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We consider repeated games with tail-measurable payoffs, i.e., when the payoffs depend
only on what happens in the long run. We show that every repeated game with tail-
measurable payoffs admits an ε-equilibrium, for every ε > 0, provided that the set of
players is finite or countably infinite and the action sets are finite. The proof relies
on techniques from stochastic games and from alternating-move games with Borel-
measurable payoffs.
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1. Introduction

Nash equilibrium, of central importance in strategic game theory and its applications
[Holt and Roth (1)], exists in all finite games [Nash (2)]. It exists also in some infinitely
repeated (IR) games [Shapley (3) and Sorin (4)]; in others, only ε-equilibria (see end of
section 2.1) exist [Vieille (5, 6)]; and in others still, even they do not [Gale and Stewart
(7)]. Here we prove that ε-equilibria exist in all IR games in which the payoff depends only
on what happens in the long run, more precisely, whenever action streams that differ in
only finitely many stages have the same payoff (technically, we require Borel measurability
and tail measurability [section 2.2]). Moreover, we allow countably infinitely many players
[Peleg (8) and Voorneveld (9)]. Thus, interestingly, even though one-shot games with
countably infinitely many players and finite action sets may fail to have an ε-equilibrium,
IR games with countably infinitely many players, finite action sets, and tail-measurable
payoffs do have an ε-equilibrium. We remark that the existence of ε-equilibrium is not
known even when the number of players in the game is finite.

The world is finite; infinite models capture those aspects of the finite world that are
difficult to capture with finite models. For example, IR games capture the idea of a long
repetition when it is not clear or too costly to compute how long the repetition is. Models
with countably infinitely many players are used to capture interactions with many players,
for example, models in which long-run players coexist with a sequence of short-run ones
[Mailath and Samuelson (10)], overlapping generations models [Kandori and Obayashi
(11)], large networks [Jackson (12)], and models with time-inconsistent decision makers
[O’Donoghue and Rabin (13)]. IR games with countably infinitely many players model
situations in which these two phenomena (long duration and many players) interact, for
example, models in which a certain phenomenon occurring in a local area of a network
propagates over time to the distant reaches of that network.

To prove the result we introduce a technique to the study of IR games with general
payoff functions, which combines Martin’s method (14) for Borel games and Blackwell
games, with a method developed by Solan and Vieille (15) for stochastic games.

The structure of the paper is as follows. In section 2, we introduce the model, state the
existence result, and discuss an illustrative example. In section 3, we prove the main result.
In section 4 we make some concluding remarks.

2. Model and Main Result

2.1. The Model. Definition: An IR game with countably many players is a triplet Γ =
(I , (Ai)i∈I , (fi)i∈I ), where

• I = {0, 1, 2, . . .} is a countable set of players;
• Ai is a nonempty and finite action set for player i , for each i ∈ I (let A=

∏
i∈I Ai

denote the set of action profiles, and AN denote the set of plays, i.e., infinite streams
of action profiles); and

• fi :A
N → R is player i ’s payoff function, for each i ∈ I .

The game is played in discrete time as follows. In each stage t ∈ N= {0, 1, 2, . . .},
each player i ∈ I selects an action at

i ∈ Ai , simultaneously with the other players. This
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induces an action profile at = (at
i )i∈I in stage t , which is ob-

served by all players. Given the realized play p = (a0, a1, . . .),
the payoff to each player i ∈ I is fi(p).
Histories. A history is a finite sequence of elements of A, in-
cluding the empty sequence ∅. The set of histories is denoted by
H =

⋃∞
t=0 A

t , where At is the t-fold product of A. The current
stage (or length) of a history h ∈ At is denoted by stage(h) = t .
For a play p ∈AN, write p≤t to denote the prefix of p of length
t + 1.

For two histories h, h ′ ∈ H and a play p ∈ AN, we denote the
concatenation of h and h ′ by hh ′ and that of h and p by hp.

Each history induces a subgame of Γ. Given h ∈H , the
subgame that starts at h is the gameΓh = (I , (Ai)i∈I , (fi,h)i∈I ),
where fi,h = fi ◦ sh and sh : AN →AN is given by p �→ hp.
Measure theoretic setup. We endow the set A of action profiles,
the sets At for t ≥ 2, and the set AN of plays with the product
topology, where the action set Ai of each player i ∈ I has its
natural discrete topology. We denote the corresponding Borel
sigma-algebras by F(A), F(At), and F(AN). A function that
is measurable with respect to one of these sigma-algebras is called
product-measurable.
Strategies. A mixed action for player i is a probability measure xi
on Ai . The set of mixed actions for player i is denoted by Xi . A
mixed action profile is a vector of mixed actions x = (xi)i∈I , one
for each player. The set of mixed action profiles is denoted by X .

A (behavior) strategy of player i is a function σi : H →Xi that
satisfies the following measurability condition: for each stage t ∈
N and each action ai ∈Ai , the mapping from At to [0, 1] given
by h ∈At �→ σi(h)(ai) is product-measurable. We denote by Σi

the set of strategies of player i .
A strategy profile is a vector of strategies σ = (σi)i∈I , one for

each player. We denote by Σ the set of strategy profiles.
Strategy profiles with finite support. A mixed action profile x is
said to have finite support if only finitely many players randomize
in x , i.e., all players except finitely many play a pure action with
probability 1. We denote by X F the set of mixed action profiles
with finite support.

