N ̅→
a.s. 0K, X′Wε/N ̅→

a.s. 0PQ & W̃
′
εW̃ε/N − W′εWε/N ̅→

a.s. 0QxQ.

(c) The sample means of the product of the elements of one through four columns of X or the elements of one, two or four columns 
of D = (XW,Z,ε) (no more than two of which are εi) are almost surely bounded, as are (Z′Z/N)

− 1
, (W′W/N)

− 1
,

( X̃
′
X̃/N)

− 1 & (W̃
′
εW̃ε/N)

− 1
.

(d) Condition IIIc of Theorem III almost surely holds for the mean of the product of the elements of one or two of the columns of T 
with the elements of two columns of D = (XW,Z,ε), no more than one of which is εi, so that with p and q denoting columns of T 
and j and k those of D 

m
(
tipdijdik

)
− m

(
xip
)
m
(
dijdik

)
→
p

0, m
(
tiptiqdijdik

)
− m

(
xipxiq

)
m
(
dijdik

)
→
p

0 &
if cN ̅→

a.s. 0 then
̅̅̅̅
N

√ [
m
(
tipdijdik

)
− m

(
xip
)
m
(
dijdik

)]
cN →

p
0.

(e) xip & wiqεi almost surely satisfy condition Ib of Theorem I for all column pairs p of X and q of Wε, while X̃
′
X̃ /N & W̃

′
εW̃ε /N are 

bounded with determinant > γ > 0 for all N sufficiently large, so that across the row permutations T of X we have 

(
X̃

′
X̃

N
⊗

W̃
′
εW̃ε

N

)− 1/2
(T̃ • W̃ε)

′1N
̅̅̅̅
N

√ →d nPQ, where nPQ ∼ N(0PQ, IPQ).

As elsewhere in this paper, almost sure limits are with respect to the data sequence D = (XW,Z,ε), while probability limits and limiting 
distributions are with respect to the probability distribution generated by the N! equally likely row permutations T of X. 

Asymptotic Distribution of Coefficient Estimates 
Multiplying (B.2) by 

̅̅̅̅
N

√
, we have 

̅̅̅̅
N

√
(β̂(T,β0) − β0) =

(
T′WMTW

N

)− 1T′WMXW

N
r +

(
T′WMTW

N

)− 1T′WMε
̅̅̅̅
N

√ , (B.4)  

where r =
̅̅̅̅̅̅
N(

√
β − β0). Let tWk and xWl denote the kth and lth columns of TW and XW, with the ith elements of these vectors given by 

tip(k)wiq(k) and xip(l)wiq(l), where p(j) and q(j) denote the columns of T (or X) and W associated with the jth column of TW (or XW). With this 
notation, we see that the klth element of T′WMTW/N can be expressed as 
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t′Wk MtWl

N
=

t′Wk
[
IN − Z(Z′Z)− 1Z′

]
tWl

N
= m

(
tip(k)tip(l)wiq(k)wiq(l)

)
− m

(
tip(k)wiq(k)z′i

)
(

Z′Z
N

)− 1

m
(
tip(l)wiq(l)zi

)
,

so
t′Wk MtWl

N
−
[
m
(
xip(k)xip(l)

)
− m

(
xip(k)

)
m
(
xip(l)

)]
m
(
wiq(k)wiq(l)

)
=

[
m
(
tip(k)tip(l)wiq(k)wiq(l)

)
− m

(
xip(k)xip(l)

)
m
(
wiq(k)wiq(l)

)]

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟

→
p

0 (Lemma1d)

+ m
(
xip(k)

)
m
(
xip(l)

)

⎡

⎢
⎢
⎢
⎢
⎣

m
(
wiq(k)wiq(l)

)
− m

(
wiq(k)z′i

)
(

Z′Z
N

)− 1

m
(
wiq(l)zi

)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
a.s. = m(wiq(k)wiq(l)) for N sufficiently large (Lemma1a)

⎤

⎥
⎥
⎥
⎥
⎦

−
[
m
(
tip(k)wiq(k)z′i

)
− m

(
xip(k)

)
m
(
wiq(k)z′i

)]

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

→
p

0′K (Lemma1d)

(
Z′Z
N

)− 1

⏟̅̅̅̅̅⏞⏞̅̅̅̅̅⏟
a.s. bounded (Lemma1c)

[
m
(
tip(l)wiq(l)zi

)
− m

(
xip(l)

)
m
(
wiq(l)zi

)]

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

→
p

0K (Lemma1d)

− m
(
xip(k)

)
m
(
wiq(k)z′i

)
(

Z′Z
N

)− 1

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
a.s. bounded (Lemma1c)

[
m
(
tip(l)wiq(l)zi

)
− m

(
xip(l)

)
m
(
wiq(l)zi

)]

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

→
p

0K (Lemma1d)

−
[
m
(
tip(k)wiq(k)z′i

)
− m

(
xip(k)

)
m
(
wiq(k)z′i

)]

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

→
p

0′K (Lemma1d)

(
Z′Z
N

)− 1

m
(
xip(l)

)
m
(
wiq(l)zi

)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
a.s. bounded (Lemma1c)

→
p

0,

(B.5) 

where m(tip(k)wiq(k)z′i) = (m(tip(k)wiq(k)zi1), ... ,m(tip(k)wiq(k)ziK)), and in the third line we use the fact that as m(wiq(k), z′i) = w′q(k)Z /N, 
where wq(k) is the q(k)th column of W which is included in the covariates Z (assumption A2), so for all N sufficiently large that Z′Z /N is 
guaranteed to be invertible w′q(k)Z(Z′Z)− 1is a row vector of zeros with a 1 in the column corresponding to the position of wq(k) in Z. 
Similarly, the klth element of T′WMXW/N can be expressed as 

t′Wk MxWl

N
=

t′Wk
[
IN − Z(Z′Z)− 1Z′

]
xWl

N
= m

(
tip(k)wiq(k)wiq(l)xip(l)

)
− m

(
tip(k)wiq(k)z′i

)
(

Z′Z
N

)− 1Z′xWl

N
=

[
m
(
tip(k)wiq(k)wiq(l)xip(l)

)
− m

(
xip(k)

)
m
(
wiq(k)wiq(l)xip(l)

)]

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

→
p

0 (Lemma1d)

−
[
m
(
tip(k)wiq(k)z′i

)
− m

(
xip(k)

)
m
(
wiq(k)z′i

)]

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

→
p

0′K (Lemma1d)

(
Z′Z
N

)− 1Z′xWl

N
⏟̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅⏟

a.s. bounded (Lemma1c)

+m
(
xip(k)

)
m
(
wiq(k)wiq(l)xip(l)

)
− m

(
xip(k)

)
m
(
wiq(k)z′i

)
(

Z′Z
N

)− 1Z′xWl

N
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟

a.s. = m(wiq(k)wiq(l)xip(l)) for N sufficiently large (Lemma1a)

→
p

0,

(B.6)  

where in the last line we again use the assumption that W is included in Z. 
Combining these results, we have: 

T′WMTW

N
−

X̃
′
X̃

N
⊗

W′W
N

→
p

0PQ x PQ &
T′WMXW

N
→
p

0PQ x PQ.
(B.7)  

Finite values of r =
̅̅̅̅
N

√
(β − β0), multiplied by T′WMXW/N, asymptotically have no influence in (B.4). As can be seen, assumption A2 

that W is a part of Z (or the less plausible alternative that the mean of the xip are asymptotically zero) is key to this result. 
The remaining part of (B.4) is the vector T′WMε/

̅̅̅̅
N

√
, the kth term of which equals: 

t′Wk Mε
̅̅̅̅
N

√ =
̅̅̅̅
N

√
m
(
tip(k)wiq(k)εi

)
−

̅̅̅̅
N

√
m
(
tip(k)wiq(k)z′i

)
(

Z′Z
N

)− 1Z′ε
N

=
̅̅̅̅
N

√
[

m
(
tip(k)wiq(k)εi

)
−

m
(
xip(k)

)
m
(
wiq(k)εi

)

]

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
vk

−
̅̅̅̅
N

√
[

m
(
tip(k)wiq(k)z′i

)
−

m
(
xip(k)

)
m
(
wiq(k)z′i

)

] (
Z′Z
N

)− 1Z′ε
N

⏟̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅⏟

̅→
a.s.

