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ABSTRACT
In this two-part essay, we distinguish several senses in which general relativity 
has been regarded as “locally special relativistic.” In Part 1, we focused on senses 
in which a relativistic spacetime may be said to be “locally (approximately) 
Minkowskian.” Here, in Part 2, we consider what it might mean to say that a 
matter theory is “locally special relativistic.” We isolate and evaluate three criteria 
in the literature and show that they are incompatible: matter theories satisfying 
one will generally violate others. We then consider what would happen if any of 
those criteria failed for a given theory.
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1. INTRODUCTION
In Part 1 of this two-part essay, we considered interpretations of the claim that spacetime is 
locally flat that understand it in terms of properties of the (local) geometry of spacetime. But 
often, authors invoke local flatness in the context of discussions not just of geometry, but 
also of the dynamics of matter. The idea is that the local approximate flatness of spacetime 
is reflected in the local dynamics of matter fields within spacetime, or in other words, that 
not only is spacetime locally approximately flat, but matter behaves (locally, approximately) 
as if it “sees” that flat geometry. This claim, or variations thereon, is sometimes known as 
the “strong equivalence principle” (SEP). It suggests another possible interpretation, or 
class of interpretations, of the claim that spacetime is locally approximately flat, different 
in character from those we discussed in Part 1.

Matter Dynamics Interpretation: The dynamics of matter fields in general 
relativity are just locally (approximately) those of matter fields in special 
relativity.

Our goal in the present part is, first, to emphasize how this claim, as stated, is ambiguous 
in two ways, and second, to discuss options for resolving those ambiguities.

The first ambiguity concerns what, precisely, it means to say that matter dynamics are 
“locally special relativistic” (LSR). As we discuss presently, there are several attempts to 
make this idea precise in the literature; these turn out to be not only different in character, 
but generally incompatible with one another—a fact that does not seem to have been 
widely appreciated. Moreover, what is involved in checking whether a theory is, in fact, 
LSR on each of these different approaches is strikingly different, which means that it is 
not clear that a theory that appears manifestly LSR by some criteria is also LSR by other 
criteria, even when those criteria are, in principle, compatible.

Even if we settle on a particular understanding of when a theory is LSR, a second ambiguity 
persists. As we showed in Part 1, every relativistic spacetime is locally approximately 
flat in a precise sense. But it is clear that not every possible matter theory is LSR, by any 
reasonable criterion. This raises the question of whether the claim that matter dynamics 
in general relativity are LSR is a descriptive one—“an expression of a fact about [matter] 
theories, that, if it holds true, is remarkable” (Knox 2013, 350)—or a constitutive one—
an interpretive supplement to matter theories that ensures that the spacetime metric 
represents physical quantities of length and duration (Brown 2005, 151).1 In the former 
case, observing that matter dynamics are LSR may be of great pragmatic value, for instance 
because they are simple to analyze or support certain standard inferences, but it would be 
of little foundational significance. On the other hand, if being LSR is somehow a necessary 
or sufficient supplement to a matter theory for it to be compatible with (or even engender) 
the usual interpretation of the metric in general relativity, one would like to have greater 
clarity on precisely what goes wrong if one introduces matter theories that fail to be LSR.

The remainder of this paper will address each of these issues. In section 2, we will introduce 
some technical preliminaries that will clarify what we mean by a “matter theory” in the 
present context and which will provide the framework for the remainder of the paper. In 
sections 3–5, we will isolate and discuss three criteria for when a matter theory should be 
said to be LSR. We will argue in section 3 that one common criterion, which we call the 
“syntactic” criterion because it is based on the “form” of a system of equations, is inadequate 
because it is hyperintensional: it renders different verdicts for systems of equations that 

1	 See also Read et al. (2018, §4.1).
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should be seen as equivalent (because they have the same solutions). We will then discuss 
two alternative “semantic” criteria, due, respectively, to Sonego and Faraoni (1993) (section 
4) and Ehlers (1973) (section 5).

In section 6, we will consider the relationship between these criteria. We will show, in 
particular, that the Sonego-Faraoni and Ehlers criteria are inequivalent and, with certain 
natural background choices, they are also incompatible, in the sense that theories satisfying 
one cannot satisfy the other (and vice versa). We will also suggest that the Ehlers criterion 
is more likely to give verdicts that are compatible with those expected by advocates of the 
syntactic criterion.

In section 7, we will briefly turn to the second ambiguity. We will argue that, once we have 
precisely stated what “LSR” might mean, it is not at all clear that any of the criteria we 
discuss is necessary for a reasonable or realistic matter theory in general relativity. Indeed, 
one of the criteria is not satisfied by even standard realistic theories with wide applicability; 
we show in section 5 that the other criterion is satisfied by some theories, but our arguments 
are not readily extended to realistic non-linear theories such as Yang-Mills theory, and so it 
is not yet clear whether such theories should count as LSR. Moreover, we will suggest that 
the somewhat non-standard theories that satisfy the Sonego-Faraoni criterion presented in 
section 4 are not obviously pathological or incompatible with the standard interpretation 
of the spacetime metric in general relativity, even if they are not LSR. And so it is not clear 
what constitutive force the requirement that a theory be LSR could have.

We will conclude in section 8 with a brief discussion of two future directions for research.

2. PRELIMINARIES: WHAT IS A MATTER 
THEORY?
To fix ideas, we suppose that matter fields in general relativity may be represented 
by (local) sections of bundles of field values over spacetime manifolds M, and that the 
dynamics of matter are given by partial differential equations acting on those sections.2 
That is: we suppose that a “theory of matter” consists in (1) a systematic assignment, to 
each spacetime (M, gab), of a bundle B M , whose typical fiber is some fixed manifold 
F representing possible field values at each point, with F independent of the choice of 
spacetime (M, gab);

3 and (2), a system of differential equations, each of the form P[ϕ, gab]ϕ = f, 
on sections ϕ : O → B, for O ⊆ M, of each of these bundles, where P is some differential 
operator on sections, and both P and f may depend on gab, ϕ, and other fields defined on M. 
(We explicitly note the dependence of P on ϕ and gab for future convenience.4)

The first part of the definition, (1), captures the idea that the space of possible values 
that a given matter theory may ascribe to a point is independent of not only the point but 

2	 For background on fiber bundles, particularly in physics, see Kobayashi and Nomizu 
(1963), Bleecker (1981), or Palais (1981). For more on this perspective regarding matter theories, 
see Geroch (1996) and Fatibene and Francaviglia (2003). In what follows, we will sometimes 
assume the fibers are endowed with a linear or affine structure, such that one can readily 
impose a norm on each fiber, or on sections, though this is not essential to matter theories.

3	 By “systematic” we mean, roughly, that the association between smooth manifolds and 
bundles of field values is functorial; see the discussion of “natural” bundles in Fatibene and 
Francaviglia (2003, §1.4).

4	 We make no special restrictions on the differential operator here, though all of the actual 
cases we consider in what follows will be at most quasilinear.
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also the ambient spacetime,5 and also that the space of possible configurations of fields 
described by the theory is both fixed by the theory and may be given by a particular bundle 
structure. This is a generalization for an arbitrary field of the idea that the “electromagnetic 
field” at any point of any spacetime is represented by the value, at that point, of a tensor 
field—namely, a two-form Fab—on that spacetime. The second part of the definition, (2), 
states that, whatever else is the case, “matter dynamics” are differential equations, and that 
any matter theory must stipulate, on any spacetime, what the equations governing this 
specific form of matter will be. Presumably, any adequate treatment of matter theories will 
need to say more about what it means to impose the “same” differential equation, mutatis 
mutandis, on bundles over different manifolds and with different metrics; and it will need 
to say more about how “source terms” are determined across different spacetimes.6 But for 
present purposes we do not need to settle those issues. What we presuppose here is only 
that once a matter theory is fixed, there is no ambiguity regarding what the field bundle 
over a given spacetime is or what the equations governing those fields are. This is just an 
expression of the fact that a matter theory describes a class of mathematical models that, 
the theory asserts, represent the physically possible configurations of the theory’s subject, 
a particular material field (Fletcher 2020b).

To take an example, one possible matter theory, which we will call (real, mass m) 
Klein-Gordon theory, associates, with each spacetime (M, gab), the (unique) trivial 
bundle B M  over M with typical fiber ℝ; and it imposes on sections ϕ : O → B of those 
bundles the equation P[gab]ϕ = 0, where 2[ ]= ab

ab a bP g g m   . Here  is the Levi-Civita 
derivative operator associated with gab and m is a (fixed) number. Note that there are 
other matter theories, on our definition, whose bundle and whose associated equations 
may coincide with Klein-Gordon theory on some spacetimes, such as Minkowski 
spacetime. But only Klein-Gordon theory makes this assignment of equations to every 
spacetime.

Similarly, (vacuum) Maxwell theory associates with each spacetime (M, gab) a (not necessarily 
trivial) bundle B M , with typical fiber a six dimensional vector space, constructed in 
a canonical way from the tangent bundle of M so that each element of the fiber over a 
point p is associated with an antisymmetric tensor Fab at p; and it imposes, on sections, two 
equations, daFbc = 0 and =ab

aF 0 .7

3. THE SYNTACTIC CRITERION
Now suppose we have some matter theory in the sense described in section 2. What does 
it mean to say that this theory is LSR? One proposal often cited in the literature concerns 
the form of a system of equations. For example, Brown (2005, 117) characterizes the 

5	 This might be interpreted as an extension of the fact discussed in Part 1 that all spacetimes 
with the same metric signature geometrically have the same local character: every spacetime is 
a universal approximating spacetime.

6	 See fn. 7 for a brief comment on this issue in the context of Maxwell theory.

7	 There are a few strategies available within this framework for dealing with sources in 
Maxwell theory. One is to insist that sources must be associated with their own matter theory, 
such as charged Klein-Gordon theory, and consider the expanded system including Maxwell 
fields and the other matter fields as equations on a single bundle of field values with a direct 
sum structure on each fiber. Here the inhomogeneous Maxwell equation would include some 
term that was an algebraic function of the other field’s values. Another option is to expand the 
Maxwell theory bundle so that field configurations consist of pairs Fab, Ja, where Ja is a covector 
field appearing in the inhomogeneous Maxwell equation and subject to additional equations, 
such as =ab

a bg J 0 . What does not work is to consider something like “Maxwell theory for 
a particular configuration of charges,” since it is not clear how to identify specific source 
configurations across different spacetimes.
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“local validity of special relativity” as the condition that “the laws of physics of the non-
gravitational interactions … take their standard special relativistic form at [spacetime point] 
p” in coordinates in which the spacetime metric “takes the form diag(1, –1, –1, –1) and the 
first derivatives of its components vanish,” that is, Lorentz normal coordinates.8 Brown 
(2005, 169–70) clarifies that “special relativistic form” means “that the covariance group of 
the equations is the inhomogeneous Lorentz group”; Read et al. (2018), meanwhile, invoke 
the “Poincaré invariance” of such equations, which means that the “form” of the equations 
at a point p in Lorentz normal coordinates near p is invariant under the class of coordinate 
transformations that preserve the property of being Lorentz-normal-at-p.

Similar ideas arise in other discussions of the SEP. For instance, Torretti (1996, 136) writes 
that the equivalence principle demands that “the laws of nature take the same form in [the 
domain of a Lorentz chart] UQ … as they would when referred to an ordinary Lorentz chart 
in a spacetime region where gravity is absent.” Similarly, Knox (2013, 352) writes,

To any required degree of approximation, given a sufficiently small region 
of spacetime, it is possible to find a reference frame with respect to whose 
associated coordinates the metric field takes Minkowskian form, and the 
connection and its derivatives do not appear in any of the fundamental field 
equations of matter.

Despite being widespread in the literature, there are several problems with such 
explications of what it means for a system of equations to be LSR. These stem from the 
fact that this way of thinking about matter dynamics is essentially “syntactic.” That is, it 
concerns how the dynamical equations appear in a semi-formal language of coordinates, 
their partial derivatives, and arithmetic functions of these. Even formulations along these 
lines that appear to invoke symmetry properties of equations—such as Poincaré invariance 
or covariance—are syntactic, because they concern how the form of an equation changes, 
as one changes coordinate systems, relative to certain conventions as to what counts as 
sameness of form. But one might expect that a satisfactory characterization of what it 
means for a system of equations to be LSR would reflect something about not the expression 
of the equations, but what the equations represent—some suitably intrinsic (language-
invariant) property of the equations, or of their space of solutions, rather than one that 
holds only relative to some further conventional choice of representational structure (e.g., 
certain coordinate systems).

In fact, the problems run deeper than this. As Fletcher (2020a) and Weatherall (2021) have 
both argued, in somewhat different contexts, such syntactic criteria are often ambiguously 
defined—a fact acknowledged even by those who advocate for and use them. At worst, 
they are hyperintensional, in the sense that they distinguish between cases that should 
be viewed as equivalent because the cases clearly represent the same relationships 
between the same physical quantities. The source of this—again, see Fletcher (2020a) 
and Weatherall (2021) for detailed examples—is that “standard special relativistic form” 
is not invariant under trivial syntactic manipulations of the expression of an equation, 
and apparently depends on various conventions about how to express equations and what 
features do and do not properly belong to such a form of an equation.

