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n=0 p(n)f̂(n)ĝ(n)zn for all z ∈ C), 

and the norm ‖f‖ = supn≥0 p(n)|f̂(n)|. The following results are shown:

• The Topological stable rank of A(p) is 1.
• The Bass stable rank of A(p) is 1.
• A(p) is a Hermite ring.
• A(p) is not a projective-free ring.
• Idempotents in A(p) are described.
• Exponentials in A(p) are described, and it is shown that every invertible 

element of A(p) has a logarithm, so that the first Čech cohomology group 
H1(M(A(p)), Z) with integer coefficients of the maximal ideal space M(A(p))
is trivial.

• A generalised necessary and sufficient ‘corona-type condition’ on the matricial 
data (A, b) with entries from A(p) is given for the solvability of Ax = b with x
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1. Introduction

In [32], the following Banach algebras were introduced. Throughout the article, we will use the notation 
N for the set {1, 2, 3, · · · } of natural numbers, and N0 := N ∪ {0}.

Definition 1.1 (The Banach algebra A(p)).
Let p : N0 → (0, ∞) be such that lim

n→∞
(p(n)) 1

n = ∞.
Define

A(p) =
{
f :C→C

∣∣∣f(z)=
∞∑

n=0
anz

n (z∈C), an=O
( 1
p(n)

)
for n→∞

}
.

The O-notation here means as usual that there exists a constant C > 0 such that p(n)|an| < C for all 
n ∈ N0. For f ∈ A(p), we set

f̂(n) := 1
n!

dnf

dzn
(0) (n ∈ N0).

With pointwise addition and scalar multiplication, A(p) is a complex vector space. We equip A(p) with the 
weighted Hadamard multiplication ∗, given by

(f ∗ g)(z) =
∞∑

n=0
p(n)f̂(n)ĝ(n)zn (z ∈ C), for all f, g ∈ A(p),

and the norm ‖ · ‖, defined by

‖f‖ = sup
n∈N0

p(n)|f̂(n)| for all f ∈ A(p).

Then A(p) is a complex commutative unital Banach algebra with the unit element ε given by

ε(z) =
∞∑

n=0

1
p(n)z

n (z ∈ C). (1)

For example, if p∗(n) = n! (n ∈ N0), then limn→∞(n!) 1
n = ∞, and the corresponding Banach algebra A(p∗)

has the identity element exp z. This Banach algebra A(p∗) was introduced and studied in [30]. In [32], the 
more general Banach algebras A(p) were introduced, their ideal structure was studied, and the following 
results were shown.

(R1) g ∈ A(p) is a divisor of f ∈ A(p) if and only if there exists a constant C > 0 such that |f̂(n)| ≤ C|ĝ(n)|
for all n ∈ N0.
In particular, f is invertible in A(p) if and only if there exists a δ > 0 such that |f̂(n)| ≥ δ

p(n) for all 
n ∈ N0.

(R2) Every finite collection of functions f1, · · · , fK ∈ A(p) (K ∈ N) has a greatest common divisor d ∈
A(p). Up to invertible elements, d is given by d̂(n) = max1≤k≤K |f̂k(n)| for all n ∈ N0.

(R3) For f, f1, · · · , fK ∈ A(p), f belongs to the ideal 〈f1, · · · , fK〉 in A(p) generated by f1, · · · , fK if and 
only if there exists a constant C>0 such that |f̂(n)| ≤C

∑K
k=1 |f̂k(n)| for all n ∈N0.

(R4) Every finitely generated ideal in A(p) is principal.
(R5) An ideal I of A(p) is fixed if there exists an m ∈ N0 such that for all f ∈ I, f̂(m) = 0. Then 

Im := {f ∈ A(p) : f̂(m) = 0} is a fixed, maximal ideal of A(p). Every fixed, maximal ideal of A(p) is 
Im for some m ∈ N0.
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In the spirit of [20], where algebraic properties of the ring of entire functions with pointwise operations were 
investigated, in this article, we study algebraic-analytic properties of A(p), and show the following:

(1) The topological stable rank of A(p) is equal to 1.
(2) The Bass stable rank of A(p) is equal to 1.
(3) A(p) is a Hermite ring.
(4) A(p) is not a projective-free ring.
(5) Idempotents in A(p) are described.
(6) Exponentials in A(p) are described, and it is shown that every invertible element of A(p) has a 

logarithm, so that the first Čech cohomology group H1(M(A(p)), Z) with integer coefficients of the 
maximal ideal space M(A(p)) is trivial.

(7) A generalised necessary and sufficient ‘corona-type condition’ on the matricial data (A, b) with entries 
from A(p) is given for the solvability of Ax = b with x also having entries from A(p).

(8) The Krull dimension of A(p) is infinite.
(9) A(p) is neither Artinian nor Noetherian.

(10) A(p) is coherent.
(11) The special linear group over A(p) is generated by elementary matrices.

Motivation

Investigation of algebraic properties for rings in analysis has proven to be important for theory-building. 
For example, we mention the corona problem: given f, g in the Hardy algebra H∞(D) of bounded 
holomorphic functions in the unit disk D in C, Kakutani’s 1941 question of whether the condition 
|f(z)| + |g(z)| ≥ δ > 0 (z ∈ D) is sufficient for H∞(D) to be equal to the ideal 〈f, g〉 generated by 
f, g, led to significant advances in complex and harmonic analysis through Carleson’s 1962 solution to the 
problem. As another example, Kazhdan’s Property (T) can be established for the special linear group over 
the ring O(X) of holomorphic functions over a finite-dimensional reduced Stein space X by investigating 
when the special linear group over O(X) can be generated by elementary matrices (Gromov’s Vaserstein 
Problem, settled in [19]). Motivations underlying the investigation of properties (1)-(11) in this article are 
listed below.
Properties (1) and (2): The concept of stable rank (introduced in [4], and for topological rings in [28]) plays 
an important role in some stabilisation problems of K-theory. See e.g., [24] for an analysis viewpoint, and 
for recent work in the context of a Banach algebra of holomorphic functions, see e.g. [8].
Properties (3) and (4): Hermite and projective free rings arose in connection with Serre’s problem from 1955 
(whether finitely general projective modules over k[x1, . . . , xn], k a field, are free); see e.g. [22]. They are also 
relevant in the stabilisation problem in control theory (see e.g., [36, Theorem 66] and [27, Theorem 6.3]).
Properties (5) and (6): These are classical topics in commutative Banach algebra theory; see [14, Chap. III, 
§6, §7].
Property (7): This matricial problem is generalisation of the solvability of the Bézout equation considered 
in the classical corona problem. For background on the corona problem, see e.g. [11].
Properties (8), (9), (10): These are natural questions from the commutative algebra viewpoint.
Property (11): This is a classical question, investigated in the context of rings of continuous functions by 
[23], [35], for holomorphic functions of several variables in [19], and for Banach algebras in [7], [8].
The outline of this article is as follows: In each section, we will first give the background of the property, 
by recalling key definitions, and then prove the property, possibly with additional commentary.
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2. Topological stable rank of A(p) is 1

The notion of the topological stable rank for topological algebras was introduced by Rieffel in [28]
analogous to the K-theoretic concept of (Bass) stable rank, as well as several related numerical invariants.