A strategy profile σ is said to have finite support (at each stage)
if σ(h) ∈X F for every history h ∈ H . The set of players who
randomize may be history dependent, and its size may not be
bounded. We denote by ΣF the set of strategy profiles with finite
support.
Definitions for the opponents of a player. For i ∈ I , let −i denote
the set of its opponents, I \ {i}. When restricting attention to
players in −i , we can similarly define mixed action profiles x−i =
(xj )j �=i , strategy profiles σ−i = (σj )j �=i , mixed action profiles
with finite support, and strategy profiles with finite support. The
corresponding sets are denoted by X−i , Σ−i , X F

−i , and ΣF
−i ,

respectively.
Expected payoffs. For each history h ∈ H the mixed action profile
σ(h) = (σi(h))i∈I induces a unique probability measure Pσ(h)

on (A,F(A)) by Kolmogorov’s extension theorem, and then σ
induces a unique probability measure Pσ on (AN,F(AN)) by
the Ionescu–Tulcea theorem. If player i ’s payoff function fi is
bounded and product-measurable, then player i ’s expected payoff
under σ is

Eσ[fi ] =

∫
AN

fi(p) Pσ(dp).

In that case, player i ’s expected payoff under σ in the subgame
starting at a history h is

Eσ[fi | h] =
∫
AN

fi,h(p) Pσh
(dp),

where σh is the strategy profile defined as σh(h
′) = σ(hh ′) for

each history h ′.
Equilibrium. Consider a game with countably many players and
bounded and product-measurable payoffs. Let �ε= (εi)i∈I , where
εi ≥ 0 for each player i ∈ I . A strategy profile σ∗ is called an
�ε-equilibrium, if for every player i ∈ I and every strategy σi ∈ Σi ,
we have Eσ∗ [fi ] ≥ E(σi ,σ∗

−i)
[fi ]− εi .

2.2. Tail Measurability. A set B ⊆ AN of plays is called tail if
whenever p = (a0, a1, a2, . . . ) ∈ B and p′ = (a ′0, a ′1, a ′2, . . . )
satisfy a ′t = at for every t sufficiently large, we have p′ ∈ B .
Intuitively, a set B ⊆ AN is tail if changing finitely many
coordinates does not change the membership relation for B .
The tail sets of AN form a sigma-algebra, denoted by FTail. The
sigma-algebrasFTail andF(AN) are generally not related: neither
of them includes the other [Rosenthal (16) and Blackwell and
Diaconis (17)]. A function from AN to R is called tail-measurable
if it is measurable with respect to FTail.

Various important evaluation functions in the literature of IR
games are tail-measurable, for example, the limsup and liminf of
the average stage payoffs [e.g., Sorin (4), p. 73]. Various classical
winning conditions in the computer science literature, such as
the Büchi, co-Büchi, parity, Streett, and Müller [e.g., Horn and
Gimbert (18) and Chatterjee and Henzinger (19)], are also tail-
measurable. The discounted payoff [e.g., Shapley (3)] is not tail-
measurable.

2.3. The Main Result. We now present the main result of the
paper.

Theorem 2.1. Consider an IR game with countably many players.
If each player’s payoff function is bounded, product-measurable, and
tail-measurable, then the game admits an �ε-equilibrium for each �ε=
(εi)i∈I , where εi > 0 for each i ∈ I .

We show the existence of an �ε-equilibrium with a simple
structure: The players are supposed to follow a play; that is, each
player is supposed to play a fixed sequence of actions. If a player
deviates, her opponents switch to a strategy profile with finite
support to punish the deviator. Thus, it never happens that, on
or off the equilibrium play, infinitely many players randomize at
the same stage.

A 0-equilibrium does not always exist under the conditions
of Theorem 2.1, not even in games with only one player (the
other players can be treated as dummies). Indeed, suppose
that this player has two actions, 0 and 1. For each play p =
(a0, a1, . . .), let ζ(p) denote the limsup frequency of action 1:
ζ(p) = lim supt→∞(a0 + · · ·+ at)/(t + 1). Define the payoff
to be ζ(p) if ζ(p)< 1 and 0 if ζ(p) = 1. This payoff function is
tail-measurable, the player can obtain a payoff arbitrarily close to
1, but the player cannot obtain 1.

The example in section 2.4 illustrates the main ideas of the
construction of �ε-equilibria in the proof of Theorem 2.1.

2.4. An Illustrative Example. Voorneveld (9) studied the follow-
ing one-shot game with countably infinitely many players, which
is a variation of the example in Peleg (8) and in which each player
would like to choose the action that is chosen by the minority of
the players.

• The set of players is I = N.
• The action set of each player i ∈ I is Ai = {0, 1}.
• The payoff of each player i ∈ I is
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ri(a) =

⎧⎪⎪⎨
⎪⎪⎩
1, if ai = 0 and lim sup

n→∞
1
n

∑
j<n aj >

1
2 ,

1, if ai = 1 and lim sup
n→∞

1
n

∑
j<n aj ≤ 1

2 ,

0, otherwise.
[1]

Voorneveld (9) showed that this one-shot game has no
�ε-equilibrium when the εi values are not too large, for example,
when εi ∈ [0, 1/3] for every i . Indeed, suppose by way of
contradiction that x∗ is an �ε-equilibrium. The set of action profiles

B =
{
a ∈A : lim sup

n→∞
1
n

∑
j<n

aj >
1
2

}
⊆

∏
i∈I

Ai

is tail. Hence, by Kolmogorov’s 0–1 law, either Px∗(B) = 0 or
Px∗(B) = 1. In the former case, choosing action 0 gives payoff
0, while choosing action 1 gives payoff 1, and therefore the
strategy x∗

i of each player i chooses action 1 with probability
at least 1− εi ≥ 2/3, which contradicts Px∗(B) = 0. The argu-
ment is analogous for the latter case. Hence, x∗ cannot be an �ε-
equilibrium.

