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Financial fire sales as continuous-state complex contagion
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Trading activities in financial systems create various channels through which systemic risk can propagate. An
important contagion channel is financial fire sales, where a bank failure causes asset prices to fall due to asset
liquidation, which in turn drives further bank defaults, triggering the next rounds of liquidation. This process can
be considered as a complex contagion, yet it cannot be modeled using the conventional binary-state contagion
models because there is a continuum of states representing asset prices. Here, we develop a threshold model
of continuous-state cascades in which the states of each node are represented by real values. We show that the
solution of a multistate contagion model, for which the continuous states are discretized, accurately replicates the
simulated continuous state distribution as long as the number of states is moderately large. This discretization ap-
proach allows us to exploit the power of approximate master equations to trace the trajectory of the fraction of de-
faulted banks and obtain the distribution of asset prices that characterize the dynamics of fire sales through over-
lapping portfolios. We examine the accuracy of the proposed method using real data on asset-holding relation-
ships in exchange-traded funds. Our methodology could contribute to evaluating and controlling systemic risk
that would emerge in various real-world networked systems in the form of continuous-state complex contagion.
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I. INTRODUCTION

Financial markets are complex systems in which many
economic agents, such as individuals, firms, financial insti-
tutions, and central banks, are interconnected at the global
scale through trading activities. The networks of money and
credit flows have been expanding as more market participants
have access to a greater variety of financial assets, bonds, and
other securities. On one hand, this increases the efficiency of
the market. On the other hand, the past two decades made it
clear that increased connectivity between market participants
leads to higher risk of systemic failures in the global financial
market: Once a part of the financial system malfunctions,
interconnections can facilitate a chain reaction that can spread
globally [1–3]—for instance, in the form of fire sales of finan-
cial assets [4–6], or of cascades of defaults among banks with
mutual exposures [7–11].
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In models of financial contagion, nodes can be financial
institutions, individual traders, or financial assets, depending
on which aspects of financial phenomena one would examine.
For example, in cascades of bank defaults due to counter-
party default risk, nodes are banks and edges are lending
and borrowing relationships in an interbank market [7,8,10–
14]. In cascades of financial fire sales, nodes are financial
assets and financial institutions, which form a bipartite net-
work defined by asset-holding relationships, i.e., overlapping
portfolios [5,6,15,16].

Contagion due to overlapping portfolios and fire sales
is an important channel of shock propagation. This con-
tagion mechanism refers to the situation in which shocks
propagate between financial institutions that have common
investments: If one institution is under stress and forced
to liquidate its investment, this will cause a devaluation
of the assets that are being sold and a loss for other in-
stitutions investing in those assets, which may in turn be
forced to liquidate their investment, leading to further as-
set devaluations, and so on. The “doom loop” that affected
UK government bonds and pension funds in the fall of
2022 [17] is a recent example of this type of mechanism:
The devaluation of government bonds forced pension funds
to liquidate part of their investment in the same assets, which
led to their further devaluation. The “quant meltdown” that
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occurred in 2007 is another example of such mechanics
[18].

Several frameworks have been proposed in the literature to
simulate these situations and quantify the potential losses due
to contagion through overlapping portfolios. Two classes of
dynamics have been considered for what concerns the behav-
ior of banks. On one hand, threshold models assume banks to
be passive until they become insolvent (see, e.g., Refs. [5] and
[15]). On the other hand, more realistic models assume that
banks liquidate their portfolios to manage their risk as they
experience losses by targeting a constant leverage, that is, the
ratio of their investment to their capital buffer [5,19–21].

Full analytical solutions for these models are difficult to
obtain since the states of nodes in financial networks are
generally nonbinary, unlike the standard threshold models
[7,10,22–29]. In the case of passive banks, while the state of
a bank can, for instance, be well captured by a binary variable
that denotes whether the bank is solvent or insolvent, the state
of an asset (e.g., a stock price) is a continuous variable, since
in principle its price can take any non-negative real value.
When banks are actively managing their risk, also their state
becomes continuous. Financial fire sales are thus continuous-
state complex contagion processes in which at least a group of
nodes are characterized by real-valued states, while the others
by binary states.

In the following, we focus for simplicity on the case of
passive banks, which represents the smallest departure from
the linear threshold models studied analytically in the network
literature. While these are not necessarily realistic given that
actual banks do actively manage their risk, threshold models
can still be used to provide a lower bound to contagion losses
due to overlapping portfolios, and they have been shown to
reproduce the pattern of defaults observed during a crisis
better than a random classifier [15,30].

Here we develop a threshold model of continuous-state
contagion in which the states of each node are represented
by real values. Compared to the conventional binary-state
cascade models, the difficulty is that the distribution of node
states is generally given as a continuous density function as
opposed to a discrete probability mass function. We therefore
employ a discretization approach in which we approximate
a set of real-valued states by a finite number of discretized
states.

As a tool for the calculation of spreading dynamics,
a message-passing method has been used in the analysis
of binary-state cascades [23,24,28,29]. While the message-
passing method is highly accurate in describing binary-state
spreading processes [28], it can be imprecise in models with
more than two states, i.e., multistate cascade models [31,32].
We address this problem by employing a more general ap-
proximate master equations (AMEs) approach [32–34], in
which the states of neighboring nodes are not necessarily
independent, unlike the conventional mean-field approaches.
We show that the AME solution well explains the distribution
of continuous states in the generalized threshold model as long
as the number of discretized states is moderately large.