0K (Lemmas1b,1c)
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟

→
p

0 (Lemma1d)

+
̅̅̅̅
N

√

⎡

⎢
⎢
⎢
⎢
⎣

m
(
xip(k)

)
m
(
wiq(k)εi

)
− m

(
xip(k)

)
m
(
wiq(k)z′i

)
(

Z′Z
N

)− 1Z′ε
N

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
a.s.=m(wiq(k)εi) for N sufficiently large (Lemma1a)

⎤

⎥
⎥
⎥
⎥
⎦
.

(B.8)  

The only term that asymptotically is non-zero is vk which, as m(tip(k)) = m(xip(k)), equals the kth element of (T̃ • W̃ε)′1N/
̅̅̅̅
N

√
. Applying 

Lemma 1e we then see that 
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(
X̃

′
X̃

N
⊗

W̃
′
εW̃ε

N

)− 1/2T′WMε
̅̅̅̅
N

√ →d nPQ, where nPQ ∼ N(0PQ, IPQ), (B.9)  

so... (B.10)
(

X̃
′
X̃

N
⊗

W̃
′
εW̃ε

N

)− 1/2(X̃
′
X̃

N
⊗

W′W
N

)
almost surely bounded positive definite matrices (Lemmas1a,1c)

̅̅̅̅
N

√
(β̂(T, β0) − β0) =

(
X̃

′
X̃

N
⊗

W̃
′
εW̃ε

N

)− 1/2(X̃
′
X̃

N
⊗

W′W
N

) (
T′WMTW

N

)− 1

⏟̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅⏟

→
p

(

X̃
′
X̃

N ⊗W′W
N

)− 1

T′WMXW

N⏟̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅⏟

→
p

0PQxPQ

r⏟⏞⏞⏟
bounded

+

(
X̃

′
X̃

N
⊗

W̃
′
εW̃ε

N

)− 1/2(X̃
′
X̃

N
⊗

W′W
N

)(
T′WMTW

N

)− 1(X̃
′
X̃

N
⊗

W̃
′
εW̃ε

N

)1/2

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

→
p

IPQ

(
X̃

′
X̃

N
⊗

W̃
′
εW̃ε

N

)− 1/2T′WMε
̅̅̅̅
N

√

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟

→d nPQ

→d nPQ.

(B.10)  

Probability Limit of the Heteroskedasticity Robust Covariance Estimate 
For the heteroskedasticity robust covariance estimate we have 

NVr(β̂(T,β0)) =

(
T′WMTW

N

)− 1

A
(

T′WMTW

N

)− 1

, where A =
(MTW • ε̂(T,β0))

′
(MTW • ε̂(T,β0))

N
(B.11)  

with klth term given by 

Akl =
1
N

∑N

i=1

(

tip(k)wiq(k) −
∑K

a=1
zia δ̂ak

)(

tip(l)wiq(l) −
∑K

b=1
zib δ̂bl

)

ε̂i(T,β0)
2
,

where ε̂i(T, β0) = εi −
∑K

c=1
zic η̂c +

∑PQ

d=1

(

xip(d)wiq(d) −
∑K

e=1
zie τ̂ed

)
rd
̅̅̅̅
N

√ −
∑PQ

f=1

(

tip(f )wiq(f ) −
∑K

g=1
zig δ̂gf

)
r̂ f
̅̅̅̅
N

√ ,

(B.12)  

using the formula for ε̂(T, β0) from (B.3) earlier with r =
̅̅̅̅
N

√
(β − β0), r̂ =

̅̅̅̅
N

√
(β̂(T,β0) − β0), δ̂k = (Z′Z)− 1Z′tWk, τ̂k = (Z′Z)− 1Z′xWk 

and η̂ = (Z′Z)− 1Z′ε. From Lemmas 1b and 1c we have η̂ ̅→a.s. 0K and from 1c know that τ̂k is almost surely bounded. The plim of δ̂k 
across the distribution of T is bounded as 

δ̂k − m
(
xip(k)

)
(

Z′Z
N

)− 1Z′wq(k)

N
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

a.s. bounded (Lemma1c)

=

(
Z′Z
N

)− 1

⏟̅̅̅̅̅⏞⏞̅̅̅̅̅⏟
a.s. bounded (Lemma1c)

[
m
(
tip(k)wiq(k)zi

)
− m

(
xip(k)

)
m
(
wiq(k)zi

)]

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

→
p

0K (Lemma1d)

→
p

0K . (B.13)  

As for all N sufficiently large (Z′Z)− 1Z′wq(k) is a vector of zeros with a 1 in the row corresponding to the column position of wq(k) in Z 
and m(xip(k)) is known to be bounded by Lemma 1c, plim δ̂ak= 0 unless a is the column position of wq(k) in Z, in which case plim δ̂ak −

m(xip(k)) = 0. The elements of r are finite and of r̂ are asymptotically multivariate normal with almost surely bounded variance, so 
when divided by a positive power of N have a plim of zero. 

When the terms in (B.12) are multiplied out, most involve a product with an element of r/
̅̅̅̅
N

√
, r̂/

̅̅̅̅
N

√
, or η̂ that has a plim of zero, 

0 to 4 parameters ̂τ and δ̂ with bounded probability limits, and the mean of the product of the elements of 0 to 4 columns of T and the 
elements of 4 columns of D = (XW,Z,ε) (no more than two of which are εi). The following lemma shows that the plim of all such terms is 
zero: 

Lemma 2. White’s assumptions W1 - W4 and the additional A1 - A3 ensure that for some a in (0,½) condition IIIb of Theorem III almost 
surely holds for the mean of the product of the elements of n = one through four columns of T divided by Namax(n− 2,0) with the elements of four 
columns of D = (XW,Z,ε), no more than two of which are εi, so that across the permutations T of X 

m

(

N − amax(n− 2,0)

(
∏n

o=1
tip(o))dijdikdildim

)

− m

(

N − amax(n− 2,0)
∏n

o=1
xip(o)

)

m
(
dijdikdildim

)
→
p

0.

The sample means of the product of the elements of one through four columns of X or four columns of D are almost surely bounded 
(Lemma 1c), so the probability limit in the Lemma is bounded when n = 1 or 2 and 0 when n = 3 or 4. Consequently, in (B.12) every 
term that involves the product of an element of r/

̅̅̅̅
N

√
, ̂r/

̅̅̅̅
N

√
, or η̂ that has a plim of zero with the mean of the product of four columns 

of D with zero, one or two columns of T has a probability limit of zero. Every term in (B.12) that involves the product of n = three or 
four columns of T with four columns of D also includes at least n - 2 r̂/

̅̅̅̅
N

√
terms which can be re-expressed as (r̂ /N1/2− a)(1 /Na)for 
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some a in (0,½). The 1/Na parts can be used to satisfy Lemma 2, while the r̂/N1/2− a part converges in probability to 0. Thus, all such 
terms also have a plim of 0. 