One way to attempt to resolve these issues is to focus only on coordinate systems adapted 
to the geometrical structures of spacetime (Wallace, 2019), so as to capture the idea that an 
“equation” “depends” (only) on certain structures, to certain orders—and that equations 
that do have just these dependencies can be expected to have solutions with certain 

8	 See also similar remarks by Brown and Pooley (2001). Lorentz normal coordinates are 
discussed in detail in Part 1.
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properties. From this perspective, the trouble is that neither the notion of “equation” (or 
some equivalence class thereof) nor that of “dependence” has been made adequately precise 
in syntactic terms. But if the syntactic structures well adapted to geometrical structures 
were chosen just to reflect the features of the latter, then another way to resolve these 
issues might be to develop a theory of “dependence” that invokes only form-independent 
features of systems of equations.9 We will not attempt that project here. Instead, we turn 
to two other criteria for when a theory is LSR already available in the literature, both of 
which have a more semantic character, in that they look at properties of solutions to a 
system of equations, rather than the manner in which the equations are expressed.

4. THE SONEGO-FARAONI CRITERION
Responding to objections very similar to the ones just expressed, Sonego and Faraoni 
(1993) propose a different strategy for identifying when a system of equations is LSR. 
They suggest that, at least in the context of linear scalar field theories, to say a theory is 
LSR means that “the physical properties of wave propagation—rather than the form of the 
equation—should reduce locally to those valid in flat spacetime […, i.e.,] that the physical 
features of the solutions be locally the same in both cases” (1185, emphasis original). In 
other words, it is not the form of the dynamical equations that matter for being LSR, 
but the local properties of the solutions to those equations. They go on to suggest that 
a necessary and sufficient condition for this property to hold is that the “fundamental 
solutions,” or Green’s functions, of a matter theory in curved spacetime should have 
certain qualitative properties in common with those of the same theory in flat spacetime. 
Those properties characterize how a point-like perturbation to a matter field propagates 
in an initial value problem.10 Because general solutions to the initial value problem for a 
linear matter theory may be constructed by a convolution of the fundamental solutions 
with an initial matter distribution, the local propagation properties for initial distributions 
are determined by those for the fundamental solutions (Di Casola et al. 2015, 43).

To spell this proposal out in more detail, we will focus on the particular example that Sonego 
and Faraoni consider, which is a scalar field on a generic spacetime. Fix a spacetime (M, gab) 
and let B be the trivial ℝ bundle over M. We are interested in whether a (linear) differential 
operator P[gab] on M is LSR;11 establishing this will then permit us to say whether a given 
scalar field theory is LSR on all spacetimes.

Recall, first, that given such a differential operator P[gab] on B and a point q ∈ M, a 
“fundamental solution” Gq for P is a (real-valued) distribution (or generalized function) 
with the property that

= ,[ ]ab q qP g G δ

where δq is the delta distribution based at the point q.12 What this means is that given any 
smooth scalar field χ of compact support—a “test field”—we have that

9	 Some work in this direction may be found in Geroch (1996).

10	 They demand that, in the limit as the spacetime points of the arguments in the Green’s 
function approach one another, the Green’s function for a general spacetime is that of 
Minkowski spacetime under the same limit.

11	 Here we are focusing attention on a class of linear field theories, and so we suppress the 
dependence on fields other than the metric since the space of solutions forms a vector space.

12	 See Geroch and Weatherall (2018, Appendix A) for a compact introduction to tensor 
distributions, or Grosser et al. (2001) for a longer treatment, though with somewhat different 
notational conventions.
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( [ ] ){ } = { } = ( )ab q qP g G χ δ χ χ q

where by D{χ}, for some distribution D and test function χ, we mean the action of the 
distribution on the test function.

Consider, now, the class of differential operators given by, for some fixed number m ∈ ℝ,

∇ ∇ + +2[ ]= ,ab
ξ ab a bP g g m ξR

where  is the Levi-Civita operator associated with gab, R is the scalar curvature associated 
with , and ξ is a real number. For any choice of ξ, we can take this expression to determine 
a scalar matter theory by imposing, on the trivial ℝ-bundle over any spacetime (M, gab), a 
differential equation Pξ[gab]ϕ = 0. Call these theories “P-ξ” theories. This class of theories is 
of interest because, for any ξ ∈ ℝ, the resulting theory coincides with Klein-Gordon theory 
(for appropriate m) on flat spacetime, but differs on other spacetimes.

Sonego and Faraoni are interested in which P-ξ theory, if any, should count as LSR. Of 
course, one candidate answer stands out immediately: one might take the theory with 
ξ = 0, i.e., the theory we have previously called Klein-Gordon theory, to be LSR, because it 
agrees syntactically with the Klein-Gordon equation on Minkowski spacetime. But Sonego 
and Faraoni reject this answer, on the grounds that it violates their principle concerning 
the qualitative properties of solutions. The argument turns on the following facts.13

Fact 1. If (M, gab) is flat and M is four-dimensional, then for any point q ∈ M, the fundamental 
solutions Gq associated with Pξ[gab] are supported only on the light cone based at q.

This property, of having fundamental solutions supported only on lightcones, is sometimes 
known as “Huygens’ principle.” Huygens’ principle holds in flat spacetime for Klein-
Gordon theory—and thus for any P-ξ theory, since R vanishes there. But it does not hold in 
general for all values of ξ—including for ξ = 0 on curved spacetimes.

Fact 2. For arbitrary spacetime (M, gab), the fundamental solutions Gq of Pξ[gab] associated 
with points q ∈ M may have support at any point timelike related to q. In particular, for 
ξ = 0, if R ≠ 0 at a point q, then fundamental solutions Gq have support at points timelike 
related to q.

So Klein-Gordon theory—the theory that results if we take ξ = 0—has qualitative properties 
that are not shared by the flat spacetime version of the theory. The fundamental solutions 
have “tails” in the interior of the lightcone. On the other hand, there is a (unique) value 
of ξ for which Pξ[gab] does satisfy Huygensʼ principle for all Lorentzian metrics gab on four-
manifolds M.

Fact 3. For any spacetime (M, gab), with M four-dimensional, and any point q ∈ M, the 
fundamental solutions Gq are supported only at points null related to q if and only if ξ = 1/6.

Sonego and Faraoni go on to argue that for this reason, choosing ξ = 1/6 is a natural and, 
indeed, preferable generalization of the Klein-Gordon equation to curved spacetime over 
the standard choice of ξ = 0. Their full argument for this, and especially the consequences 
they draw from it, need not concern us here. The key idea is that they use the LSR character 
of the resulting equation to distinguish P-1/6 theory from P-ξ theory for other values of ξ, 
including 0. In doing so, they suggest a precise necessary condition for certain differential 
operators to be LSR:

13	 See, e.g., Friedlander (1975, §5.7) for a discussion of these facts in a detailed and rigorous 
setting.
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LSR Chez Sonego and Faraoni A differential operator that satisfies Huygens’ 
principle in flat spacetime is LSR only if it satisfies Huygens’ principle in 
curved spacetime.14

Sonego and Faraoni’s (partial) proposal for what it means for a differential operator to 
be LSR is an example of the sort of “semantic” alternative to the “syntactic” accounts 
discussed above that we suggested was needed, since it concerns the supports of certain 
solutions of an equation, rather than the expression of that equation. But it does have some 
surprising features, most notable of which is that it yields a non-standard answer to the 
question “what scalar wave equations are LSR?” Now, Sonego and Faraoni take this to be an 
advantage of their proposal, because they think it provides guidance on how to generalize 
the Klein-Gordon equation to curved spacetime. But it leads to difficulties elsewhere. For 
instance, the source-free Maxwell equations also satisfy Huygens’ principle in Minkowski 
spacetime (and in certain other contexts), but they do not satisfy it in general in curved 
spacetimes (Belger et al. 1997; Günther 1988, Ch. VIII; Harte 2013). Thus, it would seem 
that Sonego and Faraoni are either committed to the claim that the source-free Maxwell 
equations are not LSR (or, in their own terms, do not satisfy the equivalence principle), or 
else that the equations must be modified in curved spacetime. To make matters worse, it is 
not clear that there exists any modification to the equations that would make them LSR on 
the Sonego-Faraoni criterion, for any change that would re-establish Huygens’ principle 
would seem to spoil the conformal invariance of the equations, a distinct local property of 
Maxwell wave propagation in Minkowski spacetime that guarantees that they are scale-
free. Introducing a spatial or temporal scale into the equations seems to lead to a scale for 
the development of the “tail phenomena”—propagation of fundamental solution within, 
not just on, the lightcone—hence the failure of Huygens’ principle.

5. THE EHLERS-STYLE CRITERIA

5.1 TWO VERSIONS: g-APPROXIMATING AND 
η-APPROXIMATING

Yet another semantic way—or, as we shall see, pair of ways—of thinking about what it 
means for a theory to be LSR is essentially articulated by Ehlers (1973).15 He writes:

Suppose a physical process which takes place in a small spacetime domain has 
been analyzed in the framework of special relativity theory, and one wishes to 
describe an analogous process occurring in a gravitational field without having 

14	 This is actually a special case of their necessary condition, which is described most 
succinctly in a later publication as the requirement “that the local structure of the Green 
function [the fundamental solutions] associated with a physical law be the same in a curved 
and in a flat spacetime” (Di Casola et al. 2015, 43). Although they do not give a complete 
account of what the “local structure” of the fundamental solutions amounts to, they do count 
satisfaction of Huygens’ principle as one example of it. See also footnote 10 for more on what 
Sonego and Faraoni take to be constitutive of the fundamental solutions.

15	 It is worth noting that Ehlers (1973, 18–20) also proposes a syntactic characterization of 
this property in his own statement of the SEP, which is closely related to Brown’s statement. 
Ehlers suggests that that version of the principle, along with results he proves along the lines 
of our Theorem 1 of Part 1, imply that what we are calling the Ehlers-style conditions will hold 
for theories that satisfy the syntactic criterion—though he does not prove this, and it is not 
clear that a proof would be possible. We are extracting from his discussion there and elsewhere 
a pair of different, more semantic statements of what being LSR might mean. The upshot will 
be a conflict between, on the one hand, each of those statements and, on the other hand, that of 
Sonego and Faraoni.
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a complete general-relativistic analysis—a common situation indeed. Then 
one may proceed as follows. One chooses an event p in the general-relativistic 
spacetime model, situated where the process is assumed to happen, and 
identifies it tentatively with an event p′ of the special relativistic model. One 
identifies, moreover, the flat spacetime of the latter model with the tangent 
space Mp of the curved spacetime M at p, and one uses the exponential map 
expp to transfer all events of interest which form part of the special relativistic 
model of the process in question, from Mp to M. The chronometrical relations 
between the events thus obtained will then, because of [results analogous to 
Theorem 1 of Part 1], differ arbitrarily little from those of the original, flat 
space theory, provided the gravitational tidal field  

a
bcdR , evaluated in a suitable 

orthonormal frame at p adapted to the process, is sufficiently small; and one 
can estimate the deviations if one knows the curvature. It is therefore plausible 
to assume that [if a theory is LSR then], except for error of the order of the 
deviations just referred to, the model of the process obtained by applying the 
exponential map is a correct one. (Ehlers 1973, 45–6)

The key idea we wish to extract from this passage is that a LSR matter theory in general 
relativity is one with solutions that, in general, locally approximate the solutions of the 
corresponding equations, mutatis mutandis, in flat spacetime. We call this the (informal) 
g-approximating version of the Ehlers criterion, for it posits, for any general relativistic 
spacetime and any local special relativistic matter theory solution, the existence of a local 
general relativistic solution that approximates it in the aforementioned general relativistic 
spacetime.

This idea is promising—and for theories for which it is true, it has clear pragmatic value, 
for it suggests how to model local matter dynamics approximately in general relativity 
using knowledge from special relativity. But trying to articulate this criterion precisely and 
demonstrate whether candidate theories satisfy it turns out to be a subtle business. (Ehlers 
does not attempt it.) At issue are two things. First, Ehlers suggests that the approximating 
curved spacetime solution should be “correct,” presumably in the sense that it provides 
an adequate representation of a process analogous to the one that was originally modeled 
in Minkowski spacetime. What does this notion of “correctness” amount to? How do 
we identify “situations” across different spatiotemporal contexts? The second subtlety is 
even more basic. What does it mean for one solution to “approximate” a correct one? The 
answers to both questions are surely context-dependent, and not something amenable to 
an abstract, informative, once-and-for-all characterization.

Nonetheless, we suggest a schema for this g-approximating Ehlers-type semantic criterion 
of when a theory is LSR that affords enough flexibility to capture many relevant contexts in 
which “being LSR” is invoked.16 To get at the idea, fix some relativistic spacetime (M, gab), 
and choose any point p ∈ M. Theorem 1 of Part 1 ensures that there exist, on sufficiently 
small neighborhoods of p, flat metrics ḡab with the properties that ḡab = gab at p, and 
moreover, =  at p, where  is the Levi-Civita derivative operator associated with ḡab. Fix 
some such flat metric ḡab. We will say that a differential equation on M is LSR if given any 
solution to the “flat spacetime equation,” that is, the equation that the theory assigns 

16	 We don’t know of any limitations per se, except for the contrasting case of the 
η-approximating version of the criterion discussed later in this subsection.
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to (U, ḡab), there exists a solution to the equation the theory assigns to curved spacetime—
that is, (U, gab)—that approximates it relative to some norm. More precisely:17

LSR schema, Chez Ehlers, g-approximating version Suppose we have a 
matter theory in the sense given above. Then given any spacetime (M, gab), with 
associated field bundle B → M and differential operator P[gab, ϕ], and given 
any point p ∈ M, any flat metric ḡab near p agreeing, to first order, with gab at p, 
any solution : O B ¯  to [ , ] = 0abP g  ¯ ¯ ¯  near p, and any ϵ > 0, there exist, on a 
sub-neighborhood Ô O  of p, a field ˆ: O B   such that [ , ] = 0abP g    and a 
sub-sub-neighborhood U ⊆ Ô of p on which || ||  ¯ ϵ , where || ||  is a suitable, 
context-dependent norm.