Definition 2.1. Let R be a commutative unital ring with identity element 1. We assume that 1 �= 0, that 
is, R is not the trivial ring {0}. For n ∈ N, an n-tuple (a1, · · · , an) ∈ Rn = R × · · · × R (n times) 
is said to be invertible (or unimodular), if there exists (b1, · · · , bn) ∈ Rn such that the Bézout equation 
b1a1 + · · · + bnan = 1 is satisfied. The set of all invertible n-tuples is denoted by Un(R).

Now suppose that A is a commutative unital Banach algebra. The topological stable rank of A is the 
minimum n ∈ N such that Un(A) is dense in An, and it is infinite if no such n exists.

Here, An is the normed space with the ‘Euclidean norm’ ‖ · ‖2 given by

‖v‖2
2 := ‖v1‖2 + · · · + ‖vn‖2 (2)

for all v in An, where v has the components v1, . . . , vn ∈ A.

Theorem 2.2. The topological stable rank of A(p) is 1.

Proof. Let f ∈ A(p), and ε > 0. Define g by

ĝ(n) =
{

f̂(n) if p(n)|f̂(n)| > ε,
ε

p(n) if p(n)|f̂(n)| ≤ ε.

Then

|ĝ(n) − f̂(n)|
{

= 0 if p(n)|f̂(n)| > ε

≤ 2ε
p(n) if p(n)|f̂(n)| ≤ ε

and so g ∈ A(p) and ‖g − f‖ ≤ 2ε. Also,

|ĝ(n)| =
{

|f̂(n)| if p(n)|f̂(n)| > ε
ε

p(n) if p(n)|f̂(n)| ≤ ε

}
≥ ε

p(n) (n ∈ N0).

Consequently, g is invertible in A(p) by (R1) on page 2. �
3. Bass stable rank of A(p) is 1

The notion of the Bass stable rank was introduced in algebraic K-theory by Bass [4].

Definition 3.1. Let R be a commutative unital ring with identity 1. Let n ∈ N. An (n + 1)-tuple 
(a1, · · · , an+1, α) ∈ Un+1(R) is said to be reducible if there exists an n-tuple (h1, · · · , hn) ∈ Rn such 
that (a1 +h1α, · · · , an + hnα) ∈ Un(R). The Bass stable rank of R is the smallest integer n such that every 
element in Un+1(R) is reducible. It is infinite if no such n exists.

For a commutative unital Banach algebra, the Bass stable rank is at most equal to the topological stable 
rank [28, Theorem 2.3]. By Theorem 2.2, it follows that the Bass stable rank of A(p) is 1.

Corollary 3.2. The Bass stable rank of A(p) is 1.
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4. A(p) is a Hermite ring, but not a projective free ring

The study of Serre’s conjecture naturally led to the notion of Hermite rings; see e.g., [22].

Definition 4.1. Let R be a commutative unital ring. The ring R is called Hermite if every finitely generated 
stably free R-module is free. The ring R is called projective-free if every finitely generated projective R-
module is free.

If R-modules M, N are isomorphic, then we write M ∼= N . Recall that if M is a finitely generated R-module, 
then:
• M is called free if M ∼= Rk for some integer k ≥ 0.
• M is called projective if there exists an R-module N and an integer m ≥ 0 such that M ⊕N ∼= Rm.
• M is called stably free if there exist free finitely generated R-modules F and G such that M ⊕ F ∼= G.
It is clear that every projective free ring is Hermite.

For m, n ∈ N, Rm×n denotes the set of matrices with m rows and n columns having entries from R. The 
identity element in Rk×k having diagonal elements 1, and zeroes elsewhere will be denoted by Ik.

In terms of matrices, R is Hermite if and only if left-invertible tall matrices over R can be completed to 
invertible ones (see e.g. [31, p.1029]): For all k, K ∈ N such that k < K, and for all f ∈ RK×k such that 
there exists a g ∈ Rk×K so that gf = Ik, there exists an fc ∈ RK×(K−k) and there exists a G ∈ RK×K such 
that G[ f fc ] = IK .

In terms of matrices (see e.g. [10, Proposition 2.6] or [2, Lemma 2.2]), the ring R is projective-free if 
and only if every idempotent matrix P is conjugate (by an invertible matrix S) to a diagonal matrix with 
elements 1 and 0 on the diagonal, that is, for every m ∈ N and every P ∈ Rm×m satisfying P 2 = P , 
there exists an S ∈ Rm×m such that S is invertible as an element of Rm×m, and for some integer r ≥ 0, 
S−1PS = [ Ir 0

0 0 ]. In 1976, it was shown independently by Quillen and Suslin, that if F is a field, then the 
polynomial ring F [x1, · · · , xn] is projective-free, settling Serre’s conjecture from 1955 (see [22]).

4.1. A(p) is a Hermite ring

It is known that a commutative unital ring having Bass stable rank ≤ 2 is Hermite (see e.g., [24, 
Corollary 36.17]). In light of this result and Corollary 3.2, we have:

Corollary 4.2. A(p) is a Hermite ring.

4.2. A(p) is not a projective-free ring

While every projective free ring is Hermite, the converse may not hold. In fact A(p) is such an example, 
by using the matricial characterisation of projective free rings.

Theorem 4.3. A(p) is not projective free.

Proof. Suppose A(p) is projective free. Let P =
∞∑

m=0

1
p(2m)z

2m. Then P ∈ A(p), and

P̂ ∗ P (n) = p(n)P̂ (n)P̂ (n) =
{

p(2m) 1
(p(2m))2 = 1

p(2m) if n = 2m, m ∈ N0

p(2m)02 = 0 if n = 2m + 1, m ∈ N0.

So P ∗P = P . As we have assumed A(p) is projective free, there is an f ∈ {0, ε}, D = [ f ], and S, S−1 ∈ A(p)
such that P = S−1 ∗D ∗ S. But then P = 0 or P = ε, and either case is false. Consequently, A(p) is not 
projective free. �
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For a Banach space A, we denote the set of all continuous linear maps from A to C by A∗. Recall that for a 
commutative unital complex Banach algebra A, the maximal ideal space M(A) ⊂ A∗ is the set of nonzero 
homomorphisms A →C , endowed with the Gelfand topology, the weak-∗ topology of A∗. It is a compact 
Hausdorff space contained in the unit sphere of A∗. Contractibility of the maximal ideal space M(A) in the 
Gelfand topology suffices for A to be projective-free (see, e.g., [6, Corollary 1.4]). Thus the maximal ideal 
space M(A(p)) is not contractible.

5. Idempotents in A(p)

The following result characterises idempotents in A(p).