By extending the continuous-state threshold model, we
develop an analytical framework to study the dynamics of
financial fire sales due to overlapping portfolios. In the model,
bank nodes take binary states (i.e., solvent or insolvent) while

the states of asset nodes (i.e., asset prices) are represented
by real values. The analysis reveals that the discrete-price
(i.e., discrete-state) equilibrium obtained by the AME method
converges to the continuous-price (i.e., continuous-state) equi-
librium as one increases the number of discretized states.
This suggests that the behavior of continuous asset prices in
the propagation of fire sales, which has been examined only
numerically in previous studies [6,15,16], can be analyzed
analytically within a framework of multistate cascade models.

II. CONTINUOUS-STATE COMPLEX CONTAGION

A. A threshold model with continuous states

We first present a model of continuous-state contagion in
which the state of each node is represented by a real value
s ∈ [0, 1]. We will then consider a model of financial fire sales
with both binary and continuous states in Sec. III.

The model we consider in this section is a generalized
version of the binary-state Watts’ threshold model [22]; in
addition to state 0 (i.e., fully inactive) and state 1 (i.e., fully
active), there is a spectrum of intermediate states between
them (i.e., partially active).

Let us focus on a node with degree k. We will denote
by s = (s1, . . . , sk )� the vector containing the states of the
node’s neighbors. While there can be various specifications
of continuous-state cascades, we consider a generalized frac-
tional threshold rule in which the state of each node is affected
by the fraction of its “active neighbors” m/k, as it is as-
sumed in many variants of the discrete-state threshold model
[10,22,25,27,28,31,35–39]. For a given threshold θ ∈ [0, 1),
the response function Fs is generically given as

Fs =
{

f
(

m
k

)
if m

k > θ,

0 otherwise,
(1)

where m denotes the number of active neighbors whose states
are positive: m = |{ j : s j > 0, s j ∈ s}|. f is a continuous non-
decreasing function on (θ, 1] such that f (·) ∈ [0, 1]. That is,
Fs gives the state of a node, taking the neighbors’ states s
as input. Note that the standard Watts model is recovered
when f (m/k) = 1 for m/k > θ , corresponding to the most
progressive response function. In Appendix A, we examine
a more general nonlinear form of f (m/k).

We also consider an alternative response function that de-
pends on the sum of neighbors’ states:

F̃s =
{

f
(∑

j s j

k

)
if

∑
j s j

k > θ,

0 otherwise.
(2)

It should be noted that the influence of seed nodes will gen-
erally be weakened when the response function is given by
F̃s rather than Fs. For example, consider a tree in which
each node (excluding the seed node) has k edges, and all
nodes are initially in state 0. Suppose that f (

∑
j s j/k) =∑

j s j/k, and the state of the seed node shifts from 0 to 1.
Since the seed node is one of the k neighbors for the child
nodes, the states of the child nodes become 1/k if θ < 1/k.
Then, the states of the grandchild nodes become 1/k2 if
θ < 1/k2, the great-grandchild nodes’ state become 1/k3 if
θ < 1/k3, and so on. While the actual propagation process can
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be more complicated due to repercussion of peer effects, the
spread of influence with response function F̃s is more likely
to decay than that obtained with the response function Fs.

B. Multistate dynamical process as an approximation

In the continuous-state contagion model, it is difficult to
describe the collective dynamics in an analytical manner be-
cause the shares of nodes in each state are represented as
a continuous density function in the limit of an infinitely
large network size. While the conventional mean-field and
message-passing methods could be applied to a class of multi-
stage contagion models with several nodal states, the accuracy
of the approximation methods easily deteriorates when there
are more than two states [31].

To address this problem, we introduce a discretization ap-
proach using an AME method [32–34]. To apply the AME
method, we transform the continuous-state model into a dis-
crete multistate model by discretizing the range of continuous
states into n grids. Let m ≡ (m0, m1, . . . , mn−1)� be the pro-
file of neighbors’ states, where m� denotes the number of
neighbors in (discretized) state � ∈ {0, . . . , n − 1}. For a node
with degree k ∈ {1, . . . , kmax}, we have

∑n−1
�=0 m� = k.

Transitions in the states of nodes are captured by the re-
sponse function Fm(i → j), the rate at which a node in state
i changes its state to j. For a given sequence of thresholds
� = {θ0, θ1, . . . , θn−1}, Fm is specified as

Fm(i → j) =
{

1 if θ j−1 < P(m) � θ j,

0 otherwise,
(3)

for 1 � j � n − 1, and

Fm(i → 0) =
{

1 if P(m) � θ0,

0 otherwise,
(4)

where P(m) denotes the “peer pressure,” i.e., the influence
from neighbors, and θ j−1 and θ j are the thresholds between
which the node is in state j.

To approximate the continuous-state model, the peer pres-
sure corresponding to the response function Fs [Eq. (1)] is
given as

P(m) = f

(∑n−1
�=1 m�

k

)
. (5)

Note that the multistate model reduces to a binary-state model
when n = 2, 0 < θ0 < 1 and θ1 = 1. We specify the sequence
of threshold values � such that the responsiveness f (m/k)
in the continuous model is evenly spaced on [0,1], where
f (θ j ) − f (θ j−1) = 1/(n − 1) for all j = 1, . . . , n − 1. A de-
tailed description of the specifications of threshold values is
provided in Appendix A and Fig. S4. When the response
function is given by F̃s [Eq. (2)], the peer pressure for the
discretized model leads to

P(m) = f

(
1

k

∑n−1
�=1 �m�

n − 1

)
, (6)

where �/(n − 1) ∈ [0, 1] is the normalized state of neighbors
in state �. In the following, we specify the functional form of

f as f (u) = ( u−θ
1−θ

)η with η � 0, where η = 0 corresponds to
a linear threshold model (see Appendix A for details).