Consider now the following repeated version Γ of Voorneveld’s
game:

• The set of players is I = N.
• The action set of each player i ∈ I is Ai = {0, 1}.
• The payoff of each player i ∈ I is equal to 1 if ri(at) = 1 for all

sufficiently large stages t , and it is equal to 0 otherwise, where
ri is defined in Eq. 1.

Thus, player i wins in Γ if she wins the one-shot Voorneveld
game in all but finitely many stages. The payoff function of this
game is product-measurable and tail-measurable, and hence, the
game satisfies the conditions of Theorem 2.1.

Even though the one-shot Voorneveld game has no
�ε-equilibrium when εi ∈ [0, 1/3] for every i , according to
Theorem 2.1 the IR game Γ does have an �ε-equilibrium when
εi > 0 for every i . In fact, the following strategy profile is a
pure �0-equilibrium in the game Γ: fix an arbitrary default action
âi ∈ {0, 1} for each player i ; let each player i play her default
action âi in all stages t < i , and in each stage t ≥ i , let her play
action 0 if (ât+1, ât+2, . . .) is an element of B and action 1
otherwise. Under this strategy profile, each player i wins the one-
shot Voorneveld game in all stages t ≥ i , i.e., ri(at) = 1 for each
t ≥ i . Hence, in the game Γ each player’s payoff is 1.

In the above �0-equilibrium, the players are supposed to follow
a specific play of the game. Since each player’s payoff is maximal
under this play, no player has an incentive to deviate from it.

The general construction shares one crucial feature with the
example above: the �ε-equilibrium play, denoted p, is pure. The
key property of the play p is that it yields each player i at least her
minmax value, possibly up to εi . The minmax value of a player
is the highest expected payoff that the player can defend against
any strategy profile of her opponents; see section 3.1 for a formal
definition. If a player deviates from the play p, the other players
start punishing the deviator at her minmax value. Showing that
a play p with the desired property exists is the main challenge of
the construction. It is to tackle this problem that Martin’s (14)
techniques and tools from stochastic games are called for.

To apply the results of Martin (14), we cannot allow countably
infinitely many players to randomize at the same stage. We
therefore do not use the classical minmax value of player i , where
all opponents may randomize their actions. Rather, we will define

the concept of the finitistic minmax value of player i , restricting
the opponents of player i to strategy profiles with finite support.

3. The Proof

In section 3.1 we introduce the notion of finitistic minmax value,
designed specifically for games with countably infinitely many
players. In section 3.2 we establish a relation between the finitistic
minmax value of the IR game and the finitistic minmax values
of a collection of one-shot games, where each one-shot game is
associated with a history in the IR game. In section 3.3 we use
these one-shot games to derive the existence of a play in which
each player’s payoff is at least her finitistic minmax value, up to
some error term, and complete the proof of Theorem 2.1.

3.1. The Finitistic Minmax Value. In IR games it is customary
to use threats of punishment at the minmax value to discipline
players. In the presence of countably infinitely many players, when
the payoff function is not product-measurable, the expected payoff
and therefore the minmax value are not always well defined. In
our proof we will use one-shot games where the payoff functions
are not necessarily product-measurable; hence, we introduce a
suitable related notion, the so-called finitistic minmax value. This
notion imposes that all but finitely many of a player’s opponents
play a pure strategy. As a consequence, it is well defined regardless
of whether the payoff function is product-measurable or not.
The finitistic minmax value in one-shot games. Consider a one-
shot game G = (I , (Ai)i∈I , (ri)i∈I ), where I is a countable set
of players, and for each i ∈ I , Ai is a nonempty and finite action
set of player i and ri : A→ R is her payoff function.

Consider a player i ∈ I . If ri is bounded and F(A)-
measurable, then each mixed action profile x = (xi)i∈I induces
an expected payoff ri(x ) for player i . In the gameG , the (classical)
minmax value of player i is defined as

vali(ri) = inf
x−i∈X−i

sup
xi∈Xi

ri(xi , x−i). [2]

The minmax value can be interpreted as the highest payoff that
player i can defend against any mixed action profile of her
opponents.

Recall that X F
−i denotes the set of mixed action profiles x−i =

(xj )j �=i ∈X−i such that xj is pure for all but finitely many j 
= i .
Each mixed action profile x = (xi , x−i) ∈Xi × X F

−i induces a
well-defined expectation ri(x ) for any function ri : A→ R. The
finitistic minmax value of player i in G is

valFi (ri) = inf
x−i∈XF

−i

sup
xi∈Xi

ri(xi , x−i). [3]

Since Ai is finite, we can replace supxi∈Xi
by maxxi∈Xi

. The
classical and the finitistic versions of the minmax value coincide
for any function ri that is bounded and F(A)-measurable.

We note that in Eqs. 2 and 3 we cannot replace the infimum by
minimum. Indeed, suppose that i = 0, and player 0 has a single
action, while all other players have two actions: a and b. Define r0
to be 1/n if player n > 0 is the only opponent who plays action b
and to be 1 otherwise. Then player 0’s minmax value and finitistic
minmax value are equal to 0, but player 0’s payoff is never 0.
The finitistic minmax value in IR games. Let Γ be an IR game with
countably many players. Assume that player i ’s payoff function fi
is bounded and product-measurable. Define the finitistic minmax
value of player i in the IR game Γ as

ValFi (Γ) = inf
σ−i∈ΣF

−i

sup
σi∈Σi

E(σi ,σ−i)[fi ]. [4]
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Note the distinction between valFi andValFi ; the former is used
for the finitistic minmax value in one-shot games, and the latter
is used for the finitistic minmax value in IR games.