Here the differential operator [ , ]abP g ¯  is to be interpreted as the operator in the “flat 
spacetime” version of the equation—that is, the equation that the matter theory would 
impose on the spacetime (O, ḡab)

18—and P[gab, ϕ] is the operator associated with the 
curved spacetime equation. (By our definition of matter theory in section 2, there can be 
no ambiguity about what those operators should be.) Note that while we work with the 
spacetime (U, ḡab), this spacetime can always be isometrically embedded into Minkowski 
spacetime—and thus, solutions to the “special relativistic” equations can be pulled back 
to (U, ḡab) to determine the sort of local flat spacetime solutions under consideration. In 
that way, we can think of the condition as saying: a theory is LSR if for any (global or 
local) solution to the “special relativistic” version of the equation, there exists a general 
relativistic solution that approximates it near any point of any spacetime.

There is another interpretation of Ehlers’ remarks available, especially in the context of 
other passages, where he affirms that “a theory of spacetime and gravitation should be 
such that [among other conditions] it agrees locally with special relativity; … [this is, in 
other words,] the requirement that special relativity be valid to a good approximation 
locally everywhere even in the presence of gravitation” (Ehlers 1973, 19–20). According to 
this (informal) η-approximating version of the Ehlers criterion one should take a theory 
to be LSR if for every solution in curved spacetime, and every point, there exists a flat 
spacetime solution that approximates it near that point. This direction might be taken to 
capture the idea that every local material phenomenon that occurs in curved spacetime can 
be suitably approximated by an analogous situation in flat spacetime. Note the difference 
in quanitifier domains here: in the g-approximating version, the criterion quantifies over 
all local flat spacetime solutions and all local regions of an arbitrary curved spacetime, 
asserting the existence in the latter of a curved spacetime solution that approximates the 
given flat spacetime solution; in the η-approximating version, the criterion quantifies over 
all local curved spacetime solutions and all local regions of flat spacetime, asserting the 
existence in the latter of a flat spacetime solution that approximates the given curved 
spacetime solution. The more formal version runs thus:

LSR schema, Chez Ehlers, η-approximating version Suppose we have a 
matter theory still in the sense given above. Then given any spacetime (M, gab), 
with associated field bundle B → M and differential operator P[gab, ϕ], and 
given any point p ∈ M, any flat metric ḡab near p agreeing, to first order, with gab 

17	 Throughout the definitions in this section, we implicitly assume a linear or affine 
structure on the fibers of the bundle, such that a norm of the form described can be defined. 
This is not a significant restriction in practice, but it deserves to be noted.

18	 As in Part 1, we will not explicitly indicate that a gab defined on a manifold is restricted to 
some open subset of that manifold.
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on p, any solution ϕ : O → B to P[gab, ϕ]ϕ = 0 near p, and any ϵ > 0, there exist, 
on a sub-neighborhood Ô ⊆ O of p, a field ˆ: O B ¯  such that [ , ] = 0abP g  ¯ ¯ ¯  
and a sub-sub-neighborhood U ⊆ Ô of p on which || ||  ¯ ϵ , where || ||  is a 
suitable, context-dependent norm.

We do not adopt a position on which version of the Ehlers schema is superior, nor on which 
is a more accurate statement of Ehlers’ own views. Both are precise criteria that might be 
appropriate to consider under various circumstances. For instance: the g-approximating 
version captures a statement of a sense in which general relativistic matter theories 
might be said to subsume, at least locally and in approximation, special relativistic matter 
theories; and the η-approximating version captures a statement of a sense in which, at 
least locally, solutions to special relativistic matter theories approximate solutions to 
the corresponding general relativistic matter theories. But note the difference, in either 
version, from the Sonego and Faraoni condition: Whereas they consider perfect agreement 
with respect to a specific qualitative property of fundamental solutions—those arising 
from a delta distribution source—the Ehlers schemas consider approximate agreement of 
arbitrary solutions.

5.2 THE CONTEXTUALITY OF APPROPRIATE NORMS

Both versions of the Ehlers schema invoke some norm || ||  on local sections of B. Indeed, 
this is why we refer to each of them as a “schema.” One finds different criteria by choosing 
different norms. What should this norm be? Ehlers does not say. (He even suggests that the 
right norm will be whichever one makes the condition true of his favorite matter theories!) 
We will not propose one here; indeed, we take the freedom to choose an appropriate norm 
to suit the situation at hand to be a reflection of the context-sensitivity associated with 
“correct” and “approximate” solutions in the passage from Ehlers quoted above.19

That said, we will note some minimal desiderata that seem reasonable to expect in all 
cases. The first is that whatever norm one adopts, it should measure not only the values of 
ϕ, but also their derivatives up to at least the order of the differential operators associated 
with a theory. Because in general the values of the derivatives of a field at a point to some 
particular order are independent of those values to lower (including zero) order, this 
ensures that all (rather than a strict subset) of the data that serve as input to the equation 
associated with the differential operator enter into our notion of approximation. Thus, 
the norm may depend on the equations whose solutions are locally approximated—and 
it may even depend on how an equation is characterized, since generally, any partial 
differential equation of order greater than 1 can be reformulated as an equation of order 
1 by introducing auxiliary fields and further equations to guarantee consistency. (This 
dependence of the norm on the formulation of an equation might seem odd at first glance, 
but it is not so troubling once we recognize that when an order-k equation is cast in first-
order form, one represents its higher-order derivatives as new fields subject to first-order 
equations. So, a norm sensitive to order k for the original field equation is mathematically 
equivalent to a norm sensitive to order 1 for the new first-order field equation, since the 
new equation simply replaces the higher-order derivatives with new fields.)

A second consideration is that as long as one keeps to the Ehlers-like schemas as we have 
stated them, whatever norm is chosen must be such that the difference in norm between 
two fields does not approach zero as one considers smaller and smaller neighborhoods 
of the point p, even when the difference in field values remains large. In other words, 

19	 Compare these remarks with those of Fletcher (2016), who argues that criteria of 
similarity and approximation have this context-dependency quite generally.
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the norm should be fiber-wise separating: when restricted to a single point, the norm of 
the difference between two values should vanish only if those values are identical. This 
rules out candidates such as Sobolev norms that involve integrating fields over some 
neighborhood, since those integrals will shrink to 0 as the neighborhoods shrink, even 
if the differences in the fields remain bounded away from 0; on the other hand, modified 
Sobolev norms that take into account the size of the neighborhood may be appropriate in 
some contexts.

The ambiguity regarding what norm should be chosen makes it difficult to evaluate 
unequivocally whether actual matter theories turn out to be LSR according to an Ehlers-
style criterion. But as we will presently show, for at least some norms that meet the 
desiderata already laid out, standard theories, including Maxwell’s theory and the Klein-
Gordon theory, are LSR by the resulting Ehlers criteria. For this purpose, we consider Ck 
supremum norms on the neighborhoods U of p considered in the criterion schemas, where 
k is the order of the system of equations under considerations and the supremum norm 
is defined relative to some positive definite metric, hab.

20 (These are the norms determined 
by the distance functions dU(f, f′ ; h, k) defined in Part 1.) They meet the desiderata already 
sketched in that they measure not just field values, but also derivatives, and they are fiber-
wise separating. But we do not claim that these are somehow a canonical choice—just one 
that is convenient for present purposes and meets the minimal conditions we have set out.

Consider, first, vacuum Maxwell theory and the g-approximating version of the Ehlers LSR 
criterion with the C1 supremum norm.

Proposition 1. Fix any spacetime (M, gab) and choose any point p ∈ M. Let ḡab be a flat 
metric on a neighborhood O ⊆ M of p, which agrees, to first order, with gab at p. Finally, let 

:abF O B  be a solution to Maxwell’s equations on flat spacetime,

	 = ,ab
a bcFg 0¯ � (1a)

	
[ ] = .a bcF 0 � (1b)

Given any positive definite metric hab and any ϵ > 0, there exists a solution Fab to Maxwell’s 
equations on (O, gab),

	 = ,ab
a bcg F 0 � (2a)

	 [ ] = ,a bcF 0 � (2b)

such that there exists a neighborhood U ⊂ O of p on which || || = ( , ; , 1)ab ab UF F d F F h  ϵ, 
where || ||  denotes the C1 supremum norm.21

Proof. It suffices to show that there exists a solution Fab to Eqs. (2) such that =ab abF F  and 
=a bc a bcF F   at p.

20	 As we shall see, for some purposes, it is convenient to take k = 1 and work only with first-
order formulations of systems of equations. Note that if we were to adopt k = 0 for our norm, 
any equation with the property that, given any field value 1[ ]x p  , it has a solution through 
x, would automatically be LSR. But this would include, for instance, all first-order quasilinear 
systems.

21	 In fact, we show something stronger: we show that there exists a field Fab that solves 
Maxwell’s equations on (O, gab) and which is such that, for any positive definite metric hab and 
ϵ > 0, there exists U O  such that 

Ud F( , F; h, 1) < ϵ. That is, a single curved spacetime solution 
suffices for all positive definite metrics if the neighborhood U is allowed to vary accordingly.
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We do this as follows. Choose an open set Ô ⊆ O containing p. Without loss of generality, we 
suppose that Ô is the (interior of the) domain of dependence of some achronal, spacelike 
hypersurface S, where S contains p. Define a new field Fab on O as:

ˆ= ,ab ab abF F F

where âbF  is the unique solution to Maxwell’s equations on (Ô, gab) that vanishes on S and 
whose sources are given by ab

a F , where indices are raised with gab. (If no such solution 
exists, say because âbF  becomes singular, choose Ô to be the maximal neighborhood of S 
on which a unique solution does exist; such a neighborhood is guaranteed to exist by the 
standard existence and uniqueness theorems governing symmetric hyperbolic first-order 
linear PDEs.) Then Fab is a solution to Eqs. (2) on Ô. Moreover, Fab agrees with abF  at p, 
since ˆ =abF 0 there.

It remains to show that =a bc a bcF F   at p. And for this it suffices to show that ˆ =a bcF 0  
at p. To do so, we note that by the symmetric hyperbolic character of Maxwell’s 
equations, there exists a smooth tensor field χamnxy on M with the following properties: 
(1) given any smooth causal covector na, there exists a tensor field ζmnxy such that 

[ ]= m namnxy
a xyst s tn χ ζ δ δ ; and (2) if Fab solves Eqs. (2), then =amnxy

a mnχ F 0 (Geroch, 
1996). Now let na be the (timelike) covector field normal to S, and let =a a a

b b bq δ n n  
be the projection orthogonal to na (i.e., the projection onto the tangent space of S) at 
each point of S. Now, since the sources for âbF  vanish at p (because gab and ḡab agree 
there to first order), at p we have that âbF  satisfies: ˆ= ( )a abmnxy

b b a mnχ n n q F0   , which 
implies that ˆ ˆ( ) = =a a bmnxybmnxy

b a mn b a mnn χ n F q χ F 0   , where the final equality holds due 
to the fact that âbF  is constant (= 0) on S, and thus its derivatives tangent to S must 
vanish. Recalling that nb χbmnxy is invertible, we conclude that ˆ =a

a mnn F 0 . It follows that 
ˆ ˆ= ( ) =m m

a mn a a m bcF n q F 0    at p, and thus =a bc a bcF F   there. � 

So source-free Maxwell theory is LSR according to the g-approximating Ehlers-style 
criterion with the C1 supremum norm. An identical argument applies if we include sources 
in Maxwell’s theory, so long as we understand the “theory” involving those sources to be 
such that: (a) if gab = ḡab at a point p to first order, then the source terms associated with the 
sourced Maxwell’s equations in curved and flat spacetime also agree at p; and (b) whatever 
matter fields give rise to the source term themselves satisfy some first-order quasilinear 
symmetric hyperbolic equations. (This obtains, for instance, for source terms derived from 
standard charged matter fields, such as complex Klein-Gordon fields or Dirac fields.) And 
the same argument applies to Klein-Gordon theory, as well; this is particularly clear if 
we write the theory in first-order form by introducing an auxiliary field ψa and imposing 
additional equations to require that =a aψ  , since in this form one can invoke the 
symmetric hyperbolic character of the equations in the same ways as for the Maxwell case.

With little modification, the foregoing arguments show that both Maxwell and Klein-
Gordon theories are LSR according to the η-approximating Ehlers-style criterion, too. In 
fact, there are also other, independent arguments available to establish this. For instance, 
in the Klein-Gordon case, one can approximate any curved spacetime solution, to second 
order at a point, by an appropriately chosen sum of plane wave solutions in flat spacetime 
(plus a correction term). This is so even if the qualitative behavior of the curved spacetime 
solution in a neighborhood of the point is not well represented by a sum of plane waves.22

22	 This observation highlights how the C2 supremum norm, though it meets our desiderata 
for non-triviality, may still be too weak as a standard of approximation for some purposes that 
demand identity of such qualitative behavior (cf. Fletcher 2016).
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5.3 FURTHER VERSIONS

Another well-motivated Ehlers-style criterion is the conjunction of the g-approximating 
and η-approximating versions. If one adopts this both-ways Ehlers criterion, then one can 
show an analogue of Theorem 5—the universal approximation theorem—from Part 1.