Let xi
k,m(t ) be the fraction of k-degree nodes in state i

that face neighbors’ profile m at time t . Employing the AME
formalism, we solve the following differential equations for
the dynamics of xi

k,m(t ) [32]:

dxi
k,m

dt
= −

∑
j �=i

Fm(i → j)xi
k,m +

∑
j �=i

Fm( j → i)x j
k,m

−
n−1∑
�=0

∑
�′ �=�

m�β
i(� → �′)xi

k,m

+
n−1∑
�=0

∑
�′ �=�

(m�′ + 1)β i(�′ → �)xi
k,m−e�+e�′

, (7)

where e� denotes the n × 1 vector that contains 1 for the �th
element and 0 for the other elements. β i(� → �′) denotes the
probability that a neighbor of a node being in state i changes
its state from � to �′:

β i(� → �′) =
〈∑

|m|=k mix�
k,m(t )Fm(� → �′)

〉
k〈∑

|m|=k mix�
k,m(t )

〉
k

, (8)

where 〈·〉k denotes the average over degree k with degree
distribution pk . The first (resp. second) term of Eq. (7) cap-
tures the rate at which the states of a k-degree node in the
(i, m) class [resp. ( j, m) class] shifts from i to j( �= i) [resp.
j to i( �= j)] in an infinitesimal time interval dt . It should
be noted that Eq. (7) describes the dynamics under asyn-
chronous update in which only a fraction dt of nodes can
change their states in response to their neighbor profiles in a
small time interval [23,31]. The third term denotes the rate
at which the neighbors’ state profile will be different from
m. The fourth term indicates the rate at which the neigh-
bors’ profile newly becomes m. The expression m − e� + e�′

represents the neighbor profile that has m�′ + 1 in the �′th
element and m� − 1 in the �th element. For k ranging from
0 to kmax, the total number of differential equations leads
to n

∑kmax
k=0

(k+n−1
k

)
[32].

C. Validation

To examine the accuracy of the discrete approximation, we
calculate the average fraction of active nodes in a discretized
state i at time t , denoted by ρi(t ), using the solutions of the
AMEs (7):

ρi(t ) =
〈 ∑

|m|=k

xi
k,m(t )

〉
k

, (9)

where
∑

|m|=k denotes the sum over all combinations of m

such that
∑n−1

�=0 m� = k. On the other hand, the states of nodes
in the continuous-state model are represented by π (s) on
s ∈ [0, 1], where π (s) is a density of nodes in state s. We
consider Erdős-Rényi random networks in which the degree
distribution follows a Poisson distribution with mean z. We
first consider a simple responsiveness given as f (m/k) = m/k
(i.e., η = 1, θ = 0), which is a linear map of the fractional
influence m/k. The corresponding thresholds are given by
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FIG. 1. State transition in the continuous- and discrete-state threshold models. (a) Visualization of simulated node states at t = 3 in different
models. The network structure and the seed nodes are common for the three cases. (b) Comparison between the AME solution and simulation
results in the discrete-state model with n = 6. (c) Distribution of states at a given time. In the AME, the fraction of nodes in discretized state
i ∈ {0, . . . , n − 1} is given by ρi (blue bar). For the continuous-state model, density π (s) for state s ∈ [0, 1] is calculated by the kernel density
estimation with bandwidth 0.1 based on numerical simulations (black line). The index of discretized states is normalized by n − 1 so that the
states are distributed on [0,1]. Seed fraction is determined such that the fraction 0.05 of nodes are in the most active state (i.e., i = n − 1 or
s = 1), while 0.95 of nodes are in state 0. For (b) and (c), we run 40 simulations on Erdős-Rényi networks with N = 3000 (i.e., network size),
〈k〉 = 3, θ = 0, and θ j = j/(n − 1).

θ j = j/(n − 1) for j = 0, . . . , n − 1. Results for more gen-
eral nonlinear functional forms are presented in Appendix A.
For the calculation of the AME solution, we use the MATLAB

code developed by Refs. [32,40] in which differential equa-
tions are solved using an algorithm ode45.

While the states of nodes are 0 or 1 when n = 2 [Fig. 1(a),
left], there are many nodes whose states are in between 0 and
1 when n > 2 once the state index is normalized by n − 1
[Fig. 1(a), middle]. In the discrete-state model with n = 6,
the node states are distributed as heterogeneously as in the
continuous-state model [Fig. 1(a), middle and right]. On the
other hand, the steady-state fraction of nodes in state 1 in the
binary-state approximation (i.e., n = 2) is too large, compared
to that of the continuous-state model (Fig. S1 in the Supple-
mental Material (SM) [41]).

As shown in previous studies, the AME method is highly
accurate in predicting the dynamical path of the fractions of

each state in a class of discrete-state contagion models [32]
[Figs. 1(b) and S2]. It is thus sufficient to compare ρi calcu-
lated by the AMEs with the density function π (s) obtained via
numerical simulations of the continuous-state model. Indeed,
the probability mass function for ρi gives an accurate approx-
imation to the continuous density function π (s) [Fig. 1(c)]. In
Figs. S1 and S3 in the SM, we show that the discrete approxi-
mation with n = 6 still maintains its accuracy when θ > 0 and
the responsiveness is more “progressive” [i.e., f is concave,
Fig. S4(a)] or “conservative” [i.e., f is convex, Fig. S4(c)].
As expected, the probability mass function converges to the
continuous density function π as one increases the number of
states n (Fig. S1).