Player i ’s finitistic minmax value in the subgame starting at a
history h is

ValFi (Γ
h) = inf

σ−i∈ΣF
−i

sup
σi∈Σi

E(σi ,σ−i )[fi | h].

When a player’s payoff function is tail-measurable, her payoff
is independent of the initial segment of the play. As a result, her
finitistic minmax value is independent of the history.

Theorem 3.1. Let Γ be an IR game with countably many players.
Assume that some player i ’s payoff function fi is bounded, product-
measurable, and tail-measurable. Then, ValFi (Γh) = ValFi (Γ) for
every history h ∈H .

3.2. Defending the Finitistic Minmax Value. We start with an
auxiliary result. Let Γ = (I , (Ai)i∈I , (fi)i∈I ) be an IR game
with countably many players. Fix a player i ∈ I . For a function
d :H → R and a history h ∈ H , we write dh : A→ R to denote
the function a �→ d(ha). This way, given a function d :H → R,
we can associate the following one-shot game G(dh) with each
history h ∈H : the action set of each player j ∈ I is Aj , and the
payoff of player i under each action profile a ∈ A is dh(a) =
d(ha). The payoff functions of the other players are irrelevant.

Lemma 3.1. Let Γ be an IR game with countably many players.
Consider a player i ∈ I and assume that her payoff function fi takes
values in [0, 1] and is product-measurable. Suppose moreover that
0<ValFi (Γ) and let 0< w <ValFi (Γ). There exists a function d :
H → [0, 1] satisfying the following conditions:

Condition a: At the empty history: d(∅) = w .
Condition b: d(h)≤ valFi (d

h) for every h ∈ H .
Condition c: lim supt→∞ d(p≤t)≤ fi(p) for every play

p ∈AN.
Intuitively, the function d has the following properties. Condi-

tion a is the initialization. Condition b requires that at any history
h , if the opponents of player i use a mixed strategy profile x−i

with finite support, then player i has a response xi such that the
expectation of the function dh under the mixed action profile
(xi , x−i) is at least d(h). In other words, player i is able to defend
the payoff of d(h) in the one-shot game G(dh) against finitistic
mixed action profiles of the other players. Condition c states that
the actual payoff is at least the limsup of the sequence of values
under d .

Before proving Lemma 3.1, we provide two examples.
Example 3.1: Consider the IR game in section 2.4. Define

d recursively: let w ∈ (0, 1) and set d(∅) = w . Let h ∈H be
such that d(h) has been defined. If d(h) = 0, let d(ha) = 0 for
each a ∈A. If d(h)> 0, let d(ha) = ri(a) for each a ∈A. The
function d satisfies Condition a of Lemma 3.1, and it satisfies
Condition b since valFi (ri) = 1. To see that it satisfies Condition c
of Lemma 3.1, suppose that fi(p) = 0 for a play p = (a0, a1, . . .).
Then ri(a

k ) = 0 for some stage k ∈ N, and therefore, d(p≤t) =
0 for all stages t ≥ k . ♦

Example 3.2: Let Γ be the following two-player zero-sum IR
game: The action set is A1 = {T ,B} for player 1 and A2 =
{L,R} for player 2 (and all other players are dummies). The
payoff function f1 assigns payoff 1 to each play p ∈ (A1 × A2)

N

such that (T ,L) or (B ,R) are played infinitely many times and
assigns payoff 0 to all other plays. One can think of Γ as a repeated
matching pennies game

L R( )
T 1 0
B 0 1

,

where player 1 wins if she receives payoff 1 infinitely often. The
function f1 is tail-measurable, and ValF1 (Γ

h) = 1 for each history
h . Moreover, one strategy of player 1 that guarantees the payoff 1
is playing the mixed action ( 12 ,

1
2 ) at each stage.

Let ψ−,ψ+ : [0, 1]→ [0, 1] be the functions ψ−(x ) = x −
1
2 min{x , 1− x} and ψ+(x ) = x + 1

2 min{x , 1− x}. Define d
recursively. Fix w ∈ (0, 1) and let d(∅) = w . If d(h) has been
defined, let dh :A→ [0, 1] be given as follows:

L R( )
T ψ+(d(h)) ψ−(d(h))
B ψ−(d(h)) ψ+(d(h))

. [5]

Note that the value of dh is exactly d(h). Also, if p is a play where
both (T ,L) and (B ,R) are played only finitely many times,
then d(p≤t) is monotonically decreasing after some stage and is
approaching 0. Thus, the function d satisfies the conditions of
Lemma 3.1 for i = 1. ♦

The proof of Lemma 3.1 is largely based on the arguments
in Martin (14) and Maitra and Sudderth (20). These arguments
involve an auxiliary zero-sum perfect information game in which
the winning strategy of the first player produces the desired
function d . We provide a sketch of the argument, noting what
modifications to Martin’s and Maitra and Sudderth’s proofs are
required, but omit the details.
Proof of Lemma 3.1. Given a game Γ, a player i satisfying the
conditions of Lemma 3.1, and a number w ∈ (0, 1], consider the
following perfect information game, denoted Mi(Γ,w):

• Player I chooses a one-shot payoff function r0 : A→ [0, 1]

such that valFi (r0)≥ w .
• Player II chooses an action profile a0 ∈A such that

r0(a0)> 0.
• Player I chooses a one-shot payoff function r1 : A→ [0, 1]

such that valFi (r1)≥ r0(a0).
• Player II chooses an action profile a1 ∈A such that

r1(a1)> 0.
• Player I chooses a one-shot payoff function r2 : A→ [0, 1]

such that valFi (r2)≥ r1(a1), and so on.