Proposition 2. If a theory assigning equation P[gab, ϕ] = 0 is LSR according to the both-ways 
Ehlers criterion, then given any two spacetimes (M, gab) and (M′, g′ab), any points p ∈ M and 
p′ ∈ M′, a map χ : O → O′ between neighborhoods of p and p′ such that χ*(g′ab) = gab at p (and 
likewise for their derivatives) as guaranteed exists by Theorem 5 of Part 1, and any solution ϕ 
to the equation P[gab, ϕ] in a small neighborhood of p, there exists a solution ϕ′ to the equation 
P[ χ

*
(gab), ϕ′] = 0 that approximates ϕ arbitrarily well near p, relative to the same norm that 

realizes the both-ways Ehlers criterion.

That is, every matter theory that is “locally specially relativistic” in this sense is also, 
equally well, “locally de Sitter,” “locally Schwarzschildian,” and so on.

Another variation on the Ehlers-type criteria as we have stated them is to demand more 
from an “approximate solution” than is captured by the norms we have considered here. 
For instance, following Ehlers, we have stated the schema in terms of approximation in a 
neighborhood of a point. But we know from Theorem 1 of Part 1 that relativistic spacetimes 
are approximately locally flat in a stronger sense: there exist flat metrics that agree with 
a given curved metric, to first order, along a curve. Could one formulate a version of the 
Ehlers condition that involves approximation along a curve?

There is a sense in which the answer is clearly “yes”: one could require, for instance, that 
for any ϵ > 0 there is a solution to the curved-spacetime equation that approximates any 
given flat spacetime solution in sufficiently small neighborhoods of sufficiently small 
segments of any curve. But nothing is added by this approach, since any neighborhood of a 
point p will necessarily contain some small segment of any curve through p.

One might consider, instead, fixing a segment of a given curve, and then requiring arbitrary 
good approximation, relative to some norm, within any sufficiently small neighborhood 
of that fixed segment. We do not claim that this is a fruitless idea, but it does run into 
difficulties very quickly. In particular, for the Ck supremum norms we have considered, a 
curved-spacetime solution will approximate a given flat-spacetime solution arbitrarily well 
in small neighborhoods of a fixed segment of a curve only if the two solutions agree to kth 
order at every point of the segment. But it is hard to see how this could be achieved for 
hyperbolic systems, such as Maxwell’s equations, since one should expect small deviations 
between the solutions off of γ to propagate to and intersect γ, leading to disagreements 
between the solutions on γ arbitrarily close to any point of agreement.

Another approach, related to the g-approximating criterion, would be to require not only 
that there exist solutions in curved spacetime that approximate flat spacetime solutions in a 
neighborhood of a point, but also that the deviations between those solutions are bounded 
by some function that is “small” near the curve. We will not pursue this approach in detail, 
but we do note that the approximating solutions we constructed for Maxwell’s equations 
above have this character. In particular, using Theorem 1 of Part 1, one can choose ḡab 
and âbF  so that the source term for ˆ , ab

ab aF F , vanishes along a segment of a causal curve 
γ passing through p.23 Meanwhile, one can invoke well-known energy inequalities in the 
context of hyperbolic systems to show that the “total size” of âbF , say in the L2 norm on a 

23	 For further details on this approach, see the arguments in Geroch and Weatherall 
(2018, §4).
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given causal diamond, is bounded by the integral of the “total size” of this source term, 
which can be kept small on suitably chosen regions because it vanishes on γ.24 There results 
a family of inequalities of the form:

ˆ|| || ,V V
F XdV 

where X is a function vanishing on a segment of γ and depending on âbF  and the curvature 
of gab, and V is an appropriately chosen causal diamond. We do not claim that this is the 
most perspicuous or strongest such inequality that one could derive; we note it only as a 
suggestion for a further direction one might pursue to capture a somewhat stronger sense 
in which a theory might be LSR.

6. COMPARING THE FOREGOING CRITERIA
We will now turn to comparing the three (families of) criteria we have just discussed. First, 
we consider the relationship between the Ehlers-style criteria of section 5 and the Sonego-
Faraoni one of section 4. As we noted previously, one concern about the Sonego-Faraoni 
approach is that it yields odd verdicts on cases that might have seemed like canonical 
examples of LSR theories, including both Klein-Gordon theory and Maxwell theory. On 
the other hand, we have seen that with appropriate choices of norm, Maxwell and Klein-
Gordon theories are both LSR according to the Ehlers criteria. These arguments reveal a 
key difference between the Ehlers-type criteria we have discussed and the Sonego-Faraoni 
criterion. They show that being LSR on the Ehlers-type criteria, at least with the class of 
norms considered here, is not sufficient to be LSR on the Sonego-Faraoni one.

Of course, this observation leaves open the possibility that the Sonego-Faraoni condition is 
strictly stronger. That is: is being LSR on the Sonego-Faraoni criterion sufficient for being 
LSR on the Ehlers-type criteria? The answer is “no.”

Proposition 3. There exist matter theories that are LSR on the Sonego-Faraoni criterion but 
are not LSR on the g- or η-approximating Ehlers-type criteria with a Ck surpremum norm, 
where k is the order of the differential operator for the matter theory.

Proof. To find an example that witnesses this proposition, consider again the P-1/6 
theory as presented by Sonego and Faraoni. Choose an arbitrary spacetime (M, gab) 
with nonvanishing scalar curvature, and let p be a point at which R ≠ 0. Now choose 
a neighborhood U of p admitting a flat metric ḡab agreeing, to first order and at p, with 
gab; and let ̄  solve the flat spacetime equation 2

1/6[ ] = = 0ab
ab a bP mg g    ¯ ¯ ¯ ¯ ¯ . We 

assume, without loss of generality, that ̄  has been chosen to be non-vanishing at p. Now 
suppose, for contradiction, that there exists a solution ϕ to the curved spacetime equation, 

2
1/6[ ] = / 6 = 0ab

ab a bP g g m R       , such that, for some positive definite metric hab 
defined near p and any ϵ > 0, there exists a neighborhood U on which ( , ; , 2)Ud h  ¯ ϵ. It 
would follow that at , = , =a ap     ¯ ¯ , and =a b a b     ¯ , since otherwise, the norm, 
relative to hab, of the difference between any of these quantities would bound the supremum 
of those differences away from 0, as it is fiber-wise separating. But then by construction, we 
have, at            2 2 /6, = = 0ab ab

a b a bp g m g m R¯ ¯ . And so any field ϕ that agrees 
to second order with ̄  at p fails to satisfy the curved spacetime equation at p.25 � 

24	 See, for instance, the inequality derived in Appendix B of Geroch (1996). Note here 
that âbF  coincides with the 0 solution on a surface S, that both exactly satisfy their respective 
equations, and that, using his notation, k = k′.

25	 Observe that the same argument would go through, mutatis mutandis, if  we considered a 
first-order formulation of the P-1/6 theory and a C1 norm.
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This result depended on a particular choice of norm, as did the results that established that 
Maxwell and Klein-Gordon theories were LSR on the Ehlers criteria. We take the norm 
that we have adopted to be a weak one that meets the minimal desiderata noted above. If 
one adopted a stronger norm, the result that the Sonego-Faraoni criterion does not imply 
the Ehlers-type criterion would still hold; likewise, with a weaker norm, the fact that 
Ehlers-type criteria do not imply the Sonego-Faraoni criterion would still hold.

So these criteria come apart—and indeed, are incompatible, in the sense that each is 
satisfied, for the P-ξ theory, for unique, but distinct, values of ξ, at least for our choice 
of norm. It follows that different authors who endorse the claim that matter theories 
in general relativity should be LSR not only differ in how to state that requirement 
precisely, they also substantially disagree about what theories should be taken to meet the 
requirement in the first place.

What about the syntactic criterion? As we have already argued, it is not sufficiently 
clear what the criterion is supposed to be to attempt to prove anything formally about its 
relationship to the other two criteria. If the criterion is hyperintensional, as we suggested, 
then we would expect that it neither implies nor is implied by either of the semantic 
criteria—either those of Sonego-Faraoni or of Ehlers. What advocates of the syntactic 
criterion have said about particular examples seems to bolster this case. For instance, 
Brown (2005, 171) suggests that both what we have called Klein-Gordon theory (in section 
4) and P-1/6 theory are LSR, suggesting that the syntactic criterion is weaker than all of 
the others.26 On the other hand, Brown (2005, 171) identifies Jacobsen-Mattingly theory 
(Jacobson and Mattingly 2001) as a theory that he considers to be not LSR (and Read et al. 
[2018] concur), but we think it is plausible that the Jacobsen-Mattingly theory does satisfy 
the Ehlers criteria for reasonable norms.27 Suffice it to say that work is needed to identify 
precise mathematical statements of the syntactic criteria to truly settle these issues, and so 
we leave them aside for now.

7. THE SECOND AMBIGUITY, OR WHERE ARE 
WE NOW?
At the beginning of section 1, we noted two ambiguities related to the “matter dynamics” 
interpretation of local flatness. Our discussion thus far has focused on the first ambiguity: 
what does it mean to say that a matter theory is LSR? But we have not yet touched on 
the second ambiguity, which was whether the LSR character of matter theories is a 
convenient property that happens to obtain of familiar theories, or a constitutive condition, 

26	 Brown writes that the P-1/6 theory is “locally Lorentz covariant,” which we take to 
imply that it is LSR, especially in light of the later arguments by Read et al. (2018); but he 
also indicates that ξ = 1/6 is “permissible” to recover the “local physical properties of wave 
propagation” in special relativity, but not to recover the “form of the [Klein-Gordon] equation” 
(Brown 2005, 172). So we are not certain how the syntactic criterion rules on this case.

27	 Note that, without matter, the Jacobsen-Mattingly theory is equivalent to a sector of 
Maxwell’s theory coupled to a charged dust (Jacobson and Mattingly, 2001, 024028-1). Thus 
the arguments given above that Maxwell’s theory satisfies the Ehlers criteria almost establish 
that Jacobsen-Mattingly theory does as well—“almost” because the dust equations are not 
symmetric hyperbolic (Geroch 1996), and so a different method is needed to establish the result. 
That said, a modified Jacobsen-Mattingly theory that included a pressure term presumably 
would satisfy the Ehlers criteria, by the arguments above, so long as the effective equation of 
state satisfied certain further criteria. But a detailed assessment of the Jacobsen-Mattingly 
theory is beyond the scope of this paper. We note it only because Brown identifies it as 
an example of a theory that is not LSR, but it is not at all obvious that it violates the Ehlers 
criteria.
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the violation of which would mean that a theory fails to be adequate (or, adequately 
“relativistic”), that is, satisfy the interpretive postulates of relativity theory. Is a matter 
theory in curved spacetime somehow unacceptable if it is not LSR?

Brown (2005, 151) famously remarked that the “chronogeometric significance of the 
[metric] field is not an intrinsic feature of gravitational dynamics, but earns its spurs by 
way of the strong equivalence principle,” which is Brown’s expression of what it means 
for a matter field to be LSR. (See also Read et al. 2018, §4.1.) Yet it is not clear to us that 
the spacetime metric cannot be interpreted in the usual way, nor that anything else goes 
wrong, if a theory is not LSR. For instance, we do not find anything inherently problematic 
about either Klein-Gordon theory or the alternative advocated for by Sonego and Faraoni. 
And although we have seen that Klein-Gordon and Maxwell theories are LSR in the sense 
of Ehlers for some norms, we have not shown that other realistic theories, such as non-
Abelian Yang-Mills theories, are LSR on those criteria. Indeed, since the methods we 
used for Maxwell and Klein-Gordon theories made apparently essential use of the linear 
character of those equations, it is not immediately clear how to extend those arguments to 
non-linear theories. So if failing to be LSR has problematic consequences, it remains open 
whether the theories that seem to in fact describe fundamental physics must face those 
consequences. We also do not have a definitive answer to what consequences there might 
be, at least in any detail. A fuller answer would show where these various LSR criteria 
fit within the network of interpretive principles, standard assumptions, and theorems of 
general relativity.28

Another possible problem that is sometimes raised for theories that fail to be LSR is 
that they cannot explain, or are perhaps even incompatible with, the success of special 
relativity. A full treatment of this issue would take us far afield, and so we largely set it 
aside here except to venture a preliminary remark: this explanatory task seems to be most 
closely related to what might be guaranteed by the η-approximating Ehlers-type schema 
(rather than the g-approximating one). Recall that, according to it, a matter theory is LSR if 
for every local region of any spacetime and any field solution thereon to the matter theory’s 
equations of motion, there exists a local flat-spacetime solution that approximates it. This 
could fail, and yet special relativity might nonetheless be effective under circumstances 
where, for instance, curvature is sufficiently small, or where the actual field configurations 
encountered in nature happen to be similar to flat spacetime solutions, even though 
other solutions are not. In a word, it may suffice for matter theories to be LSR only in the 
circumstances where their special relativistic counterparts have been successfully applied.