On the other hand, when the response function is given by
F̃s, the AME method does not necessarily provide a good
approximation. The AME method works well when η < 1
and f is concave, where the threshold values are skewed
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FIG. 2. Schematic of fire sales through overlapping portfolios. (a) Asset-bank bipartite network. The asset prices are assumed to be 1 in
the initial state. (b) Cascade of fire sales initiated by a bank failure. The asset held by a defaulted bank will be liquidated and its price falls to
0.6 (top). Then, the price fall could cause other banks to fail due to capital loss (bottom), triggering further asset liquidations.

toward the origin as illustrated in Fig. S4(a), but otherwise
it may incorrectly predict the shares of each state (Fig. S5).
This suggests that for the continuous model to be well ap-
proximated, the discretized thresholds need to be sufficiently
densely distributed near θ (= θ0).

An advantage of using the AME method is that it would
greatly reduce the computation time required to calculate
dynamic paths. Running simulations for the continuous-state
model can be computationally expensive since it takes a
while to reach convergence, especially when network size
N is large (Fig. S6). On the other hand, it is relatively faster
for a simulation of the discretized model to reach stationary
state since there is only a limited number of possible states.
The AMEs are solved in constant time independently of
the number of nodes. In simulations, we pick N nodes and
calculate the fraction of neighboring nodes taking state �.
This takes N〈k〉n steps, and we repeat this T times. Since we
implement R runs in numerical simulation, there are N〈k〉nT R
steps in total.

In general, the number of equations that need to be solved
in the AME method can be calculated by counting all the pos-
sible combinations of m such that

∑n−1
�=0 m� = k. The number

of different possible combinations of m is therefore
(k+n−1

n−1

)
,

and the number of equations in the AME method is given by∑kmax
k=kmin

(k+n−1
n−1

)
. In each time step, the AME method needs

n2 ∑kmax
k=kmin

(k+n−1
n−1

)
steps to calculate the last term of Eq. (7).

In total, the number of steps needed to calculate a dynamical
path using the AME method leads to

n2T
kmax∑

k=kmin

(
k + n − 1

n − 1

)
≈ (kmax + n − 1)n−1n2T . (10)

For bipartite networks, our simulations take (Nnkmax +
2Mhmax)T R steps, while the number of steps for the
AME method leads to (kmax + n − 1)(n−1)n2T + (hmax + 2 −
1)122T = (kmax + n − 1)(n−1)n2T + (hmax + 1)T . Therefore,

unless kmax and n are not very large, the AME method is
generally faster than simulations even for a large hmax.

III. A MODEL OF FINANCIAL FIRE SALES

In this section, we construct a model of financial fire sales
as a dynamical process on bipartite networks, where asset
nodes take continuous states (i.e., price levels) while bank
nodes take binary states {0, 1} (i.e., solvent or insolvent). The
asset nodes and bank nodes are connected with each other by
undirected edges, while there is no edge within the same group
of nodes, forming a bipartite network. The structure of the
bipartite network represents the asset holdings, or portfolios,
of banks [Fig. 2(a)]. For simplicity, the initial price of each
asset is set to 1 throughout the analysis.

The dynamic of contagion works as follows: A bank
defaults when the value of its assets falls below a given thresh-
old. In turn, the value of an asset depends on how many of the
banks connected to the asset have defaulted (the higher the
fraction of defaults, the lower the value of the asset). We will
now describe in detail the model for the continuous-price case
and its multistate approximation.

A. Continuous-price model

We first describe a continuous-price model in which asset
prices are given by real values in [0,1]. We consider for asset
a a simple continuous price function of the form [4]

pa(ra) = [1 − (ra)α]
1
α , α > 0, (11)

where ra is the fraction of the asset owned by insolvent banks:

ra =
∑

i Wiaσi∑
i Wia

, (12)

where Wia is the amount invested by bank i in asset a, σi = 1
if bank i is insolvent, and σi = 0 if bank i is solvent.
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FIG. 3. Discretization of asset prices. n = 6 and α = 0.6.

If we make simplifying assumptions that all weights asso-
ciated with edges are equal, the price of asset a becomes a
function of the fraction of defaulted banks that invest in that
asset [4]:

pa

(
n1

h

)
=

[
1 −

(
n1

h

)α] 1
α

, α > 0, (13)

where h denotes the degree of the asset, and n1 (defined
without subscript a for notational simplicity) is the number
of bank nodes in state 1 (i.e., insolvent banks) that hold asset
a. The assumption that all weights in the network are the same
still allows some heterogeneity across banks. In fact, it implies
that the total assets of banks are proportional to their degree,
so that heterogeneity of degrees translates into heterogeneity
of banks’ size. This is not unrealistic, as a positive and signif-
icant correlation between size and degree has previously been
observed in financial networks (see, for instance, Ref. [42]).
Relaxing the above assumption by allowing heterogeneous
weights would lead to a lower diversification of banks, and it is
thus expected to widen the windows of values of connectivity
within which global cascades are observed.

The price function (13) captures the responsiveness of asset
prices to liquidation events; the more banks fail, the lower
the price of the assets held by the failed banks since those
assets would be liquidated (i.e., sold in the market) [Fig. 2(b),
top]. Equation (13) has some desirable properties: p′

a < 0,
pa(0) = 1 and pa(1) = 0 (Fig. 3). That is, the price of an asset
is 1 if there are no failed banks and 0 if all banks that hold
the asset fail. The elasticity of asset price to the fraction of
failed banks, defined by −d log pa/d log(n1/h), is given by
xα/(1 − xα ), where x ≡ n1/h. We assume α < 1 to focus on
situations in which thresholds are skewed toward the origin,
since otherwise the discretization approach would not work
well as explained in the previous section.