To distinguish between histories and plays in Γ and in
Mi(Γ,w), we call the latter positions and runs. The outcome
of Mi(Γ,w) is a run (r0, a0, r1, a1, . . . , ). Player I wins
Mi(Γ,w) if

lim sup
t→∞

r t(at)≤ fi(a
0, a1, . . .).

Note that player I has a legal move at any stage of the game,
for instance, the function r :A→ R such that r(a) = 1 for all
a ∈A. By induction one can show that player II always has a
legal move as well. Let T be the set of all positions in the game
Mi(Γ,w). Then T is a pruned tree on the set R ∪A, where R
denotes the set of functions r :A→ [0, 1]. One can check that
player I’s winning set in Mi(Γ,w) is a Borel subset of the set of
runs, where the set of runs is endowed with the product topology
andR ∪A is endowed with the discrete topology. By Martin (21),
Mi(Γ,w) is determined: either player I has a winning strategy in
the game or player II does. We next establish the following fact.

Claim 3.1: Player I has a winning strategy in Mi(Γ,w)

whenever 0< w <ValFi (Γ).
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Sketch of the proof of Claim 3.1. Fix w such that 0< w <

ValFi (Γ) and suppose that player I has no winning strategy
in Mi(Γ,w). Then player II does. Fix player II’s winning
strategy, say σII, and 0< δ <ValFi (Γ)− w . We spell out the
key definitions and give a sketch of the steps of the proof, which
follows closely the arguments in Maitra and Sudderth (ref. 20,
lemmata 4.3 and 4.4).

Step 1: One defines a notion of consistency (with respect to
σII and δ) of a history of the IR game Γ and simultaneously a
function ψ mapping each consistent history of Γ into a player I’s
position in Mi(Γ,w) of the same length.

The definition is recursive in the length of the history. The
empty history ∅ of Γ is consistent; we define ψ(∅) to be the empty
position of Mi(Γ,w). Take a t ∈ N and a consistent history
ht ∈At for which player I’s position ψ(ht) has been defined; let
at ∈A and consider the history (ht , at) in Γ. Let R(ht , at) be
the set of player I’s legal moves r t at position ψ(ht) in Mi(Γ,w)
to which σII responds with at :

R(ht , at ) = {r t ∈ R : (ψ(ht), r t ) ∈ T

and σII(ψ(h
t), r t ) = at}.

If R(ht , at) is not empty, (ht , at) is defined to be consistent. In
this case, define

uht (at) = inf{r t(at) : r t ∈ R(ht , at)}. [6]

To define ψ(ht , at), choose r t ∈ R(ht , at ) so that

r t(at)≤ uht (at) + δ · 3−t−2, [7]

and let
ψ(ht , at) = (ψ(ht), r t , at).

Step 2: It holds that

valFi (u∅)≤ w and valFi (uht )≤ r t−1(at−1) [8]

whenever ht = (ht−1, at−1) is a consistent history and ψ(ht) =
(ψ(ht−1), r t−1, at−1).

The proof of Step 2 is by contradiction. Assuming that
valFi (uht )> ε+ r t−1(at−1) for some ε > 0, we define player
I’s move at position ψ(ht) by r t = max{uht − ε, 0}, argue that
the move is legal, and consider player II’s reaction at as prescribed
by σII. Then r t ∈ R(ht , at) and we obtain a contradiction to
Eq. 6.

Step 3: Obtain a contradiction by showing that ValFi (Γ)≤
w + δ.

Step 3.1: Define a process W 0,W 1, . . . on AN.
Define first W

t
: At → R for each t ∈ N as follows: let

W
0
(∅) = w ; for each t ∈ N, letW

t+1
(ht , at) = uht (at)when-

ever (ht , at ) is consistent and W
t+1

(ht , at) = 1 otherwise.
Now define W t : At → R by W t =W

t
+ δ · 3−t for each

t ∈ N. This defines a process on AN adapted to the filtration
{F(At)}t∈N. From Eq. 7 and the fact that σII is winning, one
deduces that fi ≤ lim supt→∞ W t everywhere on AN.

Step 3.2: Define σ−i ∈ ΣF
−i , a strategy profile with finite

support for i ’s opponents in Γ.
For each history ht of Γ, choose a mixed action profile with

finite support σ−i(h) ∈ X F
−i so that for each xi ∈ Xi ,

uht (xi ,σ−i(h
t))≤ valFi (uht ) + δ · 3−t−1. [9]

At this point, a delicate issue is the measurability property of
strategies. Recall that for each stage t , player j , and action aj ,

the mapping h �→ σj (h)(aj ) should be measurable. Since we have
chosen σ−i(h) to be finitely supported, the number of histories
that occur with positive probability at each stage under σ−i is
finite. Since the definition of the strategy in histories that occur
with probability 0 is irrelevant, we can set the action chosen at
these histories to be an arbitrary fixed action, thus ensuring that
the measurability property is satisfied.

Step 3.3: The process W t is a supermartingale with respect to
the measure P(σi ,σ−i) for each σi ∈ Σi .

This follows by combining Eqs. 7–9.
Step 3.4: It holds thatE(σi ,σ−i )(fi)≤ w + δ for each σi ∈ Σi .
This follows by the martingale convergence theorem and Step

3.1. This inequality contradicts the choice of δ. �
Now, using Claim 3.1, we complete the proof of Lemma 3.1.

Take 0< w <ValFi (Γ) and let σI be a winning strategy of player
I in Mi(Γ,w). The strategy σI induces the function d with
the desired properties, as follows. Define d(∅) = w . Let TI ⊆
T denote the set of positions in the game Mi(Γ,w) of even
length (i.e., player I’s positions) that are consistent with σI. Let
HI ⊆ H denote the set of histories of Γ consisting of the empty
history ∅, and nonempty histories (a0, . . . , at−1) for which there
is a sequence r0, . . . , r t−1 of elements of R such that h∗ =
(r0, a0, . . . , r t−1, at−1) is an element of TI. If h ∈ H \HI,
define d(ha) = 0 for each a ∈A. If h ∈HI, let r t = σI(h

∗) be
player I’s move at position h∗, and let d(ha) = r t(a) for each
a ∈A. Since r t is determined by σI, h∗ is uniquely determined
by h ∈HI. The reader can verify that d satisfies Conditions a–c. �

By using Lemma 3.1, we derive the existence of a function d :
H → R with certain desirable properties.