8. CONCLUSION AND DIRECTIONS FOR FUTURE 
RESEARCH
In this part of our two-part essay, we considered the “matter dynamics” interpretation of 
the idea that special relativity is locally valid in general relativity, which was the claim that, 
in some sense, matter in general relativity locally behaves as if it were in flat spacetime, 
at least approximately. We isolated and assessed three criteria for when a matter theory 

28	 See Weatherall (2017) for a discussion of the background picture here (which Weatherall 
calls the “Puzzleball conjecture”). Briefly, the idea is that various standard assumptions and 
core principles, such as the geodesic principles, the conservation condition, Einstein’s equation, 
etc., are often mutually inter-derivable. Removing or modifying one of these principles thus 
has downstream consequences for the theory that force (perhaps unexpected) interpretation 
changes. Weatherall (2021) makes some closely related comments about the (obscure) deductive 
consequences of the SEP.
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should be said to be LSR, and argued that, insofar as they can be made sufficiently 
precise as to render clear verdicts, they are incompatible. It apparently follows that there 
is no “obvious,” or universally accepted, precise statement of this property lurking in 
the background of informal discussions. It seems that anyone who wishes to attribute 
foundational significance to the LSR character of matter dynamics needs to provide further 
arguments for why their preferred version has the significance they wish to attribute to it. 
In our view, the Ehlers-style criteria we have discussed are the most promising to develop 
further—or at least, they seem to us like the most natural way of capturing the claim that 
a matter theory is (approximately) LSR. But we will not defend that claim further here.

We also briefly discussed what depends on matter being LSR. We had little to say, here, 
because it remains unclear how the various LSR criteria depend on, or imply, other 
principles of general relativity. But since many of the criteria under consideration turn 
out to be mutually incompatible, and there are examples of theories that are LSR on one 
criterion but not others (and vice versa) that have received serious attention within the 
physics community, it is hard to see firm grounds for insisting that non-LSR theories are 
illegitimate or incoherent, incompatible with general relativity as standardly understood, 
or more likely to be false (all else being equal). Still, this question deserves further attention.

We close our present investigation with comments on two further directions for future 
research. The first picks up the theme from the end of the penultimate section. As noted in 
section 1 of Part 1, a principal motivation for many authors who have argued that general 
relativity is locally similar to special relativity has been to account for the success of the 
latter theory. From that perspective, the approximate local flatness of relativistic spacetimes, 
or the LSR character of various matter theories, plays a certain role in explanations 
and/or in a reduction of one theory to another. While we have focused on the status of 
(various versions of) the background claim that general relativity is, somehow, locally 
like special relativity, we have only superficially addressed the role that the relationships 
we have discussed might play in explanations of the success of special relativity. In our 
view, it would be valuable to explore this issue more completely in light of the results and 
discussion of the present paper. In particular: as suggested above, is it truly necessary that 
matter theories be LSR in order to account for the success of special relativity? To what 
extent does the answer to that question depend on one’s theory of intertheoretic relations?

The second direction for future research concerns an expression that we have not used 
here, but which is very often paired with discussions of the SEP and the LSR character 
of matter theories—viz. minimal coupling. According to the most common definition, 
a matter field is said to be minimally coupled to the spacetime metric, or minimally 
gravitationally coupled, when its equations, “written in abstract geometric form, differ 
in no way whatsoever between curved spacetime and flat spacetime; … [and when] 
written in component form, change on passage from flat spacetime to curved spacetime 
by a mere replacement” of the Minkowski metric and compatible coordinate derivatives 
with a general metric and compatible covariant derivatives, respectively (Misner et al. 
1973, 387).29 Many authors take minimal coupling to be a sufficient condition for the SEP 
(e.g., Brown 2005, 171);30 at least one other takes it to be necessary (Knox 2013, 352).

29	 For readability, we have removed italics from the original quotation, which refers to the 
replacement as that of “commas by semicolons” in reference to the common respective notation 
for the coordinate and covariant derivatives. At variance with most other authors, Misner et al. 
(1973, 386) actually refer to minimal coupling as “Einstein’s equivalence principle.”

30	 See also Misner et al. (1973, 386).
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Despite its ubiquity, this common definition of minimal coupling is just as commonly 
renounced (and often by the same authors), “because the phrase ‘the laws of special 
relativity’ is ambiguous. … In general, since the curvature vanishes in special relativity, we 
can add arbitrary terms involving curvature to our laws” (Friedman 1983, 201). Whether 
such terms are added changes the result of the minimal coupling prescription. (Recall, of 
course, P-ξ theories.)

Some authors attempt to avoid this problem by formulating minimal coupling as the 
property that no terms involving the curvature, or second derivatives, appear in matter field 
equations. For example, in place of the substitution-based definition of minimal coupling, 
Brown and Pooley (2001, 267) write that it should be understood as the “prohibition of 
curvature coupling in the non-gravitational equations.”31 But this reformulation is a 
nonstarter, for reasons explained by Brown and Read (2016): “In [general relativity], 
second- and higher-order dynamical equations for non-gravitational interactions, in local 
Lorentz coordinates at a point p and constructed using the minimal coupling scheme, take 
a form in which the curvature tensor and/or its contractions appear.”

In response to these worries, Brown and Read suggest that one should just accept the 
ambiguity of the minimal coupling procedure for dynamical equations for matter above 
first order, but avoid problems by restricting minimal coupling to first-order equations. 
(See also Ehlers 1973, 46.) But in fact, the situation is worse than they suggest, for the 
ambiguities persist even for equations in which one derivative operator appears per term. 
The reason for this is that, as we have seen, higher order equations can generally be rewritten 
as first-order equations by introducing auxiliary fields.32 Conversely, many apparently first-
order equations in special relativity can be given an equivalent form involving higher-order 
derivatives by adding terms with appropriate indices containing expressions like [ ]

c
a b ξ   

that always vanish in flat spacetimes not but in general in curved spacetimes.

So, the original problem is in fact more pervasive and pernicious than generally recognized. 
The core of it is that the minimal coupling prescription varies with the formulation of the 
matter theories rather than the theories themselves. It is, once again, hyperintensional. 
This, of course, was also our concern about the syntactic criterion for when a theory is 
LSR—one that we attempted to address by introducing alternative criteria that involved 
properties of the solutions of a system of equations, rather than their formulation.

We suggest that this discussion motivates a reconsideration of minimal coupling—one 
that captures the idea that a system of equations “depends” only on the metric and its 
first derivatives in an intrinsic, geometrical way, rather than by appealing to features of 

31	 See also Brown (2005, 170), Knox (2013, 352), Schild (1967, 22), and Ehlers (1973, 46) for 
similar remarks.

32	 Consider, for instance, the sourced Maxwell equations: =ab b
aF J  and [ ] =a bcF 0 . 

As is well known, these imply that, at least locally, there exists a field Aa such that  
[ ]=ab a bF A ; and Fab so defined satisfies the Maxwell equations if (and only if ) for all such Aa,  

= 2a b b a b
a aA A J    . But now consider that this latter equation is equivalent to (by 

permuting the derivatives in the second term) = 2a b b n b a b
a n aA R A A J     . Define a field 

=ab a bG A . We may then express this most recent equation as a system of first-order equations: 
[ ]= 2 ; = ; =ab b a b n b

a a n a b ab a bcG G R A J A G G 0     . And in this final system, a curvature term 
appears—even though these equations have the same solutions as the minimally coupled 
Maxwell equations (up to a choice of gauge), since given any Fab satisfying Maxwell’s equations, 
one can find a field Aa such that [ ]=ab a bF A  and ( , )a a bA A  satisfies these alternative equations; 
and given any solutions (Aa, Gab) to these equations, Fab= G[ab] satisfies Maxwell’s equations. 
Similar arguments could be made using the wave equation for Fab as discussed by Read et al. 
(2018, §2.2) and introducing an auxiliary field. 
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the formulation of the theory.33 One might then hope to prove a theorem of the following 
form: given a suitably geometrical, or “semantic,” characterization of minimal coupling, 
if a matter theory is minimally coupled, then it is LSR by one of the Ehlers criteria. (The 
converse would also be of interest, though it is less clear that we should expect it to 
hold.) But of course, without such a definition of “minimal coupling” at hand, actually 
formulating and proving this result is impossible, and so we defer this, too, to future work.
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	also the ambient spacetime,
	also the ambient spacetime,
	5
	5
	5


	 and also that the space of possible configurations of fields 
	described by the theory is both fixed by the theory and may be given by a particular bundle 
	structure. This is a generalization for an arbitrary field of the idea that the “electromagnetic 
	field” at any point of any spacetime is represented by the value, at that point, of a tensor 
	field—namely, a two-form 
	F
	ab
	—on that spacetime. The second part of the definition, (2), 
	states that, whatever else is the case, “matter dynamics” are differential equations, and that 
	any matter theory must stipulate, on any spacetime, what the equations governing this 
	specific form of matter will be. Presumably, any adequate treatment of matter theories will 
	need to say more about what it means to impose the “same” differential equation, 
	mutatis 
	mutandis
	, on bundles over different manifolds and with different metrics; and it will need 
	to say more about how “source terms” are determined across different spacetimes.
	6
	6
	6


	 But for 
	present purposes we do not need to settle those issues. What we presuppose here is only 
	that once a matter theory is fixed, there is no ambiguity regarding what the field bundle 
	over a given spacetime is or what the equations governing those fields are. This is just an 
	expression of the fact that a matter theory describes a class of mathematical models that, 
	the theory asserts, represent the physically possible configurations of the theory’s subject, 
	a particular material field 
	(
	Fletcher 2020b
	Fletcher 2020b

	)
	.

	To take an example, one possible matter theory, which we will call (real, mass m) Klein-Gordon theory, associates, with each spacetime (M, g), the (unique) trivial bundle  over M with typical fiber ℝ; and it imposes on sections ϕ : O → B of those bundles the equation P[g]ϕ = 0, where . Here  is the Levi-Civita derivative operator associated with g and m is a (fixed) number. Note that there are other matter theories, on our definition, whose bundle and whose associated equations may coincide with Klein-Gordo
	ab
	BM
	ab
	2[]=abababPggm
	
	ab

	Similarly, (vacuum) Maxwell theory associates with each spacetime (M, g) a (not necessarily trivial) bundle , with typical fiber a six dimensional vector space, constructed in a canonical way from the tangent bundle of M so that each element of the fiber over a point p is associated with an antisymmetric tensor F at p; and it imposes, on sections, two equations, dF = 0 and .
	ab
	BM
	ab
	a
	bc
	=abaF0
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	3. THE SYNTACTIC CRITERION
	Now suppose we have some matter theory in the sense described in section 2. What does it mean to say that this theory is LSR? One proposal often cited in the literature concerns the form of a system of equations. For example, Brown () characterizes the 
	2005, 117

	5 This might be interpreted as an extension of the fact discussed in Part 1 that all spacetimes with the same metric signature geometrically have the same local character: every spacetime is a universal approximating spacetime.
	5 This might be interpreted as an extension of the fact discussed in Part 1 that all spacetimes with the same metric signature geometrically have the same local character: every spacetime is a universal approximating spacetime.

	6 See fn. 7 for a brief comment on this issue in the context of Maxwell theory.
	6 See fn. 7 for a brief comment on this issue in the context of Maxwell theory.

	7 There are a few strategies available within this framework for dealing with sources in Maxwell theory. One is to insist that sources must be associated with their own matter theory, such as charged Klein-Gordon theory, and consider the expanded system including Maxwell fields and the other matter fields as equations on a single bundle of field values with a direct sum structure on each fiber. Here the inhomogeneous Maxwell equation would include some term that was an algebraic function of the other field’
	7 There are a few strategies available within this framework for dealing with sources in Maxwell theory. One is to insist that sources must be associated with their own matter theory, such as charged Klein-Gordon theory, and consider the expanded system including Maxwell fields and the other matter fields as equations on a single bundle of field values with a direct sum structure on each fiber. Here the inhomogeneous Maxwell equation would include some term that was an algebraic function of the other field’
	ab
	a
	a
	=ababgJ0


	“local validity of special relativity” as the condition that “the laws of physics of the non-
	“local validity of special relativity” as the condition that “the laws of physics of the non-
	gravitational interactions … take their standard special relativistic form at [spacetime point] 
	p
	” in coordinates in which the spacetime metric “takes the form diag(1, –1, –1, –1) and the 
	first derivatives of its components vanish,” that is, Lorentz normal coordinates.
	8
	8
	8


	 Brown 
	(
	2005, 169–70
	2005, 169–70

	)
	 clarifies that “special relativistic form” means “that the covariance group of 
	the equations is the inhomogeneous Lorentz group”; Read et al. 
	(
	2018
	2018

	)
	, meanwhile, invoke 
	the “Poincaré invariance” of such equations, which means that the “form” of the equations 
	at a point 
	p
	 in Lorentz normal coordinates near 
	p
	 is invariant under the class of coordinate 
	transformations that preserve the property of being Lorentz-normal-at-
	p
	.