The total loss of bank b due to price falls, denoted by Lb, is
then given by

Lb =
∑

a

Aba(1 − pa), (14)

where A = (Aba) denotes the adjacency matrix: Aba = 1 if
bank b holds asset a, and Aba = 0 otherwise. pa ∈ [0, 1] is the
price of asset a. Given the loss Lb, the state of bank b shifts

according to the following threshold rule:

F (0 → 1) =
{

1 if Lb
k > θbank,

0 otherwise,
(15)

where θbank ∈ (0, 1) denotes the threshold of the fractional
loss (i.e., average loss per neighbor) above which the bank
goes bankrupt [Fig. 2(b), bottom] [7,8,14]. The threshold θbank

can also be interpreted as the capital-asset ratio in the balance
sheet of a bank, where a bank is forced to sell assets if the total
loss Lb exceeds the amount of capital kθbank [4–6,14]. Since
we assume that there is no possibility of recovery in the state
of banks [8,9,43], we have F (1 → 1) = 1.

B. Multistate contagion on bipartite networks

Now we develop a model of multistate contagion as an
approximation to the continuous-price model. Let k denote
the degree of a bank node, and let � ∈ {0, . . . , n − 1} denote a
state of an asset, where �/(n − 1) represents the size of price
fall for the assets in state �. The prices of the assets held
by a bank are encoded in vector m = (m0, m1, . . . , mn−1)�,
where m� denotes the number of assets in state �, and |m| =∑n−1

�=0 m� = k. The states of banks holding an asset are en-
coded in vector n = (n0, n1)�, where n0 and n1 denote the
numbers of solvent and insolvent banks, respectively, and
|n| = n0 + n1 = h.

1. Bank nodes

A bank node takes one of the binary states 0 (solvent) or 1
(insolvent), depending on the prices of the assets that the bank
has. The state-transition rate for bank nodes is given by

Fm(0 → 1) =
{

1 if L(m)
k > θbank,

0 otherwise,
(16)

where

L(m) =
∑n−1

�=1 �m�

n − 1
∈ [0, k]. (17)

L(m) represents the total loss that a bank incurs due to a de-
cline in asset prices. The threshold condition (16) corresponds
to Eq. (15) in the continuous-price model. Note that the loss
from an asset price, �/(n − 1), takes (discrete) values between
0 and 1, so that 0 � L(m) � k and 0 � L(m)/k � 1.

2. Asset nodes

The state-transition rate for asset nodes facing a neighbor
profile n is given by

Gn(� → �′) =
{

1 if θ asset
�′−1 < Passet (n) � θ asset

�′ ,

0 otherwise,
(18)

for 1 � �′ � n − 1, where Passet (n) = n1/h is the fraction of
insolvent banks. θ asset

�′−1 and θ asset
�′ are the threshold values be-

tween which the asset is in state �′. The threshold condition
(18) indicates that an asset price changes in a discrete manner
in accordance with the fraction of insolvent banks among all
the asset holders. For �′ = 0, we have

Gn(� → 0) =
{

1 if Passet (n) � θ asset
0 ,

0 otherwise.
(19)
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This suggests that when θ asset
0 = 0, an asset price will remain

unchanged if and only if there are no failed banks that hold
the asset. Note that when n = 2, the model reduces to a model
of binary-state contagion on bipartite networks [44,45].

By implementing a discretization such that the price of
assets in state � is equal to 1 − �/(n − 1), the threshold values
are given by

θ asset
� =

[
1 −

(
1 − �

n − 1

)α] 1
α

, � = 0, . . . , n − 1. (20)

Note that θ asset
0 = 0 and θ asset

n−1 = 1 (Fig. 3). Clearly, the set
of threshold values in the limit of n → ∞ leads to {θ : θ ∈
[0, 1]}, in which case the asset prices are determined by the
continuous price function (13). Thus, the continuous-price
model is also interpreted as a continuous-threshold model as
long as the price function is continuous.

It should be noted that due to the discretization of
thresholds, the multistate cascade process only provides an
approximation to the “true” dynamics that would be observed
if the asset price would follow the original price function (13).
Nonetheless, we will show in Sec. IV A that the simulated
cascade dynamics obtained with the continuous price function
can be well replicated in the discrete multistate model for a
moderately large n.

C. Approximate master equations

Let xi
k,m(t ) denote the fraction of k-degree banks that are in

state i and face asset-price profile m at time t . For each degree
k, we have

∑n−1
l=0 m� = k. The expected fraction of banks in

state i at time t is given by

ρbank
i (t ) =

〈 ∑
|m|=k

xi
k,m(t )

〉
k

, (21)

where 〈·〉k denotes the average over k with degree distribution
pbank

k .
For asset nodes, we define y�

h,n(t ) as the fraction of h-
degree assets that are in state � and face asset holders’
profile n. The expected fraction of assets in state � at time t
leads to

ρasset
� =

〈∑
|n|=h

y�
h,n(t )

〉
h

, (22)

where 〈·〉h denotes the average over h with degree distribution
passet

h .
By employing the AME formalism, the dynamics of xi

k,m

and y�
h,n are respectively described by the following differen-

tial equations:

dxi
k,m

dt
= −δi0Fm(0 → 1)x0

k,m + δi1Fm(0 → 1)x0
k,m

−
n−1∑
�=0

∑
�′ �=�

m�β
i(� → �′)xi

k,m

+
n−1∑
�=0

∑
�′ �=�

(m�′ + 1)β i(�′ → �)xi
k,m−e�+e�′

, (23)

dy�
h,n

dt
= −

∑
�′ �=�

Gn(� → �′)y�
h,n +

∑
�′ �=�

Gn(�′ → �)y�′
h,n

− n0γ
�(0 → 1)y�

h,n

+ (n0 + 1)γ �(0 → 1)y�
h,n−e1+e0

, (24)

where δi j is the Kronecker delta. The link transition rates
β i(� → �′) and γ �(i → j) are given by