Theorem 3.2. Let Γ be an IR game with countably many players.
Consider a player i ∈ I and assume that her payoff function fi
takes values in [0, 1] and is product-measurable. Then, for every
δ > 0, there exists a function d :H → [0, 1] satisfying the following
conditions:

Condition M.1: d(h)≤ valFi (d
h) for every h ∈H .

Condition M.2: ValFi (Γ
h)− δ ≤ valFi (d

h) for every h ∈ H .
Condition M.3: For every strategy profile with finite support

σ ∈ ΣF such that

valFi (d
h) ≤ Eσ(h)[d

h ] ∀h ∈H , [10]

we have
valFi (d

h) ≤ Eσ[fi | h] ∀h ∈H .

Condition M.1 is identical to Condition b of Lemma 3.1. Condi-
tion M.2 requires that at each history h , the finitistic minmax value
valFi (d

h) of the one-shot game G(dh) is not too low: it should
be at least ValFi (Γh)− δ. Condition M.3 links local conditions
on the one-shot games G(dh), h ∈H , with a global condition
on the IR game: under any strategy profile with finite support, if
in each one-shot game G(dh), player i ’s expected payoff under
the mixed actions played at h is at least valFi (dh), then in the IR
game, for each history h , player i ’s expected payoff in the subgame
at h is also at least valFi (dh).

Example 3.3: The function d defined in Example 3.1 violates
Condition M.2 since there are histories h such that the one-shot
payoff function dh is identically zero, whereas ValFi (Γh) = 1 for
each history h .

Consider instead the function d defined by d(∅) = 1 and
d(ha) = ri(a) for each h ∈H and a ∈A. Thus, dh = ri , and
so valFi (d

h) = 1 for each h . Conditions M.1, M.2, and M.3 are
all satisfied. To verify Condition M.3, consider a strategy profile
σ ∈ ΣF satisfying Eq. 10. Then for each h ∈H the mixed action
profile σ(h) is supported by the set of action profiles a ∈ A such
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that ri(a) = 1. This implies that Pσ(· | h) is supported by the set
of plays p ∈AN with fi(p) = 1.

The function d does not satisfy Condition c of Lemma 3.1.
Consider, for instance, the play p where at each stage all the players
in −i play 0, while player i plays 0 at even stages and 1 at odd
stages. Then i ’s reward is 0 at even stages and 1 at odd stages,
implying that fi(p) = 0, while lim supt→∞ d(p≤t) = 1. In fact,
one can show that in this example, there is no function d that
simultaneously satisfies Conditions M.2 and M.3 of Theorem 3.2
and Condition c of Lemma 3.1. ♦

Example 3.4: The function d constructed in Example 3.2 fails
to satisfy Condition M.2: we have seen that valFi (d

h) can be
arbitrarily close to zero.

Fix δ ∈ (0, 2
3 ), and consider instead the function d defined

recursively as follows. Let d(∅) = 1− δ. Take h ∈ H such that
d(h) has been defined. If 1− δ ≤ d(h), define dh : A→ [0, 1]
to be given by Eq. 5; if d(h)< 1− δ, define dh to be the function

L R( )
T 1− 1

2δ 1− 3
2δ

B 1− 3
2δ 1− 1

2δ
.

Note that if 1− δ ≤ d(h), then d(h) = valFi (d
h), and if

d(h)< 1− δ, then 1− δ = valFi (d
h). This shows that both

Conditions M.1 and M.2 are satisfied. To verify Condition M.3,
let σ satisfy Eq. 10. Then, for each h ∈ H , the measure σ(h)
places probability of at least 1

2 on the set {(T ,L), (B ,R)}.
This implies that at ∈ {(T ,L), (B ,R)} for infinitely many
t ∈ N almost surely with respect to the measure Pσ(· | h). Thus,
Eσ[fi | h] = 1. ♦
Proof of Theorem 3.2. Fix δ > 0.

The function D̂h . Consider an arbitrary history h ∈ H . Let Hh ⊆
H be the set of all histories that extend h (including h itself ). We
define a function D̂h :Hh → [0, 1] as follows.

Suppose first that ValFi (Γh)> δ/2. Apply Lemma 3.1 to the
subgame Γh and w =ValFi (Γ

h)− δ/2. This yields a function
D̂h :Hh → [0, 1] with the following properties:

• At the history h ,

D̂h(h) = ValFi (Γ
h)− δ

2 . [11]

• For every g ∈Hh ,

D̂h(g)≤ valFi (D̂
g
h ), [12]

where the symbol D̂g
h stands for the function dg as defined in

section 3.2, with d = D̂h .
• For every play p that extends h we have

lim sup
t→∞

D̂h(p
≤t)≤ fi(p). [13]

If ValFi (Γh)≤ δ/2, then we let D̂h be the constant zero function.
This definition satisfies Eqs. 12 and 13, whereas Eq. 11 has to be
replaced by

ValFi (Γ
h)− δ

2 ≤ D̂h(h) = 0. [14]

The function d. We recursively define a function d :H → [0, 1]
and, simultaneously, an auxiliary function α :H →H , which
assigns to each history h a prefix α(h) of h .