Theorem 5.1. f ∈ A(p) is an idempotent if and only if for all n ∈ N0, f̂(n) ∈ {0, 1
p(n)}.

Proof. The ‘if’ part is immediate from the definition of multiplication in A(p). If f ∈ A(p) is an idempotent, 
then f ∗ f = f , and so we obtain 

∞∑
n=0

(p(n)(f̂(n))2 − f̂(n))zn = (f ∗ f)(z) − f(z) = 0 (z ∈ C). Thus 

p(n)(f̂(n))2 − f̂(n) = 0 for all n ∈ N0. So f̂(n) ∈ {0, 1
p(n)}. �

Let A be a commutative unital complex Banach algebra. The Gelfand transform of a ∈ A, defined by 
â(ϕϕϕ) := ϕϕϕ(a) for ϕϕϕ ∈ M(A), is a nonincreasing-norm morphism from A into C(M(A)), the Banach algebra 
of complex-valued continuous functions on M(A) equipped with the supremum norm ‖ · ‖∞ (given by 
‖f‖∞ := supϕ∈M(A) |f(ϕ)| for all f ∈ C(M(A)).

From the special case of (R3) on page 2 when f = ε (the identity element of A(p)), we have the following 
corona theorem:

Proposition 5.2. Let f1, · · · , fn ∈ A(p) (n ∈ N). Then the following are equivalent:
(1) There exists a δ > 0 such that for all k ∈ N0, 

n∑
i=1

|f̂i(k)| ≥ δ
p(k) .

(2) There exist g1, · · · , gn ∈ A(p) such that 
n∑

i=1
gi ∗ fi = ε.

For k ∈ N0, let ϕk denote the complex homomorphism given by

ϕk(f) = f̂(k) for all f ∈ A(p).

From (R5) (p. 2), we know that ϕk ∈ M(A(p)). From elementary Banach algebra theory (see e.g., [26, 
Lemma 9.2.6]), it follows that the set {ϕk : k ∈ N0} is dense in M(A(p)).

We will now show that {ϕk : k ∈ N0}, with the topology induced from M(A(p)), is homeomorphic to 
N0, with the topology induced from R. In the proof below, we will use the notation δm,n := 0 if m �= n and 
δm,m := 1 for all m, n ∈ N0.

Proposition 5.3. For k0 ∈ N0, a net (ϕki
)i∈I converges to ϕk0 in M(A(p)) if and only if (ki)i∈I is eventually 

constant, equal to k0.

Proof. ‘If’ part: Let (ki)i∈I be eventually constant, equal to k0. There exists an i∗ ∈ I such that for all 
i ≥ i∗ (where ≥ denotes the order on the directed set I), ki = k0, and so for all f ∈ A(p), we have that 
ϕki

(f) = f̂(ki) = f̂(k0) =ϕk0(f). So (ϕki
)i∈I converges to ϕk0 in M(A(p)).

‘Only if’ part: Suppose that (ϕki
)i∈I converges to ϕk0 in M(A(p)). Then with f = zk0 ∈ A(p), by the 

definition of the Gelfand topology, the net (ϕki
(zk0))i∈I converges to ϕk0(zk0) = 1 in R. Thus for ε = 1

2 > 0, 
there exists an i∗ ∈ I such that |δki,k0 − 1| = |ϕki

(zk0) − 1| < 1 for all i ≥ i∗, i.e., ki = k0. �
2
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As M(A(p)) is compact, while N0 with its usual topology is not compact, it follows that not all elements 
of M(A(p)) are of the form ϕk for some k ∈ N0. Explicit examples are known (see below), and these were 
mentioned as non-fixed maximal ideals in [32, Remark, pp. 6-7].

Example 5.4. Let k = (kn)n∈N be any subsequence of the sequence of natural numbers. Define

Ik := {f ∈ A(p) : lim
n→∞

pkn
f̂(kn) = 0}.

Then Ik is an ideal of A(p). (It is clear that if f, g ∈ Ik, then f + g ∈ Ik. If f ∈ Ik and g ∈ A(p), then there 
exists a C > 0 such that |ĝ(k)| ≤ C

p(k) for all k ∈ N0, and so

0 ≤ p(kn)|(f ∗ g)
∧

(kn)| = p(kn)|p(kn)f̂(kn)ĝ(kn)|
≤ p(kn)p(kn)|f̂(kn)| C

p(kn)
n→∞−→ 0.

Thus f ∗ g ∈ A(p).) Moreover, Ik �= A(p) since ε /∈ Ik:

lim
n→∞

p(kn)|ε̂(kn)| = lim
n→∞

p(kn) 1
p(kn) = 1 �= 0.

Hence there exists a maximal ideal M in A(p) such that Ik ⊂ M . We note that for each m ∈ N0, M �= kerϕm

(since for any m ∈ N0, f := zm ∈ Ik ⊂ M , and then ϕm(f) = 1 �= 0). �
Recall the Shilov idempotent theorem (see, e.g., [14, Corollary 6.5]): If E is an open-closed subset of M(A), 
then there is a unique element f of A such that f2 = f and f̂ = 1E (the characteristic function of E, which 
is identically equal to 1 on E, and 0 elsewhere on M(A) \E). From Theorem 5.1, we get the following.

Corollary 5.5. If p(n) �= 1 for all n ∈ N0, then M(A(p)) is connected.

Proof. Let E be closed and open, and let E �= ∅ and E �= M(A(p)). There exists an idempotent f in A(p)
such that f̂ = 1E . If n ∈ N0 is such that ϕn ∈ E, then {0, 1

p(n)} � f̂(n) = ϕn(f) = f̂(ϕn) = 1E(ϕn) = 1, 
so that p(n) = 1, a contradiction. Thus E does not contain any ϕn, n ∈ N0, and M(A(p)) \ E contains 
{ϕn : n ∈ N0}. As {ϕn : n ∈ N0} is dense in M(A(p)), we conclude that M(A(p)) \ E = M(A(p)), i.e., 
E = ∅, a contradiction. Thus M(A(p)) is connected. �
6. Exponentials in A(p)

We will show that every invertible element in A(p) has a logarithm.

Lemma 6.1. If f ∈ A(p), then for all z ∈ C, |f(z)| ≤ ε(|z|)‖f‖.

Proof. As |f̂(k)| = p(k)|f̂(k)|
p(k) ≤ ‖f‖

p(k) for all k ∈ N0, we have

|f(z)| = |
∞∑
k=0

f̂(k)zk| ≤
∞∑
k=0

‖f‖
p(k) |z|k = ‖f‖ε(|z|). �

It follows that if (fn)n∈N is a convergent sequence in A(p), then it converges pointwise.

Lemma 6.2. If f ∈ A(p), then (ef )(z) =
∞∑

ep(k)f̂(k)

p(k) zk for all z ∈ C.

k=0
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Proof. We note that (fn)(z) =
∞∑
k=0

p(k)n−1(f̂(k))nzk (z ∈ C). We have

∞∑
n=0

∞∑
k=0

|p(k)n−1(f̂(k))n
n! zk| ≤

∞∑
n=0

∞∑
k=0

|z|k
p(k)

‖f‖n

n! =
∞∑
k=0

|z|k
p(k)

∞∑
n=0

‖f‖n

n! =
∞∑
k=0

|z|k
p(k)e

‖f‖ = e‖f‖ε(|z|) < ∞.