β i(� → �′) =
〈∑

|n|=h niy�
h,n(t )Gn(� → �′)

〉
h〈∑

|n|=h niy�
h,n(t )

〉
h

, (25)

γ �(i → j) =
〈∑

|m|=k m�xi
k,m(t )Fm(i → j)

〉
k〈∑

|m|=k m�xi
k,m(t )

〉
k

. (26)

Equations (23) and (24) are obtained in the same way as
the standard AMEs [Eq. (7)]. Equation (23) describes the
dynamics of bank states while Eq. (24) represents the dy-
namics of the share of state-� assets. Since there is no edge
within the same group, the states of neighbors for bank nodes
(resp. asset nodes) correspond to the price of assets that the
bank has (resp. the solvency of the asset-holding banks).
β i(� → �′) thus denotes the probability of an asset held by
a state-i bank changing its state from � to �′. Analogously,
γ �(i → j) denotes the chance that the state of a bank holding
state-� assets shifts from i to j. Combining Eqs. (23) and
(24), the total number of differential equations to be solved
is 2

∑kmax
k=0

(k+1
k

) + n
∑hmax

h=0

(n+h−1
h

)
.

In the initial state, we assume that a tiny fraction ρbank
1 (0)

of bank nodes are in state 1 (insolvent), and the other bank
nodes are in state 0 (solvent), where ρbank

0 (0) = 1 − ρbank
1 (0).

All the asset nodes are initially in state 0 (i.e., prices are 1):

ρasset
� (0) =

{
1 if � = 0,

0 otherwise.
(27)

The initial values of xi
k,m(0) is then given by

xi
k,m(0) = ρbank

i (0)
k!

m0! · · · mn−1!

× [
ρasset

0 (0)
]m0 · · · [ρasset

n−1 (0)
]mn−1

. (28)

The initial value of y�
h,n(t ) is given by

y�
h,n(0) = ρasset

� (0)

(
h

n0

)[
ρbank

0 (0)
]n0

[
ρbank

1 (0)
]n1

. (29)

IV. RESULTS

A. Convergence to the continuous-state equilibrium

The average of the total number of edges is given by
Nzbank, where N is the number of banks. Since the presence
of multiedges can be ignored as long as zbank/M is sufficiently
small, the degree distribution for assets is also Poissonian with
mean Nzbank/M.

Figure 4(a) shows that simulated paths of the average
fraction of insolvent banks are well replicated by the cor-
responding AME solutions. We find that a global cascade
can occur only in a certain range of network connectivity
captured by zbank [Fig. 4(b)], which is consistent with many
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FIG. 4. Comparison between theory and simulation. (a) Dynamical paths of ρbank
1 (t ) obtained by the AME method (lines) and simulation

(symbols). We set zbank = 4, N = 5000, and M = 5000. (b) Steady-state fraction of insolvent banks against the bank degree. (c) The average
fraction of assets in each state. (d) Distribution of asset prices calculated by the AME (blue bar) and numerical simulations in the continuous-
price model (black line). Density of the continuous prices is obtained by the kernel density estimation with bandwidth 0.1. Unless otherwise
noted, we set kmax = min{k′ :

∑k′
k=0 zk

banke−z/k! � 0.99}, ρbank
1 (0) = 10−3, α = 0.6, θ bank = 0.2, N = 104, M = 104, T = 60, and dt = 0.01.

The average is taken over 40 runs.

studies on binary-state cascades [7,10,14,22,25]. Note that the
cascade region gradually shrinks as the number of states n
increases since the discretized threshold values {θ asset

� } tend to
rise on average (Fig. 3). In particular, when n = 6, the steady-
state fraction ρbank

1 (T ) calculated by the AME [black solid in
Figs. 4(a) and 4(b)] well matches the corresponding steady
state in the continuous-state model (purple cross), indicating
that ρbank

1 (t ) converges to the continuous equilibrium as n
increases. That is, the solution to the continuous-state model
can be accurately replicated with a finite set of discretized
states as long as n is moderately large.

In addition to the average fraction of defaulted banks, the
share of assets in each state and even the distribution of
continuous asset prices are approximated by the AME when
the number of states is moderately large [Figs. 4(c) and 4(d)].
The figures show that the price distribution drastically changes
from ρasset

0 ≈ 1 to ρasset
n−1 ≈ 1 around t = 12, after which most

of the asset prices drop to 0.
Figure 5 presents a comparison of the cascade regions

obtained by theory and simulation under different param-
eter combinations. First, the larger the elasticity parameter
α, the smaller the cascade region. Generally, the average
of discretized threshold values increases as α rises, thereby
shrinking the cascade region [Eq. (20)]. Second, the ef-
fect of network connectivity zbank is twofold, as is well
known in the literature on threshold cascades; a network
needs to be moderately sparse for a global cascade to occur

FIG. 5. Cascade region obtained by the AMEs and simulated
continuous-price model. (a) α vs zbank, and (b) α vs θbank. We set
n = 6 for the AME method. See Fig. 4 for the other parameter values.
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k
1
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1
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(a)

(b)
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Bank rescue

FIG. 6. Effect of policy intervention on the fraction of defaulted
banks. (a) Asset-purchasing policy and (b) bank-rescue policy. qasset

and qbank respectively represent the probabilities that the price of
an asset and the state of a bank are kept unchanged due to policy
intervention.

since there must be routes through which influence spreads
and, at the same, the average degree needs to be suffi-
ciently low so that influence from a neighbor would not be
diluted [7,22].