• At the empty history, set α(∅) = ∅ and d(∅) = D̂α(∅)(∅) =
D̂∅(∅)≥ValFi (Γ)− δ/2.

• Consider a history h 
= ∅, and suppose that α(g) and d(g) are
already defined for each strict prefix g of h . Let h− denote the
prefix of h satisfying stage(h) = stage(h−) + 1.
– Set d(h) = D̂α(h−)(h).
– If ValFi (Γh)− δ ≤ d(h), set α(h) = α(h−). Otherwise,

set α(h) = h ; in this case, we say that d reinitiates at h .

The intuition behind the definition of the function d is the
following. We start at h0 = ∅ with the function D̂h0

and stick
with it until we encounter a history h1 such that D̂h0

(h1)<

ValFi (Γ
h1)− δ. From this point on, the function D̂h0

is no
longer useful, and reinitiation occurs, which takes effect from the
next stage, stage(h1) + 1. As of that stage, d follows the function
D̂h1

, until encountering a history h2 such that D̂h1
(h2)<

ValFi (Γ
h2)− δ. As of stage stage(h2) + 1, d follows D̂h2

,
and so on.

We show that d satisfies Conditions M.1–M.3.

Verifying Conditions M.1 and M.2. For each history h ∈ H , as
d(ha) = D̂α(h)(ha) for all action profiles a ∈A, we have

dh = D̂h
α(h). [15]

For the empty history ∅, by Eqs. 11, 12, 14, and 15,

ValFi (Γ)− δ < ValFi (Γ)− δ
2 ≤ D̂∅(∅) = d(∅)

≤ valFi (D̂
∅
∅ ) = valFi (d

∅),

which proves Conditions M.1 and M.2 for ∅.
Consider now a history h 
= ∅ at which d does not reinitiate.

Since α(h) = α(h−), by Eqs. 12 and 15,

ValFi (Γ
h)− δ ≤ d(h) = D̂α(h−)(h) = D̂α(h)(h)

≤ valFi
(
D̂h

α(h)

)
= valFi (d

h),

which proves Conditions M.1 and M.2 for h .
Finally, consider a history h ∈H at which d reinitiates. By Eqs.

11, 12, 14, and 15, and since α(h) = h ,

d(h) < ValFi (Γ
h)− δ < ValFi (Γ

h)− δ
2

≤ D̂h(h) ≤ valFi (D̂
h
h ) = valFi (d

h), [16]

which proves Conditions M.1 and M.2 for h .

Verifying Condition M.3. Assume that a strategy profile with finite
support σ ∈ ΣF satisfies Eq. 10.

Notice that Eq. 10 and Condition M.1 imply that d(h)≤
Eσ(h)[d

h ] for each history h ∈H , and thus, the process (d(h))h
is a bounded submartingale under σ (with respect to the usual
filtration on AN). Hence, in particular, (d(h))h converges with
probability 1 under σ. Notice also that if d reinitiates at a history
h ∈H , then by Eqs. 10 and 16 we have d(h) + δ

2 ≤ valFi (d
h)≤

Eσ(h)[d
h ].

This implies that under σ the expected number of reinitiations
is bounded in any subgame. In particular,

Pσ(the number of reinitiations is finite | g) = 1,

for every history g .
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Fix a history g and ρ > 0. We will show that valFi (d
g)≤

Eσ[fi | g ]. Let T ≥ stage(g) be a sufficiently large stage such that

Pσ(no reinitiation after stage T | g) ≥ 1− ρ.

This implies

Pσ

(
α(p≤T ) = α(p≤t) for each t ≥ T | g

)
≥ 1− ρ.

Hence,

valFi (d
g) ≤ Eσ(g)[d

g ]

≤ Eσ

[
lim sup
t→∞

d(p≤t) | g
]

≤ Eσ

[
lim sup
t→∞

D̂α(p≤T )(p
≤t) | g

]
+ ρ

≤ Eσ[fi | g ] + ρ,

where the last inequality follows from Eq. 13. Since ρ is arbitrary,
Condition M.3 holds as well. �

Remark: In the proof of Theorem 3.2 the function d is up-
dated whenever its value drops too much, that is, whenever its
continuation cannot serve to show that the value of the current
subgame is not far belowValFi (Γ). This idea is reminiscent of, e.g.,
Rosenberg and Vieille (22), where to construct an optimal strategy
one follows a discounted optimal strategy until a subgame is
reached where the discounted value is far below the undiscounted
value and then switches to a discounted optimal strategy with a
higher discount factor, for which the discounted value is closer to
the undiscounted value.

3.3. Proof of Theorem 2.1. In this section we complete the proof
of Theorem 2.1. By applying a proper affine transformation to the
payoff function of each player i and adjusting εi accordingly, we
can assume without loss of generality that fi takes values in [0, 1].

The gist of the argument is as follows. For each player i ∈ I , let
di :H → [0, 1] be a function satisfying the conditions of Theorem
3.2 with δ = εi

2 , and fix arbitrarily some default action âi ∈Ai .
We define, for each history h ∈ H , a one-shot game G(h). This
is a game with finitely many players: if stage(h) = t , then in
G(h), only the players 0, . . . , t are active; the other players are
assumed to be playing their respective default actions. The payoff
to an active player i is given by the function dh

i . Nash equilibria
of this game satisfy Eq. 10 for every player i ∈ {0, . . . , t}. By
Conditions M.2 and M.3, the corresponding strategy profile in
the IR game Γ gives each player i , almost surely, a payoff of at
least ValFi (Γ)− εi

2 . This in turn implies that there exists a play
p with a payoff of at least ValFi (Γ)− εi

2 for each player i ∈ I .
Such a play yields an �ε-equilibrium in Γ: if a player i deviates
from this play, then she gets punished; i.e., her opponents switch
to a strategy profile which ensures that player i ’s payoff is at most
ValFi (Γ) +

εi
2 .