So exchange of summations below is allowed. We have

(ef )(z) =
∞∑

n=0

(fn)(z)
n! =

∞∑
n=0

∞∑
k=0

p(k)n−1(f̂(k))n
n! zk =

∞∑
k=0

zk

p(k)

∞∑
n=0

(p(k)f̂(k))n
n! =

∞∑
k=0

zk

p(k)e
p(k)f̂(k). �

Let A(p)−1 denote the multiplicative group of invertible elements of A(p), and eA(p) the subgroup of A(p)
consisting of all exponentials ef , f ∈ A(p).

Theorem 6.3. eA(p) = A(p)−1.

Proof. Let g ∈ A(p)−1. By (R1) on page 2, there exists a δ > 0 such that |ĝ(k)| ≥ δ
p(k) for all k ∈ N0. In 

particular, ĝ(k) �= 0, and we define f̂(k) := 1
p(k)Log(p(k)ĝ(k)), for k ∈ N0, where Log : C\{0} → R ×(−π, π]

denotes the principal branch of the logarithm. We have 0 < δ ≤ p(k)|ĝ(k)| ≤ ‖g‖ for all k ∈ N0, and so 
supk∈N0

p(k)|f̂(k)| ≤
√

(max{log δ, log ‖g‖})2 + π2 =: C < ∞, showing that f ∈ A(p). It follows from 
Lemma 6.2 that ef = g. �
For a topological space X, let H1(X, Z) denote the first Čech cohomology group of X with integer coeffi-
cients. For background on Čech cohomology, see [12]. For a commutative unital complex semisimple Banach 
algebra A, the quotient group A−1/eA is isomorphic to H1(M(A), Z) (see e.g. [14, Corollary 7.4]). Thus 
H1(M(A(p)), Z) = {0}.

7. Solvability of Ax = b

We will show the following:

Theorem 7.1. Let A ∈ A(p)m×n, b ∈ A(p)m×1.
Then the following are equivalent:

(1) There exists an x ∈ A(p)n×1 such that A ∗ x = b.
(2) There exists a δ > 0 such that for all k ∈ N0 and all y ∈ Cm×1, (Â(k))∗y 2 ≥ δ|〈y, ̂b(k)〉2|.

Here 〈·, ·〉2 denotes the usual Euclidean inner product on C�×1 for � ∈ N, and · 2 is the corresponding 
induced norm. Also, if aij ∈ A(p) denotes the entry in the ith row and jth column of A, then Â(k) ∈ Cm×n

is the matrix whose entry in the ith row and jth column is âij(k), 1 ≤ i ≤ m, 1 ≤ j ≤ n, k ∈ N0. For a 
matrix M ∈ Cm×n, M∗ denotes its Hermitian adjoint (obtained by taking the entrywise complex conjugate 
of M and then taking the transpose of the resulting matrix). We will use the following elementary linear 
algebraic result; see [29, Lemma 8.2]. We include the short proof for the sake of completeness.

Lemma 7.2. Let A ∈ Cm×n and b ∈ Cm×1 be such that

∃δ > 0 such that for all y ∈ Cm×1, A∗y 2 ≥ δ|〈y, b〉2|. (	)

Then there exists an x ∈ Cn×1 such that Ax = b with x 2 ≤ 1 .
δ
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Proof. For y ∈ kerA∗, (	) implies 〈y, b〉2 = 0. So b ∈ (kerA∗)⊥ = ranA. If y ∈ ker(AA∗), then A∗y 2
2 =

〈A∗y, A∗y〉2 = 〈AA∗y, y〉2 = 〈0, y〉2 = 0. Thus A∗y = 0, and so y ∈ kerA∗ = (ranA)⊥. Since we had shown 
above that b ∈ ranA, we have 〈b, y〉2 = 0. As y ∈ ker(AA∗) was arbitrary, b ∈ (ker(AA∗))⊥ = ran((AA∗)∗) =
ran(AA∗). Hence there exists a y0 ∈ Cm×1 such that AA∗y0 = b. Taking x := A∗y0 ∈ Cn×1, we have Ax = b. 
If b = 0, then we can take x = 0, and the estimate on x 2 is obvious. So we assume that b �= 0 and then 
A∗y0 �= 0 (since we know that AA∗y0 = b). We have, using the given inequality (	),

A∗y0
2
2 =〈A∗y0, A

∗y0〉2 =〈y0, AA∗y0〉2 =〈y0, b〉2 = |〈y0, b〉2|≤
A∗y0 2

δ
.

Since A∗y0 �= 0, we obtain x 2 = A∗y0 2 ≤ 1
δ . �

Proof of Theorem 7.1. (1)⇒(2): As x ∈ A(p)n×1, there exists a C > 0 such that for all k ∈ N0, x̂(k) 2 ≤
C

p(k) . For y ∈ Cm×1 and k ∈ N0,

|〈y, b̂(k)〉2| = |〈y,p(k)Â(k)x̂(k)〉2| = p(k)|〈(Â(k))∗y, x̂(k)〉2|
≤ p(k) (Â(k))∗y 2

C
p(k) (Cauchy-Schwarz)

= C (Â(k))∗y 2.

Setting δ := 1
C > 0 and rearranging gives (2).

(2)⇒(1): Fix k ∈ N0. The condition in statement (2) and Lemma 7.2 implies the existence of an xk ∈ Cn×1

such that Â(k)xk = b̂(k), with xk 2 ≤ 1
δ . In this way, we obtain a sequence (xk)k≥0 in Cn×1. Let the 

components of xk be denoted by x(1)
k , · · · , x(n)

k ∈ C. Define

x(i)(z) =
∞∑

n=0

x
(i)
k

p(k)z
k for all z ∈ C, 1 ≤ i ≤ n.

Then each x(i) ∈ A(p) (as | x(i)

p(k) | ≤
1/δ
p(k) for all k ∈ N0), and so the column vector x having these components 

belongs to A(p)n×1. Also,

(A ∗ x)
∧

(k) = p(k)Â(k) 1
p(k)xk = b̂(k) for all k ∈ N0,

i.e., A ∗ x = b. �
From Theorem 7.1, or using the density of {ϕk : k ∈ N0} in M(A(p)) and the matricial corona theorem 
(see e.g. [36, Ch. 8, Lemma 34]), we get: For A ∈ A(p)m1×n and B ∈ A(p)m2×n, there exist X ∈ A(p)n×m1

and Y ∈ A(p)n×m2 such that XA + Y B = In if and only if there exists a δ > 0 such that for all k ∈ N0, 
(Â(k))∗Â(k) + (B̂(k))∗B̂(k) ≥ δ2

p(k)2 In. A curious application of Theorem 7.1 is the following:

Corollary 7.3. Let A ∈ A(p)n×k and B ∈ A(p)m×n. There exist X ∈ A(p)k×n and Y ∈ A(p)n×m such that 
AX + Y B = In if and only if there exists a δ > 0 such that for all � ∈ N0, and all Z ∈ Cn×n,

trace(((Â(�)(Â(�))∗ZZ∗))) + trace((((B̂(�))∗B̂(�)Z∗Z))) ≥ δ2

p(�)2 |traceZ|2.