The above only leaves terms in (B.12) that involve the product of two or less columns of T and do not include an element of r /
̅̅̅̅
N

√
, ̂r 

/
̅̅̅̅
N

√
, or η̂, namely 

∑N

i=1

tip(k)wiq(k)tip(l)wiq(l)ε2
i

N
−
∑K

a=1
δ̂ak

∑N

i=1

tip(l)wiq(l)ziaε2
i

N
−
∑K

b=1
δ̂bl

∑N

i=1

tip(k)wiq(k)zibε2
i

N
+
∑K

a=1

∑K

b=1
δ̂ak δ̂bl

∑N

i=1

ziazibε2
i

N

= m
(
tip(k)tip(l)wiq(k)wiq(l)ε2

i

)
−
∑K

a=1
δ̂akm

(
tip(l)wiq(l)ziaε2

i

)
−
∑K

b=1
δ̂blm

(
tip(k)wiq(k)zibε2

i

)
+
∑K

a=1

∑K

b=1
δ̂ak δ̂blm

(
ziazibε2

i

)

where m
(
tip(k)tip(l)wiq(k)wiq(l)ε2

i

)
− m

(
xip(k)xip(l)

)
m
(
wiq(k)wiq(l)ε2

i

)
→
p

0⏟⏞⏞⏟
Lemma 2

& m
(
tip(l)wiq(l)ziaε2

i

)
− m

(
xip(l)

)
m
(
wiq(l)ziaε2

i

)
→
p

0⏟⏞⏞⏟
Lemma 2

,

so Akl −
[
m
(
xip(k)xip(l)

)
− m

(
xip(k)

)
m
(
xip(l)

)]
m
(
wiq(k)wiq(l)ε2

i

)
→
p

0,

(B.14)  

where we use the boundedness of means of products of up to four terms (Lemma 1c) and the fact noted above that plim ̂δak= 0 unless a 
is the column position of wq(k) in Z, in which case plim δ̂ak = m(xip(k)) and zia = wiq(k). This allows us to state that 

A −
X̃

′
X̃

N
⊗

W′εWε

N
→
p

0PQxPQ
(B.15)  

and consequently for the heteroskedasticity robust covariance estimate we have 

NVr(β̂(T,β0)) −

(
X̃

′
X̃

N
⊗

W′W
N

)− 1(X̃
′
X̃

N
⊗

W′εWε

N

)(
X̃

′
X̃

N
⊗

W′W
N

)− 1

→
p

0PQxPQ , (B.16)  

which from (B.10) and Lemma 1b is seen to be the asymptotic covariance matrix of normally distributed 
̅̅̅̅
N

√
(β̂(T, β0) − β0). This 

establishes that for bounded r =
̅̅̅̅
N

√
(β − β0) the distribution of the Wald statistic τ(T,β0) across permutations T converges to that of the 

chi-squared with PQ degrees of freedom. Moreover, every appearance of r in the equation for τ(T,β0) is multiplied by a term that in 
probability across T converges to 0, so that in probability τ(T,β0) converges to τ(T,β), as stated in (R1). 

C. Proofs of Lemmas used in Appendix B 

We make use below of corollaries to Markov’s Law of Large Numbers and the Continuous Mapping Theorem given by White (1984) 
and to the Borel-Cantelli Lemma given by Galambos (1987): 

Markov Corollary: Let di be a sequence of independent random variables such that E(|di|
1+δ) < Δ < ∞ for some δ > 0 and all i. Then 

m(di) − m((E(di)) ̅→
a.s. 0.

Continuous Mapping Theorem Corollary: Let g: ℝk→ ℝl be continuous on a compact set C⊂ℝk . Suppose that bN(ω) and cN are kx1 
vectors such that bN(ω) - cN ̅→

a.s. 0, and for all N sufficiently large, cN is interior to C uniformly in N. Then g(bN(ω)) - g(cN) ̅→a.s. 0. 
Borel-Cantelli Corollary: Let d1, d2, … be an infinite sequence of random variables, Fj(d) the probability dj < d, and uN a non- 
decreasing sequence of real numbers such that for all j Pr{dj < supN uN} = 1, then 

∑∞

j=1

[
1 − Fj

(
uj
)]

< ∞ ⇒ Pr
{

Max
i ≤ N

di ≥ uN

}

infinitely often = 0.

Lemma 1a. By assumption W2 that E(|z+ijz+ik|1+δ) < Δ, and the Markov and Continuous Mapping Theorem Corollaries, Z′+Z+ /N 
converges almost surely to the matrix MN in W2 and is non-singular with determinant > γ > 0 for all N sufficiently large. Using Jensen’s 

Inequality on E(
⃒
⃒
⃒z+ijz+ik|

1+δ
) < Δ, its trace is almost surely bounded from above by Δ1/(1+δ)K+. By the trace and determinant property of 

eigenvalues we then know its smallest eigenvalue is greater than λ= γ/(Δ1/(1+δ)K+)^(K+− 1) > 0. For a real symmetric matrix V, the min 
across all non-zero vectors x of the Rayleigh quotient x′Vx/x′x equals the minimum eigenvalue of V. Since Z and W are part of Z+, it 
follows that the minimum eigenvalues of the sub-matrices Z′Z/N and W′W/N are greater than or equal to that of Z′+Z+ /N. Conse
quently, for all N sufficiently large both matrices are almost surely positive definite with determinants > λK and λQ, respectively. 

By Jensen’s Inequality the assumption E(|x4
ip|

1+θ*
) < Δ in A3 implies that E(|xn

ip
⃒
⃒1+θ*

) < Δn/4 for n = 1…3, so by the Markov 
Corollary 

X̃′X̃
/

N −
∑N

i=1
E(xix′i)/N +

∑N

i=1
E(xi)/N

∑N

i=1
E(x′i)/N ̅→

a.s. 0PxP, (C.1) 
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which using A1 and the Continuous Mapping Theorem Corollary implies that the determinant of X̃′X̃/N is almost surely greater than γ 

> 0 for all N sufficiently large. By assumption W3 E(
⃒
⃒ε2

i z+ijz+ik
⃒
⃒1+δ) < Δ and, using Jensen’s Inequality,E(|εiz+ik|

1+δ
) ≤ E(

⃒
⃒ε2

i z2
+ik

⃒
⃒1+δ)

1/2 

< Δ1/2 < ∞. Applying the Markov Corollary 

W̃
′
εW̃ε

/

N −
∑N

i=1
E
(
ε2

i wiw′i
)
/

N ̅→
a.s. 0QxQ, (C.2)  

where we make use of assumption W1 E(εiz+i) = 0K+, so that m(E(εiwi)) = 0Q. As the minimum eigenvalue of VN =
∑N

i=1E(ε2
i z+iz′+i)/N 

given in W3 is again greater than λ= γ/(K+ Δ1/(1+δ))^(K+− 1) and wi is part of z+i, following the argument above we can say that almost 

surely for all N sufficiently large W̃
′
εW̃ε/N is positive definite with determinant greater than λQ > 0. 

Lemma 1b. Above we saw that E(|εiz+ik|
1+δ) < Δ1/2 < ∞ and by W1 E(εiz+i) = 0K+, so by the Markov Corollary m (εiz+i) ̅→

a.s. 0K+, 

which establishes the first part as Z and XW are both part of Z+. The second part then follows as W̃
′
εW̃ε/N − W′εWε /N = −

m(εiwi)m(εiwi)′ and W is part of Z. 
Lemma 1c. Regarding the sample mean of the product of the elements of one, two or four columns of D = (XW,Z,ε) = (Z+,ε) (no 

more than two of which are εi) from W2 and W4 we know that for positive finite constants δ and Δ E(
⃒
⃒ε2

i
⃒
⃒1+δ) < Δ and E(

⃒
⃒z4

+ik
⃒
⃒1+δ) < Δ. 