The one-shot game G(h). Fix a history h , and denote t =
stage(h). Let G(h) be the one-shot game where

• The set of players is {0, 1, 2, . . . , t}.
• The action set of each player i ∈ {0, 1, 2, . . . , t} is Ai .
• The payoff function rhi :

∏t
j=0 Aj → [0, 1] of each player i ∈

{0, 1, 2, . . . , t} is given by

rhi (a0, . . . , at ) = dh
i (a0, . . . , at , ât+1, ât+2, . . .).

By Nash (2), the one-shot game G(h) has an equilibrium
x (h) = (xi(h))

t
i=0 ∈

∏t
i=0 Xi . Since each player i = 0,

1, 2, . . . , t is active in G(h) and only finitely many of her
opponents randomize, we have

Ex(h)[r
h
i ] ≥ valFi (d

h) for each i ∈ {0, . . . , t}. [17]

The play p. For t ∈ N, define the set H F
t ⊆ At as follows. Let

H F
0 consist of the empty history ∅, and for t ∈ N, let H F

t+1 be the
set of histories (a0, . . . , at) ∈At+1 such that ak

i = âi for k ≤ t
and k < i . This is the set of histories that may result if the inactive
players stick to their default actions. The set H F

t is finite for each
t ∈ N.

For each player i ∈ I , let σi ∈ Σi be the following strategy
(compare with equation 9 in ref. 15): for each history h ∈ At ,

σi(h) =

{
xi(h), if h ∈H F

t and i ≤ t ,
âi , otherwise.

The function thus defined is a strategy; i.e., the function h �→
σi(h)(ai) is F(At)-measurable for every ai ∈Ai and every
t ∈ N. Indeed, this function coincides with the function h �→
xi(h)(ai) on the finite set of histories H F

t , and it is constant on
At \H F

t .
The resulting strategy profile σ = (σi)i∈I is an element of

ΣF. Consider any player i ∈ I . For every history h ∈H with
stage(h)≥ i , we have, by Eq. 17,

Eσ(h)[d
h
i ] = Ex(h)[r

h
i ] ≥ valFi (d

h).

By Theorems 3.2 and 3.1 we deduce that for every history h ∈ H
with stage(h)≥ i ,

Eσ[fi | h] ≥ valFi (d
h) ≥ ValFi (Γ

h)− εi
2 = ValFi (Γ)− εi

2 .

Since this holds for all histories beyond stage i , Lévy’s 0–1 law
implies that

Pσ

(
fi ≥ValFi (Γ)− εi

2

)
= 1.

Since the set I of players is countable, it follows that there exists
a play p ∈AN such that

fi(p) ≥ ValFi (Γ)− εi
2 , ∀i ∈ I .

The �ε-equilibrium in Γ. Based on the play p, the following grim-
trigger strategy profile is an �ε-equilibrium:

• The players follow the play p.
• If some player i deviates from p at stage t , then from stage

t + 1 and on, all other players punish player i at her finitistic
minmax value. That is, they bring down player i ’s payoff to
ValFi (Γ) +

εi
2 .

4. Discussion

Tail Measurability. In our proof, the tail measurability of the
payoff functions was used in two arguments: first, in Theorem
3.1 to conclude that the finitistic minmax value of a player in a
subgame is independent of the history, and second, in the proof of
Theorem 2.1 to ensure that each player i can play arbitrarily during
the first i stages without affecting her overall payoff. When the
payoffs are not tail-measurable, an �ε-equilibrium need not exist;
Voorneveld’s one-shot game, when viewed as an IR game in which
only stage 0 action profile matters, provides an illustration.

Games with Finitely Many Players. Our model encompasses
games with finitely many players, as we can assume that only
finitely many players have more than one action. Existence of ε-
equilibrium was not known even in this setup. Note that even in
this case, the tail sigma-algebra FTail is unrelated to the Borel
sigma-algebra F(AN).
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Ongoing Interaction. Conceptually, the current framework dif-
fers from the traditional framework of repeated games [Sorin
(4)]. In the latter, one specific game—for example, the prisoner’s
dilemma [see, e.g., Fudenberg and Tirole (23), p. 9]—is played
repeatedly, and the players are paid off at each stage. The long-
run payoff is then defined as some kind of average of the stage
payoffs. Here, on the other hand, stage payoffs are not explicitly
defined; instead, the payoffs depend on the entire sequence of
the action profiles, as in Gale and Stewart (7). One could still
think of stages as representing stage games. These stage games
may differ from each other and may evolve over time in a
complex, history-dependent fashion; perhaps a prisoner’s dilemma
at one stage, a stag hunt (see, e.g., ref. 23, p. 20) at the next,
a battle of the sexes (see, e.g., ref. 23, p. 18) next, and so on.
The stage payoffs, which are not explicit, may be thought of as
being implicit in the long-run payoffs. The long-run payoff may
exhibit players’ goals that cannot be described by an average of
stage payoffs; for example, a player may care about the long-run

average payoff as well as the long-run average stage to stage
fluctuation.

The theory of repeated games yields insights into phenomena
such as altruism, cooperation, trust, loyalty, threats, and revenge
[Sorin (4) and Aumann (24)], showing how they arise from the
ongoing nature of the interaction. It takes a leap of the imagi-
nation to extend these insights to the real world, where people
interact in different ways over time and their goals are complex.
The current work formalizes this leap.

Data Availability. There are no data underlying this work.
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