B. Preventing cascades through policy intervention

In this section, we explore how cascades of fire sales
could be avoided by intervention. Here, we consider policy
interventions in which the government or financial authority
may operate in the market to reduce the probability of asset
prices declining or to prevent banks from going bankrupt. In
practice, the former type of policies has been implemented
extensively through massive asset-purchasing programs intro-
duced in response to the global financial crisis of 2007–2009
[46–48]. Along with this, defaulting banks have been occa-
sionally rescued by the governments’ capital injection (e.g.,
purchasing the banks’ stocks) over the past decades [49–51].
Within our analytical framework, each of these policies may
be represented as an alteration to the state-transition probabil-
ities in Gn or Fm.

To analyze the effect of an asset-purchasing policy, we
introduce a probability qasset that an asset price does not
change even if a sufficient fraction of its asset holders newly
default. That is, with probability 1 − qasset, the state of an asset
shifts as is specified by Eq. (18), and with probability qasset,
the asset’s state is kept unchanged regardless of the state of
the asset holders. Analogously, we can also consider another

Assets
(b)(a)

Funds (ETF) Assets

(c)

Apple

Microsoft

LVMH

Toyota

IXN

CWI

VGK 

EWJ

TSMC

Asset degree

C
C

D
F

Funds

FIG. 7. Bipartite network of ETF portfolios. (a) Schematic of the
bipartite network between funds and assets. For instance, the ETF
labeled “IXN” holds the stocks of Apple, Microsoft, and TSMC.
(b) Visualization of the actual ETF network, where the number of
funds N is 212 (light blue), and the number of assets M is 810 (pale
red). (c) Complementary cumulative distribution function (CCDF)
for the asset degrees.

policy tool that could prevent banks from being defaulted.
Such a bank-rescue policy is represented by a probability qbank

that the state of a bank is kept unchanged regardless of the
asset prices that the bank has (see Appendix B for the specifi-
cation of the modified transition probabilities). Clearly, setting
qasset = qbank = 0 recovers the baseline model in which there
is no policy intervention.

We find that both policies have a similar effect on cascades
(Fig. 6); the possibility of policy intervention delays the onset
of fire sales while the terminal state attained around t ≈ 100
is unaffected (i.e., ρbank

1 ≈ 1). In the process of propagation,
the cascade region naturally shrinks as qasset increases at a
given point in time (Fig. S7). This suggests that a probabilistic
policy intervention may delay the propagation of fire sales,
but eventually the undesirable steady state will be attained.
Delaying the propagation of fire sales may nonetheless be
useful in practice, because it would allow time for additional
recovery mechanisms to be activated. The relationship be-
tween the time to convergence and intervention probability is
shown in Fig. S8.

C. Application to the exchange-traded fund market

In this section we examine the possibility of a global cas-
cade occurring in a real-world financial network. We use data
on the asset portfolios of exchange-traded funds (ETFs) listed
in exchanges in the US (e.g., NASDAQ, NYSE Arca). The
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FIG. 8. Comparison between theory and simulation for the US
ETF portfolios. ρETF

1 and θETF correspond to ρbank
1 and θbank in the

baseline model, respectively. Simulated results for a continuous-price
model are compared with the corresponding AME solutions with
n = 6. (a) Dynamical path of the fraction of collapsed ETFs and
(b) the cascade region. The initial seed fractions ρETF

1 (0) are set at
0.05 and 1/N in (a) and (b), respectively. In (a), we set α = 0.6
and θETF = 0.04. In (b), the color denotes the average over 40 runs
for T = 20.

ETF data are collected from the website of Monex Inc. [52].
We consider a bipartite network in which there are two types
of nodes, ETFs (i.e., fund nodes) and stocks (i.e., asset nodes).
A fund node and an asset node are connected by an undirected
and unweighted edge if the asset is held by the ETF [Fig. 7(a)].
The network data is available in Github at Ref. [53]. Due to the
limited availability of portfolio information, we use the top 10
assets for each ETF, in terms of the share in the portfolio, in
constructing the bipartite network. To capture systemic risk in
the ETF market, rather than the risk of each individual asset,
we combine several individual stocks that apparently belong
to the same group (e.g., BHP Group Ltd. and BHP Group
PLC). Therefore, each fund node is connected to at most ten
asset nodes (i.e., k � 10 for all fund nodes). We focus on
the largest connected component, where the numbers of the
fund nodes and the asset nodes are N = 212 and M = 810,
respectively [Fig. 7(b)]. We find that the asset degrees are
quite heterogeneous and the degree distribution is heavy tailed
[Fig. 7(c)].

In the ETF network, fund nodes correspond to bank nodes
in the baseline model, so we assume that an ETF will be
liquidated (i.e., collapsed) if its loss exceeds a certain fraction
θETF, in the same way that a bank defaults according to the
threshold condition (16). Figure 8 compares the solution of
the AME and the corresponding simulation results in the
continuous-price model. In the AME method, we use the
actual degree distributions of the ETF network in calculat-
ing the fraction of collapsed ETFs, denoted by ρETF

1 . The

dynamical path of ρETF
1 (t ) suggested by the AME method

well matches the simulated values [Fig. 8(a)], while the net-
work structure is not random as assumed in the baseline
model.

On the other hand, since the AME method is developed
for sufficiently large networks, there is necessarily some
discrepancy between the AME solution and simulation re-
sults stemming from the finite-size effect. The finite-size
effect is also visible in Fig. 8(b), which shows the cas-
cade region for different values of α and θETF. Nevertheless,
simulated cascades in the continuous-price model are well
predicted by the discrete-state AME method with n = 6.
In line with the discussion in Sec. IV B, Fig. S10 shows
how a policy intervention would delay the spread of fire
sales.