Jensen’s Inequality then tells us that E(|εi|
1+δ) < Δ1/2 and E(

⃒
⃒zn

+ik
⃒
⃒1+δ) < Δn/4 for n = 1, 2 or 3, and also that E(

⃒
⃒εn

i
⃒
⃒) < Δn/2(1+δ) for n = 1 

or 2 and E(
⃒
⃒zn

+ik
⃒
⃒) < Δn/4(1+δ) for n = 1 through 4. Applying the Markov Corollary, we have 

m
(
εn

i

)
− m

(
E
(
εn

i

))
̅→
a.s. 0 (n = 1 or 2) & m

(
zn
+ik

)
− m

(
E
(
zn
+ik

))
̅→
a.s. 0 (n = 1, 2, 3 or 4)

which, as |m
(
E
(
εn

i

))
| ≤ m

(
E
(
|εn

i |
))

< Δn/2(1+δ) &
⃒
⃒m
(
E
(
zn
+ik

))⃒
⃒ ≤ m

(
E
(
|zn

+ik|
))

< Δn/4(1+δ),
(C.3)  

tells us that both m (εn
i ) & m (zn

+ik) are almost surely bounded. The proof of 1b showed that m(εiz+ik) converges almost surely to zero. As 
by W3 E(

⃒
⃒ε2

i z+ijz+ik
⃒
⃒1+δ) < Δ by a similar application of Jensen’s Inequality and the Markov Corollary the sample mean of the product 

of ε2
i with any two of the columns of Z+ is seen to be almost surely bounded. What remains is the product of two or four separate 

columns of Z+ or the product of εi with any three of the columns of Z+, but given the preceding results these can be bounded by 
repeatedly applying the Cauchy-Schwarz Inequality 

|m
(
z+ijz+ik

)
| ≤

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

m
(
z2
+ij

)
m(z2

+ik

)
√

,
⃒
⃒m
(
z+ijz+ikz+ilz+im

)⃒
⃒ ≤

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

m
(
z4
+ij

)
m(z4

+ik

)
m(z4

+il

)
m(z4

+im

)4

√

& |m
(
εiz+ijz+ikz+il

)
| ≤

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

m
(
ε2

i z2
+ij

)√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

m(z4
+ik

)
m(z4

+il

)4
√

,

(C.4)  

as the right hand sides of these expressions have already been shown to be almost surely bounded. 
Turning to the mean of the product of the elements of one through four columns of X, by Jensen’s Inequality the assumption 

E(|x4
ip|

1+θ*
) < Δ in A3 implies that E(|xn

ip
⃒
⃒1+θ*

) < Δn/4 and E(|xn
ip|) < Δn/4(1+θ*) for n = 1, 2, 3 or 4, so by the Markov Corollary m (xn

ip) −

m(E(xn
ip)) ̅→

a.s. 0 where |m(E(xn
ip))| ≤ m(E(|xn

ip|))< Δn/4(1+θ*). The sample mean of products of 2, 3 or 4 different columns of X can then 
be bounded using the Cauchy-Schwarz Inequality, as was done in (C.4) above. With regards to the matrix inverses in the Lemma, for an 
invertible positive definite matrix A the largest eigenvalue of A− 1 is equal to the inverse of the smallest eigenvalue of A. Since from the 
proof of Lemma 1a, we know that each of the matrices in Lemma 1a is invertible with a smallest eigenvalue almost surely greater than 
some λ > 0 for all N sufficiently large, it follows that the elements of their inverses are all almost surely bounded. 

Lemma 1d. We are considering the mean of the product of the elements of one or two of the columns of T with the elements of two 
columns of D = (XW,Z,ε) (no more than one of which is εi). To prove IIIc we need only show that the sample moments of the product of 
the elements of one, two or four columns of T and the product of two (at most one of which is εi) or four columns (of which possibly two 
are εi) of D are bounded. This has already been established in 1c. 

Lemma 1e. Lemmas 1a and 1c already established that X̃
′
X̃/N & W̃

′
εW̃ε/N are almost surely bounded with determinant > γ > 0 for 

all N sufficiently large, so all that remains is condition Ib. Define wiqε = wiqεi and, as elsewhere, let superscripted ~ denote sample 
demeaned values. Our objective is to prove that for all integer τ > 2 and all p and q 

Nτ
2− 1
∑N

i=1
x̃τ

ip

∑N

i=1
w̃τ

iqε

/(
∑N

i=1
x̃2

ip

)τ/2(
∑N

i=1
w̃2

iqε

)τ/2

̅→
a.s. 0. (C.5) 

We begin by noting that: 

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

Nτ
2− 1∑

N

i=1
x̃τ

ip
∑N

i=1
w̃τ

iqε

(
∑N

i=1
x̃2

ip
∑N

i=1
w̃2

iqε

)τ/2

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

≤

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

Nτ
2− 1
(

Max
i≤N

x̃2
ipMax

i≤N
w̃2

iqε

)τ
2− 1∑N

i=1
x̃2

ip
∑N

i=1
w̃2

iqε

(
∑N

i=1
x̃2

ip
∑N

i=1
w̃2

iqε

)τ/2

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

=

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

Max
i≤N

x̃
2
ipMax

i≤N
w̃

2
iqε

N
∑N

i=1

x̃
2
ip
N

∑N

i=1

w̃
2
iqε
N

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

τ
2− 1

. (C.6) 
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From A3 we have bounds, E(|w2
iqε2

i |1+θ) < Δ and E(|x4
ip|

1+θ*
) < Δ for some θ and θ* > 0 & Δ < ∞, which by Jensen’s Inequality imply that 

E(|wiqεi|1+θ) < Δ½ & E(|xn
ip|

1+δ) < Δn/4 for n = 1 or 2, as well as E(w2
iqε2

i ) < Δ1/(1+θ), E(|wiqεi|) < Δ1/2(1+θ), E(x2
ip) < Δ1/2(1+θ*) & 

E(|xip|) < Δ1/4(1+θ*). Consequently, with regards to the denominator above, by the Markov Corollary we know that for di = xip or wiqε 
[
m
(
d2

i

)
− m(di)

2]
−
[
m
(
E
(
d2

i

))
− m(E(di))

2]
̅→
a.s. 0. (C.7)  

For a K x K positive definite matrix V with determinant > γ > 0 and non-negative diagonal elements bounded from above by Δ′, by the 
trace and determinant property of eigenvalues the smallest eigenvalue is bounded from below by λ(K)= γ/(KΔ′)^(K-1). By the Schur- 
Horn Theorem, the smallest diagonal element of a real symmetric matrix is greater than or equal to its smallest eigenvalue. Lemmas 1a 

and 1c showed that almost surely X̃
′
X̃/N & W̃

′
εW̃ε/N are bounded with determinants > γ for all N sufficiently large, so almost surely 

the denominator on the right of (C.6) is > λ(P)λ(Q) > 0 for all N sufficiently large. 
Turning to the numerator, since 

Max
i≤N

d̃
2
i ≤ Max

i≤N
d2

i + 2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Max
i≤N

(
d2

i

)
√

|m(di)| + m(di)
2 (C.8)  

and m(wiqεi) converges to zero while m(xip) is bounded (Lemma 1c), to prove (Ib) all that remains is to show that Maxi≤Nx2
ipMaxi≤Nw2

iqε 

/N ̅→a.s. 0. From assumption A3 we know that there exist finite positive constants θ, θ* and Δ, with θ(1 + 2θ*) > 1, such that E(
⃒
⃒
⃒x4

i |
1+θ*

)

< Δ and E(
⃒
⃒
⃒w2

iqε|
1+θ

) < Δ. Consequently, applying Markov’s Inequality 

∑∞

N=1
Pr
{

x2
Np ≥ Na

}
=
∑∞

N=1
Pr
{

x4
Np ≥ N2a

}
≤
∑∞

N=1

Δ
N2a(1+θ*)

< ∞ if 2a(1 + θ*) > 1

&
∑∞

N=1
Pr
{

w2
Nqε ≥ Nb

}
≤
∑∞

N=1

Δ
Nb(1+θ) < ∞ if b(1 + θ) > 1.