	Similar ideas arise in other discussions of the SEP. For instance, Torretti () writes that the equivalence principle demands that “the laws of nature take the same form in [the domain of a Lorentz chart] U … as they would when referred to an ordinary Lorentz chart in a spacetime region where gravity is absent.” Similarly, Knox () writes,
	1996, 136
	Q
	2013, 352

	To any required degree of approximation, given a sufficiently small region of spacetime, it is possible to find a reference frame with respect to whose associated coordinates the metric field takes Minkowskian form, and the connection and its derivatives do not appear in any of the fundamental field equations of matter.
	Despite being widespread in the literature, there are several problems with such explications of what it means for a system of equations to be LSR. These stem from the fact that this way of thinking about matter dynamics is essentially “syntactic.” That is, it concerns how the dynamical equations appear in a semi-formal language of coordinates, their partial derivatives, and arithmetic functions of these. Even formulations along these lines that appear to invoke symmetry properties of equations—such as Poin
	In fact, the problems run deeper than this. As Fletcher () and Weatherall () have both argued, in somewhat different contexts, such syntactic criteria are often ambiguously defined—a fact acknowledged even by those who advocate for and use them. At worst, they are hyperintensional, in the sense that they distinguish between cases that should be viewed as equivalent because the cases clearly represent the same relationships between the same physical quantities. The source of this—again, see Fletcher () and W
	2020a
	2021
	2020a
	2021

	One way to attempt to resolve these issues is to focus only on coordinate systems adapted to the geometrical structures of spacetime (), so as to capture the idea that an “equation” “depends” (only) on certain structures, to certain orders—and that equations that do have just these dependencies can be expected to have solutions with certain 
	Wallace, 2019

	8 See also similar remarks by Brown and Pooley (). Lorentz normal coordinates are discussed in detail in Part 1.
	8 See also similar remarks by Brown and Pooley (). Lorentz normal coordinates are discussed in detail in Part 1.
	2001


	properties. From this perspective, the trouble is that neither the notion of “equation” (or 
	properties. From this perspective, the trouble is that neither the notion of “equation” (or 
	some equivalence class thereof) nor that of “dependence” has been made adequately precise 
	in syntactic terms. But if the syntactic structures well adapted to geometrical structures 
	were chosen just to reflect the features of the latter, then another way to resolve these 
	issues might be to develop a theory of “dependence” that invokes only form-independent 
	features of systems of equations.
	9
	9
	9


	 We will not attempt that project here. Instead, we turn 
	to two other criteria for when a theory is LSR already available in the literature, both of 
	which have a more semantic character, in that they look at properties of 
	solutions
	 to a 
	system of equations, rather than the manner in which the equations are expressed.

	4. THE SONEGO-FARAONI CRITERION
	Responding to objections very similar to the ones just expressed, Sonego and Faraoni (1993) propose a different strategy for identifying when a system of equations is LSR. They suggest that, at least in the context of linear scalar field theories, to say a theory is LSR means that “the physical properties of wave propagation—rather than the form of the equation—should reduce locally to those valid in flat spacetime […, i.e.,] that the physical features of the solutions be locally the same in both cases” (11
	10
	10
	10


	Di Casola et al. 2015, 43

	To spell this proposal out in more detail, we will focus on the particular example that Sonego and Faraoni consider, which is a scalar field on a generic spacetime. Fix a spacetime (M, g) and let B be the trivial ℝ bundle over M. We are interested in whether a (linear) differential operator P[g] on M is LSR; establishing this will then permit us to say whether a given scalar field theory is LSR on all spacetimes.
	ab
	ab
	11
	11
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	Recall, first, that given such a differential operator P[g] on B and a point q ∈ M, a “fundamental solution” G for P is a (real-valued) distribution (or generalized function) with the property that
	ab
	q

	=,[]abqqPgGδ
	=,[]abqqPgGδ

	where δ is the delta distribution based at the point q. What this means is that given any smooth scalar field χ of compact support—a “test field”—we have that
	q
	12
	12
	12



	9 Some work in this direction may be found in Geroch ().
	9 Some work in this direction may be found in Geroch ().
	1996


	10 They demand that, in the limit as the spacetime points of the arguments in the Green’s function approach one another, the Green’s function for a general spacetime is that of Minkowski spacetime under the same limit.
	10 They demand that, in the limit as the spacetime points of the arguments in the Green’s function approach one another, the Green’s function for a general spacetime is that of Minkowski spacetime under the same limit.

	11 Here we are focusing attention on a class of linear field theories, and so we suppress the dependence on fields other than the metric since the space of solutions forms a vector space.
	11 Here we are focusing attention on a class of linear field theories, and so we suppress the dependence on fields other than the metric since the space of solutions forms a vector space.

	12 See Geroch and Weatherall () for a compact introduction to tensor distributions, or Grosser et al. () for a longer treatment, though with somewhat different notational conventions.
	12 See Geroch and Weatherall () for a compact introduction to tensor distributions, or Grosser et al. () for a longer treatment, though with somewhat different notational conventions.
	2018, Appendix A
	2001


	([]){}={}=()abqqPgGχδχχq
	([]){}={}=()abqqPgGχδχχq

	where by D{χ}, for some distribution D and test function χ, we mean the action of the distribution on the test function.
	Consider, now, the class of differential operators given by, for some fixed number m ∈ ℝ,
	∇∇++2[]=,abξababPggmξR
	∇∇++2[]=,abξababPggmξR

	where  is the Levi-Civita operator associated with g, R is the scalar curvature associated with , and ξ is a real number. For any choice of ξ, we can take this expression to determine a scalar matter theory by imposing, on the trivial ℝ-bundle over any spacetime (M, g), a differential equation P[g]ϕ = 0. Call these theories “P-ξ” theories. This class of theories is of interest because, for any ξ ∈ ℝ, the resulting theory coincides with Klein-Gordon theory (for appropriate m) on flat spacetime, but differs o
	
	ab
	
	ab
	ξ
	ab

	Sonego and Faraoni are interested in which P-ξ theory, if any, should count as LSR. Of course, one candidate answer stands out immediately: one might take the theory with ξ = 0, i.e., the theory we have previously called Klein-Gordon theory, to be LSR, because it agrees syntactically with the Klein-Gordon equation on Minkowski spacetime. But Sonego and Faraoni reject this answer, on the grounds that it violates their principle concerning the qualitative properties of solutions. The argument turns on the fol
	13
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	Fact 1. If (M, g) is flat and M is four-dimensional, then for any point q ∈ M, the fundamental solutions G associated with P[g] are supported only on the light cone based at q.
	ab
	q
	ξ
	ab

	This property, of having fundamental solutions supported only on lightcones, is sometimes known as “Huygens’ principle.” Huygens’ principle holds in flat spacetime for Klein-Gordon theory—and thus for any P-ξ theory, since R vanishes there. But it does not hold in general for all values of ξ—including for ξ = 0 on curved spacetimes.
	Fact 2. For arbitrary spacetime (M, g), the fundamental solutions G of P[g] associated with points q ∈ M may have support at any point timelike related to q. In particular, for ξ = 0, if R ≠ 0 at a point q, then fundamental solutions G have support at points timelike related to q.
	ab
	q
	ξ
	ab
	q

	So Klein-Gordon theory—the theory that results if we take ξ = 0—has qualitative properties that are not shared by the flat spacetime version of the theory. The fundamental solutions have “tails” in the interior of the lightcone. On the other hand, there is a (unique) value of ξ for which P[g] does satisfy Huygensʼ principle for all Lorentzian metrics g on four-manifolds M.
	ξ
	ab
	ab

	Fact 3. For any spacetime (M, g), with M four-dimensional, and any point q ∈ M, the fundamental solutions G are supported only at points null related to q if and only if ξ = 1/6.
	ab
	q

	Sonego and Faraoni go on to argue that for this reason, choosing ξ = 1/6 is a natural and, indeed, preferable generalization of the Klein-Gordon equation to curved spacetime over the standard choice of ξ = 0. Their full argument for this, and especially the consequences they draw from it, need not concern us here. The key idea is that they use the LSR character of the resulting equation to distinguish P-1/6 theory from P-ξ theory for other values of ξ, including 0. In doing so, they suggest a precise necess
	13 See, e.g., Friedlander () for a discussion of these facts in a detailed and rigorous setting.
	13 See, e.g., Friedlander () for a discussion of these facts in a detailed and rigorous setting.
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	LSR Chez Sonego and Faraoni A differential operator that satisfies Huygens’ principle in flat spacetime is LSR only if it satisfies Huygens’ principle in curved spacetime.
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	Sonego and Faraoni’s (partial) proposal for what it means for a differential operator to be LSR is an example of the sort of “semantic” alternative to the “syntactic” accounts discussed above that we suggested was needed, since it concerns the supports of certain solutions of an equation, rather than the expression of that equation. But it does have some surprising features, most notable of which is that it yields a non-standard answer to the question “what scalar wave equations are LSR?” Now, Sonego and Fa
	Belger et al. 1997
	Günther 1988, Ch. VII
	Harte 2013

	5. THE EHLERS-STYLE CRITERIA
	5.1 TWO VERSIONS: g-APPROXIMATING AND η-APPROXIMATING
	Yet another semantic way—or, as we shall see, pair of ways—of thinking about what it means for a theory to be LSR is essentially articulated by Ehlers (1973). He writes:
	15
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	Suppose a physical process which takes place in a small spacetime domain has been analyzed in the framework of special relativity theory, and one wishes to describe an analogous process occurring in a gravitational field without having 
	14 This is actually a special case of their necessary condition, which is described most succinctly in a later publication as the requirement “that the local structure of the Green function [the fundamental solutions] associated with a physical law be the same in a curved and in a flat spacetime” (). Although they do not give a complete account of what the “local structure” of the fundamental solutions amounts to, they do count satisfaction of Huygens’ principle as one example of it. See also footnote 10 fo
	14 This is actually a special case of their necessary condition, which is described most succinctly in a later publication as the requirement “that the local structure of the Green function [the fundamental solutions] associated with a physical law be the same in a curved and in a flat spacetime” (). Although they do not give a complete account of what the “local structure” of the fundamental solutions amounts to, they do count satisfaction of Huygens’ principle as one example of it. See also footnote 10 fo
	Di Casola et al. 2015, 43


	15 It is worth noting that Ehlers () also proposes a syntactic characterization of this property in his own statement of the SEP, which is closely related to Brown’s statement. Ehlers suggests that that version of the principle, along with results he proves along the lines of our Theorem 1 of Part 1, imply that what we are calling the Ehlers-style conditions will hold for theories that satisfy the syntactic criterion—though he does not prove this, and it is not clear that a proof would be possible. We are e
	15 It is worth noting that Ehlers () also proposes a syntactic characterization of this property in his own statement of the SEP, which is closely related to Brown’s statement. Ehlers suggests that that version of the principle, along with results he proves along the lines of our Theorem 1 of Part 1, imply that what we are calling the Ehlers-style conditions will hold for theories that satisfy the syntactic criterion—though he does not prove this, and it is not clear that a proof would be possible. We are e
	1973, 18–20


	a complete general-relativistic analysis—a common situation indeed. Then 
	a complete general-relativistic analysis—a common situation indeed. Then 
	one may proceed as follows. One chooses an event 
	p
	 in the general-relativistic 
	spacetime model, situated where the process is assumed to happen, and 
	identifies it tentatively with an event 
	p′
	 of the special relativistic model. One 
	identifies, moreover, the flat spacetime of the latter model with the tangent 
	space 
	M
	p
	 of the curved spacetime 
	M
	 at 
	p
	, and one uses the exponential map 
	exp
	p
	 to transfer all events of interest which form part of the special relativistic 
	model of the process in question, from 
	M
	p
	 to 
	M
	. The chronometrical relations 
	between the events thus obtained will then, 
	because of [results analogous to 
	Theorem 1 of Part 1]
	, differ arbitrarily little from those of the original, flat 
	space theory, provided the gravitational tidal field 
	 abcdR
	, evaluated in a suitable 
	orthonormal frame at 
	p
	 adapted to the process, is sufficiently small; and one 
	can estimate the deviations if one knows the curvature. It is therefore plausible 
	to assume that [if a theory is LSR then], except for error of the order of the 
	deviations just referred to, the model of the process obtained by applying the 
	exponential map is a correct one. 
	(
	Ehlers 1973, 45–6
	Ehlers 1973, 45–6

	)

	The key idea we wish to extract from this passage is that a LSR matter theory in general relativity is one with solutions that, in general, locally approximate the solutions of the corresponding equations, mutatis mutandis, in flat spacetime. We call this the (informal) g-approximating version of the Ehlers criterion, for it posits, for any general relativistic spacetime and any local special relativistic matter theory solution, the existence of a local general relativistic solution that approximates it in 
	This idea is promising—and for theories for which it is true, it has clear pragmatic value, for it suggests how to model local matter dynamics approximately in general relativity using knowledge from special relativity. But trying to articulate this criterion precisely and demonstrate whether candidate theories satisfy it turns out to be a subtle business. (Ehlers does not attempt it.) At issue are two things. First, Ehlers suggests that the approximating curved spacetime solution should be “correct,” presu
	Nonetheless, we suggest a schema for this g-approximating Ehlers-type semantic criterion of when a theory is LSR that affords enough flexibility to capture many relevant contexts in which “being LSR” is invoked. To get at the idea, fix some relativistic spacetime (M, g), and choose any point p ∈ M. Theorem 1 of Part 1 ensures that there exist, on sufficiently small neighborhoods of p, flat metrics ḡ with the properties that ḡ = g at p, and moreover,  at p, where  is the Levi-Civita derivative operator assoc
	16
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	ab
	ab
	ab
	ab
	=
	
	ab
	ab

	16 We don’t know of any limitations per se, except for the contrasting case of the η-approximating version of the criterion discussed later in this subsection.
	16 We don’t know of any limitations per se, except for the contrasting case of the η-approximating version of the criterion discussed later in this subsection.

	to (
	to (
	U
	, 
	ḡ
	ab
	), there exists a solution to the equation the theory assigns to curved spacetime—
	that is, (
	U, g
	ab
	)—that approximates it relative to some norm. More precisely:
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	17
	17



	LSR schema, Chez Ehlers, g-approximating version Suppose we have a matter theory in the sense given above. Then given any spacetime (M, g), with associated field bundle B → M and differential operator P[g, ϕ], and given any point p ∈ M, any flat metric ḡ near p agreeing, to first order, with g at p, any solution  to  near p, and any ϵ > 0, there exist, on a sub-neighborhood  of p, a field  such that  and a sub-sub-neighborhood U ⊆ Ô of p on which , where  is a suitable, context-dependent norm.
	ab
	ab
	ab
	ab
	:OB¯
	[,]=0abPg¯¯¯
	ˆOO
	ˆ:OB
	[,]=0abPg
	||||¯ϵ
	||||

	Here the differential operator  is to be interpreted as the operator in the “flat spacetime” version of the equation—that is, the equation that the matter theory would impose on the spacetime (O, ḡ)—and P[g, ϕ] is the operator associated with the curved spacetime equation. (By our definition of matter theory in section 2, there can be no ambiguity about what those operators should be.) Note that while we work with the spacetime (U, ḡ), this spacetime can always be isometrically embedded into Minkowski space
	[,]abPg¯
	ab
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	ab
	ab
	ab

	There is another interpretation of Ehlers’ remarks available, especially in the context of other passages, where he affirms that “a theory of spacetime and gravitation should be such that [among other conditions] it agrees locally with special relativity; … [this is, in other words,] the requirement that special relativity be valid to a good approximation locally everywhere even in the presence of gravitation” (). According to this (informal) η-approximating version of the Ehlers criterion one should take a
	Ehlers 1973, 19–20

	LSR schema, Chez Ehlers, η-approximating version Suppose we have a matter theory still in the sense given above. Then given any spacetime (M, g), with associated field bundle B → M and differential operator P[g, ϕ], and given any point p ∈ M, any flat metric ḡ near p agreeing, to first order, with g 
	ab
	ab
	ab
	ab

	17 Throughout the definitions in this section, we implicitly assume a linear or affine structure on the fibers of the bundle, such that a norm of the form described can be defined. This is not a significant restriction in practice, but it deserves to be noted.
	17 Throughout the definitions in this section, we implicitly assume a linear or affine structure on the fibers of the bundle, such that a norm of the form described can be defined. This is not a significant restriction in practice, but it deserves to be noted.