V. CONCLUSION

We develop an analytical framework for the continuous-
state model of complex contagion which can be extended to
describe the dynamics of financial fire sales with continuous
prices. While the discretized model involves a limited number
of states, its AME solution well matches the continuous-state
equilibrium as long as the number of possible states is moder-
ately large. The analytical tractability allows us to examine
various properties, such as the size of cascade region and
the effects of policy interventions, without running massive
numerical simulations.

There are still some issues to be addressed in future
research. First, while the model is based on a system of dif-
ferential equations, the cascade condition is not obtained in
an analytical manner as is done in many binary-state models
[10,22–25]. We in fact found that the maximum eigenvalue
of the Jacobian of the differential equations is not necessarily
informative in predicting the cascade region. Arguably, this
is because the system is highly nonlinear so that a local lin-
earization around the initial point may not accurately capture
the stability of the system. Second, since our method describes
the collective dynamics that would materialize on average,
it is not possible to theoretically identify important nodes in
the network. In practice, however, there is a substantial need
for identifying systemically important banks in terms of their
possible impact on financial cascades. Finally, the idea that a
discrete multistate contagion model can provide an approxi-
mation of continuous-state contagion could also be utilized in
other contexts, such as opinion dynamics and cascades of load
[54–56]. We hope that our work will stimulate further research
in these directions.

ACKNOWLEDGMENTS

T.K. acknowledges financial support from JSPS KAK-
ENHI Grants No. 19H01506, No. 20H05633, and No.
22H00827. T.O. acknowledges financial support from JSPS
KAKENHI Grants No. 19K14618 and No. 19H01506. We
would like to thank Tatsuro Kawamoto and Yoshitaka Ogisu
for constructing the ETF data set, and James P. Gleeson,
Takehisa Hasegawa, and Kai Morino for valuable comments.

043123-10



FINANCIAL FIRE SALES AS CONTINUOUS-STATE … PHYSICAL REVIEW RESEARCH 5, 043123 (2023)

APPENDIX A: DISCRETIZATION
OF THRESHOLD VALUES

In the continuous-state threshold model with θ � 0, the
response function can be expressed as

Fs =
{(m/k−θ

1−θ

)η
if m

k > θ,

0 otherwise,
(A1)

where f (m/k) = ( m/k−θ

1−θ
)η represents the responsiveness to

the neighbors’ states. Note that f satisfies f (θ ) = 0 and
f (1) = 1. η � 0 captures the strength parameter; when η < 1,
the response is progressive in that the slope of f (m/k) is
larger than that in the case of η = 1 when m/k is close to
θ [Figs. S4(a) and S4(b)], while the response becomes con-
servative when η > 1 [Fig. S4(c)]. Note that the Watts model
of binary-state cascades corresponds to the most progressive
response function where η = 0.

In the discrete-state model, the threshold values corre-
sponding to the above response function are given by

θ j = θ + (1 − θ )

(
j

n − 1

) 1
η

,

j = 0, . . . , n − 1, 0 < η < ∞, (A2)

where θ is the threshold given in Eq. (A1) and is equal to
θ0. This specification ensures that each interval size between

two adjacent responsiveness values is common: f (θ j ) −
f (θ j−1) = 1

n−1 , for all j = 1, . . . , n − 1. Figure S4 illustrates
three cases: Progressive, neutral, and conservative responses.

We can also consider an alternative nonlinear response
function based on the sum of neighbors’ states:

F̃s =
{(∑

j s j/k−θ

1−θ

)η
if

∑
j s j

k > θ,

0 otherwise.
(A3)

Figure S5 reveals that the dynamical paths predicted by the
AME method well match the simulated ones when η < 1.
This suggests that the AME method provides a good ap-
proximation when η < 1, in which case threshold values are
skewed to the left. When η � 1, the AME method still predicts
that a cascade occurs, while simulation results do not (Fig. S5,
middle and bottom).

APPENDIX B: TRANSITION PROBABILITIES IN THE
PRESENCE OF POLICY INTERVENTION

In the presence of an asset-purchasing policy, the transition
matrix Gn in the baseline model [Eq. (18)] is modified since
the policy alters the probability of an asset price declining. For
�, �′ � 1, we have

Gn(� → �′) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

qasset if � /∈ {
� : θ asset

�−1 < Passet (n) � θ asset
�

}
and �′ = �,

1 − qasset if � /∈ {
� : θ asset

�−1 < Passet (n) � θ asset
�

}
and �′ ∈ {

�′ : θ asset
�′−1 < Passet (n) � θ asset

�′
}
,

1 if � ∈ {
� : θ asset

�−1 < Passet (n) � θ asset
�

}
and �′ = �,

0 otherwise.

(B1)

For � = 0 or �′ = 0, we have

Gn(0 → �′) =

⎧⎪⎪⎨⎪⎪⎩
qasset if Passet (n) > θ asset

0 and �′ = 0,

1 − qasset if �′ ∈ {
�′ : θ asset

�′−1 < Passet (n) � θ asset
�′

}
and �′ � 1,

0 otherwise,

(B2)

Gn(� → 0) =
{

1 if Passet (n) � θ asset
0 ,

0 otherwise.
(B3)

The probability qasset thus represents the chance that an asset-purchasing policy is implemented, where setting qasset = 0 recovers
the baseline model without policy intervention.

In the presence of a bank-rescue policy, the transition matrix Fm is given by

Fm(0 → 1) =
{

1 − qbank if L(m)
k > θbank,

0 otherwise,
(B4)

Fm(0 → 0) =
{

qbank if L(m)
k > θbank,

0 otherwise,
(B5)

where qbank denotes the chance that the government rescues the defaulting bank. Clearly, qbank = 0 recovers the baseline model
in which there is no policy intervention.
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