(C.9)  

Both conditions can be met with a > 0, b > 0 and a + b < 1 if θ(1 + 2θ*) > 1 as 

1 > a + b >
1

2(1 + θ*)
+

1
1 + θ

= 1 −
θ(1 + 2θ*) − 1

2(1 + θ*)(1 + θ)
(C.10)  

poses no contradiction. Applying the Borel–Cantelli Corollary, we see that Maxi≤Nx2
ipMaxi≤Nw2

iqε/Na+b is almost surely bounded by 1, so 

Maxi≤Nx2
ipMaxi≤Nw2

iqε/N ̅→a.s. 0.
Lemma 2. The sample means of 1 through 4 columns of X and any 4 columns of D = (XW,Z,ε) (no more than two of which are ε) are 

known to be almost surely bounded (Lemma 1c), so to establish condition IIIb it suffices that there exists an a in (0,½) such that the 
following are almost surely bounded 

m

(
x2

ijx2
ikx2

il

N2a

)

≤ max
i≤N

x2
ij

N2a m
(
x2

ikx2
il

)
,m

(
x2

ijx2
ikx2

ilx2
im

N4a

)

≤ max
i≤N

x2
ij

N2a max
i≤N

x2
im

N2a m
(
x2

ikx2
il

)

&
∑N

i=1

d2
ijd2

ikd2
ild2

im

N2 ≤ max
i≤N

d2
ijd2

ik

N
m
(
d2

ild
2
im

)
(C.11)  

where we select indices so that when two elements are εi, dij represents one and dil the other. Lemma1c already established that 
m(x2

ikx2
il) & m(d2

ild
2
im) are almost surely bounded and in the proof of 1e we saw that Maxi≤Nx2

ij/Na is almost surely bounded for ½ > a >

½(1+θ*)− 1. From (W3), (W4) & Hӧlder’s Inequality we have E(|z2
ijε2

i |
1+δ

) < Δ & E(|z2
ijz2

ik|
1+δ

) < E(|z4
ij|

1+δ
)
1/2E(|z4

ik|
1+δ

)
1/2

< Δ. Applying 
Markov’s Inequality 

∑∞

N=1
Pr
{

d2
Njd

2
Nk ≥ Nb

}
≤
∑∞

N=1

Δ
Nb(1+δ) < ∞ if b(1 + δ) > 1. (C.12)  

As δ > 0, we know that there exists a b < 1 such that (C.14) holds, so by the Borel–Cantelli Corollary maxi≤Nd2
ijd2

ik/Nb is almost surely 

bounded and maxi≤Nd2
ijd2

ik/N ̅→a.s. 0, which completes the proof. 

D: Proof of (R2) - (R5) 

We prove (R2) - (R5) generalized to cover subsets of coefficients. Let P denote a k x PQ matrix of zeros of full rank with a single one 
in each row and define τ⊆(X,β⊆

0 ) = (β̂ − β0)′P′[PV̂(β̂)P′]− 1P(β̂ − β0), τ⊆(T,β0) = (β̂(T,β0) − β0)′P′[PV̂(β̂(T,β0))P′]− 1P(β̂(T,β0) − β0), 
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β⊆
0 = Pβ0 and β⊆ = Pβ. While τ⊆(X,β⊆

0 ) is only a function of β⊆
0 , in finite samples τ⊆(T, β0) is a function of β0 as the full vector affects 

the calculation of counterfactual output y(T, β0). White’s conditions W1 - W4 ensure that for a test of the true null τ⊆(X,β⊆) is 
asymptotically distributed chi-squared with k degrees of freedom. (R1) showed that in a finite 

̅̅̅̅
N

√
neighborhood of β0 around 

β τ⊆(T,β0) is asymptotically distributed chi-squared with k degrees of freedom and in probability equal to τ⊆(T,β). 
R2: As in the text define i* as the smallest integer greater than or equal to (D + 1)(1-α) and τ1 < … < τD as the ordered values of τ⊆(T,

β), where if needed define τ0 as 0 and τD+1 as ∞. The logic behind (R2) is illustrated in Fig. A1. For all β⊆
0 such that τ⊆(X,β⊆

0 ) ∈ (τi− 1,τi), 
D - i + 1 of the τ⊆(T,β) outcomes are greater than τ⊆(X,β⊆

0 ) and none equal, and hence the randomization p-value (2.4) for these nulls 
is [D - i + 1 + u]/(D + 1), where u is a draw from the uniform distribution. The conditions for the p-values in each of the regions 
illustrated in the figure to be greater than some nominal level α are then54 

p(τi*− 1) =
D − i* + 2 + u

D + 1
> α ⇒ u > i* − (D + 1)(1 − α) − 1[always true]

p(τi*) =
D − i* + 1 + u

D + 1
> α ⇒ u > i* − (D + 1)(1 − α), p(τi*+1) =

D − i* + u
D + 1

> α ⇒ u > i* − (D + 1)(1 − α) + 1

[
never

true

]

.

(D.1)  

Given that i* is the smallest integer greater than or equal to (D + 1)(1-α), the p-value for the region below τi*− 1 is always greater than α 
and the p-value for the region above τi* is always less than α. Hence, the confidence interval is determined by τi* if u > i* - (D + 1)(1-α), 
and by τi*− 1 otherwise, as described in (R2). 

R3 & R4: The proofs of (R3) & (R4) use ideas present in Jockel (1986) and Hoeffding (1952). We finesse complexities introduced by 
the discreteness of finite sample distributions by constructing an auxiliary test statistic whose distribution is always uniform. Let Ω 
denote the universe of permutations T of X, Tj one of those permutations, FTj the probability τ⊆(T,β0) is less than or equal to τ⊆(Tj,β0), 
and pTj the probability τ⊆(T,β0) equals τ⊆(Tj, β0) (> 0, as the number of permutations is finite). Define the new "test statistic" g(Tj,β0) =
FTj - uTjpTj, where uTj is a draw for each Tj from the uniform distribution on [0,1]. g(Tj,β0) is by construction uniformly distributed 
across permutations T of X for all β0 in all sample sizes. Since X itself is one of the permutations of X, we also have g(X,β0), which with 
probability one lies in (0,1). Defining the p-value using (2.4), we will show that the probability of rejection at a level α using g(T,β0) is 
always the same as using τ⊆(T,β0). Consequently, if (R3) & (R4) apply for g(T,β0), even though it is never actually observed, we know 
they apply for τ⊆(T,β0) and the proof is complete. 

We begin by noting that τ⊆(Ti,β0)< τ⊆(Tj, β0) implies g(Ti,β0) < g(Tj,β0), as with probability one FTj – uTjpTj > FTj – pTj ≥ FTi > FTi – 
uTipTi, since the probability uTj = 1 and uTi = 0 is zero. Let the draws T1, T2, … TD from Ω contain G draws with values of τ⊆(T, β0)

strictly greater than τ⊆(X,β⊆
0 ) and E draws with values of τ⊆(T,β0) equal to τ⊆(X,β⊆

0 ). Using (2.4), the p-value for τ⊆(T,β0) is given by 
[G + u(E + 1)]/(D + 1), while the p-value for g(T,β0) is given by 

G + EG + u
D + 1

, (D.2)  

where EG ≤ E denotes the number of draws Tj with τ⊆(Tj,β0)=τ⊆(X,β0) which end up with g(Tj,β0) > g(X,β0) after the realization of the 
draws uTj which determine g(Tj,β0). Select an α and let v denote the greatest integer less than or equal to v. If G ≥ α(D + 1)+1 the p- 
value for both τ⊆(T, β0) and g(T,β0) is greater than α, i.e. neither test rejects, while if G + E + 1 < α(D + 1) the p-value for both is less 
than α, i.e. both tests reject. Consequently, we need only concern ourselves with the case where G ≤ α(D + 1) and G + E + 1 ≥ α(D + 1). 
In these circumstances, the test with τ⊆(T, β0) rejects with probability (α(D + 1)-G)/(E + 1). Given the uX which determined g(X,β0) =
FX - uXpX, the probability a given element of the set of draws that have τ⊆(Tj,β0)=τ⊆(X,β0) ends up with g(Tj,β0) > g(X,β0) is uX. Say G 
= α(D + 1). For given uX, the probability (D.2) is less than or equal to α equals the probability EG = 0 times the probability u in (D.2) is 
less than α(D + 1)-G, or: 

(1 − uX)
E
(α(D+ 1) − G). (D.3)  

Integrating across the uniform distribution of uX yields 

Fig. A1. P-value as determined by value of sample Wald statistic relative to ordered values of the permutation Wald statistics.  