Proof. We use 〈P, Q〉2 := trace(Q∗P ) for P, Q ∈ Cp×q. If (P1, Q1), (P2, Q2)∈Ck×n ×Cn×m, then 
〈(P1, Q1), (P2, Q2)〉2 :=〈P1, P2〉2 + 〈Q1, Q2〉2. Define T : Ck×n×Cn×m → Cn×n by T (P, Q) := Â(�)P+QB̂(�)
for (P, Q) ∈ Ck×n ×Cn×m. Then T ∗Z = ((((Â(�))∗Z, Z(B̂(�))∗))) for Z ∈ Cn×n. Use Theorem 7.1 with b cor-
responding to εIn. �
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8. Krull dimension of A(p) is infinite

Definition 8.1. The Krull dimension of a commutative ring R is the supremum of the lengths of chains of 
distinct proper prime ideals of R.

Recall that the Hardy algebra H∞ is the Banach algebra of bounded and holomorphic functions on the unit 
disc D := {z ∈ C : |z| < 1}, with pointwise operations and the supremum norm ‖ · ‖∞. In [33], von Renteln 
showed that the Krull dimension of H∞ is infinite. We adapt the idea given in [33], to show that the Krull 
dimension of A(p) is infinite too. A key ingredient of the proof in [33] was the use of a canonical factorisation 
of H∞ elements used to create ideals with zeroes at prescribed locations with prescribed orders. Instead 
of zeroes of our entire functions, we will look at the indices for the vanishing coefficients in the Taylor 
expansion centred at 0, and instead of orders of zeroes, we will use the notion of ‘index-order’ introduced 
below.

If f ∈ A(p) and k ∈ N0 is an index such that f̂(k) = 0, then we define the index-order m(f, k) of the 
index k for f by

m(f, k) = max{m ∈ N : f̂(k + �) = 0 whenever 0 ≤ � ≤ m− 1}.

If f̂(k + �) = 0 for all � ∈ N0, then we set m(f, k) = ∞. If f̂(k) �= 0, then we set m(f, k) = 0. Analogous to 
the order of a zero of a holomorphic function, the index-order satisfies the following property.

(P1): If f, g ∈ A(p), k ∈ N0, then m(f + g, k) ≥ min{m(f, k),m(g, k)}.

The order of a zero ζ of the pointwise product of two holomorphic functions is the sum of the orders of ζ as 
a zero of each of the two holomorphic functions. For the index order, and the weighted Hadamard product, 
we have the following instead:

(P2): If f, g ∈ A(p), k ∈ N0, then m(f ∗ g, k) ≥ max{m(f, k),m(g, k)}.

We will use the following known result; see [15, Theorem, §0.16, p.6].

Proposition 8.2. If J is an ideal in a ring R, and M is a set that is closed under multiplication and M∩J = ∅, 
then there exists an ideal P such that J ⊂ P and P ∩M = ∅, and P maximal with respect to these properties. 
Moreover, such an ideal P is necessarily prime.

Theorem 8.3. The Krull dimension of A(p) is infinite.

Proof. Let ak = 2k for all k ∈ N0. Let n ∈ N. Define fn ∈ A(p) by

{
f̂n(ak + �) = 0 whenever 0 ≤ � ≤ kn+1,

f̂n(m) = 1
p(m) if m /∈

⋃
k∈N0

{ak + � : 0 ≤ � ≤ kn+1}.

Note that m(fn, ak) ≥ kn+1, but for each fixed n ∈ N, there exists a Kn ∈ N0 such that the gap between 
the indices, ak+1 − ak = 2k+1 − 2k = 2k > kn+1 for all k > Kn, and so m(fn, ak) = kn+1 for all k > Kn. 
Hence

lim m(fn,ak)
kn = ∞ and lim m(fn,ak)

kn+1 = 1 < ∞. (3)

k→∞ k→∞
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Let I := {f ∈ A(p) : ∃k0(f) ∈ N0 such that ∀k > k0(f), f̂(ak) = 0}. The set I is nonempty since 0 ∈ I. 
Clearly I is closed under addition, and f ∗ g ∈ I whenever f ∈ I and g ∈ A(p). So I is an ideal of A(p). 
For n ∈ N, we define

In = {f ∈ I : lim
k→∞

m(f,ak)
kn = ∞},

Mn = {f ∈ A(p) : sup
k∈N

m(f,ak)
kn < ∞}.

Clearly fn ∈ In, and so In is not empty. Using (P1), we see that if f, g ∈ In, then f + g ∈ In. If g ∈ A(p)
and f ∈ In, then (P2) implies that f ∗ g ∈ In. Hence In is an ideal of A(p).

The identity element ε ∈ Mn for all n ∈ N. If f, g ∈ Mn, then it follows from (P2) that f ∗ g ∈ Mn. Thus 
Mn is a nonempty multiplicatively closed subset of A(p).

It is easy to check that for all n ∈ N, In+1 ⊂ In and Mn ⊂ Mn+1. We now prove that the inclusions are 
strict for each n ∈ N. From (3), it follows that fn ∈ In but fn /∈ In+1. Also fn ∈ Mn+1 and fn /∈ Mn.

Next we show that In ∩Mn = ∅. Indeed, if f ∈ In ∩Mn, then

∞ = lim
k→∞

m(f,ak)
kn = lim sup

k→∞

m(f,ak)
kn ≤ sup

k∈N

m(f,ak)
kn < ∞,

a contradiction. But In ∩Mn+1 �= ∅, since fn ∈ In and fn ∈ Mn+1.
We will now show that the Krull dimension of A(p) is infinite by showing that for all N ∈ N, we can 

construct a chain of strictly decreasing prime ideals PN+1 � PN ⊂ · · · � P2 � P1 in A(p).
Fix an N ∈ N. Applying Proposition 8.2, taking J = IN+1 and M = MN+1, we obtain the existence of 

a prime ideal P = PN+1 in A(p), which satisfies IN+1 ⊂ PN+1 and PN+1 ∩MN+1 = ∅.
We claim the ideal IN + PN+1 of A(p) satisfies (IN + PN+1) ∩ MN = ∅. Let h = f + g ∈ IN + PN+1, 

where f ∈ IN and g ∈ PN+1. Since g ∈ PN+1, by the construction of PN+1 it follows that g /∈ MN+1. 
But MN ⊂ MN+1, and so g /∈ MN as well. Thus there exists a subsequence (k�)�∈N0 of (k)k∈N0 such that 
lim�→∞

m(g,ak�
)

kN
�

= ∞. From (P1), we obtain 
m(h,ak�

)
kN
�

≥ min{m(f,ak�
)

kN
�

, 
m(g,ak�

)
kN
�

}. As f ∈ IN , it follows that

sup
�∈N

m(h,ak�
)

kN
�

≥ min
{

lim sup
�→∞

m(f,ak�
)

kN
�

, lim sup
�→∞

m(g,ak�
)

kN
�

}
≥ ∞.