	18 As in Part 1, we will not explicitly indicate that a g defined on a manifold is restricted to some open subset of that manifold.
	18 As in Part 1, we will not explicitly indicate that a g defined on a manifold is restricted to some open subset of that manifold.
	ab


	on 
	on 
	p
	, any solution 
	ϕ
	 : O 
	→
	 B
	 to 
	P
	[
	g
	ab
	, 
	ϕ
	]
	ϕ
	 = 
	0 near 
	p
	, and any 
	ϵ 
	>
	 
	0, there exist, 
	on a sub-neighborhood 
	O
	̂
	 
	⊆
	 
	O
	 of 
	p
	, a field 
	ˆ:OB¯
	 such that 
	[,]=0abPg¯¯¯
	 
	and a sub-sub-neighborhood 
	U
	 
	⊆
	 
	O
	̂
	 of 
	p
	 on which 
	||||¯ϵ
	, where 
	||||
	 is a 
	suitable, context-dependent norm.

	We do not adopt a position on which version of the Ehlers schema is superior, nor on which is a more accurate statement of Ehlers’ own views. Both are precise criteria that might be appropriate to consider under various circumstances. For instance: the g-approximating version captures a statement of a sense in which general relativistic matter theories might be said to subsume, at least locally and in approximation, special relativistic matter theories; and the η-approximating version captures a statement o
	5.2 THE CONTEXTUALITY OF APPROPRIATE NORMS
	Both versions of the Ehlers schema invoke some norm  on local sections of B. Indeed, this is why we refer to each of them as a “schema.” One finds different criteria by choosing different norms. What should this norm be? Ehlers does not say. (He even suggests that the right norm will be whichever one makes the condition true of his favorite matter theories!) We will not propose one here; indeed, we take the freedom to choose an appropriate norm to suit the situation at hand to be a reflection of the context
	||||
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	That said, we will note some minimal desiderata that seem reasonable to expect in all cases. The first is that whatever norm one adopts, it should measure not only the values of ϕ, but also their derivatives up to at least the order of the differential operators associated with a theory. Because in general the values of the derivatives of a field at a point to some particular order are independent of those values to lower (including zero) order, this ensures that all (rather than a strict subset) of the dat
	A second consideration is that as long as one keeps to the Ehlers-like schemas as we have stated them, whatever norm is chosen must be such that the difference in norm between two fields does not approach zero as one considers smaller and smaller neighborhoods of the point p, even when the difference in field values remains large. In other words, 
	19 Compare these remarks with those of Fletcher (), who argues that criteria of similarity and approximation have this context-dependency quite generally.
	19 Compare these remarks with those of Fletcher (), who argues that criteria of similarity and approximation have this context-dependency quite generally.
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	the norm should be 
	the norm should be 
	fiber-wise separating
	: when restricted to a single point, the norm of 
	the difference between two values should vanish only if those values are identical. This 
	rules out candidates such as Sobolev norms that involve integrating fields over some 
	neighborhood, since those integrals will shrink to 0 as the neighborhoods shrink, even 
	if the differences in the fields remain bounded away from 0; on the other hand, modified 
	Sobolev norms that take into account the size of the neighborhood may be appropriate in 
	some contexts.

	The ambiguity regarding what norm should be chosen makes it difficult to evaluate unequivocally whether actual matter theories turn out to be LSR according to an Ehlers-style criterion. But as we will presently show, for at least some norms that meet the desiderata already laid out, standard theories, including Maxwell’s theory and the Klein-Gordon theory, are LSR by the resulting Ehlers criteria. For this purpose, we consider C supremum norms on the neighborhoods U of p considered in the criterion schemas,
	k
	ab
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	U

	Consider, first, vacuum Maxwell theory and the g-approximating version of the Ehlers LSR criterion with the C supremum norm.
	1

	Proposition 1. Fix any spacetime (M, g) and choose any point p ∈ M. Let ḡ be a flat metric on a neighborhood O ⊆ M of p, which agrees, to first order, with g at p. Finally, let  be a solution to Maxwell’s equations on flat spacetime,
	ab
	ab
	ab
	:abFOB

	  (1a)
	=,ababcFg0¯

	  (1b)
	[]=.abcF0

	Given any positive definite metric h and any ϵ > 0, there exists a solution F to Maxwell’s equations on (O, g),
	ab
	ab
	ab

	  (2a)
	=,ababcgF0

	  (2b)
	[]=,abcF0

	such that there exists a neighborhood U ⊂ O of p on which , where  denotes the C supremum norm.
	||||=(,;,1)ababUFFdFFhϵ
	||||
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	Proof. It suffices to show that there exists a solution F to Eqs. (2) such that  and  at p.
	ab
	=ababFF
	=abcabcFF

	20 As we shall see, for some purposes, it is convenient to take k = 1 and work only with first-order formulations of systems of equations. Note that if we were to adopt k = 0 for our norm, any equation with the property that, given any field value , it has a solution through x, would automatically be LSR. But this would include, for instance, all first-order quasilinear systems.
	20 As we shall see, for some purposes, it is convenient to take k = 1 and work only with first-order formulations of systems of equations. Note that if we were to adopt k = 0 for our norm, any equation with the property that, given any field value , it has a solution through x, would automatically be LSR. But this would include, for instance, all first-order quasilinear systems.
	1[]xp


	21 In fact, we show something stronger: we show that there exists a field F that solves Maxwell’s equations on (O, g) and which is such that, for any positive definite metric h and ϵ > 0, there exists  such that . That is, a single curved spacetime solution suffices for all positive definite metrics if the neighborhood U is allowed to vary accordingly.
	21 In fact, we show something stronger: we show that there exists a field F that solves Maxwell’s equations on (O, g) and which is such that, for any positive definite metric h and ϵ > 0, there exists  such that . That is, a single curved spacetime solution suffices for all positive definite metrics if the neighborhood U is allowed to vary accordingly.
	ab
	ab
	ab
	UO
	UdF(,F;h,1)<ϵ


	We do this as follows. Choose an open set Ô ⊆ O containing p. Without loss of generality, we suppose that Ô is the (interior of the) domain of dependence of some achronal, spacelike hypersurface S, where S contains p. Define a new field F on O as:
	ab

	ˆ=,abababFFF
	ˆ=,abababFFF

	where  is the unique solution to Maxwell’s equations on (Ô, g) that vanishes on S and whose sources are given by , where indices are raised with g. (If no such solution exists, say because  becomes singular, choose Ô to be the maximal neighborhood of S on which a unique solution does exist; such a neighborhood is guaranteed to exist by the standard existence and uniqueness theorems governing symmetric hyperbolic first-order linear PDEs.) Then F is a solution to Eqs. (2) on Ô. Moreover, F agrees with  at 
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	It remains to show that  at p. And for this it suffices to show that  at p. To do so, we note that by the symmetric hyperbolic character of Maxwell’s equations, there exists a smooth tensor field χ on M with the following properties: (1) given any smooth causal covector n, there exists a tensor field ζ such that ; and (2) if F solves Eqs. (2), then  (). Now let n be the (timelike) covector field normal to S, and let  be the projection orthogonal to n (i.e., the projection onto the tangent space of S) at eac
	=abcabcFF
	ˆ=abcF0
	amnxy
	a
	mnxy
	[]=mnamnxyaxyststnχζδδ
	ab
	=amnxyamnχF0
	Geroch, 
	1996
	a
	=aaabbbqδnn
	a
	ˆabF
	ab
	ab
	ˆabF
	ˆ=()aabmnxybbamnχnnqF0
	ˆˆ()==aabmnxybmnxybamnbamnnχnFqχF0
	ˆabF
	b
	bmnxy
	ˆ=aamnnF0
	ˆˆ=()=mmamnaambcFnqF0
	=abcabcFF

	So source-free Maxwell theory is LSR according to the g-approximating Ehlers-style criterion with the C supremum norm. An identical argument applies if we include sources in Maxwell’s theory, so long as we understand the “theory” involving those sources to be such that: (a) if g= ḡ at a point p to first order, then the source terms associated with the sourced Maxwell’s equations in curved and flat spacetime also agree at p; and (b) whatever matter fields give rise to the source term themselves satisfy some 
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	With little modification, the foregoing arguments show that both Maxwell and Klein-Gordon theories are LSR according to the η-approximating Ehlers-style criterion, too. In fact, there are also other, independent arguments available to establish this. For instance, in the Klein-Gordon case, one can approximate any curved spacetime solution, to second order at a point, by an appropriately chosen sum of plane wave solutions in flat spacetime (plus a correction term). This is so even if the qualitative behavior
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	22 This observation highlights how the C supremum norm, though it meets our desiderata for non-triviality, may still be too weak as a standard of approximation for some purposes that demand identity of such qualitative behavior (cf. ).
	22 This observation highlights how the C supremum norm, though it meets our desiderata for non-triviality, may still be too weak as a standard of approximation for some purposes that demand identity of such qualitative behavior (cf. ).
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	5.3 FURTHER VERSIONS
	Another well-motivated Ehlers-style criterion is the conjunction of the g-approximating and η-approximating versions. If one adopts this both-ways Ehlers criterion, then one can show an analogue of Theorem 5—the universal approximation theorem—from Part 1.
	Proposition 2. If a theory assigning equation P[g, ϕ] = 0 is LSR according to the both-ways Ehlers criterion, then given any two spacetimes (M, g) and (M′, g′), any points p ∈ M and p′ ∈ M′, a map χ : O → O′ between neighborhoods of p and p′ such that χ*(g′) = g at p (and likewise for their derivatives) as guaranteed exists by Theorem 5 of Part 1, and any solution ϕ to the equation P[g, ϕ] in a small neighborhood of p, there exists a solution ϕ′ to the equation P[χ*(g), ϕ′] = 0 that approximates ϕ arbitrari
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	That is, every matter theory that is “locally specially relativistic” in this sense is also, equally well, “locally de Sitter,” “locally Schwarzschildian,” and so on.
	Another variation on the Ehlers-type criteria as we have stated them is to demand more from an “approximate solution” than is captured by the norms we have considered here. For instance, following Ehlers, we have stated the schema in terms of approximation in a neighborhood of a point. But we know from Theorem 1 of Part 1 that relativistic spacetimes are approximately locally flat in a stronger sense: there exist flat metrics that agree with a given curved metric, to first order, along a curve. Could one fo
	There is a sense in which the answer is clearly “yes”: one could require, for instance, that for any ϵ > 0 there is a solution to the curved-spacetime equation that approximates any given flat spacetime solution in sufficiently small neighborhoods of sufficiently small segments of any curve. But nothing is added by this approach, since any neighborhood of a point p will necessarily contain some small segment of any curve through p.
	One might consider, instead, fixing a segment of a given curve, and then requiring arbitrary good approximation, relative to some norm, within any sufficiently small neighborhood of that fixed segment. We do not claim that this is a fruitless idea, but it does run into difficulties very quickly. In particular, for the C supremum norms we have considered, a curved-spacetime solution will approximate a given flat-spacetime solution arbitrarily well in small neighborhoods of a fixed segment of a curve only if 
	k

	Another approach, related to the g-approximating criterion, would be to require not only that there exist solutions in curved spacetime that approximate flat spacetime solutions in a neighborhood of a point, but also that the deviations between those solutions are bounded by some function that is “small” near the curve. We will not pursue this approach in detail, but we do note that the approximating solutions we constructed for Maxwell’s equations above have this character. In particular, using Theorem 1 o
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	23 For further details on this approach, see the arguments in Geroch and Weatherall ().
	23 For further details on this approach, see the arguments in Geroch and Weatherall ().
	2018, §4


	given causal diamond, is bounded by the integral of the “total size” of this source term, 
	given causal diamond, is bounded by the integral of the “total size” of this source term, 
	which can be kept small on suitably chosen regions because it vanishes on 
	γ
	.
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	 There results 
	a family of inequalities of the form:

	ˆ||||,VVFXdV
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	where X is a function vanishing on a segment of γ and depending on  and the curvature of g, and V is an appropriately chosen causal diamond. We do not claim that this is the most perspicuous or strongest such inequality that one could derive; we note it only as a suggestion for a further direction one might pursue to capture a somewhat stronger sense in which a theory might be LSR.
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	6. COMPARING THE FOREGOING CRITERIA
	We will now turn to comparing the three (families of) criteria we have just discussed. First, we consider the relationship between the Ehlers-style criteria of section 5 and the Sonego-Faraoni one of section 4. As we noted previously, one concern about the Sonego-Faraoni approach is that it yields odd verdicts on cases that might have seemed like canonical examples of LSR theories, including both Klein-Gordon theory and Maxwell theory. On the other hand, we have seen that with appropriate choices of norm, M
	Of course, this observation leaves open the possibility that the Sonego-Faraoni condition is strictly stronger. That is: is being LSR on the Sonego-Faraoni criterion sufficient for being LSR on the Ehlers-type criteria? The answer is “no.”
	Proposition 3. There exist matter theories that are LSR on the Sonego-Faraoni criterion but are not LSR on the g- or η-approximating Ehlers-type criteria with a C surpremum norm, where k is the order of the differential operator for the matter theory.
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	Proof. To find an example that witnesses this proposition, consider again the P-1/6 theory as presented by Sonego and Faraoni. Choose an arbitrary spacetime (M, g) with nonvanishing scalar curvature, and let p be a point at which R ≠ 0. Now choose a neighborhood U of p admitting a flat metric ḡ agreeing, to first order and at p, with g; and let  solve the flat spacetime equation . We assume, without loss of generality, that  has been chosen to be non-vanishing at p. Now suppose, for contradiction, that ther
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	24 See, for instance, the inequality derived in Appendix B of Geroch (). Note here that  coincides with the 0 solution on a surface S, that both exactly satisfy their respective equations, and that, using his notation, k = k′.
	24 See, for instance, the inequality derived in Appendix B of Geroch (). Note here that  coincides with the 0 solution on a surface S, that both exactly satisfy their respective equations, and that, using his notation, k = k′.
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	25 Observe that the same argument would go through, mutatis mutandis, if we considered a first-order formulation of the P-1/6 theory and a C norm.
	25 Observe that the same argument would go through, mutatis mutandis, if we considered a first-order formulation of the P-1/6 theory and a C norm.
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	This result depended on a particular choice of norm, as did the results that established that Maxwell and Klein-Gordon theories were LSR on the Ehlers criteria. We take the norm that we have adopted to be a weak one that meets the minimal desiderata noted above. If one adopted a stronger norm, the result that the Sonego-Faraoni criterion does not imply the Ehlers-type criterion would still hold; likewise, with a weaker norm, the fact that Ehlers-type criteria do not imply the Sonego-Faraoni criterion would 
	So these criteria come apart—and indeed, are incompatible, in the sense that each is satisfied, for the P-ξ theory, for unique, but distinct, values of ξ, at least for our choice of norm. It follows that different authors who endorse the claim that matter theories in general relativity should be LSR not only differ in how to state that requirement precisely, they also substantially disagree about what theories should be taken to meet the requirement in the first place.
	What about the syntactic criterion? As we have already argued, it is not sufficiently clear what the criterion is supposed to be to attempt to prove anything formally about its relationship to the other two criteria. If the criterion is hyperintensional, as we suggested, then we would expect that it neither implies nor is implied by either of the semantic criteria—either those of Sonego-Faraoni or of Ehlers. What advocates of the syntactic criterion have said about particular examples seems to bolster this 
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	7. THE SECOND AMBIGUITY, OR WHERE ARE WE NOW?
	At the beginning of section 1, we noted two ambiguities related to the “matter dynamics” interpretation of local flatness. Our discussion thus far has focused on the first ambiguity: what does it mean to say that a matter theory is LSR? But we have not yet touched on the second ambiguity, which was whether the LSR character of matter theories is a convenient property that happens to obtain of familiar theories, or a constitutive condition, 
	26 Brown writes that the P-1/6 theory is “locally Lorentz covariant,” which we take to imply that it is LSR, especially in light of the later arguments by Read et al. (); but he also indicates that ξ = 1/6 is “permissible” to recover the “local physical properties of wave propagation” in special relativity, but not to recover the “form of the [Klein-Gordon] equation” (). So we are not certain how the syntactic criterion rules on this case.
	26 Brown writes that the P-1/6 theory is “locally Lorentz covariant,” which we take to imply that it is LSR, especially in light of the later arguments by Read et al. (); but he also indicates that ξ = 1/6 is “permissible” to recover the “local physical properties of wave propagation” in special relativity, but not to recover the “form of the [Klein-Gordon] equation” (). So we are not certain how the syntactic criterion rules on this case.
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	27 Note that, without matter, the Jacobsen-Mattingly theory is equivalent to a sector of Maxwell’s theory coupled to a charged dust (). Thus the arguments given above that Maxwell’s theory satisfies the Ehlers criteria almost establish that Jacobsen-Mattingly theory does as well—“almost” because the dust equations are not symmetric hyperbolic (), and so a different method is needed to establish the result. That said, a modified Jacobsen-Mattingly theory that included a pressure term presumably would satisfy
	27 Note that, without matter, the Jacobsen-Mattingly theory is equivalent to a sector of Maxwell’s theory coupled to a charged dust (). Thus the arguments given above that Maxwell’s theory satisfies the Ehlers criteria almost establish that Jacobsen-Mattingly theory does as well—“almost” because the dust equations are not symmetric hyperbolic (), and so a different method is needed to establish the result. That said, a modified Jacobsen-Mattingly theory that included a pressure term presumably would satisfy
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	the violation of which would mean that a theory fails to be adequate (or, adequately 
	the violation of which would mean that a theory fails to be adequate (or, adequately 
	“relativistic”), that is, satisfy the interpretive postulates of relativity theory. Is a matter 
	theory in curved spacetime somehow unacceptable if it is not LSR?

	Brown () famously remarked that the “chronogeometric significance of the [metric] field is not an intrinsic feature of gravitational dynamics, but earns its spurs by way of the strong equivalence principle,” which is Brown’s expression of what it means for a matter field to be LSR. (See also ) Yet it is not clear to us that the spacetime metric cannot be interpreted in the usual way, nor that anything else goes wrong, if a theory is not LSR. For instance, we do not find anything inherently problematic about
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	Another possible problem that is sometimes raised for theories that fail to be LSR is that they cannot explain, or are perhaps even incompatible with, the success of special relativity. A full treatment of this issue would take us far afield, and so we largely set it aside here except to venture a preliminary remark: this explanatory task seems to be most closely related to what might be guaranteed by the η-approximating Ehlers-type schema (rather than the g-approximating one). Recall that, according to it,
	8. CONCLUSION AND DIRECTIONS FOR FUTURE RESEARCH
	In this part of our two-part essay, we considered the “matter dynamics” interpretation of the idea that special relativity is locally valid in general relativity, which was the claim that, in some sense, matter in general relativity locally behaves as if it were in flat spacetime, at least approximately. We isolated and assessed three criteria for when a matter theory 
	28 See Weatherall () for a discussion of the background picture here (which Weatherall calls the “Puzzleball conjecture”). Briefly, the idea is that various standard assumptions and core principles, such as the geodesic principles, the conservation condition, Einstein’s equation, etc., are often mutually inter-derivable. Removing or modifying one of these principles thus has downstream consequences for the theory that force (perhaps unexpected) interpretation changes. Weatherall () makes some closely relate
	28 See Weatherall () for a discussion of the background picture here (which Weatherall calls the “Puzzleball conjecture”). Briefly, the idea is that various standard assumptions and core principles, such as the geodesic principles, the conservation condition, Einstein’s equation, etc., are often mutually inter-derivable. Removing or modifying one of these principles thus has downstream consequences for the theory that force (perhaps unexpected) interpretation changes. Weatherall () makes some closely relate
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	should be said to be LSR, and argued that, insofar as they can be made sufficiently 
	should be said to be LSR, and argued that, insofar as they can be made sufficiently 
	precise as to render clear verdicts, they are incompatible. It apparently follows that there 
	is no “obvious,” or universally accepted, precise statement of this property lurking in 
	the background of informal discussions. It seems that anyone who wishes to attribute 
	foundational significance to the LSR character of matter dynamics needs to provide further 
	arguments for why their preferred version has the significance they wish to attribute to it. 
	In our view, the Ehlers-style criteria we have discussed are the most promising to develop 
	further—or at least, they seem to us like the most natural way of capturing the claim that 
	a matter theory is (approximately) LSR. But we will not defend that claim further here.

	We also briefly discussed what depends on matter being LSR. We had little to say, here, because it remains unclear how the various LSR criteria depend on, or imply, other principles of general relativity. But since many of the criteria under consideration turn out to be mutually incompatible, and there are examples of theories that are LSR on one criterion but not others (and vice versa) that have received serious attention within the physics community, it is hard to see firm grounds for insisting that non-
	We close our present investigation with comments on two further directions for future research. The first picks up the theme from the end of the penultimate section. As noted in section 1 of Part 1, a principal motivation for many authors who have argued that general relativity is locally similar to special relativity has been to account for the success of the latter theory. From that perspective, the approximate local flatness of relativistic spacetimes, or the LSR character of various matter theories, pla
	The second direction for future research concerns an expression that we have not used here, but which is very often paired with discussions of the SEP and the LSR character of matter theories—viz. minimal coupling. According to the most common definition, a matter field is said to be minimally coupled to the spacetime metric, or minimally gravitationally coupled, when its equations, “written in abstract geometric form, differ in no way whatsoever between curved spacetime and flat spacetime; … [and when] wri
	Misner et al. 
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	Knox 2013, 352

	29 For readability, we have removed italics from the original quotation, which refers to the replacement as that of “commas by semicolons” in reference to the common respective notation for the coordinate and covariant derivatives. At variance with most other authors, Misner et al. () actually refer to minimal coupling as “Einstein’s equivalence principle.”
	29 For readability, we have removed italics from the original quotation, which refers to the replacement as that of “commas by semicolons” in reference to the common respective notation for the coordinate and covariant derivatives. At variance with most other authors, Misner et al. () actually refer to minimal coupling as “Einstein’s equivalence principle.”
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	30 See also Misner et al. ().
	30 See also Misner et al. ().
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	Despite its ubiquity, this common definition of minimal coupling is just as commonly renounced (and often by the same authors), “because the phrase ‘the laws of special relativity’ is ambiguous. … In general, since the curvature vanishes in special relativity, we can add arbitrary terms involving curvature to our laws” (). Whether such terms are added changes the result of the minimal coupling prescription. (Recall, of course, P-ξ theories.)
	Friedman 1983, 201

	Some authors attempt to avoid this problem by formulating minimal coupling as the property that no terms involving the curvature, or second derivatives, appear in matter field equations. For example, in place of the substitution-based definition of minimal coupling, Brown and Pooley () write that it should be understood as the “prohibition of curvature coupling in the non-gravitational equations.” But this reformulation is a nonstarter, for reasons explained by Brown and Read (): “In [general relativity], s
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	In response to these worries, Brown and Read suggest that one should just accept the ambiguity of the minimal coupling procedure for dynamical equations for matter above first order, but avoid problems by restricting minimal coupling to first-order equations. (See also .) But in fact, the situation is worse than they suggest, for the ambiguities persist even for equations in which one derivative operator appears per term. The reason for this is that, as we have seen, higher order equations can generally be 
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	So, the original problem is in fact more pervasive and pernicious than generally recognized. The core of it is that the minimal coupling prescription varies with the formulation of the matter theories rather than the theories themselves. It is, once again, hyperintensional. This, of course, was also our concern about the syntactic criterion for when a theory is LSR—one that we attempted to address by introducing alternative criteria that involved properties of the solutions of a system of equations, rather 
	We suggest that this discussion motivates a reconsideration of minimal coupling—one that captures the idea that a system of equations “depends” only on the metric and its first derivatives in an intrinsic, geometrical way, rather than by appealing to features of 
	31 See also Brown (), Knox (), Schild (), and Ehlers () for similar remarks.
	31 See also Brown (), Knox (), Schild (), and Ehlers () for similar remarks.
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	32 Consider, for instance, the sourced Maxwell equations:  and . As is well known, these imply that, at least locally, there exists a field A such that ; and F so defined satisfies the Maxwell equations if (and only if) for all such A, . But now consider that this latter equation is equivalent to (by permuting the derivatives in the second term) . Define a field . We may then express this most recent equation as a system of first-order equations: . And in this final system, a curvature term appears—even tho
	32 Consider, for instance, the sourced Maxwell equations:  and . As is well known, these imply that, at least locally, there exists a field A such that ; and F so defined satisfies the Maxwell equations if (and only if) for all such A, . But now consider that this latter equation is equivalent to (by permuting the derivatives in the second term) . Define a field . We may then express this most recent equation as a system of first-order equations: . And in this final system, a curvature term appears—even tho
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	 One might then hope to prove a theorem of the following 
	form: given a suitably geometrical, or “semantic,” characterization of minimal coupling, 
	if a matter theory is minimally coupled, then it is LSR by one of the Ehlers criteria. (The 
	converse would also be of interest, though it is less clear that we should expect it to 
	hold.) But of course, without such a definition of “minimal coupling” at hand, actually 
	formulating and proving this result is impossible, and so we defer this, too, to future work.
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