54 Each calculation is for within the region bounded by two τi, as illustrated in the figure. The τi themselves, where the number of tied outcomes is 
1, are of measure zero in the confidence interval. 
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∫ 1

0
(1 − uX)

E
(α(D+ 1) − G) duX = (α(D+ 1) − G)

/

(E+ 1), (D.4) 

which is the same probability as the test statistic using τ⊆(T,β0). If G ≤ α(D + 1) – 1, for given uX the probability (D.2) is less than or 
equal to α is given by the probability EG ≤ α(D + 1) – G – 1 plus the probability EG = α(D + 1) – G times the probability u in (D.2) is less 
than or equal to α(D + 1)-α(D + 1), or: 

∑
α(D+1)− G− 1

x=0

E!
x!(E − x)!

(1 − uX)
E− xux

X +
E!(1 − uX)

E− α(D+1)+Gu
α(D+1)− G
X

[
α(D + 1) − α(D + 1)

]

(
α(D + 1) − G

)
!
(

E − α(D + 1) + G
)
!

. (D.5)  

Again, integrating across the uniform distribution of uX 

∫ 1

0

⎛

⎜
⎝

∑
α(D+1)− G− 1

x=0

E!
x!(E − x)!

(1 − uX)
E− xux

X +
E!(1 − uX)

E− α(D+1)+Gu
α(D+1)− G
X

[
α(D + 1) − α(D + 1)

]

(
α(D + 1) − G

)
!
(

E − α(D + 1) + G
)
!

⎞

⎟
⎠duX

=
α(D + 1) − G

E + 1
+

α(D + 1) − α(D + 1)
E + 1

=
α(D + 1) − G

E + 1
,

(D.6)  

which again is the same as in the case of the τ⊆(T, β0) statistic. These examples cover all possible cases for G and E, so we see that for 
any null β0 and realized draws T1, T2, … TD from Ω, the p-value calculated using τ⊆(T,β0) has the same probability of rejecting at level 
α as the p-value calculated using g(T,β0). 

We now focus on inference using g() alone. Let g1 < … < gD denote the ordered values of g(T,β0) across D draws of T from Ω. By 
construction g(T,β0) is uniformly distributed across draws T from Ω, so ties are a probability zero event, as are g1 = 0 or gD = 1. As 
before let i* denote the smallest integer greater than or equal to (D + 1)(1-α). If u in (D.2) is > i* - (D + 1)(1-α), the p-value is greater 
than α as long as g(X,β0) < gi*, whereas if u is < i* - (D + 1)(1-α) the p-value is greater than α as long as g(X,β0) < gi*− 1. If we define g0 =

0 & gD+1 = 1 these rules cover the case where i* equals 1 or D + 1.55 Since g(T,β0) is always uniformly distributed on [0,1], the 
probability gi = a is always [D!/(D − i)!(i − 1)!]ai− 1(1 − a)D− i. With PrT|D denoting the probability across the permutation distribution T 
given the data D, g(X,β0) can be bounded: 

Pr T|D
{

τ⊆(T, β0) < τ⊆
(
X, β⊆

0

)}
< g(X,β0) < Pr T|D

{
τ⊆(T,β0) ≤ τ⊆

(
X, β⊆

0

)}
. (D.7)  

The distribution of τ⊆(T,β0) across draws T given the data D (for β0 in a finite 
̅̅̅̅
N

√
neighbourhood of β) almost surely converges to the 

chi-squared, as does that of τ⊆(X,β⊆
0 ) (for β0 = β) across the data D, and as the chi-squared is continuous that convergence is uniform 

(Rao 1973, p. 120), so for each Δ > 0 there exists an N(Δ) such that for all N > N(Δ) the two cumulative distributions are within Δ/2 of 
the chi-squared with k degrees of freedom. Consequently, for β0 = β almost surely for all N > N(Δ) 

Fχ2
(
τ⊆
(
X, β⊆

0

))
− Δ

/
2 < PrT|D

{
τ⊆(T, β0) < τ⊆

(
X, β⊆

0

)}
< PrT|D

{
τ⊆(T, β0) ≤ τ⊆

(
X,β⊆

0

)}
< Fχ2

(
τ⊆
(
X, β⊆

0

))
+ Δ

/
2

& a − Δ < PrD
{

Fχ2(τ⊆(X,β⊆)) ≤ a − Δ
/

2
}
≤ PrD

{
Fχ2(τ⊆(X,β⊆)) ≤ a + Δ

/
2
}
< a + Δ

so using (D.7) a − Δ < PrD{g(X, β0) ≤ a} < a + Δ
(D.8)  

and we see that the cumulative distribution function of g(X,β0=β) across D converges to that of the uniform on (0,1). As N(Δ) does not 
depend upon a, the convergence is uniform. 

Using the above, we see that the probability across the data D that g(X,β) will be less than the ith order statistic gi of D draws from 
the permutation distribution T of X converges to 

PrD{g(X, β) < gi} =

∫1

0

PrD{g(X, β) < a}
D!ai− 1(1 − a)D− i

D − i!i − 1!
da →

N→∞

∫1

0

D!ai(1 − a)D− i

D − i!i − 1!
da =

i
D + 1

, (D.9)  

where uniform convergence of PrD{g(X,β) < a} = PrD{g(X,β) ≤ a}, which is bounded continuous (as by construction g(X,β) is 
continuous without mass points) and hence Riemann integrable, allows the limit of the Riemann integral. If i* lies in [2,D] the 
probability the p-value is greater than α then equals: 

55 If i* equals D + 1, α(D + 1) is < 1. If u > i* - (D + 1)(1-α) = α(D + 1), the p-value is always greater than α, which is equivalent to saying g(X,β0) <
gi* = gD+1 = 1, otherwise the p-value is greater than α if at least one of the D draws of g(T,β0) is greater than g(X,β0), i.e. g(X,β0) < gD. If i* equals 1, 
α(D + 1) is ≥ D. If u > i* - (D + 1)(1-α) and all D draws are greater than g(X,β0), then the p-value is greater than α, equivalent to saying g(X,β0) < g1, 
while if u < i* - (D + 1)(1-α) (which is only possible if α(D + 1) is > D) it is impossible for the p-value to be greater than α, equivalent to saying g 
(X,β0) < gi*-1 = g0 = 0. 
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[1 − i* + (D + 1)(1 − α)]PrD{g(X,β) < gi*} + [i* − (D + 1)(1 − α)]PrD{g(X,β) < gi*− 1}

→
N→∞

[1 − i* + (D + 1)(1 − α)] i*

D + 1
+ [i* − (D + 1)(1 − α)] i* − 1

D + 1
= 1 − α.