Thus h /∈ MN . Consequently, (IN + PN+1) ∩MN = ∅.
Clearly IN ⊂ IN +PN+1. Applying Proposition 8.2 again, now taking J = IN +PN+1 and M = MN , we 

obtain the existence of a prime ideal P = PN in A(p) such that IN +PN+1 ⊂ PN and PN ∩MN = ∅. Thus 
PN+1 ⊂ IN + PN+1 ⊂ PN . The first inclusion is strict because fN ∈ IN ⊂ IN + PN+1. But fN /∈ PN+1

(since fN ∈ MN+1 and PN+1 ∩MN+1 = ∅ by the construction of PN+1). Thus PN+1 � PN .
Now consider the ideal J := IN−1 + PN ⊃ IN−1 of A(p) and the multiplicatively closed set M := MN−1

of A(p). Similar to the argument given above, then1 J ∩M = (IN−1 +PN ) ∩MN−1 = ∅. By Proposition 8.2, 
taking J = IN−1 + PN ⊃ IN−1 and M = MN−1, there exists a prime ideal P = PN−1 in A(p) such that 
IN−1 + PN ⊂ PN−1 and PN−1 ∩MN−1 = ∅. Thus PN ⊂ IN−1 + PN ⊂ PN−1, and again the first inclusion 
is strict (because fN−1 ∈ IN−1 ⊂ IN−1 + PN , fN−1 ∈ MN and MN ∩ PN = ∅).

Proceeding in this manner, we obtain the chain of distinct prime ideals PN+1 � PN � PN−1 � · · · � P1

in A(p). As N ∈ N was arbitrary, it follows that the Krull dimension of A(p) is infinite. �
1 Let h = f + g ∈ IN−1 + PN , where f ∈ IN−1 and g ∈ PN . Since g ∈ PN , by the construction of PN , g /∈ MN ⊃ MN−1, and 

so g /∈ MN−1. Thus there exists a subsequence (k�)�∈N0 of (k)k∈N0 such that lim
�→∞

m(g,ak�
)

kN−1
�

= ∞. As f ∈ IN−1, sup
�∈N

m(h,ak�
)

kN−1
�

≥

min{lim sup m(f,ak�
)

N−1 , lim sup m(g,ak�
)

N−1 } ≥ ∞. Thus h /∈ MN−1. So (IN−1 + PN ) ∩ MN−1 = ∅.

�→∞ k� �→∞ k�
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9. A(p) is neither Artinian nor Noetherian

Even Noetherian rings can have an infinite Krull dimension (see e.g. [25, Appendix, Example E1] or [13, 
Exercise 9.6]). However, in our case, A(p) is not Noetherian.

Definition 9.1. A commutative ring R is called Noetherian if there is no infinite increasing sequence of ideals, 
that is, for every increasing sequence I1 ⊂ I2 ⊂ · · · of ideals of R, there exists an N ∈ N such that In = IN
for all n > N . A commutative ring R is called Artinian if there is no infinite descending sequence of ideals, 
that is, for every decreasing sequence I1 ⊃ I2 ⊃ · · · of ideals of R, there exists an N ∈ N such that In = IN
for all n > N .

A(p) is not Noetherian. (Let In = {f ∈ A(p) : f̂(k) = 0 for all k ≥ n} for all n ∈ N. Clearly I1 ⊂ I2 · · · . 
Moreover, each inclusion is strict, since if fn := zn ∈ A(p), n ∈ N, then fn ∈ In+1 \ In.)
A(p) is not Artinian. (Let In = {f ∈ A(p) : f̂(k) = 0 for all k ≤ n} for all n ∈ N. Clearly I1 ⊃ I2 ⊃ · · · . 
Moreover, each inclusion is strict, since if fn := zn+1 ∈ A(p), n ∈ N, then fn ∈ In \ In+1.)

10. A(p) is a coherent ring

In absence of the Noetherian ‘finiteness’ property, a natural finiteness question is that of coherence. We 
refer the reader to the article [17] and the monograph [16] for the relevance of the property of coherence in 
commutative holomogical algebra.

Definition 10.1. A commutative unital ring R is called coherent if every finitely generated ideal I is finitely 
presentable, that is, there exists an exact sequence 0 → K → F → I → 0 of R-modules, where F is a 
finitely generated free R-module and K is a finitely generated R-module.

All Noetherian rings are coherent, but not all coherent rings are Noetherian. (For example, the polynomial 
ring C[x1, x2, x3, · · · ] is not Noetherian (because the sequence of ideals 〈x1〉 ⊂ 〈x1, x2〉 ⊂ · · · is ascending 
and not stationary), but C[x1, x2, x3, · · · ] is coherent [16, Corollary 2.3.4].)
A commutative ring in which every finitely generated ideal is principal is said to be Bézout. By property 
(R4) (p. 2), A(p) is a Bézout ring. It is known that Bézout domains are coherent, but we cannot use this 
to conclude that A(p) is coherent, since A(p) is not a domain (as A(p) has nontrivial zero divisors: e.g. 
z ∗ z2 = 0).

Theorem 10.2. A(p) is coherent.

Proof. Let I be a finitely generated ideal in A(p). Then I is principal by the property (R4) (p. 2). So there 
exists an fI ∈ A(p) such that I = 〈fI〉. Define χ ∈ A(p) by setting

χ̂(k) =
{

1
p(k) if f̂I(k) = 0,
0 if f̂I(k) �= 0.