(D.10) 

For the special cases where i* equals 1 or D + 1, we have: 

i* = 1 : (D + 1)(1 − α)PrD{g(X,β) < g1} + [1 − (D + 1)(1 − α)]PrD{g(X, β) < g0}

→
N→∞

(D + 1)(1 − α) 1
D + 1

+ [1 − (D + 1)(1 − α)]*0 = 1 − α.

i* = D + 1 : [ − D + (D + 1)(1 − α)]PrD{g(X, β) < gD+1} + [D + 1 − (D + 1)(1 − α)]PrD{g(X,β) < gD}

→
N→∞

[ − αD + (1 − α)]*1 + [(D + 1)α] D
D + 1

= 1 − α.

(D.11)  

This establishes that the coverage probability of the true null of a test based upon g(), and hence one based upon τ⊆ as well, converges 
to 1-α, proving (R3). 

Turning to (R4), for β⊆
0 ∕= β⊆within a finite 

̅̅̅̅
N

√
neighbourhood of β, τ⊆(X,β⊆

0 ) is asymptotically distributed non-central chi-squared 

with k degrees of freedom and non-centrality parameter λ =
̅̅̅̅
N

√
(β⊆

0 − β⊆)′[NV̂(β̂
⊆
)]
− 1
(β⊆

0 − β⊆)
̅̅̅̅
N

√
, which we denote as χ2

k,λ, and 
cumulative distribution function: 

Fχ2
k,λ(x) = e− λ/2

∑∞

j=0

(λ/2)j

j!

∫ x/2
0 tk/2+j− 1e− tdt

Γ(k/2 + j)
. (D.12)  

The critical value x associated with the ath percentile of the central chi-squared is determined by 

a = Fχ2
k(x) = Γ(k/2)− 1

∫ x/2

0
tk/2 − 1e− tdt, with

dx
da

= 2Γ(k / 2)(x/2)
1− k/2

ex/2. (D.13)  

Consequently, for 

Gk,λ(a) = Fχ2
k,λ
(x(a)) = Fχ2

k,λ

(
F− 1

χ2
k
(a)
)
, we have

dG
da

= e− λ/2
∑∞

j=0

(λx/4)j

j!
Γ(k/2)

Γ(k/2 + j)
> 0 &

d2G
da2 = e− λ/2

∑∞

j=1

(λx/4)j

x*j − 1!
Γ(k/2)

Γ(k/2 + j)
dx
da

> 0,
(D.14)  

that is, the conventional coverage probability of an incorrect null is convex in the nominal level. dG/da is bounded from above by 
2eλx(a)/4. 

We prove pointwise convergence of the cumulative distribution of g(X,β0∕=β) to Gk,λ for β0 in a 
̅̅̅̅
N

√
neighbourhood of β. For every a 

in (0,1) and 0 < Δ/2 < min(a,1-a), let x* = x(a+Δ/4). There exists an N(a, Δ) such that for all N > N(a, Δ) the distribution of τ⊆(T,β0)

differs from the chi-squared by no more than Δe− λx* /4/4 and that of τ⊆(X,β⊆
0 ) from the non-central chi-squared by no more than Δ/2, so 

that we may modify (D.8) to read 
⎛

⎝
Fχ2
(
τ⊆
(
X, β⊆

0

))

− Δe− λx*/4/4

⎞

⎠ < PrT|D

⎧
⎨

⎩

τ⊆(T, β0) <

τ⊆
(
X, β⊆

0

)

⎫
⎬

⎭
< PrT|D

⎧
⎨

⎩

τ⊆(T,β0) ≤

τ⊆
(
X, β⊆

0

)

⎫
⎬

⎭
<

⎛

⎝
Fχ2
(
τ⊆
(
X, β⊆

0

))

+Δe− λx*/4/4

⎞

⎠,

(
Gk,λ
(
a − Δe− λx*/4/4

)

− Δ/2

)

< PrD

⎧
⎨

⎩

Fχ2
(
τ⊆
(
X, β⊆

0

))
≤

a − Δe− λx*/4/4

⎫
⎬

⎭
< PrD

⎧
⎨

⎩

Fχ2
(
τ⊆
(
X, β⊆

0

))
≤

a + Δe− λx*/4/4}

⎫
⎬

⎭
<

(
Gk,λ
(
a + Δe− λx*/4/4

)

+Δ/2

)

,

& (as
dG
da

< 2e− λx/4&
d2G
da2 > 0) Gk,λ(a) − Δ

/
2 < Gk,λ

(
a − Δe− λx*/4/4

)
< Gk,λ

(
a + Δe− λx*/4/4

)
< Gk,λ(a) + Δ

/
2,

so using (D.7) Gk,λ(a) − Δ < PrD{g(X,β0) ≤ a} < Gk,λ(a) + Δ,

(D.15)  

proving pointwise convergence of PrD{g(X,β0∕=β) ≤ a} to Gk,λ(a). For β0 ∕= β we then have: 

PrD{g(X, β0) < gi} =

∫1

0

PrD{g(X,β0) < a}
D!ai− 1(1 − a)D− i

D − i!i − 1!
da →

N→∞

∫1

0

Gk,λ(a)
D!ai− 1(1 − a)D− i

D − i!i − 1!
da > Gk,λ

(
i

D + 1

)

, (D.16)  

where the limit of the integral follows from Arzelà’s Dominated Convergence Theorem and the fact that the functions in the sequence 
are bounded and continuous (hence Riemann integrable). The inequality follows from Jensen’s Inequality and the fact that 
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∫1

0

D!ai− 1(1 − a)D− i

D − i!i − 1!
da = 1 &

∫1

0

a
D!ai− 1(1 − a)D− i

D − i!i − 1!
da =

i
D + 1

, (D.17) 

so the integral on the right hand side can be considered the expectation across the random variable a of Gk,λ(a). Letting P(I1) denote the 
probability u > i* - (D + 1)(1-α) and the p-value is based on the i* order statistic, the probability the incorrect null lies in the 1-α 
confidence interval is then seen to be 

P(I1)PrD{g(X, β0 ∕= β) < gi*} + [1 − P(I1)]PrD{g(X,β0 ∕= β) < gi* − 1} >
N→ ∞

P(I1)Gk,λ

(
i*

D + 1

)

+ [1 − P(I1)]Gk,λ

(
i* − 1
D + 1

)

> Gk,λ

(
P(I1)i*

D + 1
+
[1 − P(I1)](i* − 1)

D + 1

)

= Gk,λ(1 − α),
(D.18)  

where in the second line we again use the fact that Gk,λ(a) is a convex function of a, while 1-α is the expectation of the "random variable" 
that takes on the values i*/(D + 1) and (i*− 1)/(D + 1) with probabilities P(I1) and 1- P(I1). In the special cases where i* = 1 or D + 1, 
using the same techniques we have 

i* = 1 : P(I1)PrD{g(X,β0 ∕= β) < g1} + [1 − P(I1)]PrD{g(X,β0 ∕= β) < g0}
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟

=0

>
N→ ∞

P(I1)Gk,λ

(
1

D + 1

)

+ [1 − P(I1)]Gk,λ(0)
⏟̅̅̅ ⏞⏞̅̅̅ ⏟

=0

> Gk,λ

(
P(I1)

D + 1
+
[1 − P(I1)]*0

D + 1

)

= Gk,λ(1 − α)

i* = D + 1 : P(I1)PrD{g(X,β0 ∕= β) < gD+1}
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟

=1

+ [1 − P(I1)]PrD{g(X, β0 ∕= β) < gD}

>
N→ ∞

P(I1)Gk,λ(1)
⏟̅̅̅⏞⏞̅̅̅ ⏟

=1

+ [1 − P(I1)]Gk,λ

(
D

D + 1

)

> Gk,λ

(

P(I1)*1 +
[1 − P(I1)]D

D + 1

)

= Gk,λ(1 − α).