Define K = 〈χ〉. Then K is a finitely generated A(p)-module. Let F := A(p) = 〈ε〉. Then F is a finitely 
generated free module. Consider the A(p)-module morphism ϕ : F → I given by ϕ(h) = fI ∗ h for all 
h ∈ A(p). We will show that the sequence 0 → K ↪→ F → I → 0 is exact, where K ↪→ F denotes the 
inclusion map. The exactness at K and at I is clear. It remains to show {h ∈ A(p) : fI ∗ h = 0} = K. If 
h ∈ K, then h = χ ∗ f for an f ∈ A(p). We have ϕ(h) = fI ∗ (χ ∗ f). But (fI ∗ χ)

∧

(k) = 0 for all k ∈ N0, and 
so fI ∗ χ = 0, showing that ϕ(h) = 0, that is, h ∈ kerϕ. Hence K ⊂ kerϕ.
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Now suppose h ∈ A(p) is such that fI ∗h = 0. As h ∈ A(p), there exists a C > 0 such that for all k ∈ N0, 
|ĥ(k)| ≤ C

p(k) . As fI ∗ h = 0, we have that for all k ∈ N0,

0 = (fI ∗ h)
∧

(k) = p(k)f̂I(k)ĥ(k). (4)

If k ∈ N0 is such that f̂I(k) �= 0, then by the definition of χ, we have χ̂(k) = 0, and moreover, then (4)
above implies that ĥ(k) = 0, so that

|ĥ(k)| = 0 = C · 0 = C · |χ̂(k)|. (5)

If k ∈ N0 is such that f̂I(k) = 0, then we have χ(k) = 1
p(k) , and so

|ĥ(k)| ≤ C
p(k) = C · 1

p(k) = C · |χ̂(k)|. (6)

(5) and (6) together imply that |ĥ(k)| ≤ C|χ̂(k)| for all k ∈ N0, and so by the criterion (R1) (p. 2), χ divides 
h in A(p), that is, there exists some f ∈ A(p) such that h = χ ∗ f , i.e., h ∈ 〈χ〉 = K, as wanted. �
11. Generation of SLn(A(p)) by elementary matrices

Let R be a commutative unital ring with multiplicative identity 1 and additive identity element 0. Let 
m ∈ N. The general linear group of invertible matrices in Rm×m is denoted by GLm(R). The special linear 
group SLm(R) is the subgroup of GLm(R) of all matrices M whose determinant detM = 1. An elementary 
matrix Eij(α) is a matrix having form Eij = Im + αeij , where i �= j, α ∈ R, and eij is the m ×m matrix 
whose entry in the ith row and jth column is 1, and all the other entries of eij are zeros. Em(R) is the 
subgroup of SLm(R) generated by elementary matrices. A classical question in algebra is:

For all m ∈ N, is SLm(R) = Em(R) ?

The answer to this question depends on the ring R. For example, if the ring R = C, then the answer is ‘Yes’, 
and this is an exercise in linear algebra; see for example [1, Exercise 18.(c), page 71]. If R is the polynomial 
ring C[z1, · · · , zd] in the indeterminates z1, · · · , zd with complex coefficients, then for d = 1, the answer is 
‘Yes’ (this follows from the Euclidean Division Algorithm in C[z]), but for d = 2, the answer is ‘No’, and 
[9] contains the following example:[

1+z1z2 z2
1

−z2
2 1−z1z2

]
∈ SL2(C[z1, z2]) \ E2(C[z1, z2]).

(For d ≥ 3, the answer is ‘Yes’, and this is the K1-analogue of Serre’s Conjecture, which is the Suslin Stability 
Theorem [34].) The case of R being a ring of real/complex valued continuous functions was considered in 
[35]. For the ring R = O(X) of holomorphic functions on Stein spaces in Cd, this was an explicit open 
problem [18], and was answered affirmatively in [19]. We will prove below that SLn(A(p)) = En(A(p)).

For Banach algebras, the following result is known [23, §7]:

Proposition 11.1. Let A be a complex commutative unital semisimple Banach algebra, n ∈ N, and M ∈
SLn(A). Then M ∈ En(A) if and only if M is path-connected to In in SLn(A) (i.e., there exists a continuous 
map γ : [0, 1] → SLn(A) such that γ(0) = M and γ(1) = In).

If (A, ‖ · ‖) is a commutative unital Banach algebra, then An×n is a complex algebra with the usual matrix 
operations. Let An be the normed space of all column vectors of size n with entries from A, componentwise 



14 A. Sasane / J. Math. Anal. Appl. 533 (2024) 128000
operations, and the Euclidean norm given by (2). For M ∈ An×n, the multiplication map, An � v �→ Mv ∈
An, is a continuous linear transformation, and we equip An×n with the induced operator norm, denoted by 
‖ · ‖ again. Then An×n with this operator norm is a unital Banach algebra. Subsets of An×n are given the 
induced topology.

We first show some auxiliary results which we will need in the special case when the Banach algebra is 
A(p). Let the operator norm on M ∈ Cn×n (when Cn is equipped with the Euclidean norm · 2, and M
is viewed as a map Cn � v �→ Mv ∈ Cn) be denoted by M 2,2. Let O(C) denote the set of all entire 
functions. For a matrix A ∈ O(C)n×n, if aij ∈ O(C) denotes the entry in the ith row and jth column of 
A, and then Â(k) ∈ Cm×n is the matrix whose entry in the ith row and jth column is âij(k), 1 ≤ i ≤ m, 

1 ≤ j ≤ n, k ∈ N0, where aij(z) =
∞∑
k=0

âij(k)zk for all z ∈ C.

Lemma 11.2. A ∈ A(p)n×n if and only if supk∈N0
p(k) Â(k) 2,2 < ∞. Moreover, then

supk∈N0
p(k) Â(k) 2,2 ≤ n‖A‖.

Proof. (‘Only if’ part:) Suppose A = [aij ] ∈ A(p)n×n. Take the vector v ∈ A(p)n×1, having only one 
nonzero entry, which is the jth component, and is equal to ε. Then we obtain

‖aij‖2 ≤
n∑

i=1
‖aij‖2 = ‖Av‖2

2 ≤ ‖A‖2‖v‖2
2 = ‖A‖21 = ‖A‖2.

Hence supk∈N0
p(k)|âij(k)| = ‖aij‖ ≤ ‖A‖. As the i, j were arbitrary, it follows from [5, Fact 9.8.10(xii)]

that supk∈N0
p(k) Â(k) 2,2 ≤ n‖A‖.

(‘If’ part:) If C := supk∈N0
p(k) Â(k) 2,2 < ∞, then [5, Fact 9.8.10(xii)] implies supk∈N0

p(k)|âij(k)| ≤ C, 
and so ‖aij‖ ≤ C for all 1 ≤ i, j ≤ n. Thus A ∈ A(p)n×n. �
Lemma 11.3. If A ∈ A(p)n×n then A(z) 2,2 ≤ n‖A‖ε(|z|) (z ∈ C).

Proof. For z ∈ C, we have

A(z) 2,2 =
∞∑
k=0

Â(k)zk 2,2 ≤
∞∑
k=0

Â(k) 2,2|z|k ≤
∞∑
k=0

n‖A‖
p(k) |z|k = n‖A‖ε(|z|). �

To apply Proposition 11.1, we will need the following result.

Theorem 11.4. Let A ∈ GLn(A(p)). Then there exists a B ∈ A(p)n×n such that eB = A.

Before proving this result, let us see how this gives the following.

Theorem 11.5. For all n ∈ N, SLn(A(p)) = En(A(p)).

Proof. Let A ∈ SLn(A(p)) ⊂ GLn(A(p)). Let B ∈ A(p)n×n be such that eB = A. For t ∈ [0, 1], define γ(t)
to be the matrix obtained by scaling any one column, say the first one, of e(1−t)B, by det(e−(1−t)B). Then 
det(γ(t)) = ε, and so γ(t) ∈ SLn(A(p)) for all t ∈ [0, 1]. We have

γ(0) = A and γ(1) = e0 = In =
[ ε

. . .
ε

]
.

Moreover, as γ is continuous, it follows that A is path connected to In in SLn(A(p)). From Proposition 11.1, 
we get A ∈ En(A(p)). Thus SLn(A(p)) = En(A(p)). �
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Recall that A ∈ GLn(C) possesses a logarithm, which can be obtained as follows (see e.g. [21, Example 5.20]). 
We will be a bit more particular about the construction of the logarithm, since we will apply this to each 
Â(k), k ∈ N0, for our A ∈ SLn(A(p)), and we will then need a uniform estimate on log(p(k)Â(k)), k ∈ N0.

Denote the spectrum (the set of eigenvalues) of A by σ(A). There exists an open sector Ωθ = {z ∈
C \ {0} : |argz− θ| < π

n} of angular width 2π
n that does not intersect the spectrum of A. Moreover, we have 

0 < r := minλ∈σ(A) |λ| ≤ R := maxλ∈σ(A) |λ|. Let γ be the path CR+1 + S1 + Cr/2 + S2 (see the following 
picture), where Cr/2 is a circular arc of radius r/2 centred at 0 traversed in the clockwise direction, CR+1
is a circular arc of radius R+ 1 centred at 0 traversed in the anticlockwise direction, S1 is a radial straight 
line segment joining the arc CR+1 to the arc Cr/2 with the fixed argument θ− π

2n , and S2 is a radial straight 
line segment joining the arc Cr/2 to the arc CR+1 with the fixed argument θ + π

2n .

If log denotes the logarithm branch with a cut along the radial ray with fixed argument θ, then we have

logA = 1
2πi

∫
γ
(log ζ)(ζIn −A)−1dζ.

We will also use the following estimate2 [3, Theorem 4.1] for the norm of the resolvent of A ∈ GLn(C) at 
z ∈ C \ σ(A):

(zIn −A)−1
2,2 ≤ 1

d(z, σ(A)) exp
(
c2

2n A 2
2,2

(d(z, σ(A)))2 + b2

)
(7)

for some universal (not depending on A or z) constants c2, b2 > 0. Here d(z, σ(A)) := inf{|z−λ| : λ ∈ σ(A)}.

Proof of Theorem 11.4. Let A ∈ GLn(A(p)). Then

p(k)Â−1(k)Â(k) =

⎡⎣ 1
p(k)

. . .
1

p(k)

⎤⎦ .

If v ∈ Cn \ {0} is an eigenvector of Â(k) of unit norm corresponding to the eigenvalue λ̃, and C > 0 is such 
that Â−1(k) 2,2 ≤ C

p(k) , then the above yields upon operation on v that

2 This follows by setting p = 2 in the estimate given in [3, Theorem 4.1], and noting that ν2(A)2 given there is bounded by 
‖A‖2

F −
∑n

k=1 |λk|2, where ‖A‖F denotes the Hilbert-Schmidt/Frobenius norm of A and λ1, · · · , λn denote the n eigenvalues of A
repeated with multiplicities. We have ‖A‖F ≤ √

n A 2,2 (see e.g. [5, Fact 9.8.10(ix) and Prop. 9.4.7]) and |λk| ≤ A 2,2 for all k
[5, Corollary 9.4.5].
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p(k) C
p(k) |λ̃| ≥ p(k)Â−1(k)(λ̃v) 2 = 1

p(k)v 2 = 1
p(k) ,

so that min{|λ| : λ ∈ σ(p(k)Â(k))} ≥ 1
C =: r > 0 for all k ∈ N0. Also, if R > 0 is such that Â(k) 2,2 ≤ R

p(k) , 
then since the spectral radius is bounded by the operator norm,

max{|λ| : λ ∈ σ(p(k)Â(k))} ≤ p(k)Â(k) 2,2 ≤ R for all k ∈ N0.

Let Ωk denote an open sector of angular width 2π
n that does not intersect the spectrum of p(k)Â(k). Since 

r, R do not depend on k ∈ N0, and since the angular wedge width (of 2π
n ) also does not depend on k ∈ N0, 

it is now clear that for any ζ lying on the image of γ = CR+1 + S1 + Cr/2 + S2 (as in the picture above), 
we have that | log(k) ζ| ≤ C̃ for some constant independent of k ∈ N0. (Here we use the notation log(k) to 
emphasise the dependence of the chosen branch of the logarithm on the k at hand.) Also the length of γ
can be bounded by

L := 2π r
2 + 2π(R + 1) + 2((R + 1) − r

2 ).

We have

log(k)(p(k)Â(k)) 2,2 = 1
2πi

∫
γ
(log ζ)(ζIn − p(k)Â(k))−1dζ 2,2

≤ L
2π C̃ maxζ∈γ (ζIn − p(k)Â(k))−1

2,2.

To bound the final right-hand term involving the resolvent, we will use the estimate (7). First we note that 
if ζ lies on γ, then3

d(ζ, σ(p(k)Â(k))) ≥ min{r sin π
4n ,

r
2} =: δ > 0.

Also, p(k) Â(k) 2,2 ≤ R for all k ∈ N0. Thus

maxζ∈γ (ζ − p(k)Â(k))−1
2,2 ≤ 1

δ exp(c2 2nR2

δ2 + b2) =: K.

This yields log(k)(p(k)Â(k)) 2,2 ≤ L
2π C̃K =: K̃ for all k ∈ N0. Now define B̂(k) = 1

p(k) log(k)(p(k)Â(k)) ∈
Cn×n for all k ∈ N0. Then

p(k)B̂(k) 2,2 ≤ K̃ for all k ∈ N0,

and so by Lemma 11.2

B(z) :=
∞∑
k=0

B̂(k)zk (z ∈ C)

is an element in A(p)n×n. We have

Bm(z) =
∞∑
k=0

p(k)m−1(B̂(k))mzk,

and thus4

3 This lower bound is obtained by dropping a perpendicular from the corner of the shaded region onto S1, which has a length 
r sin π

2n , and the distance between Cr/2 and the shaded region is clearly r/2.
4 The exchange of the two summations is justified, since:

∞∑ ∞∑ p(k)m−1(B̂(k))m
m! zk

2,2≤
∞∑ ∞∑ |z|k

p(k)
(n‖B‖)m

m! =
∞∑ |z|k

p(k) e
n‖B‖ =en‖B‖ε(|z|)<∞.
m=0 k=0 m=0 k=0 k=0
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(eB)(z) =
∞∑

m=0

(Bm)(z)
m! =

∞∑
m=0

∞∑
k=0

p(k)m−1(B̂(k))m
m! zk

=
∞∑
k=0

zk

p(k)

∞∑
m=0

(p(k)B̂(k))m
m! =

∞∑
k=0

zk

p(k)e
p(k)B̂(k)

=
∞∑
k=0

zk

p(k)p(k)Â(k) = A(z),

as wanted. �
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