(D.19)  

So we see that the coverage probability of an incorrect null for tests based upon g(), equivalently τ⊆, is asymptotically greater than that 
of the conventional test, resulting in lower power, as stated in (R4). 

Regarding the double limit D,N→∞, as noted above the integral in (D.16) can be thought of as the expectation of a function across 
the random variable a. Its variance is given by 

σ2(a) =
∫1

0

a2D!ai− 1(1 − a)D− i

D − i!i − 1!
da −

i2

(D + 1)2 =
i(i + 1)

(D + 1)(D + 2)
−

i2

(D + 1)2 =
i(D + 1) − i2

(D + 1)2
(D + 2)

≤
1

4(D + 2)
, (D.20)  

which converges to 0 as D → ∞, while its mean in (D.17) converges to 1 - α for i = i* or i*− 1. As PrD{g(X,β0∕=β) < a} is non-decreasing 
in a, with PrD{g(X,β0∕=β) < 0} = 0 & PrD{g(X,β0∕=β) < 1} = 1, we can construct bounds on the left-hand side integral in (D.16) for i = i* 
or i* - 1 using 

PrD

{
g(X, β0 ∕= β) <

i
/
(D + 1) −

̅̅̅̅
D4

√
σ(a)

}
[
1 − D− 1/2] ≤ PrD

{
g(X,β0 ∕= β) <

0

}

Pr{A} + PrD

{
g(X,β0 ∕= β) <

i
/
(D + 1) −

̅̅̅̅
D4

√
σ(a)

}

[1 − Pr{A}]

≤ PrD{g(X,β0 ∕= β) < gi} ≤

PrD

{
g(X, β0 ∕= β) <

i
/
(D + 1) +

̅̅̅̅
D4

√
σ(a)

}

[1 − Pr{A}] + PrD

{
g(X,β0 ∕= β) <

1

}

Pr{A} ≤ PrD

{
g(X,β0 ∕= β) <

i
/
(D + 1) +

̅̅̅̅
D4

√
σ(a)

}
[
1 − D− 1/2]+ D− 1/2,

(D.21)  

where Pr{A} = Pr{|a − i /(D+1)| ≥
̅̅̅̅
D4

√
σ(a)} ≤ D− 1/2 by Chebyshev’s Inequality. Furthermore, the probability the incorrect null lies in 

the RCI, given by the first line of (D.18), is bounded from above and below (respectively) by PrD{g(X,β0 ∕= β)< gi*} & PrD{g(X,

β0 ∕= β)< gi* − 1}. The probability the incorrect null lies in the CCI is given by the probability τ⊆(X,β⊆
0 ) is less than x(1-α), i.e. the critical 

value for the 1-α percentile of the chi-squared with k degrees of freedom. So, we can say that 

PrD

{

g(X, β0) <
i* − 1
D + 1

−
̅̅̅̅
D4

√
σ(a)

}
[
1 − D− 1/2] − PrD

{
τ⊆
(
X, β⊆

0

)
< x(1 − α)

}

≤ Pr{β0( ∕= β) ∈ RCI(1 − α,D)} − Pr{β0( ∕= β) ∈ CCI(1 − α)} ≤

PrD

{

g(X, β0) <
i*

D + 1
+

̅̅̅̅
D4

√
σ(a)

}
[
1 − D− 1/2]+ D− 1/2 − PrD

{
τ⊆
(
X, β⊆

0

)
< x(1 − α)

}
.

(D.22) 

For the right-hand side of (D.22), with v = i*/(D + 1)+D¼σ(a) we can say: 
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|PrD{g(X, β0) < v}
[
1 − D− 1/2]+ D− 1/2 − PrD

{
τ⊆
(
X, β⊆

0

)
< x(1 − α)

}
| ≤

|D− 1/2| + |PrD{g(X,β0) < v} − Gk,λ(v)| + |Gk,λ(v) − Gk,λ(1 − α)| + |Gk,λ(1 − α) − PrD
{

τ⊆
(
X, β⊆

0

)
< x(1 − α)

}
|,

where lim
D→∞

D− 1/2 = 0, lim
D→∞

v = 1 − α, lim
N→∞

PrD{g(X,β0) < v} = Gk,λ(v), & lim
N→∞

PrD
{

τ⊆
(
X, β⊆

0

)
< x(1 − α)

}
= Gk,λ(1 − α).

(D.23) 

The convergence of PrD{g(X,β0∕=β) < a} is pointwise, but since the x* used in (D.15) is increasing in a and for large enough D v can be 
made to lie arbitrarily close to 1-α, by choosing x* to be the maximum for that neighborhood |PrD{g(X,β0)< v} − Gk,λ(v)| can be made 
arbitrarily small for sufficiently large N. So, for each α & Δ there exists an M(α, Δ) such that for all N & D > M(α, Δ) each of the four 
absolute values on the second line is less than Δ/4 and the sum is less than Δ. A similar decomposition allows us to show that the 
absolute value of the left-hand side of (D.22) can be made less than Δ, establishing that for any α in (0,1) and Δ > 0 it is possible to find 
an M(α, Δ) such that for N & D > M(α, Δ) |Pr{β0(∕= β) ∈ RCI(1 − α,D)}-Pr{β0(∕= β) ∈ CCI(1 − α)}| < Δ, as stated in (R4). 

The proof above mirrors the intuition given in the text, although we finesse complications by using an unobserved auxiliary 
variable that smoothes the finite sample permutation distribution. Asymptotically the order statistics are a random variable with 
expectation equal to the 1-α percentile of the chi-squared. For a test of a true null, the conventional coverage probability is an accurate 
linear function in the percentiles of the chi-squared, and hence using the order statistics to evaluate significance produces a 1-α 
rejection probability. For tests of false nulls, the conventional coverage probability is a convex function of the percentiles of the chi- 
squared, and hence by Jensen’s inequality using the order statistics produces higher coverage probabilities and lower power, unless the 
number of draws D is taken to ∞, so that the distribution of the relevant order statistic converges to a point. 

R5: The conventional test yields a p-value of 1 - Fχ2
k(τ⊆(X,β⊆

0 )). The randomization p-value is given by (G + u(E + 1))/(D + 1). Let gi 

and ei denote the iid binary (0,1) random variables that indicate whether on the ith random permutation T of X τ⊆(T,β0) is greater than 
or equal, respectively, to τ⊆(X, β⊆

0 ), and ET and PrT the expectation and probability across permutations T of X, with ET(gi) = 1 - 
PrT{τ⊆(T,β0) ≤τ⊆(X,β⊆

0 )} & ET(ei) = PrT{τ⊆(T,β0)=τ⊆(X,β⊆
0 )}. We have: 
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+
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(
X, β⊆

0

))⃒
⃒

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
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.
(D.24)  

As each draw of T is iid, and G and E equal the sum of the realizations of gi and ei, by the Strong Law of Large Numbers "b" and "d" almost 
surely converge to 0 as D→∞. For tests of nulls within a finite 

̅̅̅̅
N

√
neighbourhood of β, τ⊆(T,β0) almost surely converges in distribution 

to the chi-squared with k degrees of freedom as N→∞. So almost surely 1 - PrT{τ⊆(T,β0)≤τ⊆(X,β⊆
0 )} converges to 1 - Fχ2

k(τ⊆(X,β⊆
0 )) and 

PrT{τ⊆(T,β0)=τ⊆(X,β⊆
0 )} to 0.56 Consequently, for each Δ and τ⊆(X,β⊆

0 ) there exists an M(Δ,τ⊆(X,β⊆
0 )) such that almost surely for all N 

& D > M(Δ,τ⊆(X,β⊆
0 )) each of the absolute values in the second row of (D.24) is less than Δ/5, establishing (R5). 
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